1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h" // for unlink_if_ordinary()
35 #include "parameters.h"
42 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 # define MAP_ANONYMOUS MAP_ANON
50 // Output_data variables.
52 bool Output_data::allocated_sizes_are_fixed
;
54 // Output_data methods.
56 Output_data::~Output_data()
60 // Return the default alignment for the target size.
63 Output_data::default_alignment()
65 return Output_data::default_alignment_for_size(
66 parameters
->target().get_size());
69 // Return the default alignment for a size--32 or 64.
72 Output_data::default_alignment_for_size(int size
)
82 // Output_section_header methods. This currently assumes that the
83 // segment and section lists are complete at construction time.
85 Output_section_headers::Output_section_headers(
87 const Layout::Segment_list
* segment_list
,
88 const Layout::Section_list
* section_list
,
89 const Layout::Section_list
* unattached_section_list
,
90 const Stringpool
* secnamepool
,
91 const Output_section
* shstrtab_section
)
93 segment_list_(segment_list
),
94 section_list_(section_list
),
95 unattached_section_list_(unattached_section_list
),
96 secnamepool_(secnamepool
),
97 shstrtab_section_(shstrtab_section
)
99 // Count all the sections. Start with 1 for the null section.
101 if (!parameters
->options().relocatable())
103 for (Layout::Segment_list::const_iterator p
= segment_list
->begin();
104 p
!= segment_list
->end();
106 if ((*p
)->type() == elfcpp::PT_LOAD
)
107 count
+= (*p
)->output_section_count();
111 for (Layout::Section_list::const_iterator p
= section_list
->begin();
112 p
!= section_list
->end();
114 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
117 count
+= unattached_section_list
->size();
119 const int size
= parameters
->target().get_size();
122 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
124 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
128 this->set_data_size(count
* shdr_size
);
131 // Write out the section headers.
134 Output_section_headers::do_write(Output_file
* of
)
136 switch (parameters
->size_and_endianness())
138 #ifdef HAVE_TARGET_32_LITTLE
139 case Parameters::TARGET_32_LITTLE
:
140 this->do_sized_write
<32, false>(of
);
143 #ifdef HAVE_TARGET_32_BIG
144 case Parameters::TARGET_32_BIG
:
145 this->do_sized_write
<32, true>(of
);
148 #ifdef HAVE_TARGET_64_LITTLE
149 case Parameters::TARGET_64_LITTLE
:
150 this->do_sized_write
<64, false>(of
);
153 #ifdef HAVE_TARGET_64_BIG
154 case Parameters::TARGET_64_BIG
:
155 this->do_sized_write
<64, true>(of
);
163 template<int size
, bool big_endian
>
165 Output_section_headers::do_sized_write(Output_file
* of
)
167 off_t all_shdrs_size
= this->data_size();
168 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
170 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
171 unsigned char* v
= view
;
174 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
175 oshdr
.put_sh_name(0);
176 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
177 oshdr
.put_sh_flags(0);
178 oshdr
.put_sh_addr(0);
179 oshdr
.put_sh_offset(0);
181 size_t section_count
= (this->data_size()
182 / elfcpp::Elf_sizes
<size
>::shdr_size
);
183 if (section_count
< elfcpp::SHN_LORESERVE
)
184 oshdr
.put_sh_size(0);
186 oshdr
.put_sh_size(section_count
);
188 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
189 if (shstrndx
< elfcpp::SHN_LORESERVE
)
190 oshdr
.put_sh_link(0);
192 oshdr
.put_sh_link(shstrndx
);
194 oshdr
.put_sh_info(0);
195 oshdr
.put_sh_addralign(0);
196 oshdr
.put_sh_entsize(0);
201 unsigned int shndx
= 1;
202 if (!parameters
->options().relocatable())
204 for (Layout::Segment_list::const_iterator p
=
205 this->segment_list_
->begin();
206 p
!= this->segment_list_
->end();
208 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
215 for (Layout::Section_list::const_iterator p
=
216 this->section_list_
->begin();
217 p
!= this->section_list_
->end();
220 // We do unallocated sections below, except that group
221 // sections have to come first.
222 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
223 && (*p
)->type() != elfcpp::SHT_GROUP
)
225 gold_assert(shndx
== (*p
)->out_shndx());
226 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
227 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
233 for (Layout::Section_list::const_iterator p
=
234 this->unattached_section_list_
->begin();
235 p
!= this->unattached_section_list_
->end();
238 // For a relocatable link, we did unallocated group sections
239 // above, since they have to come first.
240 if ((*p
)->type() == elfcpp::SHT_GROUP
241 && parameters
->options().relocatable())
243 gold_assert(shndx
== (*p
)->out_shndx());
244 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
245 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
250 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
253 // Output_segment_header methods.
255 Output_segment_headers::Output_segment_headers(
256 const Layout::Segment_list
& segment_list
)
257 : segment_list_(segment_list
)
259 const int size
= parameters
->target().get_size();
262 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
264 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
268 this->set_data_size(segment_list
.size() * phdr_size
);
272 Output_segment_headers::do_write(Output_file
* of
)
274 switch (parameters
->size_and_endianness())
276 #ifdef HAVE_TARGET_32_LITTLE
277 case Parameters::TARGET_32_LITTLE
:
278 this->do_sized_write
<32, false>(of
);
281 #ifdef HAVE_TARGET_32_BIG
282 case Parameters::TARGET_32_BIG
:
283 this->do_sized_write
<32, true>(of
);
286 #ifdef HAVE_TARGET_64_LITTLE
287 case Parameters::TARGET_64_LITTLE
:
288 this->do_sized_write
<64, false>(of
);
291 #ifdef HAVE_TARGET_64_BIG
292 case Parameters::TARGET_64_BIG
:
293 this->do_sized_write
<64, true>(of
);
301 template<int size
, bool big_endian
>
303 Output_segment_headers::do_sized_write(Output_file
* of
)
305 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
306 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
307 gold_assert(all_phdrs_size
== this->data_size());
308 unsigned char* view
= of
->get_output_view(this->offset(),
310 unsigned char* v
= view
;
311 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
312 p
!= this->segment_list_
.end();
315 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
316 (*p
)->write_header(&ophdr
);
320 gold_assert(v
- view
== all_phdrs_size
);
322 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
325 // Output_file_header methods.
327 Output_file_header::Output_file_header(const Target
* target
,
328 const Symbol_table
* symtab
,
329 const Output_segment_headers
* osh
,
333 segment_header_(osh
),
334 section_header_(NULL
),
338 const int size
= parameters
->target().get_size();
341 ehdr_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
343 ehdr_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
347 this->set_data_size(ehdr_size
);
350 // Set the section table information for a file header.
353 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
354 const Output_section
* shstrtab
)
356 this->section_header_
= shdrs
;
357 this->shstrtab_
= shstrtab
;
360 // Write out the file header.
363 Output_file_header::do_write(Output_file
* of
)
365 gold_assert(this->offset() == 0);
367 switch (parameters
->size_and_endianness())
369 #ifdef HAVE_TARGET_32_LITTLE
370 case Parameters::TARGET_32_LITTLE
:
371 this->do_sized_write
<32, false>(of
);
374 #ifdef HAVE_TARGET_32_BIG
375 case Parameters::TARGET_32_BIG
:
376 this->do_sized_write
<32, true>(of
);
379 #ifdef HAVE_TARGET_64_LITTLE
380 case Parameters::TARGET_64_LITTLE
:
381 this->do_sized_write
<64, false>(of
);
384 #ifdef HAVE_TARGET_64_BIG
385 case Parameters::TARGET_64_BIG
:
386 this->do_sized_write
<64, true>(of
);
394 // Write out the file header with appropriate size and endianess.
396 template<int size
, bool big_endian
>
398 Output_file_header::do_sized_write(Output_file
* of
)
400 gold_assert(this->offset() == 0);
402 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
403 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
404 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
406 unsigned char e_ident
[elfcpp::EI_NIDENT
];
407 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
408 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
409 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
410 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
411 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
413 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
415 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
418 e_ident
[elfcpp::EI_DATA
] = (big_endian
419 ? elfcpp::ELFDATA2MSB
420 : elfcpp::ELFDATA2LSB
);
421 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
422 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
423 oehdr
.put_e_ident(e_ident
);
426 if (parameters
->options().relocatable())
427 e_type
= elfcpp::ET_REL
;
428 else if (parameters
->options().shared())
429 e_type
= elfcpp::ET_DYN
;
431 e_type
= elfcpp::ET_EXEC
;
432 oehdr
.put_e_type(e_type
);
434 oehdr
.put_e_machine(this->target_
->machine_code());
435 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
437 oehdr
.put_e_entry(this->entry
<size
>());
439 if (this->segment_header_
== NULL
)
440 oehdr
.put_e_phoff(0);
442 oehdr
.put_e_phoff(this->segment_header_
->offset());
444 oehdr
.put_e_shoff(this->section_header_
->offset());
446 // FIXME: The target needs to set the flags.
447 oehdr
.put_e_flags(0);
449 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
451 if (this->segment_header_
== NULL
)
453 oehdr
.put_e_phentsize(0);
454 oehdr
.put_e_phnum(0);
458 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
459 oehdr
.put_e_phnum(this->segment_header_
->data_size()
460 / elfcpp::Elf_sizes
<size
>::phdr_size
);
463 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
464 size_t section_count
= (this->section_header_
->data_size()
465 / elfcpp::Elf_sizes
<size
>::shdr_size
);
467 if (section_count
< elfcpp::SHN_LORESERVE
)
468 oehdr
.put_e_shnum(this->section_header_
->data_size()
469 / elfcpp::Elf_sizes
<size
>::shdr_size
);
471 oehdr
.put_e_shnum(0);
473 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
474 if (shstrndx
< elfcpp::SHN_LORESERVE
)
475 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
477 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
479 of
->write_output_view(0, ehdr_size
, view
);
482 // Return the value to use for the entry address. THIS->ENTRY_ is the
483 // symbol specified on the command line, if any.
486 typename
elfcpp::Elf_types
<size
>::Elf_Addr
487 Output_file_header::entry()
489 const bool should_issue_warning
= (this->entry_
!= NULL
490 && !parameters
->options().relocatable()
491 && !parameters
->options().shared());
493 // FIXME: Need to support target specific entry symbol.
494 const char* entry
= this->entry_
;
498 Symbol
* sym
= this->symtab_
->lookup(entry
);
500 typename Sized_symbol
<size
>::Value_type v
;
503 Sized_symbol
<size
>* ssym
;
504 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
505 if (!ssym
->is_defined() && should_issue_warning
)
506 gold_warning("entry symbol '%s' exists but is not defined", entry
);
511 // We couldn't find the entry symbol. See if we can parse it as
512 // a number. This supports, e.g., -e 0x1000.
514 v
= strtoull(entry
, &endptr
, 0);
517 if (should_issue_warning
)
518 gold_warning("cannot find entry symbol '%s'", entry
);
526 // Output_data_const methods.
529 Output_data_const::do_write(Output_file
* of
)
531 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
534 // Output_data_const_buffer methods.
537 Output_data_const_buffer::do_write(Output_file
* of
)
539 of
->write(this->offset(), this->p_
, this->data_size());
542 // Output_section_data methods.
544 // Record the output section, and set the entry size and such.
547 Output_section_data::set_output_section(Output_section
* os
)
549 gold_assert(this->output_section_
== NULL
);
550 this->output_section_
= os
;
551 this->do_adjust_output_section(os
);
554 // Return the section index of the output section.
557 Output_section_data::do_out_shndx() const
559 gold_assert(this->output_section_
!= NULL
);
560 return this->output_section_
->out_shndx();
563 // Set the alignment, which means we may need to update the alignment
564 // of the output section.
567 Output_section_data::set_addralign(uint64_t addralign
)
569 this->addralign_
= addralign
;
570 if (this->output_section_
!= NULL
571 && this->output_section_
->addralign() < addralign
)
572 this->output_section_
->set_addralign(addralign
);
575 // Output_data_strtab methods.
577 // Set the final data size.
580 Output_data_strtab::set_final_data_size()
582 this->strtab_
->set_string_offsets();
583 this->set_data_size(this->strtab_
->get_strtab_size());
586 // Write out a string table.
589 Output_data_strtab::do_write(Output_file
* of
)
591 this->strtab_
->write(of
, this->offset());
594 // Output_reloc methods.
596 // A reloc against a global symbol.
598 template<bool dynamic
, int size
, bool big_endian
>
599 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
605 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
606 is_relative_(is_relative
), is_section_symbol_(false), shndx_(INVALID_CODE
)
608 // this->type_ is a bitfield; make sure TYPE fits.
609 gold_assert(this->type_
== type
);
610 this->u1_
.gsym
= gsym
;
613 this->set_needs_dynsym_index();
616 template<bool dynamic
, int size
, bool big_endian
>
617 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
624 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
625 is_relative_(is_relative
), is_section_symbol_(false), shndx_(shndx
)
627 gold_assert(shndx
!= INVALID_CODE
);
628 // this->type_ is a bitfield; make sure TYPE fits.
629 gold_assert(this->type_
== type
);
630 this->u1_
.gsym
= gsym
;
631 this->u2_
.relobj
= relobj
;
633 this->set_needs_dynsym_index();
636 // A reloc against a local symbol.
638 template<bool dynamic
, int size
, bool big_endian
>
639 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
640 Sized_relobj
<size
, big_endian
>* relobj
,
641 unsigned int local_sym_index
,
646 bool is_section_symbol
)
647 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
648 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
651 gold_assert(local_sym_index
!= GSYM_CODE
652 && local_sym_index
!= INVALID_CODE
);
653 // this->type_ is a bitfield; make sure TYPE fits.
654 gold_assert(this->type_
== type
);
655 this->u1_
.relobj
= relobj
;
658 this->set_needs_dynsym_index();
661 template<bool dynamic
, int size
, bool big_endian
>
662 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
663 Sized_relobj
<size
, big_endian
>* relobj
,
664 unsigned int local_sym_index
,
669 bool is_section_symbol
)
670 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
671 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
674 gold_assert(local_sym_index
!= GSYM_CODE
675 && local_sym_index
!= INVALID_CODE
);
676 gold_assert(shndx
!= INVALID_CODE
);
677 // this->type_ is a bitfield; make sure TYPE fits.
678 gold_assert(this->type_
== type
);
679 this->u1_
.relobj
= relobj
;
680 this->u2_
.relobj
= relobj
;
682 this->set_needs_dynsym_index();
685 // A reloc against the STT_SECTION symbol of an output section.
687 template<bool dynamic
, int size
, bool big_endian
>
688 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
693 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
694 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE
)
696 // this->type_ is a bitfield; make sure TYPE fits.
697 gold_assert(this->type_
== type
);
701 this->set_needs_dynsym_index();
703 os
->set_needs_symtab_index();
706 template<bool dynamic
, int size
, bool big_endian
>
707 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
713 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
714 is_relative_(false), is_section_symbol_(true), shndx_(shndx
)
716 gold_assert(shndx
!= INVALID_CODE
);
717 // this->type_ is a bitfield; make sure TYPE fits.
718 gold_assert(this->type_
== type
);
720 this->u2_
.relobj
= relobj
;
722 this->set_needs_dynsym_index();
724 os
->set_needs_symtab_index();
727 // Record that we need a dynamic symbol index for this relocation.
729 template<bool dynamic
, int size
, bool big_endian
>
731 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
732 set_needs_dynsym_index()
734 if (this->is_relative_
)
736 switch (this->local_sym_index_
)
742 this->u1_
.gsym
->set_needs_dynsym_entry();
746 this->u1_
.os
->set_needs_dynsym_index();
754 const unsigned int lsi
= this->local_sym_index_
;
755 if (!this->is_section_symbol_
)
756 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
759 section_offset_type dummy
;
760 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &dummy
);
761 gold_assert(os
!= NULL
);
762 os
->set_needs_dynsym_index();
769 // Get the symbol index of a relocation.
771 template<bool dynamic
, int size
, bool big_endian
>
773 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
777 switch (this->local_sym_index_
)
783 if (this->u1_
.gsym
== NULL
)
786 index
= this->u1_
.gsym
->dynsym_index();
788 index
= this->u1_
.gsym
->symtab_index();
793 index
= this->u1_
.os
->dynsym_index();
795 index
= this->u1_
.os
->symtab_index();
799 // Relocations without symbols use a symbol index of 0.
805 const unsigned int lsi
= this->local_sym_index_
;
806 if (!this->is_section_symbol_
)
809 index
= this->u1_
.relobj
->dynsym_index(lsi
);
811 index
= this->u1_
.relobj
->symtab_index(lsi
);
815 section_offset_type dummy
;
816 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &dummy
);
817 gold_assert(os
!= NULL
);
819 index
= os
->dynsym_index();
821 index
= os
->symtab_index();
826 gold_assert(index
!= -1U);
830 // For a local section symbol, get the address of the offset ADDEND
831 // within the input section.
833 template<bool dynamic
, int size
, bool big_endian
>
835 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
836 local_section_offset(Addend addend
) const
838 gold_assert(this->local_sym_index_
!= GSYM_CODE
839 && this->local_sym_index_
!= SECTION_CODE
840 && this->local_sym_index_
!= INVALID_CODE
841 && this->is_section_symbol_
);
842 const unsigned int lsi
= this->local_sym_index_
;
843 section_offset_type offset
;
844 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &offset
);
845 gold_assert(os
!= NULL
);
847 return offset
+ addend
;
848 // This is a merge section.
849 offset
= os
->output_address(this->u1_
.relobj
, lsi
, addend
);
850 gold_assert(offset
!= -1);
854 // Get the output address of a relocation.
856 template<bool dynamic
, int size
, bool big_endian
>
857 typename
elfcpp::Elf_types
<size
>::Elf_Addr
858 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
860 Address address
= this->address_
;
861 if (this->shndx_
!= INVALID_CODE
)
863 section_offset_type off
;
864 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
,
866 gold_assert(os
!= NULL
);
868 address
+= os
->address() + off
;
871 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
873 gold_assert(address
!= -1U);
876 else if (this->u2_
.od
!= NULL
)
877 address
+= this->u2_
.od
->address();
881 // Write out the offset and info fields of a Rel or Rela relocation
884 template<bool dynamic
, int size
, bool big_endian
>
885 template<typename Write_rel
>
887 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
890 wr
->put_r_offset(this->get_address());
891 unsigned int sym_index
= this->is_relative_
? 0 : this->get_symbol_index();
892 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
895 // Write out a Rel relocation.
897 template<bool dynamic
, int size
, bool big_endian
>
899 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
900 unsigned char* pov
) const
902 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
903 this->write_rel(&orel
);
906 // Get the value of the symbol referred to by a Rel relocation.
908 template<bool dynamic
, int size
, bool big_endian
>
909 typename
elfcpp::Elf_types
<size
>::Elf_Addr
910 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
913 if (this->local_sym_index_
== GSYM_CODE
)
915 const Sized_symbol
<size
>* sym
;
916 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
917 return sym
->value() + addend
;
919 gold_assert(this->local_sym_index_
!= SECTION_CODE
920 && this->local_sym_index_
!= INVALID_CODE
921 && !this->is_section_symbol_
);
922 const unsigned int lsi
= this->local_sym_index_
;
923 const Symbol_value
<size
>* symval
= this->u1_
.relobj
->local_symbol(lsi
);
924 return symval
->value(this->u1_
.relobj
, addend
);
927 // Reloc comparison. This function sorts the dynamic relocs for the
928 // benefit of the dynamic linker. First we sort all relative relocs
929 // to the front. Among relative relocs, we sort by output address.
930 // Among non-relative relocs, we sort by symbol index, then by output
933 template<bool dynamic
, int size
, bool big_endian
>
935 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
936 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
939 if (this->is_relative_
)
941 if (!r2
.is_relative_
)
943 // Otherwise sort by reloc address below.
945 else if (r2
.is_relative_
)
949 unsigned int sym1
= this->get_symbol_index();
950 unsigned int sym2
= r2
.get_symbol_index();
953 else if (sym1
> sym2
)
955 // Otherwise sort by reloc address.
958 section_offset_type addr1
= this->get_address();
959 section_offset_type addr2
= r2
.get_address();
962 else if (addr1
> addr2
)
965 // Final tie breaker, in order to generate the same output on any
967 unsigned int type1
= this->type_
;
968 unsigned int type2
= r2
.type_
;
971 else if (type1
> type2
)
974 // These relocs appear to be exactly the same.
978 // Write out a Rela relocation.
980 template<bool dynamic
, int size
, bool big_endian
>
982 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
983 unsigned char* pov
) const
985 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
986 this->rel_
.write_rel(&orel
);
987 Addend addend
= this->addend_
;
988 if (this->rel_
.is_relative())
989 addend
= this->rel_
.symbol_value(addend
);
990 else if (this->rel_
.is_local_section_symbol())
991 addend
= this->rel_
.local_section_offset(addend
);
992 orel
.put_r_addend(addend
);
995 // Output_data_reloc_base methods.
997 // Adjust the output section.
999 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1001 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1002 ::do_adjust_output_section(Output_section
* os
)
1004 if (sh_type
== elfcpp::SHT_REL
)
1005 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1006 else if (sh_type
== elfcpp::SHT_RELA
)
1007 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1011 os
->set_should_link_to_dynsym();
1013 os
->set_should_link_to_symtab();
1016 // Write out relocation data.
1018 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1020 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1023 const off_t off
= this->offset();
1024 const off_t oview_size
= this->data_size();
1025 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1027 if (this->sort_relocs_
)
1029 gold_assert(dynamic
);
1030 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1031 Sort_relocs_comparison());
1034 unsigned char* pov
= oview
;
1035 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1036 p
!= this->relocs_
.end();
1043 gold_assert(pov
- oview
== oview_size
);
1045 of
->write_output_view(off
, oview_size
, oview
);
1047 // We no longer need the relocation entries.
1048 this->relocs_
.clear();
1051 // Class Output_relocatable_relocs.
1053 template<int sh_type
, int size
, bool big_endian
>
1055 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1057 this->set_data_size(this->rr_
->output_reloc_count()
1058 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1061 // class Output_data_group.
1063 template<int size
, bool big_endian
>
1064 Output_data_group
<size
, big_endian
>::Output_data_group(
1065 Sized_relobj
<size
, big_endian
>* relobj
,
1066 section_size_type entry_count
,
1067 elfcpp::Elf_Word flags
,
1068 std::vector
<unsigned int>* input_shndxes
)
1069 : Output_section_data(entry_count
* 4, 4),
1073 this->input_shndxes_
.swap(*input_shndxes
);
1076 // Write out the section group, which means translating the section
1077 // indexes to apply to the output file.
1079 template<int size
, bool big_endian
>
1081 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1083 const off_t off
= this->offset();
1084 const section_size_type oview_size
=
1085 convert_to_section_size_type(this->data_size());
1086 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1088 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1089 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1092 for (std::vector
<unsigned int>::const_iterator p
=
1093 this->input_shndxes_
.begin();
1094 p
!= this->input_shndxes_
.end();
1097 section_offset_type dummy
;
1098 Output_section
* os
= this->relobj_
->output_section(*p
, &dummy
);
1100 unsigned int output_shndx
;
1102 output_shndx
= os
->out_shndx();
1105 this->relobj_
->error(_("section group retained but "
1106 "group element discarded"));
1110 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1113 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1114 gold_assert(wrote
== oview_size
);
1116 of
->write_output_view(off
, oview_size
, oview
);
1118 // We no longer need this information.
1119 this->input_shndxes_
.clear();
1122 // Output_data_got::Got_entry methods.
1124 // Write out the entry.
1126 template<int size
, bool big_endian
>
1128 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1132 switch (this->local_sym_index_
)
1136 // If the symbol is resolved locally, we need to write out the
1137 // link-time value, which will be relocated dynamically by a
1138 // RELATIVE relocation.
1139 Symbol
* gsym
= this->u_
.gsym
;
1140 Sized_symbol
<size
>* sgsym
;
1141 // This cast is a bit ugly. We don't want to put a
1142 // virtual method in Symbol, because we want Symbol to be
1143 // as small as possible.
1144 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1145 val
= sgsym
->value();
1150 val
= this->u_
.constant
;
1155 const unsigned int lsi
= this->local_sym_index_
;
1156 const Symbol_value
<size
>* symval
= this->u_
.object
->local_symbol(lsi
);
1157 val
= symval
->value(this->u_
.object
, 0);
1162 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1165 // Output_data_got methods.
1167 // Add an entry for a global symbol to the GOT. This returns true if
1168 // this is a new GOT entry, false if the symbol already had a GOT
1171 template<int size
, bool big_endian
>
1173 Output_data_got
<size
, big_endian
>::add_global(
1175 unsigned int got_type
)
1177 if (gsym
->has_got_offset(got_type
))
1180 this->entries_
.push_back(Got_entry(gsym
));
1181 this->set_got_size();
1182 gsym
->set_got_offset(got_type
, this->last_got_offset());
1186 // Add an entry for a global symbol to the GOT, and add a dynamic
1187 // relocation of type R_TYPE for the GOT entry.
1188 template<int size
, bool big_endian
>
1190 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1192 unsigned int got_type
,
1194 unsigned int r_type
)
1196 if (gsym
->has_got_offset(got_type
))
1199 this->entries_
.push_back(Got_entry());
1200 this->set_got_size();
1201 unsigned int got_offset
= this->last_got_offset();
1202 gsym
->set_got_offset(got_type
, got_offset
);
1203 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1206 template<int size
, bool big_endian
>
1208 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1210 unsigned int got_type
,
1212 unsigned int r_type
)
1214 if (gsym
->has_got_offset(got_type
))
1217 this->entries_
.push_back(Got_entry());
1218 this->set_got_size();
1219 unsigned int got_offset
= this->last_got_offset();
1220 gsym
->set_got_offset(got_type
, got_offset
);
1221 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1224 // Add a pair of entries for a global symbol to the GOT, and add
1225 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1226 // If R_TYPE_2 == 0, add the second entry with no relocation.
1227 template<int size
, bool big_endian
>
1229 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1231 unsigned int got_type
,
1233 unsigned int r_type_1
,
1234 unsigned int r_type_2
)
1236 if (gsym
->has_got_offset(got_type
))
1239 this->entries_
.push_back(Got_entry());
1240 unsigned int got_offset
= this->last_got_offset();
1241 gsym
->set_got_offset(got_type
, got_offset
);
1242 rel_dyn
->add_global(gsym
, r_type_1
, this, got_offset
);
1244 this->entries_
.push_back(Got_entry());
1247 got_offset
= this->last_got_offset();
1248 rel_dyn
->add_global(gsym
, r_type_2
, this, got_offset
);
1251 this->set_got_size();
1254 template<int size
, bool big_endian
>
1256 Output_data_got
<size
, big_endian
>::add_global_pair_with_rela(
1258 unsigned int got_type
,
1260 unsigned int r_type_1
,
1261 unsigned int r_type_2
)
1263 if (gsym
->has_got_offset(got_type
))
1266 this->entries_
.push_back(Got_entry());
1267 unsigned int got_offset
= this->last_got_offset();
1268 gsym
->set_got_offset(got_type
, got_offset
);
1269 rela_dyn
->add_global(gsym
, r_type_1
, this, got_offset
, 0);
1271 this->entries_
.push_back(Got_entry());
1274 got_offset
= this->last_got_offset();
1275 rela_dyn
->add_global(gsym
, r_type_2
, this, got_offset
, 0);
1278 this->set_got_size();
1281 // Add an entry for a local symbol to the GOT. This returns true if
1282 // this is a new GOT entry, false if the symbol already has a GOT
1285 template<int size
, bool big_endian
>
1287 Output_data_got
<size
, big_endian
>::add_local(
1288 Sized_relobj
<size
, big_endian
>* object
,
1289 unsigned int symndx
,
1290 unsigned int got_type
)
1292 if (object
->local_has_got_offset(symndx
, got_type
))
1295 this->entries_
.push_back(Got_entry(object
, symndx
));
1296 this->set_got_size();
1297 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1301 // Add an entry for a local symbol to the GOT, and add a dynamic
1302 // relocation of type R_TYPE for the GOT entry.
1303 template<int size
, bool big_endian
>
1305 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1306 Sized_relobj
<size
, big_endian
>* object
,
1307 unsigned int symndx
,
1308 unsigned int got_type
,
1310 unsigned int r_type
)
1312 if (object
->local_has_got_offset(symndx
, got_type
))
1315 this->entries_
.push_back(Got_entry());
1316 this->set_got_size();
1317 unsigned int got_offset
= this->last_got_offset();
1318 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1319 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1322 template<int size
, bool big_endian
>
1324 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1325 Sized_relobj
<size
, big_endian
>* object
,
1326 unsigned int symndx
,
1327 unsigned int got_type
,
1329 unsigned int r_type
)
1331 if (object
->local_has_got_offset(symndx
, got_type
))
1334 this->entries_
.push_back(Got_entry());
1335 this->set_got_size();
1336 unsigned int got_offset
= this->last_got_offset();
1337 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1338 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1341 // Add a pair of entries for a local symbol to the GOT, and add
1342 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1343 // If R_TYPE_2 == 0, add the second entry with no relocation.
1344 template<int size
, bool big_endian
>
1346 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1347 Sized_relobj
<size
, big_endian
>* object
,
1348 unsigned int symndx
,
1350 unsigned int got_type
,
1352 unsigned int r_type_1
,
1353 unsigned int r_type_2
)
1355 if (object
->local_has_got_offset(symndx
, got_type
))
1358 this->entries_
.push_back(Got_entry());
1359 unsigned int got_offset
= this->last_got_offset();
1360 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1361 section_offset_type off
;
1362 Output_section
* os
= object
->output_section(shndx
, &off
);
1363 rel_dyn
->add_output_section(os
, r_type_1
, this, got_offset
);
1365 this->entries_
.push_back(Got_entry(object
, symndx
));
1368 got_offset
= this->last_got_offset();
1369 rel_dyn
->add_output_section(os
, r_type_2
, this, got_offset
);
1372 this->set_got_size();
1375 template<int size
, bool big_endian
>
1377 Output_data_got
<size
, big_endian
>::add_local_pair_with_rela(
1378 Sized_relobj
<size
, big_endian
>* object
,
1379 unsigned int symndx
,
1381 unsigned int got_type
,
1383 unsigned int r_type_1
,
1384 unsigned int r_type_2
)
1386 if (object
->local_has_got_offset(symndx
, got_type
))
1389 this->entries_
.push_back(Got_entry());
1390 unsigned int got_offset
= this->last_got_offset();
1391 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1392 section_offset_type off
;
1393 Output_section
* os
= object
->output_section(shndx
, &off
);
1394 rela_dyn
->add_output_section(os
, r_type_1
, this, got_offset
, 0);
1396 this->entries_
.push_back(Got_entry(object
, symndx
));
1399 got_offset
= this->last_got_offset();
1400 rela_dyn
->add_output_section(os
, r_type_2
, this, got_offset
, 0);
1403 this->set_got_size();
1406 // Write out the GOT.
1408 template<int size
, bool big_endian
>
1410 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1412 const int add
= size
/ 8;
1414 const off_t off
= this->offset();
1415 const off_t oview_size
= this->data_size();
1416 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1418 unsigned char* pov
= oview
;
1419 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1420 p
!= this->entries_
.end();
1427 gold_assert(pov
- oview
== oview_size
);
1429 of
->write_output_view(off
, oview_size
, oview
);
1431 // We no longer need the GOT entries.
1432 this->entries_
.clear();
1435 // Output_data_dynamic::Dynamic_entry methods.
1437 // Write out the entry.
1439 template<int size
, bool big_endian
>
1441 Output_data_dynamic::Dynamic_entry::write(
1443 const Stringpool
* pool
) const
1445 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1446 switch (this->offset_
)
1448 case DYNAMIC_NUMBER
:
1452 case DYNAMIC_SECTION_SIZE
:
1453 val
= this->u_
.od
->data_size();
1456 case DYNAMIC_SYMBOL
:
1458 const Sized_symbol
<size
>* s
=
1459 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1464 case DYNAMIC_STRING
:
1465 val
= pool
->get_offset(this->u_
.str
);
1469 val
= this->u_
.od
->address() + this->offset_
;
1473 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1474 dw
.put_d_tag(this->tag_
);
1478 // Output_data_dynamic methods.
1480 // Adjust the output section to set the entry size.
1483 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1485 if (parameters
->target().get_size() == 32)
1486 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1487 else if (parameters
->target().get_size() == 64)
1488 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1493 // Set the final data size.
1496 Output_data_dynamic::set_final_data_size()
1498 // Add the terminating entry.
1499 this->add_constant(elfcpp::DT_NULL
, 0);
1502 if (parameters
->target().get_size() == 32)
1503 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1504 else if (parameters
->target().get_size() == 64)
1505 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1508 this->set_data_size(this->entries_
.size() * dyn_size
);
1511 // Write out the dynamic entries.
1514 Output_data_dynamic::do_write(Output_file
* of
)
1516 switch (parameters
->size_and_endianness())
1518 #ifdef HAVE_TARGET_32_LITTLE
1519 case Parameters::TARGET_32_LITTLE
:
1520 this->sized_write
<32, false>(of
);
1523 #ifdef HAVE_TARGET_32_BIG
1524 case Parameters::TARGET_32_BIG
:
1525 this->sized_write
<32, true>(of
);
1528 #ifdef HAVE_TARGET_64_LITTLE
1529 case Parameters::TARGET_64_LITTLE
:
1530 this->sized_write
<64, false>(of
);
1533 #ifdef HAVE_TARGET_64_BIG
1534 case Parameters::TARGET_64_BIG
:
1535 this->sized_write
<64, true>(of
);
1543 template<int size
, bool big_endian
>
1545 Output_data_dynamic::sized_write(Output_file
* of
)
1547 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1549 const off_t offset
= this->offset();
1550 const off_t oview_size
= this->data_size();
1551 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1553 unsigned char* pov
= oview
;
1554 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1555 p
!= this->entries_
.end();
1558 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1562 gold_assert(pov
- oview
== oview_size
);
1564 of
->write_output_view(offset
, oview_size
, oview
);
1566 // We no longer need the dynamic entries.
1567 this->entries_
.clear();
1570 // Class Output_symtab_xindex.
1573 Output_symtab_xindex::do_write(Output_file
* of
)
1575 const off_t offset
= this->offset();
1576 const off_t oview_size
= this->data_size();
1577 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1579 memset(oview
, 0, oview_size
);
1581 if (parameters
->target().is_big_endian())
1582 this->endian_do_write
<true>(oview
);
1584 this->endian_do_write
<false>(oview
);
1586 of
->write_output_view(offset
, oview_size
, oview
);
1588 // We no longer need the data.
1589 this->entries_
.clear();
1592 template<bool big_endian
>
1594 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1596 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1597 p
!= this->entries_
.end();
1599 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ p
->first
* 4, p
->second
);
1602 // Output_section::Input_section methods.
1604 // Return the data size. For an input section we store the size here.
1605 // For an Output_section_data, we have to ask it for the size.
1608 Output_section::Input_section::data_size() const
1610 if (this->is_input_section())
1611 return this->u1_
.data_size
;
1613 return this->u2_
.posd
->data_size();
1616 // Set the address and file offset.
1619 Output_section::Input_section::set_address_and_file_offset(
1622 off_t section_file_offset
)
1624 if (this->is_input_section())
1625 this->u2_
.object
->set_section_offset(this->shndx_
,
1626 file_offset
- section_file_offset
);
1628 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1631 // Reset the address and file offset.
1634 Output_section::Input_section::reset_address_and_file_offset()
1636 if (!this->is_input_section())
1637 this->u2_
.posd
->reset_address_and_file_offset();
1640 // Finalize the data size.
1643 Output_section::Input_section::finalize_data_size()
1645 if (!this->is_input_section())
1646 this->u2_
.posd
->finalize_data_size();
1649 // Try to turn an input offset into an output offset. We want to
1650 // return the output offset relative to the start of this
1651 // Input_section in the output section.
1654 Output_section::Input_section::output_offset(
1655 const Relobj
* object
,
1657 section_offset_type offset
,
1658 section_offset_type
*poutput
) const
1660 if (!this->is_input_section())
1661 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1664 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1671 // Return whether this is the merge section for the input section
1675 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1676 unsigned int shndx
) const
1678 if (this->is_input_section())
1680 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1683 // Write out the data. We don't have to do anything for an input
1684 // section--they are handled via Object::relocate--but this is where
1685 // we write out the data for an Output_section_data.
1688 Output_section::Input_section::write(Output_file
* of
)
1690 if (!this->is_input_section())
1691 this->u2_
.posd
->write(of
);
1694 // Write the data to a buffer. As for write(), we don't have to do
1695 // anything for an input section.
1698 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1700 if (!this->is_input_section())
1701 this->u2_
.posd
->write_to_buffer(buffer
);
1704 // Print to a map file.
1707 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
1709 switch (this->shndx_
)
1711 case OUTPUT_SECTION_CODE
:
1712 case MERGE_DATA_SECTION_CODE
:
1713 case MERGE_STRING_SECTION_CODE
:
1714 this->u2_
.posd
->print_to_mapfile(mapfile
);
1718 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
1723 // Output_section methods.
1725 // Construct an Output_section. NAME will point into a Stringpool.
1727 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1728 elfcpp::Elf_Xword flags
)
1733 link_section_(NULL
),
1735 info_section_(NULL
),
1744 first_input_offset_(0),
1746 postprocessing_buffer_(NULL
),
1747 needs_symtab_index_(false),
1748 needs_dynsym_index_(false),
1749 should_link_to_symtab_(false),
1750 should_link_to_dynsym_(false),
1751 after_input_sections_(false),
1752 requires_postprocessing_(false),
1753 found_in_sections_clause_(false),
1754 has_load_address_(false),
1755 info_uses_section_index_(false),
1756 may_sort_attached_input_sections_(false),
1757 must_sort_attached_input_sections_(false),
1758 attached_input_sections_are_sorted_(false),
1760 is_relro_local_(false),
1763 // An unallocated section has no address. Forcing this means that
1764 // we don't need special treatment for symbols defined in debug
1766 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
1767 this->set_address(0);
1770 Output_section::~Output_section()
1774 // Set the entry size.
1777 Output_section::set_entsize(uint64_t v
)
1779 if (this->entsize_
== 0)
1782 gold_assert(this->entsize_
== v
);
1785 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1786 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1787 // relocation section which applies to this section, or 0 if none, or
1788 // -1U if more than one. Return the offset of the input section
1789 // within the output section. Return -1 if the input section will
1790 // receive special handling. In the normal case we don't always keep
1791 // track of input sections for an Output_section. Instead, each
1792 // Object keeps track of the Output_section for each of its input
1793 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1794 // track of input sections here; this is used when SECTIONS appears in
1797 template<int size
, bool big_endian
>
1799 Output_section::add_input_section(Sized_relobj
<size
, big_endian
>* object
,
1801 const char* secname
,
1802 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1803 unsigned int reloc_shndx
,
1804 bool have_sections_script
)
1806 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
1807 if ((addralign
& (addralign
- 1)) != 0)
1809 object
->error(_("invalid alignment %lu for section \"%s\""),
1810 static_cast<unsigned long>(addralign
), secname
);
1814 if (addralign
> this->addralign_
)
1815 this->addralign_
= addralign
;
1817 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1818 this->update_flags_for_input_section(sh_flags
);
1820 uint64_t entsize
= shdr
.get_sh_entsize();
1822 // .debug_str is a mergeable string section, but is not always so
1823 // marked by compilers. Mark manually here so we can optimize.
1824 if (strcmp(secname
, ".debug_str") == 0)
1826 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
1830 // If this is a SHF_MERGE section, we pass all the input sections to
1831 // a Output_data_merge. We don't try to handle relocations for such
1833 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
1834 && reloc_shndx
== 0)
1836 if (this->add_merge_input_section(object
, shndx
, sh_flags
,
1837 entsize
, addralign
))
1839 // Tell the relocation routines that they need to call the
1840 // output_offset method to determine the final address.
1845 off_t offset_in_section
= this->current_data_size_for_child();
1846 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1849 if (aligned_offset_in_section
> offset_in_section
1850 && !have_sections_script
1851 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
1852 && object
->target()->has_code_fill())
1854 // We need to add some fill data. Using fill_list_ when
1855 // possible is an optimization, since we will often have fill
1856 // sections without input sections.
1857 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
1858 if (this->input_sections_
.empty())
1859 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
1862 // FIXME: When relaxing, the size needs to adjust to
1863 // maintain a constant alignment.
1864 std::string
fill_data(object
->target()->code_fill(fill_len
));
1865 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
1866 this->input_sections_
.push_back(Input_section(odc
));
1870 this->set_current_data_size_for_child(aligned_offset_in_section
1871 + shdr
.get_sh_size());
1873 // We need to keep track of this section if we are already keeping
1874 // track of sections, or if we are relaxing. Also, if this is a
1875 // section which requires sorting, or which may require sorting in
1876 // the future, we keep track of the sections. FIXME: Add test for
1878 if (have_sections_script
1879 || !this->input_sections_
.empty()
1880 || this->may_sort_attached_input_sections()
1881 || this->must_sort_attached_input_sections()
1882 || parameters
->options().user_set_Map())
1883 this->input_sections_
.push_back(Input_section(object
, shndx
,
1887 return aligned_offset_in_section
;
1890 // Add arbitrary data to an output section.
1893 Output_section::add_output_section_data(Output_section_data
* posd
)
1895 Input_section
inp(posd
);
1896 this->add_output_section_data(&inp
);
1898 if (posd
->is_data_size_valid())
1900 off_t offset_in_section
= this->current_data_size_for_child();
1901 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1903 this->set_current_data_size_for_child(aligned_offset_in_section
1904 + posd
->data_size());
1908 // Add arbitrary data to an output section by Input_section.
1911 Output_section::add_output_section_data(Input_section
* inp
)
1913 if (this->input_sections_
.empty())
1914 this->first_input_offset_
= this->current_data_size_for_child();
1916 this->input_sections_
.push_back(*inp
);
1918 uint64_t addralign
= inp
->addralign();
1919 if (addralign
> this->addralign_
)
1920 this->addralign_
= addralign
;
1922 inp
->set_output_section(this);
1925 // Add a merge section to an output section.
1928 Output_section::add_output_merge_section(Output_section_data
* posd
,
1929 bool is_string
, uint64_t entsize
)
1931 Input_section
inp(posd
, is_string
, entsize
);
1932 this->add_output_section_data(&inp
);
1935 // Add an input section to a SHF_MERGE section.
1938 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
1939 uint64_t flags
, uint64_t entsize
,
1942 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
1944 // We only merge strings if the alignment is not more than the
1945 // character size. This could be handled, but it's unusual.
1946 if (is_string
&& addralign
> entsize
)
1949 Input_section_list::iterator p
;
1950 for (p
= this->input_sections_
.begin();
1951 p
!= this->input_sections_
.end();
1953 if (p
->is_merge_section(is_string
, entsize
, addralign
))
1955 p
->add_input_section(object
, shndx
);
1959 // We handle the actual constant merging in Output_merge_data or
1960 // Output_merge_string_data.
1961 Output_section_data
* posd
;
1963 posd
= new Output_merge_data(entsize
, addralign
);
1969 posd
= new Output_merge_string
<char>(addralign
);
1972 posd
= new Output_merge_string
<uint16_t>(addralign
);
1975 posd
= new Output_merge_string
<uint32_t>(addralign
);
1982 this->add_output_merge_section(posd
, is_string
, entsize
);
1983 posd
->add_input_section(object
, shndx
);
1988 // Given an address OFFSET relative to the start of input section
1989 // SHNDX in OBJECT, return whether this address is being included in
1990 // the final link. This should only be called if SHNDX in OBJECT has
1991 // a special mapping.
1994 Output_section::is_input_address_mapped(const Relobj
* object
,
1998 gold_assert(object
->is_section_specially_mapped(shndx
));
2000 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2001 p
!= this->input_sections_
.end();
2004 section_offset_type output_offset
;
2005 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2006 return output_offset
!= -1;
2009 // By default we assume that the address is mapped. This should
2010 // only be called after we have passed all sections to Layout. At
2011 // that point we should know what we are discarding.
2015 // Given an address OFFSET relative to the start of input section
2016 // SHNDX in object OBJECT, return the output offset relative to the
2017 // start of the input section in the output section. This should only
2018 // be called if SHNDX in OBJECT has a special mapping.
2021 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2022 section_offset_type offset
) const
2024 gold_assert(object
->is_section_specially_mapped(shndx
));
2025 // This can only be called meaningfully when layout is complete.
2026 gold_assert(Output_data::is_layout_complete());
2028 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2029 p
!= this->input_sections_
.end();
2032 section_offset_type output_offset
;
2033 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2034 return output_offset
;
2039 // Return the output virtual address of OFFSET relative to the start
2040 // of input section SHNDX in object OBJECT.
2043 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2046 gold_assert(object
->is_section_specially_mapped(shndx
));
2048 uint64_t addr
= this->address() + this->first_input_offset_
;
2049 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2050 p
!= this->input_sections_
.end();
2053 addr
= align_address(addr
, p
->addralign());
2054 section_offset_type output_offset
;
2055 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2057 if (output_offset
== -1)
2059 return addr
+ output_offset
;
2061 addr
+= p
->data_size();
2064 // If we get here, it means that we don't know the mapping for this
2065 // input section. This might happen in principle if
2066 // add_input_section were called before add_output_section_data.
2067 // But it should never actually happen.
2072 // Return the output address of the start of the merged section for
2073 // input section SHNDX in object OBJECT.
2076 Output_section::starting_output_address(const Relobj
* object
,
2077 unsigned int shndx
) const
2079 gold_assert(object
->is_section_specially_mapped(shndx
));
2081 uint64_t addr
= this->address() + this->first_input_offset_
;
2082 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2083 p
!= this->input_sections_
.end();
2086 addr
= align_address(addr
, p
->addralign());
2088 // It would be nice if we could use the existing output_offset
2089 // method to get the output offset of input offset 0.
2090 // Unfortunately we don't know for sure that input offset 0 is
2092 if (p
->is_merge_section_for(object
, shndx
))
2095 addr
+= p
->data_size();
2100 // Set the data size of an Output_section. This is where we handle
2101 // setting the addresses of any Output_section_data objects.
2104 Output_section::set_final_data_size()
2106 if (this->input_sections_
.empty())
2108 this->set_data_size(this->current_data_size_for_child());
2112 if (this->must_sort_attached_input_sections())
2113 this->sort_attached_input_sections();
2115 uint64_t address
= this->address();
2116 off_t startoff
= this->offset();
2117 off_t off
= startoff
+ this->first_input_offset_
;
2118 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2119 p
!= this->input_sections_
.end();
2122 off
= align_address(off
, p
->addralign());
2123 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2125 off
+= p
->data_size();
2128 this->set_data_size(off
- startoff
);
2131 // Reset the address and file offset.
2134 Output_section::do_reset_address_and_file_offset()
2136 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2137 p
!= this->input_sections_
.end();
2139 p
->reset_address_and_file_offset();
2142 // Set the TLS offset. Called only for SHT_TLS sections.
2145 Output_section::do_set_tls_offset(uint64_t tls_base
)
2147 this->tls_offset_
= this->address() - tls_base
;
2150 // In a few cases we need to sort the input sections attached to an
2151 // output section. This is used to implement the type of constructor
2152 // priority ordering implemented by the GNU linker, in which the
2153 // priority becomes part of the section name and the sections are
2154 // sorted by name. We only do this for an output section if we see an
2155 // attached input section matching ".ctor.*", ".dtor.*",
2156 // ".init_array.*" or ".fini_array.*".
2158 class Output_section::Input_section_sort_entry
2161 Input_section_sort_entry()
2162 : input_section_(), index_(-1U), section_has_name_(false),
2166 Input_section_sort_entry(const Input_section
& input_section
,
2168 : input_section_(input_section
), index_(index
),
2169 section_has_name_(input_section
.is_input_section())
2171 if (this->section_has_name_
)
2173 // This is only called single-threaded from Layout::finalize,
2174 // so it is OK to lock. Unfortunately we have no way to pass
2176 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
2177 Object
* obj
= input_section
.relobj();
2178 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
2180 // This is a slow operation, which should be cached in
2181 // Layout::layout if this becomes a speed problem.
2182 this->section_name_
= obj
->section_name(input_section
.shndx());
2186 // Return the Input_section.
2187 const Input_section
&
2188 input_section() const
2190 gold_assert(this->index_
!= -1U);
2191 return this->input_section_
;
2194 // The index of this entry in the original list. This is used to
2195 // make the sort stable.
2199 gold_assert(this->index_
!= -1U);
2200 return this->index_
;
2203 // Whether there is a section name.
2205 section_has_name() const
2206 { return this->section_has_name_
; }
2208 // The section name.
2210 section_name() const
2212 gold_assert(this->section_has_name_
);
2213 return this->section_name_
;
2216 // Return true if the section name has a priority. This is assumed
2217 // to be true if it has a dot after the initial dot.
2219 has_priority() const
2221 gold_assert(this->section_has_name_
);
2222 return this->section_name_
.find('.', 1);
2225 // Return true if this an input file whose base name matches
2226 // FILE_NAME. The base name must have an extension of ".o", and
2227 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2228 // This is to match crtbegin.o as well as crtbeginS.o without
2229 // getting confused by other possibilities. Overall matching the
2230 // file name this way is a dreadful hack, but the GNU linker does it
2231 // in order to better support gcc, and we need to be compatible.
2233 match_file_name(const char* match_file_name
) const
2235 const std::string
& file_name(this->input_section_
.relobj()->name());
2236 const char* base_name
= lbasename(file_name
.c_str());
2237 size_t match_len
= strlen(match_file_name
);
2238 if (strncmp(base_name
, match_file_name
, match_len
) != 0)
2240 size_t base_len
= strlen(base_name
);
2241 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
2243 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
2247 // The Input_section we are sorting.
2248 Input_section input_section_
;
2249 // The index of this Input_section in the original list.
2250 unsigned int index_
;
2251 // Whether this Input_section has a section name--it won't if this
2252 // is some random Output_section_data.
2253 bool section_has_name_
;
2254 // The section name if there is one.
2255 std::string section_name_
;
2258 // Return true if S1 should come before S2 in the output section.
2261 Output_section::Input_section_sort_compare::operator()(
2262 const Output_section::Input_section_sort_entry
& s1
,
2263 const Output_section::Input_section_sort_entry
& s2
) const
2265 // crtbegin.o must come first.
2266 bool s1_begin
= s1
.match_file_name("crtbegin");
2267 bool s2_begin
= s2
.match_file_name("crtbegin");
2268 if (s1_begin
|| s2_begin
)
2274 return s1
.index() < s2
.index();
2277 // crtend.o must come last.
2278 bool s1_end
= s1
.match_file_name("crtend");
2279 bool s2_end
= s2
.match_file_name("crtend");
2280 if (s1_end
|| s2_end
)
2286 return s1
.index() < s2
.index();
2289 // We sort all the sections with no names to the end.
2290 if (!s1
.section_has_name() || !s2
.section_has_name())
2292 if (s1
.section_has_name())
2294 if (s2
.section_has_name())
2296 return s1
.index() < s2
.index();
2299 // A section with a priority follows a section without a priority.
2300 // The GNU linker does this for all but .init_array sections; until
2301 // further notice we'll assume that that is an mistake.
2302 bool s1_has_priority
= s1
.has_priority();
2303 bool s2_has_priority
= s2
.has_priority();
2304 if (s1_has_priority
&& !s2_has_priority
)
2306 if (!s1_has_priority
&& s2_has_priority
)
2309 // Otherwise we sort by name.
2310 int compare
= s1
.section_name().compare(s2
.section_name());
2314 // Otherwise we keep the input order.
2315 return s1
.index() < s2
.index();
2318 // Sort the input sections attached to an output section.
2321 Output_section::sort_attached_input_sections()
2323 if (this->attached_input_sections_are_sorted_
)
2326 // The only thing we know about an input section is the object and
2327 // the section index. We need the section name. Recomputing this
2328 // is slow but this is an unusual case. If this becomes a speed
2329 // problem we can cache the names as required in Layout::layout.
2331 // We start by building a larger vector holding a copy of each
2332 // Input_section, plus its current index in the list and its name.
2333 std::vector
<Input_section_sort_entry
> sort_list
;
2336 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2337 p
!= this->input_sections_
.end();
2339 sort_list
.push_back(Input_section_sort_entry(*p
, i
));
2341 // Sort the input sections.
2342 std::sort(sort_list
.begin(), sort_list
.end(), Input_section_sort_compare());
2344 // Copy the sorted input sections back to our list.
2345 this->input_sections_
.clear();
2346 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
2347 p
!= sort_list
.end();
2349 this->input_sections_
.push_back(p
->input_section());
2351 // Remember that we sorted the input sections, since we might get
2353 this->attached_input_sections_are_sorted_
= true;
2356 // Write the section header to *OSHDR.
2358 template<int size
, bool big_endian
>
2360 Output_section::write_header(const Layout
* layout
,
2361 const Stringpool
* secnamepool
,
2362 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
2364 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
2365 oshdr
->put_sh_type(this->type_
);
2367 elfcpp::Elf_Xword flags
= this->flags_
;
2368 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
2369 flags
|= elfcpp::SHF_INFO_LINK
;
2370 oshdr
->put_sh_flags(flags
);
2372 oshdr
->put_sh_addr(this->address());
2373 oshdr
->put_sh_offset(this->offset());
2374 oshdr
->put_sh_size(this->data_size());
2375 if (this->link_section_
!= NULL
)
2376 oshdr
->put_sh_link(this->link_section_
->out_shndx());
2377 else if (this->should_link_to_symtab_
)
2378 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
2379 else if (this->should_link_to_dynsym_
)
2380 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
2382 oshdr
->put_sh_link(this->link_
);
2384 elfcpp::Elf_Word info
;
2385 if (this->info_section_
!= NULL
)
2387 if (this->info_uses_section_index_
)
2388 info
= this->info_section_
->out_shndx();
2390 info
= this->info_section_
->symtab_index();
2392 else if (this->info_symndx_
!= NULL
)
2393 info
= this->info_symndx_
->symtab_index();
2396 oshdr
->put_sh_info(info
);
2398 oshdr
->put_sh_addralign(this->addralign_
);
2399 oshdr
->put_sh_entsize(this->entsize_
);
2402 // Write out the data. For input sections the data is written out by
2403 // Object::relocate, but we have to handle Output_section_data objects
2407 Output_section::do_write(Output_file
* of
)
2409 gold_assert(!this->requires_postprocessing());
2411 off_t output_section_file_offset
= this->offset();
2412 for (Fill_list::iterator p
= this->fills_
.begin();
2413 p
!= this->fills_
.end();
2416 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2417 of
->write(output_section_file_offset
+ p
->section_offset(),
2418 fill_data
.data(), fill_data
.size());
2421 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2422 p
!= this->input_sections_
.end();
2427 // If a section requires postprocessing, create the buffer to use.
2430 Output_section::create_postprocessing_buffer()
2432 gold_assert(this->requires_postprocessing());
2434 if (this->postprocessing_buffer_
!= NULL
)
2437 if (!this->input_sections_
.empty())
2439 off_t off
= this->first_input_offset_
;
2440 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2441 p
!= this->input_sections_
.end();
2444 off
= align_address(off
, p
->addralign());
2445 p
->finalize_data_size();
2446 off
+= p
->data_size();
2448 this->set_current_data_size_for_child(off
);
2451 off_t buffer_size
= this->current_data_size_for_child();
2452 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
2455 // Write all the data of an Output_section into the postprocessing
2456 // buffer. This is used for sections which require postprocessing,
2457 // such as compression. Input sections are handled by
2458 // Object::Relocate.
2461 Output_section::write_to_postprocessing_buffer()
2463 gold_assert(this->requires_postprocessing());
2465 unsigned char* buffer
= this->postprocessing_buffer();
2466 for (Fill_list::iterator p
= this->fills_
.begin();
2467 p
!= this->fills_
.end();
2470 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2471 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
2475 off_t off
= this->first_input_offset_
;
2476 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2477 p
!= this->input_sections_
.end();
2480 off
= align_address(off
, p
->addralign());
2481 p
->write_to_buffer(buffer
+ off
);
2482 off
+= p
->data_size();
2486 // Get the input sections for linker script processing. We leave
2487 // behind the Output_section_data entries. Note that this may be
2488 // slightly incorrect for merge sections. We will leave them behind,
2489 // but it is possible that the script says that they should follow
2490 // some other input sections, as in:
2491 // .rodata { *(.rodata) *(.rodata.cst*) }
2492 // For that matter, we don't handle this correctly:
2493 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2494 // With luck this will never matter.
2497 Output_section::get_input_sections(
2499 const std::string
& fill
,
2500 std::list
<std::pair
<Relobj
*, unsigned int> >* input_sections
)
2502 uint64_t orig_address
= address
;
2504 address
= align_address(address
, this->addralign());
2506 Input_section_list remaining
;
2507 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2508 p
!= this->input_sections_
.end();
2511 if (p
->is_input_section())
2512 input_sections
->push_back(std::make_pair(p
->relobj(), p
->shndx()));
2515 uint64_t aligned_address
= align_address(address
, p
->addralign());
2516 if (aligned_address
!= address
&& !fill
.empty())
2518 section_size_type length
=
2519 convert_to_section_size_type(aligned_address
- address
);
2520 std::string this_fill
;
2521 this_fill
.reserve(length
);
2522 while (this_fill
.length() + fill
.length() <= length
)
2524 if (this_fill
.length() < length
)
2525 this_fill
.append(fill
, 0, length
- this_fill
.length());
2527 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
2528 remaining
.push_back(Input_section(posd
));
2530 address
= aligned_address
;
2532 remaining
.push_back(*p
);
2534 p
->finalize_data_size();
2535 address
+= p
->data_size();
2539 this->input_sections_
.swap(remaining
);
2540 this->first_input_offset_
= 0;
2542 uint64_t data_size
= address
- orig_address
;
2543 this->set_current_data_size_for_child(data_size
);
2547 // Add an input section from a script.
2550 Output_section::add_input_section_for_script(Relobj
* object
,
2555 if (addralign
> this->addralign_
)
2556 this->addralign_
= addralign
;
2558 off_t offset_in_section
= this->current_data_size_for_child();
2559 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2562 this->set_current_data_size_for_child(aligned_offset_in_section
2565 this->input_sections_
.push_back(Input_section(object
, shndx
,
2566 data_size
, addralign
));
2569 // Print to the map file.
2572 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
2574 mapfile
->print_output_section(this);
2576 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2577 p
!= this->input_sections_
.end();
2579 p
->print_to_mapfile(mapfile
);
2582 // Print stats for merge sections to stderr.
2585 Output_section::print_merge_stats()
2587 Input_section_list::iterator p
;
2588 for (p
= this->input_sections_
.begin();
2589 p
!= this->input_sections_
.end();
2591 p
->print_merge_stats(this->name_
);
2594 // Output segment methods.
2596 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2608 is_max_align_known_(false),
2609 are_addresses_set_(false)
2613 // Add an Output_section to an Output_segment.
2616 Output_segment::add_output_section(Output_section
* os
,
2617 elfcpp::Elf_Word seg_flags
)
2619 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
2620 gold_assert(!this->is_max_align_known_
);
2622 // Update the segment flags.
2623 this->flags_
|= seg_flags
;
2625 Output_segment::Output_data_list
* pdl
;
2626 if (os
->type() == elfcpp::SHT_NOBITS
)
2627 pdl
= &this->output_bss_
;
2629 pdl
= &this->output_data_
;
2631 // So that PT_NOTE segments will work correctly, we need to ensure
2632 // that all SHT_NOTE sections are adjacent. This will normally
2633 // happen automatically, because all the SHT_NOTE input sections
2634 // will wind up in the same output section. However, it is possible
2635 // for multiple SHT_NOTE input sections to have different section
2636 // flags, and thus be in different output sections, but for the
2637 // different section flags to map into the same segment flags and
2638 // thus the same output segment.
2640 // Note that while there may be many input sections in an output
2641 // section, there are normally only a few output sections in an
2642 // output segment. This loop is expected to be fast.
2644 if (os
->type() == elfcpp::SHT_NOTE
&& !pdl
->empty())
2646 Output_segment::Output_data_list::iterator p
= pdl
->end();
2650 if ((*p
)->is_section_type(elfcpp::SHT_NOTE
))
2657 while (p
!= pdl
->begin());
2660 // Similarly, so that PT_TLS segments will work, we need to group
2661 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2662 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2663 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2664 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2665 // and the PT_TLS segment -- we do this grouping only for the
2667 if (this->type_
!= elfcpp::PT_TLS
2668 && (os
->flags() & elfcpp::SHF_TLS
) != 0
2669 && !this->output_data_
.empty())
2671 pdl
= &this->output_data_
;
2672 bool nobits
= os
->type() == elfcpp::SHT_NOBITS
;
2673 bool sawtls
= false;
2674 Output_segment::Output_data_list::iterator p
= pdl
->end();
2679 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2682 // Put a NOBITS section after the first TLS section.
2683 // Put a PROGBITS section after the first TLS/PROGBITS
2685 insert
= nobits
|| !(*p
)->is_section_type(elfcpp::SHT_NOBITS
);
2689 // If we've gone past the TLS sections, but we've seen a
2690 // TLS section, then we need to insert this section now.
2701 while (p
!= pdl
->begin());
2703 // There are no TLS sections yet; put this one at the requested
2704 // location in the section list.
2707 // For the PT_GNU_RELRO segment, we need to group relro sections,
2708 // and we need to put them before any non-relro sections. Also,
2709 // relro local sections go before relro non-local sections.
2710 if (parameters
->options().relro() && os
->is_relro())
2712 gold_assert(pdl
== &this->output_data_
);
2713 Output_segment::Output_data_list::iterator p
;
2714 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
2716 if (!(*p
)->is_section())
2719 Output_section
* pos
= (*p
)->output_section();
2720 if (!pos
->is_relro()
2721 || (os
->is_relro_local() && !pos
->is_relro_local()))
2732 // Remove an Output_section from this segment. It is an error if it
2736 Output_segment::remove_output_section(Output_section
* os
)
2738 // We only need this for SHT_PROGBITS.
2739 gold_assert(os
->type() == elfcpp::SHT_PROGBITS
);
2740 for (Output_data_list::iterator p
= this->output_data_
.begin();
2741 p
!= this->output_data_
.end();
2746 this->output_data_
.erase(p
);
2753 // Add an Output_data (which is not an Output_section) to the start of
2757 Output_segment::add_initial_output_data(Output_data
* od
)
2759 gold_assert(!this->is_max_align_known_
);
2760 this->output_data_
.push_front(od
);
2763 // Return whether the first data section is a relro section.
2766 Output_segment::is_first_section_relro() const
2768 return (!this->output_data_
.empty()
2769 && this->output_data_
.front()->is_section()
2770 && this->output_data_
.front()->output_section()->is_relro());
2773 // Return the maximum alignment of the Output_data in Output_segment.
2776 Output_segment::maximum_alignment()
2778 if (!this->is_max_align_known_
)
2782 addralign
= Output_segment::maximum_alignment_list(&this->output_data_
);
2783 if (addralign
> this->max_align_
)
2784 this->max_align_
= addralign
;
2786 addralign
= Output_segment::maximum_alignment_list(&this->output_bss_
);
2787 if (addralign
> this->max_align_
)
2788 this->max_align_
= addralign
;
2790 // If -z relro is in effect, and the first section in this
2791 // segment is a relro section, then the segment must be aligned
2792 // to at least the common page size. This ensures that the
2793 // PT_GNU_RELRO segment will start at a page boundary.
2794 if (parameters
->options().relro() && this->is_first_section_relro())
2796 addralign
= parameters
->target().common_pagesize();
2797 if (addralign
> this->max_align_
)
2798 this->max_align_
= addralign
;
2801 this->is_max_align_known_
= true;
2804 return this->max_align_
;
2807 // Return the maximum alignment of a list of Output_data.
2810 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
2813 for (Output_data_list::const_iterator p
= pdl
->begin();
2817 uint64_t addralign
= (*p
)->addralign();
2818 if (addralign
> ret
)
2824 // Return the number of dynamic relocs applied to this segment.
2827 Output_segment::dynamic_reloc_count() const
2829 return (this->dynamic_reloc_count_list(&this->output_data_
)
2830 + this->dynamic_reloc_count_list(&this->output_bss_
));
2833 // Return the number of dynamic relocs applied to an Output_data_list.
2836 Output_segment::dynamic_reloc_count_list(const Output_data_list
* pdl
) const
2838 unsigned int count
= 0;
2839 for (Output_data_list::const_iterator p
= pdl
->begin();
2842 count
+= (*p
)->dynamic_reloc_count();
2846 // Set the section addresses for an Output_segment. If RESET is true,
2847 // reset the addresses first. ADDR is the address and *POFF is the
2848 // file offset. Set the section indexes starting with *PSHNDX.
2849 // Return the address of the immediately following segment. Update
2850 // *POFF and *PSHNDX.
2853 Output_segment::set_section_addresses(const Layout
* layout
, bool reset
,
2854 uint64_t addr
, off_t
* poff
,
2855 unsigned int* pshndx
)
2857 gold_assert(this->type_
== elfcpp::PT_LOAD
);
2859 if (!reset
&& this->are_addresses_set_
)
2861 gold_assert(this->paddr_
== addr
);
2862 addr
= this->vaddr_
;
2866 this->vaddr_
= addr
;
2867 this->paddr_
= addr
;
2868 this->are_addresses_set_
= true;
2871 bool in_tls
= false;
2873 bool in_relro
= (parameters
->options().relro()
2874 && this->is_first_section_relro());
2876 off_t orig_off
= *poff
;
2877 this->offset_
= orig_off
;
2879 addr
= this->set_section_list_addresses(layout
, reset
, &this->output_data_
,
2880 addr
, poff
, pshndx
, &in_tls
,
2882 this->filesz_
= *poff
- orig_off
;
2886 uint64_t ret
= this->set_section_list_addresses(layout
, reset
,
2889 &in_tls
, &in_relro
);
2891 // If the last section was a TLS section, align upward to the
2892 // alignment of the TLS segment, so that the overall size of the TLS
2893 // segment is aligned.
2896 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
2897 *poff
= align_address(*poff
, segment_align
);
2900 // If all the sections were relro sections, align upward to the
2901 // common page size.
2904 uint64_t page_align
= parameters
->target().common_pagesize();
2905 *poff
= align_address(*poff
, page_align
);
2908 this->memsz_
= *poff
- orig_off
;
2910 // Ignore the file offset adjustments made by the BSS Output_data
2917 // Set the addresses and file offsets in a list of Output_data
2921 Output_segment::set_section_list_addresses(const Layout
* layout
, bool reset
,
2922 Output_data_list
* pdl
,
2923 uint64_t addr
, off_t
* poff
,
2924 unsigned int* pshndx
,
2925 bool* in_tls
, bool* in_relro
)
2927 off_t startoff
= *poff
;
2929 off_t off
= startoff
;
2930 for (Output_data_list::iterator p
= pdl
->begin();
2935 (*p
)->reset_address_and_file_offset();
2937 // When using a linker script the section will most likely
2938 // already have an address.
2939 if (!(*p
)->is_address_valid())
2941 uint64_t align
= (*p
)->addralign();
2943 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2945 // Give the first TLS section the alignment of the
2946 // entire TLS segment. Otherwise the TLS segment as a
2947 // whole may be misaligned.
2950 Output_segment
* tls_segment
= layout
->tls_segment();
2951 gold_assert(tls_segment
!= NULL
);
2952 uint64_t segment_align
= tls_segment
->maximum_alignment();
2953 gold_assert(segment_align
>= align
);
2954 align
= segment_align
;
2961 // If this is the first section after the TLS segment,
2962 // align it to at least the alignment of the TLS
2963 // segment, so that the size of the overall TLS segment
2967 uint64_t segment_align
=
2968 layout
->tls_segment()->maximum_alignment();
2969 if (segment_align
> align
)
2970 align
= segment_align
;
2976 // If this is a non-relro section after a relro section,
2977 // align it to a common page boundary so that the dynamic
2978 // linker has a page to mark as read-only.
2980 && (!(*p
)->is_section()
2981 || !(*p
)->output_section()->is_relro()))
2983 uint64_t page_align
= parameters
->target().common_pagesize();
2984 if (page_align
> align
)
2989 off
= align_address(off
, align
);
2990 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
2994 // The script may have inserted a skip forward, but it
2995 // better not have moved backward.
2996 gold_assert((*p
)->address() >= addr
+ (off
- startoff
));
2997 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
2998 (*p
)->set_file_offset(off
);
2999 (*p
)->finalize_data_size();
3002 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3003 // section. Such a section does not affect the size of a
3005 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
3006 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
3007 off
+= (*p
)->data_size();
3009 if ((*p
)->is_section())
3011 (*p
)->set_out_shndx(*pshndx
);
3017 return addr
+ (off
- startoff
);
3020 // For a non-PT_LOAD segment, set the offset from the sections, if
3024 Output_segment::set_offset()
3026 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
3028 gold_assert(!this->are_addresses_set_
);
3030 if (this->output_data_
.empty() && this->output_bss_
.empty())
3034 this->are_addresses_set_
= true;
3036 this->min_p_align_
= 0;
3042 const Output_data
* first
;
3043 if (this->output_data_
.empty())
3044 first
= this->output_bss_
.front();
3046 first
= this->output_data_
.front();
3047 this->vaddr_
= first
->address();
3048 this->paddr_
= (first
->has_load_address()
3049 ? first
->load_address()
3051 this->are_addresses_set_
= true;
3052 this->offset_
= first
->offset();
3054 if (this->output_data_
.empty())
3058 const Output_data
* last_data
= this->output_data_
.back();
3059 this->filesz_
= (last_data
->address()
3060 + last_data
->data_size()
3064 const Output_data
* last
;
3065 if (this->output_bss_
.empty())
3066 last
= this->output_data_
.back();
3068 last
= this->output_bss_
.back();
3069 this->memsz_
= (last
->address()
3073 // If this is a TLS segment, align the memory size. The code in
3074 // set_section_list ensures that the section after the TLS segment
3075 // is aligned to give us room.
3076 if (this->type_
== elfcpp::PT_TLS
)
3078 uint64_t segment_align
= this->maximum_alignment();
3079 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
3080 this->memsz_
= align_address(this->memsz_
, segment_align
);
3083 // If this is a RELRO segment, align the memory size. The code in
3084 // set_section_list ensures that the section after the RELRO segment
3085 // is aligned to give us room.
3086 if (this->type_
== elfcpp::PT_GNU_RELRO
)
3088 uint64_t page_align
= parameters
->target().common_pagesize();
3089 gold_assert(this->vaddr_
== align_address(this->vaddr_
, page_align
));
3090 this->memsz_
= align_address(this->memsz_
, page_align
);
3094 // Set the TLS offsets of the sections in the PT_TLS segment.
3097 Output_segment::set_tls_offsets()
3099 gold_assert(this->type_
== elfcpp::PT_TLS
);
3101 for (Output_data_list::iterator p
= this->output_data_
.begin();
3102 p
!= this->output_data_
.end();
3104 (*p
)->set_tls_offset(this->vaddr_
);
3106 for (Output_data_list::iterator p
= this->output_bss_
.begin();
3107 p
!= this->output_bss_
.end();
3109 (*p
)->set_tls_offset(this->vaddr_
);
3112 // Return the address of the first section.
3115 Output_segment::first_section_load_address() const
3117 for (Output_data_list::const_iterator p
= this->output_data_
.begin();
3118 p
!= this->output_data_
.end();
3120 if ((*p
)->is_section())
3121 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3123 for (Output_data_list::const_iterator p
= this->output_bss_
.begin();
3124 p
!= this->output_bss_
.end();
3126 if ((*p
)->is_section())
3127 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3132 // Return the number of Output_sections in an Output_segment.
3135 Output_segment::output_section_count() const
3137 return (this->output_section_count_list(&this->output_data_
)
3138 + this->output_section_count_list(&this->output_bss_
));
3141 // Return the number of Output_sections in an Output_data_list.
3144 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
3146 unsigned int count
= 0;
3147 for (Output_data_list::const_iterator p
= pdl
->begin();
3151 if ((*p
)->is_section())
3157 // Return the section attached to the list segment with the lowest
3158 // load address. This is used when handling a PHDRS clause in a
3162 Output_segment::section_with_lowest_load_address() const
3164 Output_section
* found
= NULL
;
3165 uint64_t found_lma
= 0;
3166 this->lowest_load_address_in_list(&this->output_data_
, &found
, &found_lma
);
3168 Output_section
* found_data
= found
;
3169 this->lowest_load_address_in_list(&this->output_bss_
, &found
, &found_lma
);
3170 if (found
!= found_data
&& found_data
!= NULL
)
3172 gold_error(_("nobits section %s may not precede progbits section %s "
3174 found
->name(), found_data
->name());
3181 // Look through a list for a section with a lower load address.
3184 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
3185 Output_section
** found
,
3186 uint64_t* found_lma
) const
3188 for (Output_data_list::const_iterator p
= pdl
->begin();
3192 if (!(*p
)->is_section())
3194 Output_section
* os
= static_cast<Output_section
*>(*p
);
3195 uint64_t lma
= (os
->has_load_address()
3196 ? os
->load_address()
3198 if (*found
== NULL
|| lma
< *found_lma
)
3206 // Write the segment data into *OPHDR.
3208 template<int size
, bool big_endian
>
3210 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
3212 ophdr
->put_p_type(this->type_
);
3213 ophdr
->put_p_offset(this->offset_
);
3214 ophdr
->put_p_vaddr(this->vaddr_
);
3215 ophdr
->put_p_paddr(this->paddr_
);
3216 ophdr
->put_p_filesz(this->filesz_
);
3217 ophdr
->put_p_memsz(this->memsz_
);
3218 ophdr
->put_p_flags(this->flags_
);
3219 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
3222 // Write the section headers into V.
3224 template<int size
, bool big_endian
>
3226 Output_segment::write_section_headers(const Layout
* layout
,
3227 const Stringpool
* secnamepool
,
3229 unsigned int *pshndx
) const
3231 // Every section that is attached to a segment must be attached to a
3232 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3234 if (this->type_
!= elfcpp::PT_LOAD
)
3237 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
3238 &this->output_data_
,
3240 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
3246 template<int size
, bool big_endian
>
3248 Output_segment::write_section_headers_list(const Layout
* layout
,
3249 const Stringpool
* secnamepool
,
3250 const Output_data_list
* pdl
,
3252 unsigned int* pshndx
) const
3254 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
3255 for (Output_data_list::const_iterator p
= pdl
->begin();
3259 if ((*p
)->is_section())
3261 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
3262 gold_assert(*pshndx
== ps
->out_shndx());
3263 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
3264 ps
->write_header(layout
, secnamepool
, &oshdr
);
3272 // Print the output sections to the map file.
3275 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
3277 if (this->type() != elfcpp::PT_LOAD
)
3279 this->print_section_list_to_mapfile(mapfile
, &this->output_data_
);
3280 this->print_section_list_to_mapfile(mapfile
, &this->output_bss_
);
3283 // Print an output section list to the map file.
3286 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
3287 const Output_data_list
* pdl
) const
3289 for (Output_data_list::const_iterator p
= pdl
->begin();
3292 (*p
)->print_to_mapfile(mapfile
);
3295 // Output_file methods.
3297 Output_file::Output_file(const char* name
)
3302 map_is_anonymous_(false),
3303 is_temporary_(false)
3307 // Open the output file.
3310 Output_file::open(off_t file_size
)
3312 this->file_size_
= file_size
;
3314 // Unlink the file first; otherwise the open() may fail if the file
3315 // is busy (e.g. it's an executable that's currently being executed).
3317 // However, the linker may be part of a system where a zero-length
3318 // file is created for it to write to, with tight permissions (gcc
3319 // 2.95 did something like this). Unlinking the file would work
3320 // around those permission controls, so we only unlink if the file
3321 // has a non-zero size. We also unlink only regular files to avoid
3322 // trouble with directories/etc.
3324 // If we fail, continue; this command is merely a best-effort attempt
3325 // to improve the odds for open().
3327 // We let the name "-" mean "stdout"
3328 if (!this->is_temporary_
)
3330 if (strcmp(this->name_
, "-") == 0)
3331 this->o_
= STDOUT_FILENO
;
3335 if (::stat(this->name_
, &s
) == 0 && s
.st_size
!= 0)
3336 unlink_if_ordinary(this->name_
);
3338 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
3339 int o
= ::open(this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
, mode
);
3341 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
3349 // Resize the output file.
3352 Output_file::resize(off_t file_size
)
3354 // If the mmap is mapping an anonymous memory buffer, this is easy:
3355 // just mremap to the new size. If it's mapping to a file, we want
3356 // to unmap to flush to the file, then remap after growing the file.
3357 if (this->map_is_anonymous_
)
3359 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
3361 if (base
== MAP_FAILED
)
3362 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
3363 this->base_
= static_cast<unsigned char*>(base
);
3364 this->file_size_
= file_size
;
3369 this->file_size_
= file_size
;
3374 // Map the file into memory.
3379 const int o
= this->o_
;
3381 // If the output file is not a regular file, don't try to mmap it;
3382 // instead, we'll mmap a block of memory (an anonymous buffer), and
3383 // then later write the buffer to the file.
3385 struct stat statbuf
;
3386 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
3387 || ::fstat(o
, &statbuf
) != 0
3388 || !S_ISREG(statbuf
.st_mode
)
3389 || this->is_temporary_
)
3391 this->map_is_anonymous_
= true;
3392 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
3393 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
3397 // Write out one byte to make the file the right size.
3398 if (::lseek(o
, this->file_size_
- 1, SEEK_SET
) < 0)
3399 gold_fatal(_("%s: lseek: %s"), this->name_
, strerror(errno
));
3401 if (::write(o
, &b
, 1) != 1)
3402 gold_fatal(_("%s: write: %s"), this->name_
, strerror(errno
));
3404 // Map the file into memory.
3405 this->map_is_anonymous_
= false;
3406 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
3409 if (base
== MAP_FAILED
)
3410 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
3411 this->base_
= static_cast<unsigned char*>(base
);
3414 // Unmap the file from memory.
3417 Output_file::unmap()
3419 if (::munmap(this->base_
, this->file_size_
) < 0)
3420 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
3424 // Close the output file.
3427 Output_file::close()
3429 // If the map isn't file-backed, we need to write it now.
3430 if (this->map_is_anonymous_
&& !this->is_temporary_
)
3432 size_t bytes_to_write
= this->file_size_
;
3433 while (bytes_to_write
> 0)
3435 ssize_t bytes_written
= ::write(this->o_
, this->base_
, bytes_to_write
);
3436 if (bytes_written
== 0)
3437 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
3438 else if (bytes_written
< 0)
3439 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
3441 bytes_to_write
-= bytes_written
;
3446 // We don't close stdout or stderr
3447 if (this->o_
!= STDOUT_FILENO
3448 && this->o_
!= STDERR_FILENO
3449 && !this->is_temporary_
)
3450 if (::close(this->o_
) < 0)
3451 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
3455 // Instantiate the templates we need. We could use the configure
3456 // script to restrict this to only the ones for implemented targets.
3458 #ifdef HAVE_TARGET_32_LITTLE
3461 Output_section::add_input_section
<32, false>(
3462 Sized_relobj
<32, false>* object
,
3464 const char* secname
,
3465 const elfcpp::Shdr
<32, false>& shdr
,
3466 unsigned int reloc_shndx
,
3467 bool have_sections_script
);
3470 #ifdef HAVE_TARGET_32_BIG
3473 Output_section::add_input_section
<32, true>(
3474 Sized_relobj
<32, true>* object
,
3476 const char* secname
,
3477 const elfcpp::Shdr
<32, true>& shdr
,
3478 unsigned int reloc_shndx
,
3479 bool have_sections_script
);
3482 #ifdef HAVE_TARGET_64_LITTLE
3485 Output_section::add_input_section
<64, false>(
3486 Sized_relobj
<64, false>* object
,
3488 const char* secname
,
3489 const elfcpp::Shdr
<64, false>& shdr
,
3490 unsigned int reloc_shndx
,
3491 bool have_sections_script
);
3494 #ifdef HAVE_TARGET_64_BIG
3497 Output_section::add_input_section
<64, true>(
3498 Sized_relobj
<64, true>* object
,
3500 const char* secname
,
3501 const elfcpp::Shdr
<64, true>& shdr
,
3502 unsigned int reloc_shndx
,
3503 bool have_sections_script
);
3506 #ifdef HAVE_TARGET_32_LITTLE
3508 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
3511 #ifdef HAVE_TARGET_32_BIG
3513 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
3516 #ifdef HAVE_TARGET_64_LITTLE
3518 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
3521 #ifdef HAVE_TARGET_64_BIG
3523 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
3526 #ifdef HAVE_TARGET_32_LITTLE
3528 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
3531 #ifdef HAVE_TARGET_32_BIG
3533 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
3536 #ifdef HAVE_TARGET_64_LITTLE
3538 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
3541 #ifdef HAVE_TARGET_64_BIG
3543 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
3546 #ifdef HAVE_TARGET_32_LITTLE
3548 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
3551 #ifdef HAVE_TARGET_32_BIG
3553 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
3556 #ifdef HAVE_TARGET_64_LITTLE
3558 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
3561 #ifdef HAVE_TARGET_64_BIG
3563 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
3566 #ifdef HAVE_TARGET_32_LITTLE
3568 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
3571 #ifdef HAVE_TARGET_32_BIG
3573 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
3576 #ifdef HAVE_TARGET_64_LITTLE
3578 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
3581 #ifdef HAVE_TARGET_64_BIG
3583 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
3586 #ifdef HAVE_TARGET_32_LITTLE
3588 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
3591 #ifdef HAVE_TARGET_32_BIG
3593 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
3596 #ifdef HAVE_TARGET_64_LITTLE
3598 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
3601 #ifdef HAVE_TARGET_64_BIG
3603 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
3606 #ifdef HAVE_TARGET_32_LITTLE
3608 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
3611 #ifdef HAVE_TARGET_32_BIG
3613 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
3616 #ifdef HAVE_TARGET_64_LITTLE
3618 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
3621 #ifdef HAVE_TARGET_64_BIG
3623 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
3626 #ifdef HAVE_TARGET_32_LITTLE
3628 class Output_data_group
<32, false>;
3631 #ifdef HAVE_TARGET_32_BIG
3633 class Output_data_group
<32, true>;
3636 #ifdef HAVE_TARGET_64_LITTLE
3638 class Output_data_group
<64, false>;
3641 #ifdef HAVE_TARGET_64_BIG
3643 class Output_data_group
<64, true>;
3646 #ifdef HAVE_TARGET_32_LITTLE
3648 class Output_data_got
<32, false>;
3651 #ifdef HAVE_TARGET_32_BIG
3653 class Output_data_got
<32, true>;
3656 #ifdef HAVE_TARGET_64_LITTLE
3658 class Output_data_got
<64, false>;
3661 #ifdef HAVE_TARGET_64_BIG
3663 class Output_data_got
<64, true>;
3666 } // End namespace gold.