2 * Copyright (c) 1983, 1993, 2001
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 #include "libiberty.h"
31 #include "search_list.h"
34 #include "call_graph.h"
41 static int cmp_topo
PARAMS ((const PTR
, const PTR
));
42 static void propagate_time
PARAMS ((Sym
*));
43 static void cycle_time
PARAMS ((void));
44 static void cycle_link
PARAMS ((void));
45 static void inherit_flags
PARAMS ((Sym
*));
46 static void propagate_flags
PARAMS ((Sym
**));
47 static int cmp_total
PARAMS ((const PTR
, const PTR
));
50 unsigned int num_cycles
;
55 * Return TRUE iff PARENT has an arc to covers the address
56 * range covered by CHILD.
59 arc_lookup (parent
, child
)
65 if (!parent
|| !child
)
67 printf ("[arc_lookup] parent == 0 || child == 0\n");
70 DBG (LOOKUPDEBUG
, printf ("[arc_lookup] parent %s child %s\n",
71 parent
->name
, child
->name
));
72 for (arc
= parent
->cg
.children
; arc
; arc
= arc
->next_child
)
74 DBG (LOOKUPDEBUG
, printf ("[arc_lookup]\t parent %s child %s\n",
75 arc
->parent
->name
, arc
->child
->name
));
76 if (child
->addr
>= arc
->child
->addr
77 && child
->end_addr
<= arc
->child
->end_addr
)
87 * Add (or just increment) an arc:
90 arc_add (parent
, child
, count
)
95 static unsigned int maxarcs
= 0;
98 DBG (TALLYDEBUG
, printf ("[arc_add] %lu arcs from %s to %s\n",
99 count
, parent
->name
, child
->name
));
100 arc
= arc_lookup (parent
, child
);
104 * A hit: just increment the count.
106 DBG (TALLYDEBUG
, printf ("[tally] hit %lu += %lu\n",
111 arc
= (Arc
*) xmalloc (sizeof (*arc
));
112 memset (arc
, 0, sizeof (*arc
));
113 arc
->parent
= parent
;
117 /* If this isn't an arc for a recursive call to parent, then add it
118 to the array of arcs. */
121 /* If we've exhausted space in our current array, get a new one
122 and copy the contents. We might want to throttle the doubling
124 if (numarcs
== maxarcs
)
126 /* Determine how much space we want to allocate. */
131 /* Allocate the new array. */
132 newarcs
= (Arc
**)xmalloc(sizeof (Arc
*) * maxarcs
);
134 /* Copy the old array's contents into the new array. */
135 memcpy (newarcs
, arcs
, numarcs
* sizeof (Arc
*));
137 /* Free up the old array. */
140 /* And make the new array be the current array. */
144 /* Place this arc in the arc array. */
145 arcs
[numarcs
++] = arc
;
148 /* prepend this child to the children of this parent: */
149 arc
->next_child
= parent
->cg
.children
;
150 parent
->cg
.children
= arc
;
152 /* prepend this parent to the parents of this child: */
153 arc
->next_parent
= child
->cg
.parents
;
154 child
->cg
.parents
= arc
;
163 const Sym
*left
= *(const Sym
**) lp
;
164 const Sym
*right
= *(const Sym
**) rp
;
166 return left
->cg
.top_order
- right
->cg
.top_order
;
171 propagate_time (parent
)
176 double share
, prop_share
;
178 if (parent
->cg
.prop
.fract
== 0.0)
183 /* gather time from children of this parent: */
185 for (arc
= parent
->cg
.children
; arc
; arc
= arc
->next_child
)
188 if (arc
->count
== 0 || child
== parent
|| child
->cg
.prop
.fract
== 0)
192 if (child
->cg
.cyc
.head
!= child
)
194 if (parent
->cg
.cyc
.num
== child
->cg
.cyc
.num
)
198 if (parent
->cg
.top_order
<= child
->cg
.top_order
)
200 fprintf (stderr
, "[propagate] toporder botches\n");
202 child
= child
->cg
.cyc
.head
;
206 if (parent
->cg
.top_order
<= child
->cg
.top_order
)
208 fprintf (stderr
, "[propagate] toporder botches\n");
212 if (child
->ncalls
== 0)
217 /* distribute time for this arc: */
218 arc
->time
= child
->hist
.time
* (((double) arc
->count
)
219 / ((double) child
->ncalls
));
220 arc
->child_time
= child
->cg
.child_time
221 * (((double) arc
->count
) / ((double) child
->ncalls
));
222 share
= arc
->time
+ arc
->child_time
;
223 parent
->cg
.child_time
+= share
;
225 /* (1 - cg.prop.fract) gets lost along the way: */
226 prop_share
= parent
->cg
.prop
.fract
* share
;
228 /* fix things for printing: */
229 parent
->cg
.prop
.child
+= prop_share
;
230 arc
->time
*= parent
->cg
.prop
.fract
;
231 arc
->child_time
*= parent
->cg
.prop
.fract
;
233 /* add this share to the parent's cycle header, if any: */
234 if (parent
->cg
.cyc
.head
!= parent
)
236 parent
->cg
.cyc
.head
->cg
.child_time
+= share
;
237 parent
->cg
.cyc
.head
->cg
.prop
.child
+= prop_share
;
240 printf ("[prop_time] child \t");
242 printf (" with %f %f %lu/%lu\n", child
->hist
.time
,
243 child
->cg
.child_time
, arc
->count
, child
->ncalls
);
244 printf ("[prop_time] parent\t");
246 printf ("\n[prop_time] share %f\n", share
));
252 * Compute the time of a cycle as the sum of the times of all
260 for (cyc
= &cycle_header
[1]; cyc
<= &cycle_header
[num_cycles
]; ++cyc
)
262 for (member
= cyc
->cg
.cyc
.next
; member
; member
= member
->cg
.cyc
.next
)
264 if (member
->cg
.prop
.fract
== 0.0)
267 * All members have the same propfraction except those
268 * that were excluded with -E.
272 cyc
->hist
.time
+= member
->hist
.time
;
274 cyc
->cg
.prop
.self
= cyc
->cg
.prop
.fract
* cyc
->hist
.time
;
282 Sym
*sym
, *cyc
, *member
;
286 /* count the number of cycles, and initialize the cycle lists: */
289 for (sym
= symtab
.base
; sym
< symtab
.limit
; ++sym
)
291 /* this is how you find unattached cycles: */
292 if (sym
->cg
.cyc
.head
== sym
&& sym
->cg
.cyc
.next
)
299 * cycle_header is indexed by cycle number: i.e. it is origin 1,
302 cycle_header
= (Sym
*) xmalloc ((num_cycles
+ 1) * sizeof (Sym
));
305 * Now link cycles to true cycle-heads, number them, accumulate
306 * the data for the cycle.
310 for (sym
= symtab
.base
; sym
< symtab
.limit
; ++sym
)
312 if (!(sym
->cg
.cyc
.head
== sym
&& sym
->cg
.cyc
.next
!= 0))
319 cyc
->cg
.print_flag
= TRUE
; /* should this be printed? */
320 cyc
->cg
.top_order
= DFN_NAN
; /* graph call chain top-sort order */
321 cyc
->cg
.cyc
.num
= num
; /* internal number of cycle on */
322 cyc
->cg
.cyc
.head
= cyc
; /* pointer to head of cycle */
323 cyc
->cg
.cyc
.next
= sym
; /* pointer to next member of cycle */
324 DBG (CYCLEDEBUG
, printf ("[cycle_link] ");
326 printf (" is the head of cycle %d\n", num
));
328 /* link members to cycle header: */
329 for (member
= sym
; member
; member
= member
->cg
.cyc
.next
)
331 member
->cg
.cyc
.num
= num
;
332 member
->cg
.cyc
.head
= cyc
;
336 * Count calls from outside the cycle and those among cycle
339 for (member
= sym
; member
; member
= member
->cg
.cyc
.next
)
341 for (arc
= member
->cg
.parents
; arc
; arc
= arc
->next_parent
)
343 if (arc
->parent
== member
)
347 if (arc
->parent
->cg
.cyc
.num
== num
)
349 cyc
->cg
.self_calls
+= arc
->count
;
353 cyc
->ncalls
+= arc
->count
;
362 * Check if any parent of this child (or outside parents of this
363 * cycle) have their print flags on and set the print flag of the
364 * child (cycle) appropriately. Similarly, deal with propagation
365 * fractions from parents.
368 inherit_flags (child
)
371 Sym
*head
, *parent
, *member
;
374 head
= child
->cg
.cyc
.head
;
377 /* just a regular child, check its parents: */
378 child
->cg
.print_flag
= FALSE
;
379 child
->cg
.prop
.fract
= 0.0;
380 for (arc
= child
->cg
.parents
; arc
; arc
= arc
->next_parent
)
382 parent
= arc
->parent
;
387 child
->cg
.print_flag
|= parent
->cg
.print_flag
;
389 * If the child was never actually called (e.g., this arc
390 * is static (and all others are, too)) no time propagates
393 if (child
->ncalls
!= 0)
395 child
->cg
.prop
.fract
+= parent
->cg
.prop
.fract
396 * (((double) arc
->count
) / ((double) child
->ncalls
));
403 * Its a member of a cycle, look at all parents from outside
406 head
->cg
.print_flag
= FALSE
;
407 head
->cg
.prop
.fract
= 0.0;
408 for (member
= head
->cg
.cyc
.next
; member
; member
= member
->cg
.cyc
.next
)
410 for (arc
= member
->cg
.parents
; arc
; arc
= arc
->next_parent
)
412 if (arc
->parent
->cg
.cyc
.head
== head
)
416 parent
= arc
->parent
;
417 head
->cg
.print_flag
|= parent
->cg
.print_flag
;
419 * If the cycle was never actually called (e.g. this
420 * arc is static (and all others are, too)) no time
421 * propagates along this arc.
423 if (head
->ncalls
!= 0)
425 head
->cg
.prop
.fract
+= parent
->cg
.prop
.fract
426 * (((double) arc
->count
) / ((double) head
->ncalls
));
430 for (member
= head
; member
; member
= member
->cg
.cyc
.next
)
432 member
->cg
.print_flag
= head
->cg
.print_flag
;
433 member
->cg
.prop
.fract
= head
->cg
.prop
.fract
;
440 * In one top-to-bottom pass over the topologically sorted symbols
442 * cg.print_flag as the union of parents' print_flags
443 * propfraction as the sum of fractional parents' propfractions
444 * and while we're here, sum time for functions.
447 propagate_flags (symbols
)
451 Sym
*old_head
, *child
;
454 for (index
= symtab
.len
- 1; index
>= 0; --index
)
456 child
= symbols
[index
];
458 * If we haven't done this function or cycle, inherit things
459 * from parent. This way, we are linear in the number of arcs
460 * since we do all members of a cycle (and the cycle itself)
461 * as we hit the first member of the cycle.
463 if (child
->cg
.cyc
.head
!= old_head
)
465 old_head
= child
->cg
.cyc
.head
;
466 inherit_flags (child
);
469 printf ("[prop_flags] ");
471 printf ("inherits print-flag %d and prop-fract %f\n",
472 child
->cg
.print_flag
, child
->cg
.prop
.fract
));
473 if (!child
->cg
.print_flag
)
476 * Printflag is off. It gets turned on by being in the
477 * INCL_GRAPH table, or there being an empty INCL_GRAPH
478 * table and not being in the EXCL_GRAPH table.
480 if (sym_lookup (&syms
[INCL_GRAPH
], child
->addr
)
481 || (syms
[INCL_GRAPH
].len
== 0
482 && !sym_lookup (&syms
[EXCL_GRAPH
], child
->addr
)))
484 child
->cg
.print_flag
= TRUE
;
490 * This function has printing parents: maybe someone wants
491 * to shut it up by putting it in the EXCL_GRAPH table.
492 * (But favor INCL_GRAPH over EXCL_GRAPH.)
494 if (!sym_lookup (&syms
[INCL_GRAPH
], child
->addr
)
495 && sym_lookup (&syms
[EXCL_GRAPH
], child
->addr
))
497 child
->cg
.print_flag
= FALSE
;
500 if (child
->cg
.prop
.fract
== 0.0)
503 * No parents to pass time to. Collect time from children
504 * if its in the INCL_TIME table, or there is an empty
505 * INCL_TIME table and its not in the EXCL_TIME table.
507 if (sym_lookup (&syms
[INCL_TIME
], child
->addr
)
508 || (syms
[INCL_TIME
].len
== 0
509 && !sym_lookup (&syms
[EXCL_TIME
], child
->addr
)))
511 child
->cg
.prop
.fract
= 1.0;
517 * It has parents to pass time to, but maybe someone wants
518 * to shut it up by puttting it in the EXCL_TIME table.
519 * (But favor being in INCL_TIME tabe over being in
522 if (!sym_lookup (&syms
[INCL_TIME
], child
->addr
)
523 && sym_lookup (&syms
[EXCL_TIME
], child
->addr
))
525 child
->cg
.prop
.fract
= 0.0;
528 child
->cg
.prop
.self
= child
->hist
.time
* child
->cg
.prop
.fract
;
529 print_time
+= child
->cg
.prop
.self
;
531 printf ("[prop_flags] ");
533 printf (" ends up with printflag %d and prop-fract %f\n",
534 child
->cg
.print_flag
, child
->cg
.prop
.fract
);
535 printf ("[prop_flags] time %f propself %f print_time %f\n",
536 child
->hist
.time
, child
->cg
.prop
.self
, print_time
));
542 * Compare by decreasing propagated time. If times are equal, but one
543 * is a cycle header, say that's first (e.g. less, i.e. -1). If one's
544 * name doesn't have an underscore and the other does, say that one is
545 * first. All else being equal, compare by names.
552 const Sym
*left
= *(const Sym
**) lp
;
553 const Sym
*right
= *(const Sym
**) rp
;
556 diff
= (left
->cg
.prop
.self
+ left
->cg
.prop
.child
)
557 - (right
->cg
.prop
.self
+ right
->cg
.prop
.child
);
566 if (!left
->name
&& left
->cg
.cyc
.num
!= 0)
570 if (!right
->name
&& right
->cg
.cyc
.num
!= 0)
582 if (left
->name
[0] != '_' && right
->name
[0] == '_')
586 if (left
->name
[0] == '_' && right
->name
[0] != '_')
590 if (left
->ncalls
> right
->ncalls
)
594 if (left
->ncalls
< right
->ncalls
)
598 return strcmp (left
->name
, right
->name
);
603 * Topologically sort the graph (collapsing cycles), and propagates
604 * time bottom up and flags top down.
609 Sym
*parent
, **time_sorted_syms
, **top_sorted_syms
;
614 * initialize various things:
615 * zero out child times.
616 * count self-recursive calls.
617 * indicate that nothing is on cycles.
619 for (parent
= symtab
.base
; parent
< symtab
.limit
; parent
++)
621 parent
->cg
.child_time
= 0.0;
622 arc
= arc_lookup (parent
, parent
);
623 if (arc
&& parent
== arc
->child
)
625 parent
->ncalls
-= arc
->count
;
626 parent
->cg
.self_calls
= arc
->count
;
630 parent
->cg
.self_calls
= 0;
632 parent
->cg
.prop
.fract
= 0.0;
633 parent
->cg
.prop
.self
= 0.0;
634 parent
->cg
.prop
.child
= 0.0;
635 parent
->cg
.print_flag
= FALSE
;
636 parent
->cg
.top_order
= DFN_NAN
;
637 parent
->cg
.cyc
.num
= 0;
638 parent
->cg
.cyc
.head
= parent
;
639 parent
->cg
.cyc
.next
= 0;
640 if (ignore_direct_calls
)
642 find_call (parent
, parent
->addr
, (parent
+ 1)->addr
);
646 * Topologically order things. If any node is unnumbered, number
647 * it and any of its descendents.
649 for (parent
= symtab
.base
; parent
< symtab
.limit
; parent
++)
651 if (parent
->cg
.top_order
== DFN_NAN
)
657 /* link together nodes on the same cycle: */
660 /* sort the symbol table in reverse topological order: */
661 top_sorted_syms
= (Sym
**) xmalloc (symtab
.len
* sizeof (Sym
*));
662 for (index
= 0; index
< symtab
.len
; ++index
)
664 top_sorted_syms
[index
] = &symtab
.base
[index
];
666 qsort (top_sorted_syms
, symtab
.len
, sizeof (Sym
*), cmp_topo
);
668 printf ("[cg_assemble] topological sort listing\n");
669 for (index
= 0; index
< symtab
.len
; ++index
)
671 printf ("[cg_assemble] ");
672 printf ("%d:", top_sorted_syms
[index
]->cg
.top_order
);
673 print_name (top_sorted_syms
[index
]);
678 * Starting from the topological top, propagate print flags to
679 * children. also, calculate propagation fractions. this happens
680 * before time propagation since time propagation uses the
683 propagate_flags (top_sorted_syms
);
686 * Starting from the topological bottom, propogate children times
690 for (index
= 0; index
< symtab
.len
; ++index
)
692 propagate_time (top_sorted_syms
[index
]);
695 free (top_sorted_syms
);
698 * Now, sort by CG.PROP.SELF + CG.PROP.CHILD. Sorting both the regular
699 * function names and cycle headers.
701 time_sorted_syms
= (Sym
**) xmalloc ((symtab
.len
+ num_cycles
) * sizeof (Sym
*));
702 for (index
= 0; index
< symtab
.len
; index
++)
704 time_sorted_syms
[index
] = &symtab
.base
[index
];
706 for (index
= 1; index
<= num_cycles
; index
++)
708 time_sorted_syms
[symtab
.len
+ index
- 1] = &cycle_header
[index
];
710 qsort (time_sorted_syms
, symtab
.len
+ num_cycles
, sizeof (Sym
*),
712 for (index
= 0; index
< symtab
.len
+ num_cycles
; index
++)
714 time_sorted_syms
[index
]->cg
.index
= index
+ 1;
716 return time_sorted_syms
;