1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
47 // Struct Read_symbols_data.
49 // Destroy any remaining File_view objects.
51 Read_symbols_data::~Read_symbols_data()
53 if (this->section_headers
!= NULL
)
54 delete this->section_headers
;
55 if (this->section_names
!= NULL
)
56 delete this->section_names
;
57 if (this->symbols
!= NULL
)
59 if (this->symbol_names
!= NULL
)
60 delete this->symbol_names
;
61 if (this->versym
!= NULL
)
63 if (this->verdef
!= NULL
)
65 if (this->verneed
!= NULL
)
71 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
72 // section and read it in. SYMTAB_SHNDX is the index of the symbol
73 // table we care about.
75 template<int size
, bool big_endian
>
77 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
79 if (!this->symtab_xindex_
.empty())
82 gold_assert(symtab_shndx
!= 0);
84 // Look through the sections in reverse order, on the theory that it
85 // is more likely to be near the end than the beginning.
86 unsigned int i
= object
->shnum();
90 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
91 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
93 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
98 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
101 // Read in the symtab_xindex_ array, given the section index of the
102 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 template<int size
, bool big_endian
>
107 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
108 const unsigned char* pshdrs
)
110 section_size_type bytecount
;
111 const unsigned char* contents
;
113 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
116 const unsigned char* p
= (pshdrs
118 * elfcpp::Elf_sizes
<size
>::shdr_size
));
119 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
120 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
121 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
124 gold_assert(this->symtab_xindex_
.empty());
125 this->symtab_xindex_
.reserve(bytecount
/ 4);
126 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
128 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
129 // We preadjust the section indexes we save.
130 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
134 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
140 if (symndx
>= this->symtab_xindex_
.size())
142 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 return elfcpp::SHN_UNDEF
;
146 unsigned int shndx
= this->symtab_xindex_
[symndx
];
147 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
149 object
->error(_("extended index for symbol %u out of range: %u"),
151 return elfcpp::SHN_UNDEF
;
158 // Report an error for this object file. This is used by the
159 // elfcpp::Elf_file interface, and also called by the Object code
163 Object::error(const char* format
, ...) const
166 va_start(args
, format
);
168 if (vasprintf(&buf
, format
, args
) < 0)
171 gold_error(_("%s: %s"), this->name().c_str(), buf
);
175 // Return a view of the contents of a section.
178 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
181 Location
loc(this->do_section_contents(shndx
));
182 *plen
= convert_to_section_size_type(loc
.data_size
);
185 static const unsigned char empty
[1] = { '\0' };
188 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
191 // Read the section data into SD. This is code common to Sized_relobj
192 // and Sized_dynobj, so we put it into Object.
194 template<int size
, bool big_endian
>
196 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
197 Read_symbols_data
* sd
)
199 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
201 // Read the section headers.
202 const off_t shoff
= elf_file
->shoff();
203 const unsigned int shnum
= this->shnum();
204 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
207 // Read the section names.
208 const unsigned char* pshdrs
= sd
->section_headers
->data();
209 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
210 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
212 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
213 this->error(_("section name section has wrong type: %u"),
214 static_cast<unsigned int>(shdrnames
.get_sh_type()));
216 sd
->section_names_size
=
217 convert_to_section_size_type(shdrnames
.get_sh_size());
218 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
219 sd
->section_names_size
, false,
223 // If NAME is the name of a special .gnu.warning section, arrange for
224 // the warning to be issued. SHNDX is the section index. Return
225 // whether it is a warning section.
228 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
229 Symbol_table
* symtab
)
231 const char warn_prefix
[] = ".gnu.warning.";
232 const int warn_prefix_len
= sizeof warn_prefix
- 1;
233 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
235 // Read the section contents to get the warning text. It would
236 // be nicer if we only did this if we have to actually issue a
237 // warning. Unfortunately, warnings are issued as we relocate
238 // sections. That means that we can not lock the object then,
239 // as we might try to issue the same warning multiple times
241 section_size_type len
;
242 const unsigned char* contents
= this->section_contents(shndx
, &len
,
246 const char* warning
= name
+ warn_prefix_len
;
247 contents
= reinterpret_cast<const unsigned char*>(warning
);
248 len
= strlen(warning
);
250 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
251 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
257 // If NAME is the name of the special section which indicates that
258 // this object was compiled with -fstack-split, mark it accordingly.
261 Object::handle_split_stack_section(const char* name
)
263 if (strcmp(name
, ".note.GNU-split-stack") == 0)
265 this->uses_split_stack_
= true;
268 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
270 this->has_no_split_stack_
= true;
278 // To copy the symbols data read from the file to a local data structure.
279 // This function is called from do_layout only while doing garbage
283 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
284 unsigned int section_header_size
)
286 gc_sd
->section_headers_data
=
287 new unsigned char[(section_header_size
)];
288 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
289 section_header_size
);
290 gc_sd
->section_names_data
=
291 new unsigned char[sd
->section_names_size
];
292 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
293 sd
->section_names_size
);
294 gc_sd
->section_names_size
= sd
->section_names_size
;
295 if (sd
->symbols
!= NULL
)
297 gc_sd
->symbols_data
=
298 new unsigned char[sd
->symbols_size
];
299 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
304 gc_sd
->symbols_data
= NULL
;
306 gc_sd
->symbols_size
= sd
->symbols_size
;
307 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
308 if (sd
->symbol_names
!= NULL
)
310 gc_sd
->symbol_names_data
=
311 new unsigned char[sd
->symbol_names_size
];
312 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
313 sd
->symbol_names_size
);
317 gc_sd
->symbol_names_data
= NULL
;
319 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
322 // This function determines if a particular section name must be included
323 // in the link. This is used during garbage collection to determine the
324 // roots of the worklist.
327 Relobj::is_section_name_included(const char* name
)
329 if (is_prefix_of(".ctors", name
)
330 || is_prefix_of(".dtors", name
)
331 || is_prefix_of(".note", name
)
332 || is_prefix_of(".init", name
)
333 || is_prefix_of(".fini", name
)
334 || is_prefix_of(".gcc_except_table", name
)
335 || is_prefix_of(".jcr", name
)
336 || is_prefix_of(".preinit_array", name
)
337 || (is_prefix_of(".text", name
)
338 && strstr(name
, "personality"))
339 || (is_prefix_of(".data", name
)
340 && strstr(name
, "personality"))
341 || (is_prefix_of(".gnu.linkonce.d", name
)
342 && strstr(name
, "personality")))
349 // Class Sized_relobj.
351 template<int size
, bool big_endian
>
352 Sized_relobj
<size
, big_endian
>::Sized_relobj(
353 const std::string
& name
,
354 Input_file
* input_file
,
356 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
357 : Relobj(name
, input_file
, offset
),
358 elf_file_(this, ehdr
),
360 local_symbol_count_(0),
361 output_local_symbol_count_(0),
362 output_local_dynsym_count_(0),
365 local_symbol_offset_(0),
366 local_dynsym_offset_(0),
368 local_got_offsets_(),
369 kept_comdat_sections_(),
370 has_eh_frame_(false),
371 discarded_eh_frame_shndx_(-1U),
373 deferred_layout_relocs_(),
374 compressed_sections_()
378 template<int size
, bool big_endian
>
379 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
383 // Set up an object file based on the file header. This sets up the
384 // section information.
386 template<int size
, bool big_endian
>
388 Sized_relobj
<size
, big_endian
>::do_setup()
390 const unsigned int shnum
= this->elf_file_
.shnum();
391 this->set_shnum(shnum
);
394 // Find the SHT_SYMTAB section, given the section headers. The ELF
395 // standard says that maybe in the future there can be more than one
396 // SHT_SYMTAB section. Until somebody figures out how that could
397 // work, we assume there is only one.
399 template<int size
, bool big_endian
>
401 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
403 const unsigned int shnum
= this->shnum();
404 this->symtab_shndx_
= 0;
407 // Look through the sections in reverse order, since gas tends
408 // to put the symbol table at the end.
409 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
410 unsigned int i
= shnum
;
411 unsigned int xindex_shndx
= 0;
412 unsigned int xindex_link
= 0;
416 p
-= This::shdr_size
;
417 typename
This::Shdr
shdr(p
);
418 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
420 this->symtab_shndx_
= i
;
421 if (xindex_shndx
> 0 && xindex_link
== i
)
424 new Xindex(this->elf_file_
.large_shndx_offset());
425 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
428 this->set_xindex(xindex
);
433 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
434 // one. This will work if it follows the SHT_SYMTAB
436 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
439 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
445 // Return the Xindex structure to use for object with lots of
448 template<int size
, bool big_endian
>
450 Sized_relobj
<size
, big_endian
>::do_initialize_xindex()
452 gold_assert(this->symtab_shndx_
!= -1U);
453 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
454 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
458 // Return whether SHDR has the right type and flags to be a GNU
459 // .eh_frame section.
461 template<int size
, bool big_endian
>
463 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
464 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
466 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
467 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
470 // Return whether there is a GNU .eh_frame section, given the section
471 // headers and the section names.
473 template<int size
, bool big_endian
>
475 Sized_relobj
<size
, big_endian
>::find_eh_frame(
476 const unsigned char* pshdrs
,
478 section_size_type names_size
) const
480 const unsigned int shnum
= this->shnum();
481 const unsigned char* p
= pshdrs
+ This::shdr_size
;
482 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
484 typename
This::Shdr
shdr(p
);
485 if (this->check_eh_frame_flags(&shdr
))
487 if (shdr
.get_sh_name() >= names_size
)
489 this->error(_("bad section name offset for section %u: %lu"),
490 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
494 const char* name
= names
+ shdr
.get_sh_name();
495 if (strcmp(name
, ".eh_frame") == 0)
502 // Build a table for any compressed debug sections, mapping each section index
503 // to the uncompressed size.
505 template<int size
, bool big_endian
>
506 Compressed_section_map
*
507 build_compressed_section_map(
508 const unsigned char* pshdrs
,
511 section_size_type names_size
,
512 Sized_relobj
<size
, big_endian
>* obj
)
514 Compressed_section_map
* uncompressed_sizes
= new Compressed_section_map();
515 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
516 const unsigned char* p
= pshdrs
+ shdr_size
;
517 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
519 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
520 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
521 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
523 if (shdr
.get_sh_name() >= names_size
)
525 obj
->error(_("bad section name offset for section %u: %lu"),
526 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
530 const char* name
= names
+ shdr
.get_sh_name();
531 if (is_compressed_debug_section(name
))
533 section_size_type len
;
534 const unsigned char* contents
=
535 obj
->section_contents(i
, &len
, false);
536 uint64_t uncompressed_size
= get_uncompressed_size(contents
, len
);
537 if (uncompressed_size
!= -1ULL)
538 (*uncompressed_sizes
)[i
] =
539 convert_to_section_size_type(uncompressed_size
);
543 return uncompressed_sizes
;
546 // Read the sections and symbols from an object file.
548 template<int size
, bool big_endian
>
550 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
552 this->read_section_data(&this->elf_file_
, sd
);
554 const unsigned char* const pshdrs
= sd
->section_headers
->data();
556 this->find_symtab(pshdrs
);
558 const unsigned char* namesu
= sd
->section_names
->data();
559 const char* names
= reinterpret_cast<const char*>(namesu
);
560 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
562 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
563 this->has_eh_frame_
= true;
565 if (memmem(names
, sd
->section_names_size
, ".zdebug_", 8) != NULL
)
566 this->compressed_sections_
=
567 build_compressed_section_map(pshdrs
, this->shnum(), names
,
568 sd
->section_names_size
, this);
571 sd
->symbols_size
= 0;
572 sd
->external_symbols_offset
= 0;
573 sd
->symbol_names
= NULL
;
574 sd
->symbol_names_size
= 0;
576 if (this->symtab_shndx_
== 0)
578 // No symbol table. Weird but legal.
582 // Get the symbol table section header.
583 typename
This::Shdr
symtabshdr(pshdrs
584 + this->symtab_shndx_
* This::shdr_size
);
585 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
587 // If this object has a .eh_frame section, we need all the symbols.
588 // Otherwise we only need the external symbols. While it would be
589 // simpler to just always read all the symbols, I've seen object
590 // files with well over 2000 local symbols, which for a 64-bit
591 // object file format is over 5 pages that we don't need to read
594 const int sym_size
= This::sym_size
;
595 const unsigned int loccount
= symtabshdr
.get_sh_info();
596 this->local_symbol_count_
= loccount
;
597 this->local_values_
.resize(loccount
);
598 section_offset_type locsize
= loccount
* sym_size
;
599 off_t dataoff
= symtabshdr
.get_sh_offset();
600 section_size_type datasize
=
601 convert_to_section_size_type(symtabshdr
.get_sh_size());
602 off_t extoff
= dataoff
+ locsize
;
603 section_size_type extsize
= datasize
- locsize
;
605 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
606 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
610 // No external symbols. Also weird but also legal.
614 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
616 // Read the section header for the symbol names.
617 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
618 if (strtab_shndx
>= this->shnum())
620 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
623 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
624 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
626 this->error(_("symbol table name section has wrong type: %u"),
627 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
631 // Read the symbol names.
632 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
633 strtabshdr
.get_sh_size(),
636 sd
->symbols
= fvsymtab
;
637 sd
->symbols_size
= readsize
;
638 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
639 sd
->symbol_names
= fvstrtab
;
640 sd
->symbol_names_size
=
641 convert_to_section_size_type(strtabshdr
.get_sh_size());
644 // Return the section index of symbol SYM. Set *VALUE to its value in
645 // the object file. Set *IS_ORDINARY if this is an ordinary section
646 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
647 // Note that for a symbol which is not defined in this object file,
648 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
649 // the final value of the symbol in the link.
651 template<int size
, bool big_endian
>
653 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
657 section_size_type symbols_size
;
658 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
662 const size_t count
= symbols_size
/ This::sym_size
;
663 gold_assert(sym
< count
);
665 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
666 *value
= elfsym
.get_st_value();
668 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
671 // Return whether to include a section group in the link. LAYOUT is
672 // used to keep track of which section groups we have already seen.
673 // INDEX is the index of the section group and SHDR is the section
674 // header. If we do not want to include this group, we set bits in
675 // OMIT for each section which should be discarded.
677 template<int size
, bool big_endian
>
679 Sized_relobj
<size
, big_endian
>::include_section_group(
680 Symbol_table
* symtab
,
684 const unsigned char* shdrs
,
685 const char* section_names
,
686 section_size_type section_names_size
,
687 std::vector
<bool>* omit
)
689 // Read the section contents.
690 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
691 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
692 shdr
.get_sh_size(), true, false);
693 const elfcpp::Elf_Word
* pword
=
694 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
696 // The first word contains flags. We only care about COMDAT section
697 // groups. Other section groups are always included in the link
698 // just like ordinary sections.
699 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
701 // Look up the group signature, which is the name of a symbol. This
702 // is a lot of effort to go to to read a string. Why didn't they
703 // just have the group signature point into the string table, rather
704 // than indirect through a symbol?
706 // Get the appropriate symbol table header (this will normally be
707 // the single SHT_SYMTAB section, but in principle it need not be).
708 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
709 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
711 // Read the symbol table entry.
712 unsigned int symndx
= shdr
.get_sh_info();
713 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
715 this->error(_("section group %u info %u out of range"),
719 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
720 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
722 elfcpp::Sym
<size
, big_endian
> sym(psym
);
724 // Read the symbol table names.
725 section_size_type symnamelen
;
726 const unsigned char* psymnamesu
;
727 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
729 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
731 // Get the section group signature.
732 if (sym
.get_st_name() >= symnamelen
)
734 this->error(_("symbol %u name offset %u out of range"),
735 symndx
, sym
.get_st_name());
739 std::string
signature(psymnames
+ sym
.get_st_name());
741 // It seems that some versions of gas will create a section group
742 // associated with a section symbol, and then fail to give a name to
743 // the section symbol. In such a case, use the name of the section.
744 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
747 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
750 if (!is_ordinary
|| sym_shndx
>= this->shnum())
752 this->error(_("symbol %u invalid section index %u"),
756 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
757 if (member_shdr
.get_sh_name() < section_names_size
)
758 signature
= section_names
+ member_shdr
.get_sh_name();
761 // Record this section group in the layout, and see whether we've already
762 // seen one with the same signature.
765 Kept_section
* kept_section
= NULL
;
767 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
769 include_group
= true;
774 include_group
= layout
->find_or_add_kept_section(signature
,
776 true, &kept_section
);
780 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
782 std::vector
<unsigned int> shndxes
;
783 bool relocate_group
= include_group
&& parameters
->options().relocatable();
785 shndxes
.reserve(count
- 1);
787 for (size_t i
= 1; i
< count
; ++i
)
789 elfcpp::Elf_Word shndx
=
790 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
793 shndxes
.push_back(shndx
);
795 if (shndx
>= this->shnum())
797 this->error(_("section %u in section group %u out of range"),
802 // Check for an earlier section number, since we're going to get
803 // it wrong--we may have already decided to include the section.
805 this->error(_("invalid section group %u refers to earlier section %u"),
808 // Get the name of the member section.
809 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
810 if (member_shdr
.get_sh_name() >= section_names_size
)
812 // This is an error, but it will be diagnosed eventually
813 // in do_layout, so we don't need to do anything here but
817 std::string
mname(section_names
+ member_shdr
.get_sh_name());
822 kept_section
->add_comdat_section(mname
, shndx
,
823 member_shdr
.get_sh_size());
827 (*omit
)[shndx
] = true;
831 Relobj
* kept_object
= kept_section
->object();
832 if (kept_section
->is_comdat())
834 // Find the corresponding kept section, and store
835 // that info in the discarded section table.
836 unsigned int kept_shndx
;
838 if (kept_section
->find_comdat_section(mname
, &kept_shndx
,
841 // We don't keep a mapping for this section if
842 // it has a different size. The mapping is only
843 // used for relocation processing, and we don't
844 // want to treat the sections as similar if the
845 // sizes are different. Checking the section
846 // size is the approach used by the GNU linker.
847 if (kept_size
== member_shdr
.get_sh_size())
848 this->set_kept_comdat_section(shndx
, kept_object
,
854 // The existing section is a linkonce section. Add
855 // a mapping if there is exactly one section in the
856 // group (which is true when COUNT == 2) and if it
859 && (kept_section
->linkonce_size()
860 == member_shdr
.get_sh_size()))
861 this->set_kept_comdat_section(shndx
, kept_object
,
862 kept_section
->shndx());
869 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
870 shdr
, flags
, &shndxes
);
872 return include_group
;
875 // Whether to include a linkonce section in the link. NAME is the
876 // name of the section and SHDR is the section header.
878 // Linkonce sections are a GNU extension implemented in the original
879 // GNU linker before section groups were defined. The semantics are
880 // that we only include one linkonce section with a given name. The
881 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
882 // where T is the type of section and SYMNAME is the name of a symbol.
883 // In an attempt to make linkonce sections interact well with section
884 // groups, we try to identify SYMNAME and use it like a section group
885 // signature. We want to block section groups with that signature,
886 // but not other linkonce sections with that signature. We also use
887 // the full name of the linkonce section as a normal section group
890 template<int size
, bool big_endian
>
892 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
896 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
898 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
899 // In general the symbol name we want will be the string following
900 // the last '.'. However, we have to handle the case of
901 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
902 // some versions of gcc. So we use a heuristic: if the name starts
903 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
904 // we look for the last '.'. We can't always simply skip
905 // ".gnu.linkonce.X", because we have to deal with cases like
906 // ".gnu.linkonce.d.rel.ro.local".
907 const char* const linkonce_t
= ".gnu.linkonce.t.";
909 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
910 symname
= name
+ strlen(linkonce_t
);
912 symname
= strrchr(name
, '.') + 1;
913 std::string
sig1(symname
);
914 std::string
sig2(name
);
917 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
919 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
924 // We are not including this section because we already saw the
925 // name of the section as a signature. This normally implies
926 // that the kept section is another linkonce section. If it is
927 // the same size, record it as the section which corresponds to
929 if (kept2
->object() != NULL
930 && !kept2
->is_comdat()
931 && kept2
->linkonce_size() == sh_size
)
932 this->set_kept_comdat_section(index
, kept2
->object(), kept2
->shndx());
936 // The section is being discarded on the basis of its symbol
937 // name. This means that the corresponding kept section was
938 // part of a comdat group, and it will be difficult to identify
939 // the specific section within that group that corresponds to
940 // this linkonce section. We'll handle the simple case where
941 // the group has only one member section. Otherwise, it's not
943 unsigned int kept_shndx
;
945 if (kept1
->object() != NULL
946 && kept1
->is_comdat()
947 && kept1
->find_single_comdat_section(&kept_shndx
, &kept_size
)
948 && kept_size
== sh_size
)
949 this->set_kept_comdat_section(index
, kept1
->object(), kept_shndx
);
953 kept1
->set_linkonce_size(sh_size
);
954 kept2
->set_linkonce_size(sh_size
);
957 return include1
&& include2
;
960 // Layout an input section.
962 template<int size
, bool big_endian
>
964 Sized_relobj
<size
, big_endian
>::layout_section(Layout
* layout
,
967 typename
This::Shdr
& shdr
,
968 unsigned int reloc_shndx
,
969 unsigned int reloc_type
)
972 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
973 reloc_shndx
, reloc_type
, &offset
);
975 this->output_sections()[shndx
] = os
;
977 this->section_offsets_
[shndx
] = invalid_address
;
979 this->section_offsets_
[shndx
] = convert_types
<Address
, off_t
>(offset
);
981 // If this section requires special handling, and if there are
982 // relocs that apply to it, then we must do the special handling
983 // before we apply the relocs.
984 if (offset
== -1 && reloc_shndx
!= 0)
985 this->set_relocs_must_follow_section_writes();
988 // Lay out the input sections. We walk through the sections and check
989 // whether they should be included in the link. If they should, we
990 // pass them to the Layout object, which will return an output section
992 // During garbage collection (--gc-sections) and identical code folding
993 // (--icf), this function is called twice. When it is called the first
994 // time, it is for setting up some sections as roots to a work-list for
995 // --gc-sections and to do comdat processing. Actual layout happens the
996 // second time around after all the relevant sections have been determined.
997 // The first time, is_worklist_ready or is_icf_ready is false. It is then
998 // set to true after the garbage collection worklist or identical code
999 // folding is processed and the relevant sections to be kept are
1000 // determined. Then, this function is called again to layout the sections.
1002 template<int size
, bool big_endian
>
1004 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1006 Read_symbols_data
* sd
)
1008 const unsigned int shnum
= this->shnum();
1009 bool is_gc_pass_one
= ((parameters
->options().gc_sections()
1010 && !symtab
->gc()->is_worklist_ready())
1011 || (parameters
->options().icf_enabled()
1012 && !symtab
->icf()->is_icf_ready()));
1014 bool is_gc_pass_two
= ((parameters
->options().gc_sections()
1015 && symtab
->gc()->is_worklist_ready())
1016 || (parameters
->options().icf_enabled()
1017 && symtab
->icf()->is_icf_ready()));
1019 bool is_gc_or_icf
= (parameters
->options().gc_sections()
1020 || parameters
->options().icf_enabled());
1022 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1023 gold_assert(!(is_gc_pass_one
&& is_gc_pass_two
));
1027 Symbols_data
* gc_sd
= NULL
;
1030 // During garbage collection save the symbols data to use it when
1031 // re-entering this function.
1032 gc_sd
= new Symbols_data
;
1033 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1034 this->set_symbols_data(gc_sd
);
1036 else if (is_gc_pass_two
)
1038 gc_sd
= this->get_symbols_data();
1041 const unsigned char* section_headers_data
= NULL
;
1042 section_size_type section_names_size
;
1043 const unsigned char* symbols_data
= NULL
;
1044 section_size_type symbols_size
;
1045 section_offset_type external_symbols_offset
;
1046 const unsigned char* symbol_names_data
= NULL
;
1047 section_size_type symbol_names_size
;
1051 section_headers_data
= gc_sd
->section_headers_data
;
1052 section_names_size
= gc_sd
->section_names_size
;
1053 symbols_data
= gc_sd
->symbols_data
;
1054 symbols_size
= gc_sd
->symbols_size
;
1055 external_symbols_offset
= gc_sd
->external_symbols_offset
;
1056 symbol_names_data
= gc_sd
->symbol_names_data
;
1057 symbol_names_size
= gc_sd
->symbol_names_size
;
1061 section_headers_data
= sd
->section_headers
->data();
1062 section_names_size
= sd
->section_names_size
;
1063 if (sd
->symbols
!= NULL
)
1064 symbols_data
= sd
->symbols
->data();
1065 symbols_size
= sd
->symbols_size
;
1066 external_symbols_offset
= sd
->external_symbols_offset
;
1067 if (sd
->symbol_names
!= NULL
)
1068 symbol_names_data
= sd
->symbol_names
->data();
1069 symbol_names_size
= sd
->symbol_names_size
;
1072 // Get the section headers.
1073 const unsigned char* shdrs
= section_headers_data
;
1074 const unsigned char* pshdrs
;
1076 // Get the section names.
1077 const unsigned char* pnamesu
= (is_gc_or_icf
)
1078 ? gc_sd
->section_names_data
1079 : sd
->section_names
->data();
1081 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1083 // If any input files have been claimed by plugins, we need to defer
1084 // actual layout until the replacement files have arrived.
1085 const bool should_defer_layout
=
1086 (parameters
->options().has_plugins()
1087 && parameters
->options().plugins()->should_defer_layout());
1088 unsigned int num_sections_to_defer
= 0;
1090 // For each section, record the index of the reloc section if any.
1091 // Use 0 to mean that there is no reloc section, -1U to mean that
1092 // there is more than one.
1093 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1094 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1095 // Skip the first, dummy, section.
1096 pshdrs
= shdrs
+ This::shdr_size
;
1097 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1099 typename
This::Shdr
shdr(pshdrs
);
1101 // Count the number of sections whose layout will be deferred.
1102 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1103 ++num_sections_to_defer
;
1105 unsigned int sh_type
= shdr
.get_sh_type();
1106 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1108 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1109 if (target_shndx
== 0 || target_shndx
>= shnum
)
1111 this->error(_("relocation section %u has bad info %u"),
1116 if (reloc_shndx
[target_shndx
] != 0)
1117 reloc_shndx
[target_shndx
] = -1U;
1120 reloc_shndx
[target_shndx
] = i
;
1121 reloc_type
[target_shndx
] = sh_type
;
1126 Output_sections
& out_sections(this->output_sections());
1127 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1129 if (!is_gc_pass_two
)
1131 out_sections
.resize(shnum
);
1132 out_section_offsets
.resize(shnum
);
1135 // If we are only linking for symbols, then there is nothing else to
1137 if (this->input_file()->just_symbols())
1139 if (!is_gc_pass_two
)
1141 delete sd
->section_headers
;
1142 sd
->section_headers
= NULL
;
1143 delete sd
->section_names
;
1144 sd
->section_names
= NULL
;
1149 if (num_sections_to_defer
> 0)
1151 parameters
->options().plugins()->add_deferred_layout_object(this);
1152 this->deferred_layout_
.reserve(num_sections_to_defer
);
1155 // Whether we've seen a .note.GNU-stack section.
1156 bool seen_gnu_stack
= false;
1157 // The flags of a .note.GNU-stack section.
1158 uint64_t gnu_stack_flags
= 0;
1160 // Keep track of which sections to omit.
1161 std::vector
<bool> omit(shnum
, false);
1163 // Keep track of reloc sections when emitting relocations.
1164 const bool relocatable
= parameters
->options().relocatable();
1165 const bool emit_relocs
= (relocatable
1166 || parameters
->options().emit_relocs());
1167 std::vector
<unsigned int> reloc_sections
;
1169 // Keep track of .eh_frame sections.
1170 std::vector
<unsigned int> eh_frame_sections
;
1172 // Skip the first, dummy, section.
1173 pshdrs
= shdrs
+ This::shdr_size
;
1174 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1176 typename
This::Shdr
shdr(pshdrs
);
1178 if (shdr
.get_sh_name() >= section_names_size
)
1180 this->error(_("bad section name offset for section %u: %lu"),
1181 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1185 const char* name
= pnames
+ shdr
.get_sh_name();
1187 if (!is_gc_pass_two
)
1189 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1195 // The .note.GNU-stack section is special. It gives the
1196 // protection flags that this object file requires for the stack
1198 if (strcmp(name
, ".note.GNU-stack") == 0)
1200 seen_gnu_stack
= true;
1201 gnu_stack_flags
|= shdr
.get_sh_flags();
1205 // The .note.GNU-split-stack section is also special. It
1206 // indicates that the object was compiled with
1208 if (this->handle_split_stack_section(name
))
1210 if (!parameters
->options().relocatable()
1211 && !parameters
->options().shared())
1215 // Skip attributes section.
1216 if (parameters
->target().is_attributes_section(name
))
1221 bool discard
= omit
[i
];
1224 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1226 if (!this->include_section_group(symtab
, layout
, i
, name
,
1232 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1233 && Layout::is_linkonce(name
))
1235 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1242 // Do not include this section in the link.
1243 out_sections
[i
] = NULL
;
1244 out_section_offsets
[i
] = invalid_address
;
1249 if (is_gc_pass_one
&& parameters
->options().gc_sections())
1251 if (is_section_name_included(name
)
1252 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1253 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1255 symtab
->gc()->worklist().push(Section_id(this, i
));
1257 // If the section name XXX can be represented as a C identifier
1258 // it cannot be discarded if there are references to
1259 // __start_XXX and __stop_XXX symbols. These need to be
1260 // specially handled.
1261 if (is_cident(name
))
1263 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1267 // When doing a relocatable link we are going to copy input
1268 // reloc sections into the output. We only want to copy the
1269 // ones associated with sections which are not being discarded.
1270 // However, we don't know that yet for all sections. So save
1271 // reloc sections and process them later. Garbage collection is
1272 // not triggered when relocatable code is desired.
1274 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1275 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1277 reloc_sections
.push_back(i
);
1281 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1284 // The .eh_frame section is special. It holds exception frame
1285 // information that we need to read in order to generate the
1286 // exception frame header. We process these after all the other
1287 // sections so that the exception frame reader can reliably
1288 // determine which sections are being discarded, and discard the
1289 // corresponding information.
1291 && strcmp(name
, ".eh_frame") == 0
1292 && this->check_eh_frame_flags(&shdr
))
1296 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1297 out_section_offsets
[i
] = invalid_address
;
1300 eh_frame_sections
.push_back(i
);
1304 if (is_gc_pass_two
&& parameters
->options().gc_sections())
1306 // This is executed during the second pass of garbage
1307 // collection. do_layout has been called before and some
1308 // sections have been already discarded. Simply ignore
1309 // such sections this time around.
1310 if (out_sections
[i
] == NULL
)
1312 gold_assert(out_section_offsets
[i
] == invalid_address
);
1315 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1316 && symtab
->gc()->is_section_garbage(this, i
))
1318 if (parameters
->options().print_gc_sections())
1319 gold_info(_("%s: removing unused section from '%s'"
1321 program_name
, this->section_name(i
).c_str(),
1322 this->name().c_str());
1323 out_sections
[i
] = NULL
;
1324 out_section_offsets
[i
] = invalid_address
;
1329 if (is_gc_pass_two
&& parameters
->options().icf_enabled())
1331 if (out_sections
[i
] == NULL
)
1333 gold_assert(out_section_offsets
[i
] == invalid_address
);
1336 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1337 && symtab
->icf()->is_section_folded(this, i
))
1339 if (parameters
->options().print_icf_sections())
1342 symtab
->icf()->get_folded_section(this, i
);
1343 Relobj
* folded_obj
=
1344 reinterpret_cast<Relobj
*>(folded
.first
);
1345 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1346 "into '%s' in file '%s'"),
1347 program_name
, this->section_name(i
).c_str(),
1348 this->name().c_str(),
1349 folded_obj
->section_name(folded
.second
).c_str(),
1350 folded_obj
->name().c_str());
1352 out_sections
[i
] = NULL
;
1353 out_section_offsets
[i
] = invalid_address
;
1358 // Defer layout here if input files are claimed by plugins. When gc
1359 // is turned on this function is called twice. For the second call
1360 // should_defer_layout should be false.
1361 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1363 gold_assert(!is_gc_pass_two
);
1364 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1368 // Put dummy values here; real values will be supplied by
1369 // do_layout_deferred_sections.
1370 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1371 out_section_offsets
[i
] = invalid_address
;
1375 // During gc_pass_two if a section that was previously deferred is
1376 // found, do not layout the section as layout_deferred_sections will
1377 // do it later from gold.cc.
1379 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1384 // This is during garbage collection. The out_sections are
1385 // assigned in the second call to this function.
1386 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1387 out_section_offsets
[i
] = invalid_address
;
1391 // When garbage collection is switched on the actual layout
1392 // only happens in the second call.
1393 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1398 if (!is_gc_pass_two
)
1399 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
);
1401 // When doing a relocatable link handle the reloc sections at the
1402 // end. Garbage collection and Identical Code Folding is not
1403 // turned on for relocatable code.
1405 this->size_relocatable_relocs();
1407 gold_assert(!(is_gc_or_icf
) || reloc_sections
.empty());
1409 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1410 p
!= reloc_sections
.end();
1413 unsigned int i
= *p
;
1414 const unsigned char* pshdr
;
1415 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1416 typename
This::Shdr
shdr(pshdr
);
1418 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1419 if (data_shndx
>= shnum
)
1421 // We already warned about this above.
1425 Output_section
* data_section
= out_sections
[data_shndx
];
1426 if (data_section
== reinterpret_cast<Output_section
*>(2))
1428 // The layout for the data section was deferred, so we need
1429 // to defer the relocation section, too.
1430 const char* name
= pnames
+ shdr
.get_sh_name();
1431 this->deferred_layout_relocs_
.push_back(
1432 Deferred_layout(i
, name
, pshdr
, 0, elfcpp::SHT_NULL
));
1433 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1434 out_section_offsets
[i
] = invalid_address
;
1437 if (data_section
== NULL
)
1439 out_sections
[i
] = NULL
;
1440 out_section_offsets
[i
] = invalid_address
;
1444 Relocatable_relocs
* rr
= new Relocatable_relocs();
1445 this->set_relocatable_relocs(i
, rr
);
1447 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1449 out_sections
[i
] = os
;
1450 out_section_offsets
[i
] = invalid_address
;
1453 // Handle the .eh_frame sections at the end.
1454 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1455 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1456 p
!= eh_frame_sections
.end();
1459 gold_assert(this->has_eh_frame_
);
1460 gold_assert(external_symbols_offset
!= 0);
1462 unsigned int i
= *p
;
1463 const unsigned char *pshdr
;
1464 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1465 typename
This::Shdr
shdr(pshdr
);
1468 Output_section
* os
= layout
->layout_eh_frame(this,
1477 out_sections
[i
] = os
;
1478 if (os
== NULL
|| offset
== -1)
1480 // An object can contain at most one section holding exception
1481 // frame information.
1482 gold_assert(this->discarded_eh_frame_shndx_
== -1U);
1483 this->discarded_eh_frame_shndx_
= i
;
1484 out_section_offsets
[i
] = invalid_address
;
1487 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
1489 // If this section requires special handling, and if there are
1490 // relocs that apply to it, then we must do the special handling
1491 // before we apply the relocs.
1492 if (os
!= NULL
&& offset
== -1 && reloc_shndx
[i
] != 0)
1493 this->set_relocs_must_follow_section_writes();
1498 delete[] gc_sd
->section_headers_data
;
1499 delete[] gc_sd
->section_names_data
;
1500 delete[] gc_sd
->symbols_data
;
1501 delete[] gc_sd
->symbol_names_data
;
1502 this->set_symbols_data(NULL
);
1506 delete sd
->section_headers
;
1507 sd
->section_headers
= NULL
;
1508 delete sd
->section_names
;
1509 sd
->section_names
= NULL
;
1513 // Layout sections whose layout was deferred while waiting for
1514 // input files from a plugin.
1516 template<int size
, bool big_endian
>
1518 Sized_relobj
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1520 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1522 for (deferred
= this->deferred_layout_
.begin();
1523 deferred
!= this->deferred_layout_
.end();
1526 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1527 // If the section is not included, it is because the garbage collector
1528 // decided it is not needed. Avoid reverting that decision.
1529 if (!this->is_section_included(deferred
->shndx_
))
1532 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1533 shdr
, deferred
->reloc_shndx_
, deferred
->reloc_type_
);
1536 this->deferred_layout_
.clear();
1538 // Now handle the deferred relocation sections.
1540 Output_sections
& out_sections(this->output_sections());
1541 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1543 for (deferred
= this->deferred_layout_relocs_
.begin();
1544 deferred
!= this->deferred_layout_relocs_
.end();
1547 unsigned int shndx
= deferred
->shndx_
;
1548 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1549 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1551 Output_section
* data_section
= out_sections
[data_shndx
];
1552 if (data_section
== NULL
)
1554 out_sections
[shndx
] = NULL
;
1555 out_section_offsets
[shndx
] = invalid_address
;
1559 Relocatable_relocs
* rr
= new Relocatable_relocs();
1560 this->set_relocatable_relocs(shndx
, rr
);
1562 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
1564 out_sections
[shndx
] = os
;
1565 out_section_offsets
[shndx
] = invalid_address
;
1569 // Add the symbols to the symbol table.
1571 template<int size
, bool big_endian
>
1573 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1574 Read_symbols_data
* sd
,
1577 if (sd
->symbols
== NULL
)
1579 gold_assert(sd
->symbol_names
== NULL
);
1583 const int sym_size
= This::sym_size
;
1584 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1586 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1588 this->error(_("size of symbols is not multiple of symbol size"));
1592 this->symbols_
.resize(symcount
);
1594 const char* sym_names
=
1595 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1596 symtab
->add_from_relobj(this,
1597 sd
->symbols
->data() + sd
->external_symbols_offset
,
1598 symcount
, this->local_symbol_count_
,
1599 sym_names
, sd
->symbol_names_size
,
1601 &this->defined_count_
);
1605 delete sd
->symbol_names
;
1606 sd
->symbol_names
= NULL
;
1609 // Find out if this object, that is a member of a lib group, should be included
1610 // in the link. We check every symbol defined by this object. If the symbol
1611 // table has a strong undefined reference to that symbol, we have to include
1614 template<int size
, bool big_endian
>
1615 Archive::Should_include
1616 Sized_relobj
<size
, big_endian
>::do_should_include_member(Symbol_table
* symtab
,
1618 Read_symbols_data
* sd
,
1621 char* tmpbuf
= NULL
;
1622 size_t tmpbuflen
= 0;
1623 const char* sym_names
=
1624 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1625 const unsigned char* syms
=
1626 sd
->symbols
->data() + sd
->external_symbols_offset
;
1627 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1628 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1631 const unsigned char* p
= syms
;
1633 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1635 elfcpp::Sym
<size
, big_endian
> sym(p
);
1636 unsigned int st_shndx
= sym
.get_st_shndx();
1637 if (st_shndx
== elfcpp::SHN_UNDEF
)
1640 unsigned int st_name
= sym
.get_st_name();
1641 const char* name
= sym_names
+ st_name
;
1643 Archive::Should_include t
= Archive::should_include_member(symtab
,
1649 if (t
== Archive::SHOULD_INCLUDE_YES
)
1658 return Archive::SHOULD_INCLUDE_UNKNOWN
;
1661 // First pass over the local symbols. Here we add their names to
1662 // *POOL and *DYNPOOL, and we store the symbol value in
1663 // THIS->LOCAL_VALUES_. This function is always called from a
1664 // singleton thread. This is followed by a call to
1665 // finalize_local_symbols.
1667 template<int size
, bool big_endian
>
1669 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1670 Stringpool
* dynpool
)
1672 gold_assert(this->symtab_shndx_
!= -1U);
1673 if (this->symtab_shndx_
== 0)
1675 // This object has no symbols. Weird but legal.
1679 // Read the symbol table section header.
1680 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1681 typename
This::Shdr
symtabshdr(this,
1682 this->elf_file_
.section_header(symtab_shndx
));
1683 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1685 // Read the local symbols.
1686 const int sym_size
= This::sym_size
;
1687 const unsigned int loccount
= this->local_symbol_count_
;
1688 gold_assert(loccount
== symtabshdr
.get_sh_info());
1689 off_t locsize
= loccount
* sym_size
;
1690 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1691 locsize
, true, true);
1693 // Read the symbol names.
1694 const unsigned int strtab_shndx
=
1695 this->adjust_shndx(symtabshdr
.get_sh_link());
1696 section_size_type strtab_size
;
1697 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1700 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1702 // Loop over the local symbols.
1704 const Output_sections
& out_sections(this->output_sections());
1705 unsigned int shnum
= this->shnum();
1706 unsigned int count
= 0;
1707 unsigned int dyncount
= 0;
1708 // Skip the first, dummy, symbol.
1710 bool discard_all
= parameters
->options().discard_all();
1711 bool discard_locals
= parameters
->options().discard_locals();
1712 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1714 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1716 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1719 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1721 lv
.set_input_shndx(shndx
, is_ordinary
);
1723 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1724 lv
.set_is_section_symbol();
1725 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1726 lv
.set_is_tls_symbol();
1728 // Save the input symbol value for use in do_finalize_local_symbols().
1729 lv
.set_input_value(sym
.get_st_value());
1731 // Decide whether this symbol should go into the output file.
1733 if ((shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1734 || shndx
== this->discarded_eh_frame_shndx_
)
1736 lv
.set_no_output_symtab_entry();
1737 gold_assert(!lv
.needs_output_dynsym_entry());
1741 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1743 lv
.set_no_output_symtab_entry();
1744 gold_assert(!lv
.needs_output_dynsym_entry());
1748 if (sym
.get_st_name() >= strtab_size
)
1750 this->error(_("local symbol %u section name out of range: %u >= %u"),
1751 i
, sym
.get_st_name(),
1752 static_cast<unsigned int>(strtab_size
));
1753 lv
.set_no_output_symtab_entry();
1757 const char* name
= pnames
+ sym
.get_st_name();
1759 // If needed, add the symbol to the dynamic symbol table string pool.
1760 if (lv
.needs_output_dynsym_entry())
1762 dynpool
->add(name
, true, NULL
);
1766 if (discard_all
&& lv
.may_be_discarded_from_output_symtab())
1768 lv
.set_no_output_symtab_entry();
1772 // If --discard-locals option is used, discard all temporary local
1773 // symbols. These symbols start with system-specific local label
1774 // prefixes, typically .L for ELF system. We want to be compatible
1775 // with GNU ld so here we essentially use the same check in
1776 // bfd_is_local_label(). The code is different because we already
1779 // - the symbol is local and thus cannot have global or weak binding.
1780 // - the symbol is not a section symbol.
1781 // - the symbol has a name.
1783 // We do not discard a symbol if it needs a dynamic symbol entry.
1785 && sym
.get_st_type() != elfcpp::STT_FILE
1786 && !lv
.needs_output_dynsym_entry()
1787 && lv
.may_be_discarded_from_output_symtab()
1788 && parameters
->target().is_local_label_name(name
))
1790 lv
.set_no_output_symtab_entry();
1794 // Discard the local symbol if -retain_symbols_file is specified
1795 // and the local symbol is not in that file.
1796 if (!parameters
->options().should_retain_symbol(name
))
1798 lv
.set_no_output_symtab_entry();
1802 // Add the symbol to the symbol table string pool.
1803 pool
->add(name
, true, NULL
);
1807 this->output_local_symbol_count_
= count
;
1808 this->output_local_dynsym_count_
= dyncount
;
1811 // Finalize the local symbols. Here we set the final value in
1812 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1813 // This function is always called from a singleton thread. The actual
1814 // output of the local symbols will occur in a separate task.
1816 template<int size
, bool big_endian
>
1818 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
1820 Symbol_table
* symtab
)
1822 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1824 const unsigned int loccount
= this->local_symbol_count_
;
1825 this->local_symbol_offset_
= off
;
1827 const bool relocatable
= parameters
->options().relocatable();
1828 const Output_sections
& out_sections(this->output_sections());
1829 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
1830 unsigned int shnum
= this->shnum();
1832 for (unsigned int i
= 1; i
< loccount
; ++i
)
1834 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1837 unsigned int shndx
= lv
.input_shndx(&is_ordinary
);
1839 // Set the output symbol value.
1843 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
1844 lv
.set_output_value(lv
.input_value());
1847 this->error(_("unknown section index %u for local symbol %u"),
1849 lv
.set_output_value(0);
1856 this->error(_("local symbol %u section index %u out of range"),
1861 Output_section
* os
= out_sections
[shndx
];
1862 Address secoffset
= out_offsets
[shndx
];
1863 if (symtab
->is_section_folded(this, shndx
))
1865 gold_assert (os
== NULL
&& secoffset
== invalid_address
);
1866 // Get the os of the section it is folded onto.
1867 Section_id folded
= symtab
->icf()->get_folded_section(this,
1869 gold_assert(folded
.first
!= NULL
);
1870 Sized_relobj
<size
, big_endian
>* folded_obj
= reinterpret_cast
1871 <Sized_relobj
<size
, big_endian
>*>(folded
.first
);
1872 os
= folded_obj
->output_section(folded
.second
);
1873 gold_assert(os
!= NULL
);
1874 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
1876 // This could be a relaxed input section.
1877 if (secoffset
== invalid_address
)
1879 const Output_relaxed_input_section
* relaxed_section
=
1880 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
1881 gold_assert(relaxed_section
!= NULL
);
1882 secoffset
= relaxed_section
->address() - os
->address();
1888 // This local symbol belongs to a section we are discarding.
1889 // In some cases when applying relocations later, we will
1890 // attempt to match it to the corresponding kept section,
1891 // so we leave the input value unchanged here.
1894 else if (secoffset
== invalid_address
)
1898 // This is a SHF_MERGE section or one which otherwise
1899 // requires special handling.
1900 if (shndx
== this->discarded_eh_frame_shndx_
)
1902 // This local symbol belongs to a discarded .eh_frame
1903 // section. Just treat it like the case in which
1904 // os == NULL above.
1905 gold_assert(this->has_eh_frame_
);
1908 else if (!lv
.is_section_symbol())
1910 // This is not a section symbol. We can determine
1911 // the final value now.
1912 lv
.set_output_value(os
->output_address(this, shndx
,
1915 else if (!os
->find_starting_output_address(this, shndx
, &start
))
1917 // This is a section symbol, but apparently not one in a
1918 // merged section. First check to see if this is a relaxed
1919 // input section. If so, use its address. Otherwise just
1920 // use the start of the output section. This happens with
1921 // relocatable links when the input object has section
1922 // symbols for arbitrary non-merge sections.
1923 const Output_section_data
* posd
=
1924 os
->find_relaxed_input_section(this, shndx
);
1927 Address relocatable_link_adjustment
=
1928 relocatable
? os
->address() : 0;
1929 lv
.set_output_value(posd
->address()
1930 - relocatable_link_adjustment
);
1933 lv
.set_output_value(os
->address());
1937 // We have to consider the addend to determine the
1938 // value to use in a relocation. START is the start
1939 // of this input section. If we are doing a relocatable
1940 // link, use offset from start output section instead of
1942 Address adjusted_start
=
1943 relocatable
? start
- os
->address() : start
;
1944 Merged_symbol_value
<size
>* msv
=
1945 new Merged_symbol_value
<size
>(lv
.input_value(),
1947 lv
.set_merged_symbol_value(msv
);
1950 else if (lv
.is_tls_symbol())
1951 lv
.set_output_value(os
->tls_offset()
1953 + lv
.input_value());
1955 lv
.set_output_value((relocatable
? 0 : os
->address())
1957 + lv
.input_value());
1960 if (!lv
.is_output_symtab_index_set())
1962 lv
.set_output_symtab_index(index
);
1969 // Set the output dynamic symbol table indexes for the local variables.
1971 template<int size
, bool big_endian
>
1973 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
1975 const unsigned int loccount
= this->local_symbol_count_
;
1976 for (unsigned int i
= 1; i
< loccount
; ++i
)
1978 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1979 if (lv
.needs_output_dynsym_entry())
1981 lv
.set_output_dynsym_index(index
);
1988 // Set the offset where local dynamic symbol information will be stored.
1989 // Returns the count of local symbols contributed to the symbol table by
1992 template<int size
, bool big_endian
>
1994 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
1996 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
1997 this->local_dynsym_offset_
= off
;
1998 return this->output_local_dynsym_count_
;
2001 // If Symbols_data is not NULL get the section flags from here otherwise
2002 // get it from the file.
2004 template<int size
, bool big_endian
>
2006 Sized_relobj
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2008 Symbols_data
* sd
= this->get_symbols_data();
2011 const unsigned char* pshdrs
= sd
->section_headers_data
2012 + This::shdr_size
* shndx
;
2013 typename
This::Shdr
shdr(pshdrs
);
2014 return shdr
.get_sh_flags();
2016 // If sd is NULL, read the section header from the file.
2017 return this->elf_file_
.section_flags(shndx
);
2020 // Get the section's ent size from Symbols_data. Called by get_section_contents
2023 template<int size
, bool big_endian
>
2025 Sized_relobj
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2027 Symbols_data
* sd
= this->get_symbols_data();
2028 gold_assert (sd
!= NULL
);
2030 const unsigned char* pshdrs
= sd
->section_headers_data
2031 + This::shdr_size
* shndx
;
2032 typename
This::Shdr
shdr(pshdrs
);
2033 return shdr
.get_sh_entsize();
2037 // Write out the local symbols.
2039 template<int size
, bool big_endian
>
2041 Sized_relobj
<size
, big_endian
>::write_local_symbols(
2043 const Stringpool
* sympool
,
2044 const Stringpool
* dynpool
,
2045 Output_symtab_xindex
* symtab_xindex
,
2046 Output_symtab_xindex
* dynsym_xindex
)
2048 const bool strip_all
= parameters
->options().strip_all();
2051 if (this->output_local_dynsym_count_
== 0)
2053 this->output_local_symbol_count_
= 0;
2056 gold_assert(this->symtab_shndx_
!= -1U);
2057 if (this->symtab_shndx_
== 0)
2059 // This object has no symbols. Weird but legal.
2063 // Read the symbol table section header.
2064 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2065 typename
This::Shdr
symtabshdr(this,
2066 this->elf_file_
.section_header(symtab_shndx
));
2067 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2068 const unsigned int loccount
= this->local_symbol_count_
;
2069 gold_assert(loccount
== symtabshdr
.get_sh_info());
2071 // Read the local symbols.
2072 const int sym_size
= This::sym_size
;
2073 off_t locsize
= loccount
* sym_size
;
2074 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2075 locsize
, true, false);
2077 // Read the symbol names.
2078 const unsigned int strtab_shndx
=
2079 this->adjust_shndx(symtabshdr
.get_sh_link());
2080 section_size_type strtab_size
;
2081 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2084 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2086 // Get views into the output file for the portions of the symbol table
2087 // and the dynamic symbol table that we will be writing.
2088 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2089 unsigned char* oview
= NULL
;
2090 if (output_size
> 0)
2091 oview
= of
->get_output_view(this->local_symbol_offset_
, output_size
);
2093 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2094 unsigned char* dyn_oview
= NULL
;
2095 if (dyn_output_size
> 0)
2096 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2099 const Output_sections
out_sections(this->output_sections());
2101 gold_assert(this->local_values_
.size() == loccount
);
2103 unsigned char* ov
= oview
;
2104 unsigned char* dyn_ov
= dyn_oview
;
2106 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2108 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2110 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2113 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2117 gold_assert(st_shndx
< out_sections
.size());
2118 if (out_sections
[st_shndx
] == NULL
)
2120 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2121 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2123 if (lv
.has_output_symtab_entry())
2124 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2125 if (lv
.has_output_dynsym_entry())
2126 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2127 st_shndx
= elfcpp::SHN_XINDEX
;
2131 // Write the symbol to the output symbol table.
2132 if (lv
.has_output_symtab_entry())
2134 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2136 gold_assert(isym
.get_st_name() < strtab_size
);
2137 const char* name
= pnames
+ isym
.get_st_name();
2138 osym
.put_st_name(sympool
->get_offset(name
));
2139 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2140 osym
.put_st_size(isym
.get_st_size());
2141 osym
.put_st_info(isym
.get_st_info());
2142 osym
.put_st_other(isym
.get_st_other());
2143 osym
.put_st_shndx(st_shndx
);
2148 // Write the symbol to the output dynamic symbol table.
2149 if (lv
.has_output_dynsym_entry())
2151 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2152 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2154 gold_assert(isym
.get_st_name() < strtab_size
);
2155 const char* name
= pnames
+ isym
.get_st_name();
2156 osym
.put_st_name(dynpool
->get_offset(name
));
2157 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2158 osym
.put_st_size(isym
.get_st_size());
2159 osym
.put_st_info(isym
.get_st_info());
2160 osym
.put_st_other(isym
.get_st_other());
2161 osym
.put_st_shndx(st_shndx
);
2168 if (output_size
> 0)
2170 gold_assert(ov
- oview
== output_size
);
2171 of
->write_output_view(this->local_symbol_offset_
, output_size
, oview
);
2174 if (dyn_output_size
> 0)
2176 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2177 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2182 // Set *INFO to symbolic information about the offset OFFSET in the
2183 // section SHNDX. Return true if we found something, false if we
2186 template<int size
, bool big_endian
>
2188 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
2191 Symbol_location_info
* info
)
2193 if (this->symtab_shndx_
== 0)
2196 section_size_type symbols_size
;
2197 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2201 unsigned int symbol_names_shndx
=
2202 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2203 section_size_type names_size
;
2204 const unsigned char* symbol_names_u
=
2205 this->section_contents(symbol_names_shndx
, &names_size
, false);
2206 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2208 const int sym_size
= This::sym_size
;
2209 const size_t count
= symbols_size
/ sym_size
;
2211 const unsigned char* p
= symbols
;
2212 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2214 elfcpp::Sym
<size
, big_endian
> sym(p
);
2216 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2218 if (sym
.get_st_name() >= names_size
)
2219 info
->source_file
= "(invalid)";
2221 info
->source_file
= symbol_names
+ sym
.get_st_name();
2226 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2229 && st_shndx
== shndx
2230 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2231 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2234 if (sym
.get_st_name() > names_size
)
2235 info
->enclosing_symbol_name
= "(invalid)";
2238 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2239 if (parameters
->options().do_demangle())
2241 char* demangled_name
= cplus_demangle(
2242 info
->enclosing_symbol_name
.c_str(),
2243 DMGL_ANSI
| DMGL_PARAMS
);
2244 if (demangled_name
!= NULL
)
2246 info
->enclosing_symbol_name
.assign(demangled_name
);
2247 free(demangled_name
);
2258 // Look for a kept section corresponding to the given discarded section,
2259 // and return its output address. This is used only for relocations in
2260 // debugging sections. If we can't find the kept section, return 0.
2262 template<int size
, bool big_endian
>
2263 typename Sized_relobj
<size
, big_endian
>::Address
2264 Sized_relobj
<size
, big_endian
>::map_to_kept_section(
2268 Relobj
* kept_object
;
2269 unsigned int kept_shndx
;
2270 if (this->get_kept_comdat_section(shndx
, &kept_object
, &kept_shndx
))
2272 Sized_relobj
<size
, big_endian
>* kept_relobj
=
2273 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_object
);
2274 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2275 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2276 if (os
!= NULL
&& offset
!= invalid_address
)
2279 return os
->address() + offset
;
2286 // Get symbol counts.
2288 template<int size
, bool big_endian
>
2290 Sized_relobj
<size
, big_endian
>::do_get_global_symbol_counts(
2291 const Symbol_table
*,
2295 *defined
= this->defined_count_
;
2297 for (Symbols::const_iterator p
= this->symbols_
.begin();
2298 p
!= this->symbols_
.end();
2301 && (*p
)->source() == Symbol::FROM_OBJECT
2302 && (*p
)->object() == this
2303 && (*p
)->is_defined())
2308 // Input_objects methods.
2310 // Add a regular relocatable object to the list. Return false if this
2311 // object should be ignored.
2314 Input_objects::add_object(Object
* obj
)
2316 // Print the filename if the -t/--trace option is selected.
2317 if (parameters
->options().trace())
2318 gold_info("%s", obj
->name().c_str());
2320 if (!obj
->is_dynamic())
2321 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
2324 // See if this is a duplicate SONAME.
2325 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
2326 const char* soname
= dynobj
->soname();
2328 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
2329 this->sonames_
.insert(soname
);
2332 // We have already seen a dynamic object with this soname.
2336 this->dynobj_list_
.push_back(dynobj
);
2339 // Add this object to the cross-referencer if requested.
2340 if (parameters
->options().user_set_print_symbol_counts()
2341 || parameters
->options().cref())
2343 if (this->cref_
== NULL
)
2344 this->cref_
= new Cref();
2345 this->cref_
->add_object(obj
);
2351 // For each dynamic object, record whether we've seen all of its
2352 // explicit dependencies.
2355 Input_objects::check_dynamic_dependencies() const
2357 bool issued_copy_dt_needed_error
= false;
2358 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
2359 p
!= this->dynobj_list_
.end();
2362 const Dynobj::Needed
& needed((*p
)->needed());
2363 bool found_all
= true;
2364 Dynobj::Needed::const_iterator pneeded
;
2365 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
2367 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
2373 (*p
)->set_has_unknown_needed_entries(!found_all
);
2375 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2376 // that gold does not support. However, they cause no trouble
2377 // unless there is a DT_NEEDED entry that we don't know about;
2378 // warn only in that case.
2380 && !issued_copy_dt_needed_error
2381 && (parameters
->options().copy_dt_needed_entries()
2382 || parameters
->options().add_needed()))
2384 const char* optname
;
2385 if (parameters
->options().copy_dt_needed_entries())
2386 optname
= "--copy-dt-needed-entries";
2388 optname
= "--add-needed";
2389 gold_error(_("%s is not supported but is required for %s in %s"),
2390 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
2391 issued_copy_dt_needed_error
= true;
2396 // Start processing an archive.
2399 Input_objects::archive_start(Archive
* archive
)
2401 if (parameters
->options().user_set_print_symbol_counts()
2402 || parameters
->options().cref())
2404 if (this->cref_
== NULL
)
2405 this->cref_
= new Cref();
2406 this->cref_
->add_archive_start(archive
);
2410 // Stop processing an archive.
2413 Input_objects::archive_stop(Archive
* archive
)
2415 if (parameters
->options().user_set_print_symbol_counts()
2416 || parameters
->options().cref())
2417 this->cref_
->add_archive_stop(archive
);
2420 // Print symbol counts
2423 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2425 if (parameters
->options().user_set_print_symbol_counts()
2426 && this->cref_
!= NULL
)
2427 this->cref_
->print_symbol_counts(symtab
);
2430 // Print a cross reference table.
2433 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
2435 if (parameters
->options().cref() && this->cref_
!= NULL
)
2436 this->cref_
->print_cref(symtab
, f
);
2439 // Relocate_info methods.
2441 // Return a string describing the location of a relocation. This is
2442 // only used in error messages.
2444 template<int size
, bool big_endian
>
2446 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2448 // See if we can get line-number information from debugging sections.
2449 std::string filename
;
2450 std::string file_and_lineno
; // Better than filename-only, if available.
2452 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2453 // This will be "" if we failed to parse the debug info for any reason.
2454 file_and_lineno
= line_info
.addr2line(this->data_shndx
, offset
);
2456 std::string
ret(this->object
->name());
2458 Symbol_location_info info
;
2459 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2461 ret
+= " in function ";
2462 ret
+= info
.enclosing_symbol_name
;
2464 filename
= info
.source_file
;
2467 if (!file_and_lineno
.empty())
2468 ret
+= file_and_lineno
;
2471 if (!filename
.empty())
2474 ret
+= this->object
->section_name(this->data_shndx
);
2476 // Offsets into sections have to be positive.
2477 snprintf(buf
, sizeof(buf
), "+0x%lx", static_cast<long>(offset
));
2484 } // End namespace gold.
2489 using namespace gold
;
2491 // Read an ELF file with the header and return the appropriate
2492 // instance of Object.
2494 template<int size
, bool big_endian
>
2496 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2497 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
2498 bool* punconfigured
)
2500 Target
* target
= select_target(ehdr
.get_e_machine(), size
, big_endian
,
2501 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
2502 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
2504 gold_fatal(_("%s: unsupported ELF machine number %d"),
2505 name
.c_str(), ehdr
.get_e_machine());
2507 if (!parameters
->target_valid())
2508 set_parameters_target(target
);
2509 else if (target
!= ¶meters
->target())
2511 if (punconfigured
!= NULL
)
2512 *punconfigured
= true;
2514 gold_error(_("%s: incompatible target"), name
.c_str());
2518 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
2522 } // End anonymous namespace.
2527 // Return whether INPUT_FILE is an ELF object.
2530 is_elf_object(Input_file
* input_file
, off_t offset
,
2531 const unsigned char** start
, int *read_size
)
2533 off_t filesize
= input_file
->file().filesize();
2534 int want
= elfcpp::Elf_recognizer::max_header_size
;
2535 if (filesize
- offset
< want
)
2536 want
= filesize
- offset
;
2538 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2543 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
2546 // Read an ELF file and return the appropriate instance of Object.
2549 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2550 const unsigned char* p
, section_offset_type bytes
,
2551 bool* punconfigured
)
2553 if (punconfigured
!= NULL
)
2554 *punconfigured
= false;
2557 bool big_endian
= false;
2559 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
2560 &big_endian
, &error
))
2562 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
2570 #ifdef HAVE_TARGET_32_BIG
2571 elfcpp::Ehdr
<32, true> ehdr(p
);
2572 return make_elf_sized_object
<32, true>(name
, input_file
,
2573 offset
, ehdr
, punconfigured
);
2575 if (punconfigured
!= NULL
)
2576 *punconfigured
= true;
2578 gold_error(_("%s: not configured to support "
2579 "32-bit big-endian object"),
2586 #ifdef HAVE_TARGET_32_LITTLE
2587 elfcpp::Ehdr
<32, false> ehdr(p
);
2588 return make_elf_sized_object
<32, false>(name
, input_file
,
2589 offset
, ehdr
, punconfigured
);
2591 if (punconfigured
!= NULL
)
2592 *punconfigured
= true;
2594 gold_error(_("%s: not configured to support "
2595 "32-bit little-endian object"),
2601 else if (size
== 64)
2605 #ifdef HAVE_TARGET_64_BIG
2606 elfcpp::Ehdr
<64, true> ehdr(p
);
2607 return make_elf_sized_object
<64, true>(name
, input_file
,
2608 offset
, ehdr
, punconfigured
);
2610 if (punconfigured
!= NULL
)
2611 *punconfigured
= true;
2613 gold_error(_("%s: not configured to support "
2614 "64-bit big-endian object"),
2621 #ifdef HAVE_TARGET_64_LITTLE
2622 elfcpp::Ehdr
<64, false> ehdr(p
);
2623 return make_elf_sized_object
<64, false>(name
, input_file
,
2624 offset
, ehdr
, punconfigured
);
2626 if (punconfigured
!= NULL
)
2627 *punconfigured
= true;
2629 gold_error(_("%s: not configured to support "
2630 "64-bit little-endian object"),
2640 // Instantiate the templates we need.
2642 #ifdef HAVE_TARGET_32_LITTLE
2645 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
2646 Read_symbols_data
*);
2649 #ifdef HAVE_TARGET_32_BIG
2652 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
2653 Read_symbols_data
*);
2656 #ifdef HAVE_TARGET_64_LITTLE
2659 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
2660 Read_symbols_data
*);
2663 #ifdef HAVE_TARGET_64_BIG
2666 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
2667 Read_symbols_data
*);
2670 #ifdef HAVE_TARGET_32_LITTLE
2672 class Sized_relobj
<32, false>;
2675 #ifdef HAVE_TARGET_32_BIG
2677 class Sized_relobj
<32, true>;
2680 #ifdef HAVE_TARGET_64_LITTLE
2682 class Sized_relobj
<64, false>;
2685 #ifdef HAVE_TARGET_64_BIG
2687 class Sized_relobj
<64, true>;
2690 #ifdef HAVE_TARGET_32_LITTLE
2692 struct Relocate_info
<32, false>;
2695 #ifdef HAVE_TARGET_32_BIG
2697 struct Relocate_info
<32, true>;
2700 #ifdef HAVE_TARGET_64_LITTLE
2702 struct Relocate_info
<64, false>;
2705 #ifdef HAVE_TARGET_64_BIG
2707 struct Relocate_info
<64, true>;
2710 #ifdef HAVE_TARGET_32_LITTLE
2713 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
2717 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
2718 const unsigned char*);
2721 #ifdef HAVE_TARGET_32_BIG
2724 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
2728 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
2729 const unsigned char*);
2732 #ifdef HAVE_TARGET_64_LITTLE
2735 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
2739 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
2740 const unsigned char*);
2743 #ifdef HAVE_TARGET_64_BIG
2746 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
2750 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
2751 const unsigned char*);
2754 } // End namespace gold.