* config/tc-ppc.c (md_apply_fix3): Allow pcrel forms of BFD_RELOC_16,
[binutils.git] / bfd / coff-sh.c
blobfcfee718982d190695d0e5ce6d8104f97dbd65cd
1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Cygnus Support.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
8 This file is part of BFD, the Binary File Descriptor library.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
24 #include "bfd.h"
25 #include "sysdep.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "coff/sh.h"
30 #include "coff/internal.h"
32 #ifdef COFF_WITH_PE
33 #include "coff/pe.h"
35 #ifndef COFF_IMAGE_WITH_PE
36 static bfd_boolean sh_align_load_span
37 PARAMS ((bfd *, asection *, bfd_byte *,
38 bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
39 PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *));
41 #define _bfd_sh_align_load_span sh_align_load_span
42 #endif
43 #endif
45 #include "libcoff.h"
47 /* Internal functions. */
48 static bfd_reloc_status_type sh_reloc
49 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
50 static long get_symbol_value PARAMS ((asymbol *));
51 static bfd_boolean sh_relax_section
52 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
53 static bfd_boolean sh_relax_delete_bytes
54 PARAMS ((bfd *, asection *, bfd_vma, int));
55 #ifndef COFF_IMAGE_WITH_PE
56 static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
57 #endif
58 static bfd_boolean sh_align_loads
59 PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *,
60 bfd_boolean *));
61 static bfd_boolean sh_swap_insns
62 PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
63 static bfd_boolean sh_relocate_section
64 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
65 struct internal_reloc *, struct internal_syment *, asection **));
66 static bfd_byte *sh_coff_get_relocated_section_contents
67 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
68 bfd_byte *, bfd_boolean, asymbol **));
69 static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
71 #ifdef COFF_WITH_PE
72 /* Can't build import tables with 2**4 alignment. */
73 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
74 #else
75 /* Default section alignment to 2**4. */
76 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
77 #endif
79 #ifdef COFF_IMAGE_WITH_PE
80 /* Align PE executables. */
81 #define COFF_PAGE_SIZE 0x1000
82 #endif
84 /* Generate long file names. */
85 #define COFF_LONG_FILENAMES
87 #ifdef COFF_WITH_PE
88 static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
89 /* Return TRUE if this relocation should
90 appear in the output .reloc section. */
91 static bfd_boolean in_reloc_p (abfd, howto)
92 bfd * abfd ATTRIBUTE_UNUSED;
93 reloc_howto_type * howto;
95 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
97 #endif
99 /* The supported relocations. There are a lot of relocations defined
100 in coff/internal.h which we do not expect to ever see. */
101 static reloc_howto_type sh_coff_howtos[] =
103 EMPTY_HOWTO (0),
104 EMPTY_HOWTO (1),
105 #ifdef COFF_WITH_PE
106 /* Windows CE */
107 HOWTO (R_SH_IMM32CE, /* type */
108 0, /* rightshift */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
110 32, /* bitsize */
111 FALSE, /* pc_relative */
112 0, /* bitpos */
113 complain_overflow_bitfield, /* complain_on_overflow */
114 sh_reloc, /* special_function */
115 "r_imm32ce", /* name */
116 TRUE, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE), /* pcrel_offset */
120 #else
121 EMPTY_HOWTO (2),
122 #endif
123 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
124 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
125 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
126 EMPTY_HOWTO (6), /* R_SH_IMM24 */
127 EMPTY_HOWTO (7), /* R_SH_LOW16 */
128 EMPTY_HOWTO (8),
129 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
131 HOWTO (R_SH_PCDISP8BY2, /* type */
132 1, /* rightshift */
133 1, /* size (0 = byte, 1 = short, 2 = long) */
134 8, /* bitsize */
135 TRUE, /* pc_relative */
136 0, /* bitpos */
137 complain_overflow_signed, /* complain_on_overflow */
138 sh_reloc, /* special_function */
139 "r_pcdisp8by2", /* name */
140 TRUE, /* partial_inplace */
141 0xff, /* src_mask */
142 0xff, /* dst_mask */
143 TRUE), /* pcrel_offset */
145 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
147 HOWTO (R_SH_PCDISP, /* type */
148 1, /* rightshift */
149 1, /* size (0 = byte, 1 = short, 2 = long) */
150 12, /* bitsize */
151 TRUE, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_signed, /* complain_on_overflow */
154 sh_reloc, /* special_function */
155 "r_pcdisp12by2", /* name */
156 TRUE, /* partial_inplace */
157 0xfff, /* src_mask */
158 0xfff, /* dst_mask */
159 TRUE), /* pcrel_offset */
161 EMPTY_HOWTO (13),
163 HOWTO (R_SH_IMM32, /* type */
164 0, /* rightshift */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
166 32, /* bitsize */
167 FALSE, /* pc_relative */
168 0, /* bitpos */
169 complain_overflow_bitfield, /* complain_on_overflow */
170 sh_reloc, /* special_function */
171 "r_imm32", /* name */
172 TRUE, /* partial_inplace */
173 0xffffffff, /* src_mask */
174 0xffffffff, /* dst_mask */
175 FALSE), /* pcrel_offset */
177 EMPTY_HOWTO (15),
178 #ifdef COFF_WITH_PE
179 HOWTO (R_SH_IMAGEBASE, /* type */
180 0, /* rightshift */
181 2, /* size (0 = byte, 1 = short, 2 = long) */
182 32, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield, /* complain_on_overflow */
186 sh_reloc, /* special_function */
187 "rva32", /* name */
188 TRUE, /* partial_inplace */
189 0xffffffff, /* src_mask */
190 0xffffffff, /* dst_mask */
191 FALSE), /* pcrel_offset */
192 #else
193 EMPTY_HOWTO (16), /* R_SH_IMM8 */
194 #endif
195 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
196 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
197 EMPTY_HOWTO (19), /* R_SH_IMM4 */
198 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
199 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
201 HOWTO (R_SH_PCRELIMM8BY2, /* type */
202 1, /* rightshift */
203 1, /* size (0 = byte, 1 = short, 2 = long) */
204 8, /* bitsize */
205 TRUE, /* pc_relative */
206 0, /* bitpos */
207 complain_overflow_unsigned, /* complain_on_overflow */
208 sh_reloc, /* special_function */
209 "r_pcrelimm8by2", /* name */
210 TRUE, /* partial_inplace */
211 0xff, /* src_mask */
212 0xff, /* dst_mask */
213 TRUE), /* pcrel_offset */
215 HOWTO (R_SH_PCRELIMM8BY4, /* type */
216 2, /* rightshift */
217 1, /* size (0 = byte, 1 = short, 2 = long) */
218 8, /* bitsize */
219 TRUE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_unsigned, /* complain_on_overflow */
222 sh_reloc, /* special_function */
223 "r_pcrelimm8by4", /* name */
224 TRUE, /* partial_inplace */
225 0xff, /* src_mask */
226 0xff, /* dst_mask */
227 TRUE), /* pcrel_offset */
229 HOWTO (R_SH_IMM16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_bitfield, /* complain_on_overflow */
236 sh_reloc, /* special_function */
237 "r_imm16", /* name */
238 TRUE, /* partial_inplace */
239 0xffff, /* src_mask */
240 0xffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
243 HOWTO (R_SH_SWITCH16, /* type */
244 0, /* rightshift */
245 1, /* size (0 = byte, 1 = short, 2 = long) */
246 16, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_bitfield, /* complain_on_overflow */
250 sh_reloc, /* special_function */
251 "r_switch16", /* name */
252 TRUE, /* partial_inplace */
253 0xffff, /* src_mask */
254 0xffff, /* dst_mask */
255 FALSE), /* pcrel_offset */
257 HOWTO (R_SH_SWITCH32, /* type */
258 0, /* rightshift */
259 2, /* size (0 = byte, 1 = short, 2 = long) */
260 32, /* bitsize */
261 FALSE, /* pc_relative */
262 0, /* bitpos */
263 complain_overflow_bitfield, /* complain_on_overflow */
264 sh_reloc, /* special_function */
265 "r_switch32", /* name */
266 TRUE, /* partial_inplace */
267 0xffffffff, /* src_mask */
268 0xffffffff, /* dst_mask */
269 FALSE), /* pcrel_offset */
271 HOWTO (R_SH_USES, /* type */
272 0, /* rightshift */
273 1, /* size (0 = byte, 1 = short, 2 = long) */
274 16, /* bitsize */
275 FALSE, /* pc_relative */
276 0, /* bitpos */
277 complain_overflow_bitfield, /* complain_on_overflow */
278 sh_reloc, /* special_function */
279 "r_uses", /* name */
280 TRUE, /* partial_inplace */
281 0xffff, /* src_mask */
282 0xffff, /* dst_mask */
283 FALSE), /* pcrel_offset */
285 HOWTO (R_SH_COUNT, /* type */
286 0, /* rightshift */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
288 32, /* bitsize */
289 FALSE, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_bitfield, /* complain_on_overflow */
292 sh_reloc, /* special_function */
293 "r_count", /* name */
294 TRUE, /* partial_inplace */
295 0xffffffff, /* src_mask */
296 0xffffffff, /* dst_mask */
297 FALSE), /* pcrel_offset */
299 HOWTO (R_SH_ALIGN, /* type */
300 0, /* rightshift */
301 2, /* size (0 = byte, 1 = short, 2 = long) */
302 32, /* bitsize */
303 FALSE, /* pc_relative */
304 0, /* bitpos */
305 complain_overflow_bitfield, /* complain_on_overflow */
306 sh_reloc, /* special_function */
307 "r_align", /* name */
308 TRUE, /* partial_inplace */
309 0xffffffff, /* src_mask */
310 0xffffffff, /* dst_mask */
311 FALSE), /* pcrel_offset */
313 HOWTO (R_SH_CODE, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 32, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 sh_reloc, /* special_function */
321 "r_code", /* name */
322 TRUE, /* partial_inplace */
323 0xffffffff, /* src_mask */
324 0xffffffff, /* dst_mask */
325 FALSE), /* pcrel_offset */
327 HOWTO (R_SH_DATA, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield, /* complain_on_overflow */
334 sh_reloc, /* special_function */
335 "r_data", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
341 HOWTO (R_SH_LABEL, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield, /* complain_on_overflow */
348 sh_reloc, /* special_function */
349 "r_label", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
355 HOWTO (R_SH_SWITCH8, /* type */
356 0, /* rightshift */
357 0, /* size (0 = byte, 1 = short, 2 = long) */
358 8, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 sh_reloc, /* special_function */
363 "r_switch8", /* name */
364 TRUE, /* partial_inplace */
365 0xff, /* src_mask */
366 0xff, /* dst_mask */
367 FALSE) /* pcrel_offset */
370 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
372 /* Check for a bad magic number. */
373 #define BADMAG(x) SHBADMAG(x)
375 /* Customize coffcode.h (this is not currently used). */
376 #define SH 1
378 /* FIXME: This should not be set here. */
379 #define __A_MAGIC_SET__
381 #ifndef COFF_WITH_PE
382 /* Swap the r_offset field in and out. */
383 #define SWAP_IN_RELOC_OFFSET H_GET_32
384 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
386 /* Swap out extra information in the reloc structure. */
387 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
388 do \
390 dst->r_stuff[0] = 'S'; \
391 dst->r_stuff[1] = 'C'; \
393 while (0)
394 #endif
396 /* Get the value of a symbol, when performing a relocation. */
398 static long
399 get_symbol_value (symbol)
400 asymbol *symbol;
402 bfd_vma relocation;
404 if (bfd_is_com_section (symbol->section))
405 relocation = 0;
406 else
407 relocation = (symbol->value +
408 symbol->section->output_section->vma +
409 symbol->section->output_offset);
411 return relocation;
414 #ifdef COFF_WITH_PE
415 /* Convert an rtype to howto for the COFF backend linker.
416 Copied from coff-i386. */
417 #define coff_rtype_to_howto coff_sh_rtype_to_howto
418 static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));
420 static reloc_howto_type *
421 coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
422 bfd * abfd ATTRIBUTE_UNUSED;
423 asection * sec;
424 struct internal_reloc * rel;
425 struct coff_link_hash_entry * h;
426 struct internal_syment * sym;
427 bfd_vma * addendp;
429 reloc_howto_type * howto;
431 howto = sh_coff_howtos + rel->r_type;
433 *addendp = 0;
435 if (howto->pc_relative)
436 *addendp += sec->vma;
438 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
440 /* This is a common symbol. The section contents include the
441 size (sym->n_value) as an addend. The relocate_section
442 function will be adding in the final value of the symbol. We
443 need to subtract out the current size in order to get the
444 correct result. */
445 BFD_ASSERT (h != NULL);
448 if (howto->pc_relative)
450 *addendp -= 4;
452 /* If the symbol is defined, then the generic code is going to
453 add back the symbol value in order to cancel out an
454 adjustment it made to the addend. However, we set the addend
455 to 0 at the start of this function. We need to adjust here,
456 to avoid the adjustment the generic code will make. FIXME:
457 This is getting a bit hackish. */
458 if (sym != NULL && sym->n_scnum != 0)
459 *addendp -= sym->n_value;
462 if (rel->r_type == R_SH_IMAGEBASE)
463 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
465 return howto;
468 #endif /* COFF_WITH_PE */
470 /* This structure is used to map BFD reloc codes to SH PE relocs. */
471 struct shcoff_reloc_map
473 bfd_reloc_code_real_type bfd_reloc_val;
474 unsigned char shcoff_reloc_val;
477 #ifdef COFF_WITH_PE
478 /* An array mapping BFD reloc codes to SH PE relocs. */
479 static const struct shcoff_reloc_map sh_reloc_map[] =
481 { BFD_RELOC_32, R_SH_IMM32CE },
482 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
483 { BFD_RELOC_CTOR, R_SH_IMM32CE },
485 #else
486 /* An array mapping BFD reloc codes to SH PE relocs. */
487 static const struct shcoff_reloc_map sh_reloc_map[] =
489 { BFD_RELOC_32, R_SH_IMM32 },
490 { BFD_RELOC_CTOR, R_SH_IMM32 },
492 #endif
494 /* Given a BFD reloc code, return the howto structure for the
495 corresponding SH PE reloc. */
496 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
498 static reloc_howto_type *
499 sh_coff_reloc_type_lookup (abfd, code)
500 bfd * abfd ATTRIBUTE_UNUSED;
501 bfd_reloc_code_real_type code;
503 unsigned int i;
505 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
506 if (sh_reloc_map[i].bfd_reloc_val == code)
507 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
509 fprintf (stderr, "SH Error: unknown reloc type %d\n", code);
510 return NULL;
513 /* This macro is used in coffcode.h to get the howto corresponding to
514 an internal reloc. */
516 #define RTYPE2HOWTO(relent, internal) \
517 ((relent)->howto = \
518 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
519 ? &sh_coff_howtos[(internal)->r_type] \
520 : (reloc_howto_type *) NULL))
522 /* This is the same as the macro in coffcode.h, except that it copies
523 r_offset into reloc_entry->addend for some relocs. */
524 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
526 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
527 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
528 coffsym = (obj_symbols (abfd) \
529 + (cache_ptr->sym_ptr_ptr - symbols)); \
530 else if (ptr) \
531 coffsym = coff_symbol_from (abfd, ptr); \
532 if (coffsym != (coff_symbol_type *) NULL \
533 && coffsym->native->u.syment.n_scnum == 0) \
534 cache_ptr->addend = 0; \
535 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
536 && ptr->section != (asection *) NULL) \
537 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
538 else \
539 cache_ptr->addend = 0; \
540 if ((reloc).r_type == R_SH_SWITCH8 \
541 || (reloc).r_type == R_SH_SWITCH16 \
542 || (reloc).r_type == R_SH_SWITCH32 \
543 || (reloc).r_type == R_SH_USES \
544 || (reloc).r_type == R_SH_COUNT \
545 || (reloc).r_type == R_SH_ALIGN) \
546 cache_ptr->addend = (reloc).r_offset; \
549 /* This is the howto function for the SH relocations. */
551 static bfd_reloc_status_type
552 sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
553 error_message)
554 bfd *abfd;
555 arelent *reloc_entry;
556 asymbol *symbol_in;
557 PTR data;
558 asection *input_section;
559 bfd *output_bfd;
560 char **error_message ATTRIBUTE_UNUSED;
562 unsigned long insn;
563 bfd_vma sym_value;
564 unsigned short r_type;
565 bfd_vma addr = reloc_entry->address;
566 bfd_byte *hit_data = addr + (bfd_byte *) data;
568 r_type = reloc_entry->howto->type;
570 if (output_bfd != NULL)
572 /* Partial linking--do nothing. */
573 reloc_entry->address += input_section->output_offset;
574 return bfd_reloc_ok;
577 /* Almost all relocs have to do with relaxing. If any work must be
578 done for them, it has been done in sh_relax_section. */
579 if (r_type != R_SH_IMM32
580 #ifdef COFF_WITH_PE
581 && r_type != R_SH_IMM32CE
582 && r_type != R_SH_IMAGEBASE
583 #endif
584 && (r_type != R_SH_PCDISP
585 || (symbol_in->flags & BSF_LOCAL) != 0))
586 return bfd_reloc_ok;
588 if (symbol_in != NULL
589 && bfd_is_und_section (symbol_in->section))
590 return bfd_reloc_undefined;
592 sym_value = get_symbol_value (symbol_in);
594 switch (r_type)
596 case R_SH_IMM32:
597 #ifdef COFF_WITH_PE
598 case R_SH_IMM32CE:
599 #endif
600 insn = bfd_get_32 (abfd, hit_data);
601 insn += sym_value + reloc_entry->addend;
602 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
603 break;
604 #ifdef COFF_WITH_PE
605 case R_SH_IMAGEBASE:
606 insn = bfd_get_32 (abfd, hit_data);
607 insn += sym_value + reloc_entry->addend;
608 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
609 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
610 break;
611 #endif
612 case R_SH_PCDISP:
613 insn = bfd_get_16 (abfd, hit_data);
614 sym_value += reloc_entry->addend;
615 sym_value -= (input_section->output_section->vma
616 + input_section->output_offset
617 + addr
618 + 4);
619 sym_value += (insn & 0xfff) << 1;
620 if (insn & 0x800)
621 sym_value -= 0x1000;
622 insn = (insn & 0xf000) | (sym_value & 0xfff);
623 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
624 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
625 return bfd_reloc_overflow;
626 break;
627 default:
628 abort ();
629 break;
632 return bfd_reloc_ok;
635 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
637 /* We can do relaxing. */
638 #define coff_bfd_relax_section sh_relax_section
640 /* We use the special COFF backend linker. */
641 #define coff_relocate_section sh_relocate_section
643 /* When relaxing, we need to use special code to get the relocated
644 section contents. */
645 #define coff_bfd_get_relocated_section_contents \
646 sh_coff_get_relocated_section_contents
648 #include "coffcode.h"
650 /* This function handles relaxing on the SH.
652 Function calls on the SH look like this:
654 movl L1,r0
656 jsr @r0
659 .long function
661 The compiler and assembler will cooperate to create R_SH_USES
662 relocs on the jsr instructions. The r_offset field of the
663 R_SH_USES reloc is the PC relative offset to the instruction which
664 loads the register (the r_offset field is computed as though it
665 were a jump instruction, so the offset value is actually from four
666 bytes past the instruction). The linker can use this reloc to
667 determine just which function is being called, and thus decide
668 whether it is possible to replace the jsr with a bsr.
670 If multiple function calls are all based on a single register load
671 (i.e., the same function is called multiple times), the compiler
672 guarantees that each function call will have an R_SH_USES reloc.
673 Therefore, if the linker is able to convert each R_SH_USES reloc
674 which refers to that address, it can safely eliminate the register
675 load.
677 When the assembler creates an R_SH_USES reloc, it examines it to
678 determine which address is being loaded (L1 in the above example).
679 It then counts the number of references to that address, and
680 creates an R_SH_COUNT reloc at that address. The r_offset field of
681 the R_SH_COUNT reloc will be the number of references. If the
682 linker is able to eliminate a register load, it can use the
683 R_SH_COUNT reloc to see whether it can also eliminate the function
684 address.
686 SH relaxing also handles another, unrelated, matter. On the SH, if
687 a load or store instruction is not aligned on a four byte boundary,
688 the memory cycle interferes with the 32 bit instruction fetch,
689 causing a one cycle bubble in the pipeline. Therefore, we try to
690 align load and store instructions on four byte boundaries if we
691 can, by swapping them with one of the adjacent instructions. */
693 static bfd_boolean
694 sh_relax_section (abfd, sec, link_info, again)
695 bfd *abfd;
696 asection *sec;
697 struct bfd_link_info *link_info;
698 bfd_boolean *again;
700 struct internal_reloc *internal_relocs;
701 bfd_boolean have_code;
702 struct internal_reloc *irel, *irelend;
703 bfd_byte *contents = NULL;
705 *again = FALSE;
707 if (link_info->relocatable
708 || (sec->flags & SEC_RELOC) == 0
709 || sec->reloc_count == 0)
710 return TRUE;
712 if (coff_section_data (abfd, sec) == NULL)
714 bfd_size_type amt = sizeof (struct coff_section_tdata);
715 sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
716 if (sec->used_by_bfd == NULL)
717 return FALSE;
720 internal_relocs = (_bfd_coff_read_internal_relocs
721 (abfd, sec, link_info->keep_memory,
722 (bfd_byte *) NULL, FALSE,
723 (struct internal_reloc *) NULL));
724 if (internal_relocs == NULL)
725 goto error_return;
727 have_code = FALSE;
729 irelend = internal_relocs + sec->reloc_count;
730 for (irel = internal_relocs; irel < irelend; irel++)
732 bfd_vma laddr, paddr, symval;
733 unsigned short insn;
734 struct internal_reloc *irelfn, *irelscan, *irelcount;
735 struct internal_syment sym;
736 bfd_signed_vma foff;
738 if (irel->r_type == R_SH_CODE)
739 have_code = TRUE;
741 if (irel->r_type != R_SH_USES)
742 continue;
744 /* Get the section contents. */
745 if (contents == NULL)
747 if (coff_section_data (abfd, sec)->contents != NULL)
748 contents = coff_section_data (abfd, sec)->contents;
749 else
751 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
752 goto error_return;
756 /* The r_offset field of the R_SH_USES reloc will point us to
757 the register load. The 4 is because the r_offset field is
758 computed as though it were a jump offset, which are based
759 from 4 bytes after the jump instruction. */
760 laddr = irel->r_vaddr - sec->vma + 4;
761 /* Careful to sign extend the 32-bit offset. */
762 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
763 if (laddr >= sec->size)
765 (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
766 abfd, (unsigned long) irel->r_vaddr);
767 continue;
769 insn = bfd_get_16 (abfd, contents + laddr);
771 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
772 if ((insn & 0xf000) != 0xd000)
774 ((*_bfd_error_handler)
775 ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
776 abfd, (unsigned long) irel->r_vaddr, insn));
777 continue;
780 /* Get the address from which the register is being loaded. The
781 displacement in the mov.l instruction is quadrupled. It is a
782 displacement from four bytes after the movl instruction, but,
783 before adding in the PC address, two least significant bits
784 of the PC are cleared. We assume that the section is aligned
785 on a four byte boundary. */
786 paddr = insn & 0xff;
787 paddr *= 4;
788 paddr += (laddr + 4) &~ (bfd_vma) 3;
789 if (paddr >= sec->size)
791 ((*_bfd_error_handler)
792 ("%B: 0x%lx: warning: bad R_SH_USES load offset",
793 abfd, (unsigned long) irel->r_vaddr));
794 continue;
797 /* Get the reloc for the address from which the register is
798 being loaded. This reloc will tell us which function is
799 actually being called. */
800 paddr += sec->vma;
801 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
802 if (irelfn->r_vaddr == paddr
803 #ifdef COFF_WITH_PE
804 && (irelfn->r_type == R_SH_IMM32
805 || irelfn->r_type == R_SH_IMM32CE
806 || irelfn->r_type == R_SH_IMAGEBASE)
808 #else
809 && irelfn->r_type == R_SH_IMM32
810 #endif
812 break;
813 if (irelfn >= irelend)
815 ((*_bfd_error_handler)
816 ("%B: 0x%lx: warning: could not find expected reloc",
817 abfd, (unsigned long) paddr));
818 continue;
821 /* Get the value of the symbol referred to by the reloc. */
822 if (! _bfd_coff_get_external_symbols (abfd))
823 goto error_return;
824 bfd_coff_swap_sym_in (abfd,
825 ((bfd_byte *) obj_coff_external_syms (abfd)
826 + (irelfn->r_symndx
827 * bfd_coff_symesz (abfd))),
828 &sym);
829 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
831 ((*_bfd_error_handler)
832 ("%B: 0x%lx: warning: symbol in unexpected section",
833 abfd, (unsigned long) paddr));
834 continue;
837 if (sym.n_sclass != C_EXT)
839 symval = (sym.n_value
840 - sec->vma
841 + sec->output_section->vma
842 + sec->output_offset);
844 else
846 struct coff_link_hash_entry *h;
848 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
849 BFD_ASSERT (h != NULL);
850 if (h->root.type != bfd_link_hash_defined
851 && h->root.type != bfd_link_hash_defweak)
853 /* This appears to be a reference to an undefined
854 symbol. Just ignore it--it will be caught by the
855 regular reloc processing. */
856 continue;
859 symval = (h->root.u.def.value
860 + h->root.u.def.section->output_section->vma
861 + h->root.u.def.section->output_offset);
864 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
866 /* See if this function call can be shortened. */
867 foff = (symval
868 - (irel->r_vaddr
869 - sec->vma
870 + sec->output_section->vma
871 + sec->output_offset
872 + 4));
873 if (foff < -0x1000 || foff >= 0x1000)
875 /* After all that work, we can't shorten this function call. */
876 continue;
879 /* Shorten the function call. */
881 /* For simplicity of coding, we are going to modify the section
882 contents, the section relocs, and the BFD symbol table. We
883 must tell the rest of the code not to free up this
884 information. It would be possible to instead create a table
885 of changes which have to be made, as is done in coff-mips.c;
886 that would be more work, but would require less memory when
887 the linker is run. */
889 coff_section_data (abfd, sec)->relocs = internal_relocs;
890 coff_section_data (abfd, sec)->keep_relocs = TRUE;
892 coff_section_data (abfd, sec)->contents = contents;
893 coff_section_data (abfd, sec)->keep_contents = TRUE;
895 obj_coff_keep_syms (abfd) = TRUE;
897 /* Replace the jsr with a bsr. */
899 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
900 replace the jsr with a bsr. */
901 irel->r_type = R_SH_PCDISP;
902 irel->r_symndx = irelfn->r_symndx;
903 if (sym.n_sclass != C_EXT)
905 /* If this needs to be changed because of future relaxing,
906 it will be handled here like other internal PCDISP
907 relocs. */
908 bfd_put_16 (abfd,
909 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
910 contents + irel->r_vaddr - sec->vma);
912 else
914 /* We can't fully resolve this yet, because the external
915 symbol value may be changed by future relaxing. We let
916 the final link phase handle it. */
917 bfd_put_16 (abfd, (bfd_vma) 0xb000,
918 contents + irel->r_vaddr - sec->vma);
921 /* See if there is another R_SH_USES reloc referring to the same
922 register load. */
923 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
924 if (irelscan->r_type == R_SH_USES
925 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
926 break;
927 if (irelscan < irelend)
929 /* Some other function call depends upon this register load,
930 and we have not yet converted that function call.
931 Indeed, we may never be able to convert it. There is
932 nothing else we can do at this point. */
933 continue;
936 /* Look for a R_SH_COUNT reloc on the location where the
937 function address is stored. Do this before deleting any
938 bytes, to avoid confusion about the address. */
939 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
940 if (irelcount->r_vaddr == paddr
941 && irelcount->r_type == R_SH_COUNT)
942 break;
944 /* Delete the register load. */
945 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
946 goto error_return;
948 /* That will change things, so, just in case it permits some
949 other function call to come within range, we should relax
950 again. Note that this is not required, and it may be slow. */
951 *again = TRUE;
953 /* Now check whether we got a COUNT reloc. */
954 if (irelcount >= irelend)
956 ((*_bfd_error_handler)
957 ("%B: 0x%lx: warning: could not find expected COUNT reloc",
958 abfd, (unsigned long) paddr));
959 continue;
962 /* The number of uses is stored in the r_offset field. We've
963 just deleted one. */
964 if (irelcount->r_offset == 0)
966 ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
967 abfd, (unsigned long) paddr));
968 continue;
971 --irelcount->r_offset;
973 /* If there are no more uses, we can delete the address. Reload
974 the address from irelfn, in case it was changed by the
975 previous call to sh_relax_delete_bytes. */
976 if (irelcount->r_offset == 0)
978 if (! sh_relax_delete_bytes (abfd, sec,
979 irelfn->r_vaddr - sec->vma, 4))
980 goto error_return;
983 /* We've done all we can with that function call. */
986 /* Look for load and store instructions that we can align on four
987 byte boundaries. */
988 if (have_code)
990 bfd_boolean swapped;
992 /* Get the section contents. */
993 if (contents == NULL)
995 if (coff_section_data (abfd, sec)->contents != NULL)
996 contents = coff_section_data (abfd, sec)->contents;
997 else
999 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1000 goto error_return;
1004 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1005 goto error_return;
1007 if (swapped)
1009 coff_section_data (abfd, sec)->relocs = internal_relocs;
1010 coff_section_data (abfd, sec)->keep_relocs = TRUE;
1012 coff_section_data (abfd, sec)->contents = contents;
1013 coff_section_data (abfd, sec)->keep_contents = TRUE;
1015 obj_coff_keep_syms (abfd) = TRUE;
1019 if (internal_relocs != NULL
1020 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1022 if (! link_info->keep_memory)
1023 free (internal_relocs);
1024 else
1025 coff_section_data (abfd, sec)->relocs = internal_relocs;
1028 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1030 if (! link_info->keep_memory)
1031 free (contents);
1032 else
1033 /* Cache the section contents for coff_link_input_bfd. */
1034 coff_section_data (abfd, sec)->contents = contents;
1037 return TRUE;
1039 error_return:
1040 if (internal_relocs != NULL
1041 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1042 free (internal_relocs);
1043 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1044 free (contents);
1045 return FALSE;
1048 /* Delete some bytes from a section while relaxing. */
1050 static bfd_boolean
1051 sh_relax_delete_bytes (abfd, sec, addr, count)
1052 bfd *abfd;
1053 asection *sec;
1054 bfd_vma addr;
1055 int count;
1057 bfd_byte *contents;
1058 struct internal_reloc *irel, *irelend;
1059 struct internal_reloc *irelalign;
1060 bfd_vma toaddr;
1061 bfd_byte *esym, *esymend;
1062 bfd_size_type symesz;
1063 struct coff_link_hash_entry **sym_hash;
1064 asection *o;
1066 contents = coff_section_data (abfd, sec)->contents;
1068 /* The deletion must stop at the next ALIGN reloc for an aligment
1069 power larger than the number of bytes we are deleting. */
1071 irelalign = NULL;
1072 toaddr = sec->size;
1074 irel = coff_section_data (abfd, sec)->relocs;
1075 irelend = irel + sec->reloc_count;
1076 for (; irel < irelend; irel++)
1078 if (irel->r_type == R_SH_ALIGN
1079 && irel->r_vaddr - sec->vma > addr
1080 && count < (1 << irel->r_offset))
1082 irelalign = irel;
1083 toaddr = irel->r_vaddr - sec->vma;
1084 break;
1088 /* Actually delete the bytes. */
1089 memmove (contents + addr, contents + addr + count,
1090 (size_t) (toaddr - addr - count));
1091 if (irelalign == NULL)
1092 sec->size -= count;
1093 else
1095 int i;
1097 #define NOP_OPCODE (0x0009)
1099 BFD_ASSERT ((count & 1) == 0);
1100 for (i = 0; i < count; i += 2)
1101 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1104 /* Adjust all the relocs. */
1105 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1107 bfd_vma nraddr, stop;
1108 bfd_vma start = 0;
1109 int insn = 0;
1110 struct internal_syment sym;
1111 int off, adjust, oinsn;
1112 bfd_signed_vma voff = 0;
1113 bfd_boolean overflow;
1115 /* Get the new reloc address. */
1116 nraddr = irel->r_vaddr - sec->vma;
1117 if ((irel->r_vaddr - sec->vma > addr
1118 && irel->r_vaddr - sec->vma < toaddr)
1119 || (irel->r_type == R_SH_ALIGN
1120 && irel->r_vaddr - sec->vma == toaddr))
1121 nraddr -= count;
1123 /* See if this reloc was for the bytes we have deleted, in which
1124 case we no longer care about it. Don't delete relocs which
1125 represent addresses, though. */
1126 if (irel->r_vaddr - sec->vma >= addr
1127 && irel->r_vaddr - sec->vma < addr + count
1128 && irel->r_type != R_SH_ALIGN
1129 && irel->r_type != R_SH_CODE
1130 && irel->r_type != R_SH_DATA
1131 && irel->r_type != R_SH_LABEL)
1132 irel->r_type = R_SH_UNUSED;
1134 /* If this is a PC relative reloc, see if the range it covers
1135 includes the bytes we have deleted. */
1136 switch (irel->r_type)
1138 default:
1139 break;
1141 case R_SH_PCDISP8BY2:
1142 case R_SH_PCDISP:
1143 case R_SH_PCRELIMM8BY2:
1144 case R_SH_PCRELIMM8BY4:
1145 start = irel->r_vaddr - sec->vma;
1146 insn = bfd_get_16 (abfd, contents + nraddr);
1147 break;
1150 switch (irel->r_type)
1152 default:
1153 start = stop = addr;
1154 break;
1156 case R_SH_IMM32:
1157 #ifdef COFF_WITH_PE
1158 case R_SH_IMM32CE:
1159 case R_SH_IMAGEBASE:
1160 #endif
1161 /* If this reloc is against a symbol defined in this
1162 section, and the symbol will not be adjusted below, we
1163 must check the addend to see it will put the value in
1164 range to be adjusted, and hence must be changed. */
1165 bfd_coff_swap_sym_in (abfd,
1166 ((bfd_byte *) obj_coff_external_syms (abfd)
1167 + (irel->r_symndx
1168 * bfd_coff_symesz (abfd))),
1169 &sym);
1170 if (sym.n_sclass != C_EXT
1171 && sym.n_scnum == sec->target_index
1172 && ((bfd_vma) sym.n_value <= addr
1173 || (bfd_vma) sym.n_value >= toaddr))
1175 bfd_vma val;
1177 val = bfd_get_32 (abfd, contents + nraddr);
1178 val += sym.n_value;
1179 if (val > addr && val < toaddr)
1180 bfd_put_32 (abfd, val - count, contents + nraddr);
1182 start = stop = addr;
1183 break;
1185 case R_SH_PCDISP8BY2:
1186 off = insn & 0xff;
1187 if (off & 0x80)
1188 off -= 0x100;
1189 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1190 break;
1192 case R_SH_PCDISP:
1193 bfd_coff_swap_sym_in (abfd,
1194 ((bfd_byte *) obj_coff_external_syms (abfd)
1195 + (irel->r_symndx
1196 * bfd_coff_symesz (abfd))),
1197 &sym);
1198 if (sym.n_sclass == C_EXT)
1199 start = stop = addr;
1200 else
1202 off = insn & 0xfff;
1203 if (off & 0x800)
1204 off -= 0x1000;
1205 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1207 break;
1209 case R_SH_PCRELIMM8BY2:
1210 off = insn & 0xff;
1211 stop = start + 4 + off * 2;
1212 break;
1214 case R_SH_PCRELIMM8BY4:
1215 off = insn & 0xff;
1216 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1217 break;
1219 case R_SH_SWITCH8:
1220 case R_SH_SWITCH16:
1221 case R_SH_SWITCH32:
1222 /* These relocs types represent
1223 .word L2-L1
1224 The r_offset field holds the difference between the reloc
1225 address and L1. That is the start of the reloc, and
1226 adding in the contents gives us the top. We must adjust
1227 both the r_offset field and the section contents. */
1229 start = irel->r_vaddr - sec->vma;
1230 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1232 if (start > addr
1233 && start < toaddr
1234 && (stop <= addr || stop >= toaddr))
1235 irel->r_offset += count;
1236 else if (stop > addr
1237 && stop < toaddr
1238 && (start <= addr || start >= toaddr))
1239 irel->r_offset -= count;
1241 start = stop;
1243 if (irel->r_type == R_SH_SWITCH16)
1244 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1245 else if (irel->r_type == R_SH_SWITCH8)
1246 voff = bfd_get_8 (abfd, contents + nraddr);
1247 else
1248 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1249 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1251 break;
1253 case R_SH_USES:
1254 start = irel->r_vaddr - sec->vma;
1255 stop = (bfd_vma) ((bfd_signed_vma) start
1256 + (long) irel->r_offset
1257 + 4);
1258 break;
1261 if (start > addr
1262 && start < toaddr
1263 && (stop <= addr || stop >= toaddr))
1264 adjust = count;
1265 else if (stop > addr
1266 && stop < toaddr
1267 && (start <= addr || start >= toaddr))
1268 adjust = - count;
1269 else
1270 adjust = 0;
1272 if (adjust != 0)
1274 oinsn = insn;
1275 overflow = FALSE;
1276 switch (irel->r_type)
1278 default:
1279 abort ();
1280 break;
1282 case R_SH_PCDISP8BY2:
1283 case R_SH_PCRELIMM8BY2:
1284 insn += adjust / 2;
1285 if ((oinsn & 0xff00) != (insn & 0xff00))
1286 overflow = TRUE;
1287 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1288 break;
1290 case R_SH_PCDISP:
1291 insn += adjust / 2;
1292 if ((oinsn & 0xf000) != (insn & 0xf000))
1293 overflow = TRUE;
1294 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1295 break;
1297 case R_SH_PCRELIMM8BY4:
1298 BFD_ASSERT (adjust == count || count >= 4);
1299 if (count >= 4)
1300 insn += adjust / 4;
1301 else
1303 if ((irel->r_vaddr & 3) == 0)
1304 ++insn;
1306 if ((oinsn & 0xff00) != (insn & 0xff00))
1307 overflow = TRUE;
1308 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1309 break;
1311 case R_SH_SWITCH8:
1312 voff += adjust;
1313 if (voff < 0 || voff >= 0xff)
1314 overflow = TRUE;
1315 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1316 break;
1318 case R_SH_SWITCH16:
1319 voff += adjust;
1320 if (voff < - 0x8000 || voff >= 0x8000)
1321 overflow = TRUE;
1322 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1323 break;
1325 case R_SH_SWITCH32:
1326 voff += adjust;
1327 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1328 break;
1330 case R_SH_USES:
1331 irel->r_offset += adjust;
1332 break;
1335 if (overflow)
1337 ((*_bfd_error_handler)
1338 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
1339 abfd, (unsigned long) irel->r_vaddr));
1340 bfd_set_error (bfd_error_bad_value);
1341 return FALSE;
1345 irel->r_vaddr = nraddr + sec->vma;
1348 /* Look through all the other sections. If there contain any IMM32
1349 relocs against internal symbols which we are not going to adjust
1350 below, we may need to adjust the addends. */
1351 for (o = abfd->sections; o != NULL; o = o->next)
1353 struct internal_reloc *internal_relocs;
1354 struct internal_reloc *irelscan, *irelscanend;
1355 bfd_byte *ocontents;
1357 if (o == sec
1358 || (o->flags & SEC_RELOC) == 0
1359 || o->reloc_count == 0)
1360 continue;
1362 /* We always cache the relocs. Perhaps, if info->keep_memory is
1363 FALSE, we should free them, if we are permitted to, when we
1364 leave sh_coff_relax_section. */
1365 internal_relocs = (_bfd_coff_read_internal_relocs
1366 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1367 (struct internal_reloc *) NULL));
1368 if (internal_relocs == NULL)
1369 return FALSE;
1371 ocontents = NULL;
1372 irelscanend = internal_relocs + o->reloc_count;
1373 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1375 struct internal_syment sym;
1377 #ifdef COFF_WITH_PE
1378 if (irelscan->r_type != R_SH_IMM32
1379 && irelscan->r_type != R_SH_IMAGEBASE
1380 && irelscan->r_type != R_SH_IMM32CE)
1381 #else
1382 if (irelscan->r_type != R_SH_IMM32)
1383 #endif
1384 continue;
1386 bfd_coff_swap_sym_in (abfd,
1387 ((bfd_byte *) obj_coff_external_syms (abfd)
1388 + (irelscan->r_symndx
1389 * bfd_coff_symesz (abfd))),
1390 &sym);
1391 if (sym.n_sclass != C_EXT
1392 && sym.n_scnum == sec->target_index
1393 && ((bfd_vma) sym.n_value <= addr
1394 || (bfd_vma) sym.n_value >= toaddr))
1396 bfd_vma val;
1398 if (ocontents == NULL)
1400 if (coff_section_data (abfd, o)->contents != NULL)
1401 ocontents = coff_section_data (abfd, o)->contents;
1402 else
1404 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1405 return FALSE;
1406 /* We always cache the section contents.
1407 Perhaps, if info->keep_memory is FALSE, we
1408 should free them, if we are permitted to,
1409 when we leave sh_coff_relax_section. */
1410 coff_section_data (abfd, o)->contents = ocontents;
1414 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1415 val += sym.n_value;
1416 if (val > addr && val < toaddr)
1417 bfd_put_32 (abfd, val - count,
1418 ocontents + irelscan->r_vaddr - o->vma);
1420 coff_section_data (abfd, o)->keep_contents = TRUE;
1425 /* Adjusting the internal symbols will not work if something has
1426 already retrieved the generic symbols. It would be possible to
1427 make this work by adjusting the generic symbols at the same time.
1428 However, this case should not arise in normal usage. */
1429 if (obj_symbols (abfd) != NULL
1430 || obj_raw_syments (abfd) != NULL)
1432 ((*_bfd_error_handler)
1433 ("%B: fatal: generic symbols retrieved before relaxing", abfd));
1434 bfd_set_error (bfd_error_invalid_operation);
1435 return FALSE;
1438 /* Adjust all the symbols. */
1439 sym_hash = obj_coff_sym_hashes (abfd);
1440 symesz = bfd_coff_symesz (abfd);
1441 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1442 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1443 while (esym < esymend)
1445 struct internal_syment isym;
1447 bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);
1449 if (isym.n_scnum == sec->target_index
1450 && (bfd_vma) isym.n_value > addr
1451 && (bfd_vma) isym.n_value < toaddr)
1453 isym.n_value -= count;
1455 bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);
1457 if (*sym_hash != NULL)
1459 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1460 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1461 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1462 && (*sym_hash)->root.u.def.value < toaddr);
1463 (*sym_hash)->root.u.def.value -= count;
1467 esym += (isym.n_numaux + 1) * symesz;
1468 sym_hash += isym.n_numaux + 1;
1471 /* See if we can move the ALIGN reloc forward. We have adjusted
1472 r_vaddr for it already. */
1473 if (irelalign != NULL)
1475 bfd_vma alignto, alignaddr;
1477 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1478 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1479 1 << irelalign->r_offset);
1480 if (alignto != alignaddr)
1482 /* Tail recursion. */
1483 return sh_relax_delete_bytes (abfd, sec, alignaddr,
1484 (int) (alignto - alignaddr));
1488 return TRUE;
1491 /* This is yet another version of the SH opcode table, used to rapidly
1492 get information about a particular instruction. */
1494 /* The opcode map is represented by an array of these structures. The
1495 array is indexed by the high order four bits in the instruction. */
1497 struct sh_major_opcode
1499 /* A pointer to the instruction list. This is an array which
1500 contains all the instructions with this major opcode. */
1501 const struct sh_minor_opcode *minor_opcodes;
1502 /* The number of elements in minor_opcodes. */
1503 unsigned short count;
1506 /* This structure holds information for a set of SH opcodes. The
1507 instruction code is anded with the mask value, and the resulting
1508 value is used to search the order opcode list. */
1510 struct sh_minor_opcode
1512 /* The sorted opcode list. */
1513 const struct sh_opcode *opcodes;
1514 /* The number of elements in opcodes. */
1515 unsigned short count;
1516 /* The mask value to use when searching the opcode list. */
1517 unsigned short mask;
1520 /* This structure holds information for an SH instruction. An array
1521 of these structures is sorted in order by opcode. */
1523 struct sh_opcode
1525 /* The code for this instruction, after it has been anded with the
1526 mask value in the sh_major_opcode structure. */
1527 unsigned short opcode;
1528 /* Flags for this instruction. */
1529 unsigned long flags;
1532 /* Flag which appear in the sh_opcode structure. */
1534 /* This instruction loads a value from memory. */
1535 #define LOAD (0x1)
1537 /* This instruction stores a value to memory. */
1538 #define STORE (0x2)
1540 /* This instruction is a branch. */
1541 #define BRANCH (0x4)
1543 /* This instruction has a delay slot. */
1544 #define DELAY (0x8)
1546 /* This instruction uses the value in the register in the field at
1547 mask 0x0f00 of the instruction. */
1548 #define USES1 (0x10)
1549 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1551 /* This instruction uses the value in the register in the field at
1552 mask 0x00f0 of the instruction. */
1553 #define USES2 (0x20)
1554 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1556 /* This instruction uses the value in register 0. */
1557 #define USESR0 (0x40)
1559 /* This instruction sets the value in the register in the field at
1560 mask 0x0f00 of the instruction. */
1561 #define SETS1 (0x80)
1562 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1564 /* This instruction sets the value in the register in the field at
1565 mask 0x00f0 of the instruction. */
1566 #define SETS2 (0x100)
1567 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1569 /* This instruction sets register 0. */
1570 #define SETSR0 (0x200)
1572 /* This instruction sets a special register. */
1573 #define SETSSP (0x400)
1575 /* This instruction uses a special register. */
1576 #define USESSP (0x800)
1578 /* This instruction uses the floating point register in the field at
1579 mask 0x0f00 of the instruction. */
1580 #define USESF1 (0x1000)
1581 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1583 /* This instruction uses the floating point register in the field at
1584 mask 0x00f0 of the instruction. */
1585 #define USESF2 (0x2000)
1586 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1588 /* This instruction uses floating point register 0. */
1589 #define USESF0 (0x4000)
1591 /* This instruction sets the floating point register in the field at
1592 mask 0x0f00 of the instruction. */
1593 #define SETSF1 (0x8000)
1594 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1596 #define USESAS (0x10000)
1597 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1598 #define USESR8 (0x20000)
1599 #define SETSAS (0x40000)
1600 #define SETSAS_REG(x) USESAS_REG (x)
1602 #define MAP(a) a, sizeof a / sizeof a[0]
1604 #ifndef COFF_IMAGE_WITH_PE
1605 static bfd_boolean sh_insn_uses_reg
1606 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1607 static bfd_boolean sh_insn_sets_reg
1608 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1609 static bfd_boolean sh_insn_uses_or_sets_reg
1610 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1611 static bfd_boolean sh_insn_uses_freg
1612 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1613 static bfd_boolean sh_insn_sets_freg
1614 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1615 static bfd_boolean sh_insn_uses_or_sets_freg
1616 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1617 static bfd_boolean sh_insns_conflict
1618 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1619 const struct sh_opcode *));
1620 static bfd_boolean sh_load_use
1621 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1622 const struct sh_opcode *));
1624 /* The opcode maps. */
1626 static const struct sh_opcode sh_opcode00[] =
1628 { 0x0008, SETSSP }, /* clrt */
1629 { 0x0009, 0 }, /* nop */
1630 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1631 { 0x0018, SETSSP }, /* sett */
1632 { 0x0019, SETSSP }, /* div0u */
1633 { 0x001b, 0 }, /* sleep */
1634 { 0x0028, SETSSP }, /* clrmac */
1635 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1636 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1637 { 0x0048, SETSSP }, /* clrs */
1638 { 0x0058, SETSSP } /* sets */
1641 static const struct sh_opcode sh_opcode01[] =
1643 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1644 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
1645 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
1646 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1647 { 0x0029, SETS1 | USESSP }, /* movt rn */
1648 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
1649 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1650 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1651 { 0x0083, LOAD | USES1 }, /* pref @rn */
1652 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1653 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1654 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1655 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1656 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1659 static const struct sh_opcode sh_opcode02[] =
1661 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
1662 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1663 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1664 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1665 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1666 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1667 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1668 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1669 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1672 static const struct sh_minor_opcode sh_opcode0[] =
1674 { MAP (sh_opcode00), 0xffff },
1675 { MAP (sh_opcode01), 0xf0ff },
1676 { MAP (sh_opcode02), 0xf00f }
1679 static const struct sh_opcode sh_opcode10[] =
1681 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1684 static const struct sh_minor_opcode sh_opcode1[] =
1686 { MAP (sh_opcode10), 0xf000 }
1689 static const struct sh_opcode sh_opcode20[] =
1691 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1692 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1693 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1694 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1695 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1696 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1697 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1698 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1699 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1700 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1701 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1702 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1703 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1704 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1705 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1708 static const struct sh_minor_opcode sh_opcode2[] =
1710 { MAP (sh_opcode20), 0xf00f }
1713 static const struct sh_opcode sh_opcode30[] =
1715 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1716 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1717 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1718 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1719 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1720 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1721 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1722 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1723 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1724 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1725 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1726 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1727 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1728 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1731 static const struct sh_minor_opcode sh_opcode3[] =
1733 { MAP (sh_opcode30), 0xf00f }
1736 static const struct sh_opcode sh_opcode40[] =
1738 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1739 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1740 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1741 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1742 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1743 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
1744 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1745 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1746 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1747 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
1748 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1749 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1750 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1751 { 0x4014, SETSSP | USES1 }, /* setrc rm */
1752 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1753 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
1754 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1755 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1756 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1757 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
1758 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1759 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1760 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1761 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1762 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1763 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
1764 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1765 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1766 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1767 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
1768 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1769 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1770 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1771 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1772 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1773 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1774 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1775 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1776 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1777 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1778 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1779 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1780 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1781 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1782 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1783 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1784 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1785 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1786 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1787 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1788 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1791 static const struct sh_opcode sh_opcode41[] =
1793 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1794 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1795 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1796 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1797 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
1798 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1801 static const struct sh_minor_opcode sh_opcode4[] =
1803 { MAP (sh_opcode40), 0xf0ff },
1804 { MAP (sh_opcode41), 0xf00f }
1807 static const struct sh_opcode sh_opcode50[] =
1809 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1812 static const struct sh_minor_opcode sh_opcode5[] =
1814 { MAP (sh_opcode50), 0xf000 }
1817 static const struct sh_opcode sh_opcode60[] =
1819 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1820 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1821 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1822 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1823 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1824 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1825 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1826 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1827 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1828 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1829 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1830 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1831 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1832 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1833 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1834 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1837 static const struct sh_minor_opcode sh_opcode6[] =
1839 { MAP (sh_opcode60), 0xf00f }
1842 static const struct sh_opcode sh_opcode70[] =
1844 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1847 static const struct sh_minor_opcode sh_opcode7[] =
1849 { MAP (sh_opcode70), 0xf000 }
1852 static const struct sh_opcode sh_opcode80[] =
1854 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1855 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1856 { 0x8200, SETSSP }, /* setrc #imm */
1857 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1858 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1859 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1860 { 0x8900, BRANCH | USESSP }, /* bt label */
1861 { 0x8b00, BRANCH | USESSP }, /* bf label */
1862 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
1863 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
1864 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
1865 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1868 static const struct sh_minor_opcode sh_opcode8[] =
1870 { MAP (sh_opcode80), 0xff00 }
1873 static const struct sh_opcode sh_opcode90[] =
1875 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1878 static const struct sh_minor_opcode sh_opcode9[] =
1880 { MAP (sh_opcode90), 0xf000 }
1883 static const struct sh_opcode sh_opcodea0[] =
1885 { 0xa000, BRANCH | DELAY } /* bra label */
1888 static const struct sh_minor_opcode sh_opcodea[] =
1890 { MAP (sh_opcodea0), 0xf000 }
1893 static const struct sh_opcode sh_opcodeb0[] =
1895 { 0xb000, BRANCH | DELAY } /* bsr label */
1898 static const struct sh_minor_opcode sh_opcodeb[] =
1900 { MAP (sh_opcodeb0), 0xf000 }
1903 static const struct sh_opcode sh_opcodec0[] =
1905 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1906 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1907 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1908 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1909 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1910 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1911 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1912 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1913 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1914 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1915 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1916 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1917 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1918 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1919 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1920 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1923 static const struct sh_minor_opcode sh_opcodec[] =
1925 { MAP (sh_opcodec0), 0xff00 }
1928 static const struct sh_opcode sh_opcoded0[] =
1930 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1933 static const struct sh_minor_opcode sh_opcoded[] =
1935 { MAP (sh_opcoded0), 0xf000 }
1938 static const struct sh_opcode sh_opcodee0[] =
1940 { 0xe000, SETS1 } /* mov #imm,rn */
1943 static const struct sh_minor_opcode sh_opcodee[] =
1945 { MAP (sh_opcodee0), 0xf000 }
1948 static const struct sh_opcode sh_opcodef0[] =
1950 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1951 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1952 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1953 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1954 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1955 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1956 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1957 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1958 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1959 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1960 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1961 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1962 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1963 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1966 static const struct sh_opcode sh_opcodef1[] =
1968 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1969 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1970 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1971 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1972 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1973 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1974 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1975 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1976 { 0xf08d, SETSF1 }, /* fldi0 fn */
1977 { 0xf09d, SETSF1 } /* fldi1 fn */
1980 static const struct sh_minor_opcode sh_opcodef[] =
1982 { MAP (sh_opcodef0), 0xf00f },
1983 { MAP (sh_opcodef1), 0xf0ff }
1986 static struct sh_major_opcode sh_opcodes[] =
1988 { MAP (sh_opcode0) },
1989 { MAP (sh_opcode1) },
1990 { MAP (sh_opcode2) },
1991 { MAP (sh_opcode3) },
1992 { MAP (sh_opcode4) },
1993 { MAP (sh_opcode5) },
1994 { MAP (sh_opcode6) },
1995 { MAP (sh_opcode7) },
1996 { MAP (sh_opcode8) },
1997 { MAP (sh_opcode9) },
1998 { MAP (sh_opcodea) },
1999 { MAP (sh_opcodeb) },
2000 { MAP (sh_opcodec) },
2001 { MAP (sh_opcoded) },
2002 { MAP (sh_opcodee) },
2003 { MAP (sh_opcodef) }
2006 /* The double data transfer / parallel processing insns are not
2007 described here. This will cause sh_align_load_span to leave them alone. */
2009 static const struct sh_opcode sh_dsp_opcodef0[] =
2011 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2012 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2013 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2014 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2015 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2016 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2017 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2018 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2021 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2023 { MAP (sh_dsp_opcodef0), 0xfc0d }
2026 /* Given an instruction, return a pointer to the corresponding
2027 sh_opcode structure. Return NULL if the instruction is not
2028 recognized. */
2030 static const struct sh_opcode *
2031 sh_insn_info (insn)
2032 unsigned int insn;
2034 const struct sh_major_opcode *maj;
2035 const struct sh_minor_opcode *min, *minend;
2037 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2038 min = maj->minor_opcodes;
2039 minend = min + maj->count;
2040 for (; min < minend; min++)
2042 unsigned int l;
2043 const struct sh_opcode *op, *opend;
2045 l = insn & min->mask;
2046 op = min->opcodes;
2047 opend = op + min->count;
2049 /* Since the opcodes tables are sorted, we could use a binary
2050 search here if the count were above some cutoff value. */
2051 for (; op < opend; op++)
2052 if (op->opcode == l)
2053 return op;
2056 return NULL;
2059 /* See whether an instruction uses or sets a general purpose register */
2061 static bfd_boolean
2062 sh_insn_uses_or_sets_reg (insn, op, reg)
2063 unsigned int insn;
2064 const struct sh_opcode *op;
2065 unsigned int reg;
2067 if (sh_insn_uses_reg (insn, op, reg))
2068 return TRUE;
2070 return sh_insn_sets_reg (insn, op, reg);
2073 /* See whether an instruction uses a general purpose register. */
2075 static bfd_boolean
2076 sh_insn_uses_reg (insn, op, reg)
2077 unsigned int insn;
2078 const struct sh_opcode *op;
2079 unsigned int reg;
2081 unsigned int f;
2083 f = op->flags;
2085 if ((f & USES1) != 0
2086 && USES1_REG (insn) == reg)
2087 return TRUE;
2088 if ((f & USES2) != 0
2089 && USES2_REG (insn) == reg)
2090 return TRUE;
2091 if ((f & USESR0) != 0
2092 && reg == 0)
2093 return TRUE;
2094 if ((f & USESAS) && reg == USESAS_REG (insn))
2095 return TRUE;
2096 if ((f & USESR8) && reg == 8)
2097 return TRUE;
2099 return FALSE;
2102 /* See whether an instruction sets a general purpose register. */
2104 static bfd_boolean
2105 sh_insn_sets_reg (insn, op, reg)
2106 unsigned int insn;
2107 const struct sh_opcode *op;
2108 unsigned int reg;
2110 unsigned int f;
2112 f = op->flags;
2114 if ((f & SETS1) != 0
2115 && SETS1_REG (insn) == reg)
2116 return TRUE;
2117 if ((f & SETS2) != 0
2118 && SETS2_REG (insn) == reg)
2119 return TRUE;
2120 if ((f & SETSR0) != 0
2121 && reg == 0)
2122 return TRUE;
2123 if ((f & SETSAS) && reg == SETSAS_REG (insn))
2124 return TRUE;
2126 return FALSE;
2129 /* See whether an instruction uses or sets a floating point register */
2131 static bfd_boolean
2132 sh_insn_uses_or_sets_freg (insn, op, reg)
2133 unsigned int insn;
2134 const struct sh_opcode *op;
2135 unsigned int reg;
2137 if (sh_insn_uses_freg (insn, op, reg))
2138 return TRUE;
2140 return sh_insn_sets_freg (insn, op, reg);
2143 /* See whether an instruction uses a floating point register. */
2145 static bfd_boolean
2146 sh_insn_uses_freg (insn, op, freg)
2147 unsigned int insn;
2148 const struct sh_opcode *op;
2149 unsigned int freg;
2151 unsigned int f;
2153 f = op->flags;
2155 /* We can't tell if this is a double-precision insn, so just play safe
2156 and assume that it might be. So not only have we test FREG against
2157 itself, but also even FREG against FREG+1 - if the using insn uses
2158 just the low part of a double precision value - but also an odd
2159 FREG against FREG-1 - if the setting insn sets just the low part
2160 of a double precision value.
2161 So what this all boils down to is that we have to ignore the lowest
2162 bit of the register number. */
2164 if ((f & USESF1) != 0
2165 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2166 return TRUE;
2167 if ((f & USESF2) != 0
2168 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2169 return TRUE;
2170 if ((f & USESF0) != 0
2171 && freg == 0)
2172 return TRUE;
2174 return FALSE;
2177 /* See whether an instruction sets a floating point register. */
2179 static bfd_boolean
2180 sh_insn_sets_freg (insn, op, freg)
2181 unsigned int insn;
2182 const struct sh_opcode *op;
2183 unsigned int freg;
2185 unsigned int f;
2187 f = op->flags;
2189 /* We can't tell if this is a double-precision insn, so just play safe
2190 and assume that it might be. So not only have we test FREG against
2191 itself, but also even FREG against FREG+1 - if the using insn uses
2192 just the low part of a double precision value - but also an odd
2193 FREG against FREG-1 - if the setting insn sets just the low part
2194 of a double precision value.
2195 So what this all boils down to is that we have to ignore the lowest
2196 bit of the register number. */
2198 if ((f & SETSF1) != 0
2199 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2200 return TRUE;
2202 return FALSE;
2205 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2206 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2207 This should return TRUE if there is a conflict, or FALSE if the
2208 instructions can be swapped safely. */
2210 static bfd_boolean
2211 sh_insns_conflict (i1, op1, i2, op2)
2212 unsigned int i1;
2213 const struct sh_opcode *op1;
2214 unsigned int i2;
2215 const struct sh_opcode *op2;
2217 unsigned int f1, f2;
2219 f1 = op1->flags;
2220 f2 = op2->flags;
2222 /* Load of fpscr conflicts with floating point operations.
2223 FIXME: shouldn't test raw opcodes here. */
2224 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2225 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2226 return TRUE;
2228 if ((f1 & (BRANCH | DELAY)) != 0
2229 || (f2 & (BRANCH | DELAY)) != 0)
2230 return TRUE;
2232 if (((f1 | f2) & SETSSP)
2233 && (f1 & (SETSSP | USESSP))
2234 && (f2 & (SETSSP | USESSP)))
2235 return TRUE;
2237 if ((f1 & SETS1) != 0
2238 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2239 return TRUE;
2240 if ((f1 & SETS2) != 0
2241 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2242 return TRUE;
2243 if ((f1 & SETSR0) != 0
2244 && sh_insn_uses_or_sets_reg (i2, op2, 0))
2245 return TRUE;
2246 if ((f1 & SETSAS)
2247 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2248 return TRUE;
2249 if ((f1 & SETSF1) != 0
2250 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2251 return TRUE;
2253 if ((f2 & SETS1) != 0
2254 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2255 return TRUE;
2256 if ((f2 & SETS2) != 0
2257 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2258 return TRUE;
2259 if ((f2 & SETSR0) != 0
2260 && sh_insn_uses_or_sets_reg (i1, op1, 0))
2261 return TRUE;
2262 if ((f2 & SETSAS)
2263 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2264 return TRUE;
2265 if ((f2 & SETSF1) != 0
2266 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2267 return TRUE;
2269 /* The instructions do not conflict. */
2270 return FALSE;
2273 /* I1 is a load instruction, and I2 is some other instruction. Return
2274 TRUE if I1 loads a register which I2 uses. */
2276 static bfd_boolean
2277 sh_load_use (i1, op1, i2, op2)
2278 unsigned int i1;
2279 const struct sh_opcode *op1;
2280 unsigned int i2;
2281 const struct sh_opcode *op2;
2283 unsigned int f1;
2285 f1 = op1->flags;
2287 if ((f1 & LOAD) == 0)
2288 return FALSE;
2290 /* If both SETS1 and SETSSP are set, that means a load to a special
2291 register using postincrement addressing mode, which we don't care
2292 about here. */
2293 if ((f1 & SETS1) != 0
2294 && (f1 & SETSSP) == 0
2295 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2296 return TRUE;
2298 if ((f1 & SETSR0) != 0
2299 && sh_insn_uses_reg (i2, op2, 0))
2300 return TRUE;
2302 if ((f1 & SETSF1) != 0
2303 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2304 return TRUE;
2306 return FALSE;
2309 /* Try to align loads and stores within a span of memory. This is
2310 called by both the ELF and the COFF sh targets. ABFD and SEC are
2311 the BFD and section we are examining. CONTENTS is the contents of
2312 the section. SWAP is the routine to call to swap two instructions.
2313 RELOCS is a pointer to the internal relocation information, to be
2314 passed to SWAP. PLABEL is a pointer to the current label in a
2315 sorted list of labels; LABEL_END is the end of the list. START and
2316 STOP are the range of memory to examine. If a swap is made,
2317 *PSWAPPED is set to TRUE. */
2319 #ifdef COFF_WITH_PE
2320 static
2321 #endif
2322 bfd_boolean
2323 _bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
2324 plabel, label_end, start, stop, pswapped)
2325 bfd *abfd;
2326 asection *sec;
2327 bfd_byte *contents;
2328 bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
2329 PTR relocs;
2330 bfd_vma **plabel;
2331 bfd_vma *label_end;
2332 bfd_vma start;
2333 bfd_vma stop;
2334 bfd_boolean *pswapped;
2336 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2337 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2338 bfd_vma i;
2340 /* The SH4 has a Harvard architecture, hence aligning loads is not
2341 desirable. In fact, it is counter-productive, since it interferes
2342 with the schedules generated by the compiler. */
2343 if (abfd->arch_info->mach == bfd_mach_sh4)
2344 return TRUE;
2346 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2347 instructions. */
2348 if (dsp)
2350 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2351 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2354 /* Instructions should be aligned on 2 byte boundaries. */
2355 if ((start & 1) == 1)
2356 ++start;
2358 /* Now look through the unaligned addresses. */
2359 i = start;
2360 if ((i & 2) == 0)
2361 i += 2;
2362 for (; i < stop; i += 4)
2364 unsigned int insn;
2365 const struct sh_opcode *op;
2366 unsigned int prev_insn = 0;
2367 const struct sh_opcode *prev_op = NULL;
2369 insn = bfd_get_16 (abfd, contents + i);
2370 op = sh_insn_info (insn);
2371 if (op == NULL
2372 || (op->flags & (LOAD | STORE)) == 0)
2373 continue;
2375 /* This is a load or store which is not on a four byte boundary. */
2377 while (*plabel < label_end && **plabel < i)
2378 ++*plabel;
2380 if (i > start)
2382 prev_insn = bfd_get_16 (abfd, contents + i - 2);
2383 /* If INSN is the field b of a parallel processing insn, it is not
2384 a load / store after all. Note that the test here might mistake
2385 the field_b of a pcopy insn for the starting code of a parallel
2386 processing insn; this might miss a swapping opportunity, but at
2387 least we're on the safe side. */
2388 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2389 continue;
2391 /* Check if prev_insn is actually the field b of a parallel
2392 processing insn. Again, this can give a spurious match
2393 after a pcopy. */
2394 if (dsp && i - 2 > start)
2396 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2398 if ((pprev_insn & 0xfc00) == 0xf800)
2399 prev_op = NULL;
2400 else
2401 prev_op = sh_insn_info (prev_insn);
2403 else
2404 prev_op = sh_insn_info (prev_insn);
2406 /* If the load/store instruction is in a delay slot, we
2407 can't swap. */
2408 if (prev_op == NULL
2409 || (prev_op->flags & DELAY) != 0)
2410 continue;
2412 if (i > start
2413 && (*plabel >= label_end || **plabel != i)
2414 && prev_op != NULL
2415 && (prev_op->flags & (LOAD | STORE)) == 0
2416 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2418 bfd_boolean ok;
2420 /* The load/store instruction does not have a label, and
2421 there is a previous instruction; PREV_INSN is not
2422 itself a load/store instruction, and PREV_INSN and
2423 INSN do not conflict. */
2425 ok = TRUE;
2427 if (i >= start + 4)
2429 unsigned int prev2_insn;
2430 const struct sh_opcode *prev2_op;
2432 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2433 prev2_op = sh_insn_info (prev2_insn);
2435 /* If the instruction before PREV_INSN has a delay
2436 slot--that is, PREV_INSN is in a delay slot--we
2437 can not swap. */
2438 if (prev2_op == NULL
2439 || (prev2_op->flags & DELAY) != 0)
2440 ok = FALSE;
2442 /* If the instruction before PREV_INSN is a load,
2443 and it sets a register which INSN uses, then
2444 putting INSN immediately after PREV_INSN will
2445 cause a pipeline bubble, so there is no point to
2446 making the swap. */
2447 if (ok
2448 && (prev2_op->flags & LOAD) != 0
2449 && sh_load_use (prev2_insn, prev2_op, insn, op))
2450 ok = FALSE;
2453 if (ok)
2455 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2456 return FALSE;
2457 *pswapped = TRUE;
2458 continue;
2462 while (*plabel < label_end && **plabel < i + 2)
2463 ++*plabel;
2465 if (i + 2 < stop
2466 && (*plabel >= label_end || **plabel != i + 2))
2468 unsigned int next_insn;
2469 const struct sh_opcode *next_op;
2471 /* There is an instruction after the load/store
2472 instruction, and it does not have a label. */
2473 next_insn = bfd_get_16 (abfd, contents + i + 2);
2474 next_op = sh_insn_info (next_insn);
2475 if (next_op != NULL
2476 && (next_op->flags & (LOAD | STORE)) == 0
2477 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2479 bfd_boolean ok;
2481 /* NEXT_INSN is not itself a load/store instruction,
2482 and it does not conflict with INSN. */
2484 ok = TRUE;
2486 /* If PREV_INSN is a load, and it sets a register
2487 which NEXT_INSN uses, then putting NEXT_INSN
2488 immediately after PREV_INSN will cause a pipeline
2489 bubble, so there is no reason to make this swap. */
2490 if (prev_op != NULL
2491 && (prev_op->flags & LOAD) != 0
2492 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2493 ok = FALSE;
2495 /* If INSN is a load, and it sets a register which
2496 the insn after NEXT_INSN uses, then doing the
2497 swap will cause a pipeline bubble, so there is no
2498 reason to make the swap. However, if the insn
2499 after NEXT_INSN is itself a load or store
2500 instruction, then it is misaligned, so
2501 optimistically hope that it will be swapped
2502 itself, and just live with the pipeline bubble if
2503 it isn't. */
2504 if (ok
2505 && i + 4 < stop
2506 && (op->flags & LOAD) != 0)
2508 unsigned int next2_insn;
2509 const struct sh_opcode *next2_op;
2511 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2512 next2_op = sh_insn_info (next2_insn);
2513 if ((next2_op->flags & (LOAD | STORE)) == 0
2514 && sh_load_use (insn, op, next2_insn, next2_op))
2515 ok = FALSE;
2518 if (ok)
2520 if (! (*swap) (abfd, sec, relocs, contents, i))
2521 return FALSE;
2522 *pswapped = TRUE;
2523 continue;
2529 return TRUE;
2531 #endif /* not COFF_IMAGE_WITH_PE */
2533 /* Look for loads and stores which we can align to four byte
2534 boundaries. See the longer comment above sh_relax_section for why
2535 this is desirable. This sets *PSWAPPED if some instruction was
2536 swapped. */
2538 static bfd_boolean
2539 sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
2540 bfd *abfd;
2541 asection *sec;
2542 struct internal_reloc *internal_relocs;
2543 bfd_byte *contents;
2544 bfd_boolean *pswapped;
2546 struct internal_reloc *irel, *irelend;
2547 bfd_vma *labels = NULL;
2548 bfd_vma *label, *label_end;
2549 bfd_size_type amt;
2551 *pswapped = FALSE;
2553 irelend = internal_relocs + sec->reloc_count;
2555 /* Get all the addresses with labels on them. */
2556 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2557 labels = (bfd_vma *) bfd_malloc (amt);
2558 if (labels == NULL)
2559 goto error_return;
2560 label_end = labels;
2561 for (irel = internal_relocs; irel < irelend; irel++)
2563 if (irel->r_type == R_SH_LABEL)
2565 *label_end = irel->r_vaddr - sec->vma;
2566 ++label_end;
2570 /* Note that the assembler currently always outputs relocs in
2571 address order. If that ever changes, this code will need to sort
2572 the label values and the relocs. */
2574 label = labels;
2576 for (irel = internal_relocs; irel < irelend; irel++)
2578 bfd_vma start, stop;
2580 if (irel->r_type != R_SH_CODE)
2581 continue;
2583 start = irel->r_vaddr - sec->vma;
2585 for (irel++; irel < irelend; irel++)
2586 if (irel->r_type == R_SH_DATA)
2587 break;
2588 if (irel < irelend)
2589 stop = irel->r_vaddr - sec->vma;
2590 else
2591 stop = sec->size;
2593 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2594 (PTR) internal_relocs, &label,
2595 label_end, start, stop, pswapped))
2596 goto error_return;
2599 free (labels);
2601 return TRUE;
2603 error_return:
2604 if (labels != NULL)
2605 free (labels);
2606 return FALSE;
2609 /* Swap two SH instructions. */
2611 static bfd_boolean
2612 sh_swap_insns (abfd, sec, relocs, contents, addr)
2613 bfd *abfd;
2614 asection *sec;
2615 PTR relocs;
2616 bfd_byte *contents;
2617 bfd_vma addr;
2619 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2620 unsigned short i1, i2;
2621 struct internal_reloc *irel, *irelend;
2623 /* Swap the instructions themselves. */
2624 i1 = bfd_get_16 (abfd, contents + addr);
2625 i2 = bfd_get_16 (abfd, contents + addr + 2);
2626 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2627 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2629 /* Adjust all reloc addresses. */
2630 irelend = internal_relocs + sec->reloc_count;
2631 for (irel = internal_relocs; irel < irelend; irel++)
2633 int type, add;
2635 /* There are a few special types of relocs that we don't want to
2636 adjust. These relocs do not apply to the instruction itself,
2637 but are only associated with the address. */
2638 type = irel->r_type;
2639 if (type == R_SH_ALIGN
2640 || type == R_SH_CODE
2641 || type == R_SH_DATA
2642 || type == R_SH_LABEL)
2643 continue;
2645 /* If an R_SH_USES reloc points to one of the addresses being
2646 swapped, we must adjust it. It would be incorrect to do this
2647 for a jump, though, since we want to execute both
2648 instructions after the jump. (We have avoided swapping
2649 around a label, so the jump will not wind up executing an
2650 instruction it shouldn't). */
2651 if (type == R_SH_USES)
2653 bfd_vma off;
2655 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2656 if (off == addr)
2657 irel->r_offset += 2;
2658 else if (off == addr + 2)
2659 irel->r_offset -= 2;
2662 if (irel->r_vaddr - sec->vma == addr)
2664 irel->r_vaddr += 2;
2665 add = -2;
2667 else if (irel->r_vaddr - sec->vma == addr + 2)
2669 irel->r_vaddr -= 2;
2670 add = 2;
2672 else
2673 add = 0;
2675 if (add != 0)
2677 bfd_byte *loc;
2678 unsigned short insn, oinsn;
2679 bfd_boolean overflow;
2681 loc = contents + irel->r_vaddr - sec->vma;
2682 overflow = FALSE;
2683 switch (type)
2685 default:
2686 break;
2688 case R_SH_PCDISP8BY2:
2689 case R_SH_PCRELIMM8BY2:
2690 insn = bfd_get_16 (abfd, loc);
2691 oinsn = insn;
2692 insn += add / 2;
2693 if ((oinsn & 0xff00) != (insn & 0xff00))
2694 overflow = TRUE;
2695 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2696 break;
2698 case R_SH_PCDISP:
2699 insn = bfd_get_16 (abfd, loc);
2700 oinsn = insn;
2701 insn += add / 2;
2702 if ((oinsn & 0xf000) != (insn & 0xf000))
2703 overflow = TRUE;
2704 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2705 break;
2707 case R_SH_PCRELIMM8BY4:
2708 /* This reloc ignores the least significant 3 bits of
2709 the program counter before adding in the offset.
2710 This means that if ADDR is at an even address, the
2711 swap will not affect the offset. If ADDR is an at an
2712 odd address, then the instruction will be crossing a
2713 four byte boundary, and must be adjusted. */
2714 if ((addr & 3) != 0)
2716 insn = bfd_get_16 (abfd, loc);
2717 oinsn = insn;
2718 insn += add / 2;
2719 if ((oinsn & 0xff00) != (insn & 0xff00))
2720 overflow = TRUE;
2721 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2724 break;
2727 if (overflow)
2729 ((*_bfd_error_handler)
2730 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
2731 abfd, (unsigned long) irel->r_vaddr));
2732 bfd_set_error (bfd_error_bad_value);
2733 return FALSE;
2738 return TRUE;
2741 /* This is a modification of _bfd_coff_generic_relocate_section, which
2742 will handle SH relaxing. */
2744 static bfd_boolean
2745 sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
2746 relocs, syms, sections)
2747 bfd *output_bfd ATTRIBUTE_UNUSED;
2748 struct bfd_link_info *info;
2749 bfd *input_bfd;
2750 asection *input_section;
2751 bfd_byte *contents;
2752 struct internal_reloc *relocs;
2753 struct internal_syment *syms;
2754 asection **sections;
2756 struct internal_reloc *rel;
2757 struct internal_reloc *relend;
2759 rel = relocs;
2760 relend = rel + input_section->reloc_count;
2761 for (; rel < relend; rel++)
2763 long symndx;
2764 struct coff_link_hash_entry *h;
2765 struct internal_syment *sym;
2766 bfd_vma addend;
2767 bfd_vma val;
2768 reloc_howto_type *howto;
2769 bfd_reloc_status_type rstat;
2771 /* Almost all relocs have to do with relaxing. If any work must
2772 be done for them, it has been done in sh_relax_section. */
2773 if (rel->r_type != R_SH_IMM32
2774 #ifdef COFF_WITH_PE
2775 && rel->r_type != R_SH_IMM32CE
2776 && rel->r_type != R_SH_IMAGEBASE
2777 #endif
2778 && rel->r_type != R_SH_PCDISP)
2779 continue;
2781 symndx = rel->r_symndx;
2783 if (symndx == -1)
2785 h = NULL;
2786 sym = NULL;
2788 else
2790 if (symndx < 0
2791 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2793 (*_bfd_error_handler)
2794 ("%B: illegal symbol index %ld in relocs",
2795 input_bfd, symndx);
2796 bfd_set_error (bfd_error_bad_value);
2797 return FALSE;
2799 h = obj_coff_sym_hashes (input_bfd)[symndx];
2800 sym = syms + symndx;
2803 if (sym != NULL && sym->n_scnum != 0)
2804 addend = - sym->n_value;
2805 else
2806 addend = 0;
2808 if (rel->r_type == R_SH_PCDISP)
2809 addend -= 4;
2811 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2812 howto = NULL;
2813 else
2814 howto = &sh_coff_howtos[rel->r_type];
2816 if (howto == NULL)
2818 bfd_set_error (bfd_error_bad_value);
2819 return FALSE;
2822 #ifdef COFF_WITH_PE
2823 if (rel->r_type == R_SH_IMAGEBASE)
2824 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2825 #endif
2827 val = 0;
2829 if (h == NULL)
2831 asection *sec;
2833 /* There is nothing to do for an internal PCDISP reloc. */
2834 if (rel->r_type == R_SH_PCDISP)
2835 continue;
2837 if (symndx == -1)
2839 sec = bfd_abs_section_ptr;
2840 val = 0;
2842 else
2844 sec = sections[symndx];
2845 val = (sec->output_section->vma
2846 + sec->output_offset
2847 + sym->n_value
2848 - sec->vma);
2851 else
2853 if (h->root.type == bfd_link_hash_defined
2854 || h->root.type == bfd_link_hash_defweak)
2856 asection *sec;
2858 sec = h->root.u.def.section;
2859 val = (h->root.u.def.value
2860 + sec->output_section->vma
2861 + sec->output_offset);
2863 else if (! info->relocatable)
2865 if (! ((*info->callbacks->undefined_symbol)
2866 (info, h->root.root.string, input_bfd, input_section,
2867 rel->r_vaddr - input_section->vma, TRUE)))
2868 return FALSE;
2872 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2873 contents,
2874 rel->r_vaddr - input_section->vma,
2875 val, addend);
2877 switch (rstat)
2879 default:
2880 abort ();
2881 case bfd_reloc_ok:
2882 break;
2883 case bfd_reloc_overflow:
2885 const char *name;
2886 char buf[SYMNMLEN + 1];
2888 if (symndx == -1)
2889 name = "*ABS*";
2890 else if (h != NULL)
2891 name = NULL;
2892 else if (sym->_n._n_n._n_zeroes == 0
2893 && sym->_n._n_n._n_offset != 0)
2894 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2895 else
2897 strncpy (buf, sym->_n._n_name, SYMNMLEN);
2898 buf[SYMNMLEN] = '\0';
2899 name = buf;
2902 if (! ((*info->callbacks->reloc_overflow)
2903 (info, (h ? &h->root : NULL), name, howto->name,
2904 (bfd_vma) 0, input_bfd, input_section,
2905 rel->r_vaddr - input_section->vma)))
2906 return FALSE;
2911 return TRUE;
2914 /* This is a version of bfd_generic_get_relocated_section_contents
2915 which uses sh_relocate_section. */
2917 static bfd_byte *
2918 sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
2919 data, relocatable, symbols)
2920 bfd *output_bfd;
2921 struct bfd_link_info *link_info;
2922 struct bfd_link_order *link_order;
2923 bfd_byte *data;
2924 bfd_boolean relocatable;
2925 asymbol **symbols;
2927 asection *input_section = link_order->u.indirect.section;
2928 bfd *input_bfd = input_section->owner;
2929 asection **sections = NULL;
2930 struct internal_reloc *internal_relocs = NULL;
2931 struct internal_syment *internal_syms = NULL;
2933 /* We only need to handle the case of relaxing, or of having a
2934 particular set of section contents, specially. */
2935 if (relocatable
2936 || coff_section_data (input_bfd, input_section) == NULL
2937 || coff_section_data (input_bfd, input_section)->contents == NULL)
2938 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2939 link_order, data,
2940 relocatable,
2941 symbols);
2943 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2944 (size_t) input_section->size);
2946 if ((input_section->flags & SEC_RELOC) != 0
2947 && input_section->reloc_count > 0)
2949 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2950 bfd_byte *esym, *esymend;
2951 struct internal_syment *isymp;
2952 asection **secpp;
2953 bfd_size_type amt;
2955 if (! _bfd_coff_get_external_symbols (input_bfd))
2956 goto error_return;
2958 internal_relocs = (_bfd_coff_read_internal_relocs
2959 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2960 FALSE, (struct internal_reloc *) NULL));
2961 if (internal_relocs == NULL)
2962 goto error_return;
2964 amt = obj_raw_syment_count (input_bfd);
2965 amt *= sizeof (struct internal_syment);
2966 internal_syms = (struct internal_syment *) bfd_malloc (amt);
2967 if (internal_syms == NULL)
2968 goto error_return;
2970 amt = obj_raw_syment_count (input_bfd);
2971 amt *= sizeof (asection *);
2972 sections = (asection **) bfd_malloc (amt);
2973 if (sections == NULL)
2974 goto error_return;
2976 isymp = internal_syms;
2977 secpp = sections;
2978 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2979 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2980 while (esym < esymend)
2982 bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
2984 if (isymp->n_scnum != 0)
2985 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2986 else
2988 if (isymp->n_value == 0)
2989 *secpp = bfd_und_section_ptr;
2990 else
2991 *secpp = bfd_com_section_ptr;
2994 esym += (isymp->n_numaux + 1) * symesz;
2995 secpp += isymp->n_numaux + 1;
2996 isymp += isymp->n_numaux + 1;
2999 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
3000 input_section, data, internal_relocs,
3001 internal_syms, sections))
3002 goto error_return;
3004 free (sections);
3005 sections = NULL;
3006 free (internal_syms);
3007 internal_syms = NULL;
3008 free (internal_relocs);
3009 internal_relocs = NULL;
3012 return data;
3014 error_return:
3015 if (internal_relocs != NULL)
3016 free (internal_relocs);
3017 if (internal_syms != NULL)
3018 free (internal_syms);
3019 if (sections != NULL)
3020 free (sections);
3021 return NULL;
3024 /* The target vectors. */
3026 #ifndef TARGET_SHL_SYM
3027 CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3028 #endif
3030 #ifdef TARGET_SHL_SYM
3031 #define TARGET_SYM TARGET_SHL_SYM
3032 #else
3033 #define TARGET_SYM shlcoff_vec
3034 #endif
3036 #ifndef TARGET_SHL_NAME
3037 #define TARGET_SHL_NAME "coff-shl"
3038 #endif
3040 #ifdef COFF_WITH_PE
3041 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3042 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3043 #else
3044 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3045 0, '_', NULL, COFF_SWAP_TABLE)
3046 #endif
3048 #ifndef TARGET_SHL_SYM
3049 static const bfd_target * coff_small_object_p PARAMS ((bfd *));
3050 static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
3051 /* Some people want versions of the SH COFF target which do not align
3052 to 16 byte boundaries. We implement that by adding a couple of new
3053 target vectors. These are just like the ones above, but they
3054 change the default section alignment. To generate them in the
3055 assembler, use -small. To use them in the linker, use -b
3056 coff-sh{l}-small and -oformat coff-sh{l}-small.
3058 Yes, this is a horrible hack. A general solution for setting
3059 section alignment in COFF is rather complex. ELF handles this
3060 correctly. */
3062 /* Only recognize the small versions if the target was not defaulted.
3063 Otherwise we won't recognize the non default endianness. */
3065 static const bfd_target *
3066 coff_small_object_p (abfd)
3067 bfd *abfd;
3069 if (abfd->target_defaulted)
3071 bfd_set_error (bfd_error_wrong_format);
3072 return NULL;
3074 return coff_object_p (abfd);
3077 /* Set the section alignment for the small versions. */
3079 static bfd_boolean
3080 coff_small_new_section_hook (abfd, section)
3081 bfd *abfd;
3082 asection *section;
3084 if (! coff_new_section_hook (abfd, section))
3085 return FALSE;
3087 /* We must align to at least a four byte boundary, because longword
3088 accesses must be on a four byte boundary. */
3089 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3090 section->alignment_power = 2;
3092 return TRUE;
3095 /* This is copied from bfd_coff_std_swap_table so that we can change
3096 the default section alignment power. */
3098 static const bfd_coff_backend_data bfd_coff_small_swap_table =
3100 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3101 coff_swap_aux_out, coff_swap_sym_out,
3102 coff_swap_lineno_out, coff_swap_reloc_out,
3103 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3104 coff_swap_scnhdr_out,
3105 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3106 #ifdef COFF_LONG_FILENAMES
3107 TRUE,
3108 #else
3109 FALSE,
3110 #endif
3111 #ifdef COFF_LONG_SECTION_NAMES
3112 TRUE,
3113 #else
3114 FALSE,
3115 #endif
3117 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3118 TRUE,
3119 #else
3120 FALSE,
3121 #endif
3122 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3124 #else
3126 #endif
3127 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3128 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3129 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3130 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3131 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3132 coff_classify_symbol, coff_compute_section_file_positions,
3133 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3134 coff_adjust_symndx, coff_link_add_one_symbol,
3135 coff_link_output_has_begun, coff_final_link_postscript
3138 #define coff_small_close_and_cleanup \
3139 coff_close_and_cleanup
3140 #define coff_small_bfd_free_cached_info \
3141 coff_bfd_free_cached_info
3142 #define coff_small_get_section_contents \
3143 coff_get_section_contents
3144 #define coff_small_get_section_contents_in_window \
3145 coff_get_section_contents_in_window
3147 extern const bfd_target shlcoff_small_vec;
3149 const bfd_target shcoff_small_vec =
3151 "coff-sh-small", /* name */
3152 bfd_target_coff_flavour,
3153 BFD_ENDIAN_BIG, /* data byte order is big */
3154 BFD_ENDIAN_BIG, /* header byte order is big */
3156 (HAS_RELOC | EXEC_P | /* object flags */
3157 HAS_LINENO | HAS_DEBUG |
3158 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3160 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3161 '_', /* leading symbol underscore */
3162 '/', /* ar_pad_char */
3163 15, /* ar_max_namelen */
3164 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3165 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3166 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3167 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3168 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3169 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3171 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3172 bfd_generic_archive_p, _bfd_dummy_target},
3173 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3174 bfd_false},
3175 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3176 _bfd_write_archive_contents, bfd_false},
3178 BFD_JUMP_TABLE_GENERIC (coff_small),
3179 BFD_JUMP_TABLE_COPY (coff),
3180 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3181 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3182 BFD_JUMP_TABLE_SYMBOLS (coff),
3183 BFD_JUMP_TABLE_RELOCS (coff),
3184 BFD_JUMP_TABLE_WRITE (coff),
3185 BFD_JUMP_TABLE_LINK (coff),
3186 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3188 & shlcoff_small_vec,
3190 (PTR) &bfd_coff_small_swap_table
3193 const bfd_target shlcoff_small_vec =
3195 "coff-shl-small", /* name */
3196 bfd_target_coff_flavour,
3197 BFD_ENDIAN_LITTLE, /* data byte order is little */
3198 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3200 (HAS_RELOC | EXEC_P | /* object flags */
3201 HAS_LINENO | HAS_DEBUG |
3202 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3204 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3205 '_', /* leading symbol underscore */
3206 '/', /* ar_pad_char */
3207 15, /* ar_max_namelen */
3208 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3209 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3210 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3211 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3212 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3213 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3215 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3216 bfd_generic_archive_p, _bfd_dummy_target},
3217 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3218 bfd_false},
3219 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3220 _bfd_write_archive_contents, bfd_false},
3222 BFD_JUMP_TABLE_GENERIC (coff_small),
3223 BFD_JUMP_TABLE_COPY (coff),
3224 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3225 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3226 BFD_JUMP_TABLE_SYMBOLS (coff),
3227 BFD_JUMP_TABLE_RELOCS (coff),
3228 BFD_JUMP_TABLE_WRITE (coff),
3229 BFD_JUMP_TABLE_LINK (coff),
3230 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3232 & shcoff_small_vec,
3234 (PTR) &bfd_coff_small_swap_table
3236 #endif