Add support for generating PLT lookups for the ColdFire.
[binutils.git] / bfd / elflink.c
blob1ddfe182c61615ed108a133444e4ae07a8f942dc
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
45 switch (bed->s->arch_size)
47 case 32:
48 ptralign = 2;
49 break;
51 case 64:
52 ptralign = 3;
53 break;
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
60 flags = bed->dynamic_sec_flags;
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
66 return FALSE;
68 if (bed->want_got_plt)
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
74 return FALSE;
77 if (bed->want_got_sym)
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
83 bh = NULL;
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 return FALSE;
88 h = (struct elf_link_hash_entry *) bh;
89 h->def_regular = 1;
90 h->type = STT_OBJECT;
91 h->other = STV_HIDDEN;
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
97 elf_hash_table (info)->hgot = h;
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
103 return TRUE;
106 /* Create a strtab to hold the dynamic symbol names. */
107 static bfd_boolean
108 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
110 struct elf_link_hash_table *hash_table;
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
116 if (hash_table->dynstr == NULL)
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
120 return FALSE;
122 return TRUE;
125 /* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
132 bfd_boolean
133 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
135 flagword flags;
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
139 const struct elf_backend_data *bed;
141 if (! is_elf_hash_table (info->hash))
142 return FALSE;
144 if (elf_hash_table (info)->dynamic_sections_created)
145 return TRUE;
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 return FALSE;
150 abfd = elf_hash_table (info)->dynobj;
151 bed = get_elf_backend_data (abfd);
153 flags = bed->dynamic_sec_flags;
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
157 if (info->executable)
159 s = bfd_make_section (abfd, ".interp");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
162 return FALSE;
165 if (! info->traditional_format)
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
168 if (s == NULL
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
171 return FALSE;
172 elf_hash_table (info)->eh_info.hdr_sec = s;
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
183 s = bfd_make_section (abfd, ".gnu.version");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
187 return FALSE;
189 s = bfd_make_section (abfd, ".gnu.version_r");
190 if (s == NULL
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 return FALSE;
195 s = bfd_make_section (abfd, ".dynsym");
196 if (s == NULL
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 return FALSE;
201 s = bfd_make_section (abfd, ".dynstr");
202 if (s == NULL
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
204 return FALSE;
206 s = bfd_make_section (abfd, ".dynamic");
207 if (s == NULL
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
210 return FALSE;
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
219 FALSE, FALSE, FALSE);
220 if (h != NULL)
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h->root.type = bfd_link_hash_new;
228 bh = &h->root;
229 if (! (_bfd_generic_link_add_one_symbol
230 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
231 get_elf_backend_data (abfd)->collect, &bh)))
232 return FALSE;
233 h = (struct elf_link_hash_entry *) bh;
234 h->def_regular = 1;
235 h->type = STT_OBJECT;
237 if (! info->executable
238 && ! bfd_elf_link_record_dynamic_symbol (info, h))
239 return FALSE;
241 s = bfd_make_section (abfd, ".hash");
242 if (s == NULL
243 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
244 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
245 return FALSE;
246 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
252 return FALSE;
254 elf_hash_table (info)->dynamic_sections_created = TRUE;
256 return TRUE;
259 /* Create dynamic sections when linking against a dynamic object. */
261 bfd_boolean
262 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
264 flagword flags, pltflags;
265 asection *s;
266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
270 flags = bed->dynamic_sec_flags;
272 pltflags = flags;
273 if (bed->plt_not_loaded)
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
277 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
278 else
279 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
280 if (bed->plt_readonly)
281 pltflags |= SEC_READONLY;
283 s = bfd_make_section (abfd, ".plt");
284 if (s == NULL
285 || ! bfd_set_section_flags (abfd, s, pltflags)
286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
287 return FALSE;
289 if (bed->want_plt_sym)
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
293 struct elf_link_hash_entry *h;
294 struct bfd_link_hash_entry *bh = NULL;
296 if (! (_bfd_generic_link_add_one_symbol
297 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
298 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
299 return FALSE;
300 h = (struct elf_link_hash_entry *) bh;
301 h->def_regular = 1;
302 h->type = STT_OBJECT;
304 if (! info->executable
305 && ! bfd_elf_link_record_dynamic_symbol (info, h))
306 return FALSE;
309 s = bfd_make_section (abfd,
310 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
311 if (s == NULL
312 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
316 if (! _bfd_elf_create_got_section (abfd, info))
317 return FALSE;
319 if (bed->want_dynbss)
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s = bfd_make_section (abfd, ".dynbss");
328 if (s == NULL
329 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
330 return FALSE;
332 /* The .rel[a].bss section holds copy relocs. This section is not
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
342 copy relocs. */
343 if (! info->shared)
345 s = bfd_make_section (abfd,
346 (bed->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
348 if (s == NULL
349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
355 return TRUE;
358 /* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
364 one. */
366 bfd_boolean
367 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
368 struct elf_link_hash_entry *h)
370 if (h->dynindx == -1)
372 struct elf_strtab_hash *dynstr;
373 char *p;
374 const char *name;
375 bfd_size_type indx;
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h->other))
383 case STV_INTERNAL:
384 case STV_HIDDEN:
385 if (h->root.type != bfd_link_hash_undefined
386 && h->root.type != bfd_link_hash_undefweak)
388 h->forced_local = 1;
389 if (!elf_hash_table (info)->is_relocatable_executable)
390 return TRUE;
393 default:
394 break;
397 h->dynindx = elf_hash_table (info)->dynsymcount;
398 ++elf_hash_table (info)->dynsymcount;
400 dynstr = elf_hash_table (info)->dynstr;
401 if (dynstr == NULL)
403 /* Create a strtab to hold the dynamic symbol names. */
404 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
405 if (dynstr == NULL)
406 return FALSE;
409 /* We don't put any version information in the dynamic string
410 table. */
411 name = h->root.root.string;
412 p = strchr (name, ELF_VER_CHR);
413 if (p != NULL)
414 /* We know that the p points into writable memory. In fact,
415 there are only a few symbols that have read-only names, being
416 those like _GLOBAL_OFFSET_TABLE_ that are created specially
417 by the backends. Most symbols will have names pointing into
418 an ELF string table read from a file, or to objalloc memory. */
419 *p = 0;
421 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
423 if (p != NULL)
424 *p = ELF_VER_CHR;
426 if (indx == (bfd_size_type) -1)
427 return FALSE;
428 h->dynstr_index = indx;
431 return TRUE;
434 /* Record an assignment to a symbol made by a linker script. We need
435 this in case some dynamic object refers to this symbol. */
437 bfd_boolean
438 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
439 struct bfd_link_info *info,
440 const char *name,
441 bfd_boolean provide)
443 struct elf_link_hash_entry *h;
444 struct elf_link_hash_table *htab;
446 if (!is_elf_hash_table (info->hash))
447 return TRUE;
449 htab = elf_hash_table (info);
450 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
451 if (h == NULL)
452 return provide;
454 /* Since we're defining the symbol, don't let it seem to have not
455 been defined. record_dynamic_symbol and size_dynamic_sections
456 may depend on this. */
457 if (h->root.type == bfd_link_hash_undefweak
458 || h->root.type == bfd_link_hash_undefined)
460 h->root.type = bfd_link_hash_new;
461 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
462 bfd_link_repair_undef_list (&htab->root);
465 if (h->root.type == bfd_link_hash_new)
466 h->non_elf = 0;
468 /* If this symbol is being provided by the linker script, and it is
469 currently defined by a dynamic object, but not by a regular
470 object, then mark it as undefined so that the generic linker will
471 force the correct value. */
472 if (provide
473 && h->def_dynamic
474 && !h->def_regular)
475 h->root.type = bfd_link_hash_undefined;
477 /* If this symbol is not being provided by the linker script, and it is
478 currently defined by a dynamic object, but not by a regular object,
479 then clear out any version information because the symbol will not be
480 associated with the dynamic object any more. */
481 if (!provide
482 && h->def_dynamic
483 && !h->def_regular)
484 h->verinfo.verdef = NULL;
486 h->def_regular = 1;
488 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
489 and executables. */
490 if (!info->relocatable
491 && h->dynindx != -1
492 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
493 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
494 h->forced_local = 1;
496 if ((h->def_dynamic
497 || h->ref_dynamic
498 || info->shared
499 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
500 && h->dynindx == -1)
502 if (! bfd_elf_link_record_dynamic_symbol (info, h))
503 return FALSE;
505 /* If this is a weak defined symbol, and we know a corresponding
506 real symbol from the same dynamic object, make sure the real
507 symbol is also made into a dynamic symbol. */
508 if (h->u.weakdef != NULL
509 && h->u.weakdef->dynindx == -1)
511 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
512 return FALSE;
516 return TRUE;
519 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
520 success, and 2 on a failure caused by attempting to record a symbol
521 in a discarded section, eg. a discarded link-once section symbol. */
524 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
525 bfd *input_bfd,
526 long input_indx)
528 bfd_size_type amt;
529 struct elf_link_local_dynamic_entry *entry;
530 struct elf_link_hash_table *eht;
531 struct elf_strtab_hash *dynstr;
532 unsigned long dynstr_index;
533 char *name;
534 Elf_External_Sym_Shndx eshndx;
535 char esym[sizeof (Elf64_External_Sym)];
537 if (! is_elf_hash_table (info->hash))
538 return 0;
540 /* See if the entry exists already. */
541 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
542 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
543 return 1;
545 amt = sizeof (*entry);
546 entry = bfd_alloc (input_bfd, amt);
547 if (entry == NULL)
548 return 0;
550 /* Go find the symbol, so that we can find it's name. */
551 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
552 1, input_indx, &entry->isym, esym, &eshndx))
554 bfd_release (input_bfd, entry);
555 return 0;
558 if (entry->isym.st_shndx != SHN_UNDEF
559 && (entry->isym.st_shndx < SHN_LORESERVE
560 || entry->isym.st_shndx > SHN_HIRESERVE))
562 asection *s;
564 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
565 if (s == NULL || bfd_is_abs_section (s->output_section))
567 /* We can still bfd_release here as nothing has done another
568 bfd_alloc. We can't do this later in this function. */
569 bfd_release (input_bfd, entry);
570 return 2;
574 name = (bfd_elf_string_from_elf_section
575 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
576 entry->isym.st_name));
578 dynstr = elf_hash_table (info)->dynstr;
579 if (dynstr == NULL)
581 /* Create a strtab to hold the dynamic symbol names. */
582 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
583 if (dynstr == NULL)
584 return 0;
587 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
588 if (dynstr_index == (unsigned long) -1)
589 return 0;
590 entry->isym.st_name = dynstr_index;
592 eht = elf_hash_table (info);
594 entry->next = eht->dynlocal;
595 eht->dynlocal = entry;
596 entry->input_bfd = input_bfd;
597 entry->input_indx = input_indx;
598 eht->dynsymcount++;
600 /* Whatever binding the symbol had before, it's now local. */
601 entry->isym.st_info
602 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
604 /* The dynindx will be set at the end of size_dynamic_sections. */
606 return 1;
609 /* Return the dynindex of a local dynamic symbol. */
611 long
612 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
613 bfd *input_bfd,
614 long input_indx)
616 struct elf_link_local_dynamic_entry *e;
618 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
619 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
620 return e->dynindx;
621 return -1;
624 /* This function is used to renumber the dynamic symbols, if some of
625 them are removed because they are marked as local. This is called
626 via elf_link_hash_traverse. */
628 static bfd_boolean
629 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
630 void *data)
632 size_t *count = data;
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
637 if (h->forced_local)
638 return TRUE;
640 if (h->dynindx != -1)
641 h->dynindx = ++(*count);
643 return TRUE;
647 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
648 STB_LOCAL binding. */
650 static bfd_boolean
651 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
652 void *data)
654 size_t *count = data;
656 if (h->root.type == bfd_link_hash_warning)
657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
659 if (!h->forced_local)
660 return TRUE;
662 if (h->dynindx != -1)
663 h->dynindx = ++(*count);
665 return TRUE;
668 /* Return true if the dynamic symbol for a given section should be
669 omitted when creating a shared library. */
670 bfd_boolean
671 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
672 struct bfd_link_info *info,
673 asection *p)
675 switch (elf_section_data (p)->this_hdr.sh_type)
677 case SHT_PROGBITS:
678 case SHT_NOBITS:
679 /* If sh_type is yet undecided, assume it could be
680 SHT_PROGBITS/SHT_NOBITS. */
681 case SHT_NULL:
682 if (strcmp (p->name, ".got") == 0
683 || strcmp (p->name, ".got.plt") == 0
684 || strcmp (p->name, ".plt") == 0)
686 asection *ip;
687 bfd *dynobj = elf_hash_table (info)->dynobj;
689 if (dynobj != NULL
690 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
691 && (ip->flags & SEC_LINKER_CREATED)
692 && ip->output_section == p)
693 return TRUE;
695 return FALSE;
697 /* There shouldn't be section relative relocations
698 against any other section. */
699 default:
700 return TRUE;
704 /* Assign dynsym indices. In a shared library we generate a section
705 symbol for each output section, which come first. Next come symbols
706 which have been forced to local binding. Then all of the back-end
707 allocated local dynamic syms, followed by the rest of the global
708 symbols. */
710 static unsigned long
711 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
712 struct bfd_link_info *info,
713 unsigned long *section_sym_count)
715 unsigned long dynsymcount = 0;
717 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
720 asection *p;
721 for (p = output_bfd->sections; p ; p = p->next)
722 if ((p->flags & SEC_EXCLUDE) == 0
723 && (p->flags & SEC_ALLOC) != 0
724 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
725 elf_section_data (p)->dynindx = ++dynsymcount;
727 *section_sym_count = dynsymcount;
729 elf_link_hash_traverse (elf_hash_table (info),
730 elf_link_renumber_local_hash_table_dynsyms,
731 &dynsymcount);
733 if (elf_hash_table (info)->dynlocal)
735 struct elf_link_local_dynamic_entry *p;
736 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
737 p->dynindx = ++dynsymcount;
740 elf_link_hash_traverse (elf_hash_table (info),
741 elf_link_renumber_hash_table_dynsyms,
742 &dynsymcount);
744 /* There is an unused NULL entry at the head of the table which
745 we must account for in our count. Unless there weren't any
746 symbols, which means we'll have no table at all. */
747 if (dynsymcount != 0)
748 ++dynsymcount;
750 return elf_hash_table (info)->dynsymcount = dynsymcount;
753 /* This function is called when we want to define a new symbol. It
754 handles the various cases which arise when we find a definition in
755 a dynamic object, or when there is already a definition in a
756 dynamic object. The new symbol is described by NAME, SYM, PSEC,
757 and PVALUE. We set SYM_HASH to the hash table entry. We set
758 OVERRIDE if the old symbol is overriding a new definition. We set
759 TYPE_CHANGE_OK if it is OK for the type to change. We set
760 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
761 change, we mean that we shouldn't warn if the type or size does
762 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
763 object is overridden by a regular object. */
765 bfd_boolean
766 _bfd_elf_merge_symbol (bfd *abfd,
767 struct bfd_link_info *info,
768 const char *name,
769 Elf_Internal_Sym *sym,
770 asection **psec,
771 bfd_vma *pvalue,
772 unsigned int *pold_alignment,
773 struct elf_link_hash_entry **sym_hash,
774 bfd_boolean *skip,
775 bfd_boolean *override,
776 bfd_boolean *type_change_ok,
777 bfd_boolean *size_change_ok)
779 asection *sec, *oldsec;
780 struct elf_link_hash_entry *h;
781 struct elf_link_hash_entry *flip;
782 int bind;
783 bfd *oldbfd;
784 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
785 bfd_boolean newweak, oldweak;
787 *skip = FALSE;
788 *override = FALSE;
790 sec = *psec;
791 bind = ELF_ST_BIND (sym->st_info);
793 if (! bfd_is_und_section (sec))
794 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
795 else
796 h = ((struct elf_link_hash_entry *)
797 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
798 if (h == NULL)
799 return FALSE;
800 *sym_hash = h;
802 /* This code is for coping with dynamic objects, and is only useful
803 if we are doing an ELF link. */
804 if (info->hash->creator != abfd->xvec)
805 return TRUE;
807 /* For merging, we only care about real symbols. */
809 while (h->root.type == bfd_link_hash_indirect
810 || h->root.type == bfd_link_hash_warning)
811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
813 /* If we just created the symbol, mark it as being an ELF symbol.
814 Other than that, there is nothing to do--there is no merge issue
815 with a newly defined symbol--so we just return. */
817 if (h->root.type == bfd_link_hash_new)
819 h->non_elf = 0;
820 return TRUE;
823 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
824 existing symbol. */
826 switch (h->root.type)
828 default:
829 oldbfd = NULL;
830 oldsec = NULL;
831 break;
833 case bfd_link_hash_undefined:
834 case bfd_link_hash_undefweak:
835 oldbfd = h->root.u.undef.abfd;
836 oldsec = NULL;
837 break;
839 case bfd_link_hash_defined:
840 case bfd_link_hash_defweak:
841 oldbfd = h->root.u.def.section->owner;
842 oldsec = h->root.u.def.section;
843 break;
845 case bfd_link_hash_common:
846 oldbfd = h->root.u.c.p->section->owner;
847 oldsec = h->root.u.c.p->section;
848 break;
851 /* In cases involving weak versioned symbols, we may wind up trying
852 to merge a symbol with itself. Catch that here, to avoid the
853 confusion that results if we try to override a symbol with
854 itself. The additional tests catch cases like
855 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
856 dynamic object, which we do want to handle here. */
857 if (abfd == oldbfd
858 && ((abfd->flags & DYNAMIC) == 0
859 || !h->def_regular))
860 return TRUE;
862 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
863 respectively, is from a dynamic object. */
865 if ((abfd->flags & DYNAMIC) != 0)
866 newdyn = TRUE;
867 else
868 newdyn = FALSE;
870 if (oldbfd != NULL)
871 olddyn = (oldbfd->flags & DYNAMIC) != 0;
872 else
874 asection *hsec;
876 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
877 indices used by MIPS ELF. */
878 switch (h->root.type)
880 default:
881 hsec = NULL;
882 break;
884 case bfd_link_hash_defined:
885 case bfd_link_hash_defweak:
886 hsec = h->root.u.def.section;
887 break;
889 case bfd_link_hash_common:
890 hsec = h->root.u.c.p->section;
891 break;
894 if (hsec == NULL)
895 olddyn = FALSE;
896 else
897 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
900 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
901 respectively, appear to be a definition rather than reference. */
903 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
904 newdef = FALSE;
905 else
906 newdef = TRUE;
908 if (h->root.type == bfd_link_hash_undefined
909 || h->root.type == bfd_link_hash_undefweak
910 || h->root.type == bfd_link_hash_common)
911 olddef = FALSE;
912 else
913 olddef = TRUE;
915 /* Check TLS symbol. */
916 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
917 && ELF_ST_TYPE (sym->st_info) != h->type)
919 bfd *ntbfd, *tbfd;
920 bfd_boolean ntdef, tdef;
921 asection *ntsec, *tsec;
923 if (h->type == STT_TLS)
925 ntbfd = abfd;
926 ntsec = sec;
927 ntdef = newdef;
928 tbfd = oldbfd;
929 tsec = oldsec;
930 tdef = olddef;
932 else
934 ntbfd = oldbfd;
935 ntsec = oldsec;
936 ntdef = olddef;
937 tbfd = abfd;
938 tsec = sec;
939 tdef = newdef;
942 if (tdef && ntdef)
943 (*_bfd_error_handler)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
945 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
946 else if (!tdef && !ntdef)
947 (*_bfd_error_handler)
948 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
949 tbfd, ntbfd, h->root.root.string);
950 else if (tdef)
951 (*_bfd_error_handler)
952 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
953 tbfd, tsec, ntbfd, h->root.root.string);
954 else
955 (*_bfd_error_handler)
956 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
957 tbfd, ntbfd, ntsec, h->root.root.string);
959 bfd_set_error (bfd_error_bad_value);
960 return FALSE;
963 /* We need to remember if a symbol has a definition in a dynamic
964 object or is weak in all dynamic objects. Internal and hidden
965 visibility will make it unavailable to dynamic objects. */
966 if (newdyn && !h->dynamic_def)
968 if (!bfd_is_und_section (sec))
969 h->dynamic_def = 1;
970 else
972 /* Check if this symbol is weak in all dynamic objects. If it
973 is the first time we see it in a dynamic object, we mark
974 if it is weak. Otherwise, we clear it. */
975 if (!h->ref_dynamic)
977 if (bind == STB_WEAK)
978 h->dynamic_weak = 1;
980 else if (bind != STB_WEAK)
981 h->dynamic_weak = 0;
985 /* If the old symbol has non-default visibility, we ignore the new
986 definition from a dynamic object. */
987 if (newdyn
988 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
989 && !bfd_is_und_section (sec))
991 *skip = TRUE;
992 /* Make sure this symbol is dynamic. */
993 h->ref_dynamic = 1;
994 /* A protected symbol has external availability. Make sure it is
995 recorded as dynamic.
997 FIXME: Should we check type and size for protected symbol? */
998 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
999 return bfd_elf_link_record_dynamic_symbol (info, h);
1000 else
1001 return TRUE;
1003 else if (!newdyn
1004 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1005 && h->def_dynamic)
1007 /* If the new symbol with non-default visibility comes from a
1008 relocatable file and the old definition comes from a dynamic
1009 object, we remove the old definition. */
1010 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1011 h = *sym_hash;
1013 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1014 && bfd_is_und_section (sec))
1016 /* If the new symbol is undefined and the old symbol was
1017 also undefined before, we need to make sure
1018 _bfd_generic_link_add_one_symbol doesn't mess
1019 up the linker hash table undefs list. Since the old
1020 definition came from a dynamic object, it is still on the
1021 undefs list. */
1022 h->root.type = bfd_link_hash_undefined;
1023 h->root.u.undef.abfd = abfd;
1025 else
1027 h->root.type = bfd_link_hash_new;
1028 h->root.u.undef.abfd = NULL;
1031 if (h->def_dynamic)
1033 h->def_dynamic = 0;
1034 h->ref_dynamic = 1;
1035 h->dynamic_def = 1;
1037 /* FIXME: Should we check type and size for protected symbol? */
1038 h->size = 0;
1039 h->type = 0;
1040 return TRUE;
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1048 /* If a new weak symbol definition comes from a regular file and the
1049 old symbol comes from a dynamic library, we treat the new one as
1050 strong. Similarly, an old weak symbol definition from a regular
1051 file is treated as strong when the new symbol comes from a dynamic
1052 library. Further, an old weak symbol from a dynamic library is
1053 treated as strong if the new symbol is from a dynamic library.
1054 This reflects the way glibc's ld.so works.
1056 Do this before setting *type_change_ok or *size_change_ok so that
1057 we warn properly when dynamic library symbols are overridden. */
1059 if (newdef && !newdyn && olddyn)
1060 newweak = FALSE;
1061 if (olddef && newdyn)
1062 oldweak = FALSE;
1064 /* It's OK to change the type if either the existing symbol or the
1065 new symbol is weak. A type change is also OK if the old symbol
1066 is undefined and the new symbol is defined. */
1068 if (oldweak
1069 || newweak
1070 || (newdef
1071 && h->root.type == bfd_link_hash_undefined))
1072 *type_change_ok = TRUE;
1074 /* It's OK to change the size if either the existing symbol or the
1075 new symbol is weak, or if the old symbol is undefined. */
1077 if (*type_change_ok
1078 || h->root.type == bfd_link_hash_undefined)
1079 *size_change_ok = TRUE;
1081 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1082 symbol, respectively, appears to be a common symbol in a dynamic
1083 object. If a symbol appears in an uninitialized section, and is
1084 not weak, and is not a function, then it may be a common symbol
1085 which was resolved when the dynamic object was created. We want
1086 to treat such symbols specially, because they raise special
1087 considerations when setting the symbol size: if the symbol
1088 appears as a common symbol in a regular object, and the size in
1089 the regular object is larger, we must make sure that we use the
1090 larger size. This problematic case can always be avoided in C,
1091 but it must be handled correctly when using Fortran shared
1092 libraries.
1094 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1095 likewise for OLDDYNCOMMON and OLDDEF.
1097 Note that this test is just a heuristic, and that it is quite
1098 possible to have an uninitialized symbol in a shared object which
1099 is really a definition, rather than a common symbol. This could
1100 lead to some minor confusion when the symbol really is a common
1101 symbol in some regular object. However, I think it will be
1102 harmless. */
1104 if (newdyn
1105 && newdef
1106 && !newweak
1107 && (sec->flags & SEC_ALLOC) != 0
1108 && (sec->flags & SEC_LOAD) == 0
1109 && sym->st_size > 0
1110 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1111 newdyncommon = TRUE;
1112 else
1113 newdyncommon = FALSE;
1115 if (olddyn
1116 && olddef
1117 && h->root.type == bfd_link_hash_defined
1118 && h->def_dynamic
1119 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1120 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1121 && h->size > 0
1122 && h->type != STT_FUNC)
1123 olddyncommon = TRUE;
1124 else
1125 olddyncommon = FALSE;
1127 /* If both the old and the new symbols look like common symbols in a
1128 dynamic object, set the size of the symbol to the larger of the
1129 two. */
1131 if (olddyncommon
1132 && newdyncommon
1133 && sym->st_size != h->size)
1135 /* Since we think we have two common symbols, issue a multiple
1136 common warning if desired. Note that we only warn if the
1137 size is different. If the size is the same, we simply let
1138 the old symbol override the new one as normally happens with
1139 symbols defined in dynamic objects. */
1141 if (! ((*info->callbacks->multiple_common)
1142 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1143 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1144 return FALSE;
1146 if (sym->st_size > h->size)
1147 h->size = sym->st_size;
1149 *size_change_ok = TRUE;
1152 /* If we are looking at a dynamic object, and we have found a
1153 definition, we need to see if the symbol was already defined by
1154 some other object. If so, we want to use the existing
1155 definition, and we do not want to report a multiple symbol
1156 definition error; we do this by clobbering *PSEC to be
1157 bfd_und_section_ptr.
1159 We treat a common symbol as a definition if the symbol in the
1160 shared library is a function, since common symbols always
1161 represent variables; this can cause confusion in principle, but
1162 any such confusion would seem to indicate an erroneous program or
1163 shared library. We also permit a common symbol in a regular
1164 object to override a weak symbol in a shared object. */
1166 if (newdyn
1167 && newdef
1168 && (olddef
1169 || (h->root.type == bfd_link_hash_common
1170 && (newweak
1171 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1173 *override = TRUE;
1174 newdef = FALSE;
1175 newdyncommon = FALSE;
1177 *psec = sec = bfd_und_section_ptr;
1178 *size_change_ok = TRUE;
1180 /* If we get here when the old symbol is a common symbol, then
1181 we are explicitly letting it override a weak symbol or
1182 function in a dynamic object, and we don't want to warn about
1183 a type change. If the old symbol is a defined symbol, a type
1184 change warning may still be appropriate. */
1186 if (h->root.type == bfd_link_hash_common)
1187 *type_change_ok = TRUE;
1190 /* Handle the special case of an old common symbol merging with a
1191 new symbol which looks like a common symbol in a shared object.
1192 We change *PSEC and *PVALUE to make the new symbol look like a
1193 common symbol, and let _bfd_generic_link_add_one_symbol will do
1194 the right thing. */
1196 if (newdyncommon
1197 && h->root.type == bfd_link_hash_common)
1199 *override = TRUE;
1200 newdef = FALSE;
1201 newdyncommon = FALSE;
1202 *pvalue = sym->st_size;
1203 *psec = sec = bfd_com_section_ptr;
1204 *size_change_ok = TRUE;
1207 /* If the old symbol is from a dynamic object, and the new symbol is
1208 a definition which is not from a dynamic object, then the new
1209 symbol overrides the old symbol. Symbols from regular files
1210 always take precedence over symbols from dynamic objects, even if
1211 they are defined after the dynamic object in the link.
1213 As above, we again permit a common symbol in a regular object to
1214 override a definition in a shared object if the shared object
1215 symbol is a function or is weak. */
1217 flip = NULL;
1218 if (!newdyn
1219 && (newdef
1220 || (bfd_is_com_section (sec)
1221 && (oldweak
1222 || h->type == STT_FUNC)))
1223 && olddyn
1224 && olddef
1225 && h->def_dynamic)
1227 /* Change the hash table entry to undefined, and let
1228 _bfd_generic_link_add_one_symbol do the right thing with the
1229 new definition. */
1231 h->root.type = bfd_link_hash_undefined;
1232 h->root.u.undef.abfd = h->root.u.def.section->owner;
1233 *size_change_ok = TRUE;
1235 olddef = FALSE;
1236 olddyncommon = FALSE;
1238 /* We again permit a type change when a common symbol may be
1239 overriding a function. */
1241 if (bfd_is_com_section (sec))
1242 *type_change_ok = TRUE;
1244 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1245 flip = *sym_hash;
1246 else
1247 /* This union may have been set to be non-NULL when this symbol
1248 was seen in a dynamic object. We must force the union to be
1249 NULL, so that it is correct for a regular symbol. */
1250 h->verinfo.vertree = NULL;
1253 /* Handle the special case of a new common symbol merging with an
1254 old symbol that looks like it might be a common symbol defined in
1255 a shared object. Note that we have already handled the case in
1256 which a new common symbol should simply override the definition
1257 in the shared library. */
1259 if (! newdyn
1260 && bfd_is_com_section (sec)
1261 && olddyncommon)
1263 /* It would be best if we could set the hash table entry to a
1264 common symbol, but we don't know what to use for the section
1265 or the alignment. */
1266 if (! ((*info->callbacks->multiple_common)
1267 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1268 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1269 return FALSE;
1271 /* If the presumed common symbol in the dynamic object is
1272 larger, pretend that the new symbol has its size. */
1274 if (h->size > *pvalue)
1275 *pvalue = h->size;
1277 /* We need to remember the alignment required by the symbol
1278 in the dynamic object. */
1279 BFD_ASSERT (pold_alignment);
1280 *pold_alignment = h->root.u.def.section->alignment_power;
1282 olddef = FALSE;
1283 olddyncommon = FALSE;
1285 h->root.type = bfd_link_hash_undefined;
1286 h->root.u.undef.abfd = h->root.u.def.section->owner;
1288 *size_change_ok = TRUE;
1289 *type_change_ok = TRUE;
1291 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1292 flip = *sym_hash;
1293 else
1294 h->verinfo.vertree = NULL;
1297 if (flip != NULL)
1299 /* Handle the case where we had a versioned symbol in a dynamic
1300 library and now find a definition in a normal object. In this
1301 case, we make the versioned symbol point to the normal one. */
1302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1303 flip->root.type = h->root.type;
1304 h->root.type = bfd_link_hash_indirect;
1305 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1306 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1307 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1308 if (h->def_dynamic)
1310 h->def_dynamic = 0;
1311 flip->ref_dynamic = 1;
1315 return TRUE;
1318 /* This function is called to create an indirect symbol from the
1319 default for the symbol with the default version if needed. The
1320 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1321 set DYNSYM if the new indirect symbol is dynamic. */
1323 bfd_boolean
1324 _bfd_elf_add_default_symbol (bfd *abfd,
1325 struct bfd_link_info *info,
1326 struct elf_link_hash_entry *h,
1327 const char *name,
1328 Elf_Internal_Sym *sym,
1329 asection **psec,
1330 bfd_vma *value,
1331 bfd_boolean *dynsym,
1332 bfd_boolean override)
1334 bfd_boolean type_change_ok;
1335 bfd_boolean size_change_ok;
1336 bfd_boolean skip;
1337 char *shortname;
1338 struct elf_link_hash_entry *hi;
1339 struct bfd_link_hash_entry *bh;
1340 const struct elf_backend_data *bed;
1341 bfd_boolean collect;
1342 bfd_boolean dynamic;
1343 char *p;
1344 size_t len, shortlen;
1345 asection *sec;
1347 /* If this symbol has a version, and it is the default version, we
1348 create an indirect symbol from the default name to the fully
1349 decorated name. This will cause external references which do not
1350 specify a version to be bound to this version of the symbol. */
1351 p = strchr (name, ELF_VER_CHR);
1352 if (p == NULL || p[1] != ELF_VER_CHR)
1353 return TRUE;
1355 if (override)
1357 /* We are overridden by an old definition. We need to check if we
1358 need to create the indirect symbol from the default name. */
1359 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1360 FALSE, FALSE);
1361 BFD_ASSERT (hi != NULL);
1362 if (hi == h)
1363 return TRUE;
1364 while (hi->root.type == bfd_link_hash_indirect
1365 || hi->root.type == bfd_link_hash_warning)
1367 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1368 if (hi == h)
1369 return TRUE;
1373 bed = get_elf_backend_data (abfd);
1374 collect = bed->collect;
1375 dynamic = (abfd->flags & DYNAMIC) != 0;
1377 shortlen = p - name;
1378 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1379 if (shortname == NULL)
1380 return FALSE;
1381 memcpy (shortname, name, shortlen);
1382 shortname[shortlen] = '\0';
1384 /* We are going to create a new symbol. Merge it with any existing
1385 symbol with this name. For the purposes of the merge, act as
1386 though we were defining the symbol we just defined, although we
1387 actually going to define an indirect symbol. */
1388 type_change_ok = FALSE;
1389 size_change_ok = FALSE;
1390 sec = *psec;
1391 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1392 NULL, &hi, &skip, &override,
1393 &type_change_ok, &size_change_ok))
1394 return FALSE;
1396 if (skip)
1397 goto nondefault;
1399 if (! override)
1401 bh = &hi->root;
1402 if (! (_bfd_generic_link_add_one_symbol
1403 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1404 0, name, FALSE, collect, &bh)))
1405 return FALSE;
1406 hi = (struct elf_link_hash_entry *) bh;
1408 else
1410 /* In this case the symbol named SHORTNAME is overriding the
1411 indirect symbol we want to add. We were planning on making
1412 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1413 is the name without a version. NAME is the fully versioned
1414 name, and it is the default version.
1416 Overriding means that we already saw a definition for the
1417 symbol SHORTNAME in a regular object, and it is overriding
1418 the symbol defined in the dynamic object.
1420 When this happens, we actually want to change NAME, the
1421 symbol we just added, to refer to SHORTNAME. This will cause
1422 references to NAME in the shared object to become references
1423 to SHORTNAME in the regular object. This is what we expect
1424 when we override a function in a shared object: that the
1425 references in the shared object will be mapped to the
1426 definition in the regular object. */
1428 while (hi->root.type == bfd_link_hash_indirect
1429 || hi->root.type == bfd_link_hash_warning)
1430 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1432 h->root.type = bfd_link_hash_indirect;
1433 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1434 if (h->def_dynamic)
1436 h->def_dynamic = 0;
1437 hi->ref_dynamic = 1;
1438 if (hi->ref_regular
1439 || hi->def_regular)
1441 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1442 return FALSE;
1446 /* Now set HI to H, so that the following code will set the
1447 other fields correctly. */
1448 hi = h;
1451 /* If there is a duplicate definition somewhere, then HI may not
1452 point to an indirect symbol. We will have reported an error to
1453 the user in that case. */
1455 if (hi->root.type == bfd_link_hash_indirect)
1457 struct elf_link_hash_entry *ht;
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1462 /* See if the new flags lead us to realize that the symbol must
1463 be dynamic. */
1464 if (! *dynsym)
1466 if (! dynamic)
1468 if (info->shared
1469 || hi->ref_dynamic)
1470 *dynsym = TRUE;
1472 else
1474 if (hi->ref_regular)
1475 *dynsym = TRUE;
1480 /* We also need to define an indirection from the nondefault version
1481 of the symbol. */
1483 nondefault:
1484 len = strlen (name);
1485 shortname = bfd_hash_allocate (&info->hash->table, len);
1486 if (shortname == NULL)
1487 return FALSE;
1488 memcpy (shortname, name, shortlen);
1489 memcpy (shortname + shortlen, p + 1, len - shortlen);
1491 /* Once again, merge with any existing symbol. */
1492 type_change_ok = FALSE;
1493 size_change_ok = FALSE;
1494 sec = *psec;
1495 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1496 NULL, &hi, &skip, &override,
1497 &type_change_ok, &size_change_ok))
1498 return FALSE;
1500 if (skip)
1501 return TRUE;
1503 if (override)
1505 /* Here SHORTNAME is a versioned name, so we don't expect to see
1506 the type of override we do in the case above unless it is
1507 overridden by a versioned definition. */
1508 if (hi->root.type != bfd_link_hash_defined
1509 && hi->root.type != bfd_link_hash_defweak)
1510 (*_bfd_error_handler)
1511 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1512 abfd, shortname);
1514 else
1516 bh = &hi->root;
1517 if (! (_bfd_generic_link_add_one_symbol
1518 (info, abfd, shortname, BSF_INDIRECT,
1519 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1520 return FALSE;
1521 hi = (struct elf_link_hash_entry *) bh;
1523 /* If there is a duplicate definition somewhere, then HI may not
1524 point to an indirect symbol. We will have reported an error
1525 to the user in that case. */
1527 if (hi->root.type == bfd_link_hash_indirect)
1529 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1531 /* See if the new flags lead us to realize that the symbol
1532 must be dynamic. */
1533 if (! *dynsym)
1535 if (! dynamic)
1537 if (info->shared
1538 || hi->ref_dynamic)
1539 *dynsym = TRUE;
1541 else
1543 if (hi->ref_regular)
1544 *dynsym = TRUE;
1550 return TRUE;
1553 /* This routine is used to export all defined symbols into the dynamic
1554 symbol table. It is called via elf_link_hash_traverse. */
1556 bfd_boolean
1557 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1559 struct elf_info_failed *eif = data;
1561 /* Ignore indirect symbols. These are added by the versioning code. */
1562 if (h->root.type == bfd_link_hash_indirect)
1563 return TRUE;
1565 if (h->root.type == bfd_link_hash_warning)
1566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1568 if (h->dynindx == -1
1569 && (h->def_regular
1570 || h->ref_regular))
1572 struct bfd_elf_version_tree *t;
1573 struct bfd_elf_version_expr *d;
1575 for (t = eif->verdefs; t != NULL; t = t->next)
1577 if (t->globals.list != NULL)
1579 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1580 if (d != NULL)
1581 goto doit;
1584 if (t->locals.list != NULL)
1586 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1587 if (d != NULL)
1588 return TRUE;
1592 if (!eif->verdefs)
1594 doit:
1595 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1597 eif->failed = TRUE;
1598 return FALSE;
1603 return TRUE;
1606 /* Look through the symbols which are defined in other shared
1607 libraries and referenced here. Update the list of version
1608 dependencies. This will be put into the .gnu.version_r section.
1609 This function is called via elf_link_hash_traverse. */
1611 bfd_boolean
1612 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1613 void *data)
1615 struct elf_find_verdep_info *rinfo = data;
1616 Elf_Internal_Verneed *t;
1617 Elf_Internal_Vernaux *a;
1618 bfd_size_type amt;
1620 if (h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1623 /* We only care about symbols defined in shared objects with version
1624 information. */
1625 if (!h->def_dynamic
1626 || h->def_regular
1627 || h->dynindx == -1
1628 || h->verinfo.verdef == NULL)
1629 return TRUE;
1631 /* See if we already know about this version. */
1632 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1634 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1635 continue;
1637 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1638 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1639 return TRUE;
1641 break;
1644 /* This is a new version. Add it to tree we are building. */
1646 if (t == NULL)
1648 amt = sizeof *t;
1649 t = bfd_zalloc (rinfo->output_bfd, amt);
1650 if (t == NULL)
1652 rinfo->failed = TRUE;
1653 return FALSE;
1656 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1657 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1658 elf_tdata (rinfo->output_bfd)->verref = t;
1661 amt = sizeof *a;
1662 a = bfd_zalloc (rinfo->output_bfd, amt);
1664 /* Note that we are copying a string pointer here, and testing it
1665 above. If bfd_elf_string_from_elf_section is ever changed to
1666 discard the string data when low in memory, this will have to be
1667 fixed. */
1668 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1670 a->vna_flags = h->verinfo.verdef->vd_flags;
1671 a->vna_nextptr = t->vn_auxptr;
1673 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1674 ++rinfo->vers;
1676 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1678 t->vn_auxptr = a;
1680 return TRUE;
1683 /* Figure out appropriate versions for all the symbols. We may not
1684 have the version number script until we have read all of the input
1685 files, so until that point we don't know which symbols should be
1686 local. This function is called via elf_link_hash_traverse. */
1688 bfd_boolean
1689 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1691 struct elf_assign_sym_version_info *sinfo;
1692 struct bfd_link_info *info;
1693 const struct elf_backend_data *bed;
1694 struct elf_info_failed eif;
1695 char *p;
1696 bfd_size_type amt;
1698 sinfo = data;
1699 info = sinfo->info;
1701 if (h->root.type == bfd_link_hash_warning)
1702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1704 /* Fix the symbol flags. */
1705 eif.failed = FALSE;
1706 eif.info = info;
1707 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1709 if (eif.failed)
1710 sinfo->failed = TRUE;
1711 return FALSE;
1714 /* We only need version numbers for symbols defined in regular
1715 objects. */
1716 if (!h->def_regular)
1717 return TRUE;
1719 bed = get_elf_backend_data (sinfo->output_bfd);
1720 p = strchr (h->root.root.string, ELF_VER_CHR);
1721 if (p != NULL && h->verinfo.vertree == NULL)
1723 struct bfd_elf_version_tree *t;
1724 bfd_boolean hidden;
1726 hidden = TRUE;
1728 /* There are two consecutive ELF_VER_CHR characters if this is
1729 not a hidden symbol. */
1730 ++p;
1731 if (*p == ELF_VER_CHR)
1733 hidden = FALSE;
1734 ++p;
1737 /* If there is no version string, we can just return out. */
1738 if (*p == '\0')
1740 if (hidden)
1741 h->hidden = 1;
1742 return TRUE;
1745 /* Look for the version. If we find it, it is no longer weak. */
1746 for (t = sinfo->verdefs; t != NULL; t = t->next)
1748 if (strcmp (t->name, p) == 0)
1750 size_t len;
1751 char *alc;
1752 struct bfd_elf_version_expr *d;
1754 len = p - h->root.root.string;
1755 alc = bfd_malloc (len);
1756 if (alc == NULL)
1757 return FALSE;
1758 memcpy (alc, h->root.root.string, len - 1);
1759 alc[len - 1] = '\0';
1760 if (alc[len - 2] == ELF_VER_CHR)
1761 alc[len - 2] = '\0';
1763 h->verinfo.vertree = t;
1764 t->used = TRUE;
1765 d = NULL;
1767 if (t->globals.list != NULL)
1768 d = (*t->match) (&t->globals, NULL, alc);
1770 /* See if there is anything to force this symbol to
1771 local scope. */
1772 if (d == NULL && t->locals.list != NULL)
1774 d = (*t->match) (&t->locals, NULL, alc);
1775 if (d != NULL
1776 && h->dynindx != -1
1777 && info->shared
1778 && ! info->export_dynamic)
1779 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1782 free (alc);
1783 break;
1787 /* If we are building an application, we need to create a
1788 version node for this version. */
1789 if (t == NULL && info->executable)
1791 struct bfd_elf_version_tree **pp;
1792 int version_index;
1794 /* If we aren't going to export this symbol, we don't need
1795 to worry about it. */
1796 if (h->dynindx == -1)
1797 return TRUE;
1799 amt = sizeof *t;
1800 t = bfd_zalloc (sinfo->output_bfd, amt);
1801 if (t == NULL)
1803 sinfo->failed = TRUE;
1804 return FALSE;
1807 t->name = p;
1808 t->name_indx = (unsigned int) -1;
1809 t->used = TRUE;
1811 version_index = 1;
1812 /* Don't count anonymous version tag. */
1813 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1814 version_index = 0;
1815 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1816 ++version_index;
1817 t->vernum = version_index;
1819 *pp = t;
1821 h->verinfo.vertree = t;
1823 else if (t == NULL)
1825 /* We could not find the version for a symbol when
1826 generating a shared archive. Return an error. */
1827 (*_bfd_error_handler)
1828 (_("%B: undefined versioned symbol name %s"),
1829 sinfo->output_bfd, h->root.root.string);
1830 bfd_set_error (bfd_error_bad_value);
1831 sinfo->failed = TRUE;
1832 return FALSE;
1835 if (hidden)
1836 h->hidden = 1;
1839 /* If we don't have a version for this symbol, see if we can find
1840 something. */
1841 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1843 struct bfd_elf_version_tree *t;
1844 struct bfd_elf_version_tree *local_ver;
1845 struct bfd_elf_version_expr *d;
1847 /* See if can find what version this symbol is in. If the
1848 symbol is supposed to be local, then don't actually register
1849 it. */
1850 local_ver = NULL;
1851 for (t = sinfo->verdefs; t != NULL; t = t->next)
1853 if (t->globals.list != NULL)
1855 bfd_boolean matched;
1857 matched = FALSE;
1858 d = NULL;
1859 while ((d = (*t->match) (&t->globals, d,
1860 h->root.root.string)) != NULL)
1861 if (d->symver)
1862 matched = TRUE;
1863 else
1865 /* There is a version without definition. Make
1866 the symbol the default definition for this
1867 version. */
1868 h->verinfo.vertree = t;
1869 local_ver = NULL;
1870 d->script = 1;
1871 break;
1873 if (d != NULL)
1874 break;
1875 else if (matched)
1876 /* There is no undefined version for this symbol. Hide the
1877 default one. */
1878 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1881 if (t->locals.list != NULL)
1883 d = NULL;
1884 while ((d = (*t->match) (&t->locals, d,
1885 h->root.root.string)) != NULL)
1887 local_ver = t;
1888 /* If the match is "*", keep looking for a more
1889 explicit, perhaps even global, match.
1890 XXX: Shouldn't this be !d->wildcard instead? */
1891 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1892 break;
1895 if (d != NULL)
1896 break;
1900 if (local_ver != NULL)
1902 h->verinfo.vertree = local_ver;
1903 if (h->dynindx != -1
1904 && info->shared
1905 && ! info->export_dynamic)
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1912 return TRUE;
1915 /* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1922 Returns FALSE if something goes wrong. */
1924 static bfd_boolean
1925 elf_link_read_relocs_from_section (bfd *abfd,
1926 asection *sec,
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
1931 const struct elf_backend_data *bed;
1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
1936 Elf_Internal_Shdr *symtab_hdr;
1937 size_t nsyms;
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1941 return FALSE;
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1945 return FALSE;
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1950 bed = get_elf_backend_data (abfd);
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1957 else
1959 bfd_set_error (bfd_error_wrong_format);
1960 return FALSE;
1963 erela = external_relocs;
1964 erelaend = erela + shdr->sh_size;
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1968 bfd_vma r_symndx;
1970 (*swap_in) (abfd, erela, irela);
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1973 r_symndx >>= 24;
1974 if ((size_t) r_symndx >= nsyms)
1976 (*_bfd_error_handler)
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1979 abfd, sec,
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1988 return TRUE;
1991 /* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2001 Elf_Internal_Rela *
2002 _bfd_elf_link_read_relocs (bfd *abfd,
2003 asection *o,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
2008 Elf_Internal_Shdr *rel_hdr;
2009 void *alloc1 = NULL;
2010 Elf_Internal_Rela *alloc2 = NULL;
2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2016 if (o->reloc_count == 0)
2017 return NULL;
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2021 if (internal_relocs == NULL)
2023 bfd_size_type size;
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2027 if (keep_memory)
2028 internal_relocs = bfd_alloc (abfd, size);
2029 else
2030 internal_relocs = alloc2 = bfd_malloc (size);
2031 if (internal_relocs == NULL)
2032 goto error_return;
2035 if (external_relocs == NULL)
2037 bfd_size_type size = rel_hdr->sh_size;
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
2041 alloc1 = bfd_malloc (size);
2042 if (alloc1 == NULL)
2043 goto error_return;
2044 external_relocs = alloc1;
2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2048 external_relocs,
2049 internal_relocs))
2050 goto error_return;
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2053 (abfd, o,
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
2058 goto error_return;
2060 /* Cache the results for next time, if we can. */
2061 if (keep_memory)
2062 elf_section_data (o)->relocs = internal_relocs;
2064 if (alloc1 != NULL)
2065 free (alloc1);
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2070 return internal_relocs;
2072 error_return:
2073 if (alloc1 != NULL)
2074 free (alloc1);
2075 if (alloc2 != NULL)
2076 free (alloc2);
2077 return NULL;
2080 /* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2083 bfd_boolean
2084 _bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2086 asection *o)
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2094 else
2095 reloc_count = elf_section_data (o)->rel_count2;
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2110 return FALSE;
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2115 && num_rel_hashes)
2117 struct elf_link_hash_entry **p;
2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2120 if (p == NULL)
2121 return FALSE;
2123 elf_section_data (o)->rel_hashes = p;
2126 return TRUE;
2129 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2131 OUTPUT_BFD. */
2133 bfd_boolean
2134 _bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
2137 Elf_Internal_Rela *internal_relocs)
2139 Elf_Internal_Rela *irela;
2140 Elf_Internal_Rela *irelaend;
2141 bfd_byte *erel;
2142 Elf_Internal_Shdr *output_rel_hdr;
2143 asection *output_section;
2144 unsigned int *rel_countp = NULL;
2145 const struct elf_backend_data *bed;
2146 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2148 output_section = input_section->output_section;
2149 output_rel_hdr = NULL;
2151 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2152 == input_rel_hdr->sh_entsize)
2154 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2155 rel_countp = &elf_section_data (output_section)->rel_count;
2157 else if (elf_section_data (output_section)->rel_hdr2
2158 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2159 == input_rel_hdr->sh_entsize))
2161 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2162 rel_countp = &elf_section_data (output_section)->rel_count2;
2164 else
2166 (*_bfd_error_handler)
2167 (_("%B: relocation size mismatch in %B section %A"),
2168 output_bfd, input_section->owner, input_section);
2169 bfd_set_error (bfd_error_wrong_object_format);
2170 return FALSE;
2173 bed = get_elf_backend_data (output_bfd);
2174 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2175 swap_out = bed->s->swap_reloc_out;
2176 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2177 swap_out = bed->s->swap_reloca_out;
2178 else
2179 abort ();
2181 erel = output_rel_hdr->contents;
2182 erel += *rel_countp * input_rel_hdr->sh_entsize;
2183 irela = internal_relocs;
2184 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2185 * bed->s->int_rels_per_ext_rel);
2186 while (irela < irelaend)
2188 (*swap_out) (output_bfd, irela, erel);
2189 irela += bed->s->int_rels_per_ext_rel;
2190 erel += input_rel_hdr->sh_entsize;
2193 /* Bump the counter, so that we know where to add the next set of
2194 relocations. */
2195 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2197 return TRUE;
2200 /* Fix up the flags for a symbol. This handles various cases which
2201 can only be fixed after all the input files are seen. This is
2202 currently called by both adjust_dynamic_symbol and
2203 assign_sym_version, which is unnecessary but perhaps more robust in
2204 the face of future changes. */
2206 bfd_boolean
2207 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2208 struct elf_info_failed *eif)
2210 /* If this symbol was mentioned in a non-ELF file, try to set
2211 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2212 permit a non-ELF file to correctly refer to a symbol defined in
2213 an ELF dynamic object. */
2214 if (h->non_elf)
2216 while (h->root.type == bfd_link_hash_indirect)
2217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2219 if (h->root.type != bfd_link_hash_defined
2220 && h->root.type != bfd_link_hash_defweak)
2222 h->ref_regular = 1;
2223 h->ref_regular_nonweak = 1;
2225 else
2227 if (h->root.u.def.section->owner != NULL
2228 && (bfd_get_flavour (h->root.u.def.section->owner)
2229 == bfd_target_elf_flavour))
2231 h->ref_regular = 1;
2232 h->ref_regular_nonweak = 1;
2234 else
2235 h->def_regular = 1;
2238 if (h->dynindx == -1
2239 && (h->def_dynamic
2240 || h->ref_dynamic))
2242 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2244 eif->failed = TRUE;
2245 return FALSE;
2249 else
2251 /* Unfortunately, NON_ELF is only correct if the symbol
2252 was first seen in a non-ELF file. Fortunately, if the symbol
2253 was first seen in an ELF file, we're probably OK unless the
2254 symbol was defined in a non-ELF file. Catch that case here.
2255 FIXME: We're still in trouble if the symbol was first seen in
2256 a dynamic object, and then later in a non-ELF regular object. */
2257 if ((h->root.type == bfd_link_hash_defined
2258 || h->root.type == bfd_link_hash_defweak)
2259 && !h->def_regular
2260 && (h->root.u.def.section->owner != NULL
2261 ? (bfd_get_flavour (h->root.u.def.section->owner)
2262 != bfd_target_elf_flavour)
2263 : (bfd_is_abs_section (h->root.u.def.section)
2264 && !h->def_dynamic)))
2265 h->def_regular = 1;
2268 /* If this is a final link, and the symbol was defined as a common
2269 symbol in a regular object file, and there was no definition in
2270 any dynamic object, then the linker will have allocated space for
2271 the symbol in a common section but the DEF_REGULAR
2272 flag will not have been set. */
2273 if (h->root.type == bfd_link_hash_defined
2274 && !h->def_regular
2275 && h->ref_regular
2276 && !h->def_dynamic
2277 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2278 h->def_regular = 1;
2280 /* If -Bsymbolic was used (which means to bind references to global
2281 symbols to the definition within the shared object), and this
2282 symbol was defined in a regular object, then it actually doesn't
2283 need a PLT entry. Likewise, if the symbol has non-default
2284 visibility. If the symbol has hidden or internal visibility, we
2285 will force it local. */
2286 if (h->needs_plt
2287 && eif->info->shared
2288 && is_elf_hash_table (eif->info->hash)
2289 && (eif->info->symbolic
2290 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2291 && h->def_regular)
2293 const struct elf_backend_data *bed;
2294 bfd_boolean force_local;
2296 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2298 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2299 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2300 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2303 /* If a weak undefined symbol has non-default visibility, we also
2304 hide it from the dynamic linker. */
2305 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2306 && h->root.type == bfd_link_hash_undefweak)
2308 const struct elf_backend_data *bed;
2309 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2310 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2313 /* If this is a weak defined symbol in a dynamic object, and we know
2314 the real definition in the dynamic object, copy interesting flags
2315 over to the real definition. */
2316 if (h->u.weakdef != NULL)
2318 struct elf_link_hash_entry *weakdef;
2320 weakdef = h->u.weakdef;
2321 if (h->root.type == bfd_link_hash_indirect)
2322 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2324 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2325 || h->root.type == bfd_link_hash_defweak);
2326 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2327 || weakdef->root.type == bfd_link_hash_defweak);
2328 BFD_ASSERT (weakdef->def_dynamic);
2330 /* If the real definition is defined by a regular object file,
2331 don't do anything special. See the longer description in
2332 _bfd_elf_adjust_dynamic_symbol, below. */
2333 if (weakdef->def_regular)
2334 h->u.weakdef = NULL;
2335 else
2337 const struct elf_backend_data *bed;
2339 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2340 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2344 return TRUE;
2347 /* Make the backend pick a good value for a dynamic symbol. This is
2348 called via elf_link_hash_traverse, and also calls itself
2349 recursively. */
2351 bfd_boolean
2352 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2354 struct elf_info_failed *eif = data;
2355 bfd *dynobj;
2356 const struct elf_backend_data *bed;
2358 if (! is_elf_hash_table (eif->info->hash))
2359 return FALSE;
2361 if (h->root.type == bfd_link_hash_warning)
2363 h->plt = elf_hash_table (eif->info)->init_offset;
2364 h->got = elf_hash_table (eif->info)->init_offset;
2366 /* When warning symbols are created, they **replace** the "real"
2367 entry in the hash table, thus we never get to see the real
2368 symbol in a hash traversal. So look at it now. */
2369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2372 /* Ignore indirect symbols. These are added by the versioning code. */
2373 if (h->root.type == bfd_link_hash_indirect)
2374 return TRUE;
2376 /* Fix the symbol flags. */
2377 if (! _bfd_elf_fix_symbol_flags (h, eif))
2378 return FALSE;
2380 /* If this symbol does not require a PLT entry, and it is not
2381 defined by a dynamic object, or is not referenced by a regular
2382 object, ignore it. We do have to handle a weak defined symbol,
2383 even if no regular object refers to it, if we decided to add it
2384 to the dynamic symbol table. FIXME: Do we normally need to worry
2385 about symbols which are defined by one dynamic object and
2386 referenced by another one? */
2387 if (!h->needs_plt
2388 && (h->def_regular
2389 || !h->def_dynamic
2390 || (!h->ref_regular
2391 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2393 h->plt = elf_hash_table (eif->info)->init_offset;
2394 return TRUE;
2397 /* If we've already adjusted this symbol, don't do it again. This
2398 can happen via a recursive call. */
2399 if (h->dynamic_adjusted)
2400 return TRUE;
2402 /* Don't look at this symbol again. Note that we must set this
2403 after checking the above conditions, because we may look at a
2404 symbol once, decide not to do anything, and then get called
2405 recursively later after REF_REGULAR is set below. */
2406 h->dynamic_adjusted = 1;
2408 /* If this is a weak definition, and we know a real definition, and
2409 the real symbol is not itself defined by a regular object file,
2410 then get a good value for the real definition. We handle the
2411 real symbol first, for the convenience of the backend routine.
2413 Note that there is a confusing case here. If the real definition
2414 is defined by a regular object file, we don't get the real symbol
2415 from the dynamic object, but we do get the weak symbol. If the
2416 processor backend uses a COPY reloc, then if some routine in the
2417 dynamic object changes the real symbol, we will not see that
2418 change in the corresponding weak symbol. This is the way other
2419 ELF linkers work as well, and seems to be a result of the shared
2420 library model.
2422 I will clarify this issue. Most SVR4 shared libraries define the
2423 variable _timezone and define timezone as a weak synonym. The
2424 tzset call changes _timezone. If you write
2425 extern int timezone;
2426 int _timezone = 5;
2427 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2428 you might expect that, since timezone is a synonym for _timezone,
2429 the same number will print both times. However, if the processor
2430 backend uses a COPY reloc, then actually timezone will be copied
2431 into your process image, and, since you define _timezone
2432 yourself, _timezone will not. Thus timezone and _timezone will
2433 wind up at different memory locations. The tzset call will set
2434 _timezone, leaving timezone unchanged. */
2436 if (h->u.weakdef != NULL)
2438 /* If we get to this point, we know there is an implicit
2439 reference by a regular object file via the weak symbol H.
2440 FIXME: Is this really true? What if the traversal finds
2441 H->U.WEAKDEF before it finds H? */
2442 h->u.weakdef->ref_regular = 1;
2444 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2445 return FALSE;
2448 /* If a symbol has no type and no size and does not require a PLT
2449 entry, then we are probably about to do the wrong thing here: we
2450 are probably going to create a COPY reloc for an empty object.
2451 This case can arise when a shared object is built with assembly
2452 code, and the assembly code fails to set the symbol type. */
2453 if (h->size == 0
2454 && h->type == STT_NOTYPE
2455 && !h->needs_plt)
2456 (*_bfd_error_handler)
2457 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2458 h->root.root.string);
2460 dynobj = elf_hash_table (eif->info)->dynobj;
2461 bed = get_elf_backend_data (dynobj);
2462 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2464 eif->failed = TRUE;
2465 return FALSE;
2468 return TRUE;
2471 /* Adjust all external symbols pointing into SEC_MERGE sections
2472 to reflect the object merging within the sections. */
2474 bfd_boolean
2475 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2477 asection *sec;
2479 if (h->root.type == bfd_link_hash_warning)
2480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2485 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2487 bfd *output_bfd = data;
2489 h->root.u.def.value =
2490 _bfd_merged_section_offset (output_bfd,
2491 &h->root.u.def.section,
2492 elf_section_data (sec)->sec_info,
2493 h->root.u.def.value);
2496 return TRUE;
2499 /* Returns false if the symbol referred to by H should be considered
2500 to resolve local to the current module, and true if it should be
2501 considered to bind dynamically. */
2503 bfd_boolean
2504 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2505 struct bfd_link_info *info,
2506 bfd_boolean ignore_protected)
2508 bfd_boolean binding_stays_local_p;
2510 if (h == NULL)
2511 return FALSE;
2513 while (h->root.type == bfd_link_hash_indirect
2514 || h->root.type == bfd_link_hash_warning)
2515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517 /* If it was forced local, then clearly it's not dynamic. */
2518 if (h->dynindx == -1)
2519 return FALSE;
2520 if (h->forced_local)
2521 return FALSE;
2523 /* Identify the cases where name binding rules say that a
2524 visible symbol resolves locally. */
2525 binding_stays_local_p = info->executable || info->symbolic;
2527 switch (ELF_ST_VISIBILITY (h->other))
2529 case STV_INTERNAL:
2530 case STV_HIDDEN:
2531 return FALSE;
2533 case STV_PROTECTED:
2534 /* Proper resolution for function pointer equality may require
2535 that these symbols perhaps be resolved dynamically, even though
2536 we should be resolving them to the current module. */
2537 if (!ignore_protected || h->type != STT_FUNC)
2538 binding_stays_local_p = TRUE;
2539 break;
2541 default:
2542 break;
2545 /* If it isn't defined locally, then clearly it's dynamic. */
2546 if (!h->def_regular)
2547 return TRUE;
2549 /* Otherwise, the symbol is dynamic if binding rules don't tell
2550 us that it remains local. */
2551 return !binding_stays_local_p;
2554 /* Return true if the symbol referred to by H should be considered
2555 to resolve local to the current module, and false otherwise. Differs
2556 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2557 undefined symbols and weak symbols. */
2559 bfd_boolean
2560 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2561 struct bfd_link_info *info,
2562 bfd_boolean local_protected)
2564 /* If it's a local sym, of course we resolve locally. */
2565 if (h == NULL)
2566 return TRUE;
2568 /* Common symbols that become definitions don't get the DEF_REGULAR
2569 flag set, so test it first, and don't bail out. */
2570 if (ELF_COMMON_DEF_P (h))
2571 /* Do nothing. */;
2572 /* If we don't have a definition in a regular file, then we can't
2573 resolve locally. The sym is either undefined or dynamic. */
2574 else if (!h->def_regular)
2575 return FALSE;
2577 /* Forced local symbols resolve locally. */
2578 if (h->forced_local)
2579 return TRUE;
2581 /* As do non-dynamic symbols. */
2582 if (h->dynindx == -1)
2583 return TRUE;
2585 /* At this point, we know the symbol is defined and dynamic. In an
2586 executable it must resolve locally, likewise when building symbolic
2587 shared libraries. */
2588 if (info->executable || info->symbolic)
2589 return TRUE;
2591 /* Now deal with defined dynamic symbols in shared libraries. Ones
2592 with default visibility might not resolve locally. */
2593 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2594 return FALSE;
2596 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2597 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2598 return TRUE;
2600 /* STV_PROTECTED non-function symbols are local. */
2601 if (h->type != STT_FUNC)
2602 return TRUE;
2604 /* Function pointer equality tests may require that STV_PROTECTED
2605 symbols be treated as dynamic symbols, even when we know that the
2606 dynamic linker will resolve them locally. */
2607 return local_protected;
2610 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2611 aligned. Returns the first TLS output section. */
2613 struct bfd_section *
2614 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2616 struct bfd_section *sec, *tls;
2617 unsigned int align = 0;
2619 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2620 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2621 break;
2622 tls = sec;
2624 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2625 if (sec->alignment_power > align)
2626 align = sec->alignment_power;
2628 elf_hash_table (info)->tls_sec = tls;
2630 /* Ensure the alignment of the first section is the largest alignment,
2631 so that the tls segment starts aligned. */
2632 if (tls != NULL)
2633 tls->alignment_power = align;
2635 return tls;
2638 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2639 static bfd_boolean
2640 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2641 Elf_Internal_Sym *sym)
2643 /* Local symbols do not count, but target specific ones might. */
2644 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2645 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2646 return FALSE;
2648 /* Function symbols do not count. */
2649 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2650 return FALSE;
2652 /* If the section is undefined, then so is the symbol. */
2653 if (sym->st_shndx == SHN_UNDEF)
2654 return FALSE;
2656 /* If the symbol is defined in the common section, then
2657 it is a common definition and so does not count. */
2658 if (sym->st_shndx == SHN_COMMON)
2659 return FALSE;
2661 /* If the symbol is in a target specific section then we
2662 must rely upon the backend to tell us what it is. */
2663 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2664 /* FIXME - this function is not coded yet:
2666 return _bfd_is_global_symbol_definition (abfd, sym);
2668 Instead for now assume that the definition is not global,
2669 Even if this is wrong, at least the linker will behave
2670 in the same way that it used to do. */
2671 return FALSE;
2673 return TRUE;
2676 /* Search the symbol table of the archive element of the archive ABFD
2677 whose archive map contains a mention of SYMDEF, and determine if
2678 the symbol is defined in this element. */
2679 static bfd_boolean
2680 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2682 Elf_Internal_Shdr * hdr;
2683 bfd_size_type symcount;
2684 bfd_size_type extsymcount;
2685 bfd_size_type extsymoff;
2686 Elf_Internal_Sym *isymbuf;
2687 Elf_Internal_Sym *isym;
2688 Elf_Internal_Sym *isymend;
2689 bfd_boolean result;
2691 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2692 if (abfd == NULL)
2693 return FALSE;
2695 if (! bfd_check_format (abfd, bfd_object))
2696 return FALSE;
2698 /* If we have already included the element containing this symbol in the
2699 link then we do not need to include it again. Just claim that any symbol
2700 it contains is not a definition, so that our caller will not decide to
2701 (re)include this element. */
2702 if (abfd->archive_pass)
2703 return FALSE;
2705 /* Select the appropriate symbol table. */
2706 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2707 hdr = &elf_tdata (abfd)->symtab_hdr;
2708 else
2709 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2711 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2713 /* The sh_info field of the symtab header tells us where the
2714 external symbols start. We don't care about the local symbols. */
2715 if (elf_bad_symtab (abfd))
2717 extsymcount = symcount;
2718 extsymoff = 0;
2720 else
2722 extsymcount = symcount - hdr->sh_info;
2723 extsymoff = hdr->sh_info;
2726 if (extsymcount == 0)
2727 return FALSE;
2729 /* Read in the symbol table. */
2730 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2731 NULL, NULL, NULL);
2732 if (isymbuf == NULL)
2733 return FALSE;
2735 /* Scan the symbol table looking for SYMDEF. */
2736 result = FALSE;
2737 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2739 const char *name;
2741 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2742 isym->st_name);
2743 if (name == NULL)
2744 break;
2746 if (strcmp (name, symdef->name) == 0)
2748 result = is_global_data_symbol_definition (abfd, isym);
2749 break;
2753 free (isymbuf);
2755 return result;
2758 /* Add an entry to the .dynamic table. */
2760 bfd_boolean
2761 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2762 bfd_vma tag,
2763 bfd_vma val)
2765 struct elf_link_hash_table *hash_table;
2766 const struct elf_backend_data *bed;
2767 asection *s;
2768 bfd_size_type newsize;
2769 bfd_byte *newcontents;
2770 Elf_Internal_Dyn dyn;
2772 hash_table = elf_hash_table (info);
2773 if (! is_elf_hash_table (hash_table))
2774 return FALSE;
2776 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2777 _bfd_error_handler
2778 (_("warning: creating a DT_TEXTREL in a shared object."));
2780 bed = get_elf_backend_data (hash_table->dynobj);
2781 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2782 BFD_ASSERT (s != NULL);
2784 newsize = s->size + bed->s->sizeof_dyn;
2785 newcontents = bfd_realloc (s->contents, newsize);
2786 if (newcontents == NULL)
2787 return FALSE;
2789 dyn.d_tag = tag;
2790 dyn.d_un.d_val = val;
2791 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2793 s->size = newsize;
2794 s->contents = newcontents;
2796 return TRUE;
2799 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2800 otherwise just check whether one already exists. Returns -1 on error,
2801 1 if a DT_NEEDED tag already exists, and 0 on success. */
2803 static int
2804 elf_add_dt_needed_tag (bfd *abfd,
2805 struct bfd_link_info *info,
2806 const char *soname,
2807 bfd_boolean do_it)
2809 struct elf_link_hash_table *hash_table;
2810 bfd_size_type oldsize;
2811 bfd_size_type strindex;
2813 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2814 return -1;
2816 hash_table = elf_hash_table (info);
2817 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2818 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2819 if (strindex == (bfd_size_type) -1)
2820 return -1;
2822 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2824 asection *sdyn;
2825 const struct elf_backend_data *bed;
2826 bfd_byte *extdyn;
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2830 if (sdyn != NULL)
2831 for (extdyn = sdyn->contents;
2832 extdyn < sdyn->contents + sdyn->size;
2833 extdyn += bed->s->sizeof_dyn)
2835 Elf_Internal_Dyn dyn;
2837 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2838 if (dyn.d_tag == DT_NEEDED
2839 && dyn.d_un.d_val == strindex)
2841 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2842 return 1;
2847 if (do_it)
2849 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2850 return -1;
2852 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2853 return -1;
2855 else
2856 /* We were just checking for existence of the tag. */
2857 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2859 return 0;
2862 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2863 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2864 references from regular objects to these symbols.
2866 ??? Should we do something about references from other dynamic
2867 obects? If not, we potentially lose some warnings about undefined
2868 symbols. But how can we recover the initial undefined / undefweak
2869 state? */
2871 struct elf_smash_syms_data
2873 bfd *not_needed;
2874 struct elf_link_hash_table *htab;
2875 bfd_boolean twiddled;
2878 static bfd_boolean
2879 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2881 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2882 struct bfd_link_hash_entry *bh;
2884 switch (h->root.type)
2886 default:
2887 case bfd_link_hash_new:
2888 return TRUE;
2890 case bfd_link_hash_undefined:
2891 if (h->root.u.undef.abfd != inf->not_needed)
2892 return TRUE;
2893 if (h->root.u.undef.weak != NULL
2894 && h->root.u.undef.weak != inf->not_needed)
2896 /* Symbol was undefweak in u.undef.weak bfd, and has become
2897 undefined in as-needed lib. Restore weak. */
2898 h->root.type = bfd_link_hash_undefweak;
2899 h->root.u.undef.abfd = h->root.u.undef.weak;
2900 if (h->root.u.undef.next != NULL
2901 || inf->htab->root.undefs_tail == &h->root)
2902 inf->twiddled = TRUE;
2903 return TRUE;
2905 break;
2907 case bfd_link_hash_undefweak:
2908 if (h->root.u.undef.abfd != inf->not_needed)
2909 return TRUE;
2910 break;
2912 case bfd_link_hash_defined:
2913 case bfd_link_hash_defweak:
2914 if (h->root.u.def.section->owner != inf->not_needed)
2915 return TRUE;
2916 break;
2918 case bfd_link_hash_common:
2919 if (h->root.u.c.p->section->owner != inf->not_needed)
2920 return TRUE;
2921 break;
2923 case bfd_link_hash_warning:
2924 case bfd_link_hash_indirect:
2925 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2926 if (h->root.u.i.link->type != bfd_link_hash_new)
2927 return TRUE;
2928 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2929 return TRUE;
2930 break;
2933 /* There is no way we can undo symbol table state from defined or
2934 defweak back to undefined. */
2935 if (h->ref_regular)
2936 abort ();
2938 /* Set sym back to newly created state, but keep undefs list pointer. */
2939 bh = h->root.u.undef.next;
2940 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2941 inf->twiddled = TRUE;
2942 (*inf->htab->root.table.newfunc) (&h->root.root,
2943 &inf->htab->root.table,
2944 h->root.root.string);
2945 h->root.u.undef.next = bh;
2946 h->root.u.undef.abfd = inf->not_needed;
2947 h->non_elf = 0;
2948 return TRUE;
2951 /* Sort symbol by value and section. */
2952 static int
2953 elf_sort_symbol (const void *arg1, const void *arg2)
2955 const struct elf_link_hash_entry *h1;
2956 const struct elf_link_hash_entry *h2;
2957 bfd_signed_vma vdiff;
2959 h1 = *(const struct elf_link_hash_entry **) arg1;
2960 h2 = *(const struct elf_link_hash_entry **) arg2;
2961 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2962 if (vdiff != 0)
2963 return vdiff > 0 ? 1 : -1;
2964 else
2966 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2967 if (sdiff != 0)
2968 return sdiff > 0 ? 1 : -1;
2970 return 0;
2973 /* This function is used to adjust offsets into .dynstr for
2974 dynamic symbols. This is called via elf_link_hash_traverse. */
2976 static bfd_boolean
2977 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2979 struct elf_strtab_hash *dynstr = data;
2981 if (h->root.type == bfd_link_hash_warning)
2982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2984 if (h->dynindx != -1)
2985 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2986 return TRUE;
2989 /* Assign string offsets in .dynstr, update all structures referencing
2990 them. */
2992 static bfd_boolean
2993 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2995 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2996 struct elf_link_local_dynamic_entry *entry;
2997 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2998 bfd *dynobj = hash_table->dynobj;
2999 asection *sdyn;
3000 bfd_size_type size;
3001 const struct elf_backend_data *bed;
3002 bfd_byte *extdyn;
3004 _bfd_elf_strtab_finalize (dynstr);
3005 size = _bfd_elf_strtab_size (dynstr);
3007 bed = get_elf_backend_data (dynobj);
3008 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3009 BFD_ASSERT (sdyn != NULL);
3011 /* Update all .dynamic entries referencing .dynstr strings. */
3012 for (extdyn = sdyn->contents;
3013 extdyn < sdyn->contents + sdyn->size;
3014 extdyn += bed->s->sizeof_dyn)
3016 Elf_Internal_Dyn dyn;
3018 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3019 switch (dyn.d_tag)
3021 case DT_STRSZ:
3022 dyn.d_un.d_val = size;
3023 break;
3024 case DT_NEEDED:
3025 case DT_SONAME:
3026 case DT_RPATH:
3027 case DT_RUNPATH:
3028 case DT_FILTER:
3029 case DT_AUXILIARY:
3030 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3031 break;
3032 default:
3033 continue;
3035 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3038 /* Now update local dynamic symbols. */
3039 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3040 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3041 entry->isym.st_name);
3043 /* And the rest of dynamic symbols. */
3044 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3046 /* Adjust version definitions. */
3047 if (elf_tdata (output_bfd)->cverdefs)
3049 asection *s;
3050 bfd_byte *p;
3051 bfd_size_type i;
3052 Elf_Internal_Verdef def;
3053 Elf_Internal_Verdaux defaux;
3055 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3056 p = s->contents;
3059 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3060 &def);
3061 p += sizeof (Elf_External_Verdef);
3062 if (def.vd_aux != sizeof (Elf_External_Verdef))
3063 continue;
3064 for (i = 0; i < def.vd_cnt; ++i)
3066 _bfd_elf_swap_verdaux_in (output_bfd,
3067 (Elf_External_Verdaux *) p, &defaux);
3068 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3069 defaux.vda_name);
3070 _bfd_elf_swap_verdaux_out (output_bfd,
3071 &defaux, (Elf_External_Verdaux *) p);
3072 p += sizeof (Elf_External_Verdaux);
3075 while (def.vd_next);
3078 /* Adjust version references. */
3079 if (elf_tdata (output_bfd)->verref)
3081 asection *s;
3082 bfd_byte *p;
3083 bfd_size_type i;
3084 Elf_Internal_Verneed need;
3085 Elf_Internal_Vernaux needaux;
3087 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3088 p = s->contents;
3091 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3092 &need);
3093 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3094 _bfd_elf_swap_verneed_out (output_bfd, &need,
3095 (Elf_External_Verneed *) p);
3096 p += sizeof (Elf_External_Verneed);
3097 for (i = 0; i < need.vn_cnt; ++i)
3099 _bfd_elf_swap_vernaux_in (output_bfd,
3100 (Elf_External_Vernaux *) p, &needaux);
3101 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3102 needaux.vna_name);
3103 _bfd_elf_swap_vernaux_out (output_bfd,
3104 &needaux,
3105 (Elf_External_Vernaux *) p);
3106 p += sizeof (Elf_External_Vernaux);
3109 while (need.vn_next);
3112 return TRUE;
3115 /* Add symbols from an ELF object file to the linker hash table. */
3117 static bfd_boolean
3118 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3120 bfd_boolean (*add_symbol_hook)
3121 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3122 const char **, flagword *, asection **, bfd_vma *);
3123 bfd_boolean (*check_relocs)
3124 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3125 bfd_boolean (*check_directives)
3126 (bfd *, struct bfd_link_info *);
3127 bfd_boolean collect;
3128 Elf_Internal_Shdr *hdr;
3129 bfd_size_type symcount;
3130 bfd_size_type extsymcount;
3131 bfd_size_type extsymoff;
3132 struct elf_link_hash_entry **sym_hash;
3133 bfd_boolean dynamic;
3134 Elf_External_Versym *extversym = NULL;
3135 Elf_External_Versym *ever;
3136 struct elf_link_hash_entry *weaks;
3137 struct elf_link_hash_entry **nondeflt_vers = NULL;
3138 bfd_size_type nondeflt_vers_cnt = 0;
3139 Elf_Internal_Sym *isymbuf = NULL;
3140 Elf_Internal_Sym *isym;
3141 Elf_Internal_Sym *isymend;
3142 const struct elf_backend_data *bed;
3143 bfd_boolean add_needed;
3144 struct elf_link_hash_table * hash_table;
3145 bfd_size_type amt;
3147 hash_table = elf_hash_table (info);
3149 bed = get_elf_backend_data (abfd);
3150 add_symbol_hook = bed->elf_add_symbol_hook;
3151 collect = bed->collect;
3153 if ((abfd->flags & DYNAMIC) == 0)
3154 dynamic = FALSE;
3155 else
3157 dynamic = TRUE;
3159 /* You can't use -r against a dynamic object. Also, there's no
3160 hope of using a dynamic object which does not exactly match
3161 the format of the output file. */
3162 if (info->relocatable
3163 || !is_elf_hash_table (hash_table)
3164 || hash_table->root.creator != abfd->xvec)
3166 if (info->relocatable)
3167 bfd_set_error (bfd_error_invalid_operation);
3168 else
3169 bfd_set_error (bfd_error_wrong_format);
3170 goto error_return;
3174 /* As a GNU extension, any input sections which are named
3175 .gnu.warning.SYMBOL are treated as warning symbols for the given
3176 symbol. This differs from .gnu.warning sections, which generate
3177 warnings when they are included in an output file. */
3178 if (info->executable)
3180 asection *s;
3182 for (s = abfd->sections; s != NULL; s = s->next)
3184 const char *name;
3186 name = bfd_get_section_name (abfd, s);
3187 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3189 char *msg;
3190 bfd_size_type sz;
3192 name += sizeof ".gnu.warning." - 1;
3194 /* If this is a shared object, then look up the symbol
3195 in the hash table. If it is there, and it is already
3196 been defined, then we will not be using the entry
3197 from this shared object, so we don't need to warn.
3198 FIXME: If we see the definition in a regular object
3199 later on, we will warn, but we shouldn't. The only
3200 fix is to keep track of what warnings we are supposed
3201 to emit, and then handle them all at the end of the
3202 link. */
3203 if (dynamic)
3205 struct elf_link_hash_entry *h;
3207 h = elf_link_hash_lookup (hash_table, name,
3208 FALSE, FALSE, TRUE);
3210 /* FIXME: What about bfd_link_hash_common? */
3211 if (h != NULL
3212 && (h->root.type == bfd_link_hash_defined
3213 || h->root.type == bfd_link_hash_defweak))
3215 /* We don't want to issue this warning. Clobber
3216 the section size so that the warning does not
3217 get copied into the output file. */
3218 s->size = 0;
3219 continue;
3223 sz = s->size;
3224 msg = bfd_alloc (abfd, sz + 1);
3225 if (msg == NULL)
3226 goto error_return;
3228 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3229 goto error_return;
3231 msg[sz] = '\0';
3233 if (! (_bfd_generic_link_add_one_symbol
3234 (info, abfd, name, BSF_WARNING, s, 0, msg,
3235 FALSE, collect, NULL)))
3236 goto error_return;
3238 if (! info->relocatable)
3240 /* Clobber the section size so that the warning does
3241 not get copied into the output file. */
3242 s->size = 0;
3248 add_needed = TRUE;
3249 if (! dynamic)
3251 /* If we are creating a shared library, create all the dynamic
3252 sections immediately. We need to attach them to something,
3253 so we attach them to this BFD, provided it is the right
3254 format. FIXME: If there are no input BFD's of the same
3255 format as the output, we can't make a shared library. */
3256 if (info->shared
3257 && is_elf_hash_table (hash_table)
3258 && hash_table->root.creator == abfd->xvec
3259 && ! hash_table->dynamic_sections_created)
3261 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3262 goto error_return;
3265 else if (!is_elf_hash_table (hash_table))
3266 goto error_return;
3267 else
3269 asection *s;
3270 const char *soname = NULL;
3271 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3272 int ret;
3274 /* ld --just-symbols and dynamic objects don't mix very well.
3275 Test for --just-symbols by looking at info set up by
3276 _bfd_elf_link_just_syms. */
3277 if ((s = abfd->sections) != NULL
3278 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3279 goto error_return;
3281 /* If this dynamic lib was specified on the command line with
3282 --as-needed in effect, then we don't want to add a DT_NEEDED
3283 tag unless the lib is actually used. Similary for libs brought
3284 in by another lib's DT_NEEDED. When --no-add-needed is used
3285 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3286 any dynamic library in DT_NEEDED tags in the dynamic lib at
3287 all. */
3288 add_needed = (elf_dyn_lib_class (abfd)
3289 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3290 | DYN_NO_NEEDED)) == 0;
3292 s = bfd_get_section_by_name (abfd, ".dynamic");
3293 if (s != NULL)
3295 bfd_byte *dynbuf;
3296 bfd_byte *extdyn;
3297 int elfsec;
3298 unsigned long shlink;
3300 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3301 goto error_free_dyn;
3303 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3304 if (elfsec == -1)
3305 goto error_free_dyn;
3306 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3308 for (extdyn = dynbuf;
3309 extdyn < dynbuf + s->size;
3310 extdyn += bed->s->sizeof_dyn)
3312 Elf_Internal_Dyn dyn;
3314 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3315 if (dyn.d_tag == DT_SONAME)
3317 unsigned int tagv = dyn.d_un.d_val;
3318 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3319 if (soname == NULL)
3320 goto error_free_dyn;
3322 if (dyn.d_tag == DT_NEEDED)
3324 struct bfd_link_needed_list *n, **pn;
3325 char *fnm, *anm;
3326 unsigned int tagv = dyn.d_un.d_val;
3328 amt = sizeof (struct bfd_link_needed_list);
3329 n = bfd_alloc (abfd, amt);
3330 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3331 if (n == NULL || fnm == NULL)
3332 goto error_free_dyn;
3333 amt = strlen (fnm) + 1;
3334 anm = bfd_alloc (abfd, amt);
3335 if (anm == NULL)
3336 goto error_free_dyn;
3337 memcpy (anm, fnm, amt);
3338 n->name = anm;
3339 n->by = abfd;
3340 n->next = NULL;
3341 for (pn = & hash_table->needed;
3342 *pn != NULL;
3343 pn = &(*pn)->next)
3345 *pn = n;
3347 if (dyn.d_tag == DT_RUNPATH)
3349 struct bfd_link_needed_list *n, **pn;
3350 char *fnm, *anm;
3351 unsigned int tagv = dyn.d_un.d_val;
3353 amt = sizeof (struct bfd_link_needed_list);
3354 n = bfd_alloc (abfd, amt);
3355 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3356 if (n == NULL || fnm == NULL)
3357 goto error_free_dyn;
3358 amt = strlen (fnm) + 1;
3359 anm = bfd_alloc (abfd, amt);
3360 if (anm == NULL)
3361 goto error_free_dyn;
3362 memcpy (anm, fnm, amt);
3363 n->name = anm;
3364 n->by = abfd;
3365 n->next = NULL;
3366 for (pn = & runpath;
3367 *pn != NULL;
3368 pn = &(*pn)->next)
3370 *pn = n;
3372 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3373 if (!runpath && dyn.d_tag == DT_RPATH)
3375 struct bfd_link_needed_list *n, **pn;
3376 char *fnm, *anm;
3377 unsigned int tagv = dyn.d_un.d_val;
3379 amt = sizeof (struct bfd_link_needed_list);
3380 n = bfd_alloc (abfd, amt);
3381 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3382 if (n == NULL || fnm == NULL)
3383 goto error_free_dyn;
3384 amt = strlen (fnm) + 1;
3385 anm = bfd_alloc (abfd, amt);
3386 if (anm == NULL)
3388 error_free_dyn:
3389 free (dynbuf);
3390 goto error_return;
3392 memcpy (anm, fnm, amt);
3393 n->name = anm;
3394 n->by = abfd;
3395 n->next = NULL;
3396 for (pn = & rpath;
3397 *pn != NULL;
3398 pn = &(*pn)->next)
3400 *pn = n;
3404 free (dynbuf);
3407 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3408 frees all more recently bfd_alloc'd blocks as well. */
3409 if (runpath)
3410 rpath = runpath;
3412 if (rpath)
3414 struct bfd_link_needed_list **pn;
3415 for (pn = & hash_table->runpath;
3416 *pn != NULL;
3417 pn = &(*pn)->next)
3419 *pn = rpath;
3422 /* We do not want to include any of the sections in a dynamic
3423 object in the output file. We hack by simply clobbering the
3424 list of sections in the BFD. This could be handled more
3425 cleanly by, say, a new section flag; the existing
3426 SEC_NEVER_LOAD flag is not the one we want, because that one
3427 still implies that the section takes up space in the output
3428 file. */
3429 bfd_section_list_clear (abfd);
3431 /* Find the name to use in a DT_NEEDED entry that refers to this
3432 object. If the object has a DT_SONAME entry, we use it.
3433 Otherwise, if the generic linker stuck something in
3434 elf_dt_name, we use that. Otherwise, we just use the file
3435 name. */
3436 if (soname == NULL || *soname == '\0')
3438 soname = elf_dt_name (abfd);
3439 if (soname == NULL || *soname == '\0')
3440 soname = bfd_get_filename (abfd);
3443 /* Save the SONAME because sometimes the linker emulation code
3444 will need to know it. */
3445 elf_dt_name (abfd) = soname;
3447 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3448 if (ret < 0)
3449 goto error_return;
3451 /* If we have already included this dynamic object in the
3452 link, just ignore it. There is no reason to include a
3453 particular dynamic object more than once. */
3454 if (ret > 0)
3455 return TRUE;
3458 /* If this is a dynamic object, we always link against the .dynsym
3459 symbol table, not the .symtab symbol table. The dynamic linker
3460 will only see the .dynsym symbol table, so there is no reason to
3461 look at .symtab for a dynamic object. */
3463 if (! dynamic || elf_dynsymtab (abfd) == 0)
3464 hdr = &elf_tdata (abfd)->symtab_hdr;
3465 else
3466 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3468 symcount = hdr->sh_size / bed->s->sizeof_sym;
3470 /* The sh_info field of the symtab header tells us where the
3471 external symbols start. We don't care about the local symbols at
3472 this point. */
3473 if (elf_bad_symtab (abfd))
3475 extsymcount = symcount;
3476 extsymoff = 0;
3478 else
3480 extsymcount = symcount - hdr->sh_info;
3481 extsymoff = hdr->sh_info;
3484 sym_hash = NULL;
3485 if (extsymcount != 0)
3487 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3488 NULL, NULL, NULL);
3489 if (isymbuf == NULL)
3490 goto error_return;
3492 /* We store a pointer to the hash table entry for each external
3493 symbol. */
3494 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3495 sym_hash = bfd_alloc (abfd, amt);
3496 if (sym_hash == NULL)
3497 goto error_free_sym;
3498 elf_sym_hashes (abfd) = sym_hash;
3501 if (dynamic)
3503 /* Read in any version definitions. */
3504 if (!_bfd_elf_slurp_version_tables (abfd,
3505 info->default_imported_symver))
3506 goto error_free_sym;
3508 /* Read in the symbol versions, but don't bother to convert them
3509 to internal format. */
3510 if (elf_dynversym (abfd) != 0)
3512 Elf_Internal_Shdr *versymhdr;
3514 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3515 extversym = bfd_malloc (versymhdr->sh_size);
3516 if (extversym == NULL)
3517 goto error_free_sym;
3518 amt = versymhdr->sh_size;
3519 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3520 || bfd_bread (extversym, amt, abfd) != amt)
3521 goto error_free_vers;
3525 weaks = NULL;
3527 ever = extversym != NULL ? extversym + extsymoff : NULL;
3528 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3529 isym < isymend;
3530 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3532 int bind;
3533 bfd_vma value;
3534 asection *sec, *new_sec;
3535 flagword flags;
3536 const char *name;
3537 struct elf_link_hash_entry *h;
3538 bfd_boolean definition;
3539 bfd_boolean size_change_ok;
3540 bfd_boolean type_change_ok;
3541 bfd_boolean new_weakdef;
3542 bfd_boolean override;
3543 unsigned int old_alignment;
3544 bfd *old_bfd;
3546 override = FALSE;
3548 flags = BSF_NO_FLAGS;
3549 sec = NULL;
3550 value = isym->st_value;
3551 *sym_hash = NULL;
3553 bind = ELF_ST_BIND (isym->st_info);
3554 if (bind == STB_LOCAL)
3556 /* This should be impossible, since ELF requires that all
3557 global symbols follow all local symbols, and that sh_info
3558 point to the first global symbol. Unfortunately, Irix 5
3559 screws this up. */
3560 continue;
3562 else if (bind == STB_GLOBAL)
3564 if (isym->st_shndx != SHN_UNDEF
3565 && isym->st_shndx != SHN_COMMON)
3566 flags = BSF_GLOBAL;
3568 else if (bind == STB_WEAK)
3569 flags = BSF_WEAK;
3570 else
3572 /* Leave it up to the processor backend. */
3575 if (isym->st_shndx == SHN_UNDEF)
3576 sec = bfd_und_section_ptr;
3577 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3579 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3580 if (sec == NULL)
3581 sec = bfd_abs_section_ptr;
3582 else if (sec->kept_section)
3584 /* Symbols from discarded section are undefined, and have
3585 default visibility. */
3586 sec = bfd_und_section_ptr;
3587 isym->st_shndx = SHN_UNDEF;
3588 isym->st_other = STV_DEFAULT
3589 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
3591 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3592 value -= sec->vma;
3594 else if (isym->st_shndx == SHN_ABS)
3595 sec = bfd_abs_section_ptr;
3596 else if (isym->st_shndx == SHN_COMMON)
3598 sec = bfd_com_section_ptr;
3599 /* What ELF calls the size we call the value. What ELF
3600 calls the value we call the alignment. */
3601 value = isym->st_size;
3603 else
3605 /* Leave it up to the processor backend. */
3608 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3609 isym->st_name);
3610 if (name == NULL)
3611 goto error_free_vers;
3613 if (isym->st_shndx == SHN_COMMON
3614 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3616 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3618 if (tcomm == NULL)
3620 tcomm = bfd_make_section (abfd, ".tcommon");
3621 if (tcomm == NULL
3622 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3623 | SEC_IS_COMMON
3624 | SEC_LINKER_CREATED
3625 | SEC_THREAD_LOCAL)))
3626 goto error_free_vers;
3628 sec = tcomm;
3630 else if (add_symbol_hook)
3632 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3633 &value))
3634 goto error_free_vers;
3636 /* The hook function sets the name to NULL if this symbol
3637 should be skipped for some reason. */
3638 if (name == NULL)
3639 continue;
3642 /* Sanity check that all possibilities were handled. */
3643 if (sec == NULL)
3645 bfd_set_error (bfd_error_bad_value);
3646 goto error_free_vers;
3649 if (bfd_is_und_section (sec)
3650 || bfd_is_com_section (sec))
3651 definition = FALSE;
3652 else
3653 definition = TRUE;
3655 size_change_ok = FALSE;
3656 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3657 old_alignment = 0;
3658 old_bfd = NULL;
3659 new_sec = sec;
3661 if (is_elf_hash_table (hash_table))
3663 Elf_Internal_Versym iver;
3664 unsigned int vernum = 0;
3665 bfd_boolean skip;
3667 if (ever == NULL)
3669 if (info->default_imported_symver)
3670 /* Use the default symbol version created earlier. */
3671 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3672 else
3673 iver.vs_vers = 0;
3675 else
3676 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3678 vernum = iver.vs_vers & VERSYM_VERSION;
3680 /* If this is a hidden symbol, or if it is not version
3681 1, we append the version name to the symbol name.
3682 However, we do not modify a non-hidden absolute
3683 symbol, because it might be the version symbol
3684 itself. FIXME: What if it isn't? */
3685 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3686 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3688 const char *verstr;
3689 size_t namelen, verlen, newlen;
3690 char *newname, *p;
3692 if (isym->st_shndx != SHN_UNDEF)
3694 if (vernum > elf_tdata (abfd)->cverdefs)
3695 verstr = NULL;
3696 else if (vernum > 1)
3697 verstr =
3698 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3699 else
3700 verstr = "";
3702 if (verstr == NULL)
3704 (*_bfd_error_handler)
3705 (_("%B: %s: invalid version %u (max %d)"),
3706 abfd, name, vernum,
3707 elf_tdata (abfd)->cverdefs);
3708 bfd_set_error (bfd_error_bad_value);
3709 goto error_free_vers;
3712 else
3714 /* We cannot simply test for the number of
3715 entries in the VERNEED section since the
3716 numbers for the needed versions do not start
3717 at 0. */
3718 Elf_Internal_Verneed *t;
3720 verstr = NULL;
3721 for (t = elf_tdata (abfd)->verref;
3722 t != NULL;
3723 t = t->vn_nextref)
3725 Elf_Internal_Vernaux *a;
3727 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3729 if (a->vna_other == vernum)
3731 verstr = a->vna_nodename;
3732 break;
3735 if (a != NULL)
3736 break;
3738 if (verstr == NULL)
3740 (*_bfd_error_handler)
3741 (_("%B: %s: invalid needed version %d"),
3742 abfd, name, vernum);
3743 bfd_set_error (bfd_error_bad_value);
3744 goto error_free_vers;
3748 namelen = strlen (name);
3749 verlen = strlen (verstr);
3750 newlen = namelen + verlen + 2;
3751 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3752 && isym->st_shndx != SHN_UNDEF)
3753 ++newlen;
3755 newname = bfd_alloc (abfd, newlen);
3756 if (newname == NULL)
3757 goto error_free_vers;
3758 memcpy (newname, name, namelen);
3759 p = newname + namelen;
3760 *p++ = ELF_VER_CHR;
3761 /* If this is a defined non-hidden version symbol,
3762 we add another @ to the name. This indicates the
3763 default version of the symbol. */
3764 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3765 && isym->st_shndx != SHN_UNDEF)
3766 *p++ = ELF_VER_CHR;
3767 memcpy (p, verstr, verlen + 1);
3769 name = newname;
3772 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3773 &value, &old_alignment,
3774 sym_hash, &skip, &override,
3775 &type_change_ok, &size_change_ok))
3776 goto error_free_vers;
3778 if (skip)
3779 continue;
3781 if (override)
3782 definition = FALSE;
3784 h = *sym_hash;
3785 while (h->root.type == bfd_link_hash_indirect
3786 || h->root.type == bfd_link_hash_warning)
3787 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3789 /* Remember the old alignment if this is a common symbol, so
3790 that we don't reduce the alignment later on. We can't
3791 check later, because _bfd_generic_link_add_one_symbol
3792 will set a default for the alignment which we want to
3793 override. We also remember the old bfd where the existing
3794 definition comes from. */
3795 switch (h->root.type)
3797 default:
3798 break;
3800 case bfd_link_hash_defined:
3801 case bfd_link_hash_defweak:
3802 old_bfd = h->root.u.def.section->owner;
3803 break;
3805 case bfd_link_hash_common:
3806 old_bfd = h->root.u.c.p->section->owner;
3807 old_alignment = h->root.u.c.p->alignment_power;
3808 break;
3811 if (elf_tdata (abfd)->verdef != NULL
3812 && ! override
3813 && vernum > 1
3814 && definition)
3815 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3818 if (! (_bfd_generic_link_add_one_symbol
3819 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3820 (struct bfd_link_hash_entry **) sym_hash)))
3821 goto error_free_vers;
3823 h = *sym_hash;
3824 while (h->root.type == bfd_link_hash_indirect
3825 || h->root.type == bfd_link_hash_warning)
3826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3827 *sym_hash = h;
3829 new_weakdef = FALSE;
3830 if (dynamic
3831 && definition
3832 && (flags & BSF_WEAK) != 0
3833 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3834 && is_elf_hash_table (hash_table)
3835 && h->u.weakdef == NULL)
3837 /* Keep a list of all weak defined non function symbols from
3838 a dynamic object, using the weakdef field. Later in this
3839 function we will set the weakdef field to the correct
3840 value. We only put non-function symbols from dynamic
3841 objects on this list, because that happens to be the only
3842 time we need to know the normal symbol corresponding to a
3843 weak symbol, and the information is time consuming to
3844 figure out. If the weakdef field is not already NULL,
3845 then this symbol was already defined by some previous
3846 dynamic object, and we will be using that previous
3847 definition anyhow. */
3849 h->u.weakdef = weaks;
3850 weaks = h;
3851 new_weakdef = TRUE;
3854 /* Set the alignment of a common symbol. */
3855 if ((isym->st_shndx == SHN_COMMON
3856 || bfd_is_com_section (sec))
3857 && h->root.type == bfd_link_hash_common)
3859 unsigned int align;
3861 if (isym->st_shndx == SHN_COMMON)
3862 align = bfd_log2 (isym->st_value);
3863 else
3865 /* The new symbol is a common symbol in a shared object.
3866 We need to get the alignment from the section. */
3867 align = new_sec->alignment_power;
3869 if (align > old_alignment
3870 /* Permit an alignment power of zero if an alignment of one
3871 is specified and no other alignments have been specified. */
3872 || (isym->st_value == 1 && old_alignment == 0))
3873 h->root.u.c.p->alignment_power = align;
3874 else
3875 h->root.u.c.p->alignment_power = old_alignment;
3878 if (is_elf_hash_table (hash_table))
3880 bfd_boolean dynsym;
3882 /* Check the alignment when a common symbol is involved. This
3883 can change when a common symbol is overridden by a normal
3884 definition or a common symbol is ignored due to the old
3885 normal definition. We need to make sure the maximum
3886 alignment is maintained. */
3887 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3888 && h->root.type != bfd_link_hash_common)
3890 unsigned int common_align;
3891 unsigned int normal_align;
3892 unsigned int symbol_align;
3893 bfd *normal_bfd;
3894 bfd *common_bfd;
3896 symbol_align = ffs (h->root.u.def.value) - 1;
3897 if (h->root.u.def.section->owner != NULL
3898 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3900 normal_align = h->root.u.def.section->alignment_power;
3901 if (normal_align > symbol_align)
3902 normal_align = symbol_align;
3904 else
3905 normal_align = symbol_align;
3907 if (old_alignment)
3909 common_align = old_alignment;
3910 common_bfd = old_bfd;
3911 normal_bfd = abfd;
3913 else
3915 common_align = bfd_log2 (isym->st_value);
3916 common_bfd = abfd;
3917 normal_bfd = old_bfd;
3920 if (normal_align < common_align)
3921 (*_bfd_error_handler)
3922 (_("Warning: alignment %u of symbol `%s' in %B"
3923 " is smaller than %u in %B"),
3924 normal_bfd, common_bfd,
3925 1 << normal_align, name, 1 << common_align);
3928 /* Remember the symbol size and type. */
3929 if (isym->st_size != 0
3930 && (definition || h->size == 0))
3932 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3933 (*_bfd_error_handler)
3934 (_("Warning: size of symbol `%s' changed"
3935 " from %lu in %B to %lu in %B"),
3936 old_bfd, abfd,
3937 name, (unsigned long) h->size,
3938 (unsigned long) isym->st_size);
3940 h->size = isym->st_size;
3943 /* If this is a common symbol, then we always want H->SIZE
3944 to be the size of the common symbol. The code just above
3945 won't fix the size if a common symbol becomes larger. We
3946 don't warn about a size change here, because that is
3947 covered by --warn-common. */
3948 if (h->root.type == bfd_link_hash_common)
3949 h->size = h->root.u.c.size;
3951 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3952 && (definition || h->type == STT_NOTYPE))
3954 if (h->type != STT_NOTYPE
3955 && h->type != ELF_ST_TYPE (isym->st_info)
3956 && ! type_change_ok)
3957 (*_bfd_error_handler)
3958 (_("Warning: type of symbol `%s' changed"
3959 " from %d to %d in %B"),
3960 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3962 h->type = ELF_ST_TYPE (isym->st_info);
3965 /* If st_other has a processor-specific meaning, specific
3966 code might be needed here. We never merge the visibility
3967 attribute with the one from a dynamic object. */
3968 if (bed->elf_backend_merge_symbol_attribute)
3969 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3970 dynamic);
3972 /* If this symbol has default visibility and the user has requested
3973 we not re-export it, then mark it as hidden. */
3974 if (definition && !dynamic
3975 && (abfd->no_export
3976 || (abfd->my_archive && abfd->my_archive->no_export))
3977 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3978 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3980 if (isym->st_other != 0 && !dynamic)
3982 unsigned char hvis, symvis, other, nvis;
3984 /* Take the balance of OTHER from the definition. */
3985 other = (definition ? isym->st_other : h->other);
3986 other &= ~ ELF_ST_VISIBILITY (-1);
3988 /* Combine visibilities, using the most constraining one. */
3989 hvis = ELF_ST_VISIBILITY (h->other);
3990 symvis = ELF_ST_VISIBILITY (isym->st_other);
3991 if (! hvis)
3992 nvis = symvis;
3993 else if (! symvis)
3994 nvis = hvis;
3995 else
3996 nvis = hvis < symvis ? hvis : symvis;
3998 h->other = other | nvis;
4001 /* Set a flag in the hash table entry indicating the type of
4002 reference or definition we just found. Keep a count of
4003 the number of dynamic symbols we find. A dynamic symbol
4004 is one which is referenced or defined by both a regular
4005 object and a shared object. */
4006 dynsym = FALSE;
4007 if (! dynamic)
4009 if (! definition)
4011 h->ref_regular = 1;
4012 if (bind != STB_WEAK)
4013 h->ref_regular_nonweak = 1;
4015 else
4016 h->def_regular = 1;
4017 if (! info->executable
4018 || h->def_dynamic
4019 || h->ref_dynamic)
4020 dynsym = TRUE;
4022 else
4024 if (! definition)
4025 h->ref_dynamic = 1;
4026 else
4027 h->def_dynamic = 1;
4028 if (h->def_regular
4029 || h->ref_regular
4030 || (h->u.weakdef != NULL
4031 && ! new_weakdef
4032 && h->u.weakdef->dynindx != -1))
4033 dynsym = TRUE;
4036 /* Check to see if we need to add an indirect symbol for
4037 the default name. */
4038 if (definition || h->root.type == bfd_link_hash_common)
4039 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4040 &sec, &value, &dynsym,
4041 override))
4042 goto error_free_vers;
4044 if (definition && !dynamic)
4046 char *p = strchr (name, ELF_VER_CHR);
4047 if (p != NULL && p[1] != ELF_VER_CHR)
4049 /* Queue non-default versions so that .symver x, x@FOO
4050 aliases can be checked. */
4051 if (! nondeflt_vers)
4053 amt = (isymend - isym + 1)
4054 * sizeof (struct elf_link_hash_entry *);
4055 nondeflt_vers = bfd_malloc (amt);
4057 nondeflt_vers [nondeflt_vers_cnt++] = h;
4061 if (dynsym && h->dynindx == -1)
4063 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4064 goto error_free_vers;
4065 if (h->u.weakdef != NULL
4066 && ! new_weakdef
4067 && h->u.weakdef->dynindx == -1)
4069 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4070 goto error_free_vers;
4073 else if (dynsym && h->dynindx != -1)
4074 /* If the symbol already has a dynamic index, but
4075 visibility says it should not be visible, turn it into
4076 a local symbol. */
4077 switch (ELF_ST_VISIBILITY (h->other))
4079 case STV_INTERNAL:
4080 case STV_HIDDEN:
4081 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4082 dynsym = FALSE;
4083 break;
4086 if (!add_needed
4087 && definition
4088 && dynsym
4089 && h->ref_regular)
4091 int ret;
4092 const char *soname = elf_dt_name (abfd);
4094 /* A symbol from a library loaded via DT_NEEDED of some
4095 other library is referenced by a regular object.
4096 Add a DT_NEEDED entry for it. Issue an error if
4097 --no-add-needed is used. */
4098 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4100 (*_bfd_error_handler)
4101 (_("%s: invalid DSO for symbol `%s' definition"),
4102 abfd, name);
4103 bfd_set_error (bfd_error_bad_value);
4104 goto error_free_vers;
4107 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4109 add_needed = TRUE;
4110 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4111 if (ret < 0)
4112 goto error_free_vers;
4114 BFD_ASSERT (ret == 0);
4119 /* Now that all the symbols from this input file are created, handle
4120 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4121 if (nondeflt_vers != NULL)
4123 bfd_size_type cnt, symidx;
4125 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4127 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4128 char *shortname, *p;
4130 p = strchr (h->root.root.string, ELF_VER_CHR);
4131 if (p == NULL
4132 || (h->root.type != bfd_link_hash_defined
4133 && h->root.type != bfd_link_hash_defweak))
4134 continue;
4136 amt = p - h->root.root.string;
4137 shortname = bfd_malloc (amt + 1);
4138 memcpy (shortname, h->root.root.string, amt);
4139 shortname[amt] = '\0';
4141 hi = (struct elf_link_hash_entry *)
4142 bfd_link_hash_lookup (&hash_table->root, shortname,
4143 FALSE, FALSE, FALSE);
4144 if (hi != NULL
4145 && hi->root.type == h->root.type
4146 && hi->root.u.def.value == h->root.u.def.value
4147 && hi->root.u.def.section == h->root.u.def.section)
4149 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4150 hi->root.type = bfd_link_hash_indirect;
4151 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4152 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4153 sym_hash = elf_sym_hashes (abfd);
4154 if (sym_hash)
4155 for (symidx = 0; symidx < extsymcount; ++symidx)
4156 if (sym_hash[symidx] == hi)
4158 sym_hash[symidx] = h;
4159 break;
4162 free (shortname);
4164 free (nondeflt_vers);
4165 nondeflt_vers = NULL;
4168 if (extversym != NULL)
4170 free (extversym);
4171 extversym = NULL;
4174 if (isymbuf != NULL)
4175 free (isymbuf);
4176 isymbuf = NULL;
4178 if (!add_needed
4179 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4181 /* Remove symbols defined in an as-needed shared lib that wasn't
4182 needed. */
4183 struct elf_smash_syms_data inf;
4184 inf.not_needed = abfd;
4185 inf.htab = hash_table;
4186 inf.twiddled = FALSE;
4187 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4188 if (inf.twiddled)
4189 bfd_link_repair_undef_list (&hash_table->root);
4190 weaks = NULL;
4193 /* Now set the weakdefs field correctly for all the weak defined
4194 symbols we found. The only way to do this is to search all the
4195 symbols. Since we only need the information for non functions in
4196 dynamic objects, that's the only time we actually put anything on
4197 the list WEAKS. We need this information so that if a regular
4198 object refers to a symbol defined weakly in a dynamic object, the
4199 real symbol in the dynamic object is also put in the dynamic
4200 symbols; we also must arrange for both symbols to point to the
4201 same memory location. We could handle the general case of symbol
4202 aliasing, but a general symbol alias can only be generated in
4203 assembler code, handling it correctly would be very time
4204 consuming, and other ELF linkers don't handle general aliasing
4205 either. */
4206 if (weaks != NULL)
4208 struct elf_link_hash_entry **hpp;
4209 struct elf_link_hash_entry **hppend;
4210 struct elf_link_hash_entry **sorted_sym_hash;
4211 struct elf_link_hash_entry *h;
4212 size_t sym_count;
4214 /* Since we have to search the whole symbol list for each weak
4215 defined symbol, search time for N weak defined symbols will be
4216 O(N^2). Binary search will cut it down to O(NlogN). */
4217 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4218 sorted_sym_hash = bfd_malloc (amt);
4219 if (sorted_sym_hash == NULL)
4220 goto error_return;
4221 sym_hash = sorted_sym_hash;
4222 hpp = elf_sym_hashes (abfd);
4223 hppend = hpp + extsymcount;
4224 sym_count = 0;
4225 for (; hpp < hppend; hpp++)
4227 h = *hpp;
4228 if (h != NULL
4229 && h->root.type == bfd_link_hash_defined
4230 && h->type != STT_FUNC)
4232 *sym_hash = h;
4233 sym_hash++;
4234 sym_count++;
4238 qsort (sorted_sym_hash, sym_count,
4239 sizeof (struct elf_link_hash_entry *),
4240 elf_sort_symbol);
4242 while (weaks != NULL)
4244 struct elf_link_hash_entry *hlook;
4245 asection *slook;
4246 bfd_vma vlook;
4247 long ilook;
4248 size_t i, j, idx;
4250 hlook = weaks;
4251 weaks = hlook->u.weakdef;
4252 hlook->u.weakdef = NULL;
4254 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4255 || hlook->root.type == bfd_link_hash_defweak
4256 || hlook->root.type == bfd_link_hash_common
4257 || hlook->root.type == bfd_link_hash_indirect);
4258 slook = hlook->root.u.def.section;
4259 vlook = hlook->root.u.def.value;
4261 ilook = -1;
4262 i = 0;
4263 j = sym_count;
4264 while (i < j)
4266 bfd_signed_vma vdiff;
4267 idx = (i + j) / 2;
4268 h = sorted_sym_hash [idx];
4269 vdiff = vlook - h->root.u.def.value;
4270 if (vdiff < 0)
4271 j = idx;
4272 else if (vdiff > 0)
4273 i = idx + 1;
4274 else
4276 long sdiff = slook->id - h->root.u.def.section->id;
4277 if (sdiff < 0)
4278 j = idx;
4279 else if (sdiff > 0)
4280 i = idx + 1;
4281 else
4283 ilook = idx;
4284 break;
4289 /* We didn't find a value/section match. */
4290 if (ilook == -1)
4291 continue;
4293 for (i = ilook; i < sym_count; i++)
4295 h = sorted_sym_hash [i];
4297 /* Stop if value or section doesn't match. */
4298 if (h->root.u.def.value != vlook
4299 || h->root.u.def.section != slook)
4300 break;
4301 else if (h != hlook)
4303 hlook->u.weakdef = h;
4305 /* If the weak definition is in the list of dynamic
4306 symbols, make sure the real definition is put
4307 there as well. */
4308 if (hlook->dynindx != -1 && h->dynindx == -1)
4310 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4311 goto error_return;
4314 /* If the real definition is in the list of dynamic
4315 symbols, make sure the weak definition is put
4316 there as well. If we don't do this, then the
4317 dynamic loader might not merge the entries for the
4318 real definition and the weak definition. */
4319 if (h->dynindx != -1 && hlook->dynindx == -1)
4321 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4322 goto error_return;
4324 break;
4329 free (sorted_sym_hash);
4332 check_directives = get_elf_backend_data (abfd)->check_directives;
4333 if (check_directives)
4334 check_directives (abfd, info);
4336 /* If this object is the same format as the output object, and it is
4337 not a shared library, then let the backend look through the
4338 relocs.
4340 This is required to build global offset table entries and to
4341 arrange for dynamic relocs. It is not required for the
4342 particular common case of linking non PIC code, even when linking
4343 against shared libraries, but unfortunately there is no way of
4344 knowing whether an object file has been compiled PIC or not.
4345 Looking through the relocs is not particularly time consuming.
4346 The problem is that we must either (1) keep the relocs in memory,
4347 which causes the linker to require additional runtime memory or
4348 (2) read the relocs twice from the input file, which wastes time.
4349 This would be a good case for using mmap.
4351 I have no idea how to handle linking PIC code into a file of a
4352 different format. It probably can't be done. */
4353 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4354 if (! dynamic
4355 && is_elf_hash_table (hash_table)
4356 && hash_table->root.creator == abfd->xvec
4357 && check_relocs != NULL)
4359 asection *o;
4361 for (o = abfd->sections; o != NULL; o = o->next)
4363 Elf_Internal_Rela *internal_relocs;
4364 bfd_boolean ok;
4366 if ((o->flags & SEC_RELOC) == 0
4367 || o->reloc_count == 0
4368 || ((info->strip == strip_all || info->strip == strip_debugger)
4369 && (o->flags & SEC_DEBUGGING) != 0)
4370 || bfd_is_abs_section (o->output_section))
4371 continue;
4373 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4374 info->keep_memory);
4375 if (internal_relocs == NULL)
4376 goto error_return;
4378 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4380 if (elf_section_data (o)->relocs != internal_relocs)
4381 free (internal_relocs);
4383 if (! ok)
4384 goto error_return;
4388 /* If this is a non-traditional link, try to optimize the handling
4389 of the .stab/.stabstr sections. */
4390 if (! dynamic
4391 && ! info->traditional_format
4392 && is_elf_hash_table (hash_table)
4393 && (info->strip != strip_all && info->strip != strip_debugger))
4395 asection *stabstr;
4397 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4398 if (stabstr != NULL)
4400 bfd_size_type string_offset = 0;
4401 asection *stab;
4403 for (stab = abfd->sections; stab; stab = stab->next)
4404 if (strncmp (".stab", stab->name, 5) == 0
4405 && (!stab->name[5] ||
4406 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4407 && (stab->flags & SEC_MERGE) == 0
4408 && !bfd_is_abs_section (stab->output_section))
4410 struct bfd_elf_section_data *secdata;
4412 secdata = elf_section_data (stab);
4413 if (! _bfd_link_section_stabs (abfd,
4414 &hash_table->stab_info,
4415 stab, stabstr,
4416 &secdata->sec_info,
4417 &string_offset))
4418 goto error_return;
4419 if (secdata->sec_info)
4420 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4425 if (is_elf_hash_table (hash_table) && add_needed)
4427 /* Add this bfd to the loaded list. */
4428 struct elf_link_loaded_list *n;
4430 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4431 if (n == NULL)
4432 goto error_return;
4433 n->abfd = abfd;
4434 n->next = hash_table->loaded;
4435 hash_table->loaded = n;
4438 return TRUE;
4440 error_free_vers:
4441 if (nondeflt_vers != NULL)
4442 free (nondeflt_vers);
4443 if (extversym != NULL)
4444 free (extversym);
4445 error_free_sym:
4446 if (isymbuf != NULL)
4447 free (isymbuf);
4448 error_return:
4449 return FALSE;
4452 /* Return the linker hash table entry of a symbol that might be
4453 satisfied by an archive symbol. Return -1 on error. */
4455 struct elf_link_hash_entry *
4456 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4457 struct bfd_link_info *info,
4458 const char *name)
4460 struct elf_link_hash_entry *h;
4461 char *p, *copy;
4462 size_t len, first;
4464 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4465 if (h != NULL)
4466 return h;
4468 /* If this is a default version (the name contains @@), look up the
4469 symbol again with only one `@' as well as without the version.
4470 The effect is that references to the symbol with and without the
4471 version will be matched by the default symbol in the archive. */
4473 p = strchr (name, ELF_VER_CHR);
4474 if (p == NULL || p[1] != ELF_VER_CHR)
4475 return h;
4477 /* First check with only one `@'. */
4478 len = strlen (name);
4479 copy = bfd_alloc (abfd, len);
4480 if (copy == NULL)
4481 return (struct elf_link_hash_entry *) 0 - 1;
4483 first = p - name + 1;
4484 memcpy (copy, name, first);
4485 memcpy (copy + first, name + first + 1, len - first);
4487 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4488 if (h == NULL)
4490 /* We also need to check references to the symbol without the
4491 version. */
4492 copy[first - 1] = '\0';
4493 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4494 FALSE, FALSE, FALSE);
4497 bfd_release (abfd, copy);
4498 return h;
4501 /* Add symbols from an ELF archive file to the linker hash table. We
4502 don't use _bfd_generic_link_add_archive_symbols because of a
4503 problem which arises on UnixWare. The UnixWare libc.so is an
4504 archive which includes an entry libc.so.1 which defines a bunch of
4505 symbols. The libc.so archive also includes a number of other
4506 object files, which also define symbols, some of which are the same
4507 as those defined in libc.so.1. Correct linking requires that we
4508 consider each object file in turn, and include it if it defines any
4509 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4510 this; it looks through the list of undefined symbols, and includes
4511 any object file which defines them. When this algorithm is used on
4512 UnixWare, it winds up pulling in libc.so.1 early and defining a
4513 bunch of symbols. This means that some of the other objects in the
4514 archive are not included in the link, which is incorrect since they
4515 precede libc.so.1 in the archive.
4517 Fortunately, ELF archive handling is simpler than that done by
4518 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4519 oddities. In ELF, if we find a symbol in the archive map, and the
4520 symbol is currently undefined, we know that we must pull in that
4521 object file.
4523 Unfortunately, we do have to make multiple passes over the symbol
4524 table until nothing further is resolved. */
4526 static bfd_boolean
4527 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4529 symindex c;
4530 bfd_boolean *defined = NULL;
4531 bfd_boolean *included = NULL;
4532 carsym *symdefs;
4533 bfd_boolean loop;
4534 bfd_size_type amt;
4535 const struct elf_backend_data *bed;
4536 struct elf_link_hash_entry * (*archive_symbol_lookup)
4537 (bfd *, struct bfd_link_info *, const char *);
4539 if (! bfd_has_map (abfd))
4541 /* An empty archive is a special case. */
4542 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4543 return TRUE;
4544 bfd_set_error (bfd_error_no_armap);
4545 return FALSE;
4548 /* Keep track of all symbols we know to be already defined, and all
4549 files we know to be already included. This is to speed up the
4550 second and subsequent passes. */
4551 c = bfd_ardata (abfd)->symdef_count;
4552 if (c == 0)
4553 return TRUE;
4554 amt = c;
4555 amt *= sizeof (bfd_boolean);
4556 defined = bfd_zmalloc (amt);
4557 included = bfd_zmalloc (amt);
4558 if (defined == NULL || included == NULL)
4559 goto error_return;
4561 symdefs = bfd_ardata (abfd)->symdefs;
4562 bed = get_elf_backend_data (abfd);
4563 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4567 file_ptr last;
4568 symindex i;
4569 carsym *symdef;
4570 carsym *symdefend;
4572 loop = FALSE;
4573 last = -1;
4575 symdef = symdefs;
4576 symdefend = symdef + c;
4577 for (i = 0; symdef < symdefend; symdef++, i++)
4579 struct elf_link_hash_entry *h;
4580 bfd *element;
4581 struct bfd_link_hash_entry *undefs_tail;
4582 symindex mark;
4584 if (defined[i] || included[i])
4585 continue;
4586 if (symdef->file_offset == last)
4588 included[i] = TRUE;
4589 continue;
4592 h = archive_symbol_lookup (abfd, info, symdef->name);
4593 if (h == (struct elf_link_hash_entry *) 0 - 1)
4594 goto error_return;
4596 if (h == NULL)
4597 continue;
4599 if (h->root.type == bfd_link_hash_common)
4601 /* We currently have a common symbol. The archive map contains
4602 a reference to this symbol, so we may want to include it. We
4603 only want to include it however, if this archive element
4604 contains a definition of the symbol, not just another common
4605 declaration of it.
4607 Unfortunately some archivers (including GNU ar) will put
4608 declarations of common symbols into their archive maps, as
4609 well as real definitions, so we cannot just go by the archive
4610 map alone. Instead we must read in the element's symbol
4611 table and check that to see what kind of symbol definition
4612 this is. */
4613 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4614 continue;
4616 else if (h->root.type != bfd_link_hash_undefined)
4618 if (h->root.type != bfd_link_hash_undefweak)
4619 defined[i] = TRUE;
4620 continue;
4623 /* We need to include this archive member. */
4624 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4625 if (element == NULL)
4626 goto error_return;
4628 if (! bfd_check_format (element, bfd_object))
4629 goto error_return;
4631 /* Doublecheck that we have not included this object
4632 already--it should be impossible, but there may be
4633 something wrong with the archive. */
4634 if (element->archive_pass != 0)
4636 bfd_set_error (bfd_error_bad_value);
4637 goto error_return;
4639 element->archive_pass = 1;
4641 undefs_tail = info->hash->undefs_tail;
4643 if (! (*info->callbacks->add_archive_element) (info, element,
4644 symdef->name))
4645 goto error_return;
4646 if (! bfd_link_add_symbols (element, info))
4647 goto error_return;
4649 /* If there are any new undefined symbols, we need to make
4650 another pass through the archive in order to see whether
4651 they can be defined. FIXME: This isn't perfect, because
4652 common symbols wind up on undefs_tail and because an
4653 undefined symbol which is defined later on in this pass
4654 does not require another pass. This isn't a bug, but it
4655 does make the code less efficient than it could be. */
4656 if (undefs_tail != info->hash->undefs_tail)
4657 loop = TRUE;
4659 /* Look backward to mark all symbols from this object file
4660 which we have already seen in this pass. */
4661 mark = i;
4664 included[mark] = TRUE;
4665 if (mark == 0)
4666 break;
4667 --mark;
4669 while (symdefs[mark].file_offset == symdef->file_offset);
4671 /* We mark subsequent symbols from this object file as we go
4672 on through the loop. */
4673 last = symdef->file_offset;
4676 while (loop);
4678 free (defined);
4679 free (included);
4681 return TRUE;
4683 error_return:
4684 if (defined != NULL)
4685 free (defined);
4686 if (included != NULL)
4687 free (included);
4688 return FALSE;
4691 /* Given an ELF BFD, add symbols to the global hash table as
4692 appropriate. */
4694 bfd_boolean
4695 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4697 switch (bfd_get_format (abfd))
4699 case bfd_object:
4700 return elf_link_add_object_symbols (abfd, info);
4701 case bfd_archive:
4702 return elf_link_add_archive_symbols (abfd, info);
4703 default:
4704 bfd_set_error (bfd_error_wrong_format);
4705 return FALSE;
4709 /* This function will be called though elf_link_hash_traverse to store
4710 all hash value of the exported symbols in an array. */
4712 static bfd_boolean
4713 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4715 unsigned long **valuep = data;
4716 const char *name;
4717 char *p;
4718 unsigned long ha;
4719 char *alc = NULL;
4721 if (h->root.type == bfd_link_hash_warning)
4722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4724 /* Ignore indirect symbols. These are added by the versioning code. */
4725 if (h->dynindx == -1)
4726 return TRUE;
4728 name = h->root.root.string;
4729 p = strchr (name, ELF_VER_CHR);
4730 if (p != NULL)
4732 alc = bfd_malloc (p - name + 1);
4733 memcpy (alc, name, p - name);
4734 alc[p - name] = '\0';
4735 name = alc;
4738 /* Compute the hash value. */
4739 ha = bfd_elf_hash (name);
4741 /* Store the found hash value in the array given as the argument. */
4742 *(*valuep)++ = ha;
4744 /* And store it in the struct so that we can put it in the hash table
4745 later. */
4746 h->u.elf_hash_value = ha;
4748 if (alc != NULL)
4749 free (alc);
4751 return TRUE;
4754 /* Array used to determine the number of hash table buckets to use
4755 based on the number of symbols there are. If there are fewer than
4756 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4757 fewer than 37 we use 17 buckets, and so forth. We never use more
4758 than 32771 buckets. */
4760 static const size_t elf_buckets[] =
4762 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4763 16411, 32771, 0
4766 /* Compute bucket count for hashing table. We do not use a static set
4767 of possible tables sizes anymore. Instead we determine for all
4768 possible reasonable sizes of the table the outcome (i.e., the
4769 number of collisions etc) and choose the best solution. The
4770 weighting functions are not too simple to allow the table to grow
4771 without bounds. Instead one of the weighting factors is the size.
4772 Therefore the result is always a good payoff between few collisions
4773 (= short chain lengths) and table size. */
4774 static size_t
4775 compute_bucket_count (struct bfd_link_info *info)
4777 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4778 size_t best_size = 0;
4779 unsigned long int *hashcodes;
4780 unsigned long int *hashcodesp;
4781 unsigned long int i;
4782 bfd_size_type amt;
4784 /* Compute the hash values for all exported symbols. At the same
4785 time store the values in an array so that we could use them for
4786 optimizations. */
4787 amt = dynsymcount;
4788 amt *= sizeof (unsigned long int);
4789 hashcodes = bfd_malloc (amt);
4790 if (hashcodes == NULL)
4791 return 0;
4792 hashcodesp = hashcodes;
4794 /* Put all hash values in HASHCODES. */
4795 elf_link_hash_traverse (elf_hash_table (info),
4796 elf_collect_hash_codes, &hashcodesp);
4798 /* We have a problem here. The following code to optimize the table
4799 size requires an integer type with more the 32 bits. If
4800 BFD_HOST_U_64_BIT is set we know about such a type. */
4801 #ifdef BFD_HOST_U_64_BIT
4802 if (info->optimize)
4804 unsigned long int nsyms = hashcodesp - hashcodes;
4805 size_t minsize;
4806 size_t maxsize;
4807 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4808 unsigned long int *counts ;
4809 bfd *dynobj = elf_hash_table (info)->dynobj;
4810 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4812 /* Possible optimization parameters: if we have NSYMS symbols we say
4813 that the hashing table must at least have NSYMS/4 and at most
4814 2*NSYMS buckets. */
4815 minsize = nsyms / 4;
4816 if (minsize == 0)
4817 minsize = 1;
4818 best_size = maxsize = nsyms * 2;
4820 /* Create array where we count the collisions in. We must use bfd_malloc
4821 since the size could be large. */
4822 amt = maxsize;
4823 amt *= sizeof (unsigned long int);
4824 counts = bfd_malloc (amt);
4825 if (counts == NULL)
4827 free (hashcodes);
4828 return 0;
4831 /* Compute the "optimal" size for the hash table. The criteria is a
4832 minimal chain length. The minor criteria is (of course) the size
4833 of the table. */
4834 for (i = minsize; i < maxsize; ++i)
4836 /* Walk through the array of hashcodes and count the collisions. */
4837 BFD_HOST_U_64_BIT max;
4838 unsigned long int j;
4839 unsigned long int fact;
4841 memset (counts, '\0', i * sizeof (unsigned long int));
4843 /* Determine how often each hash bucket is used. */
4844 for (j = 0; j < nsyms; ++j)
4845 ++counts[hashcodes[j] % i];
4847 /* For the weight function we need some information about the
4848 pagesize on the target. This is information need not be 100%
4849 accurate. Since this information is not available (so far) we
4850 define it here to a reasonable default value. If it is crucial
4851 to have a better value some day simply define this value. */
4852 # ifndef BFD_TARGET_PAGESIZE
4853 # define BFD_TARGET_PAGESIZE (4096)
4854 # endif
4856 /* We in any case need 2 + NSYMS entries for the size values and
4857 the chains. */
4858 max = (2 + nsyms) * (bed->s->arch_size / 8);
4860 # if 1
4861 /* Variant 1: optimize for short chains. We add the squares
4862 of all the chain lengths (which favors many small chain
4863 over a few long chains). */
4864 for (j = 0; j < i; ++j)
4865 max += counts[j] * counts[j];
4867 /* This adds penalties for the overall size of the table. */
4868 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4869 max *= fact * fact;
4870 # else
4871 /* Variant 2: Optimize a lot more for small table. Here we
4872 also add squares of the size but we also add penalties for
4873 empty slots (the +1 term). */
4874 for (j = 0; j < i; ++j)
4875 max += (1 + counts[j]) * (1 + counts[j]);
4877 /* The overall size of the table is considered, but not as
4878 strong as in variant 1, where it is squared. */
4879 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4880 max *= fact;
4881 # endif
4883 /* Compare with current best results. */
4884 if (max < best_chlen)
4886 best_chlen = max;
4887 best_size = i;
4891 free (counts);
4893 else
4894 #endif /* defined (BFD_HOST_U_64_BIT) */
4896 /* This is the fallback solution if no 64bit type is available or if we
4897 are not supposed to spend much time on optimizations. We select the
4898 bucket count using a fixed set of numbers. */
4899 for (i = 0; elf_buckets[i] != 0; i++)
4901 best_size = elf_buckets[i];
4902 if (dynsymcount < elf_buckets[i + 1])
4903 break;
4907 /* Free the arrays we needed. */
4908 free (hashcodes);
4910 return best_size;
4913 /* Set up the sizes and contents of the ELF dynamic sections. This is
4914 called by the ELF linker emulation before_allocation routine. We
4915 must set the sizes of the sections before the linker sets the
4916 addresses of the various sections. */
4918 bfd_boolean
4919 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4920 const char *soname,
4921 const char *rpath,
4922 const char *filter_shlib,
4923 const char * const *auxiliary_filters,
4924 struct bfd_link_info *info,
4925 asection **sinterpptr,
4926 struct bfd_elf_version_tree *verdefs)
4928 bfd_size_type soname_indx;
4929 bfd *dynobj;
4930 const struct elf_backend_data *bed;
4931 struct elf_assign_sym_version_info asvinfo;
4933 *sinterpptr = NULL;
4935 soname_indx = (bfd_size_type) -1;
4937 if (!is_elf_hash_table (info->hash))
4938 return TRUE;
4940 elf_tdata (output_bfd)->relro = info->relro;
4941 if (info->execstack)
4942 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4943 else if (info->noexecstack)
4944 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4945 else
4947 bfd *inputobj;
4948 asection *notesec = NULL;
4949 int exec = 0;
4951 for (inputobj = info->input_bfds;
4952 inputobj;
4953 inputobj = inputobj->link_next)
4955 asection *s;
4957 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
4958 continue;
4959 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4960 if (s)
4962 if (s->flags & SEC_CODE)
4963 exec = PF_X;
4964 notesec = s;
4966 else
4967 exec = PF_X;
4969 if (notesec)
4971 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4972 if (exec && info->relocatable
4973 && notesec->output_section != bfd_abs_section_ptr)
4974 notesec->output_section->flags |= SEC_CODE;
4978 /* Any syms created from now on start with -1 in
4979 got.refcount/offset and plt.refcount/offset. */
4980 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4982 /* The backend may have to create some sections regardless of whether
4983 we're dynamic or not. */
4984 bed = get_elf_backend_data (output_bfd);
4985 if (bed->elf_backend_always_size_sections
4986 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4987 return FALSE;
4989 dynobj = elf_hash_table (info)->dynobj;
4991 /* If there were no dynamic objects in the link, there is nothing to
4992 do here. */
4993 if (dynobj == NULL)
4994 return TRUE;
4996 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4997 return FALSE;
4999 if (elf_hash_table (info)->dynamic_sections_created)
5001 struct elf_info_failed eif;
5002 struct elf_link_hash_entry *h;
5003 asection *dynstr;
5004 struct bfd_elf_version_tree *t;
5005 struct bfd_elf_version_expr *d;
5006 bfd_boolean all_defined;
5008 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5009 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5011 if (soname != NULL)
5013 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5014 soname, TRUE);
5015 if (soname_indx == (bfd_size_type) -1
5016 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5017 return FALSE;
5020 if (info->symbolic)
5022 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5023 return FALSE;
5024 info->flags |= DF_SYMBOLIC;
5027 if (rpath != NULL)
5029 bfd_size_type indx;
5031 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5032 TRUE);
5033 if (indx == (bfd_size_type) -1
5034 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5035 return FALSE;
5037 if (info->new_dtags)
5039 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5040 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5041 return FALSE;
5045 if (filter_shlib != NULL)
5047 bfd_size_type indx;
5049 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5050 filter_shlib, TRUE);
5051 if (indx == (bfd_size_type) -1
5052 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5053 return FALSE;
5056 if (auxiliary_filters != NULL)
5058 const char * const *p;
5060 for (p = auxiliary_filters; *p != NULL; p++)
5062 bfd_size_type indx;
5064 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5065 *p, TRUE);
5066 if (indx == (bfd_size_type) -1
5067 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5068 return FALSE;
5072 eif.info = info;
5073 eif.verdefs = verdefs;
5074 eif.failed = FALSE;
5076 /* If we are supposed to export all symbols into the dynamic symbol
5077 table (this is not the normal case), then do so. */
5078 if (info->export_dynamic)
5080 elf_link_hash_traverse (elf_hash_table (info),
5081 _bfd_elf_export_symbol,
5082 &eif);
5083 if (eif.failed)
5084 return FALSE;
5087 /* Make all global versions with definition. */
5088 for (t = verdefs; t != NULL; t = t->next)
5089 for (d = t->globals.list; d != NULL; d = d->next)
5090 if (!d->symver && d->symbol)
5092 const char *verstr, *name;
5093 size_t namelen, verlen, newlen;
5094 char *newname, *p;
5095 struct elf_link_hash_entry *newh;
5097 name = d->symbol;
5098 namelen = strlen (name);
5099 verstr = t->name;
5100 verlen = strlen (verstr);
5101 newlen = namelen + verlen + 3;
5103 newname = bfd_malloc (newlen);
5104 if (newname == NULL)
5105 return FALSE;
5106 memcpy (newname, name, namelen);
5108 /* Check the hidden versioned definition. */
5109 p = newname + namelen;
5110 *p++ = ELF_VER_CHR;
5111 memcpy (p, verstr, verlen + 1);
5112 newh = elf_link_hash_lookup (elf_hash_table (info),
5113 newname, FALSE, FALSE,
5114 FALSE);
5115 if (newh == NULL
5116 || (newh->root.type != bfd_link_hash_defined
5117 && newh->root.type != bfd_link_hash_defweak))
5119 /* Check the default versioned definition. */
5120 *p++ = ELF_VER_CHR;
5121 memcpy (p, verstr, verlen + 1);
5122 newh = elf_link_hash_lookup (elf_hash_table (info),
5123 newname, FALSE, FALSE,
5124 FALSE);
5126 free (newname);
5128 /* Mark this version if there is a definition and it is
5129 not defined in a shared object. */
5130 if (newh != NULL
5131 && !newh->def_dynamic
5132 && (newh->root.type == bfd_link_hash_defined
5133 || newh->root.type == bfd_link_hash_defweak))
5134 d->symver = 1;
5137 /* Attach all the symbols to their version information. */
5138 asvinfo.output_bfd = output_bfd;
5139 asvinfo.info = info;
5140 asvinfo.verdefs = verdefs;
5141 asvinfo.failed = FALSE;
5143 elf_link_hash_traverse (elf_hash_table (info),
5144 _bfd_elf_link_assign_sym_version,
5145 &asvinfo);
5146 if (asvinfo.failed)
5147 return FALSE;
5149 if (!info->allow_undefined_version)
5151 /* Check if all global versions have a definition. */
5152 all_defined = TRUE;
5153 for (t = verdefs; t != NULL; t = t->next)
5154 for (d = t->globals.list; d != NULL; d = d->next)
5155 if (!d->symver && !d->script)
5157 (*_bfd_error_handler)
5158 (_("%s: undefined version: %s"),
5159 d->pattern, t->name);
5160 all_defined = FALSE;
5163 if (!all_defined)
5165 bfd_set_error (bfd_error_bad_value);
5166 return FALSE;
5170 /* Find all symbols which were defined in a dynamic object and make
5171 the backend pick a reasonable value for them. */
5172 elf_link_hash_traverse (elf_hash_table (info),
5173 _bfd_elf_adjust_dynamic_symbol,
5174 &eif);
5175 if (eif.failed)
5176 return FALSE;
5178 /* Add some entries to the .dynamic section. We fill in some of the
5179 values later, in bfd_elf_final_link, but we must add the entries
5180 now so that we know the final size of the .dynamic section. */
5182 /* If there are initialization and/or finalization functions to
5183 call then add the corresponding DT_INIT/DT_FINI entries. */
5184 h = (info->init_function
5185 ? elf_link_hash_lookup (elf_hash_table (info),
5186 info->init_function, FALSE,
5187 FALSE, FALSE)
5188 : NULL);
5189 if (h != NULL
5190 && (h->ref_regular
5191 || h->def_regular))
5193 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5194 return FALSE;
5196 h = (info->fini_function
5197 ? elf_link_hash_lookup (elf_hash_table (info),
5198 info->fini_function, FALSE,
5199 FALSE, FALSE)
5200 : NULL);
5201 if (h != NULL
5202 && (h->ref_regular
5203 || h->def_regular))
5205 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5206 return FALSE;
5209 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5211 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5212 if (! info->executable)
5214 bfd *sub;
5215 asection *o;
5217 for (sub = info->input_bfds; sub != NULL;
5218 sub = sub->link_next)
5219 for (o = sub->sections; o != NULL; o = o->next)
5220 if (elf_section_data (o)->this_hdr.sh_type
5221 == SHT_PREINIT_ARRAY)
5223 (*_bfd_error_handler)
5224 (_("%B: .preinit_array section is not allowed in DSO"),
5225 sub);
5226 break;
5229 bfd_set_error (bfd_error_nonrepresentable_section);
5230 return FALSE;
5233 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5234 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5235 return FALSE;
5237 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5239 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5240 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5241 return FALSE;
5243 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5245 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5246 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5247 return FALSE;
5250 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5251 /* If .dynstr is excluded from the link, we don't want any of
5252 these tags. Strictly, we should be checking each section
5253 individually; This quick check covers for the case where
5254 someone does a /DISCARD/ : { *(*) }. */
5255 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5257 bfd_size_type strsize;
5259 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5260 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5261 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5262 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5263 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5264 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5265 bed->s->sizeof_sym))
5266 return FALSE;
5270 /* The backend must work out the sizes of all the other dynamic
5271 sections. */
5272 if (bed->elf_backend_size_dynamic_sections
5273 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5274 return FALSE;
5276 if (elf_hash_table (info)->dynamic_sections_created)
5278 bfd_size_type dynsymcount;
5279 unsigned long section_sym_count;
5280 asection *s;
5281 size_t bucketcount = 0;
5282 size_t hash_entry_size;
5283 unsigned int dtagcount;
5285 /* Set up the version definition section. */
5286 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5287 BFD_ASSERT (s != NULL);
5289 /* We may have created additional version definitions if we are
5290 just linking a regular application. */
5291 verdefs = asvinfo.verdefs;
5293 /* Skip anonymous version tag. */
5294 if (verdefs != NULL && verdefs->vernum == 0)
5295 verdefs = verdefs->next;
5297 if (verdefs == NULL && !info->create_default_symver)
5298 _bfd_strip_section_from_output (info, s);
5299 else
5301 unsigned int cdefs;
5302 bfd_size_type size;
5303 struct bfd_elf_version_tree *t;
5304 bfd_byte *p;
5305 Elf_Internal_Verdef def;
5306 Elf_Internal_Verdaux defaux;
5307 struct bfd_link_hash_entry *bh;
5308 struct elf_link_hash_entry *h;
5309 const char *name;
5311 cdefs = 0;
5312 size = 0;
5314 /* Make space for the base version. */
5315 size += sizeof (Elf_External_Verdef);
5316 size += sizeof (Elf_External_Verdaux);
5317 ++cdefs;
5319 /* Make space for the default version. */
5320 if (info->create_default_symver)
5322 size += sizeof (Elf_External_Verdef);
5323 ++cdefs;
5326 for (t = verdefs; t != NULL; t = t->next)
5328 struct bfd_elf_version_deps *n;
5330 size += sizeof (Elf_External_Verdef);
5331 size += sizeof (Elf_External_Verdaux);
5332 ++cdefs;
5334 for (n = t->deps; n != NULL; n = n->next)
5335 size += sizeof (Elf_External_Verdaux);
5338 s->size = size;
5339 s->contents = bfd_alloc (output_bfd, s->size);
5340 if (s->contents == NULL && s->size != 0)
5341 return FALSE;
5343 /* Fill in the version definition section. */
5345 p = s->contents;
5347 def.vd_version = VER_DEF_CURRENT;
5348 def.vd_flags = VER_FLG_BASE;
5349 def.vd_ndx = 1;
5350 def.vd_cnt = 1;
5351 if (info->create_default_symver)
5353 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5354 def.vd_next = sizeof (Elf_External_Verdef);
5356 else
5358 def.vd_aux = sizeof (Elf_External_Verdef);
5359 def.vd_next = (sizeof (Elf_External_Verdef)
5360 + sizeof (Elf_External_Verdaux));
5363 if (soname_indx != (bfd_size_type) -1)
5365 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5366 soname_indx);
5367 def.vd_hash = bfd_elf_hash (soname);
5368 defaux.vda_name = soname_indx;
5369 name = soname;
5371 else
5373 bfd_size_type indx;
5375 name = basename (output_bfd->filename);
5376 def.vd_hash = bfd_elf_hash (name);
5377 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5378 name, FALSE);
5379 if (indx == (bfd_size_type) -1)
5380 return FALSE;
5381 defaux.vda_name = indx;
5383 defaux.vda_next = 0;
5385 _bfd_elf_swap_verdef_out (output_bfd, &def,
5386 (Elf_External_Verdef *) p);
5387 p += sizeof (Elf_External_Verdef);
5388 if (info->create_default_symver)
5390 /* Add a symbol representing this version. */
5391 bh = NULL;
5392 if (! (_bfd_generic_link_add_one_symbol
5393 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5394 0, NULL, FALSE,
5395 get_elf_backend_data (dynobj)->collect, &bh)))
5396 return FALSE;
5397 h = (struct elf_link_hash_entry *) bh;
5398 h->non_elf = 0;
5399 h->def_regular = 1;
5400 h->type = STT_OBJECT;
5401 h->verinfo.vertree = NULL;
5403 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5404 return FALSE;
5406 /* Create a duplicate of the base version with the same
5407 aux block, but different flags. */
5408 def.vd_flags = 0;
5409 def.vd_ndx = 2;
5410 def.vd_aux = sizeof (Elf_External_Verdef);
5411 if (verdefs)
5412 def.vd_next = (sizeof (Elf_External_Verdef)
5413 + sizeof (Elf_External_Verdaux));
5414 else
5415 def.vd_next = 0;
5416 _bfd_elf_swap_verdef_out (output_bfd, &def,
5417 (Elf_External_Verdef *) p);
5418 p += sizeof (Elf_External_Verdef);
5420 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5421 (Elf_External_Verdaux *) p);
5422 p += sizeof (Elf_External_Verdaux);
5424 for (t = verdefs; t != NULL; t = t->next)
5426 unsigned int cdeps;
5427 struct bfd_elf_version_deps *n;
5429 cdeps = 0;
5430 for (n = t->deps; n != NULL; n = n->next)
5431 ++cdeps;
5433 /* Add a symbol representing this version. */
5434 bh = NULL;
5435 if (! (_bfd_generic_link_add_one_symbol
5436 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5437 0, NULL, FALSE,
5438 get_elf_backend_data (dynobj)->collect, &bh)))
5439 return FALSE;
5440 h = (struct elf_link_hash_entry *) bh;
5441 h->non_elf = 0;
5442 h->def_regular = 1;
5443 h->type = STT_OBJECT;
5444 h->verinfo.vertree = t;
5446 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5447 return FALSE;
5449 def.vd_version = VER_DEF_CURRENT;
5450 def.vd_flags = 0;
5451 if (t->globals.list == NULL
5452 && t->locals.list == NULL
5453 && ! t->used)
5454 def.vd_flags |= VER_FLG_WEAK;
5455 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5456 def.vd_cnt = cdeps + 1;
5457 def.vd_hash = bfd_elf_hash (t->name);
5458 def.vd_aux = sizeof (Elf_External_Verdef);
5459 def.vd_next = 0;
5460 if (t->next != NULL)
5461 def.vd_next = (sizeof (Elf_External_Verdef)
5462 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5464 _bfd_elf_swap_verdef_out (output_bfd, &def,
5465 (Elf_External_Verdef *) p);
5466 p += sizeof (Elf_External_Verdef);
5468 defaux.vda_name = h->dynstr_index;
5469 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5470 h->dynstr_index);
5471 defaux.vda_next = 0;
5472 if (t->deps != NULL)
5473 defaux.vda_next = sizeof (Elf_External_Verdaux);
5474 t->name_indx = defaux.vda_name;
5476 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5477 (Elf_External_Verdaux *) p);
5478 p += sizeof (Elf_External_Verdaux);
5480 for (n = t->deps; n != NULL; n = n->next)
5482 if (n->version_needed == NULL)
5484 /* This can happen if there was an error in the
5485 version script. */
5486 defaux.vda_name = 0;
5488 else
5490 defaux.vda_name = n->version_needed->name_indx;
5491 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5492 defaux.vda_name);
5494 if (n->next == NULL)
5495 defaux.vda_next = 0;
5496 else
5497 defaux.vda_next = sizeof (Elf_External_Verdaux);
5499 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5500 (Elf_External_Verdaux *) p);
5501 p += sizeof (Elf_External_Verdaux);
5505 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5506 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5507 return FALSE;
5509 elf_tdata (output_bfd)->cverdefs = cdefs;
5512 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5514 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5515 return FALSE;
5517 else if (info->flags & DF_BIND_NOW)
5519 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5520 return FALSE;
5523 if (info->flags_1)
5525 if (info->executable)
5526 info->flags_1 &= ~ (DF_1_INITFIRST
5527 | DF_1_NODELETE
5528 | DF_1_NOOPEN);
5529 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5530 return FALSE;
5533 /* Work out the size of the version reference section. */
5535 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5536 BFD_ASSERT (s != NULL);
5538 struct elf_find_verdep_info sinfo;
5540 sinfo.output_bfd = output_bfd;
5541 sinfo.info = info;
5542 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5543 if (sinfo.vers == 0)
5544 sinfo.vers = 1;
5545 sinfo.failed = FALSE;
5547 elf_link_hash_traverse (elf_hash_table (info),
5548 _bfd_elf_link_find_version_dependencies,
5549 &sinfo);
5551 if (elf_tdata (output_bfd)->verref == NULL)
5552 _bfd_strip_section_from_output (info, s);
5553 else
5555 Elf_Internal_Verneed *t;
5556 unsigned int size;
5557 unsigned int crefs;
5558 bfd_byte *p;
5560 /* Build the version definition section. */
5561 size = 0;
5562 crefs = 0;
5563 for (t = elf_tdata (output_bfd)->verref;
5564 t != NULL;
5565 t = t->vn_nextref)
5567 Elf_Internal_Vernaux *a;
5569 size += sizeof (Elf_External_Verneed);
5570 ++crefs;
5571 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5572 size += sizeof (Elf_External_Vernaux);
5575 s->size = size;
5576 s->contents = bfd_alloc (output_bfd, s->size);
5577 if (s->contents == NULL)
5578 return FALSE;
5580 p = s->contents;
5581 for (t = elf_tdata (output_bfd)->verref;
5582 t != NULL;
5583 t = t->vn_nextref)
5585 unsigned int caux;
5586 Elf_Internal_Vernaux *a;
5587 bfd_size_type indx;
5589 caux = 0;
5590 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5591 ++caux;
5593 t->vn_version = VER_NEED_CURRENT;
5594 t->vn_cnt = caux;
5595 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5596 elf_dt_name (t->vn_bfd) != NULL
5597 ? elf_dt_name (t->vn_bfd)
5598 : basename (t->vn_bfd->filename),
5599 FALSE);
5600 if (indx == (bfd_size_type) -1)
5601 return FALSE;
5602 t->vn_file = indx;
5603 t->vn_aux = sizeof (Elf_External_Verneed);
5604 if (t->vn_nextref == NULL)
5605 t->vn_next = 0;
5606 else
5607 t->vn_next = (sizeof (Elf_External_Verneed)
5608 + caux * sizeof (Elf_External_Vernaux));
5610 _bfd_elf_swap_verneed_out (output_bfd, t,
5611 (Elf_External_Verneed *) p);
5612 p += sizeof (Elf_External_Verneed);
5614 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5616 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5617 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5618 a->vna_nodename, FALSE);
5619 if (indx == (bfd_size_type) -1)
5620 return FALSE;
5621 a->vna_name = indx;
5622 if (a->vna_nextptr == NULL)
5623 a->vna_next = 0;
5624 else
5625 a->vna_next = sizeof (Elf_External_Vernaux);
5627 _bfd_elf_swap_vernaux_out (output_bfd, a,
5628 (Elf_External_Vernaux *) p);
5629 p += sizeof (Elf_External_Vernaux);
5633 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5634 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5635 return FALSE;
5637 elf_tdata (output_bfd)->cverrefs = crefs;
5641 /* Assign dynsym indicies. In a shared library we generate a
5642 section symbol for each output section, which come first.
5643 Next come all of the back-end allocated local dynamic syms,
5644 followed by the rest of the global symbols. */
5646 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5647 &section_sym_count);
5649 /* Work out the size of the symbol version section. */
5650 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5651 BFD_ASSERT (s != NULL);
5652 if (dynsymcount == 0
5653 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5654 && !info->create_default_symver))
5656 _bfd_strip_section_from_output (info, s);
5657 /* The DYNSYMCOUNT might have changed if we were going to
5658 output a dynamic symbol table entry for S. */
5659 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5660 &section_sym_count);
5662 else
5664 s->size = dynsymcount * sizeof (Elf_External_Versym);
5665 s->contents = bfd_zalloc (output_bfd, s->size);
5666 if (s->contents == NULL)
5667 return FALSE;
5669 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5670 return FALSE;
5673 /* Set the size of the .dynsym and .hash sections. We counted
5674 the number of dynamic symbols in elf_link_add_object_symbols.
5675 We will build the contents of .dynsym and .hash when we build
5676 the final symbol table, because until then we do not know the
5677 correct value to give the symbols. We built the .dynstr
5678 section as we went along in elf_link_add_object_symbols. */
5679 s = bfd_get_section_by_name (dynobj, ".dynsym");
5680 BFD_ASSERT (s != NULL);
5681 s->size = dynsymcount * bed->s->sizeof_sym;
5683 if (dynsymcount != 0)
5685 s->contents = bfd_alloc (output_bfd, s->size);
5686 if (s->contents == NULL)
5687 return FALSE;
5689 /* The first entry in .dynsym is a dummy symbol.
5690 Clear all the section syms, in case we don't output them all. */
5691 ++section_sym_count;
5692 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5695 /* Compute the size of the hashing table. As a side effect this
5696 computes the hash values for all the names we export. */
5697 bucketcount = compute_bucket_count (info);
5699 s = bfd_get_section_by_name (dynobj, ".hash");
5700 BFD_ASSERT (s != NULL);
5701 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5702 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5703 s->contents = bfd_zalloc (output_bfd, s->size);
5704 if (s->contents == NULL)
5705 return FALSE;
5707 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5708 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5709 s->contents + hash_entry_size);
5711 elf_hash_table (info)->bucketcount = bucketcount;
5713 s = bfd_get_section_by_name (dynobj, ".dynstr");
5714 BFD_ASSERT (s != NULL);
5716 elf_finalize_dynstr (output_bfd, info);
5718 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5720 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5721 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5722 return FALSE;
5725 return TRUE;
5728 /* Final phase of ELF linker. */
5730 /* A structure we use to avoid passing large numbers of arguments. */
5732 struct elf_final_link_info
5734 /* General link information. */
5735 struct bfd_link_info *info;
5736 /* Output BFD. */
5737 bfd *output_bfd;
5738 /* Symbol string table. */
5739 struct bfd_strtab_hash *symstrtab;
5740 /* .dynsym section. */
5741 asection *dynsym_sec;
5742 /* .hash section. */
5743 asection *hash_sec;
5744 /* symbol version section (.gnu.version). */
5745 asection *symver_sec;
5746 /* Buffer large enough to hold contents of any section. */
5747 bfd_byte *contents;
5748 /* Buffer large enough to hold external relocs of any section. */
5749 void *external_relocs;
5750 /* Buffer large enough to hold internal relocs of any section. */
5751 Elf_Internal_Rela *internal_relocs;
5752 /* Buffer large enough to hold external local symbols of any input
5753 BFD. */
5754 bfd_byte *external_syms;
5755 /* And a buffer for symbol section indices. */
5756 Elf_External_Sym_Shndx *locsym_shndx;
5757 /* Buffer large enough to hold internal local symbols of any input
5758 BFD. */
5759 Elf_Internal_Sym *internal_syms;
5760 /* Array large enough to hold a symbol index for each local symbol
5761 of any input BFD. */
5762 long *indices;
5763 /* Array large enough to hold a section pointer for each local
5764 symbol of any input BFD. */
5765 asection **sections;
5766 /* Buffer to hold swapped out symbols. */
5767 bfd_byte *symbuf;
5768 /* And one for symbol section indices. */
5769 Elf_External_Sym_Shndx *symshndxbuf;
5770 /* Number of swapped out symbols in buffer. */
5771 size_t symbuf_count;
5772 /* Number of symbols which fit in symbuf. */
5773 size_t symbuf_size;
5774 /* And same for symshndxbuf. */
5775 size_t shndxbuf_size;
5778 /* This struct is used to pass information to elf_link_output_extsym. */
5780 struct elf_outext_info
5782 bfd_boolean failed;
5783 bfd_boolean localsyms;
5784 struct elf_final_link_info *finfo;
5787 /* When performing a relocatable link, the input relocations are
5788 preserved. But, if they reference global symbols, the indices
5789 referenced must be updated. Update all the relocations in
5790 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5792 static void
5793 elf_link_adjust_relocs (bfd *abfd,
5794 Elf_Internal_Shdr *rel_hdr,
5795 unsigned int count,
5796 struct elf_link_hash_entry **rel_hash)
5798 unsigned int i;
5799 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5800 bfd_byte *erela;
5801 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5802 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5803 bfd_vma r_type_mask;
5804 int r_sym_shift;
5806 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5808 swap_in = bed->s->swap_reloc_in;
5809 swap_out = bed->s->swap_reloc_out;
5811 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5813 swap_in = bed->s->swap_reloca_in;
5814 swap_out = bed->s->swap_reloca_out;
5816 else
5817 abort ();
5819 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5820 abort ();
5822 if (bed->s->arch_size == 32)
5824 r_type_mask = 0xff;
5825 r_sym_shift = 8;
5827 else
5829 r_type_mask = 0xffffffff;
5830 r_sym_shift = 32;
5833 erela = rel_hdr->contents;
5834 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5836 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5837 unsigned int j;
5839 if (*rel_hash == NULL)
5840 continue;
5842 BFD_ASSERT ((*rel_hash)->indx >= 0);
5844 (*swap_in) (abfd, erela, irela);
5845 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5846 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5847 | (irela[j].r_info & r_type_mask));
5848 (*swap_out) (abfd, irela, erela);
5852 struct elf_link_sort_rela
5854 union {
5855 bfd_vma offset;
5856 bfd_vma sym_mask;
5857 } u;
5858 enum elf_reloc_type_class type;
5859 /* We use this as an array of size int_rels_per_ext_rel. */
5860 Elf_Internal_Rela rela[1];
5863 static int
5864 elf_link_sort_cmp1 (const void *A, const void *B)
5866 const struct elf_link_sort_rela *a = A;
5867 const struct elf_link_sort_rela *b = B;
5868 int relativea, relativeb;
5870 relativea = a->type == reloc_class_relative;
5871 relativeb = b->type == reloc_class_relative;
5873 if (relativea < relativeb)
5874 return 1;
5875 if (relativea > relativeb)
5876 return -1;
5877 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5878 return -1;
5879 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5880 return 1;
5881 if (a->rela->r_offset < b->rela->r_offset)
5882 return -1;
5883 if (a->rela->r_offset > b->rela->r_offset)
5884 return 1;
5885 return 0;
5888 static int
5889 elf_link_sort_cmp2 (const void *A, const void *B)
5891 const struct elf_link_sort_rela *a = A;
5892 const struct elf_link_sort_rela *b = B;
5893 int copya, copyb;
5895 if (a->u.offset < b->u.offset)
5896 return -1;
5897 if (a->u.offset > b->u.offset)
5898 return 1;
5899 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5900 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5901 if (copya < copyb)
5902 return -1;
5903 if (copya > copyb)
5904 return 1;
5905 if (a->rela->r_offset < b->rela->r_offset)
5906 return -1;
5907 if (a->rela->r_offset > b->rela->r_offset)
5908 return 1;
5909 return 0;
5912 static size_t
5913 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5915 asection *reldyn;
5916 bfd_size_type count, size;
5917 size_t i, ret, sort_elt, ext_size;
5918 bfd_byte *sort, *s_non_relative, *p;
5919 struct elf_link_sort_rela *sq;
5920 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5921 int i2e = bed->s->int_rels_per_ext_rel;
5922 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5923 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5924 struct bfd_link_order *lo;
5925 bfd_vma r_sym_mask;
5927 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5928 if (reldyn == NULL || reldyn->size == 0)
5930 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5931 if (reldyn == NULL || reldyn->size == 0)
5932 return 0;
5933 ext_size = bed->s->sizeof_rel;
5934 swap_in = bed->s->swap_reloc_in;
5935 swap_out = bed->s->swap_reloc_out;
5937 else
5939 ext_size = bed->s->sizeof_rela;
5940 swap_in = bed->s->swap_reloca_in;
5941 swap_out = bed->s->swap_reloca_out;
5943 count = reldyn->size / ext_size;
5945 size = 0;
5946 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5947 if (lo->type == bfd_indirect_link_order)
5949 asection *o = lo->u.indirect.section;
5950 size += o->size;
5953 if (size != reldyn->size)
5954 return 0;
5956 sort_elt = (sizeof (struct elf_link_sort_rela)
5957 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5958 sort = bfd_zmalloc (sort_elt * count);
5959 if (sort == NULL)
5961 (*info->callbacks->warning)
5962 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5963 return 0;
5966 if (bed->s->arch_size == 32)
5967 r_sym_mask = ~(bfd_vma) 0xff;
5968 else
5969 r_sym_mask = ~(bfd_vma) 0xffffffff;
5971 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5972 if (lo->type == bfd_indirect_link_order)
5974 bfd_byte *erel, *erelend;
5975 asection *o = lo->u.indirect.section;
5977 if (o->contents == NULL && o->size != 0)
5979 /* This is a reloc section that is being handled as a normal
5980 section. See bfd_section_from_shdr. We can't combine
5981 relocs in this case. */
5982 free (sort);
5983 return 0;
5985 erel = o->contents;
5986 erelend = o->contents + o->size;
5987 p = sort + o->output_offset / ext_size * sort_elt;
5988 while (erel < erelend)
5990 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5991 (*swap_in) (abfd, erel, s->rela);
5992 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5993 s->u.sym_mask = r_sym_mask;
5994 p += sort_elt;
5995 erel += ext_size;
5999 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6001 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6003 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6004 if (s->type != reloc_class_relative)
6005 break;
6007 ret = i;
6008 s_non_relative = p;
6010 sq = (struct elf_link_sort_rela *) s_non_relative;
6011 for (; i < count; i++, p += sort_elt)
6013 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6014 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6015 sq = sp;
6016 sp->u.offset = sq->rela->r_offset;
6019 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6021 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
6022 if (lo->type == bfd_indirect_link_order)
6024 bfd_byte *erel, *erelend;
6025 asection *o = lo->u.indirect.section;
6027 erel = o->contents;
6028 erelend = o->contents + o->size;
6029 p = sort + o->output_offset / ext_size * sort_elt;
6030 while (erel < erelend)
6032 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6033 (*swap_out) (abfd, s->rela, erel);
6034 p += sort_elt;
6035 erel += ext_size;
6039 free (sort);
6040 *psec = reldyn;
6041 return ret;
6044 /* Flush the output symbols to the file. */
6046 static bfd_boolean
6047 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6048 const struct elf_backend_data *bed)
6050 if (finfo->symbuf_count > 0)
6052 Elf_Internal_Shdr *hdr;
6053 file_ptr pos;
6054 bfd_size_type amt;
6056 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6057 pos = hdr->sh_offset + hdr->sh_size;
6058 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6059 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6060 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6061 return FALSE;
6063 hdr->sh_size += amt;
6064 finfo->symbuf_count = 0;
6067 return TRUE;
6070 /* Add a symbol to the output symbol table. */
6072 static bfd_boolean
6073 elf_link_output_sym (struct elf_final_link_info *finfo,
6074 const char *name,
6075 Elf_Internal_Sym *elfsym,
6076 asection *input_sec,
6077 struct elf_link_hash_entry *h)
6079 bfd_byte *dest;
6080 Elf_External_Sym_Shndx *destshndx;
6081 bfd_boolean (*output_symbol_hook)
6082 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6083 struct elf_link_hash_entry *);
6084 const struct elf_backend_data *bed;
6086 bed = get_elf_backend_data (finfo->output_bfd);
6087 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6088 if (output_symbol_hook != NULL)
6090 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6091 return FALSE;
6094 if (name == NULL || *name == '\0')
6095 elfsym->st_name = 0;
6096 else if (input_sec->flags & SEC_EXCLUDE)
6097 elfsym->st_name = 0;
6098 else
6100 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6101 name, TRUE, FALSE);
6102 if (elfsym->st_name == (unsigned long) -1)
6103 return FALSE;
6106 if (finfo->symbuf_count >= finfo->symbuf_size)
6108 if (! elf_link_flush_output_syms (finfo, bed))
6109 return FALSE;
6112 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6113 destshndx = finfo->symshndxbuf;
6114 if (destshndx != NULL)
6116 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6118 bfd_size_type amt;
6120 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6121 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6122 if (destshndx == NULL)
6123 return FALSE;
6124 memset ((char *) destshndx + amt, 0, amt);
6125 finfo->shndxbuf_size *= 2;
6127 destshndx += bfd_get_symcount (finfo->output_bfd);
6130 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6131 finfo->symbuf_count += 1;
6132 bfd_get_symcount (finfo->output_bfd) += 1;
6134 return TRUE;
6137 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6138 allowing an unsatisfied unversioned symbol in the DSO to match a
6139 versioned symbol that would normally require an explicit version.
6140 We also handle the case that a DSO references a hidden symbol
6141 which may be satisfied by a versioned symbol in another DSO. */
6143 static bfd_boolean
6144 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6145 const struct elf_backend_data *bed,
6146 struct elf_link_hash_entry *h)
6148 bfd *abfd;
6149 struct elf_link_loaded_list *loaded;
6151 if (!is_elf_hash_table (info->hash))
6152 return FALSE;
6154 switch (h->root.type)
6156 default:
6157 abfd = NULL;
6158 break;
6160 case bfd_link_hash_undefined:
6161 case bfd_link_hash_undefweak:
6162 abfd = h->root.u.undef.abfd;
6163 if ((abfd->flags & DYNAMIC) == 0
6164 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6165 return FALSE;
6166 break;
6168 case bfd_link_hash_defined:
6169 case bfd_link_hash_defweak:
6170 abfd = h->root.u.def.section->owner;
6171 break;
6173 case bfd_link_hash_common:
6174 abfd = h->root.u.c.p->section->owner;
6175 break;
6177 BFD_ASSERT (abfd != NULL);
6179 for (loaded = elf_hash_table (info)->loaded;
6180 loaded != NULL;
6181 loaded = loaded->next)
6183 bfd *input;
6184 Elf_Internal_Shdr *hdr;
6185 bfd_size_type symcount;
6186 bfd_size_type extsymcount;
6187 bfd_size_type extsymoff;
6188 Elf_Internal_Shdr *versymhdr;
6189 Elf_Internal_Sym *isym;
6190 Elf_Internal_Sym *isymend;
6191 Elf_Internal_Sym *isymbuf;
6192 Elf_External_Versym *ever;
6193 Elf_External_Versym *extversym;
6195 input = loaded->abfd;
6197 /* We check each DSO for a possible hidden versioned definition. */
6198 if (input == abfd
6199 || (input->flags & DYNAMIC) == 0
6200 || elf_dynversym (input) == 0)
6201 continue;
6203 hdr = &elf_tdata (input)->dynsymtab_hdr;
6205 symcount = hdr->sh_size / bed->s->sizeof_sym;
6206 if (elf_bad_symtab (input))
6208 extsymcount = symcount;
6209 extsymoff = 0;
6211 else
6213 extsymcount = symcount - hdr->sh_info;
6214 extsymoff = hdr->sh_info;
6217 if (extsymcount == 0)
6218 continue;
6220 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6221 NULL, NULL, NULL);
6222 if (isymbuf == NULL)
6223 return FALSE;
6225 /* Read in any version definitions. */
6226 versymhdr = &elf_tdata (input)->dynversym_hdr;
6227 extversym = bfd_malloc (versymhdr->sh_size);
6228 if (extversym == NULL)
6229 goto error_ret;
6231 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6232 || (bfd_bread (extversym, versymhdr->sh_size, input)
6233 != versymhdr->sh_size))
6235 free (extversym);
6236 error_ret:
6237 free (isymbuf);
6238 return FALSE;
6241 ever = extversym + extsymoff;
6242 isymend = isymbuf + extsymcount;
6243 for (isym = isymbuf; isym < isymend; isym++, ever++)
6245 const char *name;
6246 Elf_Internal_Versym iver;
6247 unsigned short version_index;
6249 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6250 || isym->st_shndx == SHN_UNDEF)
6251 continue;
6253 name = bfd_elf_string_from_elf_section (input,
6254 hdr->sh_link,
6255 isym->st_name);
6256 if (strcmp (name, h->root.root.string) != 0)
6257 continue;
6259 _bfd_elf_swap_versym_in (input, ever, &iver);
6261 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6263 /* If we have a non-hidden versioned sym, then it should
6264 have provided a definition for the undefined sym. */
6265 abort ();
6268 version_index = iver.vs_vers & VERSYM_VERSION;
6269 if (version_index == 1 || version_index == 2)
6271 /* This is the base or first version. We can use it. */
6272 free (extversym);
6273 free (isymbuf);
6274 return TRUE;
6278 free (extversym);
6279 free (isymbuf);
6282 return FALSE;
6285 /* Add an external symbol to the symbol table. This is called from
6286 the hash table traversal routine. When generating a shared object,
6287 we go through the symbol table twice. The first time we output
6288 anything that might have been forced to local scope in a version
6289 script. The second time we output the symbols that are still
6290 global symbols. */
6292 static bfd_boolean
6293 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6295 struct elf_outext_info *eoinfo = data;
6296 struct elf_final_link_info *finfo = eoinfo->finfo;
6297 bfd_boolean strip;
6298 Elf_Internal_Sym sym;
6299 asection *input_sec;
6300 const struct elf_backend_data *bed;
6302 if (h->root.type == bfd_link_hash_warning)
6304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6305 if (h->root.type == bfd_link_hash_new)
6306 return TRUE;
6309 /* Decide whether to output this symbol in this pass. */
6310 if (eoinfo->localsyms)
6312 if (!h->forced_local)
6313 return TRUE;
6315 else
6317 if (h->forced_local)
6318 return TRUE;
6321 bed = get_elf_backend_data (finfo->output_bfd);
6323 /* If we have an undefined symbol reference here then it must have
6324 come from a shared library that is being linked in. (Undefined
6325 references in regular files have already been handled). If we
6326 are reporting errors for this situation then do so now. */
6327 if (h->root.type == bfd_link_hash_undefined
6328 && h->ref_dynamic
6329 && !h->ref_regular
6330 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6331 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6333 if (! ((*finfo->info->callbacks->undefined_symbol)
6334 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6335 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6337 eoinfo->failed = TRUE;
6338 return FALSE;
6342 /* We should also warn if a forced local symbol is referenced from
6343 shared libraries. */
6344 if (! finfo->info->relocatable
6345 && (! finfo->info->shared)
6346 && h->forced_local
6347 && h->ref_dynamic
6348 && !h->dynamic_def
6349 && !h->dynamic_weak
6350 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6352 (*_bfd_error_handler)
6353 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6354 finfo->output_bfd, h->root.u.def.section->owner,
6355 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6356 ? "internal"
6357 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6358 ? "hidden" : "local",
6359 h->root.root.string);
6360 eoinfo->failed = TRUE;
6361 return FALSE;
6364 /* We don't want to output symbols that have never been mentioned by
6365 a regular file, or that we have been told to strip. However, if
6366 h->indx is set to -2, the symbol is used by a reloc and we must
6367 output it. */
6368 if (h->indx == -2)
6369 strip = FALSE;
6370 else if ((h->def_dynamic
6371 || h->ref_dynamic
6372 || h->root.type == bfd_link_hash_new)
6373 && !h->def_regular
6374 && !h->ref_regular)
6375 strip = TRUE;
6376 else if (finfo->info->strip == strip_all)
6377 strip = TRUE;
6378 else if (finfo->info->strip == strip_some
6379 && bfd_hash_lookup (finfo->info->keep_hash,
6380 h->root.root.string, FALSE, FALSE) == NULL)
6381 strip = TRUE;
6382 else if (finfo->info->strip_discarded
6383 && (h->root.type == bfd_link_hash_defined
6384 || h->root.type == bfd_link_hash_defweak)
6385 && elf_discarded_section (h->root.u.def.section))
6386 strip = TRUE;
6387 else
6388 strip = FALSE;
6390 /* If we're stripping it, and it's not a dynamic symbol, there's
6391 nothing else to do unless it is a forced local symbol. */
6392 if (strip
6393 && h->dynindx == -1
6394 && !h->forced_local)
6395 return TRUE;
6397 sym.st_value = 0;
6398 sym.st_size = h->size;
6399 sym.st_other = h->other;
6400 if (h->forced_local)
6401 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6402 else if (h->root.type == bfd_link_hash_undefweak
6403 || h->root.type == bfd_link_hash_defweak)
6404 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6405 else
6406 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6408 switch (h->root.type)
6410 default:
6411 case bfd_link_hash_new:
6412 case bfd_link_hash_warning:
6413 abort ();
6414 return FALSE;
6416 case bfd_link_hash_undefined:
6417 case bfd_link_hash_undefweak:
6418 input_sec = bfd_und_section_ptr;
6419 sym.st_shndx = SHN_UNDEF;
6420 break;
6422 case bfd_link_hash_defined:
6423 case bfd_link_hash_defweak:
6425 input_sec = h->root.u.def.section;
6426 if (input_sec->output_section != NULL)
6428 sym.st_shndx =
6429 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6430 input_sec->output_section);
6431 if (sym.st_shndx == SHN_BAD)
6433 (*_bfd_error_handler)
6434 (_("%B: could not find output section %A for input section %A"),
6435 finfo->output_bfd, input_sec->output_section, input_sec);
6436 eoinfo->failed = TRUE;
6437 return FALSE;
6440 /* ELF symbols in relocatable files are section relative,
6441 but in nonrelocatable files they are virtual
6442 addresses. */
6443 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6444 if (! finfo->info->relocatable)
6446 sym.st_value += input_sec->output_section->vma;
6447 if (h->type == STT_TLS)
6449 /* STT_TLS symbols are relative to PT_TLS segment
6450 base. */
6451 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6452 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6456 else
6458 BFD_ASSERT (input_sec->owner == NULL
6459 || (input_sec->owner->flags & DYNAMIC) != 0);
6460 sym.st_shndx = SHN_UNDEF;
6461 input_sec = bfd_und_section_ptr;
6464 break;
6466 case bfd_link_hash_common:
6467 input_sec = h->root.u.c.p->section;
6468 sym.st_shndx = SHN_COMMON;
6469 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6470 break;
6472 case bfd_link_hash_indirect:
6473 /* These symbols are created by symbol versioning. They point
6474 to the decorated version of the name. For example, if the
6475 symbol foo@@GNU_1.2 is the default, which should be used when
6476 foo is used with no version, then we add an indirect symbol
6477 foo which points to foo@@GNU_1.2. We ignore these symbols,
6478 since the indirected symbol is already in the hash table. */
6479 return TRUE;
6482 /* Give the processor backend a chance to tweak the symbol value,
6483 and also to finish up anything that needs to be done for this
6484 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6485 forced local syms when non-shared is due to a historical quirk. */
6486 if ((h->dynindx != -1
6487 || h->forced_local)
6488 && ((finfo->info->shared
6489 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6490 || h->root.type != bfd_link_hash_undefweak))
6491 || !h->forced_local)
6492 && elf_hash_table (finfo->info)->dynamic_sections_created)
6494 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6495 (finfo->output_bfd, finfo->info, h, &sym)))
6497 eoinfo->failed = TRUE;
6498 return FALSE;
6502 /* If we are marking the symbol as undefined, and there are no
6503 non-weak references to this symbol from a regular object, then
6504 mark the symbol as weak undefined; if there are non-weak
6505 references, mark the symbol as strong. We can't do this earlier,
6506 because it might not be marked as undefined until the
6507 finish_dynamic_symbol routine gets through with it. */
6508 if (sym.st_shndx == SHN_UNDEF
6509 && h->ref_regular
6510 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6511 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6513 int bindtype;
6515 if (h->ref_regular_nonweak)
6516 bindtype = STB_GLOBAL;
6517 else
6518 bindtype = STB_WEAK;
6519 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6522 /* If a non-weak symbol with non-default visibility is not defined
6523 locally, it is a fatal error. */
6524 if (! finfo->info->relocatable
6525 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6526 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6527 && h->root.type == bfd_link_hash_undefined
6528 && !h->def_regular)
6530 (*_bfd_error_handler)
6531 (_("%B: %s symbol `%s' isn't defined"),
6532 finfo->output_bfd,
6533 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6534 ? "protected"
6535 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6536 ? "internal" : "hidden",
6537 h->root.root.string);
6538 eoinfo->failed = TRUE;
6539 return FALSE;
6542 /* If this symbol should be put in the .dynsym section, then put it
6543 there now. We already know the symbol index. We also fill in
6544 the entry in the .hash section. */
6545 if (h->dynindx != -1
6546 && elf_hash_table (finfo->info)->dynamic_sections_created)
6548 size_t bucketcount;
6549 size_t bucket;
6550 size_t hash_entry_size;
6551 bfd_byte *bucketpos;
6552 bfd_vma chain;
6553 bfd_byte *esym;
6555 sym.st_name = h->dynstr_index;
6556 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6557 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6559 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6560 bucket = h->u.elf_hash_value % bucketcount;
6561 hash_entry_size
6562 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6563 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6564 + (bucket + 2) * hash_entry_size);
6565 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6566 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6567 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6568 ((bfd_byte *) finfo->hash_sec->contents
6569 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6571 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6573 Elf_Internal_Versym iversym;
6574 Elf_External_Versym *eversym;
6576 if (!h->def_regular)
6578 if (h->verinfo.verdef == NULL)
6579 iversym.vs_vers = 0;
6580 else
6581 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6583 else
6585 if (h->verinfo.vertree == NULL)
6586 iversym.vs_vers = 1;
6587 else
6588 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6589 if (finfo->info->create_default_symver)
6590 iversym.vs_vers++;
6593 if (h->hidden)
6594 iversym.vs_vers |= VERSYM_HIDDEN;
6596 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6597 eversym += h->dynindx;
6598 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6602 /* If we're stripping it, then it was just a dynamic symbol, and
6603 there's nothing else to do. */
6604 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6605 return TRUE;
6607 h->indx = bfd_get_symcount (finfo->output_bfd);
6609 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6611 eoinfo->failed = TRUE;
6612 return FALSE;
6615 return TRUE;
6618 /* Return TRUE if special handling is done for relocs in SEC against
6619 symbols defined in discarded sections. */
6621 static bfd_boolean
6622 elf_section_ignore_discarded_relocs (asection *sec)
6624 const struct elf_backend_data *bed;
6626 switch (sec->sec_info_type)
6628 case ELF_INFO_TYPE_STABS:
6629 case ELF_INFO_TYPE_EH_FRAME:
6630 return TRUE;
6631 default:
6632 break;
6635 bed = get_elf_backend_data (sec->owner);
6636 if (bed->elf_backend_ignore_discarded_relocs != NULL
6637 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6638 return TRUE;
6640 return FALSE;
6643 enum action_discarded
6645 COMPLAIN = 1,
6646 PRETEND = 2
6649 /* Return a mask saying how ld should treat relocations in SEC against
6650 symbols defined in discarded sections. If this function returns
6651 COMPLAIN set, ld will issue a warning message. If this function
6652 returns PRETEND set, and the discarded section was link-once and the
6653 same size as the kept link-once section, ld will pretend that the
6654 symbol was actually defined in the kept section. Otherwise ld will
6655 zero the reloc (at least that is the intent, but some cooperation by
6656 the target dependent code is needed, particularly for REL targets). */
6658 static unsigned int
6659 elf_action_discarded (asection *sec)
6661 if (sec->flags & SEC_DEBUGGING)
6662 return PRETEND;
6664 if (strcmp (".eh_frame", sec->name) == 0)
6665 return 0;
6667 if (strcmp (".gcc_except_table", sec->name) == 0)
6668 return 0;
6670 if (strcmp (".PARISC.unwind", sec->name) == 0)
6671 return 0;
6673 if (strcmp (".fixup", sec->name) == 0)
6674 return 0;
6676 return COMPLAIN | PRETEND;
6679 /* Find a match between a section and a member of a section group. */
6681 static asection *
6682 match_group_member (asection *sec, asection *group)
6684 asection *first = elf_next_in_group (group);
6685 asection *s = first;
6687 while (s != NULL)
6689 if (bfd_elf_match_symbols_in_sections (s, sec))
6690 return s;
6692 if (s == first)
6693 break;
6696 return NULL;
6699 /* Link an input file into the linker output file. This function
6700 handles all the sections and relocations of the input file at once.
6701 This is so that we only have to read the local symbols once, and
6702 don't have to keep them in memory. */
6704 static bfd_boolean
6705 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6707 bfd_boolean (*relocate_section)
6708 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6709 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6710 bfd *output_bfd;
6711 Elf_Internal_Shdr *symtab_hdr;
6712 size_t locsymcount;
6713 size_t extsymoff;
6714 Elf_Internal_Sym *isymbuf;
6715 Elf_Internal_Sym *isym;
6716 Elf_Internal_Sym *isymend;
6717 long *pindex;
6718 asection **ppsection;
6719 asection *o;
6720 const struct elf_backend_data *bed;
6721 bfd_boolean emit_relocs;
6722 struct elf_link_hash_entry **sym_hashes;
6724 output_bfd = finfo->output_bfd;
6725 bed = get_elf_backend_data (output_bfd);
6726 relocate_section = bed->elf_backend_relocate_section;
6728 /* If this is a dynamic object, we don't want to do anything here:
6729 we don't want the local symbols, and we don't want the section
6730 contents. */
6731 if ((input_bfd->flags & DYNAMIC) != 0)
6732 return TRUE;
6734 emit_relocs = (finfo->info->relocatable
6735 || finfo->info->emitrelocations
6736 || bed->elf_backend_emit_relocs);
6738 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6739 if (elf_bad_symtab (input_bfd))
6741 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6742 extsymoff = 0;
6744 else
6746 locsymcount = symtab_hdr->sh_info;
6747 extsymoff = symtab_hdr->sh_info;
6750 /* Read the local symbols. */
6751 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6752 if (isymbuf == NULL && locsymcount != 0)
6754 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6755 finfo->internal_syms,
6756 finfo->external_syms,
6757 finfo->locsym_shndx);
6758 if (isymbuf == NULL)
6759 return FALSE;
6762 /* Find local symbol sections and adjust values of symbols in
6763 SEC_MERGE sections. Write out those local symbols we know are
6764 going into the output file. */
6765 isymend = isymbuf + locsymcount;
6766 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6767 isym < isymend;
6768 isym++, pindex++, ppsection++)
6770 asection *isec;
6771 const char *name;
6772 Elf_Internal_Sym osym;
6774 *pindex = -1;
6776 if (elf_bad_symtab (input_bfd))
6778 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6780 *ppsection = NULL;
6781 continue;
6785 if (isym->st_shndx == SHN_UNDEF)
6786 isec = bfd_und_section_ptr;
6787 else if (isym->st_shndx < SHN_LORESERVE
6788 || isym->st_shndx > SHN_HIRESERVE)
6790 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6791 if (isec
6792 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6793 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6794 isym->st_value =
6795 _bfd_merged_section_offset (output_bfd, &isec,
6796 elf_section_data (isec)->sec_info,
6797 isym->st_value);
6799 else if (isym->st_shndx == SHN_ABS)
6800 isec = bfd_abs_section_ptr;
6801 else if (isym->st_shndx == SHN_COMMON)
6802 isec = bfd_com_section_ptr;
6803 else
6805 /* Who knows? */
6806 isec = NULL;
6809 *ppsection = isec;
6811 /* Don't output the first, undefined, symbol. */
6812 if (ppsection == finfo->sections)
6813 continue;
6815 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6817 /* We never output section symbols. Instead, we use the
6818 section symbol of the corresponding section in the output
6819 file. */
6820 continue;
6823 /* If we are stripping all symbols, we don't want to output this
6824 one. */
6825 if (finfo->info->strip == strip_all)
6826 continue;
6828 /* If we are discarding all local symbols, we don't want to
6829 output this one. If we are generating a relocatable output
6830 file, then some of the local symbols may be required by
6831 relocs; we output them below as we discover that they are
6832 needed. */
6833 if (finfo->info->discard == discard_all)
6834 continue;
6836 /* If this symbol is defined in a section which we are
6837 discarding, we don't need to keep it, but note that
6838 linker_mark is only reliable for sections that have contents.
6839 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6840 as well as linker_mark. */
6841 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6842 && (isec == NULL
6843 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6844 || (! finfo->info->relocatable
6845 && (isec->flags & SEC_EXCLUDE) != 0)))
6846 continue;
6848 /* Get the name of the symbol. */
6849 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6850 isym->st_name);
6851 if (name == NULL)
6852 return FALSE;
6854 /* See if we are discarding symbols with this name. */
6855 if ((finfo->info->strip == strip_some
6856 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6857 == NULL))
6858 || (((finfo->info->discard == discard_sec_merge
6859 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6860 || finfo->info->discard == discard_l)
6861 && bfd_is_local_label_name (input_bfd, name)))
6862 continue;
6864 /* If we get here, we are going to output this symbol. */
6866 osym = *isym;
6868 /* Adjust the section index for the output file. */
6869 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6870 isec->output_section);
6871 if (osym.st_shndx == SHN_BAD)
6872 return FALSE;
6874 *pindex = bfd_get_symcount (output_bfd);
6876 /* ELF symbols in relocatable files are section relative, but
6877 in executable files they are virtual addresses. Note that
6878 this code assumes that all ELF sections have an associated
6879 BFD section with a reasonable value for output_offset; below
6880 we assume that they also have a reasonable value for
6881 output_section. Any special sections must be set up to meet
6882 these requirements. */
6883 osym.st_value += isec->output_offset;
6884 if (! finfo->info->relocatable)
6886 osym.st_value += isec->output_section->vma;
6887 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6889 /* STT_TLS symbols are relative to PT_TLS segment base. */
6890 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6891 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6895 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6896 return FALSE;
6899 /* Relocate the contents of each section. */
6900 sym_hashes = elf_sym_hashes (input_bfd);
6901 for (o = input_bfd->sections; o != NULL; o = o->next)
6903 bfd_byte *contents;
6905 if (! o->linker_mark)
6907 /* This section was omitted from the link. */
6908 continue;
6911 if ((o->flags & SEC_HAS_CONTENTS) == 0
6912 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6913 continue;
6915 if ((o->flags & SEC_LINKER_CREATED) != 0)
6917 /* Section was created by _bfd_elf_link_create_dynamic_sections
6918 or somesuch. */
6919 continue;
6922 /* Get the contents of the section. They have been cached by a
6923 relaxation routine. Note that o is a section in an input
6924 file, so the contents field will not have been set by any of
6925 the routines which work on output files. */
6926 if (elf_section_data (o)->this_hdr.contents != NULL)
6927 contents = elf_section_data (o)->this_hdr.contents;
6928 else
6930 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6932 contents = finfo->contents;
6933 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6934 return FALSE;
6937 if ((o->flags & SEC_RELOC) != 0)
6939 Elf_Internal_Rela *internal_relocs;
6940 bfd_vma r_type_mask;
6941 int r_sym_shift;
6943 /* Get the swapped relocs. */
6944 internal_relocs
6945 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6946 finfo->internal_relocs, FALSE);
6947 if (internal_relocs == NULL
6948 && o->reloc_count > 0)
6949 return FALSE;
6951 if (bed->s->arch_size == 32)
6953 r_type_mask = 0xff;
6954 r_sym_shift = 8;
6956 else
6958 r_type_mask = 0xffffffff;
6959 r_sym_shift = 32;
6962 /* Run through the relocs looking for any against symbols
6963 from discarded sections and section symbols from
6964 removed link-once sections. Complain about relocs
6965 against discarded sections. Zero relocs against removed
6966 link-once sections. Preserve debug information as much
6967 as we can. */
6968 if (!elf_section_ignore_discarded_relocs (o))
6970 Elf_Internal_Rela *rel, *relend;
6971 unsigned int action = elf_action_discarded (o);
6973 rel = internal_relocs;
6974 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6975 for ( ; rel < relend; rel++)
6977 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6978 asection **ps, *sec;
6979 struct elf_link_hash_entry *h = NULL;
6980 const char *sym_name;
6982 if (r_symndx == STN_UNDEF)
6983 continue;
6985 if (r_symndx >= locsymcount
6986 || (elf_bad_symtab (input_bfd)
6987 && finfo->sections[r_symndx] == NULL))
6989 h = sym_hashes[r_symndx - extsymoff];
6990 while (h->root.type == bfd_link_hash_indirect
6991 || h->root.type == bfd_link_hash_warning)
6992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6994 if (h->root.type != bfd_link_hash_defined
6995 && h->root.type != bfd_link_hash_defweak)
6996 continue;
6998 ps = &h->root.u.def.section;
6999 sym_name = h->root.root.string;
7001 else
7003 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7004 ps = &finfo->sections[r_symndx];
7005 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
7008 /* Complain if the definition comes from a
7009 discarded section. */
7010 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7012 asection *kept;
7014 BFD_ASSERT (r_symndx != 0);
7015 if (action & COMPLAIN)
7017 (*_bfd_error_handler)
7018 (_("`%s' referenced in section `%A' of %B: "
7019 "defined in discarded section `%A' of %B\n"),
7020 o, input_bfd, sec, sec->owner, sym_name);
7023 /* Try to do the best we can to support buggy old
7024 versions of gcc. If we've warned, or this is
7025 debugging info, pretend that the symbol is
7026 really defined in the kept linkonce section.
7027 FIXME: This is quite broken. Modifying the
7028 symbol here means we will be changing all later
7029 uses of the symbol, not just in this section.
7030 The only thing that makes this half reasonable
7031 is that we warn in non-debug sections, and
7032 debug sections tend to come after other
7033 sections. */
7034 kept = sec->kept_section;
7035 if (kept != NULL && (action & PRETEND))
7037 if (elf_sec_group (sec) != NULL)
7038 kept = match_group_member (sec, kept);
7039 if (kept != NULL
7040 && sec->size == kept->size)
7042 *ps = kept;
7043 continue;
7047 /* Remove the symbol reference from the reloc, but
7048 don't kill the reloc completely. This is so that
7049 a zero value will be written into the section,
7050 which may have non-zero contents put there by the
7051 assembler. Zero in things like an eh_frame fde
7052 pc_begin allows stack unwinders to recognize the
7053 fde as bogus. */
7054 rel->r_info &= r_type_mask;
7055 rel->r_addend = 0;
7060 /* Relocate the section by invoking a back end routine.
7062 The back end routine is responsible for adjusting the
7063 section contents as necessary, and (if using Rela relocs
7064 and generating a relocatable output file) adjusting the
7065 reloc addend as necessary.
7067 The back end routine does not have to worry about setting
7068 the reloc address or the reloc symbol index.
7070 The back end routine is given a pointer to the swapped in
7071 internal symbols, and can access the hash table entries
7072 for the external symbols via elf_sym_hashes (input_bfd).
7074 When generating relocatable output, the back end routine
7075 must handle STB_LOCAL/STT_SECTION symbols specially. The
7076 output symbol is going to be a section symbol
7077 corresponding to the output section, which will require
7078 the addend to be adjusted. */
7080 if (! (*relocate_section) (output_bfd, finfo->info,
7081 input_bfd, o, contents,
7082 internal_relocs,
7083 isymbuf,
7084 finfo->sections))
7085 return FALSE;
7087 if (emit_relocs)
7089 Elf_Internal_Rela *irela;
7090 Elf_Internal_Rela *irelaend;
7091 bfd_vma last_offset;
7092 struct elf_link_hash_entry **rel_hash;
7093 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7094 unsigned int next_erel;
7095 bfd_boolean (*reloc_emitter)
7096 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
7097 bfd_boolean rela_normal;
7099 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7100 rela_normal = (bed->rela_normal
7101 && (input_rel_hdr->sh_entsize
7102 == bed->s->sizeof_rela));
7104 /* Adjust the reloc addresses and symbol indices. */
7106 irela = internal_relocs;
7107 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7108 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7109 + elf_section_data (o->output_section)->rel_count
7110 + elf_section_data (o->output_section)->rel_count2);
7111 last_offset = o->output_offset;
7112 if (!finfo->info->relocatable)
7113 last_offset += o->output_section->vma;
7114 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7116 unsigned long r_symndx;
7117 asection *sec;
7118 Elf_Internal_Sym sym;
7120 if (next_erel == bed->s->int_rels_per_ext_rel)
7122 rel_hash++;
7123 next_erel = 0;
7126 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7127 finfo->info, o,
7128 irela->r_offset);
7129 if (irela->r_offset >= (bfd_vma) -2)
7131 /* This is a reloc for a deleted entry or somesuch.
7132 Turn it into an R_*_NONE reloc, at the same
7133 offset as the last reloc. elf_eh_frame.c and
7134 elf_bfd_discard_info rely on reloc offsets
7135 being ordered. */
7136 irela->r_offset = last_offset;
7137 irela->r_info = 0;
7138 irela->r_addend = 0;
7139 continue;
7142 irela->r_offset += o->output_offset;
7144 /* Relocs in an executable have to be virtual addresses. */
7145 if (!finfo->info->relocatable)
7146 irela->r_offset += o->output_section->vma;
7148 last_offset = irela->r_offset;
7150 r_symndx = irela->r_info >> r_sym_shift;
7151 if (r_symndx == STN_UNDEF)
7152 continue;
7154 if (r_symndx >= locsymcount
7155 || (elf_bad_symtab (input_bfd)
7156 && finfo->sections[r_symndx] == NULL))
7158 struct elf_link_hash_entry *rh;
7159 unsigned long indx;
7161 /* This is a reloc against a global symbol. We
7162 have not yet output all the local symbols, so
7163 we do not know the symbol index of any global
7164 symbol. We set the rel_hash entry for this
7165 reloc to point to the global hash table entry
7166 for this symbol. The symbol index is then
7167 set at the end of bfd_elf_final_link. */
7168 indx = r_symndx - extsymoff;
7169 rh = elf_sym_hashes (input_bfd)[indx];
7170 while (rh->root.type == bfd_link_hash_indirect
7171 || rh->root.type == bfd_link_hash_warning)
7172 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7174 /* Setting the index to -2 tells
7175 elf_link_output_extsym that this symbol is
7176 used by a reloc. */
7177 BFD_ASSERT (rh->indx < 0);
7178 rh->indx = -2;
7180 *rel_hash = rh;
7182 continue;
7185 /* This is a reloc against a local symbol. */
7187 *rel_hash = NULL;
7188 sym = isymbuf[r_symndx];
7189 sec = finfo->sections[r_symndx];
7190 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7192 /* I suppose the backend ought to fill in the
7193 section of any STT_SECTION symbol against a
7194 processor specific section. */
7195 r_symndx = 0;
7196 if (bfd_is_abs_section (sec))
7198 else if (sec == NULL || sec->owner == NULL)
7200 bfd_set_error (bfd_error_bad_value);
7201 return FALSE;
7203 else
7205 asection *osec = sec->output_section;
7207 /* If we have discarded a section, the output
7208 section will be the absolute section. In
7209 case of discarded link-once and discarded
7210 SEC_MERGE sections, use the kept section. */
7211 if (bfd_is_abs_section (osec)
7212 && sec->kept_section != NULL
7213 && sec->kept_section->output_section != NULL)
7215 osec = sec->kept_section->output_section;
7216 irela->r_addend -= osec->vma;
7219 if (!bfd_is_abs_section (osec))
7221 r_symndx = osec->target_index;
7222 BFD_ASSERT (r_symndx != 0);
7226 /* Adjust the addend according to where the
7227 section winds up in the output section. */
7228 if (rela_normal)
7229 irela->r_addend += sec->output_offset;
7231 else
7233 if (finfo->indices[r_symndx] == -1)
7235 unsigned long shlink;
7236 const char *name;
7237 asection *osec;
7239 if (finfo->info->strip == strip_all)
7241 /* You can't do ld -r -s. */
7242 bfd_set_error (bfd_error_invalid_operation);
7243 return FALSE;
7246 /* This symbol was skipped earlier, but
7247 since it is needed by a reloc, we
7248 must output it now. */
7249 shlink = symtab_hdr->sh_link;
7250 name = (bfd_elf_string_from_elf_section
7251 (input_bfd, shlink, sym.st_name));
7252 if (name == NULL)
7253 return FALSE;
7255 osec = sec->output_section;
7256 sym.st_shndx =
7257 _bfd_elf_section_from_bfd_section (output_bfd,
7258 osec);
7259 if (sym.st_shndx == SHN_BAD)
7260 return FALSE;
7262 sym.st_value += sec->output_offset;
7263 if (! finfo->info->relocatable)
7265 sym.st_value += osec->vma;
7266 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7268 /* STT_TLS symbols are relative to PT_TLS
7269 segment base. */
7270 BFD_ASSERT (elf_hash_table (finfo->info)
7271 ->tls_sec != NULL);
7272 sym.st_value -= (elf_hash_table (finfo->info)
7273 ->tls_sec->vma);
7277 finfo->indices[r_symndx]
7278 = bfd_get_symcount (output_bfd);
7280 if (! elf_link_output_sym (finfo, name, &sym, sec,
7281 NULL))
7282 return FALSE;
7285 r_symndx = finfo->indices[r_symndx];
7288 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7289 | (irela->r_info & r_type_mask));
7292 /* Swap out the relocs. */
7293 if (bed->elf_backend_emit_relocs
7294 && !(finfo->info->relocatable
7295 || finfo->info->emitrelocations))
7296 reloc_emitter = bed->elf_backend_emit_relocs;
7297 else
7298 reloc_emitter = _bfd_elf_link_output_relocs;
7300 if (input_rel_hdr->sh_size != 0
7301 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7302 internal_relocs))
7303 return FALSE;
7305 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7306 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7308 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7309 * bed->s->int_rels_per_ext_rel);
7310 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7311 internal_relocs))
7312 return FALSE;
7317 /* Write out the modified section contents. */
7318 if (bed->elf_backend_write_section
7319 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7321 /* Section written out. */
7323 else switch (o->sec_info_type)
7325 case ELF_INFO_TYPE_STABS:
7326 if (! (_bfd_write_section_stabs
7327 (output_bfd,
7328 &elf_hash_table (finfo->info)->stab_info,
7329 o, &elf_section_data (o)->sec_info, contents)))
7330 return FALSE;
7331 break;
7332 case ELF_INFO_TYPE_MERGE:
7333 if (! _bfd_write_merged_section (output_bfd, o,
7334 elf_section_data (o)->sec_info))
7335 return FALSE;
7336 break;
7337 case ELF_INFO_TYPE_EH_FRAME:
7339 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7340 o, contents))
7341 return FALSE;
7343 break;
7344 default:
7346 if (! (o->flags & SEC_EXCLUDE)
7347 && ! bfd_set_section_contents (output_bfd, o->output_section,
7348 contents,
7349 (file_ptr) o->output_offset,
7350 o->size))
7351 return FALSE;
7353 break;
7357 return TRUE;
7360 /* Generate a reloc when linking an ELF file. This is a reloc
7361 requested by the linker, and does come from any input file. This
7362 is used to build constructor and destructor tables when linking
7363 with -Ur. */
7365 static bfd_boolean
7366 elf_reloc_link_order (bfd *output_bfd,
7367 struct bfd_link_info *info,
7368 asection *output_section,
7369 struct bfd_link_order *link_order)
7371 reloc_howto_type *howto;
7372 long indx;
7373 bfd_vma offset;
7374 bfd_vma addend;
7375 struct elf_link_hash_entry **rel_hash_ptr;
7376 Elf_Internal_Shdr *rel_hdr;
7377 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7378 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7379 bfd_byte *erel;
7380 unsigned int i;
7382 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7383 if (howto == NULL)
7385 bfd_set_error (bfd_error_bad_value);
7386 return FALSE;
7389 addend = link_order->u.reloc.p->addend;
7391 /* Figure out the symbol index. */
7392 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7393 + elf_section_data (output_section)->rel_count
7394 + elf_section_data (output_section)->rel_count2);
7395 if (link_order->type == bfd_section_reloc_link_order)
7397 indx = link_order->u.reloc.p->u.section->target_index;
7398 BFD_ASSERT (indx != 0);
7399 *rel_hash_ptr = NULL;
7401 else
7403 struct elf_link_hash_entry *h;
7405 /* Treat a reloc against a defined symbol as though it were
7406 actually against the section. */
7407 h = ((struct elf_link_hash_entry *)
7408 bfd_wrapped_link_hash_lookup (output_bfd, info,
7409 link_order->u.reloc.p->u.name,
7410 FALSE, FALSE, TRUE));
7411 if (h != NULL
7412 && (h->root.type == bfd_link_hash_defined
7413 || h->root.type == bfd_link_hash_defweak))
7415 asection *section;
7417 section = h->root.u.def.section;
7418 indx = section->output_section->target_index;
7419 *rel_hash_ptr = NULL;
7420 /* It seems that we ought to add the symbol value to the
7421 addend here, but in practice it has already been added
7422 because it was passed to constructor_callback. */
7423 addend += section->output_section->vma + section->output_offset;
7425 else if (h != NULL)
7427 /* Setting the index to -2 tells elf_link_output_extsym that
7428 this symbol is used by a reloc. */
7429 h->indx = -2;
7430 *rel_hash_ptr = h;
7431 indx = 0;
7433 else
7435 if (! ((*info->callbacks->unattached_reloc)
7436 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7437 return FALSE;
7438 indx = 0;
7442 /* If this is an inplace reloc, we must write the addend into the
7443 object file. */
7444 if (howto->partial_inplace && addend != 0)
7446 bfd_size_type size;
7447 bfd_reloc_status_type rstat;
7448 bfd_byte *buf;
7449 bfd_boolean ok;
7450 const char *sym_name;
7452 size = bfd_get_reloc_size (howto);
7453 buf = bfd_zmalloc (size);
7454 if (buf == NULL)
7455 return FALSE;
7456 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7457 switch (rstat)
7459 case bfd_reloc_ok:
7460 break;
7462 default:
7463 case bfd_reloc_outofrange:
7464 abort ();
7466 case bfd_reloc_overflow:
7467 if (link_order->type == bfd_section_reloc_link_order)
7468 sym_name = bfd_section_name (output_bfd,
7469 link_order->u.reloc.p->u.section);
7470 else
7471 sym_name = link_order->u.reloc.p->u.name;
7472 if (! ((*info->callbacks->reloc_overflow)
7473 (info, NULL, sym_name, howto->name, addend, NULL,
7474 NULL, (bfd_vma) 0)))
7476 free (buf);
7477 return FALSE;
7479 break;
7481 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7482 link_order->offset, size);
7483 free (buf);
7484 if (! ok)
7485 return FALSE;
7488 /* The address of a reloc is relative to the section in a
7489 relocatable file, and is a virtual address in an executable
7490 file. */
7491 offset = link_order->offset;
7492 if (! info->relocatable)
7493 offset += output_section->vma;
7495 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7497 irel[i].r_offset = offset;
7498 irel[i].r_info = 0;
7499 irel[i].r_addend = 0;
7501 if (bed->s->arch_size == 32)
7502 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7503 else
7504 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7506 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7507 erel = rel_hdr->contents;
7508 if (rel_hdr->sh_type == SHT_REL)
7510 erel += (elf_section_data (output_section)->rel_count
7511 * bed->s->sizeof_rel);
7512 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7514 else
7516 irel[0].r_addend = addend;
7517 erel += (elf_section_data (output_section)->rel_count
7518 * bed->s->sizeof_rela);
7519 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7522 ++elf_section_data (output_section)->rel_count;
7524 return TRUE;
7528 /* Get the output vma of the section pointed to by the sh_link field. */
7530 static bfd_vma
7531 elf_get_linked_section_vma (struct bfd_link_order *p)
7533 Elf_Internal_Shdr **elf_shdrp;
7534 asection *s;
7535 int elfsec;
7537 s = p->u.indirect.section;
7538 elf_shdrp = elf_elfsections (s->owner);
7539 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7540 elfsec = elf_shdrp[elfsec]->sh_link;
7541 /* PR 290:
7542 The Intel C compiler generates SHT_IA_64_UNWIND with
7543 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7544 sh_info fields. Hence we could get the situation
7545 where elfsec is 0. */
7546 if (elfsec == 0)
7548 const struct elf_backend_data *bed
7549 = get_elf_backend_data (s->owner);
7550 if (bed->link_order_error_handler)
7551 bed->link_order_error_handler
7552 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7553 return 0;
7555 else
7557 s = elf_shdrp[elfsec]->bfd_section;
7558 return s->output_section->vma + s->output_offset;
7563 /* Compare two sections based on the locations of the sections they are
7564 linked to. Used by elf_fixup_link_order. */
7566 static int
7567 compare_link_order (const void * a, const void * b)
7569 bfd_vma apos;
7570 bfd_vma bpos;
7572 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7573 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7574 if (apos < bpos)
7575 return -1;
7576 return apos > bpos;
7580 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7581 order as their linked sections. Returns false if this could not be done
7582 because an output section includes both ordered and unordered
7583 sections. Ideally we'd do this in the linker proper. */
7585 static bfd_boolean
7586 elf_fixup_link_order (bfd *abfd, asection *o)
7588 int seen_linkorder;
7589 int seen_other;
7590 int n;
7591 struct bfd_link_order *p;
7592 bfd *sub;
7593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7594 int elfsec;
7595 struct bfd_link_order **sections;
7596 asection *s;
7597 bfd_vma offset;
7599 seen_other = 0;
7600 seen_linkorder = 0;
7601 for (p = o->link_order_head; p != NULL; p = p->next)
7603 if (p->type == bfd_indirect_link_order
7604 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7605 == bfd_target_elf_flavour)
7606 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7608 s = p->u.indirect.section;
7609 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7610 if (elfsec != -1
7611 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7612 seen_linkorder++;
7613 else
7614 seen_other++;
7616 else
7617 seen_other++;
7620 if (!seen_linkorder)
7621 return TRUE;
7623 if (seen_other && seen_linkorder)
7625 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7627 bfd_set_error (bfd_error_bad_value);
7628 return FALSE;
7631 sections = (struct bfd_link_order **)
7632 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7633 seen_linkorder = 0;
7635 for (p = o->link_order_head; p != NULL; p = p->next)
7637 sections[seen_linkorder++] = p;
7639 /* Sort the input sections in the order of their linked section. */
7640 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7641 compare_link_order);
7643 /* Change the offsets of the sections. */
7644 offset = 0;
7645 for (n = 0; n < seen_linkorder; n++)
7647 s = sections[n]->u.indirect.section;
7648 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7649 s->output_offset = offset;
7650 sections[n]->offset = offset;
7651 offset += sections[n]->size;
7654 return TRUE;
7658 /* Do the final step of an ELF link. */
7660 bfd_boolean
7661 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7663 bfd_boolean dynamic;
7664 bfd_boolean emit_relocs;
7665 bfd *dynobj;
7666 struct elf_final_link_info finfo;
7667 register asection *o;
7668 register struct bfd_link_order *p;
7669 register bfd *sub;
7670 bfd_size_type max_contents_size;
7671 bfd_size_type max_external_reloc_size;
7672 bfd_size_type max_internal_reloc_count;
7673 bfd_size_type max_sym_count;
7674 bfd_size_type max_sym_shndx_count;
7675 file_ptr off;
7676 Elf_Internal_Sym elfsym;
7677 unsigned int i;
7678 Elf_Internal_Shdr *symtab_hdr;
7679 Elf_Internal_Shdr *symtab_shndx_hdr;
7680 Elf_Internal_Shdr *symstrtab_hdr;
7681 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7682 struct elf_outext_info eoinfo;
7683 bfd_boolean merged;
7684 size_t relativecount = 0;
7685 asection *reldyn = 0;
7686 bfd_size_type amt;
7688 if (! is_elf_hash_table (info->hash))
7689 return FALSE;
7691 if (info->shared)
7692 abfd->flags |= DYNAMIC;
7694 dynamic = elf_hash_table (info)->dynamic_sections_created;
7695 dynobj = elf_hash_table (info)->dynobj;
7697 emit_relocs = (info->relocatable
7698 || info->emitrelocations
7699 || bed->elf_backend_emit_relocs);
7701 finfo.info = info;
7702 finfo.output_bfd = abfd;
7703 finfo.symstrtab = _bfd_elf_stringtab_init ();
7704 if (finfo.symstrtab == NULL)
7705 return FALSE;
7707 if (! dynamic)
7709 finfo.dynsym_sec = NULL;
7710 finfo.hash_sec = NULL;
7711 finfo.symver_sec = NULL;
7713 else
7715 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7716 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7717 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7718 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7719 /* Note that it is OK if symver_sec is NULL. */
7722 finfo.contents = NULL;
7723 finfo.external_relocs = NULL;
7724 finfo.internal_relocs = NULL;
7725 finfo.external_syms = NULL;
7726 finfo.locsym_shndx = NULL;
7727 finfo.internal_syms = NULL;
7728 finfo.indices = NULL;
7729 finfo.sections = NULL;
7730 finfo.symbuf = NULL;
7731 finfo.symshndxbuf = NULL;
7732 finfo.symbuf_count = 0;
7733 finfo.shndxbuf_size = 0;
7735 /* Count up the number of relocations we will output for each output
7736 section, so that we know the sizes of the reloc sections. We
7737 also figure out some maximum sizes. */
7738 max_contents_size = 0;
7739 max_external_reloc_size = 0;
7740 max_internal_reloc_count = 0;
7741 max_sym_count = 0;
7742 max_sym_shndx_count = 0;
7743 merged = FALSE;
7744 for (o = abfd->sections; o != NULL; o = o->next)
7746 struct bfd_elf_section_data *esdo = elf_section_data (o);
7747 o->reloc_count = 0;
7749 for (p = o->link_order_head; p != NULL; p = p->next)
7751 unsigned int reloc_count = 0;
7752 struct bfd_elf_section_data *esdi = NULL;
7753 unsigned int *rel_count1;
7755 if (p->type == bfd_section_reloc_link_order
7756 || p->type == bfd_symbol_reloc_link_order)
7757 reloc_count = 1;
7758 else if (p->type == bfd_indirect_link_order)
7760 asection *sec;
7762 sec = p->u.indirect.section;
7763 esdi = elf_section_data (sec);
7765 /* Mark all sections which are to be included in the
7766 link. This will normally be every section. We need
7767 to do this so that we can identify any sections which
7768 the linker has decided to not include. */
7769 sec->linker_mark = TRUE;
7771 if (sec->flags & SEC_MERGE)
7772 merged = TRUE;
7774 if (info->relocatable || info->emitrelocations)
7775 reloc_count = sec->reloc_count;
7776 else if (bed->elf_backend_count_relocs)
7778 Elf_Internal_Rela * relocs;
7780 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7781 info->keep_memory);
7783 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7785 if (elf_section_data (o)->relocs != relocs)
7786 free (relocs);
7789 if (sec->rawsize > max_contents_size)
7790 max_contents_size = sec->rawsize;
7791 if (sec->size > max_contents_size)
7792 max_contents_size = sec->size;
7794 /* We are interested in just local symbols, not all
7795 symbols. */
7796 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7797 && (sec->owner->flags & DYNAMIC) == 0)
7799 size_t sym_count;
7801 if (elf_bad_symtab (sec->owner))
7802 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7803 / bed->s->sizeof_sym);
7804 else
7805 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7807 if (sym_count > max_sym_count)
7808 max_sym_count = sym_count;
7810 if (sym_count > max_sym_shndx_count
7811 && elf_symtab_shndx (sec->owner) != 0)
7812 max_sym_shndx_count = sym_count;
7814 if ((sec->flags & SEC_RELOC) != 0)
7816 size_t ext_size;
7818 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7819 if (ext_size > max_external_reloc_size)
7820 max_external_reloc_size = ext_size;
7821 if (sec->reloc_count > max_internal_reloc_count)
7822 max_internal_reloc_count = sec->reloc_count;
7827 if (reloc_count == 0)
7828 continue;
7830 o->reloc_count += reloc_count;
7832 /* MIPS may have a mix of REL and RELA relocs on sections.
7833 To support this curious ABI we keep reloc counts in
7834 elf_section_data too. We must be careful to add the
7835 relocations from the input section to the right output
7836 count. FIXME: Get rid of one count. We have
7837 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7838 rel_count1 = &esdo->rel_count;
7839 if (esdi != NULL)
7841 bfd_boolean same_size;
7842 bfd_size_type entsize1;
7844 entsize1 = esdi->rel_hdr.sh_entsize;
7845 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7846 || entsize1 == bed->s->sizeof_rela);
7847 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7849 if (!same_size)
7850 rel_count1 = &esdo->rel_count2;
7852 if (esdi->rel_hdr2 != NULL)
7854 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7855 unsigned int alt_count;
7856 unsigned int *rel_count2;
7858 BFD_ASSERT (entsize2 != entsize1
7859 && (entsize2 == bed->s->sizeof_rel
7860 || entsize2 == bed->s->sizeof_rela));
7862 rel_count2 = &esdo->rel_count2;
7863 if (!same_size)
7864 rel_count2 = &esdo->rel_count;
7866 /* The following is probably too simplistic if the
7867 backend counts output relocs unusually. */
7868 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7869 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7870 *rel_count2 += alt_count;
7871 reloc_count -= alt_count;
7874 *rel_count1 += reloc_count;
7877 if (o->reloc_count > 0)
7878 o->flags |= SEC_RELOC;
7879 else
7881 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7882 set it (this is probably a bug) and if it is set
7883 assign_section_numbers will create a reloc section. */
7884 o->flags &=~ SEC_RELOC;
7887 /* If the SEC_ALLOC flag is not set, force the section VMA to
7888 zero. This is done in elf_fake_sections as well, but forcing
7889 the VMA to 0 here will ensure that relocs against these
7890 sections are handled correctly. */
7891 if ((o->flags & SEC_ALLOC) == 0
7892 && ! o->user_set_vma)
7893 o->vma = 0;
7896 if (! info->relocatable && merged)
7897 elf_link_hash_traverse (elf_hash_table (info),
7898 _bfd_elf_link_sec_merge_syms, abfd);
7900 /* Figure out the file positions for everything but the symbol table
7901 and the relocs. We set symcount to force assign_section_numbers
7902 to create a symbol table. */
7903 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7904 BFD_ASSERT (! abfd->output_has_begun);
7905 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7906 goto error_return;
7908 /* Set sizes, and assign file positions for reloc sections. */
7909 for (o = abfd->sections; o != NULL; o = o->next)
7911 if ((o->flags & SEC_RELOC) != 0)
7913 if (!(_bfd_elf_link_size_reloc_section
7914 (abfd, &elf_section_data (o)->rel_hdr, o)))
7915 goto error_return;
7917 if (elf_section_data (o)->rel_hdr2
7918 && !(_bfd_elf_link_size_reloc_section
7919 (abfd, elf_section_data (o)->rel_hdr2, o)))
7920 goto error_return;
7923 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7924 to count upwards while actually outputting the relocations. */
7925 elf_section_data (o)->rel_count = 0;
7926 elf_section_data (o)->rel_count2 = 0;
7929 _bfd_elf_assign_file_positions_for_relocs (abfd);
7931 /* We have now assigned file positions for all the sections except
7932 .symtab and .strtab. We start the .symtab section at the current
7933 file position, and write directly to it. We build the .strtab
7934 section in memory. */
7935 bfd_get_symcount (abfd) = 0;
7936 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7937 /* sh_name is set in prep_headers. */
7938 symtab_hdr->sh_type = SHT_SYMTAB;
7939 /* sh_flags, sh_addr and sh_size all start off zero. */
7940 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7941 /* sh_link is set in assign_section_numbers. */
7942 /* sh_info is set below. */
7943 /* sh_offset is set just below. */
7944 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7946 off = elf_tdata (abfd)->next_file_pos;
7947 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7949 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7950 incorrect. We do not yet know the size of the .symtab section.
7951 We correct next_file_pos below, after we do know the size. */
7953 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7954 continuously seeking to the right position in the file. */
7955 if (! info->keep_memory || max_sym_count < 20)
7956 finfo.symbuf_size = 20;
7957 else
7958 finfo.symbuf_size = max_sym_count;
7959 amt = finfo.symbuf_size;
7960 amt *= bed->s->sizeof_sym;
7961 finfo.symbuf = bfd_malloc (amt);
7962 if (finfo.symbuf == NULL)
7963 goto error_return;
7964 if (elf_numsections (abfd) > SHN_LORESERVE)
7966 /* Wild guess at number of output symbols. realloc'd as needed. */
7967 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7968 finfo.shndxbuf_size = amt;
7969 amt *= sizeof (Elf_External_Sym_Shndx);
7970 finfo.symshndxbuf = bfd_zmalloc (amt);
7971 if (finfo.symshndxbuf == NULL)
7972 goto error_return;
7975 /* Start writing out the symbol table. The first symbol is always a
7976 dummy symbol. */
7977 if (info->strip != strip_all
7978 || emit_relocs)
7980 elfsym.st_value = 0;
7981 elfsym.st_size = 0;
7982 elfsym.st_info = 0;
7983 elfsym.st_other = 0;
7984 elfsym.st_shndx = SHN_UNDEF;
7985 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7986 NULL))
7987 goto error_return;
7990 /* Output a symbol for each section. We output these even if we are
7991 discarding local symbols, since they are used for relocs. These
7992 symbols have no names. We store the index of each one in the
7993 index field of the section, so that we can find it again when
7994 outputting relocs. */
7995 if (info->strip != strip_all
7996 || emit_relocs)
7998 elfsym.st_size = 0;
7999 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8000 elfsym.st_other = 0;
8001 for (i = 1; i < elf_numsections (abfd); i++)
8003 o = bfd_section_from_elf_index (abfd, i);
8004 if (o != NULL)
8005 o->target_index = bfd_get_symcount (abfd);
8006 elfsym.st_shndx = i;
8007 if (info->relocatable || o == NULL)
8008 elfsym.st_value = 0;
8009 else
8010 elfsym.st_value = o->vma;
8011 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8012 goto error_return;
8013 if (i == SHN_LORESERVE - 1)
8014 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8018 /* Allocate some memory to hold information read in from the input
8019 files. */
8020 if (max_contents_size != 0)
8022 finfo.contents = bfd_malloc (max_contents_size);
8023 if (finfo.contents == NULL)
8024 goto error_return;
8027 if (max_external_reloc_size != 0)
8029 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8030 if (finfo.external_relocs == NULL)
8031 goto error_return;
8034 if (max_internal_reloc_count != 0)
8036 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8037 amt *= sizeof (Elf_Internal_Rela);
8038 finfo.internal_relocs = bfd_malloc (amt);
8039 if (finfo.internal_relocs == NULL)
8040 goto error_return;
8043 if (max_sym_count != 0)
8045 amt = max_sym_count * bed->s->sizeof_sym;
8046 finfo.external_syms = bfd_malloc (amt);
8047 if (finfo.external_syms == NULL)
8048 goto error_return;
8050 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8051 finfo.internal_syms = bfd_malloc (amt);
8052 if (finfo.internal_syms == NULL)
8053 goto error_return;
8055 amt = max_sym_count * sizeof (long);
8056 finfo.indices = bfd_malloc (amt);
8057 if (finfo.indices == NULL)
8058 goto error_return;
8060 amt = max_sym_count * sizeof (asection *);
8061 finfo.sections = bfd_malloc (amt);
8062 if (finfo.sections == NULL)
8063 goto error_return;
8066 if (max_sym_shndx_count != 0)
8068 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8069 finfo.locsym_shndx = bfd_malloc (amt);
8070 if (finfo.locsym_shndx == NULL)
8071 goto error_return;
8074 if (elf_hash_table (info)->tls_sec)
8076 bfd_vma base, end = 0;
8077 asection *sec;
8079 for (sec = elf_hash_table (info)->tls_sec;
8080 sec && (sec->flags & SEC_THREAD_LOCAL);
8081 sec = sec->next)
8083 bfd_vma size = sec->size;
8085 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8087 struct bfd_link_order *o;
8089 for (o = sec->link_order_head; o != NULL; o = o->next)
8090 if (size < o->offset + o->size)
8091 size = o->offset + o->size;
8093 end = sec->vma + size;
8095 base = elf_hash_table (info)->tls_sec->vma;
8096 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8097 elf_hash_table (info)->tls_size = end - base;
8100 /* Reorder SHF_LINK_ORDER sections. */
8101 for (o = abfd->sections; o != NULL; o = o->next)
8103 if (!elf_fixup_link_order (abfd, o))
8104 return FALSE;
8107 /* Since ELF permits relocations to be against local symbols, we
8108 must have the local symbols available when we do the relocations.
8109 Since we would rather only read the local symbols once, and we
8110 would rather not keep them in memory, we handle all the
8111 relocations for a single input file at the same time.
8113 Unfortunately, there is no way to know the total number of local
8114 symbols until we have seen all of them, and the local symbol
8115 indices precede the global symbol indices. This means that when
8116 we are generating relocatable output, and we see a reloc against
8117 a global symbol, we can not know the symbol index until we have
8118 finished examining all the local symbols to see which ones we are
8119 going to output. To deal with this, we keep the relocations in
8120 memory, and don't output them until the end of the link. This is
8121 an unfortunate waste of memory, but I don't see a good way around
8122 it. Fortunately, it only happens when performing a relocatable
8123 link, which is not the common case. FIXME: If keep_memory is set
8124 we could write the relocs out and then read them again; I don't
8125 know how bad the memory loss will be. */
8127 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8128 sub->output_has_begun = FALSE;
8129 for (o = abfd->sections; o != NULL; o = o->next)
8131 for (p = o->link_order_head; p != NULL; p = p->next)
8133 if (p->type == bfd_indirect_link_order
8134 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8135 == bfd_target_elf_flavour)
8136 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8138 if (! sub->output_has_begun)
8140 if (! elf_link_input_bfd (&finfo, sub))
8141 goto error_return;
8142 sub->output_has_begun = TRUE;
8145 else if (p->type == bfd_section_reloc_link_order
8146 || p->type == bfd_symbol_reloc_link_order)
8148 if (! elf_reloc_link_order (abfd, info, o, p))
8149 goto error_return;
8151 else
8153 if (! _bfd_default_link_order (abfd, info, o, p))
8154 goto error_return;
8159 /* Output any global symbols that got converted to local in a
8160 version script or due to symbol visibility. We do this in a
8161 separate step since ELF requires all local symbols to appear
8162 prior to any global symbols. FIXME: We should only do this if
8163 some global symbols were, in fact, converted to become local.
8164 FIXME: Will this work correctly with the Irix 5 linker? */
8165 eoinfo.failed = FALSE;
8166 eoinfo.finfo = &finfo;
8167 eoinfo.localsyms = TRUE;
8168 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8169 &eoinfo);
8170 if (eoinfo.failed)
8171 return FALSE;
8173 /* That wrote out all the local symbols. Finish up the symbol table
8174 with the global symbols. Even if we want to strip everything we
8175 can, we still need to deal with those global symbols that got
8176 converted to local in a version script. */
8178 /* The sh_info field records the index of the first non local symbol. */
8179 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8181 if (dynamic
8182 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8184 Elf_Internal_Sym sym;
8185 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8186 long last_local = 0;
8188 /* Write out the section symbols for the output sections. */
8189 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8191 asection *s;
8193 sym.st_size = 0;
8194 sym.st_name = 0;
8195 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8196 sym.st_other = 0;
8198 for (s = abfd->sections; s != NULL; s = s->next)
8200 int indx;
8201 bfd_byte *dest;
8202 long dynindx;
8204 dynindx = elf_section_data (s)->dynindx;
8205 if (dynindx <= 0)
8206 continue;
8207 indx = elf_section_data (s)->this_idx;
8208 BFD_ASSERT (indx > 0);
8209 sym.st_shndx = indx;
8210 sym.st_value = s->vma;
8211 dest = dynsym + dynindx * bed->s->sizeof_sym;
8212 if (last_local < dynindx)
8213 last_local = dynindx;
8214 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8218 /* Write out the local dynsyms. */
8219 if (elf_hash_table (info)->dynlocal)
8221 struct elf_link_local_dynamic_entry *e;
8222 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8224 asection *s;
8225 bfd_byte *dest;
8227 sym.st_size = e->isym.st_size;
8228 sym.st_other = e->isym.st_other;
8230 /* Copy the internal symbol as is.
8231 Note that we saved a word of storage and overwrote
8232 the original st_name with the dynstr_index. */
8233 sym = e->isym;
8235 if (e->isym.st_shndx != SHN_UNDEF
8236 && (e->isym.st_shndx < SHN_LORESERVE
8237 || e->isym.st_shndx > SHN_HIRESERVE))
8239 s = bfd_section_from_elf_index (e->input_bfd,
8240 e->isym.st_shndx);
8242 sym.st_shndx =
8243 elf_section_data (s->output_section)->this_idx;
8244 sym.st_value = (s->output_section->vma
8245 + s->output_offset
8246 + e->isym.st_value);
8249 if (last_local < e->dynindx)
8250 last_local = e->dynindx;
8252 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8253 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8257 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8258 last_local + 1;
8261 /* We get the global symbols from the hash table. */
8262 eoinfo.failed = FALSE;
8263 eoinfo.localsyms = FALSE;
8264 eoinfo.finfo = &finfo;
8265 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8266 &eoinfo);
8267 if (eoinfo.failed)
8268 return FALSE;
8270 /* If backend needs to output some symbols not present in the hash
8271 table, do it now. */
8272 if (bed->elf_backend_output_arch_syms)
8274 typedef bfd_boolean (*out_sym_func)
8275 (void *, const char *, Elf_Internal_Sym *, asection *,
8276 struct elf_link_hash_entry *);
8278 if (! ((*bed->elf_backend_output_arch_syms)
8279 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8280 return FALSE;
8283 /* Flush all symbols to the file. */
8284 if (! elf_link_flush_output_syms (&finfo, bed))
8285 return FALSE;
8287 /* Now we know the size of the symtab section. */
8288 off += symtab_hdr->sh_size;
8290 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8291 if (symtab_shndx_hdr->sh_name != 0)
8293 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8294 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8295 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8296 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8297 symtab_shndx_hdr->sh_size = amt;
8299 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8300 off, TRUE);
8302 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8303 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8304 return FALSE;
8308 /* Finish up and write out the symbol string table (.strtab)
8309 section. */
8310 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8311 /* sh_name was set in prep_headers. */
8312 symstrtab_hdr->sh_type = SHT_STRTAB;
8313 symstrtab_hdr->sh_flags = 0;
8314 symstrtab_hdr->sh_addr = 0;
8315 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8316 symstrtab_hdr->sh_entsize = 0;
8317 symstrtab_hdr->sh_link = 0;
8318 symstrtab_hdr->sh_info = 0;
8319 /* sh_offset is set just below. */
8320 symstrtab_hdr->sh_addralign = 1;
8322 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8323 elf_tdata (abfd)->next_file_pos = off;
8325 if (bfd_get_symcount (abfd) > 0)
8327 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8328 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8329 return FALSE;
8332 /* Adjust the relocs to have the correct symbol indices. */
8333 for (o = abfd->sections; o != NULL; o = o->next)
8335 if ((o->flags & SEC_RELOC) == 0)
8336 continue;
8338 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8339 elf_section_data (o)->rel_count,
8340 elf_section_data (o)->rel_hashes);
8341 if (elf_section_data (o)->rel_hdr2 != NULL)
8342 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8343 elf_section_data (o)->rel_count2,
8344 (elf_section_data (o)->rel_hashes
8345 + elf_section_data (o)->rel_count));
8347 /* Set the reloc_count field to 0 to prevent write_relocs from
8348 trying to swap the relocs out itself. */
8349 o->reloc_count = 0;
8352 if (dynamic && info->combreloc && dynobj != NULL)
8353 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8355 /* If we are linking against a dynamic object, or generating a
8356 shared library, finish up the dynamic linking information. */
8357 if (dynamic)
8359 bfd_byte *dyncon, *dynconend;
8361 /* Fix up .dynamic entries. */
8362 o = bfd_get_section_by_name (dynobj, ".dynamic");
8363 BFD_ASSERT (o != NULL);
8365 dyncon = o->contents;
8366 dynconend = o->contents + o->size;
8367 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8369 Elf_Internal_Dyn dyn;
8370 const char *name;
8371 unsigned int type;
8373 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8375 switch (dyn.d_tag)
8377 default:
8378 continue;
8379 case DT_NULL:
8380 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8382 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8384 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8385 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8386 default: continue;
8388 dyn.d_un.d_val = relativecount;
8389 relativecount = 0;
8390 break;
8392 continue;
8394 case DT_INIT:
8395 name = info->init_function;
8396 goto get_sym;
8397 case DT_FINI:
8398 name = info->fini_function;
8399 get_sym:
8401 struct elf_link_hash_entry *h;
8403 h = elf_link_hash_lookup (elf_hash_table (info), name,
8404 FALSE, FALSE, TRUE);
8405 if (h != NULL
8406 && (h->root.type == bfd_link_hash_defined
8407 || h->root.type == bfd_link_hash_defweak))
8409 dyn.d_un.d_val = h->root.u.def.value;
8410 o = h->root.u.def.section;
8411 if (o->output_section != NULL)
8412 dyn.d_un.d_val += (o->output_section->vma
8413 + o->output_offset);
8414 else
8416 /* The symbol is imported from another shared
8417 library and does not apply to this one. */
8418 dyn.d_un.d_val = 0;
8420 break;
8423 continue;
8425 case DT_PREINIT_ARRAYSZ:
8426 name = ".preinit_array";
8427 goto get_size;
8428 case DT_INIT_ARRAYSZ:
8429 name = ".init_array";
8430 goto get_size;
8431 case DT_FINI_ARRAYSZ:
8432 name = ".fini_array";
8433 get_size:
8434 o = bfd_get_section_by_name (abfd, name);
8435 if (o == NULL)
8437 (*_bfd_error_handler)
8438 (_("%B: could not find output section %s"), abfd, name);
8439 goto error_return;
8441 if (o->size == 0)
8442 (*_bfd_error_handler)
8443 (_("warning: %s section has zero size"), name);
8444 dyn.d_un.d_val = o->size;
8445 break;
8447 case DT_PREINIT_ARRAY:
8448 name = ".preinit_array";
8449 goto get_vma;
8450 case DT_INIT_ARRAY:
8451 name = ".init_array";
8452 goto get_vma;
8453 case DT_FINI_ARRAY:
8454 name = ".fini_array";
8455 goto get_vma;
8457 case DT_HASH:
8458 name = ".hash";
8459 goto get_vma;
8460 case DT_STRTAB:
8461 name = ".dynstr";
8462 goto get_vma;
8463 case DT_SYMTAB:
8464 name = ".dynsym";
8465 goto get_vma;
8466 case DT_VERDEF:
8467 name = ".gnu.version_d";
8468 goto get_vma;
8469 case DT_VERNEED:
8470 name = ".gnu.version_r";
8471 goto get_vma;
8472 case DT_VERSYM:
8473 name = ".gnu.version";
8474 get_vma:
8475 o = bfd_get_section_by_name (abfd, name);
8476 if (o == NULL)
8478 (*_bfd_error_handler)
8479 (_("%B: could not find output section %s"), abfd, name);
8480 goto error_return;
8482 dyn.d_un.d_ptr = o->vma;
8483 break;
8485 case DT_REL:
8486 case DT_RELA:
8487 case DT_RELSZ:
8488 case DT_RELASZ:
8489 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8490 type = SHT_REL;
8491 else
8492 type = SHT_RELA;
8493 dyn.d_un.d_val = 0;
8494 for (i = 1; i < elf_numsections (abfd); i++)
8496 Elf_Internal_Shdr *hdr;
8498 hdr = elf_elfsections (abfd)[i];
8499 if (hdr->sh_type == type
8500 && (hdr->sh_flags & SHF_ALLOC) != 0)
8502 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8503 dyn.d_un.d_val += hdr->sh_size;
8504 else
8506 if (dyn.d_un.d_val == 0
8507 || hdr->sh_addr < dyn.d_un.d_val)
8508 dyn.d_un.d_val = hdr->sh_addr;
8512 break;
8514 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8518 /* If we have created any dynamic sections, then output them. */
8519 if (dynobj != NULL)
8521 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8522 goto error_return;
8524 for (o = dynobj->sections; o != NULL; o = o->next)
8526 if ((o->flags & SEC_HAS_CONTENTS) == 0
8527 || o->size == 0
8528 || o->output_section == bfd_abs_section_ptr)
8529 continue;
8530 if ((o->flags & SEC_LINKER_CREATED) == 0)
8532 /* At this point, we are only interested in sections
8533 created by _bfd_elf_link_create_dynamic_sections. */
8534 continue;
8536 if (elf_hash_table (info)->stab_info.stabstr == o)
8537 continue;
8538 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8539 continue;
8540 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8541 != SHT_STRTAB)
8542 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8544 if (! bfd_set_section_contents (abfd, o->output_section,
8545 o->contents,
8546 (file_ptr) o->output_offset,
8547 o->size))
8548 goto error_return;
8550 else
8552 /* The contents of the .dynstr section are actually in a
8553 stringtab. */
8554 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8555 if (bfd_seek (abfd, off, SEEK_SET) != 0
8556 || ! _bfd_elf_strtab_emit (abfd,
8557 elf_hash_table (info)->dynstr))
8558 goto error_return;
8563 if (info->relocatable)
8565 bfd_boolean failed = FALSE;
8567 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8568 if (failed)
8569 goto error_return;
8572 /* If we have optimized stabs strings, output them. */
8573 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8575 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8576 goto error_return;
8579 if (info->eh_frame_hdr)
8581 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8582 goto error_return;
8585 if (finfo.symstrtab != NULL)
8586 _bfd_stringtab_free (finfo.symstrtab);
8587 if (finfo.contents != NULL)
8588 free (finfo.contents);
8589 if (finfo.external_relocs != NULL)
8590 free (finfo.external_relocs);
8591 if (finfo.internal_relocs != NULL)
8592 free (finfo.internal_relocs);
8593 if (finfo.external_syms != NULL)
8594 free (finfo.external_syms);
8595 if (finfo.locsym_shndx != NULL)
8596 free (finfo.locsym_shndx);
8597 if (finfo.internal_syms != NULL)
8598 free (finfo.internal_syms);
8599 if (finfo.indices != NULL)
8600 free (finfo.indices);
8601 if (finfo.sections != NULL)
8602 free (finfo.sections);
8603 if (finfo.symbuf != NULL)
8604 free (finfo.symbuf);
8605 if (finfo.symshndxbuf != NULL)
8606 free (finfo.symshndxbuf);
8607 for (o = abfd->sections; o != NULL; o = o->next)
8609 if ((o->flags & SEC_RELOC) != 0
8610 && elf_section_data (o)->rel_hashes != NULL)
8611 free (elf_section_data (o)->rel_hashes);
8614 elf_tdata (abfd)->linker = TRUE;
8616 return TRUE;
8618 error_return:
8619 if (finfo.symstrtab != NULL)
8620 _bfd_stringtab_free (finfo.symstrtab);
8621 if (finfo.contents != NULL)
8622 free (finfo.contents);
8623 if (finfo.external_relocs != NULL)
8624 free (finfo.external_relocs);
8625 if (finfo.internal_relocs != NULL)
8626 free (finfo.internal_relocs);
8627 if (finfo.external_syms != NULL)
8628 free (finfo.external_syms);
8629 if (finfo.locsym_shndx != NULL)
8630 free (finfo.locsym_shndx);
8631 if (finfo.internal_syms != NULL)
8632 free (finfo.internal_syms);
8633 if (finfo.indices != NULL)
8634 free (finfo.indices);
8635 if (finfo.sections != NULL)
8636 free (finfo.sections);
8637 if (finfo.symbuf != NULL)
8638 free (finfo.symbuf);
8639 if (finfo.symshndxbuf != NULL)
8640 free (finfo.symshndxbuf);
8641 for (o = abfd->sections; o != NULL; o = o->next)
8643 if ((o->flags & SEC_RELOC) != 0
8644 && elf_section_data (o)->rel_hashes != NULL)
8645 free (elf_section_data (o)->rel_hashes);
8648 return FALSE;
8651 /* Garbage collect unused sections. */
8653 /* The mark phase of garbage collection. For a given section, mark
8654 it and any sections in this section's group, and all the sections
8655 which define symbols to which it refers. */
8657 typedef asection * (*gc_mark_hook_fn)
8658 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8659 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8661 bfd_boolean
8662 _bfd_elf_gc_mark (struct bfd_link_info *info,
8663 asection *sec,
8664 gc_mark_hook_fn gc_mark_hook)
8666 bfd_boolean ret;
8667 asection *group_sec;
8669 sec->gc_mark = 1;
8671 /* Mark all the sections in the group. */
8672 group_sec = elf_section_data (sec)->next_in_group;
8673 if (group_sec && !group_sec->gc_mark)
8674 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8675 return FALSE;
8677 /* Look through the section relocs. */
8678 ret = TRUE;
8679 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8681 Elf_Internal_Rela *relstart, *rel, *relend;
8682 Elf_Internal_Shdr *symtab_hdr;
8683 struct elf_link_hash_entry **sym_hashes;
8684 size_t nlocsyms;
8685 size_t extsymoff;
8686 bfd *input_bfd = sec->owner;
8687 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8688 Elf_Internal_Sym *isym = NULL;
8689 int r_sym_shift;
8691 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8692 sym_hashes = elf_sym_hashes (input_bfd);
8694 /* Read the local symbols. */
8695 if (elf_bad_symtab (input_bfd))
8697 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8698 extsymoff = 0;
8700 else
8701 extsymoff = nlocsyms = symtab_hdr->sh_info;
8703 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8704 if (isym == NULL && nlocsyms != 0)
8706 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8707 NULL, NULL, NULL);
8708 if (isym == NULL)
8709 return FALSE;
8712 /* Read the relocations. */
8713 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8714 info->keep_memory);
8715 if (relstart == NULL)
8717 ret = FALSE;
8718 goto out1;
8720 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8722 if (bed->s->arch_size == 32)
8723 r_sym_shift = 8;
8724 else
8725 r_sym_shift = 32;
8727 for (rel = relstart; rel < relend; rel++)
8729 unsigned long r_symndx;
8730 asection *rsec;
8731 struct elf_link_hash_entry *h;
8733 r_symndx = rel->r_info >> r_sym_shift;
8734 if (r_symndx == 0)
8735 continue;
8737 if (r_symndx >= nlocsyms
8738 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8740 h = sym_hashes[r_symndx - extsymoff];
8741 while (h->root.type == bfd_link_hash_indirect
8742 || h->root.type == bfd_link_hash_warning)
8743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8744 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8746 else
8748 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8751 if (rsec && !rsec->gc_mark)
8753 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8754 rsec->gc_mark = 1;
8755 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8757 ret = FALSE;
8758 goto out2;
8763 out2:
8764 if (elf_section_data (sec)->relocs != relstart)
8765 free (relstart);
8766 out1:
8767 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8769 if (! info->keep_memory)
8770 free (isym);
8771 else
8772 symtab_hdr->contents = (unsigned char *) isym;
8776 return ret;
8779 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8781 static bfd_boolean
8782 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8784 int *idx = idxptr;
8786 if (h->root.type == bfd_link_hash_warning)
8787 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8789 if (h->dynindx != -1
8790 && ((h->root.type != bfd_link_hash_defined
8791 && h->root.type != bfd_link_hash_defweak)
8792 || h->root.u.def.section->gc_mark))
8793 h->dynindx = (*idx)++;
8795 return TRUE;
8798 /* The sweep phase of garbage collection. Remove all garbage sections. */
8800 typedef bfd_boolean (*gc_sweep_hook_fn)
8801 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8803 static bfd_boolean
8804 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8806 bfd *sub;
8808 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8810 asection *o;
8812 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8813 continue;
8815 for (o = sub->sections; o != NULL; o = o->next)
8817 /* Keep debug and special sections. */
8818 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8819 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8820 o->gc_mark = 1;
8822 if (o->gc_mark)
8823 continue;
8825 /* Skip sweeping sections already excluded. */
8826 if (o->flags & SEC_EXCLUDE)
8827 continue;
8829 /* Since this is early in the link process, it is simple
8830 to remove a section from the output. */
8831 o->flags |= SEC_EXCLUDE;
8833 /* But we also have to update some of the relocation
8834 info we collected before. */
8835 if (gc_sweep_hook
8836 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8838 Elf_Internal_Rela *internal_relocs;
8839 bfd_boolean r;
8841 internal_relocs
8842 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8843 info->keep_memory);
8844 if (internal_relocs == NULL)
8845 return FALSE;
8847 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8849 if (elf_section_data (o)->relocs != internal_relocs)
8850 free (internal_relocs);
8852 if (!r)
8853 return FALSE;
8858 /* Remove the symbols that were in the swept sections from the dynamic
8859 symbol table. GCFIXME: Anyone know how to get them out of the
8860 static symbol table as well? */
8862 int i = 0;
8864 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8866 elf_hash_table (info)->dynsymcount = i;
8869 return TRUE;
8872 /* Propagate collected vtable information. This is called through
8873 elf_link_hash_traverse. */
8875 static bfd_boolean
8876 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8878 if (h->root.type == bfd_link_hash_warning)
8879 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8881 /* Those that are not vtables. */
8882 if (h->vtable == NULL || h->vtable->parent == NULL)
8883 return TRUE;
8885 /* Those vtables that do not have parents, we cannot merge. */
8886 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8887 return TRUE;
8889 /* If we've already been done, exit. */
8890 if (h->vtable->used && h->vtable->used[-1])
8891 return TRUE;
8893 /* Make sure the parent's table is up to date. */
8894 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8896 if (h->vtable->used == NULL)
8898 /* None of this table's entries were referenced. Re-use the
8899 parent's table. */
8900 h->vtable->used = h->vtable->parent->vtable->used;
8901 h->vtable->size = h->vtable->parent->vtable->size;
8903 else
8905 size_t n;
8906 bfd_boolean *cu, *pu;
8908 /* Or the parent's entries into ours. */
8909 cu = h->vtable->used;
8910 cu[-1] = TRUE;
8911 pu = h->vtable->parent->vtable->used;
8912 if (pu != NULL)
8914 const struct elf_backend_data *bed;
8915 unsigned int log_file_align;
8917 bed = get_elf_backend_data (h->root.u.def.section->owner);
8918 log_file_align = bed->s->log_file_align;
8919 n = h->vtable->parent->vtable->size >> log_file_align;
8920 while (n--)
8922 if (*pu)
8923 *cu = TRUE;
8924 pu++;
8925 cu++;
8930 return TRUE;
8933 static bfd_boolean
8934 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8936 asection *sec;
8937 bfd_vma hstart, hend;
8938 Elf_Internal_Rela *relstart, *relend, *rel;
8939 const struct elf_backend_data *bed;
8940 unsigned int log_file_align;
8942 if (h->root.type == bfd_link_hash_warning)
8943 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8945 /* Take care of both those symbols that do not describe vtables as
8946 well as those that are not loaded. */
8947 if (h->vtable == NULL || h->vtable->parent == NULL)
8948 return TRUE;
8950 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8951 || h->root.type == bfd_link_hash_defweak);
8953 sec = h->root.u.def.section;
8954 hstart = h->root.u.def.value;
8955 hend = hstart + h->size;
8957 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8958 if (!relstart)
8959 return *(bfd_boolean *) okp = FALSE;
8960 bed = get_elf_backend_data (sec->owner);
8961 log_file_align = bed->s->log_file_align;
8963 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8965 for (rel = relstart; rel < relend; ++rel)
8966 if (rel->r_offset >= hstart && rel->r_offset < hend)
8968 /* If the entry is in use, do nothing. */
8969 if (h->vtable->used
8970 && (rel->r_offset - hstart) < h->vtable->size)
8972 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8973 if (h->vtable->used[entry])
8974 continue;
8976 /* Otherwise, kill it. */
8977 rel->r_offset = rel->r_info = rel->r_addend = 0;
8980 return TRUE;
8983 /* Mark sections containing dynamically referenced symbols. This is called
8984 through elf_link_hash_traverse. */
8986 static bfd_boolean
8987 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8988 void *okp ATTRIBUTE_UNUSED)
8990 if (h->root.type == bfd_link_hash_warning)
8991 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8993 if ((h->root.type == bfd_link_hash_defined
8994 || h->root.type == bfd_link_hash_defweak)
8995 && h->ref_dynamic)
8996 h->root.u.def.section->flags |= SEC_KEEP;
8998 return TRUE;
9001 /* Mark sections containing global symbols. This is called through
9002 elf_link_hash_traverse. */
9004 static bfd_boolean
9005 elf_mark_used_section (struct elf_link_hash_entry *h,
9006 void *data ATTRIBUTE_UNUSED)
9008 if (h->root.type == bfd_link_hash_warning)
9009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9011 if (h->root.type == bfd_link_hash_defined
9012 || h->root.type == bfd_link_hash_defweak)
9014 asection *s = h->root.u.def.section;
9015 if (s != NULL
9016 && s->output_section != NULL
9017 && !bfd_is_const_section (s->output_section))
9018 s->output_section->flags |= SEC_KEEP;
9021 return TRUE;
9024 /* Do mark and sweep of unused sections. */
9026 bfd_boolean
9027 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9029 bfd_boolean ok = TRUE;
9030 bfd *sub;
9031 asection * (*gc_mark_hook)
9032 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9033 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9035 if (!info->gc_sections)
9037 /* If we are called when info->gc_sections is 0, we will mark
9038 all sections containing global symbols for non-relocatable
9039 link. */
9040 if (!info->relocatable)
9041 elf_link_hash_traverse (elf_hash_table (info),
9042 elf_mark_used_section, NULL);
9043 return TRUE;
9046 if (!get_elf_backend_data (abfd)->can_gc_sections
9047 || info->relocatable
9048 || info->emitrelocations
9049 || info->shared
9050 || !is_elf_hash_table (info->hash))
9052 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9053 return TRUE;
9056 /* Apply transitive closure to the vtable entry usage info. */
9057 elf_link_hash_traverse (elf_hash_table (info),
9058 elf_gc_propagate_vtable_entries_used,
9059 &ok);
9060 if (!ok)
9061 return FALSE;
9063 /* Kill the vtable relocations that were not used. */
9064 elf_link_hash_traverse (elf_hash_table (info),
9065 elf_gc_smash_unused_vtentry_relocs,
9066 &ok);
9067 if (!ok)
9068 return FALSE;
9070 /* Mark dynamically referenced symbols. */
9071 if (elf_hash_table (info)->dynamic_sections_created)
9072 elf_link_hash_traverse (elf_hash_table (info),
9073 elf_gc_mark_dynamic_ref_symbol,
9074 &ok);
9075 if (!ok)
9076 return FALSE;
9078 /* Grovel through relocs to find out who stays ... */
9079 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9080 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9082 asection *o;
9084 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9085 continue;
9087 for (o = sub->sections; o != NULL; o = o->next)
9089 if (o->flags & SEC_KEEP)
9091 /* _bfd_elf_discard_section_eh_frame knows how to discard
9092 orphaned FDEs so don't mark sections referenced by the
9093 EH frame section. */
9094 if (strcmp (o->name, ".eh_frame") == 0)
9095 o->gc_mark = 1;
9096 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9097 return FALSE;
9102 /* ... and mark SEC_EXCLUDE for those that go. */
9103 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9104 return FALSE;
9106 return TRUE;
9109 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9111 bfd_boolean
9112 bfd_elf_gc_record_vtinherit (bfd *abfd,
9113 asection *sec,
9114 struct elf_link_hash_entry *h,
9115 bfd_vma offset)
9117 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9118 struct elf_link_hash_entry **search, *child;
9119 bfd_size_type extsymcount;
9120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9122 /* The sh_info field of the symtab header tells us where the
9123 external symbols start. We don't care about the local symbols at
9124 this point. */
9125 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9126 if (!elf_bad_symtab (abfd))
9127 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9129 sym_hashes = elf_sym_hashes (abfd);
9130 sym_hashes_end = sym_hashes + extsymcount;
9132 /* Hunt down the child symbol, which is in this section at the same
9133 offset as the relocation. */
9134 for (search = sym_hashes; search != sym_hashes_end; ++search)
9136 if ((child = *search) != NULL
9137 && (child->root.type == bfd_link_hash_defined
9138 || child->root.type == bfd_link_hash_defweak)
9139 && child->root.u.def.section == sec
9140 && child->root.u.def.value == offset)
9141 goto win;
9144 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9145 abfd, sec, (unsigned long) offset);
9146 bfd_set_error (bfd_error_invalid_operation);
9147 return FALSE;
9149 win:
9150 if (!child->vtable)
9152 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9153 if (!child->vtable)
9154 return FALSE;
9156 if (!h)
9158 /* This *should* only be the absolute section. It could potentially
9159 be that someone has defined a non-global vtable though, which
9160 would be bad. It isn't worth paging in the local symbols to be
9161 sure though; that case should simply be handled by the assembler. */
9163 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9165 else
9166 child->vtable->parent = h;
9168 return TRUE;
9171 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9173 bfd_boolean
9174 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9175 asection *sec ATTRIBUTE_UNUSED,
9176 struct elf_link_hash_entry *h,
9177 bfd_vma addend)
9179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9180 unsigned int log_file_align = bed->s->log_file_align;
9182 if (!h->vtable)
9184 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9185 if (!h->vtable)
9186 return FALSE;
9189 if (addend >= h->vtable->size)
9191 size_t size, bytes, file_align;
9192 bfd_boolean *ptr = h->vtable->used;
9194 /* While the symbol is undefined, we have to be prepared to handle
9195 a zero size. */
9196 file_align = 1 << log_file_align;
9197 if (h->root.type == bfd_link_hash_undefined)
9198 size = addend + file_align;
9199 else
9201 size = h->size;
9202 if (addend >= size)
9204 /* Oops! We've got a reference past the defined end of
9205 the table. This is probably a bug -- shall we warn? */
9206 size = addend + file_align;
9209 size = (size + file_align - 1) & -file_align;
9211 /* Allocate one extra entry for use as a "done" flag for the
9212 consolidation pass. */
9213 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9215 if (ptr)
9217 ptr = bfd_realloc (ptr - 1, bytes);
9219 if (ptr != NULL)
9221 size_t oldbytes;
9223 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9224 * sizeof (bfd_boolean));
9225 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9228 else
9229 ptr = bfd_zmalloc (bytes);
9231 if (ptr == NULL)
9232 return FALSE;
9234 /* And arrange for that done flag to be at index -1. */
9235 h->vtable->used = ptr + 1;
9236 h->vtable->size = size;
9239 h->vtable->used[addend >> log_file_align] = TRUE;
9241 return TRUE;
9244 struct alloc_got_off_arg {
9245 bfd_vma gotoff;
9246 unsigned int got_elt_size;
9249 /* We need a special top-level link routine to convert got reference counts
9250 to real got offsets. */
9252 static bfd_boolean
9253 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9255 struct alloc_got_off_arg *gofarg = arg;
9257 if (h->root.type == bfd_link_hash_warning)
9258 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9260 if (h->got.refcount > 0)
9262 h->got.offset = gofarg->gotoff;
9263 gofarg->gotoff += gofarg->got_elt_size;
9265 else
9266 h->got.offset = (bfd_vma) -1;
9268 return TRUE;
9271 /* And an accompanying bit to work out final got entry offsets once
9272 we're done. Should be called from final_link. */
9274 bfd_boolean
9275 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9276 struct bfd_link_info *info)
9278 bfd *i;
9279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9280 bfd_vma gotoff;
9281 unsigned int got_elt_size = bed->s->arch_size / 8;
9282 struct alloc_got_off_arg gofarg;
9284 if (! is_elf_hash_table (info->hash))
9285 return FALSE;
9287 /* The GOT offset is relative to the .got section, but the GOT header is
9288 put into the .got.plt section, if the backend uses it. */
9289 if (bed->want_got_plt)
9290 gotoff = 0;
9291 else
9292 gotoff = bed->got_header_size;
9294 /* Do the local .got entries first. */
9295 for (i = info->input_bfds; i; i = i->link_next)
9297 bfd_signed_vma *local_got;
9298 bfd_size_type j, locsymcount;
9299 Elf_Internal_Shdr *symtab_hdr;
9301 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9302 continue;
9304 local_got = elf_local_got_refcounts (i);
9305 if (!local_got)
9306 continue;
9308 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9309 if (elf_bad_symtab (i))
9310 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9311 else
9312 locsymcount = symtab_hdr->sh_info;
9314 for (j = 0; j < locsymcount; ++j)
9316 if (local_got[j] > 0)
9318 local_got[j] = gotoff;
9319 gotoff += got_elt_size;
9321 else
9322 local_got[j] = (bfd_vma) -1;
9326 /* Then the global .got entries. .plt refcounts are handled by
9327 adjust_dynamic_symbol */
9328 gofarg.gotoff = gotoff;
9329 gofarg.got_elt_size = got_elt_size;
9330 elf_link_hash_traverse (elf_hash_table (info),
9331 elf_gc_allocate_got_offsets,
9332 &gofarg);
9333 return TRUE;
9336 /* Many folk need no more in the way of final link than this, once
9337 got entry reference counting is enabled. */
9339 bfd_boolean
9340 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9342 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9343 return FALSE;
9345 /* Invoke the regular ELF backend linker to do all the work. */
9346 return bfd_elf_final_link (abfd, info);
9349 bfd_boolean
9350 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9352 struct elf_reloc_cookie *rcookie = cookie;
9354 if (rcookie->bad_symtab)
9355 rcookie->rel = rcookie->rels;
9357 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9359 unsigned long r_symndx;
9361 if (! rcookie->bad_symtab)
9362 if (rcookie->rel->r_offset > offset)
9363 return FALSE;
9364 if (rcookie->rel->r_offset != offset)
9365 continue;
9367 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9368 if (r_symndx == SHN_UNDEF)
9369 return TRUE;
9371 if (r_symndx >= rcookie->locsymcount
9372 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9374 struct elf_link_hash_entry *h;
9376 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9378 while (h->root.type == bfd_link_hash_indirect
9379 || h->root.type == bfd_link_hash_warning)
9380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9382 if ((h->root.type == bfd_link_hash_defined
9383 || h->root.type == bfd_link_hash_defweak)
9384 && elf_discarded_section (h->root.u.def.section))
9385 return TRUE;
9386 else
9387 return FALSE;
9389 else
9391 /* It's not a relocation against a global symbol,
9392 but it could be a relocation against a local
9393 symbol for a discarded section. */
9394 asection *isec;
9395 Elf_Internal_Sym *isym;
9397 /* Need to: get the symbol; get the section. */
9398 isym = &rcookie->locsyms[r_symndx];
9399 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9401 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9402 if (isec != NULL && elf_discarded_section (isec))
9403 return TRUE;
9406 return FALSE;
9408 return FALSE;
9411 /* Discard unneeded references to discarded sections.
9412 Returns TRUE if any section's size was changed. */
9413 /* This function assumes that the relocations are in sorted order,
9414 which is true for all known assemblers. */
9416 bfd_boolean
9417 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9419 struct elf_reloc_cookie cookie;
9420 asection *stab, *eh;
9421 Elf_Internal_Shdr *symtab_hdr;
9422 const struct elf_backend_data *bed;
9423 bfd *abfd;
9424 unsigned int count;
9425 bfd_boolean ret = FALSE;
9427 if (info->traditional_format
9428 || !is_elf_hash_table (info->hash))
9429 return FALSE;
9431 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9433 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9434 continue;
9436 bed = get_elf_backend_data (abfd);
9438 if ((abfd->flags & DYNAMIC) != 0)
9439 continue;
9441 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9442 if (info->relocatable
9443 || (eh != NULL
9444 && (eh->size == 0
9445 || bfd_is_abs_section (eh->output_section))))
9446 eh = NULL;
9448 stab = bfd_get_section_by_name (abfd, ".stab");
9449 if (stab != NULL
9450 && (stab->size == 0
9451 || bfd_is_abs_section (stab->output_section)
9452 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9453 stab = NULL;
9455 if (stab == NULL
9456 && eh == NULL
9457 && bed->elf_backend_discard_info == NULL)
9458 continue;
9460 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9461 cookie.abfd = abfd;
9462 cookie.sym_hashes = elf_sym_hashes (abfd);
9463 cookie.bad_symtab = elf_bad_symtab (abfd);
9464 if (cookie.bad_symtab)
9466 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9467 cookie.extsymoff = 0;
9469 else
9471 cookie.locsymcount = symtab_hdr->sh_info;
9472 cookie.extsymoff = symtab_hdr->sh_info;
9475 if (bed->s->arch_size == 32)
9476 cookie.r_sym_shift = 8;
9477 else
9478 cookie.r_sym_shift = 32;
9480 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9481 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9483 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9484 cookie.locsymcount, 0,
9485 NULL, NULL, NULL);
9486 if (cookie.locsyms == NULL)
9487 return FALSE;
9490 if (stab != NULL)
9492 cookie.rels = NULL;
9493 count = stab->reloc_count;
9494 if (count != 0)
9495 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9496 info->keep_memory);
9497 if (cookie.rels != NULL)
9499 cookie.rel = cookie.rels;
9500 cookie.relend = cookie.rels;
9501 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9502 if (_bfd_discard_section_stabs (abfd, stab,
9503 elf_section_data (stab)->sec_info,
9504 bfd_elf_reloc_symbol_deleted_p,
9505 &cookie))
9506 ret = TRUE;
9507 if (elf_section_data (stab)->relocs != cookie.rels)
9508 free (cookie.rels);
9512 if (eh != NULL)
9514 cookie.rels = NULL;
9515 count = eh->reloc_count;
9516 if (count != 0)
9517 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9518 info->keep_memory);
9519 cookie.rel = cookie.rels;
9520 cookie.relend = cookie.rels;
9521 if (cookie.rels != NULL)
9522 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9524 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9525 bfd_elf_reloc_symbol_deleted_p,
9526 &cookie))
9527 ret = TRUE;
9529 if (cookie.rels != NULL
9530 && elf_section_data (eh)->relocs != cookie.rels)
9531 free (cookie.rels);
9534 if (bed->elf_backend_discard_info != NULL
9535 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9536 ret = TRUE;
9538 if (cookie.locsyms != NULL
9539 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9541 if (! info->keep_memory)
9542 free (cookie.locsyms);
9543 else
9544 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9548 if (info->eh_frame_hdr
9549 && !info->relocatable
9550 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9551 ret = TRUE;
9553 return ret;
9556 void
9557 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9559 flagword flags;
9560 const char *name, *p;
9561 struct bfd_section_already_linked *l;
9562 struct bfd_section_already_linked_hash_entry *already_linked_list;
9563 asection *group;
9565 /* A single member comdat group section may be discarded by a
9566 linkonce section. See below. */
9567 if (sec->output_section == bfd_abs_section_ptr)
9568 return;
9570 flags = sec->flags;
9572 /* Check if it belongs to a section group. */
9573 group = elf_sec_group (sec);
9575 /* Return if it isn't a linkonce section nor a member of a group. A
9576 comdat group section also has SEC_LINK_ONCE set. */
9577 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9578 return;
9580 if (group)
9582 /* If this is the member of a single member comdat group, check if
9583 the group should be discarded. */
9584 if (elf_next_in_group (sec) == sec
9585 && (group->flags & SEC_LINK_ONCE) != 0)
9586 sec = group;
9587 else
9588 return;
9591 /* FIXME: When doing a relocatable link, we may have trouble
9592 copying relocations in other sections that refer to local symbols
9593 in the section being discarded. Those relocations will have to
9594 be converted somehow; as of this writing I'm not sure that any of
9595 the backends handle that correctly.
9597 It is tempting to instead not discard link once sections when
9598 doing a relocatable link (technically, they should be discarded
9599 whenever we are building constructors). However, that fails,
9600 because the linker winds up combining all the link once sections
9601 into a single large link once section, which defeats the purpose
9602 of having link once sections in the first place.
9604 Also, not merging link once sections in a relocatable link
9605 causes trouble for MIPS ELF, which relies on link once semantics
9606 to handle the .reginfo section correctly. */
9608 name = bfd_get_section_name (abfd, sec);
9610 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9611 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9612 p++;
9613 else
9614 p = name;
9616 already_linked_list = bfd_section_already_linked_table_lookup (p);
9618 for (l = already_linked_list->entry; l != NULL; l = l->next)
9620 /* We may have 3 different sections on the list: group section,
9621 comdat section and linkonce section. SEC may be a linkonce or
9622 group section. We match a group section with a group section,
9623 a linkonce section with a linkonce section, and ignore comdat
9624 section. */
9625 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9626 && strcmp (name, l->sec->name) == 0
9627 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9629 /* The section has already been linked. See if we should
9630 issue a warning. */
9631 switch (flags & SEC_LINK_DUPLICATES)
9633 default:
9634 abort ();
9636 case SEC_LINK_DUPLICATES_DISCARD:
9637 break;
9639 case SEC_LINK_DUPLICATES_ONE_ONLY:
9640 (*_bfd_error_handler)
9641 (_("%B: ignoring duplicate section `%A'\n"),
9642 abfd, sec);
9643 break;
9645 case SEC_LINK_DUPLICATES_SAME_SIZE:
9646 if (sec->size != l->sec->size)
9647 (*_bfd_error_handler)
9648 (_("%B: duplicate section `%A' has different size\n"),
9649 abfd, sec);
9650 break;
9652 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9653 if (sec->size != l->sec->size)
9654 (*_bfd_error_handler)
9655 (_("%B: duplicate section `%A' has different size\n"),
9656 abfd, sec);
9657 else if (sec->size != 0)
9659 bfd_byte *sec_contents, *l_sec_contents;
9661 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9662 (*_bfd_error_handler)
9663 (_("%B: warning: could not read contents of section `%A'\n"),
9664 abfd, sec);
9665 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9666 &l_sec_contents))
9667 (*_bfd_error_handler)
9668 (_("%B: warning: could not read contents of section `%A'\n"),
9669 l->sec->owner, l->sec);
9670 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9671 (*_bfd_error_handler)
9672 (_("%B: warning: duplicate section `%A' has different contents\n"),
9673 abfd, sec);
9675 if (sec_contents)
9676 free (sec_contents);
9677 if (l_sec_contents)
9678 free (l_sec_contents);
9680 break;
9683 /* Set the output_section field so that lang_add_section
9684 does not create a lang_input_section structure for this
9685 section. Since there might be a symbol in the section
9686 being discarded, we must retain a pointer to the section
9687 which we are really going to use. */
9688 sec->output_section = bfd_abs_section_ptr;
9689 sec->kept_section = l->sec;
9691 if (flags & SEC_GROUP)
9693 asection *first = elf_next_in_group (sec);
9694 asection *s = first;
9696 while (s != NULL)
9698 s->output_section = bfd_abs_section_ptr;
9699 /* Record which group discards it. */
9700 s->kept_section = l->sec;
9701 s = elf_next_in_group (s);
9702 /* These lists are circular. */
9703 if (s == first)
9704 break;
9708 return;
9712 if (group)
9714 /* If this is the member of a single member comdat group and the
9715 group hasn't be discarded, we check if it matches a linkonce
9716 section. We only record the discarded comdat group. Otherwise
9717 the undiscarded group will be discarded incorrectly later since
9718 itself has been recorded. */
9719 for (l = already_linked_list->entry; l != NULL; l = l->next)
9720 if ((l->sec->flags & SEC_GROUP) == 0
9721 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9722 && bfd_elf_match_symbols_in_sections (l->sec,
9723 elf_next_in_group (sec)))
9725 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9726 elf_next_in_group (sec)->kept_section = l->sec;
9727 group->output_section = bfd_abs_section_ptr;
9728 break;
9730 if (l == NULL)
9731 return;
9733 else
9734 /* There is no direct match. But for linkonce section, we should
9735 check if there is a match with comdat group member. We always
9736 record the linkonce section, discarded or not. */
9737 for (l = already_linked_list->entry; l != NULL; l = l->next)
9738 if (l->sec->flags & SEC_GROUP)
9740 asection *first = elf_next_in_group (l->sec);
9742 if (first != NULL
9743 && elf_next_in_group (first) == first
9744 && bfd_elf_match_symbols_in_sections (first, sec))
9746 sec->output_section = bfd_abs_section_ptr;
9747 sec->kept_section = l->sec;
9748 break;
9752 /* This is the first section with this name. Record it. */
9753 bfd_section_already_linked_table_insert (already_linked_list, sec);