1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2007
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
28 BFD tries to maintain as much symbol information as it can when
29 it moves information from file to file. BFD passes information
30 to applications though the <<asymbol>> structure. When the
31 application requests the symbol table, BFD reads the table in
32 the native form and translates parts of it into the internal
33 format. To maintain more than the information passed to
34 applications, some targets keep some information ``behind the
35 scenes'' in a structure only the particular back end knows
36 about. For example, the coff back end keeps the original
37 symbol table structure as well as the canonical structure when
38 a BFD is read in. On output, the coff back end can reconstruct
39 the output symbol table so that no information is lost, even
40 information unique to coff which BFD doesn't know or
41 understand. If a coff symbol table were read, but were written
42 through an a.out back end, all the coff specific information
43 would be lost. The symbol table of a BFD
44 is not necessarily read in until a canonicalize request is
45 made. Then the BFD back end fills in a table provided by the
46 application with pointers to the canonical information. To
47 output symbols, the application provides BFD with a table of
48 pointers to pointers to <<asymbol>>s. This allows applications
49 like the linker to output a symbol as it was read, since the ``behind
50 the scenes'' information will be still available.
56 @* symbol handling functions::
60 Reading Symbols, Writing Symbols, Symbols, Symbols
64 There are two stages to reading a symbol table from a BFD:
65 allocating storage, and the actual reading process. This is an
66 excerpt from an application which reads the symbol table:
68 | long storage_needed;
69 | asymbol **symbol_table;
70 | long number_of_symbols;
73 | storage_needed = bfd_get_symtab_upper_bound (abfd);
75 | if (storage_needed < 0)
78 | if (storage_needed == 0)
81 | symbol_table = xmalloc (storage_needed);
84 | bfd_canonicalize_symtab (abfd, symbol_table);
86 | if (number_of_symbols < 0)
89 | for (i = 0; i < number_of_symbols; i++)
90 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw ("foo","a.out-sunos-big");
118 | bfd_set_format (abfd, bfd_object);
119 | new = bfd_make_empty_symbol (abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way (abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
128 | bfd_set_symtab (abfd, ptrs, 1);
135 | 00012345 A dummy_symbol
137 Many formats cannot represent arbitrary symbol information; for
138 instance, the <<a.out>> object format does not allow an
139 arbitrary number of sections. A symbol pointing to a section
140 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
144 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
148 Mini symbols provide read-only access to the symbol table.
149 They use less memory space, but require more time to access.
150 They can be useful for tools like nm or objdump, which may
151 have to handle symbol tables of extremely large executables.
153 The <<bfd_read_minisymbols>> function will read the symbols
154 into memory in an internal form. It will return a <<void *>>
155 pointer to a block of memory, a symbol count, and the size of
156 each symbol. The pointer is allocated using <<malloc>>, and
157 should be freed by the caller when it is no longer needed.
159 The function <<bfd_minisymbol_to_symbol>> will take a pointer
160 to a minisymbol, and a pointer to a structure returned by
161 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162 The return value may or may not be the same as the value from
163 <<bfd_make_empty_symbol>> which was passed in.
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
177 An <<asymbol>> has the form:
185 .typedef struct bfd_symbol
187 . {* A pointer to the BFD which owns the symbol. This information
188 . is necessary so that a back end can work out what additional
189 . information (invisible to the application writer) is carried
192 . This field is *almost* redundant, since you can use section->owner
193 . instead, except that some symbols point to the global sections
194 . bfd_{abs,com,und}_section. This could be fixed by making
195 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
207 . {* Attributes of a symbol. *}
208 .#define BSF_NO_FLAGS 0x00
210 . {* The symbol has local scope; <<static>> in <<C>>. The value
211 . is the offset into the section of the data. *}
212 .#define BSF_LOCAL 0x01
214 . {* The symbol has global scope; initialized data in <<C>>. The
215 . value is the offset into the section of the data. *}
216 .#define BSF_GLOBAL 0x02
218 . {* The symbol has global scope and is exported. The value is
219 . the offset into the section of the data. *}
220 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
222 . {* A normal C symbol would be one of:
223 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
226 . {* The symbol is a debugging record. The value has an arbitrary
227 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
228 .#define BSF_DEBUGGING 0x08
230 . {* The symbol denotes a function entry point. Used in ELF,
231 . perhaps others someday. *}
232 .#define BSF_FUNCTION 0x10
234 . {* Used by the linker. *}
235 .#define BSF_KEEP 0x20
236 .#define BSF_KEEP_G 0x40
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK 0x80
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM 0x100
246 . {* The symbol used to be a common symbol, but now it is
248 .#define BSF_OLD_COMMON 0x200
250 . {* The default value for common data. *}
251 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
253 . {* In some files the type of a symbol sometimes alters its
254 . location in an output file - ie in coff a <<ISFCN>> symbol
255 . which is also <<C_EXT>> symbol appears where it was
256 . declared and not at the end of a section. This bit is set
257 . by the target BFD part to convey this information. *}
258 .#define BSF_NOT_AT_END 0x400
260 . {* Signal that the symbol is the label of constructor section. *}
261 .#define BSF_CONSTRUCTOR 0x800
263 . {* Signal that the symbol is a warning symbol. The name is a
264 . warning. The name of the next symbol is the one to warn about;
265 . if a reference is made to a symbol with the same name as the next
266 . symbol, a warning is issued by the linker. *}
267 .#define BSF_WARNING 0x1000
269 . {* Signal that the symbol is indirect. This symbol is an indirect
270 . pointer to the symbol with the same name as the next symbol. *}
271 .#define BSF_INDIRECT 0x2000
273 . {* BSF_FILE marks symbols that contain a file name. This is used
274 . for ELF STT_FILE symbols. *}
275 .#define BSF_FILE 0x4000
277 . {* Symbol is from dynamic linking information. *}
278 .#define BSF_DYNAMIC 0x8000
280 . {* The symbol denotes a data object. Used in ELF, and perhaps
282 .#define BSF_OBJECT 0x10000
284 . {* This symbol is a debugging symbol. The value is the offset
285 . into the section of the data. BSF_DEBUGGING should be set
287 .#define BSF_DEBUGGING_RELOC 0x20000
289 . {* This symbol is thread local. Used in ELF. *}
290 .#define BSF_THREAD_LOCAL 0x40000
292 . {* This symbol represents a complex relocation expression,
293 . with the expression tree serialized in the symbol name. *}
294 .#define BSF_RELC 0x80000
296 . {* This symbol represents a signed complex relocation expression,
297 . with the expression tree serialized in the symbol name. *}
298 .#define BSF_SRELC 0x100000
300 . {* This symbol was created by bfd_get_synthetic_symtab. *}
301 .#define BSF_SYNTHETIC 0x200000
305 . {* A pointer to the section to which this symbol is
306 . relative. This will always be non NULL, there are special
307 . sections for undefined and absolute symbols. *}
308 . struct bfd_section *section;
310 . {* Back end special data. *}
325 #include "safe-ctype.h"
327 #include "aout/stab_gnu.h"
332 symbol handling functions, , typedef asymbol, Symbols
334 Symbol handling functions
339 bfd_get_symtab_upper_bound
342 Return the number of bytes required to store a vector of pointers
343 to <<asymbols>> for all the symbols in the BFD @var{abfd},
344 including a terminal NULL pointer. If there are no symbols in
345 the BFD, then return 0. If an error occurs, return -1.
347 .#define bfd_get_symtab_upper_bound(abfd) \
348 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
357 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
360 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
361 a compiler generated local label, else return FALSE.
365 bfd_is_local_label (bfd
*abfd
, asymbol
*sym
)
367 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
368 starts with '.' is local. This would accidentally catch section names
369 if we didn't reject them here. */
370 if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_FILE
| BSF_SECTION_SYM
)) != 0)
372 if (sym
->name
== NULL
)
374 return bfd_is_local_label_name (abfd
, sym
->name
);
379 bfd_is_local_label_name
382 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
385 Return TRUE if a symbol with the name @var{name} in the BFD
386 @var{abfd} is a compiler generated local label, else return
387 FALSE. This just checks whether the name has the form of a
390 .#define bfd_is_local_label_name(abfd, name) \
391 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
397 bfd_is_target_special_symbol
400 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
403 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
404 special to the particular target represented by the BFD. Such symbols
405 should normally not be mentioned to the user.
407 .#define bfd_is_target_special_symbol(abfd, sym) \
408 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
414 bfd_canonicalize_symtab
417 Read the symbols from the BFD @var{abfd}, and fills in
418 the vector @var{location} with pointers to the symbols and
420 Return the actual number of symbol pointers, not
423 .#define bfd_canonicalize_symtab(abfd, location) \
424 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
433 bfd_boolean bfd_set_symtab
434 (bfd *abfd, asymbol **location, unsigned int count);
437 Arrange that when the output BFD @var{abfd} is closed,
438 the table @var{location} of @var{count} pointers to symbols
443 bfd_set_symtab (bfd
*abfd
, asymbol
**location
, unsigned int symcount
)
445 if (abfd
->format
!= bfd_object
|| bfd_read_p (abfd
))
447 bfd_set_error (bfd_error_invalid_operation
);
451 bfd_get_outsymbols (abfd
) = location
;
452 bfd_get_symcount (abfd
) = symcount
;
458 bfd_print_symbol_vandf
461 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
464 Print the value and flags of the @var{symbol} supplied to the
468 bfd_print_symbol_vandf (bfd
*abfd
, void *arg
, asymbol
*symbol
)
472 flagword type
= symbol
->flags
;
474 if (symbol
->section
!= NULL
)
475 bfd_fprintf_vma (abfd
, file
, symbol
->value
+ symbol
->section
->vma
);
477 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
479 /* This presumes that a symbol can not be both BSF_DEBUGGING and
480 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
482 fprintf (file
, " %c%c%c%c%c%c%c",
484 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
485 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
486 (type
& BSF_WEAK
) ? 'w' : ' ',
487 (type
& BSF_CONSTRUCTOR
) ? 'C' : ' ',
488 (type
& BSF_WARNING
) ? 'W' : ' ',
489 (type
& BSF_INDIRECT
) ? 'I' : ' ',
490 (type
& BSF_DEBUGGING
) ? 'd' : (type
& BSF_DYNAMIC
) ? 'D' : ' ',
491 ((type
& BSF_FUNCTION
)
495 : ((type
& BSF_OBJECT
) ? 'O' : ' '))));
500 bfd_make_empty_symbol
503 Create a new <<asymbol>> structure for the BFD @var{abfd}
504 and return a pointer to it.
506 This routine is necessary because each back end has private
507 information surrounding the <<asymbol>>. Building your own
508 <<asymbol>> and pointing to it will not create the private
509 information, and will cause problems later on.
511 .#define bfd_make_empty_symbol(abfd) \
512 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
518 _bfd_generic_make_empty_symbol
521 asymbol *_bfd_generic_make_empty_symbol (bfd *);
524 Create a new <<asymbol>> structure for the BFD @var{abfd}
525 and return a pointer to it. Used by core file routines,
526 binary back-end and anywhere else where no private info
531 _bfd_generic_make_empty_symbol (bfd
*abfd
)
533 bfd_size_type amt
= sizeof (asymbol
);
534 asymbol
*new = bfd_zalloc (abfd
, amt
);
542 bfd_make_debug_symbol
545 Create a new <<asymbol>> structure for the BFD @var{abfd},
546 to be used as a debugging symbol. Further details of its use have
547 yet to be worked out.
549 .#define bfd_make_debug_symbol(abfd,ptr,size) \
550 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
554 struct section_to_type
560 /* Map section names to POSIX/BSD single-character symbol types.
561 This table is probably incomplete. It is sorted for convenience of
562 adding entries. Since it is so short, a linear search is used. */
563 static const struct section_to_type stt
[] =
566 {"code", 't'}, /* MRI .text */
569 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
570 {".drectve", 'i'}, /* MSVC's .drective section */
571 {".edata", 'e'}, /* MSVC's .edata (export) section */
572 {".fini", 't'}, /* ELF fini section */
573 {".idata", 'i'}, /* MSVC's .idata (import) section */
574 {".init", 't'}, /* ELF init section */
575 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
576 {".rdata", 'r'}, /* Read only data. */
577 {".rodata", 'r'}, /* Read only data. */
578 {".sbss", 's'}, /* Small BSS (uninitialized data). */
579 {".scommon", 'c'}, /* Small common. */
580 {".sdata", 'g'}, /* Small initialized data. */
582 {"vars", 'd'}, /* MRI .data */
583 {"zerovars", 'b'}, /* MRI .bss */
587 /* Return the single-character symbol type corresponding to
588 section S, or '?' for an unknown COFF section.
590 Check for any leading string which matches, so .text5 returns
591 't' as well as .text */
594 coff_section_type (const char *s
)
596 const struct section_to_type
*t
;
598 for (t
= &stt
[0]; t
->section
; t
++)
599 if (!strncmp (s
, t
->section
, strlen (t
->section
)))
605 /* Return the single-character symbol type corresponding to section
606 SECTION, or '?' for an unknown section. This uses section flags to
609 FIXME These types are unhandled: c, i, e, p. If we handled these also,
610 we could perhaps obsolete coff_section_type. */
613 decode_section_type (const struct bfd_section
*section
)
615 if (section
->flags
& SEC_CODE
)
617 if (section
->flags
& SEC_DATA
)
619 if (section
->flags
& SEC_READONLY
)
621 else if (section
->flags
& SEC_SMALL_DATA
)
626 if ((section
->flags
& SEC_HAS_CONTENTS
) == 0)
628 if (section
->flags
& SEC_SMALL_DATA
)
633 if (section
->flags
& SEC_DEBUGGING
)
635 if ((section
->flags
& SEC_HAS_CONTENTS
) && (section
->flags
& SEC_READONLY
))
646 Return a character corresponding to the symbol
647 class of @var{symbol}, or '?' for an unknown class.
650 int bfd_decode_symclass (asymbol *symbol);
653 bfd_decode_symclass (asymbol
*symbol
)
657 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
659 if (bfd_is_und_section (symbol
->section
))
661 if (symbol
->flags
& BSF_WEAK
)
663 /* If weak, determine if it's specifically an object
664 or non-object weak. */
665 if (symbol
->flags
& BSF_OBJECT
)
673 if (bfd_is_ind_section (symbol
->section
))
675 if (symbol
->flags
& BSF_WEAK
)
677 /* If weak, determine if it's specifically an object
678 or non-object weak. */
679 if (symbol
->flags
& BSF_OBJECT
)
684 if (!(symbol
->flags
& (BSF_GLOBAL
| BSF_LOCAL
)))
687 if (bfd_is_abs_section (symbol
->section
))
689 else if (symbol
->section
)
691 c
= coff_section_type (symbol
->section
->name
);
693 c
= decode_section_type (symbol
->section
);
697 if (symbol
->flags
& BSF_GLOBAL
)
701 /* We don't have to handle these cases just yet, but we will soon:
713 bfd_is_undefined_symclass
716 Returns non-zero if the class symbol returned by
717 bfd_decode_symclass represents an undefined symbol.
718 Returns zero otherwise.
721 bfd_boolean bfd_is_undefined_symclass (int symclass);
725 bfd_is_undefined_symclass (int symclass
)
727 return symclass
== 'U' || symclass
== 'w' || symclass
== 'v';
735 Fill in the basic info about symbol that nm needs.
736 Additional info may be added by the back-ends after
737 calling this function.
740 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
744 bfd_symbol_info (asymbol
*symbol
, symbol_info
*ret
)
746 ret
->type
= bfd_decode_symclass (symbol
);
748 if (bfd_is_undefined_symclass (ret
->type
))
751 ret
->value
= symbol
->value
+ symbol
->section
->vma
;
753 ret
->name
= symbol
->name
;
758 bfd_copy_private_symbol_data
761 bfd_boolean bfd_copy_private_symbol_data
762 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
765 Copy private symbol information from @var{isym} in the BFD
766 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
767 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
770 o <<bfd_error_no_memory>> -
771 Not enough memory exists to create private data for @var{osec}.
773 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
774 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
775 . (ibfd, isymbol, obfd, osymbol))
779 /* The generic version of the function which returns mini symbols.
780 This is used when the backend does not provide a more efficient
781 version. It just uses BFD asymbol structures as mini symbols. */
784 _bfd_generic_read_minisymbols (bfd
*abfd
,
790 asymbol
**syms
= NULL
;
794 storage
= bfd_get_dynamic_symtab_upper_bound (abfd
);
796 storage
= bfd_get_symtab_upper_bound (abfd
);
802 syms
= bfd_malloc (storage
);
807 symcount
= bfd_canonicalize_dynamic_symtab (abfd
, syms
);
809 symcount
= bfd_canonicalize_symtab (abfd
, syms
);
814 *sizep
= sizeof (asymbol
*);
818 bfd_set_error (bfd_error_no_symbols
);
824 /* The generic version of the function which converts a minisymbol to
825 an asymbol. We don't worry about the sym argument we are passed;
826 we just return the asymbol the minisymbol points to. */
829 _bfd_generic_minisymbol_to_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
830 bfd_boolean dynamic ATTRIBUTE_UNUSED
,
832 asymbol
*sym ATTRIBUTE_UNUSED
)
834 return *(asymbol
**) minisym
;
837 /* Look through stabs debugging information in .stab and .stabstr
838 sections to find the source file and line closest to a desired
839 location. This is used by COFF and ELF targets. It sets *pfound
840 to TRUE if it finds some information. The *pinfo field is used to
841 pass cached information in and out of this routine; this first time
842 the routine is called for a BFD, *pinfo should be NULL. The value
843 placed in *pinfo should be saved with the BFD, and passed back each
844 time this function is called. */
846 /* We use a cache by default. */
848 #define ENABLE_CACHING
850 /* We keep an array of indexentry structures to record where in the
851 stabs section we should look to find line number information for a
852 particular address. */
859 char *directory_name
;
864 /* Compare two indexentry structures. This is called via qsort. */
867 cmpindexentry (const void *a
, const void *b
)
869 const struct indexentry
*contestantA
= a
;
870 const struct indexentry
*contestantB
= b
;
872 if (contestantA
->val
< contestantB
->val
)
874 else if (contestantA
->val
> contestantB
->val
)
880 /* A pointer to this structure is stored in *pinfo. */
882 struct stab_find_info
884 /* The .stab section. */
886 /* The .stabstr section. */
888 /* The contents of the .stab section. */
890 /* The contents of the .stabstr section. */
893 /* A table that indexes stabs by memory address. */
894 struct indexentry
*indextable
;
895 /* The number of entries in indextable. */
898 #ifdef ENABLE_CACHING
899 /* Cached values to restart quickly. */
900 struct indexentry
*cached_indexentry
;
901 bfd_vma cached_offset
;
902 bfd_byte
*cached_stab
;
903 char *cached_file_name
;
906 /* Saved ptr to malloc'ed filename. */
911 _bfd_stab_section_find_nearest_line (bfd
*abfd
,
916 const char **pfilename
,
917 const char **pfnname
,
921 struct stab_find_info
*info
;
922 bfd_size_type stabsize
, strsize
;
923 bfd_byte
*stab
, *str
;
924 bfd_byte
*last_stab
= NULL
;
925 bfd_size_type stroff
;
926 struct indexentry
*indexentry
;
928 char *directory_name
;
930 bfd_boolean saw_line
, saw_func
;
933 *pfilename
= bfd_get_filename (abfd
);
937 /* Stabs entries use a 12 byte format:
938 4 byte string table index
940 1 byte stab other field
941 2 byte stab desc field
943 FIXME: This will have to change for a 64 bit object format.
945 The stabs symbols are divided into compilation units. For the
946 first entry in each unit, the type of 0, the value is the length
947 of the string table for this unit, and the desc field is the
948 number of stabs symbols for this unit. */
955 #define STABSIZE (12)
960 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
962 /* No stabs debugging information. */
966 stabsize
= (info
->stabsec
->rawsize
967 ? info
->stabsec
->rawsize
968 : info
->stabsec
->size
);
969 strsize
= (info
->strsec
->rawsize
970 ? info
->strsec
->rawsize
971 : info
->strsec
->size
);
975 long reloc_size
, reloc_count
;
976 arelent
**reloc_vector
;
980 bfd_size_type amt
= sizeof *info
;
982 info
= bfd_zalloc (abfd
, amt
);
986 /* FIXME: When using the linker --split-by-file or
987 --split-by-reloc options, it is possible for the .stab and
988 .stabstr sections to be split. We should handle that. */
990 info
->stabsec
= bfd_get_section_by_name (abfd
, ".stab");
991 info
->strsec
= bfd_get_section_by_name (abfd
, ".stabstr");
993 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
995 /* Try SOM section names. */
996 info
->stabsec
= bfd_get_section_by_name (abfd
, "$GDB_SYMBOLS$");
997 info
->strsec
= bfd_get_section_by_name (abfd
, "$GDB_STRINGS$");
999 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
1001 /* No stabs debugging information. Set *pinfo so that we
1002 can return quickly in the info != NULL case above. */
1008 stabsize
= (info
->stabsec
->rawsize
1009 ? info
->stabsec
->rawsize
1010 : info
->stabsec
->size
);
1011 strsize
= (info
->strsec
->rawsize
1012 ? info
->strsec
->rawsize
1013 : info
->strsec
->size
);
1015 info
->stabs
= bfd_alloc (abfd
, stabsize
);
1016 info
->strs
= bfd_alloc (abfd
, strsize
);
1017 if (info
->stabs
== NULL
|| info
->strs
== NULL
)
1020 if (! bfd_get_section_contents (abfd
, info
->stabsec
, info
->stabs
,
1022 || ! bfd_get_section_contents (abfd
, info
->strsec
, info
->strs
,
1026 /* If this is a relocatable object file, we have to relocate
1027 the entries in .stab. This should always be simple 32 bit
1028 relocations against symbols defined in this object file, so
1029 this should be no big deal. */
1030 reloc_size
= bfd_get_reloc_upper_bound (abfd
, info
->stabsec
);
1033 reloc_vector
= bfd_malloc (reloc_size
);
1034 if (reloc_vector
== NULL
&& reloc_size
!= 0)
1036 reloc_count
= bfd_canonicalize_reloc (abfd
, info
->stabsec
, reloc_vector
,
1038 if (reloc_count
< 0)
1040 if (reloc_vector
!= NULL
)
1041 free (reloc_vector
);
1044 if (reloc_count
> 0)
1048 for (pr
= reloc_vector
; *pr
!= NULL
; pr
++)
1055 /* Ignore R_*_NONE relocs. */
1056 if (r
->howto
->dst_mask
== 0)
1059 if (r
->howto
->rightshift
!= 0
1060 || r
->howto
->size
!= 2
1061 || r
->howto
->bitsize
!= 32
1062 || r
->howto
->pc_relative
1063 || r
->howto
->bitpos
!= 0
1064 || r
->howto
->dst_mask
!= 0xffffffff)
1066 (*_bfd_error_handler
)
1067 (_("Unsupported .stab relocation"));
1068 bfd_set_error (bfd_error_invalid_operation
);
1069 if (reloc_vector
!= NULL
)
1070 free (reloc_vector
);
1074 val
= bfd_get_32 (abfd
, info
->stabs
+ r
->address
);
1075 val
&= r
->howto
->src_mask
;
1076 sym
= *r
->sym_ptr_ptr
;
1077 val
+= sym
->value
+ sym
->section
->vma
+ r
->addend
;
1078 bfd_put_32 (abfd
, (bfd_vma
) val
, info
->stabs
+ r
->address
);
1082 if (reloc_vector
!= NULL
)
1083 free (reloc_vector
);
1085 /* First time through this function, build a table matching
1086 function VM addresses to stabs, then sort based on starting
1087 VM address. Do this in two passes: once to count how many
1088 table entries we'll need, and a second to actually build the
1091 info
->indextablesize
= 0;
1093 for (stab
= info
->stabs
; stab
< info
->stabs
+ stabsize
; stab
+= STABSIZE
)
1095 if (stab
[TYPEOFF
] == (bfd_byte
) N_SO
)
1097 /* N_SO with null name indicates EOF */
1098 if (bfd_get_32 (abfd
, stab
+ STRDXOFF
) == 0)
1101 /* if we did not see a function def, leave space for one. */
1103 ++info
->indextablesize
;
1107 /* two N_SO's in a row is a filename and directory. Skip */
1108 if (stab
+ STABSIZE
< info
->stabs
+ stabsize
1109 && *(stab
+ STABSIZE
+ TYPEOFF
) == (bfd_byte
) N_SO
)
1114 else if (stab
[TYPEOFF
] == (bfd_byte
) N_FUN
)
1117 ++info
->indextablesize
;
1122 ++info
->indextablesize
;
1124 if (info
->indextablesize
== 0)
1126 ++info
->indextablesize
;
1128 amt
= info
->indextablesize
;
1129 amt
*= sizeof (struct indexentry
);
1130 info
->indextable
= bfd_alloc (abfd
, amt
);
1131 if (info
->indextable
== NULL
)
1135 directory_name
= NULL
;
1138 for (i
= 0, stroff
= 0, stab
= info
->stabs
, str
= info
->strs
;
1139 i
< info
->indextablesize
&& stab
< info
->stabs
+ stabsize
;
1142 switch (stab
[TYPEOFF
])
1145 /* This is the first entry in a compilation unit. */
1146 if ((bfd_size_type
) ((info
->strs
+ strsize
) - str
) < stroff
)
1149 stroff
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1153 /* The main file name. */
1155 /* The following code creates a new indextable entry with
1156 a NULL function name if there were no N_FUNs in a file.
1157 Note that a N_SO without a file name is an EOF and
1158 there could be 2 N_SO following it with the new filename
1162 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1163 info
->indextable
[i
].stab
= last_stab
;
1164 info
->indextable
[i
].str
= str
;
1165 info
->indextable
[i
].directory_name
= directory_name
;
1166 info
->indextable
[i
].file_name
= file_name
;
1167 info
->indextable
[i
].function_name
= NULL
;
1172 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1173 if (*file_name
== '\0')
1175 directory_name
= NULL
;
1182 if (stab
+ STABSIZE
>= info
->stabs
+ stabsize
1183 || *(stab
+ STABSIZE
+ TYPEOFF
) != (bfd_byte
) N_SO
)
1185 directory_name
= NULL
;
1189 /* Two consecutive N_SOs are a directory and a
1192 directory_name
= file_name
;
1193 file_name
= ((char *) str
1194 + bfd_get_32 (abfd
, stab
+ STRDXOFF
));
1200 /* The name of an include file. */
1201 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1205 /* A function name. */
1207 name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1212 function_name
= name
;
1217 info
->indextable
[i
].val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1218 info
->indextable
[i
].stab
= stab
;
1219 info
->indextable
[i
].str
= str
;
1220 info
->indextable
[i
].directory_name
= directory_name
;
1221 info
->indextable
[i
].file_name
= file_name
;
1222 info
->indextable
[i
].function_name
= function_name
;
1230 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1231 info
->indextable
[i
].stab
= last_stab
;
1232 info
->indextable
[i
].str
= str
;
1233 info
->indextable
[i
].directory_name
= directory_name
;
1234 info
->indextable
[i
].file_name
= file_name
;
1235 info
->indextable
[i
].function_name
= NULL
;
1239 info
->indextable
[i
].val
= (bfd_vma
) -1;
1240 info
->indextable
[i
].stab
= info
->stabs
+ stabsize
;
1241 info
->indextable
[i
].str
= str
;
1242 info
->indextable
[i
].directory_name
= NULL
;
1243 info
->indextable
[i
].file_name
= NULL
;
1244 info
->indextable
[i
].function_name
= NULL
;
1247 info
->indextablesize
= i
;
1248 qsort (info
->indextable
, (size_t) i
, sizeof (struct indexentry
),
1254 /* We are passed a section relative offset. The offsets in the
1255 stabs information are absolute. */
1256 offset
+= bfd_get_section_vma (abfd
, section
);
1258 #ifdef ENABLE_CACHING
1259 if (info
->cached_indexentry
!= NULL
1260 && offset
>= info
->cached_offset
1261 && offset
< (info
->cached_indexentry
+ 1)->val
)
1263 stab
= info
->cached_stab
;
1264 indexentry
= info
->cached_indexentry
;
1265 file_name
= info
->cached_file_name
;
1273 /* Cache non-existent or invalid. Do binary search on
1278 high
= info
->indextablesize
- 1;
1281 mid
= (high
+ low
) / 2;
1282 if (offset
>= info
->indextable
[mid
].val
1283 && offset
< info
->indextable
[mid
+ 1].val
)
1285 indexentry
= &info
->indextable
[mid
];
1289 if (info
->indextable
[mid
].val
> offset
)
1295 if (indexentry
== NULL
)
1298 stab
= indexentry
->stab
+ STABSIZE
;
1299 file_name
= indexentry
->file_name
;
1302 directory_name
= indexentry
->directory_name
;
1303 str
= indexentry
->str
;
1307 for (; stab
< (indexentry
+1)->stab
; stab
+= STABSIZE
)
1314 switch (stab
[TYPEOFF
])
1317 /* The name of an include file. */
1318 val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1321 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1329 /* A line number. If the function was specified, then the value
1330 is relative to the start of the function. Otherwise, the
1331 value is an absolute address. */
1332 val
= ((indexentry
->function_name
? indexentry
->val
: 0)
1333 + bfd_get_32 (abfd
, stab
+ VALOFF
));
1334 /* If this line starts before our desired offset, or if it's
1335 the first line we've been able to find, use it. The
1336 !saw_line check works around a bug in GCC 2.95.3, which emits
1337 the first N_SLINE late. */
1338 if (!saw_line
|| val
<= offset
)
1340 *pline
= bfd_get_16 (abfd
, stab
+ DESCOFF
);
1342 #ifdef ENABLE_CACHING
1343 info
->cached_stab
= stab
;
1344 info
->cached_offset
= val
;
1345 info
->cached_file_name
= file_name
;
1346 info
->cached_indexentry
= indexentry
;
1356 if (saw_func
|| saw_line
)
1368 if (file_name
== NULL
|| IS_ABSOLUTE_PATH (file_name
)
1369 || directory_name
== NULL
)
1370 *pfilename
= file_name
;
1375 dirlen
= strlen (directory_name
);
1376 if (info
->filename
== NULL
1377 || strncmp (info
->filename
, directory_name
, dirlen
) != 0
1378 || strcmp (info
->filename
+ dirlen
, file_name
) != 0)
1382 if (info
->filename
!= NULL
)
1383 free (info
->filename
);
1384 len
= strlen (file_name
) + 1;
1385 info
->filename
= bfd_malloc (dirlen
+ len
);
1386 if (info
->filename
== NULL
)
1388 memcpy (info
->filename
, directory_name
, dirlen
);
1389 memcpy (info
->filename
+ dirlen
, file_name
, len
);
1392 *pfilename
= info
->filename
;
1395 if (indexentry
->function_name
!= NULL
)
1399 /* This will typically be something like main:F(0,1), so we want
1400 to clobber the colon. It's OK to change the name, since the
1401 string is in our own local storage anyhow. */
1402 s
= strchr (indexentry
->function_name
, ':');
1406 *pfnname
= indexentry
->function_name
;