1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
40 /* Get the ECOFF swapping routines. */
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
54 /* The global symbol in the GOT with the lowest index in the dynamic
56 struct elf_link_hash_entry
*global_gotsym
;
57 /* The number of global .got entries. */
58 unsigned int global_gotno
;
59 /* The number of local .got entries. */
60 unsigned int local_gotno
;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno
;
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
68 struct mips_elf_link_hash_entry
70 struct elf_link_hash_entry root
;
72 /* External symbol information. */
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
77 unsigned int possibly_dynamic_relocs
;
79 /* The index of the first dynamic relocation (in the .rel.dyn
80 section) against this symbol. */
81 unsigned int min_dyn_reloc_index
;
83 /* If there is a stub that 32 bit functions should use to call this
84 16 bit function, this points to the section containing the stub. */
87 /* Whether we need the fn_stub; this is set if this symbol appears
88 in any relocs other than a 16 bit call. */
91 /* If there is a stub that 16 bit functions should use to call this
92 32 bit function, this points to the section containing the stub. */
95 /* This is like the call_stub field, but it is used if the function
96 being called returns a floating point value. */
97 asection
*call_fp_stub
;
100 static bfd_reloc_status_type mips32_64bit_reloc
101 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
102 static reloc_howto_type
*bfd_elf32_bfd_reloc_type_lookup
103 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
104 static reloc_howto_type
*mips_rtype_to_howto
105 PARAMS ((unsigned int));
106 static void mips_info_to_howto_rel
107 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rel
*));
108 static void mips_info_to_howto_rela
109 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rela
*));
110 static void bfd_mips_elf32_swap_gptab_in
111 PARAMS ((bfd
*, const Elf32_External_gptab
*, Elf32_gptab
*));
112 static void bfd_mips_elf32_swap_gptab_out
113 PARAMS ((bfd
*, const Elf32_gptab
*, Elf32_External_gptab
*));
115 static void bfd_mips_elf_swap_msym_in
116 PARAMS ((bfd
*, const Elf32_External_Msym
*, Elf32_Internal_Msym
*));
118 static void bfd_mips_elf_swap_msym_out
119 PARAMS ((bfd
*, const Elf32_Internal_Msym
*, Elf32_External_Msym
*));
120 static boolean mips_elf_sym_is_global
PARAMS ((bfd
*, asymbol
*));
121 static boolean mips_elf_create_procedure_table
122 PARAMS ((PTR
, bfd
*, struct bfd_link_info
*, asection
*,
123 struct ecoff_debug_info
*));
124 static INLINE
int elf_mips_isa
PARAMS ((flagword
));
125 static INLINE
int elf_mips_mach
PARAMS ((flagword
));
126 static INLINE
char* elf_mips_abi_name
PARAMS ((bfd
*));
127 static boolean mips_elf_is_local_label_name
128 PARAMS ((bfd
*, const char *));
129 static struct bfd_hash_entry
*mips_elf_link_hash_newfunc
130 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
131 static int gptab_compare
PARAMS ((const void *, const void *));
132 static bfd_reloc_status_type mips16_jump_reloc
133 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
134 static bfd_reloc_status_type mips16_gprel_reloc
135 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
136 static boolean mips_elf_create_compact_rel_section
137 PARAMS ((bfd
*, struct bfd_link_info
*));
138 static boolean mips_elf_create_got_section
139 PARAMS ((bfd
*, struct bfd_link_info
*));
140 static bfd_reloc_status_type mips_elf_final_gp
141 PARAMS ((bfd
*, asymbol
*, boolean
, char **, bfd_vma
*));
142 static bfd_byte
*elf32_mips_get_relocated_section_contents
143 PARAMS ((bfd
*, struct bfd_link_info
*, struct bfd_link_order
*,
144 bfd_byte
*, boolean
, asymbol
**));
145 static asection
*mips_elf_create_msym_section
147 static void mips_elf_irix6_finish_dynamic_symbol
148 PARAMS ((bfd
*, const char *, Elf_Internal_Sym
*));
149 static bfd_vma mips_elf_sign_extend
PARAMS ((bfd_vma
, int));
150 static boolean mips_elf_overflow_p
PARAMS ((bfd_vma
, int));
151 static bfd_vma mips_elf_high
PARAMS ((bfd_vma
));
152 static bfd_vma mips_elf_higher
PARAMS ((bfd_vma
));
153 static bfd_vma mips_elf_highest
PARAMS ((bfd_vma
));
154 static bfd_vma mips_elf_global_got_index
155 PARAMS ((bfd
*, struct elf_link_hash_entry
*));
156 static bfd_vma mips_elf_local_got_index
157 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
));
158 static bfd_vma mips_elf_got_offset_from_index
159 PARAMS ((bfd
*, bfd
*, bfd_vma
));
160 static boolean mips_elf_record_global_got_symbol
161 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*,
162 struct mips_got_info
*));
163 static bfd_vma mips_elf_got_page
164 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_vma
*));
165 static const Elf_Internal_Rela
*mips_elf_next_relocation
166 PARAMS ((unsigned int, const Elf_Internal_Rela
*,
167 const Elf_Internal_Rela
*));
168 static bfd_reloc_status_type mips_elf_calculate_relocation
169 PARAMS ((bfd
*, bfd
*, asection
*, struct bfd_link_info
*,
170 const Elf_Internal_Rela
*, bfd_vma
, reloc_howto_type
*,
171 Elf_Internal_Sym
*, asection
**, bfd_vma
*, const char **,
173 static bfd_vma mips_elf_obtain_contents
174 PARAMS ((reloc_howto_type
*, const Elf_Internal_Rela
*, bfd
*, bfd_byte
*));
175 static boolean mips_elf_perform_relocation
176 PARAMS ((struct bfd_link_info
*, reloc_howto_type
*,
177 const Elf_Internal_Rela
*, bfd_vma
,
178 bfd
*, asection
*, bfd_byte
*, boolean
));
179 static boolean mips_elf_assign_gp
PARAMS ((bfd
*, bfd_vma
*));
180 static boolean mips_elf_sort_hash_table_f
181 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
182 static boolean mips_elf_sort_hash_table
183 PARAMS ((struct bfd_link_info
*, unsigned long));
184 static asection
* mips_elf_got_section
PARAMS ((bfd
*));
185 static struct mips_got_info
*mips_elf_got_info
186 PARAMS ((bfd
*, asection
**));
187 static boolean mips_elf_local_relocation_p
188 PARAMS ((bfd
*, const Elf_Internal_Rela
*, asection
**, boolean
));
189 static bfd_vma mips_elf_create_local_got_entry
190 PARAMS ((bfd
*, struct mips_got_info
*, asection
*, bfd_vma
));
191 static bfd_vma mips_elf_got16_entry
192 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, boolean
));
193 static boolean mips_elf_create_dynamic_relocation
194 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
195 struct mips_elf_link_hash_entry
*, asection
*,
196 bfd_vma
, bfd_vma
*, asection
*, boolean local_p
));
197 static void mips_elf_allocate_dynamic_relocations
198 PARAMS ((bfd
*, unsigned int));
199 static boolean mips_elf_stub_section_p
200 PARAMS ((bfd
*, asection
*));
201 static int sort_dynamic_relocs
202 PARAMS ((const void *, const void *));
204 extern const bfd_target bfd_elf32_tradbigmips_vec
;
206 /* The level of IRIX compatibility we're striving for. */
214 /* This will be used when we sort the dynamic relocation records. */
215 static bfd
*reldyn_sorting_bfd
;
217 /* Nonzero if ABFD is using the N32 ABI. */
219 #define ABI_N32_P(abfd) \
220 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
222 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
224 #define ABI_64_P(abfd) \
225 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
227 /* Depending on the target vector we generate some version of Irix
228 executables or "normal" MIPS ELF ABI executables. */
230 #define IRIX_COMPAT(abfd) \
231 (abfd->xvec == &bfd_elf32_tradbigmips_vec ? ict_none : \
232 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
234 /* Whether we are trying to be compatible with IRIX at all. */
236 #define SGI_COMPAT(abfd) \
237 (IRIX_COMPAT (abfd) != ict_none)
239 /* The name of the msym section. */
240 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
242 /* The name of the srdata section. */
243 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
245 /* The name of the options section. */
246 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
247 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
249 /* The name of the stub section. */
250 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
251 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
253 /* The name of the dynamic relocation section. */
254 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
256 /* The size of an external REL relocation. */
257 #define MIPS_ELF_REL_SIZE(abfd) \
258 (get_elf_backend_data (abfd)->s->sizeof_rel)
260 /* The size of an external dynamic table entry. */
261 #define MIPS_ELF_DYN_SIZE(abfd) \
262 (get_elf_backend_data (abfd)->s->sizeof_dyn)
264 /* The size of a GOT entry. */
265 #define MIPS_ELF_GOT_SIZE(abfd) \
266 (get_elf_backend_data (abfd)->s->arch_size / 8)
268 /* The size of a symbol-table entry. */
269 #define MIPS_ELF_SYM_SIZE(abfd) \
270 (get_elf_backend_data (abfd)->s->sizeof_sym)
272 /* The default alignment for sections, as a power of two. */
273 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
274 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
276 /* Get word-sized data. */
277 #define MIPS_ELF_GET_WORD(abfd, ptr) \
278 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
280 /* Put out word-sized data. */
281 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
283 ? bfd_put_64 (abfd, val, ptr) \
284 : bfd_put_32 (abfd, val, ptr))
286 /* Add a dynamic symbol table-entry. */
288 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
289 (ABI_64_P (elf_hash_table (info)->dynobj) \
290 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
291 : bfd_elf32_add_dynamic_entry (info, tag, val))
293 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
294 (ABI_64_P (elf_hash_table (info)->dynobj) \
295 ? (abort (), false) \
296 : bfd_elf32_add_dynamic_entry (info, tag, val))
299 /* The number of local .got entries we reserve. */
300 #define MIPS_RESERVED_GOTNO (2)
302 /* Instructions which appear in a stub. For some reason the stub is
303 slightly different on an SGI system. */
304 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
305 #define STUB_LW(abfd) \
308 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
309 : 0x8f998010) /* lw t9,0x8010(gp) */ \
310 : 0x8f998010) /* lw t9,0x8000(gp) */
311 #define STUB_MOVE(abfd) \
312 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
313 #define STUB_JALR 0x0320f809 /* jal t9 */
314 #define STUB_LI16(abfd) \
315 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
316 #define MIPS_FUNCTION_STUB_SIZE (16)
319 /* We no longer try to identify particular sections for the .dynsym
320 section. When we do, we wind up crashing if there are other random
321 sections with relocations. */
323 /* Names of sections which appear in the .dynsym section in an Irix 5
326 static const char * const mips_elf_dynsym_sec_names
[] =
339 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
340 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
342 /* The number of entries in mips_elf_dynsym_sec_names which go in the
345 #define MIPS_TEXT_DYNSYM_SECNO (3)
349 /* The names of the runtime procedure table symbols used on Irix 5. */
351 static const char * const mips_elf_dynsym_rtproc_names
[] =
354 "_procedure_string_table",
355 "_procedure_table_size",
359 /* These structures are used to generate the .compact_rel section on
364 unsigned long id1
; /* Always one? */
365 unsigned long num
; /* Number of compact relocation entries. */
366 unsigned long id2
; /* Always two? */
367 unsigned long offset
; /* The file offset of the first relocation. */
368 unsigned long reserved0
; /* Zero? */
369 unsigned long reserved1
; /* Zero? */
378 bfd_byte reserved0
[4];
379 bfd_byte reserved1
[4];
380 } Elf32_External_compact_rel
;
384 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
385 unsigned int rtype
: 4; /* Relocation types. See below. */
386 unsigned int dist2to
: 8;
387 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
388 unsigned long konst
; /* KONST field. See below. */
389 unsigned long vaddr
; /* VADDR to be relocated. */
394 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
395 unsigned int rtype
: 4; /* Relocation types. See below. */
396 unsigned int dist2to
: 8;
397 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
398 unsigned long konst
; /* KONST field. See below. */
406 } Elf32_External_crinfo
;
412 } Elf32_External_crinfo2
;
414 /* These are the constants used to swap the bitfields in a crinfo. */
416 #define CRINFO_CTYPE (0x1)
417 #define CRINFO_CTYPE_SH (31)
418 #define CRINFO_RTYPE (0xf)
419 #define CRINFO_RTYPE_SH (27)
420 #define CRINFO_DIST2TO (0xff)
421 #define CRINFO_DIST2TO_SH (19)
422 #define CRINFO_RELVADDR (0x7ffff)
423 #define CRINFO_RELVADDR_SH (0)
425 /* A compact relocation info has long (3 words) or short (2 words)
426 formats. A short format doesn't have VADDR field and relvaddr
427 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
428 #define CRF_MIPS_LONG 1
429 #define CRF_MIPS_SHORT 0
431 /* There are 4 types of compact relocation at least. The value KONST
432 has different meaning for each type:
435 CT_MIPS_REL32 Address in data
436 CT_MIPS_WORD Address in word (XXX)
437 CT_MIPS_GPHI_LO GP - vaddr
438 CT_MIPS_JMPAD Address to jump
441 #define CRT_MIPS_REL32 0xa
442 #define CRT_MIPS_WORD 0xb
443 #define CRT_MIPS_GPHI_LO 0xc
444 #define CRT_MIPS_JMPAD 0xd
446 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
447 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
448 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
449 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
451 static void bfd_elf32_swap_compact_rel_out
452 PARAMS ((bfd
*, const Elf32_compact_rel
*, Elf32_External_compact_rel
*));
453 static void bfd_elf32_swap_crinfo_out
454 PARAMS ((bfd
*, const Elf32_crinfo
*, Elf32_External_crinfo
*));
456 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
458 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
459 from smaller values. Start with zero, widen, *then* decrement. */
460 #define MINUS_ONE (((bfd_vma)0) - 1)
462 static reloc_howto_type elf_mips_howto_table
[] =
465 HOWTO (R_MIPS_NONE
, /* type */
467 0, /* size (0 = byte, 1 = short, 2 = long) */
469 false, /* pc_relative */
471 complain_overflow_dont
, /* complain_on_overflow */
472 bfd_elf_generic_reloc
, /* special_function */
473 "R_MIPS_NONE", /* name */
474 false, /* partial_inplace */
477 false), /* pcrel_offset */
479 /* 16 bit relocation. */
480 HOWTO (R_MIPS_16
, /* type */
482 1, /* size (0 = byte, 1 = short, 2 = long) */
484 false, /* pc_relative */
486 complain_overflow_bitfield
, /* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_MIPS_16", /* name */
489 true, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 false), /* pcrel_offset */
494 /* 32 bit relocation. */
495 HOWTO (R_MIPS_32
, /* type */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
499 false, /* pc_relative */
501 complain_overflow_bitfield
, /* complain_on_overflow */
502 bfd_elf_generic_reloc
, /* special_function */
503 "R_MIPS_32", /* name */
504 true, /* partial_inplace */
505 0xffffffff, /* src_mask */
506 0xffffffff, /* dst_mask */
507 false), /* pcrel_offset */
509 /* 32 bit symbol relative relocation. */
510 HOWTO (R_MIPS_REL32
, /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 false, /* pc_relative */
516 complain_overflow_bitfield
, /* complain_on_overflow */
517 bfd_elf_generic_reloc
, /* special_function */
518 "R_MIPS_REL32", /* name */
519 true, /* partial_inplace */
520 0xffffffff, /* src_mask */
521 0xffffffff, /* dst_mask */
522 false), /* pcrel_offset */
524 /* 26 bit branch address. */
525 HOWTO (R_MIPS_26
, /* type */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
529 false, /* pc_relative */
531 complain_overflow_dont
, /* complain_on_overflow */
532 /* This needs complex overflow
533 detection, because the upper four
534 bits must match the PC. */
535 bfd_elf_generic_reloc
, /* special_function */
536 "R_MIPS_26", /* name */
537 true, /* partial_inplace */
538 0x3ffffff, /* src_mask */
539 0x3ffffff, /* dst_mask */
540 false), /* pcrel_offset */
542 /* High 16 bits of symbol value. */
543 HOWTO (R_MIPS_HI16
, /* type */
545 2, /* size (0 = byte, 1 = short, 2 = long) */
547 false, /* pc_relative */
549 complain_overflow_dont
, /* complain_on_overflow */
550 _bfd_mips_elf_hi16_reloc
, /* special_function */
551 "R_MIPS_HI16", /* name */
552 true, /* partial_inplace */
553 0xffff, /* src_mask */
554 0xffff, /* dst_mask */
555 false), /* pcrel_offset */
557 /* Low 16 bits of symbol value. */
558 HOWTO (R_MIPS_LO16
, /* type */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
562 false, /* pc_relative */
564 complain_overflow_dont
, /* complain_on_overflow */
565 _bfd_mips_elf_lo16_reloc
, /* special_function */
566 "R_MIPS_LO16", /* name */
567 true, /* partial_inplace */
568 0xffff, /* src_mask */
569 0xffff, /* dst_mask */
570 false), /* pcrel_offset */
572 /* GP relative reference. */
573 HOWTO (R_MIPS_GPREL16
, /* type */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
577 false, /* pc_relative */
579 complain_overflow_signed
, /* complain_on_overflow */
580 _bfd_mips_elf_gprel16_reloc
, /* special_function */
581 "R_MIPS_GPREL16", /* name */
582 true, /* partial_inplace */
583 0xffff, /* src_mask */
584 0xffff, /* dst_mask */
585 false), /* pcrel_offset */
587 /* Reference to literal section. */
588 HOWTO (R_MIPS_LITERAL
, /* type */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
592 false, /* pc_relative */
594 complain_overflow_signed
, /* complain_on_overflow */
595 _bfd_mips_elf_gprel16_reloc
, /* special_function */
596 "R_MIPS_LITERAL", /* name */
597 true, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 false), /* pcrel_offset */
602 /* Reference to global offset table. */
603 HOWTO (R_MIPS_GOT16
, /* type */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
607 false, /* pc_relative */
609 complain_overflow_signed
, /* complain_on_overflow */
610 _bfd_mips_elf_got16_reloc
, /* special_function */
611 "R_MIPS_GOT16", /* name */
612 false, /* partial_inplace */
613 0xffff, /* src_mask */
614 0xffff, /* dst_mask */
615 false), /* pcrel_offset */
617 /* 16 bit PC relative reference. */
618 HOWTO (R_MIPS_PC16
, /* type */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
622 true, /* pc_relative */
624 complain_overflow_signed
, /* complain_on_overflow */
625 bfd_elf_generic_reloc
, /* special_function */
626 "R_MIPS_PC16", /* name */
627 true, /* partial_inplace */
628 0xffff, /* src_mask */
629 0xffff, /* dst_mask */
630 true), /* pcrel_offset */
632 /* 16 bit call through global offset table. */
633 HOWTO (R_MIPS_CALL16
, /* type */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
637 false, /* pc_relative */
639 complain_overflow_signed
, /* complain_on_overflow */
640 bfd_elf_generic_reloc
, /* special_function */
641 "R_MIPS_CALL16", /* name */
642 false, /* partial_inplace */
643 0xffff, /* src_mask */
644 0xffff, /* dst_mask */
645 false), /* pcrel_offset */
647 /* 32 bit GP relative reference. */
648 HOWTO (R_MIPS_GPREL32
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 false, /* pc_relative */
654 complain_overflow_bitfield
, /* complain_on_overflow */
655 _bfd_mips_elf_gprel32_reloc
, /* special_function */
656 "R_MIPS_GPREL32", /* name */
657 true, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 false), /* pcrel_offset */
662 /* The remaining relocs are defined on Irix 5, although they are
663 not defined by the ABI. */
668 /* A 5 bit shift field. */
669 HOWTO (R_MIPS_SHIFT5
, /* type */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
673 false, /* pc_relative */
675 complain_overflow_bitfield
, /* complain_on_overflow */
676 bfd_elf_generic_reloc
, /* special_function */
677 "R_MIPS_SHIFT5", /* name */
678 true, /* partial_inplace */
679 0x000007c0, /* src_mask */
680 0x000007c0, /* dst_mask */
681 false), /* pcrel_offset */
683 /* A 6 bit shift field. */
684 /* FIXME: This is not handled correctly; a special function is
685 needed to put the most significant bit in the right place. */
686 HOWTO (R_MIPS_SHIFT6
, /* type */
688 2, /* size (0 = byte, 1 = short, 2 = long) */
690 false, /* pc_relative */
692 complain_overflow_bitfield
, /* complain_on_overflow */
693 bfd_elf_generic_reloc
, /* special_function */
694 "R_MIPS_SHIFT6", /* name */
695 true, /* partial_inplace */
696 0x000007c4, /* src_mask */
697 0x000007c4, /* dst_mask */
698 false), /* pcrel_offset */
700 /* A 64 bit relocation. */
701 HOWTO (R_MIPS_64
, /* type */
703 4, /* size (0 = byte, 1 = short, 2 = long) */
705 false, /* pc_relative */
707 complain_overflow_bitfield
, /* complain_on_overflow */
708 mips32_64bit_reloc
, /* special_function */
709 "R_MIPS_64", /* name */
710 true, /* partial_inplace */
711 MINUS_ONE
, /* src_mask */
712 MINUS_ONE
, /* dst_mask */
713 false), /* pcrel_offset */
715 /* Displacement in the global offset table. */
716 HOWTO (R_MIPS_GOT_DISP
, /* type */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
720 false, /* pc_relative */
722 complain_overflow_bitfield
, /* complain_on_overflow */
723 bfd_elf_generic_reloc
, /* special_function */
724 "R_MIPS_GOT_DISP", /* name */
725 true, /* partial_inplace */
726 0x0000ffff, /* src_mask */
727 0x0000ffff, /* dst_mask */
728 false), /* pcrel_offset */
730 /* Displacement to page pointer in the global offset table. */
731 HOWTO (R_MIPS_GOT_PAGE
, /* type */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
735 false, /* pc_relative */
737 complain_overflow_bitfield
, /* complain_on_overflow */
738 bfd_elf_generic_reloc
, /* special_function */
739 "R_MIPS_GOT_PAGE", /* name */
740 true, /* partial_inplace */
741 0x0000ffff, /* src_mask */
742 0x0000ffff, /* dst_mask */
743 false), /* pcrel_offset */
745 /* Offset from page pointer in the global offset table. */
746 HOWTO (R_MIPS_GOT_OFST
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 false, /* pc_relative */
752 complain_overflow_bitfield
, /* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_MIPS_GOT_OFST", /* name */
755 true, /* partial_inplace */
756 0x0000ffff, /* src_mask */
757 0x0000ffff, /* dst_mask */
758 false), /* pcrel_offset */
760 /* High 16 bits of displacement in global offset table. */
761 HOWTO (R_MIPS_GOT_HI16
, /* type */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
765 false, /* pc_relative */
767 complain_overflow_dont
, /* complain_on_overflow */
768 bfd_elf_generic_reloc
, /* special_function */
769 "R_MIPS_GOT_HI16", /* name */
770 true, /* partial_inplace */
771 0x0000ffff, /* src_mask */
772 0x0000ffff, /* dst_mask */
773 false), /* pcrel_offset */
775 /* Low 16 bits of displacement in global offset table. */
776 HOWTO (R_MIPS_GOT_LO16
, /* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 false, /* pc_relative */
782 complain_overflow_dont
, /* complain_on_overflow */
783 bfd_elf_generic_reloc
, /* special_function */
784 "R_MIPS_GOT_LO16", /* name */
785 true, /* partial_inplace */
786 0x0000ffff, /* src_mask */
787 0x0000ffff, /* dst_mask */
788 false), /* pcrel_offset */
790 /* 64 bit subtraction. Used in the N32 ABI. */
791 HOWTO (R_MIPS_SUB
, /* type */
793 4, /* size (0 = byte, 1 = short, 2 = long) */
795 false, /* pc_relative */
797 complain_overflow_bitfield
, /* complain_on_overflow */
798 bfd_elf_generic_reloc
, /* special_function */
799 "R_MIPS_SUB", /* name */
800 true, /* partial_inplace */
801 MINUS_ONE
, /* src_mask */
802 MINUS_ONE
, /* dst_mask */
803 false), /* pcrel_offset */
805 /* Used to cause the linker to insert and delete instructions? */
806 EMPTY_HOWTO (R_MIPS_INSERT_A
),
807 EMPTY_HOWTO (R_MIPS_INSERT_B
),
808 EMPTY_HOWTO (R_MIPS_DELETE
),
810 /* Get the higher value of a 64 bit addend. */
811 HOWTO (R_MIPS_HIGHER
, /* type */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
815 false, /* pc_relative */
817 complain_overflow_dont
, /* complain_on_overflow */
818 bfd_elf_generic_reloc
, /* special_function */
819 "R_MIPS_HIGHER", /* name */
820 true, /* partial_inplace */
822 0xffff, /* dst_mask */
823 false), /* pcrel_offset */
825 /* Get the highest value of a 64 bit addend. */
826 HOWTO (R_MIPS_HIGHEST
, /* type */
828 2, /* size (0 = byte, 1 = short, 2 = long) */
830 false, /* pc_relative */
832 complain_overflow_dont
, /* complain_on_overflow */
833 bfd_elf_generic_reloc
, /* special_function */
834 "R_MIPS_HIGHEST", /* name */
835 true, /* partial_inplace */
837 0xffff, /* dst_mask */
838 false), /* pcrel_offset */
840 /* High 16 bits of displacement in global offset table. */
841 HOWTO (R_MIPS_CALL_HI16
, /* type */
843 2, /* size (0 = byte, 1 = short, 2 = long) */
845 false, /* pc_relative */
847 complain_overflow_dont
, /* complain_on_overflow */
848 bfd_elf_generic_reloc
, /* special_function */
849 "R_MIPS_CALL_HI16", /* name */
850 true, /* partial_inplace */
851 0x0000ffff, /* src_mask */
852 0x0000ffff, /* dst_mask */
853 false), /* pcrel_offset */
855 /* Low 16 bits of displacement in global offset table. */
856 HOWTO (R_MIPS_CALL_LO16
, /* type */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
860 false, /* pc_relative */
862 complain_overflow_dont
, /* complain_on_overflow */
863 bfd_elf_generic_reloc
, /* special_function */
864 "R_MIPS_CALL_LO16", /* name */
865 true, /* partial_inplace */
866 0x0000ffff, /* src_mask */
867 0x0000ffff, /* dst_mask */
868 false), /* pcrel_offset */
870 /* Section displacement. */
871 HOWTO (R_MIPS_SCN_DISP
, /* type */
873 2, /* size (0 = byte, 1 = short, 2 = long) */
875 false, /* pc_relative */
877 complain_overflow_dont
, /* complain_on_overflow */
878 bfd_elf_generic_reloc
, /* special_function */
879 "R_MIPS_SCN_DISP", /* name */
880 false, /* partial_inplace */
881 0xffffffff, /* src_mask */
882 0xffffffff, /* dst_mask */
883 false), /* pcrel_offset */
885 EMPTY_HOWTO (R_MIPS_REL16
),
886 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE
),
887 EMPTY_HOWTO (R_MIPS_PJUMP
),
888 EMPTY_HOWTO (R_MIPS_RELGOT
),
890 /* Protected jump conversion. This is an optimization hint. No
891 relocation is required for correctness. */
892 HOWTO (R_MIPS_JALR
, /* type */
894 0, /* size (0 = byte, 1 = short, 2 = long) */
896 false, /* pc_relative */
898 complain_overflow_dont
, /* complain_on_overflow */
899 bfd_elf_generic_reloc
, /* special_function */
900 "R_MIPS_JALR", /* name */
901 false, /* partial_inplace */
902 0x00000000, /* src_mask */
903 0x00000000, /* dst_mask */
904 false), /* pcrel_offset */
907 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
908 is a hack to make the linker think that we need 64 bit values. */
909 static reloc_howto_type elf_mips_ctor64_howto
=
910 HOWTO (R_MIPS_64
, /* type */
912 4, /* size (0 = byte, 1 = short, 2 = long) */
914 false, /* pc_relative */
916 complain_overflow_signed
, /* complain_on_overflow */
917 mips32_64bit_reloc
, /* special_function */
918 "R_MIPS_64", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false); /* pcrel_offset */
924 /* The reloc used for the mips16 jump instruction. */
925 static reloc_howto_type elf_mips16_jump_howto
=
926 HOWTO (R_MIPS16_26
, /* type */
928 2, /* size (0 = byte, 1 = short, 2 = long) */
930 false, /* pc_relative */
932 complain_overflow_dont
, /* complain_on_overflow */
933 /* This needs complex overflow
934 detection, because the upper four
935 bits must match the PC. */
936 mips16_jump_reloc
, /* special_function */
937 "R_MIPS16_26", /* name */
938 true, /* partial_inplace */
939 0x3ffffff, /* src_mask */
940 0x3ffffff, /* dst_mask */
941 false); /* pcrel_offset */
943 /* The reloc used for the mips16 gprel instruction. */
944 static reloc_howto_type elf_mips16_gprel_howto
=
945 HOWTO (R_MIPS16_GPREL
, /* type */
947 2, /* size (0 = byte, 1 = short, 2 = long) */
949 false, /* pc_relative */
951 complain_overflow_signed
, /* complain_on_overflow */
952 mips16_gprel_reloc
, /* special_function */
953 "R_MIPS16_GPREL", /* name */
954 true, /* partial_inplace */
955 0x07ff001f, /* src_mask */
956 0x07ff001f, /* dst_mask */
957 false); /* pcrel_offset */
959 /* GNU extensions for embedded-pic. */
960 /* High 16 bits of symbol value, pc-relative. */
961 static reloc_howto_type elf_mips_gnu_rel_hi16
=
962 HOWTO (R_MIPS_GNU_REL_HI16
, /* type */
964 2, /* size (0 = byte, 1 = short, 2 = long) */
966 true, /* pc_relative */
968 complain_overflow_dont
, /* complain_on_overflow */
969 _bfd_mips_elf_hi16_reloc
, /* special_function */
970 "R_MIPS_GNU_REL_HI16", /* name */
971 true, /* partial_inplace */
972 0xffff, /* src_mask */
973 0xffff, /* dst_mask */
974 true); /* pcrel_offset */
976 /* Low 16 bits of symbol value, pc-relative. */
977 static reloc_howto_type elf_mips_gnu_rel_lo16
=
978 HOWTO (R_MIPS_GNU_REL_LO16
, /* type */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
982 true, /* pc_relative */
984 complain_overflow_dont
, /* complain_on_overflow */
985 _bfd_mips_elf_lo16_reloc
, /* special_function */
986 "R_MIPS_GNU_REL_LO16", /* name */
987 true, /* partial_inplace */
988 0xffff, /* src_mask */
989 0xffff, /* dst_mask */
990 true); /* pcrel_offset */
992 /* 16 bit offset for pc-relative branches. */
993 static reloc_howto_type elf_mips_gnu_rel16_s2
=
994 HOWTO (R_MIPS_GNU_REL16_S2
, /* type */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
998 true, /* pc_relative */
1000 complain_overflow_signed
, /* complain_on_overflow */
1001 bfd_elf_generic_reloc
, /* special_function */
1002 "R_MIPS_GNU_REL16_S2", /* name */
1003 true, /* partial_inplace */
1004 0xffff, /* src_mask */
1005 0xffff, /* dst_mask */
1006 true); /* pcrel_offset */
1008 /* 64 bit pc-relative. */
1009 static reloc_howto_type elf_mips_gnu_pcrel64
=
1010 HOWTO (R_MIPS_PC64
, /* type */
1012 4, /* size (0 = byte, 1 = short, 2 = long) */
1014 true, /* pc_relative */
1016 complain_overflow_signed
, /* complain_on_overflow */
1017 bfd_elf_generic_reloc
, /* special_function */
1018 "R_MIPS_PC64", /* name */
1019 true, /* partial_inplace */
1020 MINUS_ONE
, /* src_mask */
1021 MINUS_ONE
, /* dst_mask */
1022 true); /* pcrel_offset */
1024 /* 32 bit pc-relative. */
1025 static reloc_howto_type elf_mips_gnu_pcrel32
=
1026 HOWTO (R_MIPS_PC32
, /* type */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1030 true, /* pc_relative */
1032 complain_overflow_signed
, /* complain_on_overflow */
1033 bfd_elf_generic_reloc
, /* special_function */
1034 "R_MIPS_PC32", /* name */
1035 true, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 true); /* pcrel_offset */
1040 /* GNU extension to record C++ vtable hierarchy */
1041 static reloc_howto_type elf_mips_gnu_vtinherit_howto
=
1042 HOWTO (R_MIPS_GNU_VTINHERIT
, /* type */
1044 2, /* size (0 = byte, 1 = short, 2 = long) */
1046 false, /* pc_relative */
1048 complain_overflow_dont
, /* complain_on_overflow */
1049 NULL
, /* special_function */
1050 "R_MIPS_GNU_VTINHERIT", /* name */
1051 false, /* partial_inplace */
1054 false); /* pcrel_offset */
1056 /* GNU extension to record C++ vtable member usage */
1057 static reloc_howto_type elf_mips_gnu_vtentry_howto
=
1058 HOWTO (R_MIPS_GNU_VTENTRY
, /* type */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 false, /* pc_relative */
1064 complain_overflow_dont
, /* complain_on_overflow */
1065 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1066 "R_MIPS_GNU_VTENTRY", /* name */
1067 false, /* partial_inplace */
1070 false); /* pcrel_offset */
1072 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1073 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1074 the HI16. Here we just save the information we need; we do the
1075 actual relocation when we see the LO16. MIPS ELF requires that the
1076 LO16 immediately follow the HI16. As a GNU extension, we permit an
1077 arbitrary number of HI16 relocs to be associated with a single LO16
1078 reloc. This extension permits gcc to output the HI and LO relocs
1083 struct mips_hi16
*next
;
1088 /* FIXME: This should not be a static variable. */
1090 static struct mips_hi16
*mips_hi16_list
;
1092 bfd_reloc_status_type
1093 _bfd_mips_elf_hi16_reloc (abfd
,
1100 bfd
*abfd ATTRIBUTE_UNUSED
;
1101 arelent
*reloc_entry
;
1104 asection
*input_section
;
1106 char **error_message
;
1108 bfd_reloc_status_type ret
;
1110 struct mips_hi16
*n
;
1112 /* If we're relocating, and this an external symbol, we don't want
1113 to change anything. */
1114 if (output_bfd
!= (bfd
*) NULL
1115 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1116 && reloc_entry
->addend
== 0)
1118 reloc_entry
->address
+= input_section
->output_offset
;
1119 return bfd_reloc_ok
;
1124 if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1126 boolean relocateable
;
1129 if (ret
== bfd_reloc_undefined
)
1132 if (output_bfd
!= NULL
)
1133 relocateable
= true;
1136 relocateable
= false;
1137 output_bfd
= symbol
->section
->output_section
->owner
;
1140 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
,
1141 error_message
, &gp
);
1142 if (ret
!= bfd_reloc_ok
)
1145 relocation
= gp
- reloc_entry
->address
;
1149 if (bfd_is_und_section (symbol
->section
)
1150 && output_bfd
== (bfd
*) NULL
)
1151 ret
= bfd_reloc_undefined
;
1153 if (bfd_is_com_section (symbol
->section
))
1156 relocation
= symbol
->value
;
1159 relocation
+= symbol
->section
->output_section
->vma
;
1160 relocation
+= symbol
->section
->output_offset
;
1161 relocation
+= reloc_entry
->addend
;
1163 if (reloc_entry
->address
> input_section
->_cooked_size
)
1164 return bfd_reloc_outofrange
;
1166 /* Save the information, and let LO16 do the actual relocation. */
1167 n
= (struct mips_hi16
*) bfd_malloc (sizeof *n
);
1169 return bfd_reloc_outofrange
;
1170 n
->addr
= (bfd_byte
*) data
+ reloc_entry
->address
;
1171 n
->addend
= relocation
;
1172 n
->next
= mips_hi16_list
;
1175 if (output_bfd
!= (bfd
*) NULL
)
1176 reloc_entry
->address
+= input_section
->output_offset
;
1181 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1182 inplace relocation; this function exists in order to do the
1183 R_MIPS_HI16 relocation described above. */
1185 bfd_reloc_status_type
1186 _bfd_mips_elf_lo16_reloc (abfd
,
1194 arelent
*reloc_entry
;
1197 asection
*input_section
;
1199 char **error_message
;
1201 arelent gp_disp_relent
;
1203 if (mips_hi16_list
!= NULL
)
1205 struct mips_hi16
*l
;
1212 unsigned long vallo
;
1213 struct mips_hi16
*next
;
1215 /* Do the HI16 relocation. Note that we actually don't need
1216 to know anything about the LO16 itself, except where to
1217 find the low 16 bits of the addend needed by the LO16. */
1218 insn
= bfd_get_32 (abfd
, l
->addr
);
1219 vallo
= (bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
)
1221 val
= ((insn
& 0xffff) << 16) + vallo
;
1224 /* The low order 16 bits are always treated as a signed
1225 value. Therefore, a negative value in the low order bits
1226 requires an adjustment in the high order bits. We need
1227 to make this adjustment in two ways: once for the bits we
1228 took from the data, and once for the bits we are putting
1229 back in to the data. */
1230 if ((vallo
& 0x8000) != 0)
1232 if ((val
& 0x8000) != 0)
1235 insn
= (insn
& ~0xffff) | ((val
>> 16) & 0xffff);
1236 bfd_put_32 (abfd
, insn
, l
->addr
);
1238 if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1240 gp_disp_relent
= *reloc_entry
;
1241 reloc_entry
= &gp_disp_relent
;
1242 reloc_entry
->addend
= l
->addend
;
1250 mips_hi16_list
= NULL
;
1252 else if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1254 bfd_reloc_status_type ret
;
1255 bfd_vma gp
, relocation
;
1257 /* FIXME: Does this case ever occur? */
1259 ret
= mips_elf_final_gp (output_bfd
, symbol
, true, error_message
, &gp
);
1260 if (ret
!= bfd_reloc_ok
)
1263 relocation
= gp
- reloc_entry
->address
;
1264 relocation
+= symbol
->section
->output_section
->vma
;
1265 relocation
+= symbol
->section
->output_offset
;
1266 relocation
+= reloc_entry
->addend
;
1268 if (reloc_entry
->address
> input_section
->_cooked_size
)
1269 return bfd_reloc_outofrange
;
1271 gp_disp_relent
= *reloc_entry
;
1272 reloc_entry
= &gp_disp_relent
;
1273 reloc_entry
->addend
= relocation
- 4;
1276 /* Now do the LO16 reloc in the usual way. */
1277 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1278 input_section
, output_bfd
, error_message
);
1281 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1282 table used for PIC code. If the symbol is an external symbol, the
1283 instruction is modified to contain the offset of the appropriate
1284 entry in the global offset table. If the symbol is a section
1285 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1286 addends are combined to form the real addend against the section
1287 symbol; the GOT16 is modified to contain the offset of an entry in
1288 the global offset table, and the LO16 is modified to offset it
1289 appropriately. Thus an offset larger than 16 bits requires a
1290 modified value in the global offset table.
1292 This implementation suffices for the assembler, but the linker does
1293 not yet know how to create global offset tables. */
1295 bfd_reloc_status_type
1296 _bfd_mips_elf_got16_reloc (abfd
,
1304 arelent
*reloc_entry
;
1307 asection
*input_section
;
1309 char **error_message
;
1311 /* If we're relocating, and this an external symbol, we don't want
1312 to change anything. */
1313 if (output_bfd
!= (bfd
*) NULL
1314 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1315 && reloc_entry
->addend
== 0)
1317 reloc_entry
->address
+= input_section
->output_offset
;
1318 return bfd_reloc_ok
;
1321 /* If we're relocating, and this is a local symbol, we can handle it
1323 if (output_bfd
!= (bfd
*) NULL
1324 && (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1325 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1326 input_section
, output_bfd
, error_message
);
1331 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1332 dangerous relocation. */
1335 mips_elf_assign_gp (output_bfd
, pgp
)
1343 /* If we've already figured out what GP will be, just return it. */
1344 *pgp
= _bfd_get_gp_value (output_bfd
);
1348 count
= bfd_get_symcount (output_bfd
);
1349 sym
= bfd_get_outsymbols (output_bfd
);
1351 /* The linker script will have created a symbol named `_gp' with the
1352 appropriate value. */
1353 if (sym
== (asymbol
**) NULL
)
1357 for (i
= 0; i
< count
; i
++, sym
++)
1359 register CONST
char *name
;
1361 name
= bfd_asymbol_name (*sym
);
1362 if (*name
== '_' && strcmp (name
, "_gp") == 0)
1364 *pgp
= bfd_asymbol_value (*sym
);
1365 _bfd_set_gp_value (output_bfd
, *pgp
);
1373 /* Only get the error once. */
1375 _bfd_set_gp_value (output_bfd
, *pgp
);
1382 /* We have to figure out the gp value, so that we can adjust the
1383 symbol value correctly. We look up the symbol _gp in the output
1384 BFD. If we can't find it, we're stuck. We cache it in the ELF
1385 target data. We don't need to adjust the symbol value for an
1386 external symbol if we are producing relocateable output. */
1388 static bfd_reloc_status_type
1389 mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
, pgp
)
1392 boolean relocateable
;
1393 char **error_message
;
1396 if (bfd_is_und_section (symbol
->section
)
1400 return bfd_reloc_undefined
;
1403 *pgp
= _bfd_get_gp_value (output_bfd
);
1406 || (symbol
->flags
& BSF_SECTION_SYM
) != 0))
1410 /* Make up a value. */
1411 *pgp
= symbol
->section
->output_section
->vma
+ 0x4000;
1412 _bfd_set_gp_value (output_bfd
, *pgp
);
1414 else if (!mips_elf_assign_gp (output_bfd
, pgp
))
1417 (char *) _("GP relative relocation when _gp not defined");
1418 return bfd_reloc_dangerous
;
1422 return bfd_reloc_ok
;
1425 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1426 become the offset from the gp register. This function also handles
1427 R_MIPS_LITERAL relocations, although those can be handled more
1428 cleverly because the entries in the .lit8 and .lit4 sections can be
1431 static bfd_reloc_status_type gprel16_with_gp
PARAMS ((bfd
*, asymbol
*,
1432 arelent
*, asection
*,
1433 boolean
, PTR
, bfd_vma
));
1435 bfd_reloc_status_type
1436 _bfd_mips_elf_gprel16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1437 output_bfd
, error_message
)
1439 arelent
*reloc_entry
;
1442 asection
*input_section
;
1444 char **error_message
;
1446 boolean relocateable
;
1447 bfd_reloc_status_type ret
;
1450 /* If we're relocating, and this is an external symbol with no
1451 addend, we don't want to change anything. We will only have an
1452 addend if this is a newly created reloc, not read from an ELF
1454 if (output_bfd
!= (bfd
*) NULL
1455 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1456 && reloc_entry
->addend
== 0)
1458 reloc_entry
->address
+= input_section
->output_offset
;
1459 return bfd_reloc_ok
;
1462 if (output_bfd
!= (bfd
*) NULL
)
1463 relocateable
= true;
1466 relocateable
= false;
1467 output_bfd
= symbol
->section
->output_section
->owner
;
1470 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
,
1472 if (ret
!= bfd_reloc_ok
)
1475 return gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1476 relocateable
, data
, gp
);
1479 static bfd_reloc_status_type
1480 gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
, relocateable
, data
,
1484 arelent
*reloc_entry
;
1485 asection
*input_section
;
1486 boolean relocateable
;
1494 if (bfd_is_com_section (symbol
->section
))
1497 relocation
= symbol
->value
;
1499 relocation
+= symbol
->section
->output_section
->vma
;
1500 relocation
+= symbol
->section
->output_offset
;
1502 if (reloc_entry
->address
> input_section
->_cooked_size
)
1503 return bfd_reloc_outofrange
;
1505 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1507 /* Set val to the offset into the section or symbol. */
1508 if (reloc_entry
->howto
->src_mask
== 0)
1510 /* This case occurs with the 64-bit MIPS ELF ABI. */
1511 val
= reloc_entry
->addend
;
1515 val
= ((insn
& 0xffff) + reloc_entry
->addend
) & 0xffff;
1520 /* Adjust val for the final section location and GP value. If we
1521 are producing relocateable output, we don't want to do this for
1522 an external symbol. */
1524 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1525 val
+= relocation
- gp
;
1527 insn
= (insn
& ~0xffff) | (val
& 0xffff);
1528 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
1531 reloc_entry
->address
+= input_section
->output_offset
;
1533 /* Make sure it fit in 16 bits. */
1534 if ((long) val
>= 0x8000 || (long) val
< -0x8000)
1535 return bfd_reloc_overflow
;
1537 return bfd_reloc_ok
;
1540 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1541 from the gp register? XXX */
1543 static bfd_reloc_status_type gprel32_with_gp
PARAMS ((bfd
*, asymbol
*,
1544 arelent
*, asection
*,
1545 boolean
, PTR
, bfd_vma
));
1547 bfd_reloc_status_type
1548 _bfd_mips_elf_gprel32_reloc (abfd
,
1556 arelent
*reloc_entry
;
1559 asection
*input_section
;
1561 char **error_message
;
1563 boolean relocateable
;
1564 bfd_reloc_status_type ret
;
1567 /* If we're relocating, and this is an external symbol with no
1568 addend, we don't want to change anything. We will only have an
1569 addend if this is a newly created reloc, not read from an ELF
1571 if (output_bfd
!= (bfd
*) NULL
1572 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1573 && reloc_entry
->addend
== 0)
1575 *error_message
= (char *)
1576 _("32bits gp relative relocation occurs for an external symbol");
1577 return bfd_reloc_outofrange
;
1580 if (output_bfd
!= (bfd
*) NULL
)
1582 relocateable
= true;
1583 gp
= _bfd_get_gp_value (output_bfd
);
1587 relocateable
= false;
1588 output_bfd
= symbol
->section
->output_section
->owner
;
1590 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
,
1591 error_message
, &gp
);
1592 if (ret
!= bfd_reloc_ok
)
1596 return gprel32_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1597 relocateable
, data
, gp
);
1600 static bfd_reloc_status_type
1601 gprel32_with_gp (abfd
, symbol
, reloc_entry
, input_section
, relocateable
, data
,
1605 arelent
*reloc_entry
;
1606 asection
*input_section
;
1607 boolean relocateable
;
1614 if (bfd_is_com_section (symbol
->section
))
1617 relocation
= symbol
->value
;
1619 relocation
+= symbol
->section
->output_section
->vma
;
1620 relocation
+= symbol
->section
->output_offset
;
1622 if (reloc_entry
->address
> input_section
->_cooked_size
)
1623 return bfd_reloc_outofrange
;
1625 if (reloc_entry
->howto
->src_mask
== 0)
1627 /* This case arises with the 64-bit MIPS ELF ABI. */
1631 val
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1633 /* Set val to the offset into the section or symbol. */
1634 val
+= reloc_entry
->addend
;
1636 /* Adjust val for the final section location and GP value. If we
1637 are producing relocateable output, we don't want to do this for
1638 an external symbol. */
1640 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1641 val
+= relocation
- gp
;
1643 bfd_put_32 (abfd
, val
, (bfd_byte
*) data
+ reloc_entry
->address
);
1646 reloc_entry
->address
+= input_section
->output_offset
;
1648 return bfd_reloc_ok
;
1651 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1652 generated when addreses are 64 bits. The upper 32 bits are a simle
1655 static bfd_reloc_status_type
1656 mips32_64bit_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1657 output_bfd
, error_message
)
1659 arelent
*reloc_entry
;
1662 asection
*input_section
;
1664 char **error_message
;
1666 bfd_reloc_status_type r
;
1671 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1672 input_section
, output_bfd
, error_message
);
1673 if (r
!= bfd_reloc_continue
)
1676 /* Do a normal 32 bit relocation on the lower 32 bits. */
1677 reloc32
= *reloc_entry
;
1678 if (bfd_big_endian (abfd
))
1679 reloc32
.address
+= 4;
1680 reloc32
.howto
= &elf_mips_howto_table
[R_MIPS_32
];
1681 r
= bfd_perform_relocation (abfd
, &reloc32
, data
, input_section
,
1682 output_bfd
, error_message
);
1684 /* Sign extend into the upper 32 bits. */
1685 val
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc32
.address
);
1686 if ((val
& 0x80000000) != 0)
1690 addr
= reloc_entry
->address
;
1691 if (bfd_little_endian (abfd
))
1693 bfd_put_32 (abfd
, val
, (bfd_byte
*) data
+ addr
);
1698 /* Handle a mips16 jump. */
1700 static bfd_reloc_status_type
1701 mips16_jump_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1702 output_bfd
, error_message
)
1703 bfd
*abfd ATTRIBUTE_UNUSED
;
1704 arelent
*reloc_entry
;
1706 PTR data ATTRIBUTE_UNUSED
;
1707 asection
*input_section
;
1709 char **error_message ATTRIBUTE_UNUSED
;
1711 if (output_bfd
!= (bfd
*) NULL
1712 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1713 && reloc_entry
->addend
== 0)
1715 reloc_entry
->address
+= input_section
->output_offset
;
1716 return bfd_reloc_ok
;
1721 static boolean warned
;
1724 (*_bfd_error_handler
)
1725 (_("Linking mips16 objects into %s format is not supported"),
1726 bfd_get_target (input_section
->output_section
->owner
));
1730 return bfd_reloc_undefined
;
1733 /* Handle a mips16 GP relative reloc. */
1735 static bfd_reloc_status_type
1736 mips16_gprel_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1737 output_bfd
, error_message
)
1739 arelent
*reloc_entry
;
1742 asection
*input_section
;
1744 char **error_message
;
1746 boolean relocateable
;
1747 bfd_reloc_status_type ret
;
1749 unsigned short extend
, insn
;
1750 unsigned long final
;
1752 /* If we're relocating, and this is an external symbol with no
1753 addend, we don't want to change anything. We will only have an
1754 addend if this is a newly created reloc, not read from an ELF
1756 if (output_bfd
!= NULL
1757 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1758 && reloc_entry
->addend
== 0)
1760 reloc_entry
->address
+= input_section
->output_offset
;
1761 return bfd_reloc_ok
;
1764 if (output_bfd
!= NULL
)
1765 relocateable
= true;
1768 relocateable
= false;
1769 output_bfd
= symbol
->section
->output_section
->owner
;
1772 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
,
1774 if (ret
!= bfd_reloc_ok
)
1777 if (reloc_entry
->address
> input_section
->_cooked_size
)
1778 return bfd_reloc_outofrange
;
1780 /* Pick up the mips16 extend instruction and the real instruction. */
1781 extend
= bfd_get_16 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1782 insn
= bfd_get_16 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
+ 2);
1784 /* Stuff the current addend back as a 32 bit value, do the usual
1785 relocation, and then clean up. */
1787 (((extend
& 0x1f) << 11)
1790 (bfd_byte
*) data
+ reloc_entry
->address
);
1792 ret
= gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1793 relocateable
, data
, gp
);
1795 final
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1798 | ((final
>> 11) & 0x1f)
1800 (bfd_byte
*) data
+ reloc_entry
->address
);
1804 (bfd_byte
*) data
+ reloc_entry
->address
+ 2);
1809 /* Return the ISA for a MIPS e_flags value. */
1812 elf_mips_isa (flags
)
1815 switch (flags
& EF_MIPS_ARCH
)
1827 case E_MIPS_ARCH_32
:
1829 case E_MIPS_ARCH_64
:
1835 /* Return the MACH for a MIPS e_flags value. */
1838 elf_mips_mach (flags
)
1841 switch (flags
& EF_MIPS_MACH
)
1843 case E_MIPS_MACH_3900
:
1844 return bfd_mach_mips3900
;
1846 case E_MIPS_MACH_4010
:
1847 return bfd_mach_mips4010
;
1849 case E_MIPS_MACH_4100
:
1850 return bfd_mach_mips4100
;
1852 case E_MIPS_MACH_4111
:
1853 return bfd_mach_mips4111
;
1855 case E_MIPS_MACH_4650
:
1856 return bfd_mach_mips4650
;
1858 case E_MIPS_MACH_MIPS32_4K
:
1859 return bfd_mach_mips32_4k
;
1861 case E_MIPS_MACH_SB1
:
1862 return bfd_mach_mips_sb1
;
1865 switch (flags
& EF_MIPS_ARCH
)
1869 return bfd_mach_mips3000
;
1873 return bfd_mach_mips6000
;
1877 return bfd_mach_mips4000
;
1881 return bfd_mach_mips8000
;
1885 return bfd_mach_mips5
;
1888 case E_MIPS_ARCH_32
:
1889 return bfd_mach_mips32
;
1892 case E_MIPS_ARCH_64
:
1893 return bfd_mach_mips64
;
1901 /* Return printable name for ABI. */
1903 static INLINE
char *
1904 elf_mips_abi_name (abfd
)
1909 if (ABI_N32_P (abfd
))
1911 else if (ABI_64_P (abfd
))
1914 flags
= elf_elfheader (abfd
)->e_flags
;
1915 switch (flags
& EF_MIPS_ABI
)
1919 case E_MIPS_ABI_O32
:
1921 case E_MIPS_ABI_O64
:
1923 case E_MIPS_ABI_EABI32
:
1925 case E_MIPS_ABI_EABI64
:
1928 return "unknown abi";
1932 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1934 struct elf_reloc_map
{
1935 bfd_reloc_code_real_type bfd_reloc_val
;
1936 enum elf_mips_reloc_type elf_reloc_val
;
1939 static CONST
struct elf_reloc_map mips_reloc_map
[] =
1941 { BFD_RELOC_NONE
, R_MIPS_NONE
, },
1942 { BFD_RELOC_16
, R_MIPS_16
},
1943 { BFD_RELOC_32
, R_MIPS_32
},
1944 { BFD_RELOC_64
, R_MIPS_64
},
1945 { BFD_RELOC_MIPS_JMP
, R_MIPS_26
},
1946 { BFD_RELOC_HI16_S
, R_MIPS_HI16
},
1947 { BFD_RELOC_LO16
, R_MIPS_LO16
},
1948 { BFD_RELOC_MIPS_GPREL
, R_MIPS_GPREL16
},
1949 { BFD_RELOC_MIPS_LITERAL
, R_MIPS_LITERAL
},
1950 { BFD_RELOC_MIPS_GOT16
, R_MIPS_GOT16
},
1951 { BFD_RELOC_16_PCREL
, R_MIPS_PC16
},
1952 { BFD_RELOC_MIPS_CALL16
, R_MIPS_CALL16
},
1953 { BFD_RELOC_MIPS_GPREL32
, R_MIPS_GPREL32
},
1954 { BFD_RELOC_MIPS_GOT_HI16
, R_MIPS_GOT_HI16
},
1955 { BFD_RELOC_MIPS_GOT_LO16
, R_MIPS_GOT_LO16
},
1956 { BFD_RELOC_MIPS_CALL_HI16
, R_MIPS_CALL_HI16
},
1957 { BFD_RELOC_MIPS_CALL_LO16
, R_MIPS_CALL_LO16
},
1958 { BFD_RELOC_MIPS_SUB
, R_MIPS_SUB
},
1959 { BFD_RELOC_MIPS_GOT_PAGE
, R_MIPS_GOT_PAGE
},
1960 { BFD_RELOC_MIPS_GOT_OFST
, R_MIPS_GOT_OFST
},
1961 { BFD_RELOC_MIPS_GOT_DISP
, R_MIPS_GOT_DISP
}
1964 /* Given a BFD reloc type, return a howto structure. */
1966 static reloc_howto_type
*
1967 bfd_elf32_bfd_reloc_type_lookup (abfd
, code
)
1969 bfd_reloc_code_real_type code
;
1973 for (i
= 0; i
< sizeof (mips_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
1975 if (mips_reloc_map
[i
].bfd_reloc_val
== code
)
1976 return &elf_mips_howto_table
[(int) mips_reloc_map
[i
].elf_reloc_val
];
1982 bfd_set_error (bfd_error_bad_value
);
1985 case BFD_RELOC_CTOR
:
1986 /* We need to handle BFD_RELOC_CTOR specially.
1987 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1988 size of addresses on this architecture. */
1989 if (bfd_arch_bits_per_address (abfd
) == 32)
1990 return &elf_mips_howto_table
[(int) R_MIPS_32
];
1992 return &elf_mips_ctor64_howto
;
1994 case BFD_RELOC_MIPS16_JMP
:
1995 return &elf_mips16_jump_howto
;
1996 case BFD_RELOC_MIPS16_GPREL
:
1997 return &elf_mips16_gprel_howto
;
1998 case BFD_RELOC_VTABLE_INHERIT
:
1999 return &elf_mips_gnu_vtinherit_howto
;
2000 case BFD_RELOC_VTABLE_ENTRY
:
2001 return &elf_mips_gnu_vtentry_howto
;
2002 case BFD_RELOC_PCREL_HI16_S
:
2003 return &elf_mips_gnu_rel_hi16
;
2004 case BFD_RELOC_PCREL_LO16
:
2005 return &elf_mips_gnu_rel_lo16
;
2006 case BFD_RELOC_16_PCREL_S2
:
2007 return &elf_mips_gnu_rel16_s2
;
2008 case BFD_RELOC_64_PCREL
:
2009 return &elf_mips_gnu_pcrel64
;
2010 case BFD_RELOC_32_PCREL
:
2011 return &elf_mips_gnu_pcrel32
;
2015 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2017 static reloc_howto_type
*
2018 mips_rtype_to_howto (r_type
)
2019 unsigned int r_type
;
2024 return &elf_mips16_jump_howto
;
2026 case R_MIPS16_GPREL
:
2027 return &elf_mips16_gprel_howto
;
2029 case R_MIPS_GNU_VTINHERIT
:
2030 return &elf_mips_gnu_vtinherit_howto
;
2032 case R_MIPS_GNU_VTENTRY
:
2033 return &elf_mips_gnu_vtentry_howto
;
2035 case R_MIPS_GNU_REL_HI16
:
2036 return &elf_mips_gnu_rel_hi16
;
2038 case R_MIPS_GNU_REL_LO16
:
2039 return &elf_mips_gnu_rel_lo16
;
2041 case R_MIPS_GNU_REL16_S2
:
2042 return &elf_mips_gnu_rel16_s2
;
2045 return &elf_mips_gnu_pcrel64
;
2048 return &elf_mips_gnu_pcrel32
;
2052 BFD_ASSERT (r_type
< (unsigned int) R_MIPS_max
);
2053 return &elf_mips_howto_table
[r_type
];
2058 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2061 mips_info_to_howto_rel (abfd
, cache_ptr
, dst
)
2064 Elf32_Internal_Rel
*dst
;
2066 unsigned int r_type
;
2068 r_type
= ELF32_R_TYPE (dst
->r_info
);
2069 cache_ptr
->howto
= mips_rtype_to_howto (r_type
);
2071 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2072 value for the object file. We get the addend now, rather than
2073 when we do the relocation, because the symbol manipulations done
2074 by the linker may cause us to lose track of the input BFD. */
2075 if (((*cache_ptr
->sym_ptr_ptr
)->flags
& BSF_SECTION_SYM
) != 0
2076 && (r_type
== (unsigned int) R_MIPS_GPREL16
2077 || r_type
== (unsigned int) R_MIPS_LITERAL
))
2078 cache_ptr
->addend
= elf_gp (abfd
);
2081 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2084 mips_info_to_howto_rela (abfd
, cache_ptr
, dst
)
2087 Elf32_Internal_Rela
*dst
;
2089 /* Since an Elf32_Internal_Rel is an initial prefix of an
2090 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2092 mips_info_to_howto_rel (abfd
, cache_ptr
, (Elf32_Internal_Rel
*) dst
);
2094 /* If we ever need to do any extra processing with dst->r_addend
2095 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2098 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2099 routines swap this structure in and out. They are used outside of
2100 BFD, so they are globally visible. */
2103 bfd_mips_elf32_swap_reginfo_in (abfd
, ex
, in
)
2105 const Elf32_External_RegInfo
*ex
;
2108 in
->ri_gprmask
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_gprmask
);
2109 in
->ri_cprmask
[0] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[0]);
2110 in
->ri_cprmask
[1] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[1]);
2111 in
->ri_cprmask
[2] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[2]);
2112 in
->ri_cprmask
[3] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[3]);
2113 in
->ri_gp_value
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_gp_value
);
2117 bfd_mips_elf32_swap_reginfo_out (abfd
, in
, ex
)
2119 const Elf32_RegInfo
*in
;
2120 Elf32_External_RegInfo
*ex
;
2122 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_gprmask
,
2123 (bfd_byte
*) ex
->ri_gprmask
);
2124 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[0],
2125 (bfd_byte
*) ex
->ri_cprmask
[0]);
2126 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[1],
2127 (bfd_byte
*) ex
->ri_cprmask
[1]);
2128 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[2],
2129 (bfd_byte
*) ex
->ri_cprmask
[2]);
2130 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[3],
2131 (bfd_byte
*) ex
->ri_cprmask
[3]);
2132 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_gp_value
,
2133 (bfd_byte
*) ex
->ri_gp_value
);
2136 /* In the 64 bit ABI, the .MIPS.options section holds register
2137 information in an Elf64_Reginfo structure. These routines swap
2138 them in and out. They are globally visible because they are used
2139 outside of BFD. These routines are here so that gas can call them
2140 without worrying about whether the 64 bit ABI has been included. */
2143 bfd_mips_elf64_swap_reginfo_in (abfd
, ex
, in
)
2145 const Elf64_External_RegInfo
*ex
;
2146 Elf64_Internal_RegInfo
*in
;
2148 in
->ri_gprmask
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_gprmask
);
2149 in
->ri_pad
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_pad
);
2150 in
->ri_cprmask
[0] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[0]);
2151 in
->ri_cprmask
[1] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[1]);
2152 in
->ri_cprmask
[2] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[2]);
2153 in
->ri_cprmask
[3] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[3]);
2154 in
->ri_gp_value
= bfd_h_get_64 (abfd
, (bfd_byte
*) ex
->ri_gp_value
);
2158 bfd_mips_elf64_swap_reginfo_out (abfd
, in
, ex
)
2160 const Elf64_Internal_RegInfo
*in
;
2161 Elf64_External_RegInfo
*ex
;
2163 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_gprmask
,
2164 (bfd_byte
*) ex
->ri_gprmask
);
2165 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_pad
,
2166 (bfd_byte
*) ex
->ri_pad
);
2167 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[0],
2168 (bfd_byte
*) ex
->ri_cprmask
[0]);
2169 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[1],
2170 (bfd_byte
*) ex
->ri_cprmask
[1]);
2171 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[2],
2172 (bfd_byte
*) ex
->ri_cprmask
[2]);
2173 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[3],
2174 (bfd_byte
*) ex
->ri_cprmask
[3]);
2175 bfd_h_put_64 (abfd
, (bfd_vma
) in
->ri_gp_value
,
2176 (bfd_byte
*) ex
->ri_gp_value
);
2179 /* Swap an entry in a .gptab section. Note that these routines rely
2180 on the equivalence of the two elements of the union. */
2183 bfd_mips_elf32_swap_gptab_in (abfd
, ex
, in
)
2185 const Elf32_External_gptab
*ex
;
2188 in
->gt_entry
.gt_g_value
= bfd_h_get_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2189 in
->gt_entry
.gt_bytes
= bfd_h_get_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2193 bfd_mips_elf32_swap_gptab_out (abfd
, in
, ex
)
2195 const Elf32_gptab
*in
;
2196 Elf32_External_gptab
*ex
;
2198 bfd_h_put_32 (abfd
, (bfd_vma
) in
->gt_entry
.gt_g_value
,
2199 ex
->gt_entry
.gt_g_value
);
2200 bfd_h_put_32 (abfd
, (bfd_vma
) in
->gt_entry
.gt_bytes
,
2201 ex
->gt_entry
.gt_bytes
);
2205 bfd_elf32_swap_compact_rel_out (abfd
, in
, ex
)
2207 const Elf32_compact_rel
*in
;
2208 Elf32_External_compact_rel
*ex
;
2210 bfd_h_put_32 (abfd
, (bfd_vma
) in
->id1
, ex
->id1
);
2211 bfd_h_put_32 (abfd
, (bfd_vma
) in
->num
, ex
->num
);
2212 bfd_h_put_32 (abfd
, (bfd_vma
) in
->id2
, ex
->id2
);
2213 bfd_h_put_32 (abfd
, (bfd_vma
) in
->offset
, ex
->offset
);
2214 bfd_h_put_32 (abfd
, (bfd_vma
) in
->reserved0
, ex
->reserved0
);
2215 bfd_h_put_32 (abfd
, (bfd_vma
) in
->reserved1
, ex
->reserved1
);
2219 bfd_elf32_swap_crinfo_out (abfd
, in
, ex
)
2221 const Elf32_crinfo
*in
;
2222 Elf32_External_crinfo
*ex
;
2226 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2227 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2228 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2229 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2230 bfd_h_put_32 (abfd
, (bfd_vma
) l
, ex
->info
);
2231 bfd_h_put_32 (abfd
, (bfd_vma
) in
->konst
, ex
->konst
);
2232 bfd_h_put_32 (abfd
, (bfd_vma
) in
->vaddr
, ex
->vaddr
);
2235 /* Swap in an options header. */
2238 bfd_mips_elf_swap_options_in (abfd
, ex
, in
)
2240 const Elf_External_Options
*ex
;
2241 Elf_Internal_Options
*in
;
2243 in
->kind
= bfd_h_get_8 (abfd
, ex
->kind
);
2244 in
->size
= bfd_h_get_8 (abfd
, ex
->size
);
2245 in
->section
= bfd_h_get_16 (abfd
, ex
->section
);
2246 in
->info
= bfd_h_get_32 (abfd
, ex
->info
);
2249 /* Swap out an options header. */
2252 bfd_mips_elf_swap_options_out (abfd
, in
, ex
)
2254 const Elf_Internal_Options
*in
;
2255 Elf_External_Options
*ex
;
2257 bfd_h_put_8 (abfd
, in
->kind
, ex
->kind
);
2258 bfd_h_put_8 (abfd
, in
->size
, ex
->size
);
2259 bfd_h_put_16 (abfd
, in
->section
, ex
->section
);
2260 bfd_h_put_32 (abfd
, in
->info
, ex
->info
);
2263 /* Swap in an MSYM entry. */
2266 bfd_mips_elf_swap_msym_in (abfd
, ex
, in
)
2268 const Elf32_External_Msym
*ex
;
2269 Elf32_Internal_Msym
*in
;
2271 in
->ms_hash_value
= bfd_h_get_32 (abfd
, ex
->ms_hash_value
);
2272 in
->ms_info
= bfd_h_get_32 (abfd
, ex
->ms_info
);
2275 /* Swap out an MSYM entry. */
2278 bfd_mips_elf_swap_msym_out (abfd
, in
, ex
)
2280 const Elf32_Internal_Msym
*in
;
2281 Elf32_External_Msym
*ex
;
2283 bfd_h_put_32 (abfd
, in
->ms_hash_value
, ex
->ms_hash_value
);
2284 bfd_h_put_32 (abfd
, in
->ms_info
, ex
->ms_info
);
2287 /* Determine whether a symbol is global for the purposes of splitting
2288 the symbol table into global symbols and local symbols. At least
2289 on Irix 5, this split must be between section symbols and all other
2290 symbols. On most ELF targets the split is between static symbols
2291 and externally visible symbols. */
2294 mips_elf_sym_is_global (abfd
, sym
)
2295 bfd
*abfd ATTRIBUTE_UNUSED
;
2298 return (sym
->flags
& BSF_SECTION_SYM
) == 0 ? true : false;
2301 /* Set the right machine number for a MIPS ELF file. This is used for
2302 both the 32-bit and the 64-bit ABI. */
2305 _bfd_mips_elf_object_p (abfd
)
2308 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2309 sorted correctly such that local symbols precede global symbols,
2310 and the sh_info field in the symbol table is not always right. */
2311 elf_bad_symtab (abfd
) = true;
2313 bfd_default_set_arch_mach (abfd
, bfd_arch_mips
,
2314 elf_mips_mach (elf_elfheader (abfd
)->e_flags
));
2318 /* The final processing done just before writing out a MIPS ELF object
2319 file. This gets the MIPS architecture right based on the machine
2320 number. This is used by both the 32-bit and the 64-bit ABI. */
2323 _bfd_mips_elf_final_write_processing (abfd
, linker
)
2325 boolean linker ATTRIBUTE_UNUSED
;
2329 Elf_Internal_Shdr
**hdrpp
;
2333 switch (bfd_get_mach (abfd
))
2336 case bfd_mach_mips3000
:
2337 val
= E_MIPS_ARCH_1
;
2340 case bfd_mach_mips3900
:
2341 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
2344 case bfd_mach_mips6000
:
2345 val
= E_MIPS_ARCH_2
;
2348 case bfd_mach_mips4000
:
2349 case bfd_mach_mips4300
:
2350 val
= E_MIPS_ARCH_3
;
2353 case bfd_mach_mips4010
:
2354 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
2357 case bfd_mach_mips4100
:
2358 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
2361 case bfd_mach_mips4111
:
2362 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
2365 case bfd_mach_mips4650
:
2366 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
2369 case bfd_mach_mips8000
:
2370 val
= E_MIPS_ARCH_4
;
2373 case bfd_mach_mips32
:
2374 val
= E_MIPS_ARCH_32
;
2377 case bfd_mach_mips32_4k
:
2378 val
= E_MIPS_ARCH_32
| E_MIPS_MACH_MIPS32_4K
;
2381 case bfd_mach_mips5
:
2382 val
= E_MIPS_ARCH_5
;
2385 case bfd_mach_mips64
:
2386 val
= E_MIPS_ARCH_64
;
2389 case bfd_mach_mips_sb1
:
2390 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
2394 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
2395 elf_elfheader (abfd
)->e_flags
|= val
;
2397 /* Set the sh_info field for .gptab sections and other appropriate
2398 info for each special section. */
2399 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
2400 i
< elf_elfheader (abfd
)->e_shnum
;
2403 switch ((*hdrpp
)->sh_type
)
2406 case SHT_MIPS_LIBLIST
:
2407 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
2409 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2412 case SHT_MIPS_GPTAB
:
2413 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2414 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2415 BFD_ASSERT (name
!= NULL
2416 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
2417 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
2418 BFD_ASSERT (sec
!= NULL
);
2419 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
2422 case SHT_MIPS_CONTENT
:
2423 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2424 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2425 BFD_ASSERT (name
!= NULL
2426 && strncmp (name
, ".MIPS.content",
2427 sizeof ".MIPS.content" - 1) == 0);
2428 sec
= bfd_get_section_by_name (abfd
,
2429 name
+ sizeof ".MIPS.content" - 1);
2430 BFD_ASSERT (sec
!= NULL
);
2431 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2434 case SHT_MIPS_SYMBOL_LIB
:
2435 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
2437 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2438 sec
= bfd_get_section_by_name (abfd
, ".liblist");
2440 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
2443 case SHT_MIPS_EVENTS
:
2444 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2445 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2446 BFD_ASSERT (name
!= NULL
);
2447 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2448 sec
= bfd_get_section_by_name (abfd
,
2449 name
+ sizeof ".MIPS.events" - 1);
2452 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
2453 sizeof ".MIPS.post_rel" - 1) == 0);
2454 sec
= bfd_get_section_by_name (abfd
,
2456 + sizeof ".MIPS.post_rel" - 1));
2458 BFD_ASSERT (sec
!= NULL
);
2459 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2466 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2469 _bfd_mips_elf_set_private_flags (abfd
, flags
)
2473 BFD_ASSERT (!elf_flags_init (abfd
)
2474 || elf_elfheader (abfd
)->e_flags
== flags
);
2476 elf_elfheader (abfd
)->e_flags
= flags
;
2477 elf_flags_init (abfd
) = true;
2481 /* Copy backend specific data from one object module to another */
2484 _bfd_mips_elf_copy_private_bfd_data (ibfd
, obfd
)
2488 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2489 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2492 BFD_ASSERT (!elf_flags_init (obfd
)
2493 || (elf_elfheader (obfd
)->e_flags
2494 == elf_elfheader (ibfd
)->e_flags
));
2496 elf_gp (obfd
) = elf_gp (ibfd
);
2497 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
2498 elf_flags_init (obfd
) = true;
2502 /* Merge backend specific data from an object file to the output
2503 object file when linking. */
2506 _bfd_mips_elf_merge_private_bfd_data (ibfd
, obfd
)
2513 boolean null_input_bfd
= true;
2516 /* Check if we have the same endianess */
2517 if (_bfd_generic_verify_endian_match (ibfd
, obfd
) == false)
2520 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2521 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2524 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2525 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
2526 old_flags
= elf_elfheader (obfd
)->e_flags
;
2528 if (! elf_flags_init (obfd
))
2530 elf_flags_init (obfd
) = true;
2531 elf_elfheader (obfd
)->e_flags
= new_flags
;
2532 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
2533 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
2535 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2536 && bfd_get_arch_info (obfd
)->the_default
)
2538 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
2539 bfd_get_mach (ibfd
)))
2546 /* Check flag compatibility. */
2548 new_flags
&= ~EF_MIPS_NOREORDER
;
2549 old_flags
&= ~EF_MIPS_NOREORDER
;
2551 if (new_flags
== old_flags
)
2554 /* Check to see if the input BFD actually contains any sections.
2555 If not, its flags may not have been initialised either, but it cannot
2556 actually cause any incompatibility. */
2557 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2559 /* Ignore synthetic sections and empty .text, .data and .bss sections
2560 which are automatically generated by gas. */
2561 if (strcmp (sec
->name
, ".reginfo")
2562 && strcmp (sec
->name
, ".mdebug")
2563 && ((!strcmp (sec
->name
, ".text")
2564 || !strcmp (sec
->name
, ".data")
2565 || !strcmp (sec
->name
, ".bss"))
2566 && sec
->_raw_size
!= 0))
2568 null_input_bfd
= false;
2577 if ((new_flags
& EF_MIPS_PIC
) != (old_flags
& EF_MIPS_PIC
))
2579 new_flags
&= ~EF_MIPS_PIC
;
2580 old_flags
&= ~EF_MIPS_PIC
;
2581 (*_bfd_error_handler
)
2582 (_("%s: linking PIC files with non-PIC files"),
2583 bfd_get_filename (ibfd
));
2587 if ((new_flags
& EF_MIPS_CPIC
) != (old_flags
& EF_MIPS_CPIC
))
2589 new_flags
&= ~EF_MIPS_CPIC
;
2590 old_flags
&= ~EF_MIPS_CPIC
;
2591 (*_bfd_error_handler
)
2592 (_("%s: linking abicalls files with non-abicalls files"),
2593 bfd_get_filename (ibfd
));
2597 /* Compare the ISA's. */
2598 if ((new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
))
2599 != (old_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
)))
2601 int new_mach
= new_flags
& EF_MIPS_MACH
;
2602 int old_mach
= old_flags
& EF_MIPS_MACH
;
2603 int new_isa
= elf_mips_isa (new_flags
);
2604 int old_isa
= elf_mips_isa (old_flags
);
2606 /* If either has no machine specified, just compare the general isa's.
2607 Some combinations of machines are ok, if the isa's match. */
2610 || new_mach
== old_mach
2613 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2614 using 64-bit ISAs. They will normally use the same data sizes
2615 and calling conventions. */
2617 if (( (new_isa
== 1 || new_isa
== 2 || new_isa
== 32)
2618 ^ (old_isa
== 1 || old_isa
== 2 || old_isa
== 32)) != 0)
2620 (*_bfd_error_handler
)
2621 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2622 bfd_get_filename (ibfd
), new_isa
, old_isa
);
2629 (*_bfd_error_handler
)
2630 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2631 bfd_get_filename (ibfd
),
2632 elf_mips_mach (new_flags
),
2633 elf_mips_mach (old_flags
));
2637 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
2638 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
2641 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2642 does set EI_CLASS differently from any 32-bit ABI. */
2643 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
2644 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
2645 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
2647 /* Only error if both are set (to different values). */
2648 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
2649 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
2650 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
2652 (*_bfd_error_handler
)
2653 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2654 bfd_get_filename (ibfd
),
2655 elf_mips_abi_name (ibfd
),
2656 elf_mips_abi_name (obfd
));
2659 new_flags
&= ~EF_MIPS_ABI
;
2660 old_flags
&= ~EF_MIPS_ABI
;
2663 /* Warn about any other mismatches */
2664 if (new_flags
!= old_flags
)
2666 (*_bfd_error_handler
)
2667 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2668 bfd_get_filename (ibfd
), (unsigned long) new_flags
,
2669 (unsigned long) old_flags
);
2675 bfd_set_error (bfd_error_bad_value
);
2683 _bfd_mips_elf_print_private_bfd_data (abfd
, ptr
)
2687 FILE *file
= (FILE *) ptr
;
2689 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
2691 /* Print normal ELF private data. */
2692 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
2694 /* xgettext:c-format */
2695 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
2697 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
2698 fprintf (file
, _(" [abi=O32]"));
2699 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
2700 fprintf (file
, _(" [abi=O64]"));
2701 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
2702 fprintf (file
, _(" [abi=EABI32]"));
2703 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
2704 fprintf (file
, _(" [abi=EABI64]"));
2705 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
2706 fprintf (file
, _(" [abi unknown]"));
2707 else if (ABI_N32_P (abfd
))
2708 fprintf (file
, _(" [abi=N32]"));
2709 else if (ABI_64_P (abfd
))
2710 fprintf (file
, _(" [abi=64]"));
2712 fprintf (file
, _(" [no abi set]"));
2714 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
2715 fprintf (file
, _(" [mips1]"));
2716 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
2717 fprintf (file
, _(" [mips2]"));
2718 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
2719 fprintf (file
, _(" [mips3]"));
2720 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
2721 fprintf (file
, _(" [mips4]"));
2722 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
2723 fprintf (file
, _ (" [mips5]"));
2724 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
2725 fprintf (file
, _ (" [mips32]"));
2726 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
2727 fprintf (file
, _ (" [mips64]"));
2729 fprintf (file
, _(" [unknown ISA]"));
2731 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
2732 fprintf (file
, _(" [32bitmode]"));
2734 fprintf (file
, _(" [not 32bitmode]"));
2741 /* Handle a MIPS specific section when reading an object file. This
2742 is called when elfcode.h finds a section with an unknown type.
2743 This routine supports both the 32-bit and 64-bit ELF ABI.
2745 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2749 _bfd_mips_elf_section_from_shdr (abfd
, hdr
, name
)
2751 Elf_Internal_Shdr
*hdr
;
2756 /* There ought to be a place to keep ELF backend specific flags, but
2757 at the moment there isn't one. We just keep track of the
2758 sections by their name, instead. Fortunately, the ABI gives
2759 suggested names for all the MIPS specific sections, so we will
2760 probably get away with this. */
2761 switch (hdr
->sh_type
)
2763 case SHT_MIPS_LIBLIST
:
2764 if (strcmp (name
, ".liblist") != 0)
2768 if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (abfd
)) != 0)
2771 case SHT_MIPS_CONFLICT
:
2772 if (strcmp (name
, ".conflict") != 0)
2775 case SHT_MIPS_GPTAB
:
2776 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
2779 case SHT_MIPS_UCODE
:
2780 if (strcmp (name
, ".ucode") != 0)
2783 case SHT_MIPS_DEBUG
:
2784 if (strcmp (name
, ".mdebug") != 0)
2786 flags
= SEC_DEBUGGING
;
2788 case SHT_MIPS_REGINFO
:
2789 if (strcmp (name
, ".reginfo") != 0
2790 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
2792 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
2794 case SHT_MIPS_IFACE
:
2795 if (strcmp (name
, ".MIPS.interfaces") != 0)
2798 case SHT_MIPS_CONTENT
:
2799 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2802 case SHT_MIPS_OPTIONS
:
2803 if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) != 0)
2806 case SHT_MIPS_DWARF
:
2807 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
2810 case SHT_MIPS_SYMBOL_LIB
:
2811 if (strcmp (name
, ".MIPS.symlib") != 0)
2814 case SHT_MIPS_EVENTS
:
2815 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2816 && strncmp (name
, ".MIPS.post_rel",
2817 sizeof ".MIPS.post_rel" - 1) != 0)
2824 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
2829 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
2830 (bfd_get_section_flags (abfd
,
2836 /* FIXME: We should record sh_info for a .gptab section. */
2838 /* For a .reginfo section, set the gp value in the tdata information
2839 from the contents of this section. We need the gp value while
2840 processing relocs, so we just get it now. The .reginfo section
2841 is not used in the 64-bit MIPS ELF ABI. */
2842 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
2844 Elf32_External_RegInfo ext
;
2847 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, (PTR
) &ext
,
2848 (file_ptr
) 0, sizeof ext
))
2850 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
2851 elf_gp (abfd
) = s
.ri_gp_value
;
2854 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2855 set the gp value based on what we find. We may see both
2856 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2857 they should agree. */
2858 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
2860 bfd_byte
*contents
, *l
, *lend
;
2862 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
2863 if (contents
== NULL
)
2865 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
2866 (file_ptr
) 0, hdr
->sh_size
))
2872 lend
= contents
+ hdr
->sh_size
;
2873 while (l
+ sizeof (Elf_External_Options
) <= lend
)
2875 Elf_Internal_Options intopt
;
2877 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
2879 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
2881 Elf64_Internal_RegInfo intreg
;
2883 bfd_mips_elf64_swap_reginfo_in
2885 ((Elf64_External_RegInfo
*)
2886 (l
+ sizeof (Elf_External_Options
))),
2888 elf_gp (abfd
) = intreg
.ri_gp_value
;
2890 else if (intopt
.kind
== ODK_REGINFO
)
2892 Elf32_RegInfo intreg
;
2894 bfd_mips_elf32_swap_reginfo_in
2896 ((Elf32_External_RegInfo
*)
2897 (l
+ sizeof (Elf_External_Options
))),
2899 elf_gp (abfd
) = intreg
.ri_gp_value
;
2909 /* Set the correct type for a MIPS ELF section. We do this by the
2910 section name, which is a hack, but ought to work. This routine is
2911 used by both the 32-bit and the 64-bit ABI. */
2914 _bfd_mips_elf_fake_sections (abfd
, hdr
, sec
)
2916 Elf32_Internal_Shdr
*hdr
;
2919 register const char *name
;
2921 name
= bfd_get_section_name (abfd
, sec
);
2923 if (strcmp (name
, ".liblist") == 0)
2925 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
2926 hdr
->sh_info
= sec
->_raw_size
/ sizeof (Elf32_Lib
);
2927 /* The sh_link field is set in final_write_processing. */
2929 else if (strcmp (name
, ".conflict") == 0)
2930 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
2931 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
2933 hdr
->sh_type
= SHT_MIPS_GPTAB
;
2934 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
2935 /* The sh_info field is set in final_write_processing. */
2937 else if (strcmp (name
, ".ucode") == 0)
2938 hdr
->sh_type
= SHT_MIPS_UCODE
;
2939 else if (strcmp (name
, ".mdebug") == 0)
2941 hdr
->sh_type
= SHT_MIPS_DEBUG
;
2942 /* In a shared object on Irix 5.3, the .mdebug section has an
2943 entsize of 0. FIXME: Does this matter? */
2944 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
2945 hdr
->sh_entsize
= 0;
2947 hdr
->sh_entsize
= 1;
2949 else if (strcmp (name
, ".reginfo") == 0)
2951 hdr
->sh_type
= SHT_MIPS_REGINFO
;
2952 /* In a shared object on Irix 5.3, the .reginfo section has an
2953 entsize of 0x18. FIXME: Does this matter? */
2954 if (SGI_COMPAT (abfd
))
2956 if ((abfd
->flags
& DYNAMIC
) != 0)
2957 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
2959 hdr
->sh_entsize
= 1;
2962 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
2964 else if (SGI_COMPAT (abfd
)
2965 && (strcmp (name
, ".hash") == 0
2966 || strcmp (name
, ".dynamic") == 0
2967 || strcmp (name
, ".dynstr") == 0))
2969 if (SGI_COMPAT (abfd
))
2970 hdr
->sh_entsize
= 0;
2972 /* This isn't how the Irix 6 linker behaves. */
2973 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
2976 else if (strcmp (name
, ".got") == 0
2977 || strcmp (name
, MIPS_ELF_SRDATA_SECTION_NAME (abfd
)) == 0
2978 || strcmp (name
, ".sdata") == 0
2979 || strcmp (name
, ".sbss") == 0
2980 || strcmp (name
, ".lit4") == 0
2981 || strcmp (name
, ".lit8") == 0)
2982 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
2983 else if (strcmp (name
, ".MIPS.interfaces") == 0)
2985 hdr
->sh_type
= SHT_MIPS_IFACE
;
2986 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
2988 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
2990 hdr
->sh_type
= SHT_MIPS_CONTENT
;
2991 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
2992 /* The sh_info field is set in final_write_processing. */
2994 else if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
2996 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
2997 hdr
->sh_entsize
= 1;
2998 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3000 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
3001 hdr
->sh_type
= SHT_MIPS_DWARF
;
3002 else if (strcmp (name
, ".MIPS.symlib") == 0)
3004 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
3005 /* The sh_link and sh_info fields are set in
3006 final_write_processing. */
3008 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3009 || strncmp (name
, ".MIPS.post_rel",
3010 sizeof ".MIPS.post_rel" - 1) == 0)
3012 hdr
->sh_type
= SHT_MIPS_EVENTS
;
3013 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3014 /* The sh_link field is set in final_write_processing. */
3016 else if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (abfd
)) == 0)
3018 hdr
->sh_type
= SHT_MIPS_MSYM
;
3019 hdr
->sh_flags
|= SHF_ALLOC
;
3020 hdr
->sh_entsize
= 8;
3023 /* The generic elf_fake_sections will set up REL_HDR using the
3024 default kind of relocations. But, we may actually need both
3025 kinds of relocations, so we set up the second header here. */
3026 if ((sec
->flags
& SEC_RELOC
) != 0)
3028 struct bfd_elf_section_data
*esd
;
3030 esd
= elf_section_data (sec
);
3031 BFD_ASSERT (esd
->rel_hdr2
== NULL
);
3033 = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3036 _bfd_elf_init_reloc_shdr (abfd
, esd
->rel_hdr2
, sec
,
3037 !elf_section_data (sec
)->use_rela_p
);
3043 /* Given a BFD section, try to locate the corresponding ELF section
3044 index. This is used by both the 32-bit and the 64-bit ABI.
3045 Actually, it's not clear to me that the 64-bit ABI supports these,
3046 but for non-PIC objects we will certainly want support for at least
3047 the .scommon section. */
3050 _bfd_mips_elf_section_from_bfd_section (abfd
, hdr
, sec
, retval
)
3051 bfd
*abfd ATTRIBUTE_UNUSED
;
3052 Elf32_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
3056 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
3058 *retval
= SHN_MIPS_SCOMMON
;
3061 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
3063 *retval
= SHN_MIPS_ACOMMON
;
3069 /* When are writing out the .options or .MIPS.options section,
3070 remember the bytes we are writing out, so that we can install the
3071 GP value in the section_processing routine. */
3074 _bfd_mips_elf_set_section_contents (abfd
, section
, location
, offset
, count
)
3079 bfd_size_type count
;
3081 if (strcmp (section
->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
3085 if (elf_section_data (section
) == NULL
)
3087 section
->used_by_bfd
=
3088 (PTR
) bfd_zalloc (abfd
, sizeof (struct bfd_elf_section_data
));
3089 if (elf_section_data (section
) == NULL
)
3092 c
= (bfd_byte
*) elf_section_data (section
)->tdata
;
3097 if (section
->_cooked_size
!= 0)
3098 size
= section
->_cooked_size
;
3100 size
= section
->_raw_size
;
3101 c
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
3104 elf_section_data (section
)->tdata
= (PTR
) c
;
3107 memcpy (c
+ offset
, location
, count
);
3110 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
3114 /* Work over a section just before writing it out. This routine is
3115 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3116 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3120 _bfd_mips_elf_section_processing (abfd
, hdr
)
3122 Elf_Internal_Shdr
*hdr
;
3124 if (hdr
->sh_type
== SHT_MIPS_REGINFO
3125 && hdr
->sh_size
> 0)
3129 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
3130 BFD_ASSERT (hdr
->contents
== NULL
);
3133 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
3136 bfd_h_put_32 (abfd
, (bfd_vma
) elf_gp (abfd
), buf
);
3137 if (bfd_write (buf
, (bfd_size_type
) 1, (bfd_size_type
) 4, abfd
) != 4)
3141 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
3142 && hdr
->bfd_section
!= NULL
3143 && elf_section_data (hdr
->bfd_section
) != NULL
3144 && elf_section_data (hdr
->bfd_section
)->tdata
!= NULL
)
3146 bfd_byte
*contents
, *l
, *lend
;
3148 /* We stored the section contents in the elf_section_data tdata
3149 field in the set_section_contents routine. We save the
3150 section contents so that we don't have to read them again.
3151 At this point we know that elf_gp is set, so we can look
3152 through the section contents to see if there is an
3153 ODK_REGINFO structure. */
3155 contents
= (bfd_byte
*) elf_section_data (hdr
->bfd_section
)->tdata
;
3157 lend
= contents
+ hdr
->sh_size
;
3158 while (l
+ sizeof (Elf_External_Options
) <= lend
)
3160 Elf_Internal_Options intopt
;
3162 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
3164 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
3171 + sizeof (Elf_External_Options
)
3172 + (sizeof (Elf64_External_RegInfo
) - 8)),
3175 bfd_h_put_64 (abfd
, elf_gp (abfd
), buf
);
3176 if (bfd_write (buf
, 1, 8, abfd
) != 8)
3179 else if (intopt
.kind
== ODK_REGINFO
)
3186 + sizeof (Elf_External_Options
)
3187 + (sizeof (Elf32_External_RegInfo
) - 4)),
3190 bfd_h_put_32 (abfd
, elf_gp (abfd
), buf
);
3191 if (bfd_write (buf
, 1, 4, abfd
) != 4)
3198 if (hdr
->bfd_section
!= NULL
)
3200 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
3202 if (strcmp (name
, ".sdata") == 0
3203 || strcmp (name
, ".lit8") == 0
3204 || strcmp (name
, ".lit4") == 0)
3206 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3207 hdr
->sh_type
= SHT_PROGBITS
;
3209 else if (strcmp (name
, ".sbss") == 0)
3211 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3212 hdr
->sh_type
= SHT_NOBITS
;
3214 else if (strcmp (name
, MIPS_ELF_SRDATA_SECTION_NAME (abfd
)) == 0)
3216 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
3217 hdr
->sh_type
= SHT_PROGBITS
;
3219 else if (strcmp (name
, ".compact_rel") == 0)
3222 hdr
->sh_type
= SHT_PROGBITS
;
3224 else if (strcmp (name
, ".rtproc") == 0)
3226 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
3228 unsigned int adjust
;
3230 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
3232 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
3240 /* MIPS ELF uses two common sections. One is the usual one, and the
3241 other is for small objects. All the small objects are kept
3242 together, and then referenced via the gp pointer, which yields
3243 faster assembler code. This is what we use for the small common
3244 section. This approach is copied from ecoff.c. */
3245 static asection mips_elf_scom_section
;
3246 static asymbol mips_elf_scom_symbol
;
3247 static asymbol
*mips_elf_scom_symbol_ptr
;
3249 /* MIPS ELF also uses an acommon section, which represents an
3250 allocated common symbol which may be overridden by a
3251 definition in a shared library. */
3252 static asection mips_elf_acom_section
;
3253 static asymbol mips_elf_acom_symbol
;
3254 static asymbol
*mips_elf_acom_symbol_ptr
;
3256 /* Handle the special MIPS section numbers that a symbol may use.
3257 This is used for both the 32-bit and the 64-bit ABI. */
3260 _bfd_mips_elf_symbol_processing (abfd
, asym
)
3264 elf_symbol_type
*elfsym
;
3266 elfsym
= (elf_symbol_type
*) asym
;
3267 switch (elfsym
->internal_elf_sym
.st_shndx
)
3269 case SHN_MIPS_ACOMMON
:
3270 /* This section is used in a dynamically linked executable file.
3271 It is an allocated common section. The dynamic linker can
3272 either resolve these symbols to something in a shared
3273 library, or it can just leave them here. For our purposes,
3274 we can consider these symbols to be in a new section. */
3275 if (mips_elf_acom_section
.name
== NULL
)
3277 /* Initialize the acommon section. */
3278 mips_elf_acom_section
.name
= ".acommon";
3279 mips_elf_acom_section
.flags
= SEC_ALLOC
;
3280 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
3281 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
3282 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
3283 mips_elf_acom_symbol
.name
= ".acommon";
3284 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
3285 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
3286 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
3288 asym
->section
= &mips_elf_acom_section
;
3292 /* Common symbols less than the GP size are automatically
3293 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3294 if (asym
->value
> elf_gp_size (abfd
)
3295 || IRIX_COMPAT (abfd
) == ict_irix6
)
3298 case SHN_MIPS_SCOMMON
:
3299 if (mips_elf_scom_section
.name
== NULL
)
3301 /* Initialize the small common section. */
3302 mips_elf_scom_section
.name
= ".scommon";
3303 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
3304 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
3305 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
3306 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
3307 mips_elf_scom_symbol
.name
= ".scommon";
3308 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
3309 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
3310 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
3312 asym
->section
= &mips_elf_scom_section
;
3313 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3316 case SHN_MIPS_SUNDEFINED
:
3317 asym
->section
= bfd_und_section_ptr
;
3320 #if 0 /* for SGI_COMPAT */
3322 asym
->section
= mips_elf_text_section_ptr
;
3326 asym
->section
= mips_elf_data_section_ptr
;
3332 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3336 _bfd_mips_elf_additional_program_headers (abfd
)
3342 /* See if we need a PT_MIPS_REGINFO segment. */
3343 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3344 if (s
&& (s
->flags
& SEC_LOAD
))
3347 /* See if we need a PT_MIPS_OPTIONS segment. */
3348 if (IRIX_COMPAT (abfd
) == ict_irix6
3349 && bfd_get_section_by_name (abfd
,
3350 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
3353 /* See if we need a PT_MIPS_RTPROC segment. */
3354 if (IRIX_COMPAT (abfd
) == ict_irix5
3355 && bfd_get_section_by_name (abfd
, ".dynamic")
3356 && bfd_get_section_by_name (abfd
, ".mdebug"))
3362 /* Modify the segment map for an Irix 5 executable. */
3365 _bfd_mips_elf_modify_segment_map (abfd
)
3369 struct elf_segment_map
*m
, **pm
;
3371 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3373 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3374 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3376 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3377 if (m
->p_type
== PT_MIPS_REGINFO
)
3381 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, sizeof *m
);
3385 m
->p_type
= PT_MIPS_REGINFO
;
3389 /* We want to put it after the PHDR and INTERP segments. */
3390 pm
= &elf_tdata (abfd
)->segment_map
;
3392 && ((*pm
)->p_type
== PT_PHDR
3393 || (*pm
)->p_type
== PT_INTERP
))
3401 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3402 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3403 PT_OPTIONS segement immediately following the program header
3405 if (IRIX_COMPAT (abfd
) == ict_irix6
)
3409 for (s
= abfd
->sections
; s
; s
= s
->next
)
3410 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
3415 struct elf_segment_map
*options_segment
;
3417 /* Usually, there's a program header table. But, sometimes
3418 there's not (like when running the `ld' testsuite). So,
3419 if there's no program header table, we just put the
3420 options segement at the end. */
3421 for (pm
= &elf_tdata (abfd
)->segment_map
;
3424 if ((*pm
)->p_type
== PT_PHDR
)
3427 options_segment
= bfd_zalloc (abfd
,
3428 sizeof (struct elf_segment_map
));
3429 options_segment
->next
= *pm
;
3430 options_segment
->p_type
= PT_MIPS_OPTIONS
;
3431 options_segment
->p_flags
= PF_R
;
3432 options_segment
->p_flags_valid
= true;
3433 options_segment
->count
= 1;
3434 options_segment
->sections
[0] = s
;
3435 *pm
= options_segment
;
3440 if (IRIX_COMPAT (abfd
) == ict_irix5
)
3442 /* If there are .dynamic and .mdebug sections, we make a room
3443 for the RTPROC header. FIXME: Rewrite without section names. */
3444 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
3445 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
3446 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
3448 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3449 if (m
->p_type
== PT_MIPS_RTPROC
)
3453 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, sizeof *m
);
3457 m
->p_type
= PT_MIPS_RTPROC
;
3459 s
= bfd_get_section_by_name (abfd
, ".rtproc");
3464 m
->p_flags_valid
= 1;
3472 /* We want to put it after the DYNAMIC segment. */
3473 pm
= &elf_tdata (abfd
)->segment_map
;
3474 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
3484 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3485 .dynstr, .dynsym, and .hash sections, and everything in
3487 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
3489 if ((*pm
)->p_type
== PT_DYNAMIC
)
3492 if (IRIX_COMPAT (abfd
) == ict_none
)
3494 /* For a normal mips executable the permissions for the PT_DYNAMIC
3495 segment are read, write and execute. We do that here since
3496 the code in elf.c sets only the read permission. This matters
3497 sometimes for the dynamic linker. */
3498 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3500 m
->p_flags
= PF_R
| PF_W
| PF_X
;
3501 m
->p_flags_valid
= 1;
3505 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
3507 static const char *sec_names
[] =
3509 ".dynamic", ".dynstr", ".dynsym", ".hash"
3513 struct elf_segment_map
*n
;
3517 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
3519 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
3520 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3526 sz
= s
->_cooked_size
;
3529 if (high
< s
->vma
+ sz
)
3535 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3536 if ((s
->flags
& SEC_LOAD
) != 0
3539 + (s
->_cooked_size
!=
3540 0 ? s
->_cooked_size
: s
->_raw_size
)) <= high
))
3543 n
= ((struct elf_segment_map
*)
3544 bfd_zalloc (abfd
, sizeof *n
+ (c
- 1) * sizeof (asection
*)));
3551 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3553 if ((s
->flags
& SEC_LOAD
) != 0
3556 + (s
->_cooked_size
!= 0 ?
3557 s
->_cooked_size
: s
->_raw_size
)) <= high
))
3571 /* The structure of the runtime procedure descriptor created by the
3572 loader for use by the static exception system. */
3574 typedef struct runtime_pdr
{
3575 bfd_vma adr
; /* memory address of start of procedure */
3576 long regmask
; /* save register mask */
3577 long regoffset
; /* save register offset */
3578 long fregmask
; /* save floating point register mask */
3579 long fregoffset
; /* save floating point register offset */
3580 long frameoffset
; /* frame size */
3581 short framereg
; /* frame pointer register */
3582 short pcreg
; /* offset or reg of return pc */
3583 long irpss
; /* index into the runtime string table */
3585 struct exception_info
*exception_info
;/* pointer to exception array */
3587 #define cbRPDR sizeof (RPDR)
3588 #define rpdNil ((pRPDR) 0)
3590 /* Swap RPDR (runtime procedure table entry) for output. */
3592 static void ecoff_swap_rpdr_out
3593 PARAMS ((bfd
*, const RPDR
*, struct rpdr_ext
*));
3596 ecoff_swap_rpdr_out (abfd
, in
, ex
)
3599 struct rpdr_ext
*ex
;
3601 /* ecoff_put_off was defined in ecoffswap.h. */
3602 ecoff_put_off (abfd
, in
->adr
, (bfd_byte
*) ex
->p_adr
);
3603 bfd_h_put_32 (abfd
, in
->regmask
, (bfd_byte
*) ex
->p_regmask
);
3604 bfd_h_put_32 (abfd
, in
->regoffset
, (bfd_byte
*) ex
->p_regoffset
);
3605 bfd_h_put_32 (abfd
, in
->fregmask
, (bfd_byte
*) ex
->p_fregmask
);
3606 bfd_h_put_32 (abfd
, in
->fregoffset
, (bfd_byte
*) ex
->p_fregoffset
);
3607 bfd_h_put_32 (abfd
, in
->frameoffset
, (bfd_byte
*) ex
->p_frameoffset
);
3609 bfd_h_put_16 (abfd
, in
->framereg
, (bfd_byte
*) ex
->p_framereg
);
3610 bfd_h_put_16 (abfd
, in
->pcreg
, (bfd_byte
*) ex
->p_pcreg
);
3612 bfd_h_put_32 (abfd
, in
->irpss
, (bfd_byte
*) ex
->p_irpss
);
3614 ecoff_put_off (abfd
, in
->exception_info
, (bfd_byte
*) ex
->p_exception_info
);
3618 /* Read ECOFF debugging information from a .mdebug section into a
3619 ecoff_debug_info structure. */
3622 _bfd_mips_elf_read_ecoff_info (abfd
, section
, debug
)
3625 struct ecoff_debug_info
*debug
;
3628 const struct ecoff_debug_swap
*swap
;
3629 char *ext_hdr
= NULL
;
3631 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
3632 memset (debug
, 0, sizeof (*debug
));
3634 ext_hdr
= (char *) bfd_malloc ((size_t) swap
->external_hdr_size
);
3635 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
3638 if (bfd_get_section_contents (abfd
, section
, ext_hdr
, (file_ptr
) 0,
3639 swap
->external_hdr_size
)
3643 symhdr
= &debug
->symbolic_header
;
3644 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
3646 /* The symbolic header contains absolute file offsets and sizes to
3648 #define READ(ptr, offset, count, size, type) \
3649 if (symhdr->count == 0) \
3650 debug->ptr = NULL; \
3653 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3654 if (debug->ptr == NULL) \
3655 goto error_return; \
3656 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3657 || (bfd_read (debug->ptr, size, symhdr->count, \
3658 abfd) != size * symhdr->count)) \
3659 goto error_return; \
3662 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
3663 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, PTR
);
3664 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, PTR
);
3665 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, PTR
);
3666 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, PTR
);
3667 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
3669 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
3670 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
3671 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, PTR
);
3672 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, PTR
);
3673 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, PTR
);
3677 debug
->adjust
= NULL
;
3682 if (ext_hdr
!= NULL
)
3684 if (debug
->line
!= NULL
)
3686 if (debug
->external_dnr
!= NULL
)
3687 free (debug
->external_dnr
);
3688 if (debug
->external_pdr
!= NULL
)
3689 free (debug
->external_pdr
);
3690 if (debug
->external_sym
!= NULL
)
3691 free (debug
->external_sym
);
3692 if (debug
->external_opt
!= NULL
)
3693 free (debug
->external_opt
);
3694 if (debug
->external_aux
!= NULL
)
3695 free (debug
->external_aux
);
3696 if (debug
->ss
!= NULL
)
3698 if (debug
->ssext
!= NULL
)
3699 free (debug
->ssext
);
3700 if (debug
->external_fdr
!= NULL
)
3701 free (debug
->external_fdr
);
3702 if (debug
->external_rfd
!= NULL
)
3703 free (debug
->external_rfd
);
3704 if (debug
->external_ext
!= NULL
)
3705 free (debug
->external_ext
);
3709 /* MIPS ELF local labels start with '$', not 'L'. */
3712 mips_elf_is_local_label_name (abfd
, name
)
3719 /* On Irix 6, the labels go back to starting with '.', so we accept
3720 the generic ELF local label syntax as well. */
3721 return _bfd_elf_is_local_label_name (abfd
, name
);
3724 /* MIPS ELF uses a special find_nearest_line routine in order the
3725 handle the ECOFF debugging information. */
3727 struct mips_elf_find_line
3729 struct ecoff_debug_info d
;
3730 struct ecoff_find_line i
;
3734 _bfd_mips_elf_find_nearest_line (abfd
, section
, symbols
, offset
, filename_ptr
,
3735 functionname_ptr
, line_ptr
)
3740 const char **filename_ptr
;
3741 const char **functionname_ptr
;
3742 unsigned int *line_ptr
;
3746 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
3747 filename_ptr
, functionname_ptr
,
3751 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
3752 filename_ptr
, functionname_ptr
,
3754 ABI_64_P (abfd
) ? 8 : 0,
3755 &elf_tdata (abfd
)->dwarf2_find_line_info
))
3758 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
3762 struct mips_elf_find_line
*fi
;
3763 const struct ecoff_debug_swap
* const swap
=
3764 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
3766 /* If we are called during a link, mips_elf_final_link may have
3767 cleared the SEC_HAS_CONTENTS field. We force it back on here
3768 if appropriate (which it normally will be). */
3769 origflags
= msec
->flags
;
3770 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
3771 msec
->flags
|= SEC_HAS_CONTENTS
;
3773 fi
= elf_tdata (abfd
)->find_line_info
;
3776 bfd_size_type external_fdr_size
;
3779 struct fdr
*fdr_ptr
;
3781 fi
= ((struct mips_elf_find_line
*)
3782 bfd_zalloc (abfd
, sizeof (struct mips_elf_find_line
)));
3785 msec
->flags
= origflags
;
3789 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
3791 msec
->flags
= origflags
;
3795 /* Swap in the FDR information. */
3796 fi
->d
.fdr
= ((struct fdr
*)
3798 (fi
->d
.symbolic_header
.ifdMax
*
3799 sizeof (struct fdr
))));
3800 if (fi
->d
.fdr
== NULL
)
3802 msec
->flags
= origflags
;
3805 external_fdr_size
= swap
->external_fdr_size
;
3806 fdr_ptr
= fi
->d
.fdr
;
3807 fraw_src
= (char *) fi
->d
.external_fdr
;
3808 fraw_end
= (fraw_src
3809 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
3810 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
3811 (*swap
->swap_fdr_in
) (abfd
, (PTR
) fraw_src
, fdr_ptr
);
3813 elf_tdata (abfd
)->find_line_info
= fi
;
3815 /* Note that we don't bother to ever free this information.
3816 find_nearest_line is either called all the time, as in
3817 objdump -l, so the information should be saved, or it is
3818 rarely called, as in ld error messages, so the memory
3819 wasted is unimportant. Still, it would probably be a
3820 good idea for free_cached_info to throw it away. */
3823 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
3824 &fi
->i
, filename_ptr
, functionname_ptr
,
3827 msec
->flags
= origflags
;
3831 msec
->flags
= origflags
;
3834 /* Fall back on the generic ELF find_nearest_line routine. */
3836 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
3837 filename_ptr
, functionname_ptr
,
3841 /* The mips16 compiler uses a couple of special sections to handle
3842 floating point arguments.
3844 Section names that look like .mips16.fn.FNNAME contain stubs that
3845 copy floating point arguments from the fp regs to the gp regs and
3846 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3847 call should be redirected to the stub instead. If no 32 bit
3848 function calls FNNAME, the stub should be discarded. We need to
3849 consider any reference to the function, not just a call, because
3850 if the address of the function is taken we will need the stub,
3851 since the address might be passed to a 32 bit function.
3853 Section names that look like .mips16.call.FNNAME contain stubs
3854 that copy floating point arguments from the gp regs to the fp
3855 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3856 then any 16 bit function that calls FNNAME should be redirected
3857 to the stub instead. If FNNAME is not a 32 bit function, the
3858 stub should be discarded.
3860 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3861 which call FNNAME and then copy the return value from the fp regs
3862 to the gp regs. These stubs store the return value in $18 while
3863 calling FNNAME; any function which might call one of these stubs
3864 must arrange to save $18 around the call. (This case is not
3865 needed for 32 bit functions that call 16 bit functions, because
3866 16 bit functions always return floating point values in both
3869 Note that in all cases FNNAME might be defined statically.
3870 Therefore, FNNAME is not used literally. Instead, the relocation
3871 information will indicate which symbol the section is for.
3873 We record any stubs that we find in the symbol table. */
3875 #define FN_STUB ".mips16.fn."
3876 #define CALL_STUB ".mips16.call."
3877 #define CALL_FP_STUB ".mips16.call.fp."
3879 /* MIPS ELF linker hash table. */
3881 struct mips_elf_link_hash_table
3883 struct elf_link_hash_table root
;
3885 /* We no longer use this. */
3886 /* String section indices for the dynamic section symbols. */
3887 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
3889 /* The number of .rtproc entries. */
3890 bfd_size_type procedure_count
;
3891 /* The size of the .compact_rel section (if SGI_COMPAT). */
3892 bfd_size_type compact_rel_size
;
3893 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3894 entry is set to the address of __rld_obj_head as in Irix 5. */
3895 boolean use_rld_obj_head
;
3896 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3898 /* This is set if we see any mips16 stub sections. */
3899 boolean mips16_stubs_seen
;
3902 /* Look up an entry in a MIPS ELF linker hash table. */
3904 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3905 ((struct mips_elf_link_hash_entry *) \
3906 elf_link_hash_lookup (&(table)->root, (string), (create), \
3909 /* Traverse a MIPS ELF linker hash table. */
3911 #define mips_elf_link_hash_traverse(table, func, info) \
3912 (elf_link_hash_traverse \
3914 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3917 /* Get the MIPS ELF linker hash table from a link_info structure. */
3919 #define mips_elf_hash_table(p) \
3920 ((struct mips_elf_link_hash_table *) ((p)->hash))
3922 static boolean mips_elf_output_extsym
3923 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
3925 /* Create an entry in a MIPS ELF linker hash table. */
3927 static struct bfd_hash_entry
*
3928 mips_elf_link_hash_newfunc (entry
, table
, string
)
3929 struct bfd_hash_entry
*entry
;
3930 struct bfd_hash_table
*table
;
3933 struct mips_elf_link_hash_entry
*ret
=
3934 (struct mips_elf_link_hash_entry
*) entry
;
3936 /* Allocate the structure if it has not already been allocated by a
3938 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
3939 ret
= ((struct mips_elf_link_hash_entry
*)
3940 bfd_hash_allocate (table
,
3941 sizeof (struct mips_elf_link_hash_entry
)));
3942 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
3943 return (struct bfd_hash_entry
*) ret
;
3945 /* Call the allocation method of the superclass. */
3946 ret
= ((struct mips_elf_link_hash_entry
*)
3947 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
3949 if (ret
!= (struct mips_elf_link_hash_entry
*) NULL
)
3951 /* Set local fields. */
3952 memset (&ret
->esym
, 0, sizeof (EXTR
));
3953 /* We use -2 as a marker to indicate that the information has
3954 not been set. -1 means there is no associated ifd. */
3956 ret
->possibly_dynamic_relocs
= 0;
3957 ret
->min_dyn_reloc_index
= 0;
3958 ret
->fn_stub
= NULL
;
3959 ret
->need_fn_stub
= false;
3960 ret
->call_stub
= NULL
;
3961 ret
->call_fp_stub
= NULL
;
3964 return (struct bfd_hash_entry
*) ret
;
3968 _bfd_mips_elf_hide_symbol (info
, h
)
3969 struct bfd_link_info
*info
;
3970 struct mips_elf_link_hash_entry
*h
;
3974 struct mips_got_info
*g
;
3975 dynobj
= elf_hash_table (info
)->dynobj
;
3976 got
= bfd_get_section_by_name (dynobj
, ".got");
3977 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
3979 h
->root
.elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
3980 h
->root
.plt
.offset
= (bfd_vma
) -1;
3981 h
->root
.dynindx
= -1;
3983 /* FIXME: Do we allocate too much GOT space here? */
3985 got
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
3988 /* Create a MIPS ELF linker hash table. */
3990 struct bfd_link_hash_table
*
3991 _bfd_mips_elf_link_hash_table_create (abfd
)
3994 struct mips_elf_link_hash_table
*ret
;
3996 ret
= ((struct mips_elf_link_hash_table
*)
3997 bfd_alloc (abfd
, sizeof (struct mips_elf_link_hash_table
)));
3998 if (ret
== (struct mips_elf_link_hash_table
*) NULL
)
4001 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
4002 mips_elf_link_hash_newfunc
))
4004 bfd_release (abfd
, ret
);
4009 /* We no longer use this. */
4010 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
4011 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
4013 ret
->procedure_count
= 0;
4014 ret
->compact_rel_size
= 0;
4015 ret
->use_rld_obj_head
= false;
4017 ret
->mips16_stubs_seen
= false;
4019 return &ret
->root
.root
;
4022 /* Hook called by the linker routine which adds symbols from an object
4023 file. We must handle the special MIPS section numbers here. */
4026 _bfd_mips_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
4028 struct bfd_link_info
*info
;
4029 const Elf_Internal_Sym
*sym
;
4031 flagword
*flagsp ATTRIBUTE_UNUSED
;
4035 if (SGI_COMPAT (abfd
)
4036 && (abfd
->flags
& DYNAMIC
) != 0
4037 && strcmp (*namep
, "_rld_new_interface") == 0)
4039 /* Skip Irix 5 rld entry name. */
4044 switch (sym
->st_shndx
)
4047 /* Common symbols less than the GP size are automatically
4048 treated as SHN_MIPS_SCOMMON symbols. */
4049 if (sym
->st_size
> elf_gp_size (abfd
)
4050 || IRIX_COMPAT (abfd
) == ict_irix6
)
4053 case SHN_MIPS_SCOMMON
:
4054 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
4055 (*secp
)->flags
|= SEC_IS_COMMON
;
4056 *valp
= sym
->st_size
;
4060 /* This section is used in a shared object. */
4061 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
4063 asymbol
*elf_text_symbol
;
4064 asection
*elf_text_section
;
4066 elf_text_section
= bfd_zalloc (abfd
, sizeof (asection
));
4067 if (elf_text_section
== NULL
)
4070 elf_text_symbol
= bfd_zalloc (abfd
, sizeof (asymbol
));
4071 if (elf_text_symbol
== NULL
)
4074 /* Initialize the section. */
4076 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
4077 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
4079 elf_text_section
->symbol
= elf_text_symbol
;
4080 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
4082 elf_text_section
->name
= ".text";
4083 elf_text_section
->flags
= SEC_NO_FLAGS
;
4084 elf_text_section
->output_section
= NULL
;
4085 elf_text_section
->owner
= abfd
;
4086 elf_text_symbol
->name
= ".text";
4087 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4088 elf_text_symbol
->section
= elf_text_section
;
4090 /* This code used to do *secp = bfd_und_section_ptr if
4091 info->shared. I don't know why, and that doesn't make sense,
4092 so I took it out. */
4093 *secp
= elf_tdata (abfd
)->elf_text_section
;
4096 case SHN_MIPS_ACOMMON
:
4097 /* Fall through. XXX Can we treat this as allocated data? */
4099 /* This section is used in a shared object. */
4100 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
4102 asymbol
*elf_data_symbol
;
4103 asection
*elf_data_section
;
4105 elf_data_section
= bfd_zalloc (abfd
, sizeof (asection
));
4106 if (elf_data_section
== NULL
)
4109 elf_data_symbol
= bfd_zalloc (abfd
, sizeof (asymbol
));
4110 if (elf_data_symbol
== NULL
)
4113 /* Initialize the section. */
4115 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
4116 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
4118 elf_data_section
->symbol
= elf_data_symbol
;
4119 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
4121 elf_data_section
->name
= ".data";
4122 elf_data_section
->flags
= SEC_NO_FLAGS
;
4123 elf_data_section
->output_section
= NULL
;
4124 elf_data_section
->owner
= abfd
;
4125 elf_data_symbol
->name
= ".data";
4126 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4127 elf_data_symbol
->section
= elf_data_section
;
4129 /* This code used to do *secp = bfd_und_section_ptr if
4130 info->shared. I don't know why, and that doesn't make sense,
4131 so I took it out. */
4132 *secp
= elf_tdata (abfd
)->elf_data_section
;
4135 case SHN_MIPS_SUNDEFINED
:
4136 *secp
= bfd_und_section_ptr
;
4140 if (SGI_COMPAT (abfd
)
4142 && info
->hash
->creator
== abfd
->xvec
4143 && strcmp (*namep
, "__rld_obj_head") == 0)
4145 struct elf_link_hash_entry
*h
;
4147 /* Mark __rld_obj_head as dynamic. */
4149 if (! (_bfd_generic_link_add_one_symbol
4150 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
,
4151 (bfd_vma
) *valp
, (const char *) NULL
, false,
4152 get_elf_backend_data (abfd
)->collect
,
4153 (struct bfd_link_hash_entry
**) &h
)))
4155 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4156 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4157 h
->type
= STT_OBJECT
;
4159 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4162 mips_elf_hash_table (info
)->use_rld_obj_head
= true;
4165 /* If this is a mips16 text symbol, add 1 to the value to make it
4166 odd. This will cause something like .word SYM to come up with
4167 the right value when it is loaded into the PC. */
4168 if (sym
->st_other
== STO_MIPS16
)
4174 /* Structure used to pass information to mips_elf_output_extsym. */
4179 struct bfd_link_info
*info
;
4180 struct ecoff_debug_info
*debug
;
4181 const struct ecoff_debug_swap
*swap
;
4185 /* This routine is used to write out ECOFF debugging external symbol
4186 information. It is called via mips_elf_link_hash_traverse. The
4187 ECOFF external symbol information must match the ELF external
4188 symbol information. Unfortunately, at this point we don't know
4189 whether a symbol is required by reloc information, so the two
4190 tables may wind up being different. We must sort out the external
4191 symbol information before we can set the final size of the .mdebug
4192 section, and we must set the size of the .mdebug section before we
4193 can relocate any sections, and we can't know which symbols are
4194 required by relocation until we relocate the sections.
4195 Fortunately, it is relatively unlikely that any symbol will be
4196 stripped but required by a reloc. In particular, it can not happen
4197 when generating a final executable. */
4200 mips_elf_output_extsym (h
, data
)
4201 struct mips_elf_link_hash_entry
*h
;
4204 struct extsym_info
*einfo
= (struct extsym_info
*) data
;
4206 asection
*sec
, *output_section
;
4208 if (h
->root
.indx
== -2)
4210 else if (((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
4211 || (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
4212 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
4213 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
4215 else if (einfo
->info
->strip
== strip_all
4216 || (einfo
->info
->strip
== strip_some
4217 && bfd_hash_lookup (einfo
->info
->keep_hash
,
4218 h
->root
.root
.root
.string
,
4219 false, false) == NULL
))
4227 if (h
->esym
.ifd
== -2)
4230 h
->esym
.cobol_main
= 0;
4231 h
->esym
.weakext
= 0;
4232 h
->esym
.reserved
= 0;
4233 h
->esym
.ifd
= ifdNil
;
4234 h
->esym
.asym
.value
= 0;
4235 h
->esym
.asym
.st
= stGlobal
;
4237 if (h
->root
.root
.type
== bfd_link_hash_undefined
4238 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
4242 /* Use undefined class. Also, set class and type for some
4244 name
= h
->root
.root
.root
.string
;
4245 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
4246 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
4248 h
->esym
.asym
.sc
= scData
;
4249 h
->esym
.asym
.st
= stLabel
;
4250 h
->esym
.asym
.value
= 0;
4252 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
4254 h
->esym
.asym
.sc
= scAbs
;
4255 h
->esym
.asym
.st
= stLabel
;
4256 h
->esym
.asym
.value
=
4257 mips_elf_hash_table (einfo
->info
)->procedure_count
;
4259 else if (strcmp (name
, "_gp_disp") == 0)
4261 h
->esym
.asym
.sc
= scAbs
;
4262 h
->esym
.asym
.st
= stLabel
;
4263 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
4266 h
->esym
.asym
.sc
= scUndefined
;
4268 else if (h
->root
.root
.type
!= bfd_link_hash_defined
4269 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
4270 h
->esym
.asym
.sc
= scAbs
;
4275 sec
= h
->root
.root
.u
.def
.section
;
4276 output_section
= sec
->output_section
;
4278 /* When making a shared library and symbol h is the one from
4279 the another shared library, OUTPUT_SECTION may be null. */
4280 if (output_section
== NULL
)
4281 h
->esym
.asym
.sc
= scUndefined
;
4284 name
= bfd_section_name (output_section
->owner
, output_section
);
4286 if (strcmp (name
, ".text") == 0)
4287 h
->esym
.asym
.sc
= scText
;
4288 else if (strcmp (name
, ".data") == 0)
4289 h
->esym
.asym
.sc
= scData
;
4290 else if (strcmp (name
, ".sdata") == 0)
4291 h
->esym
.asym
.sc
= scSData
;
4292 else if (strcmp (name
, ".rodata") == 0
4293 || strcmp (name
, ".rdata") == 0)
4294 h
->esym
.asym
.sc
= scRData
;
4295 else if (strcmp (name
, ".bss") == 0)
4296 h
->esym
.asym
.sc
= scBss
;
4297 else if (strcmp (name
, ".sbss") == 0)
4298 h
->esym
.asym
.sc
= scSBss
;
4299 else if (strcmp (name
, ".init") == 0)
4300 h
->esym
.asym
.sc
= scInit
;
4301 else if (strcmp (name
, ".fini") == 0)
4302 h
->esym
.asym
.sc
= scFini
;
4304 h
->esym
.asym
.sc
= scAbs
;
4308 h
->esym
.asym
.reserved
= 0;
4309 h
->esym
.asym
.index
= indexNil
;
4312 if (h
->root
.root
.type
== bfd_link_hash_common
)
4313 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
4314 else if (h
->root
.root
.type
== bfd_link_hash_defined
4315 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4317 if (h
->esym
.asym
.sc
== scCommon
)
4318 h
->esym
.asym
.sc
= scBss
;
4319 else if (h
->esym
.asym
.sc
== scSCommon
)
4320 h
->esym
.asym
.sc
= scSBss
;
4322 sec
= h
->root
.root
.u
.def
.section
;
4323 output_section
= sec
->output_section
;
4324 if (output_section
!= NULL
)
4325 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
4326 + sec
->output_offset
4327 + output_section
->vma
);
4329 h
->esym
.asym
.value
= 0;
4331 else if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
4333 /* Set type and value for a symbol with a function stub. */
4334 h
->esym
.asym
.st
= stProc
;
4335 sec
= h
->root
.root
.u
.def
.section
;
4337 h
->esym
.asym
.value
= 0;
4340 output_section
= sec
->output_section
;
4341 if (output_section
!= NULL
)
4342 h
->esym
.asym
.value
= (h
->root
.plt
.offset
4343 + sec
->output_offset
4344 + output_section
->vma
);
4346 h
->esym
.asym
.value
= 0;
4353 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
4354 h
->root
.root
.root
.string
,
4357 einfo
->failed
= true;
4364 /* Create a runtime procedure table from the .mdebug section. */
4367 mips_elf_create_procedure_table (handle
, abfd
, info
, s
, debug
)
4370 struct bfd_link_info
*info
;
4372 struct ecoff_debug_info
*debug
;
4374 const struct ecoff_debug_swap
*swap
;
4375 HDRR
*hdr
= &debug
->symbolic_header
;
4377 struct rpdr_ext
*erp
;
4379 struct pdr_ext
*epdr
;
4380 struct sym_ext
*esym
;
4383 unsigned long size
, count
;
4384 unsigned long sindex
;
4388 const char *no_name_func
= _("static procedure (no name)");
4396 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4398 sindex
= strlen (no_name_func
) + 1;
4399 count
= hdr
->ipdMax
;
4402 size
= swap
->external_pdr_size
;
4404 epdr
= (struct pdr_ext
*) bfd_malloc (size
* count
);
4408 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (PTR
) epdr
))
4411 size
= sizeof (RPDR
);
4412 rp
= rpdr
= (RPDR
*) bfd_malloc (size
* count
);
4416 sv
= (char **) bfd_malloc (sizeof (char *) * count
);
4420 count
= hdr
->isymMax
;
4421 size
= swap
->external_sym_size
;
4422 esym
= (struct sym_ext
*) bfd_malloc (size
* count
);
4426 if (! _bfd_ecoff_get_accumulated_sym (handle
, (PTR
) esym
))
4429 count
= hdr
->issMax
;
4430 ss
= (char *) bfd_malloc (count
);
4433 if (! _bfd_ecoff_get_accumulated_ss (handle
, (PTR
) ss
))
4436 count
= hdr
->ipdMax
;
4437 for (i
= 0; i
< count
; i
++, rp
++)
4439 (*swap
->swap_pdr_in
) (abfd
, (PTR
) (epdr
+ i
), &pdr
);
4440 (*swap
->swap_sym_in
) (abfd
, (PTR
) &esym
[pdr
.isym
], &sym
);
4441 rp
->adr
= sym
.value
;
4442 rp
->regmask
= pdr
.regmask
;
4443 rp
->regoffset
= pdr
.regoffset
;
4444 rp
->fregmask
= pdr
.fregmask
;
4445 rp
->fregoffset
= pdr
.fregoffset
;
4446 rp
->frameoffset
= pdr
.frameoffset
;
4447 rp
->framereg
= pdr
.framereg
;
4448 rp
->pcreg
= pdr
.pcreg
;
4450 sv
[i
] = ss
+ sym
.iss
;
4451 sindex
+= strlen (sv
[i
]) + 1;
4455 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
4456 size
= BFD_ALIGN (size
, 16);
4457 rtproc
= (PTR
) bfd_alloc (abfd
, size
);
4460 mips_elf_hash_table (info
)->procedure_count
= 0;
4464 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
4466 erp
= (struct rpdr_ext
*) rtproc
;
4467 memset (erp
, 0, sizeof (struct rpdr_ext
));
4469 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
4470 strcpy (str
, no_name_func
);
4471 str
+= strlen (no_name_func
) + 1;
4472 for (i
= 0; i
< count
; i
++)
4474 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
4475 strcpy (str
, sv
[i
]);
4476 str
+= strlen (sv
[i
]) + 1;
4478 ecoff_put_off (abfd
, (bfd_vma
) -1, (bfd_byte
*) (erp
+ count
)->p_adr
);
4480 /* Set the size and contents of .rtproc section. */
4481 s
->_raw_size
= size
;
4482 s
->contents
= (bfd_byte
*) rtproc
;
4484 /* Skip this section later on (I don't think this currently
4485 matters, but someday it might). */
4486 s
->link_order_head
= (struct bfd_link_order
*) NULL
;
4515 /* A comparison routine used to sort .gptab entries. */
4518 gptab_compare (p1
, p2
)
4522 const Elf32_gptab
*a1
= (const Elf32_gptab
*) p1
;
4523 const Elf32_gptab
*a2
= (const Elf32_gptab
*) p2
;
4525 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
4528 /* We need to use a special link routine to handle the .reginfo and
4529 the .mdebug sections. We need to merge all instances of these
4530 sections together, not write them all out sequentially. */
4533 _bfd_mips_elf_final_link (abfd
, info
)
4535 struct bfd_link_info
*info
;
4539 struct bfd_link_order
*p
;
4540 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
4541 asection
*rtproc_sec
;
4542 Elf32_RegInfo reginfo
;
4543 struct ecoff_debug_info debug
;
4544 const struct ecoff_debug_swap
*swap
4545 = get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4546 HDRR
*symhdr
= &debug
.symbolic_header
;
4547 PTR mdebug_handle
= NULL
;
4552 static const char * const name
[] =
4554 ".text", ".init", ".fini", ".data",
4555 ".rodata", ".sdata", ".sbss", ".bss"
4557 static const int sc
[] =
4559 scText
, scInit
, scFini
, scData
,
4560 scRData
, scSData
, scSBss
, scBss
4563 /* If all the things we linked together were PIC, but we're
4564 producing an executable (rather than a shared object), then the
4565 resulting file is CPIC (i.e., it calls PIC code.) */
4567 && !info
->relocateable
4568 && elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
4570 elf_elfheader (abfd
)->e_flags
&= ~EF_MIPS_PIC
;
4571 elf_elfheader (abfd
)->e_flags
|= EF_MIPS_CPIC
;
4574 /* We'd carefully arranged the dynamic symbol indices, and then the
4575 generic size_dynamic_sections renumbered them out from under us.
4576 Rather than trying somehow to prevent the renumbering, just do
4578 if (elf_hash_table (info
)->dynamic_sections_created
)
4582 struct mips_got_info
*g
;
4584 /* When we resort, we must tell mips_elf_sort_hash_table what
4585 the lowest index it may use is. That's the number of section
4586 symbols we're going to add. The generic ELF linker only
4587 adds these symbols when building a shared object. Note that
4588 we count the sections after (possibly) removing the .options
4590 if (!mips_elf_sort_hash_table (info
, (info
->shared
4591 ? bfd_count_sections (abfd
) + 1
4595 /* Make sure we didn't grow the global .got region. */
4596 dynobj
= elf_hash_table (info
)->dynobj
;
4597 got
= bfd_get_section_by_name (dynobj
, ".got");
4598 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
4600 if (g
->global_gotsym
!= NULL
)
4601 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
4602 - g
->global_gotsym
->dynindx
)
4603 <= g
->global_gotno
);
4606 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4607 include it, even though we don't process it quite right. (Some
4608 entries are supposed to be merged.) Empirically, we seem to be
4609 better off including it then not. */
4610 if (IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
4611 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
4613 if (strcmp ((*secpp
)->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
4615 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
4616 if (p
->type
== bfd_indirect_link_order
)
4617 p
->u
.indirect
.section
->flags
&= ~SEC_HAS_CONTENTS
;
4618 (*secpp
)->link_order_head
= NULL
;
4619 *secpp
= (*secpp
)->next
;
4620 --abfd
->section_count
;
4626 /* Get a value for the GP register. */
4627 if (elf_gp (abfd
) == 0)
4629 struct bfd_link_hash_entry
*h
;
4631 h
= bfd_link_hash_lookup (info
->hash
, "_gp", false, false, true);
4632 if (h
!= (struct bfd_link_hash_entry
*) NULL
4633 && h
->type
== bfd_link_hash_defined
)
4634 elf_gp (abfd
) = (h
->u
.def
.value
4635 + h
->u
.def
.section
->output_section
->vma
4636 + h
->u
.def
.section
->output_offset
);
4637 else if (info
->relocateable
)
4641 /* Find the GP-relative section with the lowest offset. */
4643 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4645 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
4648 /* And calculate GP relative to that. */
4649 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
4653 /* If the relocate_section function needs to do a reloc
4654 involving the GP value, it should make a reloc_dangerous
4655 callback to warn that GP is not defined. */
4659 /* Go through the sections and collect the .reginfo and .mdebug
4663 gptab_data_sec
= NULL
;
4664 gptab_bss_sec
= NULL
;
4665 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4667 if (strcmp (o
->name
, ".reginfo") == 0)
4669 memset (®info
, 0, sizeof reginfo
);
4671 /* We have found the .reginfo section in the output file.
4672 Look through all the link_orders comprising it and merge
4673 the information together. */
4674 for (p
= o
->link_order_head
;
4675 p
!= (struct bfd_link_order
*) NULL
;
4678 asection
*input_section
;
4680 Elf32_External_RegInfo ext
;
4683 if (p
->type
!= bfd_indirect_link_order
)
4685 if (p
->type
== bfd_fill_link_order
)
4690 input_section
= p
->u
.indirect
.section
;
4691 input_bfd
= input_section
->owner
;
4693 /* The linker emulation code has probably clobbered the
4694 size to be zero bytes. */
4695 if (input_section
->_raw_size
== 0)
4696 input_section
->_raw_size
= sizeof (Elf32_External_RegInfo
);
4698 if (! bfd_get_section_contents (input_bfd
, input_section
,
4704 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
4706 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
4707 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
4708 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
4709 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
4710 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
4712 /* ri_gp_value is set by the function
4713 mips_elf32_section_processing when the section is
4714 finally written out. */
4716 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4717 elf_link_input_bfd ignores this section. */
4718 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
4721 /* Size has been set in mips_elf_always_size_sections */
4722 BFD_ASSERT(o
->_raw_size
== sizeof (Elf32_External_RegInfo
));
4724 /* Skip this section later on (I don't think this currently
4725 matters, but someday it might). */
4726 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4731 if (strcmp (o
->name
, ".mdebug") == 0)
4733 struct extsym_info einfo
;
4735 /* We have found the .mdebug section in the output file.
4736 Look through all the link_orders comprising it and merge
4737 the information together. */
4738 symhdr
->magic
= swap
->sym_magic
;
4739 /* FIXME: What should the version stamp be? */
4741 symhdr
->ilineMax
= 0;
4745 symhdr
->isymMax
= 0;
4746 symhdr
->ioptMax
= 0;
4747 symhdr
->iauxMax
= 0;
4749 symhdr
->issExtMax
= 0;
4752 symhdr
->iextMax
= 0;
4754 /* We accumulate the debugging information itself in the
4755 debug_info structure. */
4757 debug
.external_dnr
= NULL
;
4758 debug
.external_pdr
= NULL
;
4759 debug
.external_sym
= NULL
;
4760 debug
.external_opt
= NULL
;
4761 debug
.external_aux
= NULL
;
4763 debug
.ssext
= debug
.ssext_end
= NULL
;
4764 debug
.external_fdr
= NULL
;
4765 debug
.external_rfd
= NULL
;
4766 debug
.external_ext
= debug
.external_ext_end
= NULL
;
4768 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
4769 if (mdebug_handle
== (PTR
) NULL
)
4773 esym
.cobol_main
= 0;
4777 esym
.asym
.iss
= issNil
;
4778 esym
.asym
.st
= stLocal
;
4779 esym
.asym
.reserved
= 0;
4780 esym
.asym
.index
= indexNil
;
4782 for (i
= 0; i
< 8; i
++)
4784 esym
.asym
.sc
= sc
[i
];
4785 s
= bfd_get_section_by_name (abfd
, name
[i
]);
4788 esym
.asym
.value
= s
->vma
;
4789 last
= s
->vma
+ s
->_raw_size
;
4792 esym
.asym
.value
= last
;
4793 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
4798 for (p
= o
->link_order_head
;
4799 p
!= (struct bfd_link_order
*) NULL
;
4802 asection
*input_section
;
4804 const struct ecoff_debug_swap
*input_swap
;
4805 struct ecoff_debug_info input_debug
;
4809 if (p
->type
!= bfd_indirect_link_order
)
4811 if (p
->type
== bfd_fill_link_order
)
4816 input_section
= p
->u
.indirect
.section
;
4817 input_bfd
= input_section
->owner
;
4819 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
4820 || (get_elf_backend_data (input_bfd
)
4821 ->elf_backend_ecoff_debug_swap
) == NULL
)
4823 /* I don't know what a non MIPS ELF bfd would be
4824 doing with a .mdebug section, but I don't really
4825 want to deal with it. */
4829 input_swap
= (get_elf_backend_data (input_bfd
)
4830 ->elf_backend_ecoff_debug_swap
);
4832 BFD_ASSERT (p
->size
== input_section
->_raw_size
);
4834 /* The ECOFF linking code expects that we have already
4835 read in the debugging information and set up an
4836 ecoff_debug_info structure, so we do that now. */
4837 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
4841 if (! (bfd_ecoff_debug_accumulate
4842 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
4843 &input_debug
, input_swap
, info
)))
4846 /* Loop through the external symbols. For each one with
4847 interesting information, try to find the symbol in
4848 the linker global hash table and save the information
4849 for the output external symbols. */
4850 eraw_src
= input_debug
.external_ext
;
4851 eraw_end
= (eraw_src
4852 + (input_debug
.symbolic_header
.iextMax
4853 * input_swap
->external_ext_size
));
4855 eraw_src
< eraw_end
;
4856 eraw_src
+= input_swap
->external_ext_size
)
4860 struct mips_elf_link_hash_entry
*h
;
4862 (*input_swap
->swap_ext_in
) (input_bfd
, (PTR
) eraw_src
, &ext
);
4863 if (ext
.asym
.sc
== scNil
4864 || ext
.asym
.sc
== scUndefined
4865 || ext
.asym
.sc
== scSUndefined
)
4868 name
= input_debug
.ssext
+ ext
.asym
.iss
;
4869 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
4870 name
, false, false, true);
4871 if (h
== NULL
|| h
->esym
.ifd
!= -2)
4877 < input_debug
.symbolic_header
.ifdMax
);
4878 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
4884 /* Free up the information we just read. */
4885 free (input_debug
.line
);
4886 free (input_debug
.external_dnr
);
4887 free (input_debug
.external_pdr
);
4888 free (input_debug
.external_sym
);
4889 free (input_debug
.external_opt
);
4890 free (input_debug
.external_aux
);
4891 free (input_debug
.ss
);
4892 free (input_debug
.ssext
);
4893 free (input_debug
.external_fdr
);
4894 free (input_debug
.external_rfd
);
4895 free (input_debug
.external_ext
);
4897 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4898 elf_link_input_bfd ignores this section. */
4899 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
4902 if (SGI_COMPAT (abfd
) && info
->shared
)
4904 /* Create .rtproc section. */
4905 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
4906 if (rtproc_sec
== NULL
)
4908 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4909 | SEC_LINKER_CREATED
| SEC_READONLY
);
4911 rtproc_sec
= bfd_make_section (abfd
, ".rtproc");
4912 if (rtproc_sec
== NULL
4913 || ! bfd_set_section_flags (abfd
, rtproc_sec
, flags
)
4914 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
4918 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
4919 info
, rtproc_sec
, &debug
))
4923 /* Build the external symbol information. */
4926 einfo
.debug
= &debug
;
4928 einfo
.failed
= false;
4929 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
4930 mips_elf_output_extsym
,
4935 /* Set the size of the .mdebug section. */
4936 o
->_raw_size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
4938 /* Skip this section later on (I don't think this currently
4939 matters, but someday it might). */
4940 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4945 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
4947 const char *subname
;
4950 Elf32_External_gptab
*ext_tab
;
4953 /* The .gptab.sdata and .gptab.sbss sections hold
4954 information describing how the small data area would
4955 change depending upon the -G switch. These sections
4956 not used in executables files. */
4957 if (! info
->relocateable
)
4961 for (p
= o
->link_order_head
;
4962 p
!= (struct bfd_link_order
*) NULL
;
4965 asection
*input_section
;
4967 if (p
->type
!= bfd_indirect_link_order
)
4969 if (p
->type
== bfd_fill_link_order
)
4974 input_section
= p
->u
.indirect
.section
;
4976 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4977 elf_link_input_bfd ignores this section. */
4978 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
4981 /* Skip this section later on (I don't think this
4982 currently matters, but someday it might). */
4983 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4985 /* Really remove the section. */
4986 for (secpp
= &abfd
->sections
;
4988 secpp
= &(*secpp
)->next
)
4990 *secpp
= (*secpp
)->next
;
4991 --abfd
->section_count
;
4996 /* There is one gptab for initialized data, and one for
4997 uninitialized data. */
4998 if (strcmp (o
->name
, ".gptab.sdata") == 0)
5000 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
5004 (*_bfd_error_handler
)
5005 (_("%s: illegal section name `%s'"),
5006 bfd_get_filename (abfd
), o
->name
);
5007 bfd_set_error (bfd_error_nonrepresentable_section
);
5011 /* The linker script always combines .gptab.data and
5012 .gptab.sdata into .gptab.sdata, and likewise for
5013 .gptab.bss and .gptab.sbss. It is possible that there is
5014 no .sdata or .sbss section in the output file, in which
5015 case we must change the name of the output section. */
5016 subname
= o
->name
+ sizeof ".gptab" - 1;
5017 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
5019 if (o
== gptab_data_sec
)
5020 o
->name
= ".gptab.data";
5022 o
->name
= ".gptab.bss";
5023 subname
= o
->name
+ sizeof ".gptab" - 1;
5024 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
5027 /* Set up the first entry. */
5029 tab
= (Elf32_gptab
*) bfd_malloc (c
* sizeof (Elf32_gptab
));
5032 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
5033 tab
[0].gt_header
.gt_unused
= 0;
5035 /* Combine the input sections. */
5036 for (p
= o
->link_order_head
;
5037 p
!= (struct bfd_link_order
*) NULL
;
5040 asection
*input_section
;
5044 bfd_size_type gpentry
;
5046 if (p
->type
!= bfd_indirect_link_order
)
5048 if (p
->type
== bfd_fill_link_order
)
5053 input_section
= p
->u
.indirect
.section
;
5054 input_bfd
= input_section
->owner
;
5056 /* Combine the gptab entries for this input section one
5057 by one. We know that the input gptab entries are
5058 sorted by ascending -G value. */
5059 size
= bfd_section_size (input_bfd
, input_section
);
5061 for (gpentry
= sizeof (Elf32_External_gptab
);
5063 gpentry
+= sizeof (Elf32_External_gptab
))
5065 Elf32_External_gptab ext_gptab
;
5066 Elf32_gptab int_gptab
;
5072 if (! (bfd_get_section_contents
5073 (input_bfd
, input_section
, (PTR
) &ext_gptab
,
5074 gpentry
, sizeof (Elf32_External_gptab
))))
5080 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
5082 val
= int_gptab
.gt_entry
.gt_g_value
;
5083 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
5086 for (look
= 1; look
< c
; look
++)
5088 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
5089 tab
[look
].gt_entry
.gt_bytes
+= add
;
5091 if (tab
[look
].gt_entry
.gt_g_value
== val
)
5097 Elf32_gptab
*new_tab
;
5100 /* We need a new table entry. */
5101 new_tab
= ((Elf32_gptab
*)
5102 bfd_realloc ((PTR
) tab
,
5103 (c
+ 1) * sizeof (Elf32_gptab
)));
5104 if (new_tab
== NULL
)
5110 tab
[c
].gt_entry
.gt_g_value
= val
;
5111 tab
[c
].gt_entry
.gt_bytes
= add
;
5113 /* Merge in the size for the next smallest -G
5114 value, since that will be implied by this new
5117 for (look
= 1; look
< c
; look
++)
5119 if (tab
[look
].gt_entry
.gt_g_value
< val
5121 || (tab
[look
].gt_entry
.gt_g_value
5122 > tab
[max
].gt_entry
.gt_g_value
)))
5126 tab
[c
].gt_entry
.gt_bytes
+=
5127 tab
[max
].gt_entry
.gt_bytes
;
5132 last
= int_gptab
.gt_entry
.gt_bytes
;
5135 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5136 elf_link_input_bfd ignores this section. */
5137 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
5140 /* The table must be sorted by -G value. */
5142 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
5144 /* Swap out the table. */
5145 ext_tab
= ((Elf32_External_gptab
*)
5146 bfd_alloc (abfd
, c
* sizeof (Elf32_External_gptab
)));
5147 if (ext_tab
== NULL
)
5153 for (i
= 0; i
< c
; i
++)
5154 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ i
, ext_tab
+ i
);
5157 o
->_raw_size
= c
* sizeof (Elf32_External_gptab
);
5158 o
->contents
= (bfd_byte
*) ext_tab
;
5160 /* Skip this section later on (I don't think this currently
5161 matters, but someday it might). */
5162 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
5166 /* Invoke the regular ELF backend linker to do all the work. */
5167 if (ABI_64_P (abfd
))
5170 if (!bfd_elf64_bfd_final_link (abfd
, info
))
5177 else if (!bfd_elf32_bfd_final_link (abfd
, info
))
5180 /* Now write out the computed sections. */
5182 if (reginfo_sec
!= (asection
*) NULL
)
5184 Elf32_External_RegInfo ext
;
5186 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
5187 if (! bfd_set_section_contents (abfd
, reginfo_sec
, (PTR
) &ext
,
5188 (file_ptr
) 0, sizeof ext
))
5192 if (mdebug_sec
!= (asection
*) NULL
)
5194 BFD_ASSERT (abfd
->output_has_begun
);
5195 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
5197 mdebug_sec
->filepos
))
5200 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
5203 if (gptab_data_sec
!= (asection
*) NULL
)
5205 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
5206 gptab_data_sec
->contents
,
5208 gptab_data_sec
->_raw_size
))
5212 if (gptab_bss_sec
!= (asection
*) NULL
)
5214 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
5215 gptab_bss_sec
->contents
,
5217 gptab_bss_sec
->_raw_size
))
5221 if (SGI_COMPAT (abfd
))
5223 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
5224 if (rtproc_sec
!= NULL
)
5226 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
5227 rtproc_sec
->contents
,
5229 rtproc_sec
->_raw_size
))
5237 /* This function is called via qsort() to sort the dynamic relocation
5238 entries by increasing r_symndx value. */
5241 sort_dynamic_relocs (arg1
, arg2
)
5245 const Elf32_External_Rel
*ext_reloc1
= (const Elf32_External_Rel
*) arg1
;
5246 const Elf32_External_Rel
*ext_reloc2
= (const Elf32_External_Rel
*) arg2
;
5248 Elf_Internal_Rel int_reloc1
;
5249 Elf_Internal_Rel int_reloc2
;
5251 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, ext_reloc1
, &int_reloc1
);
5252 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, ext_reloc2
, &int_reloc2
);
5254 return (ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
));
5257 /* Returns the GOT section for ABFD. */
5260 mips_elf_got_section (abfd
)
5263 return bfd_get_section_by_name (abfd
, ".got");
5266 /* Returns the GOT information associated with the link indicated by
5267 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5270 static struct mips_got_info
*
5271 mips_elf_got_info (abfd
, sgotp
)
5276 struct mips_got_info
*g
;
5278 sgot
= mips_elf_got_section (abfd
);
5279 BFD_ASSERT (sgot
!= NULL
);
5280 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
5281 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
5282 BFD_ASSERT (g
!= NULL
);
5289 /* Return whether a relocation is against a local symbol. */
5292 mips_elf_local_relocation_p (input_bfd
, relocation
, local_sections
,
5295 const Elf_Internal_Rela
*relocation
;
5296 asection
**local_sections
;
5297 boolean check_forced
;
5299 unsigned long r_symndx
;
5300 Elf_Internal_Shdr
*symtab_hdr
;
5301 struct mips_elf_link_hash_entry
*h
;
5304 r_symndx
= ELF32_R_SYM (relocation
->r_info
);
5305 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5306 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
5308 if (r_symndx
< extsymoff
)
5310 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
5315 /* Look up the hash table to check whether the symbol
5316 was forced local. */
5317 h
= (struct mips_elf_link_hash_entry
*)
5318 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
5319 /* Find the real hash-table entry for this symbol. */
5320 while (h
->root
.root
.type
== bfd_link_hash_indirect
5321 || h
->root
.root
.type
== bfd_link_hash_warning
)
5322 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5323 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5330 /* Sign-extend VALUE, which has the indicated number of BITS. */
5333 mips_elf_sign_extend (value
, bits
)
5337 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
5338 /* VALUE is negative. */
5339 value
|= ((bfd_vma
) - 1) << bits
;
5344 /* Return non-zero if the indicated VALUE has overflowed the maximum
5345 range expressable by a signed number with the indicated number of
5349 mips_elf_overflow_p (value
, bits
)
5353 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5355 if (svalue
> (1 << (bits
- 1)) - 1)
5356 /* The value is too big. */
5358 else if (svalue
< -(1 << (bits
- 1)))
5359 /* The value is too small. */
5366 /* Calculate the %high function. */
5369 mips_elf_high (value
)
5372 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5375 /* Calculate the %higher function. */
5378 mips_elf_higher (value
)
5379 bfd_vma value ATTRIBUTE_UNUSED
;
5382 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5385 return (bfd_vma
) -1;
5389 /* Calculate the %highest function. */
5392 mips_elf_highest (value
)
5393 bfd_vma value ATTRIBUTE_UNUSED
;
5396 return ((value
+ (bfd_vma
) 0x800080008000) >> 48) & 0xffff;
5399 return (bfd_vma
) -1;
5403 /* Returns the GOT index for the global symbol indicated by H. */
5406 mips_elf_global_got_index (abfd
, h
)
5408 struct elf_link_hash_entry
*h
;
5412 struct mips_got_info
*g
;
5414 g
= mips_elf_got_info (abfd
, &sgot
);
5416 /* Once we determine the global GOT entry with the lowest dynamic
5417 symbol table index, we must put all dynamic symbols with greater
5418 indices into the GOT. That makes it easy to calculate the GOT
5420 BFD_ASSERT (h
->dynindx
>= g
->global_gotsym
->dynindx
);
5421 index
= ((h
->dynindx
- g
->global_gotsym
->dynindx
+ g
->local_gotno
)
5422 * MIPS_ELF_GOT_SIZE (abfd
));
5423 BFD_ASSERT (index
< sgot
->_raw_size
);
5428 /* Returns the offset for the entry at the INDEXth position
5432 mips_elf_got_offset_from_index (dynobj
, output_bfd
, index
)
5440 sgot
= mips_elf_got_section (dynobj
);
5441 gp
= _bfd_get_gp_value (output_bfd
);
5442 return (sgot
->output_section
->vma
+ sgot
->output_offset
+ index
-
5446 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5447 symbol table index lower than any we've seen to date, record it for
5451 mips_elf_record_global_got_symbol (h
, info
, g
)
5452 struct elf_link_hash_entry
*h
;
5453 struct bfd_link_info
*info
;
5454 struct mips_got_info
*g ATTRIBUTE_UNUSED
;
5456 /* A global symbol in the GOT must also be in the dynamic symbol
5458 if (h
->dynindx
== -1
5459 && !bfd_elf32_link_record_dynamic_symbol (info
, h
))
5462 /* If we've already marked this entry as need GOT space, we don't
5463 need to do it again. */
5464 if (h
->got
.offset
!= (bfd_vma
) - 1)
5467 /* By setting this to a value other than -1, we are indicating that
5468 there needs to be a GOT entry for H. */
5474 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5475 the dynamic symbols. */
5477 struct mips_elf_hash_sort_data
5479 /* The symbol in the global GOT with the lowest dynamic symbol table
5481 struct elf_link_hash_entry
*low
;
5482 /* The least dynamic symbol table index corresponding to a symbol
5483 with a GOT entry. */
5484 long min_got_dynindx
;
5485 /* The greatest dynamic symbol table index not corresponding to a
5486 symbol without a GOT entry. */
5487 long max_non_got_dynindx
;
5490 /* If H needs a GOT entry, assign it the highest available dynamic
5491 index. Otherwise, assign it the lowest available dynamic
5495 mips_elf_sort_hash_table_f (h
, data
)
5496 struct mips_elf_link_hash_entry
*h
;
5499 struct mips_elf_hash_sort_data
*hsd
5500 = (struct mips_elf_hash_sort_data
*) data
;
5502 /* Symbols without dynamic symbol table entries aren't interesting
5504 if (h
->root
.dynindx
== -1)
5507 if (h
->root
.got
.offset
!= 0)
5508 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
5511 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
5512 hsd
->low
= (struct elf_link_hash_entry
*) h
;
5518 /* Sort the dynamic symbol table so that symbols that need GOT entries
5519 appear towards the end. This reduces the amount of GOT space
5520 required. MAX_LOCAL is used to set the number of local symbols
5521 known to be in the dynamic symbol table. During
5522 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5523 section symbols are added and the count is higher. */
5526 mips_elf_sort_hash_table (info
, max_local
)
5527 struct bfd_link_info
*info
;
5528 unsigned long max_local
;
5530 struct mips_elf_hash_sort_data hsd
;
5531 struct mips_got_info
*g
;
5534 dynobj
= elf_hash_table (info
)->dynobj
;
5537 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
;
5538 hsd
.max_non_got_dynindx
= max_local
;
5539 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
5540 elf_hash_table (info
)),
5541 mips_elf_sort_hash_table_f
,
5544 /* There shoud have been enough room in the symbol table to
5545 accomodate both the GOT and non-GOT symbols. */
5546 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
5548 /* Now we know which dynamic symbol has the lowest dynamic symbol
5549 table index in the GOT. */
5550 g
= mips_elf_got_info (dynobj
, NULL
);
5551 g
->global_gotsym
= hsd
.low
;
5556 /* Create a local GOT entry for VALUE. Return the index of the entry,
5557 or -1 if it could not be created. */
5560 mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
)
5562 struct mips_got_info
*g
;
5566 if (g
->assigned_gotno
>= g
->local_gotno
)
5568 /* We didn't allocate enough space in the GOT. */
5569 (*_bfd_error_handler
)
5570 (_("not enough GOT space for local GOT entries"));
5571 bfd_set_error (bfd_error_bad_value
);
5572 return (bfd_vma
) -1;
5575 MIPS_ELF_PUT_WORD (abfd
, value
,
5577 + MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
));
5578 return MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
5581 /* Returns the GOT offset at which the indicated address can be found.
5582 If there is not yet a GOT entry for this value, create one. Returns
5583 -1 if no satisfactory GOT offset can be found. */
5586 mips_elf_local_got_index (abfd
, info
, value
)
5588 struct bfd_link_info
*info
;
5592 struct mips_got_info
*g
;
5595 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
5597 /* Look to see if we already have an appropriate entry. */
5598 for (entry
= (sgot
->contents
5599 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
5600 entry
!= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
5601 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
5603 bfd_vma address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5604 if (address
== value
)
5605 return entry
- sgot
->contents
;
5608 return mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
5611 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5612 are supposed to be placed at small offsets in the GOT, i.e.,
5613 within 32KB of GP. Return the index into the GOT for this page,
5614 and store the offset from this entry to the desired address in
5615 OFFSETP, if it is non-NULL. */
5618 mips_elf_got_page (abfd
, info
, value
, offsetp
)
5620 struct bfd_link_info
*info
;
5625 struct mips_got_info
*g
;
5627 bfd_byte
*last_entry
;
5631 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
5633 /* Look to see if we aleady have an appropriate entry. */
5634 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
5635 for (entry
= (sgot
->contents
5636 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
5637 entry
!= last_entry
;
5638 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
5640 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5642 if (!mips_elf_overflow_p (value
- address
, 16))
5644 /* This entry will serve as the page pointer. We can add a
5645 16-bit number to it to get the actual address. */
5646 index
= entry
- sgot
->contents
;
5651 /* If we didn't have an appropriate entry, we create one now. */
5652 if (entry
== last_entry
)
5653 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
5657 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5658 *offsetp
= value
- address
;
5664 /* Find a GOT entry whose higher-order 16 bits are the same as those
5665 for value. Return the index into the GOT for this entry. */
5668 mips_elf_got16_entry (abfd
, info
, value
, external
)
5670 struct bfd_link_info
*info
;
5675 struct mips_got_info
*g
;
5677 bfd_byte
*last_entry
;
5683 /* Although the ABI says that it is "the high-order 16 bits" that we
5684 want, it is really the %high value. The complete value is
5685 calculated with a `addiu' of a LO16 relocation, just as with a
5687 value
= mips_elf_high (value
) << 16;
5690 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
5692 /* Look to see if we already have an appropriate entry. */
5693 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
5694 for (entry
= (sgot
->contents
5695 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
5696 entry
!= last_entry
;
5697 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
5699 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5700 if (address
== value
)
5702 /* This entry has the right high-order 16 bits, and the low-order
5703 16 bits are set to zero. */
5704 index
= entry
- sgot
->contents
;
5709 /* If we didn't have an appropriate entry, we create one now. */
5710 if (entry
== last_entry
)
5711 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
5716 /* Returns the first relocation of type r_type found, beginning with
5717 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5719 static const Elf_Internal_Rela
*
5720 mips_elf_next_relocation (r_type
, relocation
, relend
)
5721 unsigned int r_type
;
5722 const Elf_Internal_Rela
*relocation
;
5723 const Elf_Internal_Rela
*relend
;
5725 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5726 immediately following. However, for the IRIX6 ABI, the next
5727 relocation may be a composed relocation consisting of several
5728 relocations for the same address. In that case, the R_MIPS_LO16
5729 relocation may occur as one of these. We permit a similar
5730 extension in general, as that is useful for GCC. */
5731 while (relocation
< relend
)
5733 if (ELF32_R_TYPE (relocation
->r_info
) == r_type
)
5739 /* We didn't find it. */
5740 bfd_set_error (bfd_error_bad_value
);
5744 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5745 is the original relocation, which is now being transformed into a
5746 dynamic relocation. The ADDENDP is adjusted if necessary; the
5747 caller should store the result in place of the original addend. */
5750 mips_elf_create_dynamic_relocation (output_bfd
, info
, rel
, h
, sec
,
5751 symbol
, addendp
, input_section
, local_p
)
5753 struct bfd_link_info
*info
;
5754 const Elf_Internal_Rela
*rel
;
5755 struct mips_elf_link_hash_entry
*h
;
5759 asection
*input_section
;
5762 Elf_Internal_Rel outrel
;
5768 r_type
= ELF32_R_TYPE (rel
->r_info
);
5769 dynobj
= elf_hash_table (info
)->dynobj
;
5771 = bfd_get_section_by_name (dynobj
,
5772 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
));
5773 BFD_ASSERT (sreloc
!= NULL
);
5774 BFD_ASSERT (sreloc
->contents
!= NULL
);
5778 /* We begin by assuming that the offset for the dynamic relocation
5779 is the same as for the original relocation. We'll adjust this
5780 later to reflect the correct output offsets. */
5781 if (elf_section_data (input_section
)->stab_info
== NULL
)
5782 outrel
.r_offset
= rel
->r_offset
;
5785 /* Except that in a stab section things are more complex.
5786 Because we compress stab information, the offset given in the
5787 relocation may not be the one we want; we must let the stabs
5788 machinery tell us the offset. */
5790 = (_bfd_stab_section_offset
5791 (output_bfd
, &elf_hash_table (info
)->stab_info
,
5793 &elf_section_data (input_section
)->stab_info
,
5795 /* If we didn't need the relocation at all, this value will be
5797 if (outrel
.r_offset
== (bfd_vma
) -1)
5801 /* If we've decided to skip this relocation, just output an empty
5802 record. Note that R_MIPS_NONE == 0, so that this call to memset
5803 is a way of setting R_TYPE to R_MIPS_NONE. */
5805 memset (&outrel
, 0, sizeof (outrel
));
5809 bfd_vma section_offset
;
5811 /* We must now calculate the dynamic symbol table index to use
5812 in the relocation. */
5814 && (! info
->symbolic
|| (h
->root
.elf_link_hash_flags
5815 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
5817 indx
= h
->root
.dynindx
;
5818 /* h->root.dynindx may be -1 if this symbol was marked to
5825 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5827 else if (sec
== NULL
|| sec
->owner
== NULL
)
5829 bfd_set_error (bfd_error_bad_value
);
5834 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5839 /* Figure out how far the target of the relocation is from
5840 the beginning of its section. */
5841 section_offset
= symbol
- sec
->output_section
->vma
;
5842 /* The relocation we're building is section-relative.
5843 Therefore, the original addend must be adjusted by the
5845 *addendp
+= symbol
- sec
->output_section
->vma
;
5846 /* Now, the relocation is just against the section. */
5847 symbol
= sec
->output_section
->vma
;
5850 /* If the relocation is against a local symbol was previously an
5851 absolute relocation, we must adjust it by the value we give
5852 it in the dynamic symbol table. */
5853 if (local_p
&& r_type
!= R_MIPS_REL32
)
5856 /* The relocation is always an REL32 relocation because we don't
5857 know where the shared library will wind up at load-time. */
5858 outrel
.r_info
= ELF32_R_INFO (indx
, R_MIPS_REL32
);
5860 /* Adjust the output offset of the relocation to reference the
5861 correct location in the output file. */
5862 outrel
.r_offset
+= (input_section
->output_section
->vma
5863 + input_section
->output_offset
);
5866 /* Put the relocation back out. We have to use the special
5867 relocation outputter in the 64-bit case since the 64-bit
5868 relocation format is non-standard. */
5869 if (ABI_64_P (output_bfd
))
5871 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5872 (output_bfd
, &outrel
,
5874 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5877 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
5878 (((Elf32_External_Rel
*)
5880 + sreloc
->reloc_count
));
5882 /* Record the index of the first relocation referencing H. This
5883 information is later emitted in the .msym section. */
5885 && (h
->min_dyn_reloc_index
== 0
5886 || sreloc
->reloc_count
< h
->min_dyn_reloc_index
))
5887 h
->min_dyn_reloc_index
= sreloc
->reloc_count
;
5889 /* We've now added another relocation. */
5890 ++sreloc
->reloc_count
;
5892 /* Make sure the output section is writable. The dynamic linker
5893 will be writing to it. */
5894 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5897 /* On IRIX5, make an entry of compact relocation info. */
5898 if (! skip
&& IRIX_COMPAT (output_bfd
) == ict_irix5
)
5900 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5905 Elf32_crinfo cptrel
;
5907 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5908 cptrel
.vaddr
= (rel
->r_offset
5909 + input_section
->output_section
->vma
5910 + input_section
->output_offset
);
5911 if (r_type
== R_MIPS_REL32
)
5912 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5914 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5915 mips_elf_set_cr_dist2to (cptrel
, 0);
5916 cptrel
.konst
= *addendp
;
5918 cr
= (scpt
->contents
5919 + sizeof (Elf32_External_compact_rel
));
5920 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5921 ((Elf32_External_crinfo
*) cr
5922 + scpt
->reloc_count
));
5923 ++scpt
->reloc_count
;
5930 /* Calculate the value produced by the RELOCATION (which comes from
5931 the INPUT_BFD). The ADDEND is the addend to use for this
5932 RELOCATION; RELOCATION->R_ADDEND is ignored.
5934 The result of the relocation calculation is stored in VALUEP.
5935 REQUIRE_JALXP indicates whether or not the opcode used with this
5936 relocation must be JALX.
5938 This function returns bfd_reloc_continue if the caller need take no
5939 further action regarding this relocation, bfd_reloc_notsupported if
5940 something goes dramatically wrong, bfd_reloc_overflow if an
5941 overflow occurs, and bfd_reloc_ok to indicate success. */
5943 static bfd_reloc_status_type
5944 mips_elf_calculate_relocation (abfd
,
5958 asection
*input_section
;
5959 struct bfd_link_info
*info
;
5960 const Elf_Internal_Rela
*relocation
;
5962 reloc_howto_type
*howto
;
5963 Elf_Internal_Sym
*local_syms
;
5964 asection
**local_sections
;
5967 boolean
*require_jalxp
;
5969 /* The eventual value we will return. */
5971 /* The address of the symbol against which the relocation is
5974 /* The final GP value to be used for the relocatable, executable, or
5975 shared object file being produced. */
5976 bfd_vma gp
= (bfd_vma
) - 1;
5977 /* The place (section offset or address) of the storage unit being
5980 /* The value of GP used to create the relocatable object. */
5981 bfd_vma gp0
= (bfd_vma
) - 1;
5982 /* The offset into the global offset table at which the address of
5983 the relocation entry symbol, adjusted by the addend, resides
5984 during execution. */
5985 bfd_vma g
= (bfd_vma
) - 1;
5986 /* The section in which the symbol referenced by the relocation is
5988 asection
*sec
= NULL
;
5989 struct mips_elf_link_hash_entry
*h
= NULL
;
5990 /* True if the symbol referred to by this relocation is a local
5993 /* True if the symbol referred to by this relocation is "_gp_disp". */
5994 boolean gp_disp_p
= false;
5995 Elf_Internal_Shdr
*symtab_hdr
;
5997 unsigned long r_symndx
;
5999 /* True if overflow occurred during the calculation of the
6000 relocation value. */
6001 boolean overflowed_p
;
6002 /* True if this relocation refers to a MIPS16 function. */
6003 boolean target_is_16_bit_code_p
= false;
6005 /* Parse the relocation. */
6006 r_symndx
= ELF32_R_SYM (relocation
->r_info
);
6007 r_type
= ELF32_R_TYPE (relocation
->r_info
);
6008 p
= (input_section
->output_section
->vma
6009 + input_section
->output_offset
6010 + relocation
->r_offset
);
6012 /* Assume that there will be no overflow. */
6013 overflowed_p
= false;
6015 /* Figure out whether or not the symbol is local, and get the offset
6016 used in the array of hash table entries. */
6017 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6018 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
6019 local_sections
, false);
6020 if (! elf_bad_symtab (input_bfd
))
6021 extsymoff
= symtab_hdr
->sh_info
;
6024 /* The symbol table does not follow the rule that local symbols
6025 must come before globals. */
6029 /* Figure out the value of the symbol. */
6032 Elf_Internal_Sym
*sym
;
6034 sym
= local_syms
+ r_symndx
;
6035 sec
= local_sections
[r_symndx
];
6037 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
6038 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
6039 symbol
+= sym
->st_value
;
6041 /* MIPS16 text labels should be treated as odd. */
6042 if (sym
->st_other
== STO_MIPS16
)
6045 /* Record the name of this symbol, for our caller. */
6046 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
6047 symtab_hdr
->sh_link
,
6050 *namep
= bfd_section_name (input_bfd
, sec
);
6052 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
6056 /* For global symbols we look up the symbol in the hash-table. */
6057 h
= ((struct mips_elf_link_hash_entry
*)
6058 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
6059 /* Find the real hash-table entry for this symbol. */
6060 while (h
->root
.root
.type
== bfd_link_hash_indirect
6061 || h
->root
.root
.type
== bfd_link_hash_warning
)
6062 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6064 /* Record the name of this symbol, for our caller. */
6065 *namep
= h
->root
.root
.root
.string
;
6067 /* See if this is the special _gp_disp symbol. Note that such a
6068 symbol must always be a global symbol. */
6069 if (strcmp (h
->root
.root
.root
.string
, "_gp_disp") == 0)
6071 /* Relocations against _gp_disp are permitted only with
6072 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6073 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
)
6074 return bfd_reloc_notsupported
;
6078 /* If this symbol is defined, calculate its address. Note that
6079 _gp_disp is a magic symbol, always implicitly defined by the
6080 linker, so it's inappropriate to check to see whether or not
6082 else if ((h
->root
.root
.type
== bfd_link_hash_defined
6083 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6084 && h
->root
.root
.u
.def
.section
)
6086 sec
= h
->root
.root
.u
.def
.section
;
6087 if (sec
->output_section
)
6088 symbol
= (h
->root
.root
.u
.def
.value
6089 + sec
->output_section
->vma
6090 + sec
->output_offset
);
6092 symbol
= h
->root
.root
.u
.def
.value
;
6094 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
6095 /* We allow relocations against undefined weak symbols, giving
6096 it the value zero, so that you can undefined weak functions
6097 and check to see if they exist by looking at their
6100 else if (info
->shared
&& !info
->symbolic
&& !info
->no_undefined
6101 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
6103 else if (strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINK") == 0 ||
6104 strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINKING") == 0)
6106 /* If this is a dynamic link, we should have created a
6107 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6108 in in mips_elf_create_dynamic_sections.
6109 Otherwise, we should define the symbol with a value of 0.
6110 FIXME: It should probably get into the symbol table
6112 BFD_ASSERT (! info
->shared
);
6113 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
6118 if (! ((*info
->callbacks
->undefined_symbol
)
6119 (info
, h
->root
.root
.root
.string
, input_bfd
,
6120 input_section
, relocation
->r_offset
,
6121 (!info
->shared
|| info
->no_undefined
6122 || ELF_ST_VISIBILITY (h
->root
.other
)))))
6123 return bfd_reloc_undefined
;
6127 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
6130 /* If this is a 32-bit call to a 16-bit function with a stub, we
6131 need to redirect the call to the stub, unless we're already *in*
6133 if (r_type
!= R_MIPS16_26
&& !info
->relocateable
6134 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
6135 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
6136 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
6137 && !mips_elf_stub_section_p (input_bfd
, input_section
))
6139 /* This is a 32-bit call to a 16-bit function. We should
6140 have already noticed that we were going to need the
6143 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
6146 BFD_ASSERT (h
->need_fn_stub
);
6150 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
6152 /* If this is a 16-bit call to a 32-bit function with a stub, we
6153 need to redirect the call to the stub. */
6154 else if (r_type
== R_MIPS16_26
&& !info
->relocateable
6156 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
6157 && !target_is_16_bit_code_p
)
6159 /* If both call_stub and call_fp_stub are defined, we can figure
6160 out which one to use by seeing which one appears in the input
6162 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
6167 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6169 if (strncmp (bfd_get_section_name (input_bfd
, o
),
6170 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
6172 sec
= h
->call_fp_stub
;
6179 else if (h
->call_stub
!= NULL
)
6182 sec
= h
->call_fp_stub
;
6184 BFD_ASSERT (sec
->_raw_size
> 0);
6185 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
6188 /* Calls from 16-bit code to 32-bit code and vice versa require the
6189 special jalx instruction. */
6190 *require_jalxp
= (!info
->relocateable
6191 && ((r_type
== R_MIPS16_26
) != target_is_16_bit_code_p
));
6193 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
6194 local_sections
, true);
6196 /* If we haven't already determined the GOT offset, or the GP value,
6197 and we're going to need it, get it now. */
6202 case R_MIPS_GOT_DISP
:
6203 case R_MIPS_GOT_HI16
:
6204 case R_MIPS_CALL_HI16
:
6205 case R_MIPS_GOT_LO16
:
6206 case R_MIPS_CALL_LO16
:
6207 /* Find the index into the GOT where this value is located. */
6210 BFD_ASSERT (addend
== 0);
6211 g
= mips_elf_global_got_index
6212 (elf_hash_table (info
)->dynobj
,
6213 (struct elf_link_hash_entry
*) h
);
6214 if (! elf_hash_table(info
)->dynamic_sections_created
6216 && (info
->symbolic
|| h
->root
.dynindx
== -1)
6217 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
6219 /* This is a static link or a -Bsymbolic link. The
6220 symbol is defined locally, or was forced to be local.
6221 We must initialize this entry in the GOT. */
6222 asection
*sgot
= mips_elf_got_section(elf_hash_table
6224 MIPS_ELF_PUT_WORD (elf_hash_table (info
)->dynobj
,
6225 symbol
+ addend
, sgot
->contents
+ g
);
6228 else if (r_type
== R_MIPS_GOT16
)
6229 /* There's no need to create a local GOT entry here; the
6230 calculation for a local GOT16 entry does not involve G. */
6234 g
= mips_elf_local_got_index (abfd
, info
, symbol
+ addend
);
6235 if (g
== (bfd_vma
) -1)
6239 /* Convert GOT indices to actual offsets. */
6240 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6246 case R_MIPS_GPREL16
:
6247 case R_MIPS_GPREL32
:
6248 case R_MIPS_LITERAL
:
6249 gp0
= _bfd_get_gp_value (input_bfd
);
6250 gp
= _bfd_get_gp_value (abfd
);
6257 /* Figure out what kind of relocation is being performed. */
6261 return bfd_reloc_continue
;
6264 value
= symbol
+ mips_elf_sign_extend (addend
, 16);
6265 overflowed_p
= mips_elf_overflow_p (value
, 16);
6272 || (elf_hash_table (info
)->dynamic_sections_created
6274 && ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
6276 && (input_section
->flags
& SEC_ALLOC
) != 0)
6278 /* If we're creating a shared library, or this relocation is
6279 against a symbol in a shared library, then we can't know
6280 where the symbol will end up. So, we create a relocation
6281 record in the output, and leave the job up to the dynamic
6284 if (!mips_elf_create_dynamic_relocation (abfd
,
6291 input_section
, local_p
))
6296 if (r_type
!= R_MIPS_REL32
)
6297 value
= symbol
+ addend
;
6301 value
&= howto
->dst_mask
;
6306 case R_MIPS_GNU_REL_LO16
:
6307 value
= symbol
+ addend
- p
;
6308 value
&= howto
->dst_mask
;
6311 case R_MIPS_GNU_REL16_S2
:
6312 value
= symbol
+ mips_elf_sign_extend (addend
<< 2, 18) - p
;
6313 overflowed_p
= mips_elf_overflow_p (value
, 18);
6314 value
= (value
>> 2) & howto
->dst_mask
;
6317 case R_MIPS_GNU_REL_HI16
:
6318 value
= mips_elf_high (addend
+ symbol
- p
);
6319 value
&= howto
->dst_mask
;
6323 /* The calculation for R_MIPS_26 is just the same as for an
6324 R_MIPS_26. It's only the storage of the relocated field into
6325 the output file that's different. That's handled in
6326 mips_elf_perform_relocation. So, we just fall through to the
6327 R_MIPS_26 case here. */
6330 value
= (((addend
<< 2) | (p
& 0xf0000000)) + symbol
) >> 2;
6332 value
= (mips_elf_sign_extend (addend
<< 2, 28) + symbol
) >> 2;
6333 value
&= howto
->dst_mask
;
6339 value
= mips_elf_high (addend
+ symbol
);
6340 value
&= howto
->dst_mask
;
6344 value
= mips_elf_high (addend
+ gp
- p
);
6345 overflowed_p
= mips_elf_overflow_p (value
, 16);
6351 value
= (symbol
+ addend
) & howto
->dst_mask
;
6354 value
= addend
+ gp
- p
+ 4;
6355 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6356 for overflow. But, on, say, Irix 5, relocations against
6357 _gp_disp are normally generated from the .cpload
6358 pseudo-op. It generates code that normally looks like
6361 lui $gp,%hi(_gp_disp)
6362 addiu $gp,$gp,%lo(_gp_disp)
6365 Here $t9 holds the address of the function being called,
6366 as required by the MIPS ELF ABI. The R_MIPS_LO16
6367 relocation can easily overflow in this situation, but the
6368 R_MIPS_HI16 relocation will handle the overflow.
6369 Therefore, we consider this a bug in the MIPS ABI, and do
6370 not check for overflow here. */
6374 case R_MIPS_LITERAL
:
6375 /* Because we don't merge literal sections, we can handle this
6376 just like R_MIPS_GPREL16. In the long run, we should merge
6377 shared literals, and then we will need to additional work
6382 case R_MIPS16_GPREL
:
6383 /* The R_MIPS16_GPREL performs the same calculation as
6384 R_MIPS_GPREL16, but stores the relocated bits in a different
6385 order. We don't need to do anything special here; the
6386 differences are handled in mips_elf_perform_relocation. */
6387 case R_MIPS_GPREL16
:
6389 value
= mips_elf_sign_extend (addend
, 16) + symbol
+ gp0
- gp
;
6391 value
= mips_elf_sign_extend (addend
, 16) + symbol
- gp
;
6392 overflowed_p
= mips_elf_overflow_p (value
, 16);
6400 /* The special case is when the symbol is forced to be local. We
6401 need the full address in the GOT since no R_MIPS_LO16 relocation
6403 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
6404 local_sections
, false);
6405 value
= mips_elf_got16_entry (abfd
, info
, symbol
+ addend
, forced
);
6406 if (value
== (bfd_vma
) -1)
6409 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6412 overflowed_p
= mips_elf_overflow_p (value
, 16);
6419 case R_MIPS_GOT_DISP
:
6421 overflowed_p
= mips_elf_overflow_p (value
, 16);
6424 case R_MIPS_GPREL32
:
6425 value
= (addend
+ symbol
+ gp0
- gp
) & howto
->dst_mask
;
6429 value
= mips_elf_sign_extend (addend
, 16) + symbol
- p
;
6430 value
= (bfd_vma
) ((bfd_signed_vma
) value
/ 4);
6431 overflowed_p
= mips_elf_overflow_p (value
, 16);
6434 case R_MIPS_GOT_HI16
:
6435 case R_MIPS_CALL_HI16
:
6436 /* We're allowed to handle these two relocations identically.
6437 The dynamic linker is allowed to handle the CALL relocations
6438 differently by creating a lazy evaluation stub. */
6440 value
= mips_elf_high (value
);
6441 value
&= howto
->dst_mask
;
6444 case R_MIPS_GOT_LO16
:
6445 case R_MIPS_CALL_LO16
:
6446 value
= g
& howto
->dst_mask
;
6449 case R_MIPS_GOT_PAGE
:
6450 value
= mips_elf_got_page (abfd
, info
, symbol
+ addend
, NULL
);
6451 if (value
== (bfd_vma
) -1)
6453 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6456 overflowed_p
= mips_elf_overflow_p (value
, 16);
6459 case R_MIPS_GOT_OFST
:
6460 mips_elf_got_page (abfd
, info
, symbol
+ addend
, &value
);
6461 overflowed_p
= mips_elf_overflow_p (value
, 16);
6465 value
= symbol
- addend
;
6466 value
&= howto
->dst_mask
;
6470 value
= mips_elf_higher (addend
+ symbol
);
6471 value
&= howto
->dst_mask
;
6474 case R_MIPS_HIGHEST
:
6475 value
= mips_elf_highest (addend
+ symbol
);
6476 value
&= howto
->dst_mask
;
6479 case R_MIPS_SCN_DISP
:
6480 value
= symbol
+ addend
- sec
->output_offset
;
6481 value
&= howto
->dst_mask
;
6486 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6487 hint; we could improve performance by honoring that hint. */
6488 return bfd_reloc_continue
;
6490 case R_MIPS_GNU_VTINHERIT
:
6491 case R_MIPS_GNU_VTENTRY
:
6492 /* We don't do anything with these at present. */
6493 return bfd_reloc_continue
;
6496 /* An unrecognized relocation type. */
6497 return bfd_reloc_notsupported
;
6500 /* Store the VALUE for our caller. */
6502 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
6505 /* Obtain the field relocated by RELOCATION. */
6508 mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
)
6509 reloc_howto_type
*howto
;
6510 const Elf_Internal_Rela
*relocation
;
6515 bfd_byte
*location
= contents
+ relocation
->r_offset
;
6517 /* Obtain the bytes. */
6518 x
= bfd_get (8 * bfd_get_reloc_size (howto
), input_bfd
, location
);
6520 if ((ELF32_R_TYPE (relocation
->r_info
) == R_MIPS16_26
6521 || ELF32_R_TYPE (relocation
->r_info
) == R_MIPS16_GPREL
)
6522 && bfd_little_endian (input_bfd
))
6523 /* The two 16-bit words will be reversed on a little-endian
6524 system. See mips_elf_perform_relocation for more details. */
6525 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
6530 /* It has been determined that the result of the RELOCATION is the
6531 VALUE. Use HOWTO to place VALUE into the output file at the
6532 appropriate position. The SECTION is the section to which the
6533 relocation applies. If REQUIRE_JALX is true, then the opcode used
6534 for the relocation must be either JAL or JALX, and it is
6535 unconditionally converted to JALX.
6537 Returns false if anything goes wrong. */
6540 mips_elf_perform_relocation (info
, howto
, relocation
, value
,
6541 input_bfd
, input_section
,
6542 contents
, require_jalx
)
6543 struct bfd_link_info
*info
;
6544 reloc_howto_type
*howto
;
6545 const Elf_Internal_Rela
*relocation
;
6548 asection
*input_section
;
6550 boolean require_jalx
;
6554 int r_type
= ELF32_R_TYPE (relocation
->r_info
);
6556 /* Figure out where the relocation is occurring. */
6557 location
= contents
+ relocation
->r_offset
;
6559 /* Obtain the current value. */
6560 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
6562 /* Clear the field we are setting. */
6563 x
&= ~howto
->dst_mask
;
6565 /* If this is the R_MIPS16_26 relocation, we must store the
6566 value in a funny way. */
6567 if (r_type
== R_MIPS16_26
)
6569 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6570 Most mips16 instructions are 16 bits, but these instructions
6573 The format of these instructions is:
6575 +--------------+--------------------------------+
6576 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6577 +--------------+--------------------------------+
6579 +-----------------------------------------------+
6581 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6582 Note that the immediate value in the first word is swapped.
6584 When producing a relocateable object file, R_MIPS16_26 is
6585 handled mostly like R_MIPS_26. In particular, the addend is
6586 stored as a straight 26-bit value in a 32-bit instruction.
6587 (gas makes life simpler for itself by never adjusting a
6588 R_MIPS16_26 reloc to be against a section, so the addend is
6589 always zero). However, the 32 bit instruction is stored as 2
6590 16-bit values, rather than a single 32-bit value. In a
6591 big-endian file, the result is the same; in a little-endian
6592 file, the two 16-bit halves of the 32 bit value are swapped.
6593 This is so that a disassembler can recognize the jal
6596 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6597 instruction stored as two 16-bit values. The addend A is the
6598 contents of the targ26 field. The calculation is the same as
6599 R_MIPS_26. When storing the calculated value, reorder the
6600 immediate value as shown above, and don't forget to store the
6601 value as two 16-bit values.
6603 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6607 +--------+----------------------+
6611 +--------+----------------------+
6614 +----------+------+-------------+
6618 +----------+--------------------+
6619 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6620 ((sub1 << 16) | sub2)).
6622 When producing a relocateable object file, the calculation is
6623 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6624 When producing a fully linked file, the calculation is
6625 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6626 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6628 if (!info
->relocateable
)
6629 /* Shuffle the bits according to the formula above. */
6630 value
= (((value
& 0x1f0000) << 5)
6631 | ((value
& 0x3e00000) >> 5)
6632 | (value
& 0xffff));
6634 else if (r_type
== R_MIPS16_GPREL
)
6636 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6637 mode. A typical instruction will have a format like this:
6639 +--------------+--------------------------------+
6640 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6641 +--------------+--------------------------------+
6642 ! Major ! rx ! ry ! Imm 4:0 !
6643 +--------------+--------------------------------+
6645 EXTEND is the five bit value 11110. Major is the instruction
6648 This is handled exactly like R_MIPS_GPREL16, except that the
6649 addend is retrieved and stored as shown in this diagram; that
6650 is, the Imm fields above replace the V-rel16 field.
6652 All we need to do here is shuffle the bits appropriately. As
6653 above, the two 16-bit halves must be swapped on a
6654 little-endian system. */
6655 value
= (((value
& 0x7e0) << 16)
6656 | ((value
& 0xf800) << 5)
6660 /* Set the field. */
6661 x
|= (value
& howto
->dst_mask
);
6663 /* If required, turn JAL into JALX. */
6667 bfd_vma opcode
= x
>> 26;
6668 bfd_vma jalx_opcode
;
6670 /* Check to see if the opcode is already JAL or JALX. */
6671 if (r_type
== R_MIPS16_26
)
6673 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
6678 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
6682 /* If the opcode is not JAL or JALX, there's a problem. */
6685 (*_bfd_error_handler
)
6686 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6687 bfd_get_filename (input_bfd
),
6688 input_section
->name
,
6689 (unsigned long) relocation
->r_offset
);
6690 bfd_set_error (bfd_error_bad_value
);
6694 /* Make this the JALX opcode. */
6695 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
6698 /* Swap the high- and low-order 16 bits on little-endian systems
6699 when doing a MIPS16 relocation. */
6700 if ((r_type
== R_MIPS16_GPREL
|| r_type
== R_MIPS16_26
)
6701 && bfd_little_endian (input_bfd
))
6702 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
6704 /* Put the value into the output. */
6705 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
6709 /* Returns true if SECTION is a MIPS16 stub section. */
6712 mips_elf_stub_section_p (abfd
, section
)
6713 bfd
*abfd ATTRIBUTE_UNUSED
;
6716 const char *name
= bfd_get_section_name (abfd
, section
);
6718 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
6719 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
6720 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
6723 /* Relocate a MIPS ELF section. */
6726 _bfd_mips_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
6727 contents
, relocs
, local_syms
, local_sections
)
6729 struct bfd_link_info
*info
;
6731 asection
*input_section
;
6733 Elf_Internal_Rela
*relocs
;
6734 Elf_Internal_Sym
*local_syms
;
6735 asection
**local_sections
;
6737 Elf_Internal_Rela
*rel
;
6738 const Elf_Internal_Rela
*relend
;
6740 boolean use_saved_addend_p
= false;
6741 struct elf_backend_data
*bed
;
6743 bed
= get_elf_backend_data (output_bfd
);
6744 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6745 for (rel
= relocs
; rel
< relend
; ++rel
)
6749 reloc_howto_type
*howto
;
6750 boolean require_jalx
;
6751 /* True if the relocation is a RELA relocation, rather than a
6753 boolean rela_relocation_p
= true;
6754 int r_type
= ELF32_R_TYPE (rel
->r_info
);
6756 /* Find the relocation howto for this relocation. */
6757 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
6759 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6760 64-bit code, but make sure all their addresses are in the
6761 lowermost or uppermost 32-bit section of the 64-bit address
6762 space. Thus, when they use an R_MIPS_64 they mean what is
6763 usually meant by R_MIPS_32, with the exception that the
6764 stored value is sign-extended to 64 bits. */
6765 howto
= elf_mips_howto_table
+ R_MIPS_32
;
6767 /* On big-endian systems, we need to lie about the position
6769 if (bfd_big_endian (input_bfd
))
6773 howto
= mips_rtype_to_howto (r_type
);
6775 if (!use_saved_addend_p
)
6777 Elf_Internal_Shdr
*rel_hdr
;
6779 /* If these relocations were originally of the REL variety,
6780 we must pull the addend out of the field that will be
6781 relocated. Otherwise, we simply use the contents of the
6782 RELA relocation. To determine which flavor or relocation
6783 this is, we depend on the fact that the INPUT_SECTION's
6784 REL_HDR is read before its REL_HDR2. */
6785 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
6786 if ((size_t) (rel
- relocs
)
6787 >= (rel_hdr
->sh_size
/ rel_hdr
->sh_entsize
6788 * bed
->s
->int_rels_per_ext_rel
))
6789 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
6790 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
6792 /* Note that this is a REL relocation. */
6793 rela_relocation_p
= false;
6795 /* Get the addend, which is stored in the input file. */
6796 addend
= mips_elf_obtain_contents (howto
,
6800 addend
&= howto
->src_mask
;
6802 /* For some kinds of relocations, the ADDEND is a
6803 combination of the addend stored in two different
6805 if (r_type
== R_MIPS_HI16
6806 || r_type
== R_MIPS_GNU_REL_HI16
6807 || (r_type
== R_MIPS_GOT16
6808 && mips_elf_local_relocation_p (input_bfd
, rel
,
6809 local_sections
, false)))
6812 const Elf_Internal_Rela
*lo16_relocation
;
6813 reloc_howto_type
*lo16_howto
;
6816 /* The combined value is the sum of the HI16 addend,
6817 left-shifted by sixteen bits, and the LO16
6818 addend, sign extended. (Usually, the code does
6819 a `lui' of the HI16 value, and then an `addiu' of
6822 Scan ahead to find a matching LO16 relocation. */
6823 if (r_type
== R_MIPS_GNU_REL_HI16
)
6824 lo
= R_MIPS_GNU_REL_LO16
;
6828 = mips_elf_next_relocation (lo
, rel
, relend
);
6829 if (lo16_relocation
== NULL
)
6832 /* Obtain the addend kept there. */
6833 lo16_howto
= mips_rtype_to_howto (lo
);
6834 l
= mips_elf_obtain_contents (lo16_howto
,
6836 input_bfd
, contents
);
6837 l
&= lo16_howto
->src_mask
;
6838 l
= mips_elf_sign_extend (l
, 16);
6842 /* Compute the combined addend. */
6845 else if (r_type
== R_MIPS16_GPREL
)
6847 /* The addend is scrambled in the object file. See
6848 mips_elf_perform_relocation for details on the
6850 addend
= (((addend
& 0x1f0000) >> 5)
6851 | ((addend
& 0x7e00000) >> 16)
6856 addend
= rel
->r_addend
;
6859 if (info
->relocateable
)
6861 Elf_Internal_Sym
*sym
;
6862 unsigned long r_symndx
;
6864 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
)
6865 && bfd_big_endian (input_bfd
))
6868 /* Since we're just relocating, all we need to do is copy
6869 the relocations back out to the object file, unless
6870 they're against a section symbol, in which case we need
6871 to adjust by the section offset, or unless they're GP
6872 relative in which case we need to adjust by the amount
6873 that we're adjusting GP in this relocateable object. */
6875 if (!mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
,
6877 /* There's nothing to do for non-local relocations. */
6880 if (r_type
== R_MIPS16_GPREL
6881 || r_type
== R_MIPS_GPREL16
6882 || r_type
== R_MIPS_GPREL32
6883 || r_type
== R_MIPS_LITERAL
)
6884 addend
-= (_bfd_get_gp_value (output_bfd
)
6885 - _bfd_get_gp_value (input_bfd
));
6886 else if (r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
6887 || r_type
== R_MIPS_GNU_REL16_S2
)
6888 /* The addend is stored without its two least
6889 significant bits (which are always zero.) In a
6890 non-relocateable link, calculate_relocation will do
6891 this shift; here, we must do it ourselves. */
6894 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6895 sym
= local_syms
+ r_symndx
;
6896 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
6897 /* Adjust the addend appropriately. */
6898 addend
+= local_sections
[r_symndx
]->output_offset
;
6900 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6901 then we only want to write out the high-order 16 bits.
6902 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6903 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS_GOT16
6904 || r_type
== R_MIPS_GNU_REL_HI16
)
6905 addend
= mips_elf_high (addend
);
6906 /* If the relocation is for an R_MIPS_26 relocation, then
6907 the two low-order bits are not stored in the object file;
6908 they are implicitly zero. */
6909 else if (r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
6910 || r_type
== R_MIPS_GNU_REL16_S2
)
6913 if (rela_relocation_p
)
6914 /* If this is a RELA relocation, just update the addend.
6915 We have to cast away constness for REL. */
6916 rel
->r_addend
= addend
;
6919 /* Otherwise, we have to write the value back out. Note
6920 that we use the source mask, rather than the
6921 destination mask because the place to which we are
6922 writing will be source of the addend in the final
6924 addend
&= howto
->src_mask
;
6926 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
6927 /* See the comment above about using R_MIPS_64 in the 32-bit
6928 ABI. Here, we need to update the addend. It would be
6929 possible to get away with just using the R_MIPS_32 reloc
6930 but for endianness. */
6936 if (addend
& ((bfd_vma
) 1 << 31))
6937 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
6941 /* If we don't know that we have a 64-bit type,
6942 do two separate stores. */
6943 if (bfd_big_endian (input_bfd
))
6945 /* Store the sign-bits (which are most significant)
6947 low_bits
= sign_bits
;
6953 high_bits
= sign_bits
;
6955 bfd_put_32 (input_bfd
, low_bits
,
6956 contents
+ rel
->r_offset
);
6957 bfd_put_32 (input_bfd
, high_bits
,
6958 contents
+ rel
->r_offset
+ 4);
6962 if (!mips_elf_perform_relocation (info
, howto
, rel
, addend
,
6963 input_bfd
, input_section
,
6968 /* Go on to the next relocation. */
6972 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6973 relocations for the same offset. In that case we are
6974 supposed to treat the output of each relocation as the addend
6976 if (rel
+ 1 < relend
6977 && rel
->r_offset
== rel
[1].r_offset
6978 && ELF32_R_TYPE (rel
[1].r_info
) != R_MIPS_NONE
)
6979 use_saved_addend_p
= true;
6981 use_saved_addend_p
= false;
6983 /* Figure out what value we are supposed to relocate. */
6984 switch (mips_elf_calculate_relocation (output_bfd
,
6997 case bfd_reloc_continue
:
6998 /* There's nothing to do. */
7001 case bfd_reloc_undefined
:
7002 /* mips_elf_calculate_relocation already called the
7003 undefined_symbol callback. There's no real point in
7004 trying to perform the relocation at this point, so we
7005 just skip ahead to the next relocation. */
7008 case bfd_reloc_notsupported
:
7012 case bfd_reloc_overflow
:
7013 if (use_saved_addend_p
)
7014 /* Ignore overflow until we reach the last relocation for
7015 a given location. */
7019 BFD_ASSERT (name
!= NULL
);
7020 if (! ((*info
->callbacks
->reloc_overflow
)
7021 (info
, name
, howto
->name
, (bfd_vma
) 0,
7022 input_bfd
, input_section
, rel
->r_offset
)))
7035 /* If we've got another relocation for the address, keep going
7036 until we reach the last one. */
7037 if (use_saved_addend_p
)
7043 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
7044 /* See the comment above about using R_MIPS_64 in the 32-bit
7045 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7046 that calculated the right value. Now, however, we
7047 sign-extend the 32-bit result to 64-bits, and store it as a
7048 64-bit value. We are especially generous here in that we
7049 go to extreme lengths to support this usage on systems with
7050 only a 32-bit VMA. */
7056 if (value
& ((bfd_vma
) 1 << 31))
7057 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7061 /* If we don't know that we have a 64-bit type,
7062 do two separate stores. */
7063 if (bfd_big_endian (input_bfd
))
7065 /* Undo what we did above. */
7067 /* Store the sign-bits (which are most significant)
7069 low_bits
= sign_bits
;
7075 high_bits
= sign_bits
;
7077 bfd_put_32 (input_bfd
, low_bits
,
7078 contents
+ rel
->r_offset
);
7079 bfd_put_32 (input_bfd
, high_bits
,
7080 contents
+ rel
->r_offset
+ 4);
7084 /* Actually perform the relocation. */
7085 if (!mips_elf_perform_relocation (info
, howto
, rel
, value
, input_bfd
,
7086 input_section
, contents
,
7094 /* This hook function is called before the linker writes out a global
7095 symbol. We mark symbols as small common if appropriate. This is
7096 also where we undo the increment of the value for a mips16 symbol. */
7099 _bfd_mips_elf_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
7100 bfd
*abfd ATTRIBUTE_UNUSED
;
7101 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7102 const char *name ATTRIBUTE_UNUSED
;
7103 Elf_Internal_Sym
*sym
;
7104 asection
*input_sec
;
7106 /* If we see a common symbol, which implies a relocatable link, then
7107 if a symbol was small common in an input file, mark it as small
7108 common in the output file. */
7109 if (sym
->st_shndx
== SHN_COMMON
7110 && strcmp (input_sec
->name
, ".scommon") == 0)
7111 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7113 if (sym
->st_other
== STO_MIPS16
7114 && (sym
->st_value
& 1) != 0)
7120 /* Functions for the dynamic linker. */
7122 /* The name of the dynamic interpreter. This is put in the .interp
7125 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7126 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7127 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7128 : "/usr/lib/libc.so.1")
7130 /* Create dynamic sections when linking against a dynamic object. */
7133 _bfd_mips_elf_create_dynamic_sections (abfd
, info
)
7135 struct bfd_link_info
*info
;
7137 struct elf_link_hash_entry
*h
;
7139 register asection
*s
;
7140 const char * const *namep
;
7142 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7143 | SEC_LINKER_CREATED
| SEC_READONLY
);
7145 /* Mips ABI requests the .dynamic section to be read only. */
7146 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7149 if (! bfd_set_section_flags (abfd
, s
, flags
))
7153 /* We need to create .got section. */
7154 if (! mips_elf_create_got_section (abfd
, info
))
7157 /* Create the .msym section on IRIX6. It is used by the dynamic
7158 linker to speed up dynamic relocations, and to avoid computing
7159 the ELF hash for symbols. */
7160 if (IRIX_COMPAT (abfd
) == ict_irix6
7161 && !mips_elf_create_msym_section (abfd
))
7164 /* Create .stub section. */
7165 if (bfd_get_section_by_name (abfd
,
7166 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
7168 s
= bfd_make_section (abfd
, MIPS_ELF_STUB_SECTION_NAME (abfd
));
7170 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_CODE
)
7171 || ! bfd_set_section_alignment (abfd
, s
,
7172 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7176 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
7178 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
7180 s
= bfd_make_section (abfd
, ".rld_map");
7182 || ! bfd_set_section_flags (abfd
, s
, flags
& ~SEC_READONLY
)
7183 || ! bfd_set_section_alignment (abfd
, s
,
7184 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7188 /* On IRIX5, we adjust add some additional symbols and change the
7189 alignments of several sections. There is no ABI documentation
7190 indicating that this is necessary on IRIX6, nor any evidence that
7191 the linker takes such action. */
7192 if (IRIX_COMPAT (abfd
) == ict_irix5
)
7194 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
7197 if (! (_bfd_generic_link_add_one_symbol
7198 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
,
7199 (bfd_vma
) 0, (const char *) NULL
, false,
7200 get_elf_backend_data (abfd
)->collect
,
7201 (struct bfd_link_hash_entry
**) &h
)))
7203 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7204 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7205 h
->type
= STT_SECTION
;
7207 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7211 /* We need to create a .compact_rel section. */
7212 if (SGI_COMPAT (abfd
))
7214 if (!mips_elf_create_compact_rel_section (abfd
, info
))
7218 /* Change aligments of some sections. */
7219 s
= bfd_get_section_by_name (abfd
, ".hash");
7221 bfd_set_section_alignment (abfd
, s
, 4);
7222 s
= bfd_get_section_by_name (abfd
, ".dynsym");
7224 bfd_set_section_alignment (abfd
, s
, 4);
7225 s
= bfd_get_section_by_name (abfd
, ".dynstr");
7227 bfd_set_section_alignment (abfd
, s
, 4);
7228 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7230 bfd_set_section_alignment (abfd
, s
, 4);
7231 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7233 bfd_set_section_alignment (abfd
, s
, 4);
7239 if (SGI_COMPAT (abfd
))
7241 if (!(_bfd_generic_link_add_one_symbol
7242 (info
, abfd
, "_DYNAMIC_LINK", BSF_GLOBAL
, bfd_abs_section_ptr
,
7243 (bfd_vma
) 0, (const char *) NULL
, false,
7244 get_elf_backend_data (abfd
)->collect
,
7245 (struct bfd_link_hash_entry
**) &h
)))
7250 /* For normal mips it is _DYNAMIC_LINKING. */
7251 if (!(_bfd_generic_link_add_one_symbol
7252 (info
, abfd
, "_DYNAMIC_LINKING", BSF_GLOBAL
,
7253 bfd_abs_section_ptr
, (bfd_vma
) 0, (const char *) NULL
, false,
7254 get_elf_backend_data (abfd
)->collect
,
7255 (struct bfd_link_hash_entry
**) &h
)))
7258 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7259 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7260 h
->type
= STT_SECTION
;
7262 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7265 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
7267 /* __rld_map is a four byte word located in the .data section
7268 and is filled in by the rtld to contain a pointer to
7269 the _r_debug structure. Its symbol value will be set in
7270 mips_elf_finish_dynamic_symbol. */
7271 s
= bfd_get_section_by_name (abfd
, ".rld_map");
7272 BFD_ASSERT (s
!= NULL
);
7275 if (SGI_COMPAT (abfd
))
7277 if (!(_bfd_generic_link_add_one_symbol
7278 (info
, abfd
, "__rld_map", BSF_GLOBAL
, s
,
7279 (bfd_vma
) 0, (const char *) NULL
, false,
7280 get_elf_backend_data (abfd
)->collect
,
7281 (struct bfd_link_hash_entry
**) &h
)))
7286 /* For normal mips the symbol is __RLD_MAP. */
7287 if (!(_bfd_generic_link_add_one_symbol
7288 (info
, abfd
, "__RLD_MAP", BSF_GLOBAL
, s
,
7289 (bfd_vma
) 0, (const char *) NULL
, false,
7290 get_elf_backend_data (abfd
)->collect
,
7291 (struct bfd_link_hash_entry
**) &h
)))
7294 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7295 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7296 h
->type
= STT_OBJECT
;
7298 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7306 /* Create the .compact_rel section. */
7309 mips_elf_create_compact_rel_section (abfd
, info
)
7311 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7314 register asection
*s
;
7316 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
7318 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
7321 s
= bfd_make_section (abfd
, ".compact_rel");
7323 || ! bfd_set_section_flags (abfd
, s
, flags
)
7324 || ! bfd_set_section_alignment (abfd
, s
,
7325 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7328 s
->_raw_size
= sizeof (Elf32_External_compact_rel
);
7334 /* Create the .got section to hold the global offset table. */
7337 mips_elf_create_got_section (abfd
, info
)
7339 struct bfd_link_info
*info
;
7342 register asection
*s
;
7343 struct elf_link_hash_entry
*h
;
7344 struct mips_got_info
*g
;
7346 /* This function may be called more than once. */
7347 if (mips_elf_got_section (abfd
))
7350 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7351 | SEC_LINKER_CREATED
);
7353 s
= bfd_make_section (abfd
, ".got");
7355 || ! bfd_set_section_flags (abfd
, s
, flags
)
7356 || ! bfd_set_section_alignment (abfd
, s
, 4))
7359 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7360 linker script because we don't want to define the symbol if we
7361 are not creating a global offset table. */
7363 if (! (_bfd_generic_link_add_one_symbol
7364 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
7365 (bfd_vma
) 0, (const char *) NULL
, false,
7366 get_elf_backend_data (abfd
)->collect
,
7367 (struct bfd_link_hash_entry
**) &h
)))
7369 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
7370 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
7371 h
->type
= STT_OBJECT
;
7374 && ! bfd_elf32_link_record_dynamic_symbol (info
, h
))
7377 /* The first several global offset table entries are reserved. */
7378 s
->_raw_size
= MIPS_RESERVED_GOTNO
* MIPS_ELF_GOT_SIZE (abfd
);
7380 g
= (struct mips_got_info
*) bfd_alloc (abfd
,
7381 sizeof (struct mips_got_info
));
7384 g
->global_gotsym
= NULL
;
7385 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
7386 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
7387 if (elf_section_data (s
) == NULL
)
7390 (PTR
) bfd_zalloc (abfd
, sizeof (struct bfd_elf_section_data
));
7391 if (elf_section_data (s
) == NULL
)
7394 elf_section_data (s
)->tdata
= (PTR
) g
;
7395 elf_section_data (s
)->this_hdr
.sh_flags
7396 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7401 /* Returns the .msym section for ABFD, creating it if it does not
7402 already exist. Returns NULL to indicate error. */
7405 mips_elf_create_msym_section (abfd
)
7410 s
= bfd_get_section_by_name (abfd
, MIPS_ELF_MSYM_SECTION_NAME (abfd
));
7413 s
= bfd_make_section (abfd
, MIPS_ELF_MSYM_SECTION_NAME (abfd
));
7415 || !bfd_set_section_flags (abfd
, s
,
7419 | SEC_LINKER_CREATED
7421 || !bfd_set_section_alignment (abfd
, s
,
7422 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7429 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7432 mips_elf_allocate_dynamic_relocations (abfd
, n
)
7438 s
= bfd_get_section_by_name (abfd
, MIPS_ELF_REL_DYN_SECTION_NAME (abfd
));
7439 BFD_ASSERT (s
!= NULL
);
7441 if (s
->_raw_size
== 0)
7443 /* Make room for a null element. */
7444 s
->_raw_size
+= MIPS_ELF_REL_SIZE (abfd
);
7447 s
->_raw_size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
7450 /* Look through the relocs for a section during the first phase, and
7451 allocate space in the global offset table. */
7454 _bfd_mips_elf_check_relocs (abfd
, info
, sec
, relocs
)
7456 struct bfd_link_info
*info
;
7458 const Elf_Internal_Rela
*relocs
;
7462 Elf_Internal_Shdr
*symtab_hdr
;
7463 struct elf_link_hash_entry
**sym_hashes
;
7464 struct mips_got_info
*g
;
7466 const Elf_Internal_Rela
*rel
;
7467 const Elf_Internal_Rela
*rel_end
;
7470 struct elf_backend_data
*bed
;
7472 if (info
->relocateable
)
7475 dynobj
= elf_hash_table (info
)->dynobj
;
7476 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7477 sym_hashes
= elf_sym_hashes (abfd
);
7478 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7480 /* Check for the mips16 stub sections. */
7482 name
= bfd_get_section_name (abfd
, sec
);
7483 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
7485 unsigned long r_symndx
;
7487 /* Look at the relocation information to figure out which symbol
7490 r_symndx
= ELF32_R_SYM (relocs
->r_info
);
7492 if (r_symndx
< extsymoff
7493 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7497 /* This stub is for a local symbol. This stub will only be
7498 needed if there is some relocation in this BFD, other
7499 than a 16 bit function call, which refers to this symbol. */
7500 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7502 Elf_Internal_Rela
*sec_relocs
;
7503 const Elf_Internal_Rela
*r
, *rend
;
7505 /* We can ignore stub sections when looking for relocs. */
7506 if ((o
->flags
& SEC_RELOC
) == 0
7507 || o
->reloc_count
== 0
7508 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
7509 sizeof FN_STUB
- 1) == 0
7510 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
7511 sizeof CALL_STUB
- 1) == 0
7512 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
7513 sizeof CALL_FP_STUB
- 1) == 0)
7516 sec_relocs
= (_bfd_elf32_link_read_relocs
7517 (abfd
, o
, (PTR
) NULL
,
7518 (Elf_Internal_Rela
*) NULL
,
7519 info
->keep_memory
));
7520 if (sec_relocs
== NULL
)
7523 rend
= sec_relocs
+ o
->reloc_count
;
7524 for (r
= sec_relocs
; r
< rend
; r
++)
7525 if (ELF32_R_SYM (r
->r_info
) == r_symndx
7526 && ELF32_R_TYPE (r
->r_info
) != R_MIPS16_26
)
7529 if (! info
->keep_memory
)
7538 /* There is no non-call reloc for this stub, so we do
7539 not need it. Since this function is called before
7540 the linker maps input sections to output sections, we
7541 can easily discard it by setting the SEC_EXCLUDE
7543 sec
->flags
|= SEC_EXCLUDE
;
7547 /* Record this stub in an array of local symbol stubs for
7549 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7551 unsigned long symcount
;
7554 if (elf_bad_symtab (abfd
))
7555 symcount
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
7557 symcount
= symtab_hdr
->sh_info
;
7558 n
= (asection
**) bfd_zalloc (abfd
,
7559 symcount
* sizeof (asection
*));
7562 elf_tdata (abfd
)->local_stubs
= n
;
7565 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7567 /* We don't need to set mips16_stubs_seen in this case.
7568 That flag is used to see whether we need to look through
7569 the global symbol table for stubs. We don't need to set
7570 it here, because we just have a local stub. */
7574 struct mips_elf_link_hash_entry
*h
;
7576 h
= ((struct mips_elf_link_hash_entry
*)
7577 sym_hashes
[r_symndx
- extsymoff
]);
7579 /* H is the symbol this stub is for. */
7582 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
7585 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
7586 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
7588 unsigned long r_symndx
;
7589 struct mips_elf_link_hash_entry
*h
;
7592 /* Look at the relocation information to figure out which symbol
7595 r_symndx
= ELF32_R_SYM (relocs
->r_info
);
7597 if (r_symndx
< extsymoff
7598 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7600 /* This stub was actually built for a static symbol defined
7601 in the same file. We assume that all static symbols in
7602 mips16 code are themselves mips16, so we can simply
7603 discard this stub. Since this function is called before
7604 the linker maps input sections to output sections, we can
7605 easily discard it by setting the SEC_EXCLUDE flag. */
7606 sec
->flags
|= SEC_EXCLUDE
;
7610 h
= ((struct mips_elf_link_hash_entry
*)
7611 sym_hashes
[r_symndx
- extsymoff
]);
7613 /* H is the symbol this stub is for. */
7615 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
7616 loc
= &h
->call_fp_stub
;
7618 loc
= &h
->call_stub
;
7620 /* If we already have an appropriate stub for this function, we
7621 don't need another one, so we can discard this one. Since
7622 this function is called before the linker maps input sections
7623 to output sections, we can easily discard it by setting the
7624 SEC_EXCLUDE flag. We can also discard this section if we
7625 happen to already know that this is a mips16 function; it is
7626 not necessary to check this here, as it is checked later, but
7627 it is slightly faster to check now. */
7628 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
7630 sec
->flags
|= SEC_EXCLUDE
;
7635 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
7645 sgot
= mips_elf_got_section (dynobj
);
7650 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
7651 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
7652 BFD_ASSERT (g
!= NULL
);
7657 bed
= get_elf_backend_data (abfd
);
7658 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7659 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7661 unsigned long r_symndx
;
7663 struct elf_link_hash_entry
*h
;
7665 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7666 r_type
= ELF32_R_TYPE (rel
->r_info
);
7668 if (r_symndx
< extsymoff
)
7670 else if (r_symndx
>= extsymoff
+ (symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
))
7672 (*_bfd_error_handler
)
7673 (_("Malformed reloc detected for section %s"), name
);
7674 bfd_set_error (bfd_error_bad_value
);
7679 h
= sym_hashes
[r_symndx
- extsymoff
];
7681 /* This may be an indirect symbol created because of a version. */
7684 while (h
->root
.type
== bfd_link_hash_indirect
)
7685 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7689 /* Some relocs require a global offset table. */
7690 if (dynobj
== NULL
|| sgot
== NULL
)
7696 case R_MIPS_CALL_HI16
:
7697 case R_MIPS_CALL_LO16
:
7698 case R_MIPS_GOT_HI16
:
7699 case R_MIPS_GOT_LO16
:
7700 case R_MIPS_GOT_PAGE
:
7701 case R_MIPS_GOT_OFST
:
7702 case R_MIPS_GOT_DISP
:
7704 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7705 if (! mips_elf_create_got_section (dynobj
, info
))
7707 g
= mips_elf_got_info (dynobj
, &sgot
);
7714 && (info
->shared
|| h
!= NULL
)
7715 && (sec
->flags
& SEC_ALLOC
) != 0)
7716 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7724 if (!h
&& (r_type
== R_MIPS_CALL_LO16
7725 || r_type
== R_MIPS_GOT_LO16
7726 || r_type
== R_MIPS_GOT_DISP
))
7728 /* We may need a local GOT entry for this relocation. We
7729 don't count R_MIPS_GOT_PAGE because we can estimate the
7730 maximum number of pages needed by looking at the size of
7731 the segment. Similar comments apply to R_MIPS_GOT16. We
7732 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7733 these are always followed by an R_MIPS_GOT_LO16 or
7736 This estimation is very conservative since we can merge
7737 duplicate entries in the GOT. In order to be less
7738 conservative, we could actually build the GOT here,
7739 rather than in relocate_section. */
7741 sgot
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
7749 (*_bfd_error_handler
)
7750 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7751 bfd_get_filename (abfd
), (unsigned long) rel
->r_offset
);
7752 bfd_set_error (bfd_error_bad_value
);
7757 case R_MIPS_CALL_HI16
:
7758 case R_MIPS_CALL_LO16
:
7761 /* This symbol requires a global offset table entry. */
7762 if (!mips_elf_record_global_got_symbol (h
, info
, g
))
7765 /* We need a stub, not a plt entry for the undefined
7766 function. But we record it as if it needs plt. See
7767 elf_adjust_dynamic_symbol in elflink.h. */
7768 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
7774 case R_MIPS_GOT_HI16
:
7775 case R_MIPS_GOT_LO16
:
7776 case R_MIPS_GOT_DISP
:
7777 /* This symbol requires a global offset table entry. */
7778 if (h
&& !mips_elf_record_global_got_symbol (h
, info
, g
))
7785 if ((info
->shared
|| h
!= NULL
)
7786 && (sec
->flags
& SEC_ALLOC
) != 0)
7790 const char *name
= MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
);
7792 sreloc
= bfd_get_section_by_name (dynobj
, name
);
7795 sreloc
= bfd_make_section (dynobj
, name
);
7797 || ! bfd_set_section_flags (dynobj
, sreloc
,
7802 | SEC_LINKER_CREATED
7804 || ! bfd_set_section_alignment (dynobj
, sreloc
,
7810 /* When creating a shared object, we must copy these
7811 reloc types into the output file as R_MIPS_REL32
7812 relocs. We make room for this reloc in the
7813 .rel.dyn reloc section. */
7814 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
7817 struct mips_elf_link_hash_entry
*hmips
;
7819 /* We only need to copy this reloc if the symbol is
7820 defined in a dynamic object. */
7821 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7822 ++hmips
->possibly_dynamic_relocs
;
7825 /* Even though we don't directly need a GOT entry for
7826 this symbol, a symbol must have a dynamic symbol
7827 table index greater that DT_MIPS_GOTSYM if there are
7828 dynamic relocations against it. */
7830 && !mips_elf_record_global_got_symbol (h
, info
, g
))
7834 if (SGI_COMPAT (abfd
))
7835 mips_elf_hash_table (info
)->compact_rel_size
+=
7836 sizeof (Elf32_External_crinfo
);
7840 case R_MIPS_GPREL16
:
7841 case R_MIPS_LITERAL
:
7842 case R_MIPS_GPREL32
:
7843 if (SGI_COMPAT (abfd
))
7844 mips_elf_hash_table (info
)->compact_rel_size
+=
7845 sizeof (Elf32_External_crinfo
);
7848 /* This relocation describes the C++ object vtable hierarchy.
7849 Reconstruct it for later use during GC. */
7850 case R_MIPS_GNU_VTINHERIT
:
7851 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7855 /* This relocation describes which C++ vtable entries are actually
7856 used. Record for later use during GC. */
7857 case R_MIPS_GNU_VTENTRY
:
7858 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7866 /* If this reloc is not a 16 bit call, and it has a global
7867 symbol, then we will need the fn_stub if there is one.
7868 References from a stub section do not count. */
7870 && r_type
!= R_MIPS16_26
7871 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
7872 sizeof FN_STUB
- 1) != 0
7873 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
7874 sizeof CALL_STUB
- 1) != 0
7875 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
7876 sizeof CALL_FP_STUB
- 1) != 0)
7878 struct mips_elf_link_hash_entry
*mh
;
7880 mh
= (struct mips_elf_link_hash_entry
*) h
;
7881 mh
->need_fn_stub
= true;
7888 /* Return the section that should be marked against GC for a given
7892 _bfd_mips_elf_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
7894 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7895 Elf_Internal_Rela
*rel
;
7896 struct elf_link_hash_entry
*h
;
7897 Elf_Internal_Sym
*sym
;
7899 /* ??? Do mips16 stub sections need to be handled special? */
7903 switch (ELF32_R_TYPE (rel
->r_info
))
7905 case R_MIPS_GNU_VTINHERIT
:
7906 case R_MIPS_GNU_VTENTRY
:
7910 switch (h
->root
.type
)
7912 case bfd_link_hash_defined
:
7913 case bfd_link_hash_defweak
:
7914 return h
->root
.u
.def
.section
;
7916 case bfd_link_hash_common
:
7917 return h
->root
.u
.c
.p
->section
;
7926 if (!(elf_bad_symtab (abfd
)
7927 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7928 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
7929 && sym
->st_shndx
!= SHN_COMMON
))
7931 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
7938 /* Update the got entry reference counts for the section being removed. */
7941 _bfd_mips_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
7942 bfd
*abfd ATTRIBUTE_UNUSED
;
7943 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7944 asection
*sec ATTRIBUTE_UNUSED
;
7945 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
7948 Elf_Internal_Shdr
*symtab_hdr
;
7949 struct elf_link_hash_entry
**sym_hashes
;
7950 bfd_signed_vma
*local_got_refcounts
;
7951 const Elf_Internal_Rela
*rel
, *relend
;
7952 unsigned long r_symndx
;
7953 struct elf_link_hash_entry
*h
;
7955 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7956 sym_hashes
= elf_sym_hashes (abfd
);
7957 local_got_refcounts
= elf_local_got_refcounts (abfd
);
7959 relend
= relocs
+ sec
->reloc_count
;
7960 for (rel
= relocs
; rel
< relend
; rel
++)
7961 switch (ELF32_R_TYPE (rel
->r_info
))
7965 case R_MIPS_CALL_HI16
:
7966 case R_MIPS_CALL_LO16
:
7967 case R_MIPS_GOT_HI16
:
7968 case R_MIPS_GOT_LO16
:
7969 /* ??? It would seem that the existing MIPS code does no sort
7970 of reference counting or whatnot on its GOT and PLT entries,
7971 so it is not possible to garbage collect them at this time. */
7982 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7983 hiding the old indirect symbol. Process additional relocation
7987 _bfd_mips_elf_copy_indirect_symbol (dir
, ind
)
7988 struct elf_link_hash_entry
*dir
, *ind
;
7990 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
7992 _bfd_elf_link_hash_copy_indirect (dir
, ind
);
7994 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
7995 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
7996 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
7997 if (dirmips
->min_dyn_reloc_index
== 0
7998 || (indmips
->min_dyn_reloc_index
!= 0
7999 && indmips
->min_dyn_reloc_index
< dirmips
->min_dyn_reloc_index
))
8000 dirmips
->min_dyn_reloc_index
= indmips
->min_dyn_reloc_index
;
8003 /* Adjust a symbol defined by a dynamic object and referenced by a
8004 regular object. The current definition is in some section of the
8005 dynamic object, but we're not including those sections. We have to
8006 change the definition to something the rest of the link can
8010 _bfd_mips_elf_adjust_dynamic_symbol (info
, h
)
8011 struct bfd_link_info
*info
;
8012 struct elf_link_hash_entry
*h
;
8015 struct mips_elf_link_hash_entry
*hmips
;
8018 dynobj
= elf_hash_table (info
)->dynobj
;
8020 /* Make sure we know what is going on here. */
8021 BFD_ASSERT (dynobj
!= NULL
8022 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
8023 || h
->weakdef
!= NULL
8024 || ((h
->elf_link_hash_flags
8025 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
8026 && (h
->elf_link_hash_flags
8027 & ELF_LINK_HASH_REF_REGULAR
) != 0
8028 && (h
->elf_link_hash_flags
8029 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
8031 /* If this symbol is defined in a dynamic object, we need to copy
8032 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8034 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8035 if (! info
->relocateable
8036 && hmips
->possibly_dynamic_relocs
!= 0
8037 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
8038 mips_elf_allocate_dynamic_relocations (dynobj
,
8039 hmips
->possibly_dynamic_relocs
);
8041 /* For a function, create a stub, if needed. */
8042 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
8044 if (! elf_hash_table (info
)->dynamic_sections_created
)
8047 /* If this symbol is not defined in a regular file, then set
8048 the symbol to the stub location. This is required to make
8049 function pointers compare as equal between the normal
8050 executable and the shared library. */
8051 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
8053 /* We need .stub section. */
8054 s
= bfd_get_section_by_name (dynobj
,
8055 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8056 BFD_ASSERT (s
!= NULL
);
8058 h
->root
.u
.def
.section
= s
;
8059 h
->root
.u
.def
.value
= s
->_raw_size
;
8061 /* XXX Write this stub address somewhere. */
8062 h
->plt
.offset
= s
->_raw_size
;
8064 /* Make room for this stub code. */
8065 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
8067 /* The last half word of the stub will be filled with the index
8068 of this symbol in .dynsym section. */
8072 else if ((h
->type
== STT_FUNC
)
8073 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
8075 /* This will set the entry for this symbol in the GOT to 0, and
8076 the dynamic linker will take care of this. */
8077 h
->root
.u
.def
.value
= 0;
8081 /* If this is a weak symbol, and there is a real definition, the
8082 processor independent code will have arranged for us to see the
8083 real definition first, and we can just use the same value. */
8084 if (h
->weakdef
!= NULL
)
8086 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
8087 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
8088 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
8089 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
8093 /* This is a reference to a symbol defined by a dynamic object which
8094 is not a function. */
8099 /* This function is called after all the input files have been read,
8100 and the input sections have been assigned to output sections. We
8101 check for any mips16 stub sections that we can discard. */
8103 static boolean mips_elf_check_mips16_stubs
8104 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
8107 _bfd_mips_elf_always_size_sections (output_bfd
, info
)
8109 struct bfd_link_info
*info
;
8113 /* The .reginfo section has a fixed size. */
8114 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8116 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8118 if (info
->relocateable
8119 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
)
8122 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8123 mips_elf_check_mips16_stubs
,
8129 /* Check the mips16 stubs for a particular symbol, and see if we can
8133 mips_elf_check_mips16_stubs (h
, data
)
8134 struct mips_elf_link_hash_entry
*h
;
8135 PTR data ATTRIBUTE_UNUSED
;
8137 if (h
->fn_stub
!= NULL
8138 && ! h
->need_fn_stub
)
8140 /* We don't need the fn_stub; the only references to this symbol
8141 are 16 bit calls. Clobber the size to 0 to prevent it from
8142 being included in the link. */
8143 h
->fn_stub
->_raw_size
= 0;
8144 h
->fn_stub
->_cooked_size
= 0;
8145 h
->fn_stub
->flags
&= ~SEC_RELOC
;
8146 h
->fn_stub
->reloc_count
= 0;
8147 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
8150 if (h
->call_stub
!= NULL
8151 && h
->root
.other
== STO_MIPS16
)
8153 /* We don't need the call_stub; this is a 16 bit function, so
8154 calls from other 16 bit functions are OK. Clobber the size
8155 to 0 to prevent it from being included in the link. */
8156 h
->call_stub
->_raw_size
= 0;
8157 h
->call_stub
->_cooked_size
= 0;
8158 h
->call_stub
->flags
&= ~SEC_RELOC
;
8159 h
->call_stub
->reloc_count
= 0;
8160 h
->call_stub
->flags
|= SEC_EXCLUDE
;
8163 if (h
->call_fp_stub
!= NULL
8164 && h
->root
.other
== STO_MIPS16
)
8166 /* We don't need the call_stub; this is a 16 bit function, so
8167 calls from other 16 bit functions are OK. Clobber the size
8168 to 0 to prevent it from being included in the link. */
8169 h
->call_fp_stub
->_raw_size
= 0;
8170 h
->call_fp_stub
->_cooked_size
= 0;
8171 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
8172 h
->call_fp_stub
->reloc_count
= 0;
8173 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
8179 /* Set the sizes of the dynamic sections. */
8182 _bfd_mips_elf_size_dynamic_sections (output_bfd
, info
)
8184 struct bfd_link_info
*info
;
8189 struct mips_got_info
*g
= NULL
;
8191 dynobj
= elf_hash_table (info
)->dynobj
;
8192 BFD_ASSERT (dynobj
!= NULL
);
8194 if (elf_hash_table (info
)->dynamic_sections_created
)
8196 /* Set the contents of the .interp section to the interpreter. */
8199 s
= bfd_get_section_by_name (dynobj
, ".interp");
8200 BFD_ASSERT (s
!= NULL
);
8202 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8204 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8208 /* The check_relocs and adjust_dynamic_symbol entry points have
8209 determined the sizes of the various dynamic sections. Allocate
8212 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8217 /* It's OK to base decisions on the section name, because none
8218 of the dynobj section names depend upon the input files. */
8219 name
= bfd_get_section_name (dynobj
, s
);
8221 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8226 if (strncmp (name
, ".rel", 4) == 0)
8228 if (s
->_raw_size
== 0)
8230 /* We only strip the section if the output section name
8231 has the same name. Otherwise, there might be several
8232 input sections for this output section. FIXME: This
8233 code is probably not needed these days anyhow, since
8234 the linker now does not create empty output sections. */
8235 if (s
->output_section
!= NULL
8237 bfd_get_section_name (s
->output_section
->owner
,
8238 s
->output_section
)) == 0)
8243 const char *outname
;
8246 /* If this relocation section applies to a read only
8247 section, then we probably need a DT_TEXTREL entry.
8248 If the relocation section is .rel.dyn, we always
8249 assert a DT_TEXTREL entry rather than testing whether
8250 there exists a relocation to a read only section or
8252 outname
= bfd_get_section_name (output_bfd
,
8254 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8256 && (target
->flags
& SEC_READONLY
) != 0
8257 && (target
->flags
& SEC_ALLOC
) != 0)
8259 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
)) == 0)
8262 /* We use the reloc_count field as a counter if we need
8263 to copy relocs into the output file. */
8265 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
)) != 0)
8269 else if (strncmp (name
, ".got", 4) == 0)
8272 bfd_size_type loadable_size
= 0;
8273 bfd_size_type local_gotno
;
8276 BFD_ASSERT (elf_section_data (s
) != NULL
);
8277 g
= (struct mips_got_info
*) elf_section_data (s
)->tdata
;
8278 BFD_ASSERT (g
!= NULL
);
8280 /* Calculate the total loadable size of the output. That
8281 will give us the maximum number of GOT_PAGE entries
8283 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8285 asection
*subsection
;
8287 for (subsection
= sub
->sections
;
8289 subsection
= subsection
->next
)
8291 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8293 loadable_size
+= (subsection
->_raw_size
+ 0xf) & ~0xf;
8296 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
;
8298 /* Assume there are two loadable segments consisting of
8299 contiguous sections. Is 5 enough? */
8300 local_gotno
= (loadable_size
>> 16) + 5;
8301 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8302 /* It's possible we will need GOT_PAGE entries as well as
8303 GOT16 entries. Often, these will be able to share GOT
8304 entries, but not always. */
8307 g
->local_gotno
+= local_gotno
;
8308 s
->_raw_size
+= local_gotno
* MIPS_ELF_GOT_SIZE (dynobj
);
8310 /* There has to be a global GOT entry for every symbol with
8311 a dynamic symbol table index of DT_MIPS_GOTSYM or
8312 higher. Therefore, it make sense to put those symbols
8313 that need GOT entries at the end of the symbol table. We
8315 if (!mips_elf_sort_hash_table (info
, 1))
8318 if (g
->global_gotsym
!= NULL
)
8319 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
8321 /* If there are no global symbols, or none requiring
8322 relocations, then GLOBAL_GOTSYM will be NULL. */
8324 g
->global_gotno
= i
;
8325 s
->_raw_size
+= i
* MIPS_ELF_GOT_SIZE (dynobj
);
8327 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
8329 /* Irix rld assumes that the function stub isn't at the end
8330 of .text section. So put a dummy. XXX */
8331 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
8333 else if (! info
->shared
8334 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8335 && strncmp (name
, ".rld_map", 8) == 0)
8337 /* We add a room for __rld_map. It will be filled in by the
8338 rtld to contain a pointer to the _r_debug structure. */
8341 else if (SGI_COMPAT (output_bfd
)
8342 && strncmp (name
, ".compact_rel", 12) == 0)
8343 s
->_raw_size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8344 else if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (output_bfd
))
8346 s
->_raw_size
= (sizeof (Elf32_External_Msym
)
8347 * (elf_hash_table (info
)->dynsymcount
8348 + bfd_count_sections (output_bfd
)));
8349 else if (strncmp (name
, ".init", 5) != 0)
8351 /* It's not one of our sections, so don't allocate space. */
8357 _bfd_strip_section_from_output (info
, s
);
8361 /* Allocate memory for the section contents. */
8362 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
8363 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
8365 bfd_set_error (bfd_error_no_memory
);
8370 if (elf_hash_table (info
)->dynamic_sections_created
)
8372 /* Add some entries to the .dynamic section. We fill in the
8373 values later, in elf_mips_finish_dynamic_sections, but we
8374 must add the entries now so that we get the correct size for
8375 the .dynamic section. The DT_DEBUG entry is filled in by the
8376 dynamic linker and used by the debugger. */
8379 /* SGI object has the equivalence of DT_DEBUG in the
8380 DT_MIPS_RLD_MAP entry. */
8381 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8383 if (!SGI_COMPAT (output_bfd
))
8385 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8391 /* Shared libraries on traditional mips have DT_DEBUG. */
8392 if (!SGI_COMPAT (output_bfd
))
8394 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8398 if (reltext
&& SGI_COMPAT (output_bfd
))
8400 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
8402 info
->flags
|= DF_TEXTREL
;
8405 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
8408 if (bfd_get_section_by_name (dynobj
,
8409 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
)))
8411 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
8414 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
8417 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
8421 if (SGI_COMPAT (output_bfd
))
8423 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICTNO
, 0))
8427 if (SGI_COMPAT (output_bfd
))
8429 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLISTNO
, 0))
8433 if (bfd_get_section_by_name (dynobj
, ".conflict") != NULL
)
8435 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICT
, 0))
8438 s
= bfd_get_section_by_name (dynobj
, ".liblist");
8439 BFD_ASSERT (s
!= NULL
);
8441 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLIST
, 0))
8445 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8448 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8452 /* Time stamps in executable files are a bad idea. */
8453 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_TIME_STAMP
, 0))
8458 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_ICHECKSUM
, 0))
8463 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_IVERSION
, 0))
8467 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8470 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8473 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8476 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8479 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8482 if (IRIX_COMPAT (dynobj
) == ict_irix5
8483 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8486 if (IRIX_COMPAT (dynobj
) == ict_irix6
8487 && (bfd_get_section_by_name
8488 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8489 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8492 if (bfd_get_section_by_name (dynobj
,
8493 MIPS_ELF_MSYM_SECTION_NAME (dynobj
))
8494 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_MSYM
, 0))
8501 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8502 adjust it appropriately now. */
8505 mips_elf_irix6_finish_dynamic_symbol (abfd
, name
, sym
)
8506 bfd
*abfd ATTRIBUTE_UNUSED
;
8508 Elf_Internal_Sym
*sym
;
8510 /* The linker script takes care of providing names and values for
8511 these, but we must place them into the right sections. */
8512 static const char* const text_section_symbols
[] = {
8515 "__dso_displacement",
8517 "__program_header_table",
8521 static const char* const data_section_symbols
[] = {
8529 const char* const *p
;
8532 for (i
= 0; i
< 2; ++i
)
8533 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
8536 if (strcmp (*p
, name
) == 0)
8538 /* All of these symbols are given type STT_SECTION by the
8540 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8542 /* The IRIX linker puts these symbols in special sections. */
8544 sym
->st_shndx
= SHN_MIPS_TEXT
;
8546 sym
->st_shndx
= SHN_MIPS_DATA
;
8552 /* Finish up dynamic symbol handling. We set the contents of various
8553 dynamic sections here. */
8556 _bfd_mips_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
8558 struct bfd_link_info
*info
;
8559 struct elf_link_hash_entry
*h
;
8560 Elf_Internal_Sym
*sym
;
8566 struct mips_got_info
*g
;
8568 struct mips_elf_link_hash_entry
*mh
;
8570 dynobj
= elf_hash_table (info
)->dynobj
;
8571 gval
= sym
->st_value
;
8572 mh
= (struct mips_elf_link_hash_entry
*) h
;
8574 if (h
->plt
.offset
!= (bfd_vma
) -1)
8578 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
8580 /* This symbol has a stub. Set it up. */
8582 BFD_ASSERT (h
->dynindx
!= -1);
8584 s
= bfd_get_section_by_name (dynobj
,
8585 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8586 BFD_ASSERT (s
!= NULL
);
8588 /* Fill the stub. */
8590 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), p
);
8592 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), p
);
8595 /* FIXME: Can h->dynindex be more than 64K? */
8596 if (h
->dynindx
& 0xffff0000)
8599 bfd_put_32 (output_bfd
, STUB_JALR
, p
);
8601 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, p
);
8603 BFD_ASSERT (h
->plt
.offset
<= s
->_raw_size
);
8604 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
8606 /* Mark the symbol as undefined. plt.offset != -1 occurs
8607 only for the referenced symbol. */
8608 sym
->st_shndx
= SHN_UNDEF
;
8610 /* The run-time linker uses the st_value field of the symbol
8611 to reset the global offset table entry for this external
8612 to its stub address when unlinking a shared object. */
8613 gval
= s
->output_section
->vma
+ s
->output_offset
+ h
->plt
.offset
;
8614 sym
->st_value
= gval
;
8617 BFD_ASSERT (h
->dynindx
!= -1
8618 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0);
8620 sgot
= mips_elf_got_section (dynobj
);
8621 BFD_ASSERT (sgot
!= NULL
);
8622 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
8623 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
8624 BFD_ASSERT (g
!= NULL
);
8626 /* Run through the global symbol table, creating GOT entries for all
8627 the symbols that need them. */
8628 if (g
->global_gotsym
!= NULL
8629 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8635 value
= sym
->st_value
;
8638 /* For an entity defined in a shared object, this will be
8639 NULL. (For functions in shared objects for
8640 which we have created stubs, ST_VALUE will be non-NULL.
8641 That's because such the functions are now no longer defined
8642 in a shared object.) */
8644 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
8647 value
= h
->root
.u
.def
.value
;
8649 offset
= mips_elf_global_got_index (dynobj
, h
);
8650 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
8653 /* Create a .msym entry, if appropriate. */
8654 smsym
= bfd_get_section_by_name (dynobj
,
8655 MIPS_ELF_MSYM_SECTION_NAME (dynobj
));
8658 Elf32_Internal_Msym msym
;
8660 msym
.ms_hash_value
= bfd_elf_hash (h
->root
.root
.string
);
8661 /* It is undocumented what the `1' indicates, but IRIX6 uses
8663 msym
.ms_info
= ELF32_MS_INFO (mh
->min_dyn_reloc_index
, 1);
8664 bfd_mips_elf_swap_msym_out
8666 ((Elf32_External_Msym
*) smsym
->contents
) + h
->dynindx
);
8669 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8670 name
= h
->root
.root
.string
;
8671 if (strcmp (name
, "_DYNAMIC") == 0
8672 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
8673 sym
->st_shndx
= SHN_ABS
;
8674 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
8675 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
8677 sym
->st_shndx
= SHN_ABS
;
8678 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8681 else if (strcmp (name
, "_gp_disp") == 0)
8683 sym
->st_shndx
= SHN_ABS
;
8684 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8685 sym
->st_value
= elf_gp (output_bfd
);
8687 else if (SGI_COMPAT (output_bfd
))
8689 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
8690 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
8692 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8693 sym
->st_other
= STO_PROTECTED
;
8695 sym
->st_shndx
= SHN_MIPS_DATA
;
8697 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
8699 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8700 sym
->st_other
= STO_PROTECTED
;
8701 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
8702 sym
->st_shndx
= SHN_ABS
;
8704 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
8706 if (h
->type
== STT_FUNC
)
8707 sym
->st_shndx
= SHN_MIPS_TEXT
;
8708 else if (h
->type
== STT_OBJECT
)
8709 sym
->st_shndx
= SHN_MIPS_DATA
;
8713 /* Handle the IRIX6-specific symbols. */
8714 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8715 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
8719 if (! mips_elf_hash_table (info
)->use_rld_obj_head
8720 && (strcmp (name
, "__rld_map") == 0
8721 || strcmp (name
, "__RLD_MAP") == 0))
8723 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
8724 BFD_ASSERT (s
!= NULL
);
8725 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
8726 bfd_put_32 (output_bfd
, (bfd_vma
) 0, s
->contents
);
8727 if (mips_elf_hash_table (info
)->rld_value
== 0)
8728 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8730 else if (mips_elf_hash_table (info
)->use_rld_obj_head
8731 && strcmp (name
, "__rld_obj_head") == 0)
8733 /* IRIX6 does not use a .rld_map section. */
8734 if (IRIX_COMPAT (output_bfd
) == ict_irix5
8735 || IRIX_COMPAT (output_bfd
) == ict_none
)
8736 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
8738 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8742 /* If this is a mips16 symbol, force the value to be even. */
8743 if (sym
->st_other
== STO_MIPS16
8744 && (sym
->st_value
& 1) != 0)
8750 /* Finish up the dynamic sections. */
8753 _bfd_mips_elf_finish_dynamic_sections (output_bfd
, info
)
8755 struct bfd_link_info
*info
;
8760 struct mips_got_info
*g
;
8762 dynobj
= elf_hash_table (info
)->dynobj
;
8764 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
8766 sgot
= mips_elf_got_section (dynobj
);
8771 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
8772 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
8773 BFD_ASSERT (g
!= NULL
);
8776 if (elf_hash_table (info
)->dynamic_sections_created
)
8780 BFD_ASSERT (sdyn
!= NULL
);
8781 BFD_ASSERT (g
!= NULL
);
8783 for (b
= sdyn
->contents
;
8784 b
< sdyn
->contents
+ sdyn
->_raw_size
;
8785 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8787 Elf_Internal_Dyn dyn
;
8793 /* Read in the current dynamic entry. */
8794 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8796 /* Assume that we're going to modify it and write it out. */
8802 s
= (bfd_get_section_by_name
8804 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
)));
8805 BFD_ASSERT (s
!= NULL
);
8806 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
8810 /* Rewrite DT_STRSZ. */
8812 _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
8818 case DT_MIPS_CONFLICT
:
8821 case DT_MIPS_LIBLIST
:
8824 s
= bfd_get_section_by_name (output_bfd
, name
);
8825 BFD_ASSERT (s
!= NULL
);
8826 dyn
.d_un
.d_ptr
= s
->vma
;
8829 case DT_MIPS_RLD_VERSION
:
8830 dyn
.d_un
.d_val
= 1; /* XXX */
8834 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
8837 case DT_MIPS_CONFLICTNO
:
8839 elemsize
= sizeof (Elf32_Conflict
);
8842 case DT_MIPS_LIBLISTNO
:
8844 elemsize
= sizeof (Elf32_Lib
);
8846 s
= bfd_get_section_by_name (output_bfd
, name
);
8849 if (s
->_cooked_size
!= 0)
8850 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
8852 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
8858 case DT_MIPS_TIME_STAMP
:
8859 time ((time_t *) &dyn
.d_un
.d_val
);
8862 case DT_MIPS_ICHECKSUM
:
8867 case DT_MIPS_IVERSION
:
8872 case DT_MIPS_BASE_ADDRESS
:
8873 s
= output_bfd
->sections
;
8874 BFD_ASSERT (s
!= NULL
);
8875 dyn
.d_un
.d_ptr
= s
->vma
& ~(0xffff);
8878 case DT_MIPS_LOCAL_GOTNO
:
8879 dyn
.d_un
.d_val
= g
->local_gotno
;
8882 case DT_MIPS_UNREFEXTNO
:
8883 /* The index into the dynamic symbol table which is the
8884 entry of the first external symbol that is not
8885 referenced within the same object. */
8886 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
8889 case DT_MIPS_GOTSYM
:
8890 if (g
->global_gotsym
)
8892 dyn
.d_un
.d_val
= g
->global_gotsym
->dynindx
;
8895 /* In case if we don't have global got symbols we default
8896 to setting DT_MIPS_GOTSYM to the same value as
8897 DT_MIPS_SYMTABNO, so we just fall through. */
8899 case DT_MIPS_SYMTABNO
:
8901 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
8902 s
= bfd_get_section_by_name (output_bfd
, name
);
8903 BFD_ASSERT (s
!= NULL
);
8905 if (s
->_cooked_size
!= 0)
8906 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
8908 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
8911 case DT_MIPS_HIPAGENO
:
8912 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
8915 case DT_MIPS_RLD_MAP
:
8916 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
8919 case DT_MIPS_OPTIONS
:
8920 s
= (bfd_get_section_by_name
8921 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
8922 dyn
.d_un
.d_ptr
= s
->vma
;
8926 s
= (bfd_get_section_by_name
8927 (output_bfd
, MIPS_ELF_MSYM_SECTION_NAME (output_bfd
)));
8928 dyn
.d_un
.d_ptr
= s
->vma
;
8937 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8942 /* The first entry of the global offset table will be filled at
8943 runtime. The second entry will be used by some runtime loaders.
8944 This isn't the case of Irix rld. */
8945 if (sgot
!= NULL
&& sgot
->_raw_size
> 0)
8947 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
8948 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
8949 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8953 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
8954 = MIPS_ELF_GOT_SIZE (output_bfd
);
8959 Elf32_compact_rel cpt
;
8961 /* ??? The section symbols for the output sections were set up in
8962 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8963 symbols. Should we do so? */
8965 smsym
= bfd_get_section_by_name (dynobj
,
8966 MIPS_ELF_MSYM_SECTION_NAME (dynobj
));
8969 Elf32_Internal_Msym msym
;
8971 msym
.ms_hash_value
= 0;
8972 msym
.ms_info
= ELF32_MS_INFO (0, 1);
8974 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
8976 long dynindx
= elf_section_data (s
)->dynindx
;
8978 bfd_mips_elf_swap_msym_out
8980 (((Elf32_External_Msym
*) smsym
->contents
)
8985 if (SGI_COMPAT (output_bfd
))
8987 /* Write .compact_rel section out. */
8988 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
8992 cpt
.num
= s
->reloc_count
;
8994 cpt
.offset
= (s
->output_section
->filepos
8995 + sizeof (Elf32_External_compact_rel
));
8998 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
8999 ((Elf32_External_compact_rel
*)
9002 /* Clean up a dummy stub function entry in .text. */
9003 s
= bfd_get_section_by_name (dynobj
,
9004 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
9007 file_ptr dummy_offset
;
9009 BFD_ASSERT (s
->_raw_size
>= MIPS_FUNCTION_STUB_SIZE
);
9010 dummy_offset
= s
->_raw_size
- MIPS_FUNCTION_STUB_SIZE
;
9011 memset (s
->contents
+ dummy_offset
, 0,
9012 MIPS_FUNCTION_STUB_SIZE
);
9017 /* We need to sort the entries of the dynamic relocation section. */
9019 if (!ABI_64_P (output_bfd
))
9023 reldyn
= bfd_get_section_by_name (dynobj
,
9024 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
));
9025 if (reldyn
!= NULL
&& reldyn
->reloc_count
> 2)
9027 reldyn_sorting_bfd
= output_bfd
;
9028 qsort ((Elf32_External_Rel
*) reldyn
->contents
+ 1,
9029 (size_t) reldyn
->reloc_count
- 1,
9030 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
9034 /* Clean up a first relocation in .rel.dyn. */
9035 s
= bfd_get_section_by_name (dynobj
,
9036 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
));
9037 if (s
!= NULL
&& s
->_raw_size
> 0)
9038 memset (s
->contents
, 0, MIPS_ELF_REL_SIZE (dynobj
));
9044 /* This is almost identical to bfd_generic_get_... except that some
9045 MIPS relocations need to be handled specially. Sigh. */
9048 elf32_mips_get_relocated_section_contents (abfd
, link_info
, link_order
, data
,
9049 relocateable
, symbols
)
9051 struct bfd_link_info
*link_info
;
9052 struct bfd_link_order
*link_order
;
9054 boolean relocateable
;
9057 /* Get enough memory to hold the stuff */
9058 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
9059 asection
*input_section
= link_order
->u
.indirect
.section
;
9061 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
9062 arelent
**reloc_vector
= NULL
;
9068 reloc_vector
= (arelent
**) bfd_malloc (reloc_size
);
9069 if (reloc_vector
== NULL
&& reloc_size
!= 0)
9072 /* read in the section */
9073 if (!bfd_get_section_contents (input_bfd
,
9077 input_section
->_raw_size
))
9080 /* We're not relaxing the section, so just copy the size info */
9081 input_section
->_cooked_size
= input_section
->_raw_size
;
9082 input_section
->reloc_done
= true;
9084 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
9088 if (reloc_count
< 0)
9091 if (reloc_count
> 0)
9096 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
9099 struct bfd_hash_entry
*h
;
9100 struct bfd_link_hash_entry
*lh
;
9101 /* Skip all this stuff if we aren't mixing formats. */
9102 if (abfd
&& input_bfd
9103 && abfd
->xvec
== input_bfd
->xvec
)
9107 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", false, false);
9108 lh
= (struct bfd_link_hash_entry
*) h
;
9115 case bfd_link_hash_undefined
:
9116 case bfd_link_hash_undefweak
:
9117 case bfd_link_hash_common
:
9120 case bfd_link_hash_defined
:
9121 case bfd_link_hash_defweak
:
9123 gp
= lh
->u
.def
.value
;
9125 case bfd_link_hash_indirect
:
9126 case bfd_link_hash_warning
:
9128 /* @@FIXME ignoring warning for now */
9130 case bfd_link_hash_new
:
9139 for (parent
= reloc_vector
; *parent
!= (arelent
*) NULL
;
9142 char *error_message
= (char *) NULL
;
9143 bfd_reloc_status_type r
;
9145 /* Specific to MIPS: Deal with relocation types that require
9146 knowing the gp of the output bfd. */
9147 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
9148 if (bfd_is_abs_section (sym
->section
) && abfd
)
9150 /* The special_function wouldn't get called anyways. */
9154 /* The gp isn't there; let the special function code
9155 fall over on its own. */
9157 else if ((*parent
)->howto
->special_function
9158 == _bfd_mips_elf_gprel16_reloc
)
9160 /* bypass special_function call */
9161 r
= gprel16_with_gp (input_bfd
, sym
, *parent
, input_section
,
9162 relocateable
, (PTR
) data
, gp
);
9163 goto skip_bfd_perform_relocation
;
9165 /* end mips specific stuff */
9167 r
= bfd_perform_relocation (input_bfd
,
9171 relocateable
? abfd
: (bfd
*) NULL
,
9173 skip_bfd_perform_relocation
:
9177 asection
*os
= input_section
->output_section
;
9179 /* A partial link, so keep the relocs */
9180 os
->orelocation
[os
->reloc_count
] = *parent
;
9184 if (r
!= bfd_reloc_ok
)
9188 case bfd_reloc_undefined
:
9189 if (!((*link_info
->callbacks
->undefined_symbol
)
9190 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
9191 input_bfd
, input_section
, (*parent
)->address
,
9195 case bfd_reloc_dangerous
:
9196 BFD_ASSERT (error_message
!= (char *) NULL
);
9197 if (!((*link_info
->callbacks
->reloc_dangerous
)
9198 (link_info
, error_message
, input_bfd
, input_section
,
9199 (*parent
)->address
)))
9202 case bfd_reloc_overflow
:
9203 if (!((*link_info
->callbacks
->reloc_overflow
)
9204 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
9205 (*parent
)->howto
->name
, (*parent
)->addend
,
9206 input_bfd
, input_section
, (*parent
)->address
)))
9209 case bfd_reloc_outofrange
:
9218 if (reloc_vector
!= NULL
)
9219 free (reloc_vector
);
9223 if (reloc_vector
!= NULL
)
9224 free (reloc_vector
);
9228 #define bfd_elf32_bfd_get_relocated_section_contents \
9229 elf32_mips_get_relocated_section_contents
9231 /* ECOFF swapping routines. These are used when dealing with the
9232 .mdebug section, which is in the ECOFF debugging format. */
9233 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap
= {
9234 /* Symbol table magic number. */
9236 /* Alignment of debugging information. E.g., 4. */
9238 /* Sizes of external symbolic information. */
9239 sizeof (struct hdr_ext
),
9240 sizeof (struct dnr_ext
),
9241 sizeof (struct pdr_ext
),
9242 sizeof (struct sym_ext
),
9243 sizeof (struct opt_ext
),
9244 sizeof (struct fdr_ext
),
9245 sizeof (struct rfd_ext
),
9246 sizeof (struct ext_ext
),
9247 /* Functions to swap in external symbolic data. */
9256 _bfd_ecoff_swap_tir_in
,
9257 _bfd_ecoff_swap_rndx_in
,
9258 /* Functions to swap out external symbolic data. */
9267 _bfd_ecoff_swap_tir_out
,
9268 _bfd_ecoff_swap_rndx_out
,
9269 /* Function to read in symbolic data. */
9270 _bfd_mips_elf_read_ecoff_info
9273 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9274 #define TARGET_LITTLE_NAME "elf32-littlemips"
9275 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9276 #define TARGET_BIG_NAME "elf32-bigmips"
9277 #define ELF_ARCH bfd_arch_mips
9278 #define ELF_MACHINE_CODE EM_MIPS
9280 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9281 a value of 0x1000, and we are compatible. */
9282 #define ELF_MAXPAGESIZE 0x1000
9284 #define elf_backend_collect true
9285 #define elf_backend_type_change_ok true
9286 #define elf_backend_can_gc_sections true
9287 #define elf_backend_sign_extend_vma true
9288 #define elf_info_to_howto mips_info_to_howto_rela
9289 #define elf_info_to_howto_rel mips_info_to_howto_rel
9290 #define elf_backend_sym_is_global mips_elf_sym_is_global
9291 #define elf_backend_object_p _bfd_mips_elf_object_p
9292 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9293 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9294 #define elf_backend_section_from_bfd_section \
9295 _bfd_mips_elf_section_from_bfd_section
9296 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9297 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9298 #define elf_backend_additional_program_headers \
9299 _bfd_mips_elf_additional_program_headers
9300 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9301 #define elf_backend_final_write_processing \
9302 _bfd_mips_elf_final_write_processing
9303 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9304 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9305 #define elf_backend_create_dynamic_sections \
9306 _bfd_mips_elf_create_dynamic_sections
9307 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9308 #define elf_backend_adjust_dynamic_symbol \
9309 _bfd_mips_elf_adjust_dynamic_symbol
9310 #define elf_backend_always_size_sections \
9311 _bfd_mips_elf_always_size_sections
9312 #define elf_backend_size_dynamic_sections \
9313 _bfd_mips_elf_size_dynamic_sections
9314 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9315 #define elf_backend_link_output_symbol_hook \
9316 _bfd_mips_elf_link_output_symbol_hook
9317 #define elf_backend_finish_dynamic_symbol \
9318 _bfd_mips_elf_finish_dynamic_symbol
9319 #define elf_backend_finish_dynamic_sections \
9320 _bfd_mips_elf_finish_dynamic_sections
9321 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9322 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9324 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9325 #define elf_backend_plt_header_size 0
9327 #define elf_backend_copy_indirect_symbol \
9328 _bfd_mips_elf_copy_indirect_symbol
9330 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9332 #define bfd_elf32_bfd_is_local_label_name \
9333 mips_elf_is_local_label_name
9334 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9335 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9336 #define bfd_elf32_bfd_link_hash_table_create \
9337 _bfd_mips_elf_link_hash_table_create
9338 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9339 #define bfd_elf32_bfd_copy_private_bfd_data \
9340 _bfd_mips_elf_copy_private_bfd_data
9341 #define bfd_elf32_bfd_merge_private_bfd_data \
9342 _bfd_mips_elf_merge_private_bfd_data
9343 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9344 #define bfd_elf32_bfd_print_private_bfd_data \
9345 _bfd_mips_elf_print_private_bfd_data
9346 #include "elf32-target.h"
9348 /* Support for traditional mips targets */
9350 #define INCLUDED_TARGET_FILE /* More a type of flag */
9352 #undef TARGET_LITTLE_SYM
9353 #undef TARGET_LITTLE_NAME
9354 #undef TARGET_BIG_SYM
9355 #undef TARGET_BIG_NAME
9357 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9358 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9359 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9360 #define TARGET_BIG_NAME "elf32-tradbigmips"
9362 /* Include the target file again for this target */
9363 #include "elf32-target.h"