1 // symtab.cc -- the gold symbol table
13 #include "workqueue.h"
21 // Initialize fields in Symbol. This initializes everything except u_
25 Symbol::init_fields(const char* name
, const char* version
,
26 elfcpp::STT type
, elfcpp::STB binding
,
27 elfcpp::STV visibility
, unsigned char nonvis
)
30 this->version_
= version
;
31 this->symtab_index_
= 0;
32 this->dynsym_index_
= 0;
33 this->got_offset_
= 0;
35 this->binding_
= binding
;
36 this->visibility_
= visibility
;
37 this->nonvis_
= nonvis
;
38 this->is_target_special_
= false;
39 this->is_def_
= false;
40 this->is_forwarder_
= false;
41 this->needs_dynsym_entry_
= false;
42 this->in_reg_
= false;
43 this->in_dyn_
= false;
44 this->has_got_offset_
= false;
45 this->has_warning_
= false;
48 // Initialize the fields in the base class Symbol for SYM in OBJECT.
50 template<int size
, bool big_endian
>
52 Symbol::init_base(const char* name
, const char* version
, Object
* object
,
53 const elfcpp::Sym
<size
, big_endian
>& sym
)
55 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
56 sym
.get_st_visibility(), sym
.get_st_nonvis());
57 this->u_
.from_object
.object
= object
;
58 // FIXME: Handle SHN_XINDEX.
59 this->u_
.from_object
.shndx
= sym
.get_st_shndx();
60 this->source_
= FROM_OBJECT
;
61 this->in_reg_
= !object
->is_dynamic();
62 this->in_dyn_
= object
->is_dynamic();
65 // Initialize the fields in the base class Symbol for a symbol defined
69 Symbol::init_base(const char* name
, Output_data
* od
, elfcpp::STT type
,
70 elfcpp::STB binding
, elfcpp::STV visibility
,
71 unsigned char nonvis
, bool offset_is_from_end
)
73 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
74 this->u_
.in_output_data
.output_data
= od
;
75 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
76 this->source_
= IN_OUTPUT_DATA
;
80 // Initialize the fields in the base class Symbol for a symbol defined
81 // in an Output_segment.
84 Symbol::init_base(const char* name
, Output_segment
* os
, elfcpp::STT type
,
85 elfcpp::STB binding
, elfcpp::STV visibility
,
86 unsigned char nonvis
, Segment_offset_base offset_base
)
88 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
89 this->u_
.in_output_segment
.output_segment
= os
;
90 this->u_
.in_output_segment
.offset_base
= offset_base
;
91 this->source_
= IN_OUTPUT_SEGMENT
;
95 // Initialize the fields in the base class Symbol for a symbol defined
99 Symbol::init_base(const char* name
, elfcpp::STT type
,
100 elfcpp::STB binding
, elfcpp::STV visibility
,
101 unsigned char nonvis
)
103 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
104 this->source_
= CONSTANT
;
105 this->in_reg_
= true;
108 // Initialize the fields in Sized_symbol for SYM in OBJECT.
111 template<bool big_endian
>
113 Sized_symbol
<size
>::init(const char* name
, const char* version
, Object
* object
,
114 const elfcpp::Sym
<size
, big_endian
>& sym
)
116 this->init_base(name
, version
, object
, sym
);
117 this->value_
= sym
.get_st_value();
118 this->symsize_
= sym
.get_st_size();
121 // Initialize the fields in Sized_symbol for a symbol defined in an
126 Sized_symbol
<size
>::init(const char* name
, Output_data
* od
,
127 Value_type value
, Size_type symsize
,
128 elfcpp::STT type
, elfcpp::STB binding
,
129 elfcpp::STV visibility
, unsigned char nonvis
,
130 bool offset_is_from_end
)
132 this->init_base(name
, od
, type
, binding
, visibility
, nonvis
,
134 this->value_
= value
;
135 this->symsize_
= symsize
;
138 // Initialize the fields in Sized_symbol for a symbol defined in an
143 Sized_symbol
<size
>::init(const char* name
, Output_segment
* os
,
144 Value_type value
, Size_type symsize
,
145 elfcpp::STT type
, elfcpp::STB binding
,
146 elfcpp::STV visibility
, unsigned char nonvis
,
147 Segment_offset_base offset_base
)
149 this->init_base(name
, os
, type
, binding
, visibility
, nonvis
, offset_base
);
150 this->value_
= value
;
151 this->symsize_
= symsize
;
154 // Initialize the fields in Sized_symbol for a symbol defined as a
159 Sized_symbol
<size
>::init(const char* name
, Value_type value
, Size_type symsize
,
160 elfcpp::STT type
, elfcpp::STB binding
,
161 elfcpp::STV visibility
, unsigned char nonvis
)
163 this->init_base(name
, type
, binding
, visibility
, nonvis
);
164 this->value_
= value
;
165 this->symsize_
= symsize
;
168 // Class Symbol_table.
170 Symbol_table::Symbol_table()
171 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
172 forwarders_(), commons_(), warnings_()
176 Symbol_table::~Symbol_table()
180 // The hash function. The key is always canonicalized, so we use a
181 // simple combination of the pointers.
184 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
186 return key
.first
^ key
.second
;
189 // The symbol table key equality function. This is only called with
190 // canonicalized name and version strings, so we can use pointer
194 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
195 const Symbol_table_key
& k2
) const
197 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
200 // Make TO a symbol which forwards to FROM.
203 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
205 gold_assert(from
!= to
);
206 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
207 this->forwarders_
[from
] = to
;
208 from
->set_forwarder();
211 // Resolve the forwards from FROM, returning the real symbol.
214 Symbol_table::resolve_forwards(const Symbol
* from
) const
216 gold_assert(from
->is_forwarder());
217 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
218 this->forwarders_
.find(from
);
219 gold_assert(p
!= this->forwarders_
.end());
223 // Look up a symbol by name.
226 Symbol_table::lookup(const char* name
, const char* version
) const
228 Stringpool::Key name_key
;
229 name
= this->namepool_
.find(name
, &name_key
);
233 Stringpool::Key version_key
= 0;
236 version
= this->namepool_
.find(version
, &version_key
);
241 Symbol_table_key
key(name_key
, version_key
);
242 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
243 if (p
== this->table_
.end())
248 // Resolve a Symbol with another Symbol. This is only used in the
249 // unusual case where there are references to both an unversioned
250 // symbol and a symbol with a version, and we then discover that that
251 // version is the default version. Because this is unusual, we do
252 // this the slow way, by converting back to an ELF symbol.
254 template<int size
, bool big_endian
>
256 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
,
257 const char* version ACCEPT_SIZE_ENDIAN
)
259 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
260 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
261 // We don't bother to set the st_name field.
262 esym
.put_st_value(from
->value());
263 esym
.put_st_size(from
->symsize());
264 esym
.put_st_info(from
->binding(), from
->type());
265 esym
.put_st_other(from
->visibility(), from
->nonvis());
266 esym
.put_st_shndx(from
->shndx());
267 Symbol_table::resolve(to
, esym
.sym(), from
->object(), version
);
270 // Add one symbol from OBJECT to the symbol table. NAME is symbol
271 // name and VERSION is the version; both are canonicalized. DEF is
272 // whether this is the default version.
274 // If DEF is true, then this is the definition of a default version of
275 // a symbol. That means that any lookup of NAME/NULL and any lookup
276 // of NAME/VERSION should always return the same symbol. This is
277 // obvious for references, but in particular we want to do this for
278 // definitions: overriding NAME/NULL should also override
279 // NAME/VERSION. If we don't do that, it would be very hard to
280 // override functions in a shared library which uses versioning.
282 // We implement this by simply making both entries in the hash table
283 // point to the same Symbol structure. That is easy enough if this is
284 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
285 // that we have seen both already, in which case they will both have
286 // independent entries in the symbol table. We can't simply change
287 // the symbol table entry, because we have pointers to the entries
288 // attached to the object files. So we mark the entry attached to the
289 // object file as a forwarder, and record it in the forwarders_ map.
290 // Note that entries in the hash table will never be marked as
293 template<int size
, bool big_endian
>
295 Symbol_table::add_from_object(Object
* object
,
297 Stringpool::Key name_key
,
299 Stringpool::Key version_key
,
301 const elfcpp::Sym
<size
, big_endian
>& sym
)
303 Symbol
* const snull
= NULL
;
304 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
305 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
308 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
309 std::make_pair(this->table_
.end(), false);
312 const Stringpool::Key vnull_key
= 0;
313 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
318 // ins.first: an iterator, which is a pointer to a pair.
319 // ins.first->first: the key (a pair of name and version).
320 // ins.first->second: the value (Symbol*).
321 // ins.second: true if new entry was inserted, false if not.
323 Sized_symbol
<size
>* ret
;
328 // We already have an entry for NAME/VERSION.
329 ret
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (ins
.first
->second
331 gold_assert(ret
!= NULL
);
333 was_undefined
= ret
->is_undefined();
334 was_common
= ret
->is_common();
336 Symbol_table::resolve(ret
, sym
, object
, version
);
342 // This is the first time we have seen NAME/NULL. Make
343 // NAME/NULL point to NAME/VERSION.
344 insdef
.first
->second
= ret
;
346 else if (insdef
.first
->second
!= ret
)
348 // This is the unfortunate case where we already have
349 // entries for both NAME/VERSION and NAME/NULL.
350 const Sized_symbol
<size
>* sym2
;
351 sym2
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (
354 Symbol_table::resolve
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
355 ret
, sym2
, version
SELECT_SIZE_ENDIAN(size
, big_endian
));
356 this->make_forwarder(insdef
.first
->second
, ret
);
357 insdef
.first
->second
= ret
;
363 // This is the first time we have seen NAME/VERSION.
364 gold_assert(ins
.first
->second
== NULL
);
366 was_undefined
= false;
369 if (def
&& !insdef
.second
)
371 // We already have an entry for NAME/NULL. If we override
372 // it, then change it to NAME/VERSION.
373 ret
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (
376 Symbol_table::resolve(ret
, sym
, object
, version
);
377 ins
.first
->second
= ret
;
381 Sized_target
<size
, big_endian
>* target
=
382 object
->sized_target
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
383 SELECT_SIZE_ENDIAN_ONLY(size
, big_endian
));
384 if (!target
->has_make_symbol())
385 ret
= new Sized_symbol
<size
>();
388 ret
= target
->make_symbol();
391 // This means that we don't want a symbol table
394 this->table_
.erase(ins
.first
);
397 this->table_
.erase(insdef
.first
);
398 // Inserting insdef invalidated ins.
399 this->table_
.erase(std::make_pair(name_key
,
406 ret
->init(name
, version
, object
, sym
);
408 ins
.first
->second
= ret
;
411 // This is the first time we have seen NAME/NULL. Point
412 // it at the new entry for NAME/VERSION.
413 gold_assert(insdef
.second
);
414 insdef
.first
->second
= ret
;
419 // Record every time we see a new undefined symbol, to speed up
421 if (!was_undefined
&& ret
->is_undefined())
422 ++this->saw_undefined_
;
424 // Keep track of common symbols, to speed up common symbol
426 if (!was_common
&& ret
->is_common())
427 this->commons_
.push_back(ret
);
432 // Add all the symbols in a relocatable object to the hash table.
434 template<int size
, bool big_endian
>
436 Symbol_table::add_from_relobj(
437 Sized_relobj
<size
, big_endian
>* relobj
,
438 const unsigned char* syms
,
440 const char* sym_names
,
441 size_t sym_name_size
,
442 Symbol
** sympointers
)
444 // We take the size from the first object we see.
445 if (this->get_size() == 0)
446 this->set_size(size
);
448 if (size
!= this->get_size() || size
!= relobj
->target()->get_size())
450 fprintf(stderr
, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
451 program_name
, relobj
->name().c_str());
455 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
457 const unsigned char* p
= syms
;
458 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
460 elfcpp::Sym
<size
, big_endian
> sym(p
);
461 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
463 unsigned int st_name
= psym
->get_st_name();
464 if (st_name
>= sym_name_size
)
467 _("%s: %s: bad global symbol name offset %u at %lu\n"),
468 program_name
, relobj
->name().c_str(), st_name
,
469 static_cast<unsigned long>(i
));
473 const char* name
= sym_names
+ st_name
;
475 // A symbol defined in a section which we are not including must
476 // be treated as an undefined symbol.
477 unsigned char symbuf
[sym_size
];
478 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
479 unsigned int st_shndx
= psym
->get_st_shndx();
480 if (st_shndx
!= elfcpp::SHN_UNDEF
481 && st_shndx
< elfcpp::SHN_LORESERVE
482 && !relobj
->is_section_included(st_shndx
))
484 memcpy(symbuf
, p
, sym_size
);
485 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
486 sw
.put_st_shndx(elfcpp::SHN_UNDEF
);
490 // In an object file, an '@' in the name separates the symbol
491 // name from the version name. If there are two '@' characters,
492 // this is the default version.
493 const char* ver
= strchr(name
, '@');
498 Stringpool::Key name_key
;
499 name
= this->namepool_
.add(name
, &name_key
);
500 res
= this->add_from_object(relobj
, name
, name_key
, NULL
, 0,
505 Stringpool::Key name_key
;
506 name
= this->namepool_
.add(name
, ver
- name
, &name_key
);
516 Stringpool::Key ver_key
;
517 ver
= this->namepool_
.add(ver
, &ver_key
);
519 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
523 *sympointers
++ = res
;
527 // Add all the symbols in a dynamic object to the hash table.
529 template<int size
, bool big_endian
>
531 Symbol_table::add_from_dynobj(
532 Sized_dynobj
<size
, big_endian
>* dynobj
,
533 const unsigned char* syms
,
535 const char* sym_names
,
536 size_t sym_name_size
,
537 const unsigned char* versym
,
539 const std::vector
<const char*>* version_map
)
541 // We take the size from the first object we see.
542 if (this->get_size() == 0)
543 this->set_size(size
);
545 if (size
!= this->get_size() || size
!= dynobj
->target()->get_size())
547 fprintf(stderr
, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
548 program_name
, dynobj
->name().c_str());
552 if (versym
!= NULL
&& versym_size
/ 2 < count
)
554 fprintf(stderr
, _("%s: %s: too few symbol versions\n"),
555 program_name
, dynobj
->name().c_str());
559 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
561 const unsigned char* p
= syms
;
562 const unsigned char* vs
= versym
;
563 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
565 elfcpp::Sym
<size
, big_endian
> sym(p
);
567 // Ignore symbols with local binding.
568 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
)
571 unsigned int st_name
= sym
.get_st_name();
572 if (st_name
>= sym_name_size
)
574 fprintf(stderr
, _("%s: %s: bad symbol name offset %u at %lu\n"),
575 program_name
, dynobj
->name().c_str(), st_name
,
576 static_cast<unsigned long>(i
));
580 const char* name
= sym_names
+ st_name
;
584 Stringpool::Key name_key
;
585 name
= this->namepool_
.add(name
, &name_key
);
586 this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
591 // Read the version information.
593 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
595 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
596 v
&= elfcpp::VERSYM_VERSION
;
598 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
))
600 // This symbol should not be visible outside the object.
604 // At this point we are definitely going to add this symbol.
605 Stringpool::Key name_key
;
606 name
= this->namepool_
.add(name
, &name_key
);
608 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
610 // This symbol does not have a version.
611 this->add_from_object(dynobj
, name
, name_key
, NULL
, 0, false, sym
);
615 if (v
>= version_map
->size())
618 _("%s: %s: versym for symbol %zu out of range: %u\n"),
619 program_name
, dynobj
->name().c_str(), i
, v
);
623 const char* version
= (*version_map
)[v
];
626 fprintf(stderr
, _("%s: %s: versym for symbol %zu has no name: %u\n"),
627 program_name
, dynobj
->name().c_str(), i
, v
);
631 Stringpool::Key version_key
;
632 version
= this->namepool_
.add(version
, &version_key
);
634 // If this is an absolute symbol, and the version name and
635 // symbol name are the same, then this is the version definition
636 // symbol. These symbols exist to support using -u to pull in
637 // particular versions. We do not want to record a version for
639 if (sym
.get_st_shndx() == elfcpp::SHN_ABS
&& name_key
== version_key
)
641 this->add_from_object(dynobj
, name
, name_key
, NULL
, 0, false, sym
);
645 const bool def
= !hidden
&& sym
.get_st_shndx() != elfcpp::SHN_UNDEF
;
647 this->add_from_object(dynobj
, name
, name_key
, version
, version_key
,
652 // Create and return a specially defined symbol. If ONLY_IF_REF is
653 // true, then only create the symbol if there is a reference to it.
655 template<int size
, bool big_endian
>
657 Symbol_table::define_special_symbol(const Target
* target
, const char* name
,
658 const char* version
, bool only_if_ref
661 gold_assert(this->size_
== size
);
664 Sized_symbol
<size
>* sym
;
668 oldsym
= this->lookup(name
, version
);
669 if (oldsym
== NULL
|| !oldsym
->is_undefined())
673 // Canonicalize NAME and VERSION.
674 name
= oldsym
->name();
675 version
= oldsym
->version();
679 // Canonicalize NAME and VERSION.
680 Stringpool::Key name_key
;
681 name
= this->namepool_
.add(name
, &name_key
);
683 Stringpool::Key version_key
= 0;
685 version
= this->namepool_
.add(version
, &version_key
);
687 Symbol
* const snull
= NULL
;
688 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
689 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
695 // We already have a symbol table entry for NAME/VERSION.
696 oldsym
= ins
.first
->second
;
697 gold_assert(oldsym
!= NULL
);
702 // We haven't seen this symbol before.
703 gold_assert(ins
.first
->second
== NULL
);
705 if (!target
->has_make_symbol())
706 sym
= new Sized_symbol
<size
>();
709 gold_assert(target
->get_size() == size
);
710 gold_assert(target
->is_big_endian() ? big_endian
: !big_endian
);
711 typedef Sized_target
<size
, big_endian
> My_target
;
712 const My_target
* sized_target
=
713 static_cast<const My_target
*>(target
);
714 sym
= sized_target
->make_symbol();
719 ins
.first
->second
= sym
;
726 gold_assert(sym
== NULL
);
728 sym
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (oldsym
730 gold_assert(sym
->source() == Symbol::FROM_OBJECT
);
731 const int old_shndx
= sym
->shndx();
732 if (old_shndx
!= elfcpp::SHN_UNDEF
733 && old_shndx
!= elfcpp::SHN_COMMON
734 && !sym
->object()->is_dynamic())
736 fprintf(stderr
, "%s: linker defined: multiple definition of %s\n",
738 // FIXME: Report old location. Record that we have seen an
743 // Our new definition is going to override the old reference.
749 // Define a symbol based on an Output_data.
752 Symbol_table::define_in_output_data(const Target
* target
, const char* name
,
753 const char* version
, Output_data
* od
,
754 uint64_t value
, uint64_t symsize
,
755 elfcpp::STT type
, elfcpp::STB binding
,
756 elfcpp::STV visibility
,
757 unsigned char nonvis
,
758 bool offset_is_from_end
,
761 gold_assert(target
->get_size() == this->size_
);
762 if (this->size_
== 32)
763 return this->do_define_in_output_data
<32>(target
, name
, version
, od
, value
,
764 symsize
, type
, binding
,
766 offset_is_from_end
, only_if_ref
);
767 else if (this->size_
== 64)
768 return this->do_define_in_output_data
<64>(target
, name
, version
, od
, value
,
769 symsize
, type
, binding
,
771 offset_is_from_end
, only_if_ref
);
776 // Define a symbol in an Output_data, sized version.
780 Symbol_table::do_define_in_output_data(
781 const Target
* target
,
785 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
786 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
789 elfcpp::STV visibility
,
790 unsigned char nonvis
,
791 bool offset_is_from_end
,
794 Sized_symbol
<size
>* sym
;
796 if (target
->is_big_endian())
797 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
798 target
, name
, version
, only_if_ref
799 SELECT_SIZE_ENDIAN(size
, true));
801 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
802 target
, name
, version
, only_if_ref
803 SELECT_SIZE_ENDIAN(size
, false));
808 sym
->init(name
, od
, value
, symsize
, type
, binding
, visibility
, nonvis
,
814 // Define a symbol based on an Output_segment.
817 Symbol_table::define_in_output_segment(const Target
* target
, const char* name
,
818 const char* version
, Output_segment
* os
,
819 uint64_t value
, uint64_t symsize
,
820 elfcpp::STT type
, elfcpp::STB binding
,
821 elfcpp::STV visibility
,
822 unsigned char nonvis
,
823 Symbol::Segment_offset_base offset_base
,
826 gold_assert(target
->get_size() == this->size_
);
827 if (this->size_
== 32)
828 return this->do_define_in_output_segment
<32>(target
, name
, version
, os
,
829 value
, symsize
, type
, binding
,
831 offset_base
, only_if_ref
);
832 else if (this->size_
== 64)
833 return this->do_define_in_output_segment
<64>(target
, name
, version
, os
,
834 value
, symsize
, type
, binding
,
836 offset_base
, only_if_ref
);
841 // Define a symbol in an Output_segment, sized version.
845 Symbol_table::do_define_in_output_segment(
846 const Target
* target
,
850 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
851 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
854 elfcpp::STV visibility
,
855 unsigned char nonvis
,
856 Symbol::Segment_offset_base offset_base
,
859 Sized_symbol
<size
>* sym
;
861 if (target
->is_big_endian())
862 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
863 target
, name
, version
, only_if_ref
864 SELECT_SIZE_ENDIAN(size
, true));
866 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
867 target
, name
, version
, only_if_ref
868 SELECT_SIZE_ENDIAN(size
, false));
873 sym
->init(name
, os
, value
, symsize
, type
, binding
, visibility
, nonvis
,
879 // Define a special symbol with a constant value. It is a multiple
880 // definition error if this symbol is already defined.
883 Symbol_table::define_as_constant(const Target
* target
, const char* name
,
884 const char* version
, uint64_t value
,
885 uint64_t symsize
, elfcpp::STT type
,
886 elfcpp::STB binding
, elfcpp::STV visibility
,
887 unsigned char nonvis
, bool only_if_ref
)
889 gold_assert(target
->get_size() == this->size_
);
890 if (this->size_
== 32)
891 return this->do_define_as_constant
<32>(target
, name
, version
, value
,
892 symsize
, type
, binding
, visibility
,
893 nonvis
, only_if_ref
);
894 else if (this->size_
== 64)
895 return this->do_define_as_constant
<64>(target
, name
, version
, value
,
896 symsize
, type
, binding
, visibility
,
897 nonvis
, only_if_ref
);
902 // Define a symbol as a constant, sized version.
906 Symbol_table::do_define_as_constant(
907 const Target
* target
,
910 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
911 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
914 elfcpp::STV visibility
,
915 unsigned char nonvis
,
918 Sized_symbol
<size
>* sym
;
920 if (target
->is_big_endian())
921 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
922 target
, name
, version
, only_if_ref
923 SELECT_SIZE_ENDIAN(size
, true));
925 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
926 target
, name
, version
, only_if_ref
927 SELECT_SIZE_ENDIAN(size
, false));
932 sym
->init(name
, value
, symsize
, type
, binding
, visibility
, nonvis
);
937 // Define a set of symbols in output sections.
940 Symbol_table::define_symbols(const Layout
* layout
, const Target
* target
,
941 int count
, const Define_symbol_in_section
* p
)
943 for (int i
= 0; i
< count
; ++i
, ++p
)
945 Output_section
* os
= layout
->find_output_section(p
->output_section
);
947 this->define_in_output_data(target
, p
->name
, NULL
, os
, p
->value
,
948 p
->size
, p
->type
, p
->binding
,
949 p
->visibility
, p
->nonvis
,
950 p
->offset_is_from_end
, p
->only_if_ref
);
952 this->define_as_constant(target
, p
->name
, NULL
, 0, p
->size
, p
->type
,
953 p
->binding
, p
->visibility
, p
->nonvis
,
958 // Define a set of symbols in output segments.
961 Symbol_table::define_symbols(const Layout
* layout
, const Target
* target
,
962 int count
, const Define_symbol_in_segment
* p
)
964 for (int i
= 0; i
< count
; ++i
, ++p
)
966 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
967 p
->segment_flags_set
,
968 p
->segment_flags_clear
);
970 this->define_in_output_segment(target
, p
->name
, NULL
, os
, p
->value
,
971 p
->size
, p
->type
, p
->binding
,
972 p
->visibility
, p
->nonvis
,
973 p
->offset_base
, p
->only_if_ref
);
975 this->define_as_constant(target
, p
->name
, NULL
, 0, p
->size
, p
->type
,
976 p
->binding
, p
->visibility
, p
->nonvis
,
981 // Set the dynamic symbol indexes. INDEX is the index of the first
982 // global dynamic symbol. Pointers to the symbols are stored into the
983 // vector SYMS. The names are added to DYNPOOL. This returns an
984 // updated dynamic symbol index.
987 Symbol_table::set_dynsym_indexes(const General_options
* options
,
988 const Target
* target
,
990 std::vector
<Symbol
*>* syms
,
994 for (Symbol_table_type::iterator p
= this->table_
.begin();
995 p
!= this->table_
.end();
998 Symbol
* sym
= p
->second
;
1000 // Note that SYM may already have a dynamic symbol index, since
1001 // some symbols appear more than once in the symbol table, with
1002 // and without a version.
1004 if (!sym
->needs_dynsym_entry())
1005 sym
->set_dynsym_index(-1U);
1006 else if (!sym
->has_dynsym_index())
1008 sym
->set_dynsym_index(index
);
1010 syms
->push_back(sym
);
1011 dynpool
->add(sym
->name(), NULL
);
1013 // Record any version information.
1014 if (sym
->version() != NULL
)
1015 versions
->record_version(options
, dynpool
, sym
);
1019 // Finish up the versions. In some cases this may add new dynamic
1021 index
= versions
->finalize(target
, this, index
, syms
);
1026 // Set the final values for all the symbols. The index of the first
1027 // global symbol in the output file is INDEX. Record the file offset
1028 // OFF. Add their names to POOL. Return the new file offset.
1031 Symbol_table::finalize(unsigned int index
, off_t off
, off_t dynoff
,
1032 size_t dyn_global_index
, size_t dyncount
,
1037 gold_assert(index
!= 0);
1038 this->first_global_index_
= index
;
1040 this->dynamic_offset_
= dynoff
;
1041 this->first_dynamic_global_index_
= dyn_global_index
;
1042 this->dynamic_count_
= dyncount
;
1044 if (this->size_
== 32)
1045 ret
= this->sized_finalize
<32>(index
, off
, pool
);
1046 else if (this->size_
== 64)
1047 ret
= this->sized_finalize
<64>(index
, off
, pool
);
1051 // Now that we have the final symbol table, we can reliably note
1052 // which symbols should get warnings.
1053 this->warnings_
.note_warnings(this);
1058 // Set the final value for all the symbols. This is called after
1059 // Layout::finalize, so all the output sections have their final
1064 Symbol_table::sized_finalize(unsigned index
, off_t off
, Stringpool
* pool
)
1066 off
= align_address(off
, size
>> 3);
1067 this->offset_
= off
;
1069 size_t orig_index
= index
;
1071 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1072 for (Symbol_table_type::iterator p
= this->table_
.begin();
1073 p
!= this->table_
.end();
1076 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
1078 // FIXME: Here we need to decide which symbols should go into
1079 // the output file, based on --strip.
1081 // The default version of a symbol may appear twice in the
1082 // symbol table. We only need to finalize it once.
1083 if (sym
->has_symtab_index())
1088 gold_assert(!sym
->has_symtab_index());
1089 sym
->set_symtab_index(-1U);
1090 gold_assert(sym
->dynsym_index() == -1U);
1094 typename Sized_symbol
<size
>::Value_type value
;
1096 switch (sym
->source())
1098 case Symbol::FROM_OBJECT
:
1100 unsigned int shndx
= sym
->shndx();
1102 // FIXME: We need some target specific support here.
1103 if (shndx
>= elfcpp::SHN_LORESERVE
1104 && shndx
!= elfcpp::SHN_ABS
)
1106 fprintf(stderr
, _("%s: %s: unsupported symbol section 0x%x\n"),
1107 program_name
, sym
->name(), shndx
);
1111 Object
* symobj
= sym
->object();
1112 if (symobj
->is_dynamic())
1115 shndx
= elfcpp::SHN_UNDEF
;
1117 else if (shndx
== elfcpp::SHN_UNDEF
)
1119 else if (shndx
== elfcpp::SHN_ABS
)
1120 value
= sym
->value();
1123 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1125 Output_section
* os
= relobj
->output_section(shndx
, &secoff
);
1129 sym
->set_symtab_index(-1U);
1130 gold_assert(sym
->dynsym_index() == -1U);
1134 value
= sym
->value() + os
->address() + secoff
;
1139 case Symbol::IN_OUTPUT_DATA
:
1141 Output_data
* od
= sym
->output_data();
1142 value
= sym
->value() + od
->address();
1143 if (sym
->offset_is_from_end())
1144 value
+= od
->data_size();
1148 case Symbol::IN_OUTPUT_SEGMENT
:
1150 Output_segment
* os
= sym
->output_segment();
1151 value
= sym
->value() + os
->vaddr();
1152 switch (sym
->offset_base())
1154 case Symbol::SEGMENT_START
:
1156 case Symbol::SEGMENT_END
:
1157 value
+= os
->memsz();
1159 case Symbol::SEGMENT_BSS
:
1160 value
+= os
->filesz();
1168 case Symbol::CONSTANT
:
1169 value
= sym
->value();
1176 sym
->set_value(value
);
1177 sym
->set_symtab_index(index
);
1178 pool
->add(sym
->name(), NULL
);
1183 this->output_count_
= index
- orig_index
;
1188 // Write out the global symbols.
1191 Symbol_table::write_globals(const Target
* target
, const Stringpool
* sympool
,
1192 const Stringpool
* dynpool
, Output_file
* of
) const
1194 if (this->size_
== 32)
1196 if (target
->is_big_endian())
1197 this->sized_write_globals
<32, true>(target
, sympool
, dynpool
, of
);
1199 this->sized_write_globals
<32, false>(target
, sympool
, dynpool
, of
);
1201 else if (this->size_
== 64)
1203 if (target
->is_big_endian())
1204 this->sized_write_globals
<64, true>(target
, sympool
, dynpool
, of
);
1206 this->sized_write_globals
<64, false>(target
, sympool
, dynpool
, of
);
1212 // Write out the global symbols.
1214 template<int size
, bool big_endian
>
1216 Symbol_table::sized_write_globals(const Target
*,
1217 const Stringpool
* sympool
,
1218 const Stringpool
* dynpool
,
1219 Output_file
* of
) const
1221 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1222 unsigned int index
= this->first_global_index_
;
1223 const off_t oview_size
= this->output_count_
* sym_size
;
1224 unsigned char* const psyms
= of
->get_output_view(this->offset_
, oview_size
);
1226 unsigned int dynamic_count
= this->dynamic_count_
;
1227 off_t dynamic_size
= dynamic_count
* sym_size
;
1228 unsigned int first_dynamic_global_index
= this->first_dynamic_global_index_
;
1229 unsigned char* dynamic_view
;
1230 if (this->dynamic_offset_
== 0)
1231 dynamic_view
= NULL
;
1233 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
1235 unsigned char* ps
= psyms
;
1236 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
1237 p
!= this->table_
.end();
1240 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
1242 unsigned int sym_index
= sym
->symtab_index();
1243 unsigned int dynsym_index
;
1244 if (dynamic_view
== NULL
)
1247 dynsym_index
= sym
->dynsym_index();
1249 if (sym_index
== -1U && dynsym_index
== -1U)
1251 // This symbol is not included in the output file.
1255 if (sym_index
== index
)
1257 else if (sym_index
!= -1U)
1259 // We have already seen this symbol, because it has a
1261 gold_assert(sym_index
< index
);
1262 if (dynsym_index
== -1U)
1268 switch (sym
->source())
1270 case Symbol::FROM_OBJECT
:
1272 unsigned int in_shndx
= sym
->shndx();
1274 // FIXME: We need some target specific support here.
1275 if (in_shndx
>= elfcpp::SHN_LORESERVE
1276 && in_shndx
!= elfcpp::SHN_ABS
)
1278 fprintf(stderr
, _("%s: %s: unsupported symbol section 0x%x\n"),
1279 program_name
, sym
->name(), in_shndx
);
1283 Object
* symobj
= sym
->object();
1284 if (symobj
->is_dynamic())
1287 shndx
= elfcpp::SHN_UNDEF
;
1289 else if (in_shndx
== elfcpp::SHN_UNDEF
1290 || in_shndx
== elfcpp::SHN_ABS
)
1294 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1296 Output_section
* os
= relobj
->output_section(in_shndx
, &secoff
);
1297 gold_assert(os
!= NULL
);
1298 shndx
= os
->out_shndx();
1303 case Symbol::IN_OUTPUT_DATA
:
1304 shndx
= sym
->output_data()->out_shndx();
1307 case Symbol::IN_OUTPUT_SEGMENT
:
1308 shndx
= elfcpp::SHN_ABS
;
1311 case Symbol::CONSTANT
:
1312 shndx
= elfcpp::SHN_ABS
;
1319 if (sym_index
!= -1U)
1321 this->sized_write_symbol
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
1322 sym
, shndx
, sympool
, ps
1323 SELECT_SIZE_ENDIAN(size
, big_endian
));
1327 if (dynsym_index
!= -1U)
1329 dynsym_index
-= first_dynamic_global_index
;
1330 gold_assert(dynsym_index
< dynamic_count
);
1331 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
1332 this->sized_write_symbol
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
1333 sym
, shndx
, dynpool
, pd
1334 SELECT_SIZE_ENDIAN(size
, big_endian
));
1338 gold_assert(ps
- psyms
== oview_size
);
1340 of
->write_output_view(this->offset_
, oview_size
, psyms
);
1341 if (dynamic_view
!= NULL
)
1342 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
1345 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1346 // strtab holding the name.
1348 template<int size
, bool big_endian
>
1350 Symbol_table::sized_write_symbol(Sized_symbol
<size
>* sym
,
1352 const Stringpool
* pool
,
1354 ACCEPT_SIZE_ENDIAN
) const
1356 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
1357 osym
.put_st_name(pool
->get_offset(sym
->name()));
1358 osym
.put_st_value(sym
->value());
1359 osym
.put_st_size(sym
->symsize());
1360 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
1361 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
1362 osym
.put_st_shndx(shndx
);
1365 // Write out a section symbol. Return the update offset.
1368 Symbol_table::write_section_symbol(const Target
* target
,
1369 const Output_section
*os
,
1373 if (this->size_
== 32)
1375 if (target
->is_big_endian())
1376 this->sized_write_section_symbol
<32, true>(os
, of
, offset
);
1378 this->sized_write_section_symbol
<32, false>(os
, of
, offset
);
1380 else if (this->size_
== 64)
1382 if (target
->is_big_endian())
1383 this->sized_write_section_symbol
<64, true>(os
, of
, offset
);
1385 this->sized_write_section_symbol
<64, false>(os
, of
, offset
);
1391 // Write out a section symbol, specialized for size and endianness.
1393 template<int size
, bool big_endian
>
1395 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
1399 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1401 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
1403 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
1404 osym
.put_st_name(0);
1405 osym
.put_st_value(os
->address());
1406 osym
.put_st_size(0);
1407 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
1408 elfcpp::STT_SECTION
));
1409 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
1410 osym
.put_st_shndx(os
->out_shndx());
1412 of
->write_output_view(offset
, sym_size
, pov
);
1415 // Warnings functions.
1417 // Add a new warning.
1420 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
1423 name
= symtab
->canonicalize_name(name
);
1424 this->warnings_
[name
].set(obj
, shndx
);
1427 // Look through the warnings and mark the symbols for which we should
1428 // warn. This is called during Layout::finalize when we know the
1429 // sources for all the symbols.
1432 Warnings::note_warnings(Symbol_table
* symtab
)
1434 for (Warning_table::iterator p
= this->warnings_
.begin();
1435 p
!= this->warnings_
.end();
1438 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
1440 && sym
->source() == Symbol::FROM_OBJECT
1441 && sym
->object() == p
->second
.object
)
1443 sym
->set_has_warning();
1445 // Read the section contents to get the warning text. It
1446 // would be nicer if we only did this if we have to actually
1447 // issue a warning. Unfortunately, warnings are issued as
1448 // we relocate sections. That means that we can not lock
1449 // the object then, as we might try to issue the same
1450 // warning multiple times simultaneously.
1452 Task_locker_obj
<Object
> tl(*p
->second
.object
);
1453 const unsigned char* c
;
1455 c
= p
->second
.object
->section_contents(p
->second
.shndx
, &len
);
1456 p
->second
.set_text(reinterpret_cast<const char*>(c
), len
);
1462 // Issue a warning. This is called when we see a relocation against a
1463 // symbol for which has a warning.
1466 Warnings::issue_warning(const Symbol
* sym
, const std::string
& location
) const
1468 gold_assert(sym
->has_warning());
1469 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
1470 gold_assert(p
!= this->warnings_
.end());
1471 fprintf(stderr
, _("%s: %s: warning: %s\n"), program_name
, location
.c_str(),
1472 p
->second
.text
.c_str());
1475 // Instantiate the templates we need. We could use the configure
1476 // script to restrict this to only the ones needed for implemented
1481 Symbol_table::add_from_relobj
<32, true>(
1482 Sized_relobj
<32, true>* relobj
,
1483 const unsigned char* syms
,
1485 const char* sym_names
,
1486 size_t sym_name_size
,
1487 Symbol
** sympointers
);
1491 Symbol_table::add_from_relobj
<32, false>(
1492 Sized_relobj
<32, false>* relobj
,
1493 const unsigned char* syms
,
1495 const char* sym_names
,
1496 size_t sym_name_size
,
1497 Symbol
** sympointers
);
1501 Symbol_table::add_from_relobj
<64, true>(
1502 Sized_relobj
<64, true>* relobj
,
1503 const unsigned char* syms
,
1505 const char* sym_names
,
1506 size_t sym_name_size
,
1507 Symbol
** sympointers
);
1511 Symbol_table::add_from_relobj
<64, false>(
1512 Sized_relobj
<64, false>* relobj
,
1513 const unsigned char* syms
,
1515 const char* sym_names
,
1516 size_t sym_name_size
,
1517 Symbol
** sympointers
);
1521 Symbol_table::add_from_dynobj
<32, true>(
1522 Sized_dynobj
<32, true>* dynobj
,
1523 const unsigned char* syms
,
1525 const char* sym_names
,
1526 size_t sym_name_size
,
1527 const unsigned char* versym
,
1529 const std::vector
<const char*>* version_map
);
1533 Symbol_table::add_from_dynobj
<32, false>(
1534 Sized_dynobj
<32, false>* dynobj
,
1535 const unsigned char* syms
,
1537 const char* sym_names
,
1538 size_t sym_name_size
,
1539 const unsigned char* versym
,
1541 const std::vector
<const char*>* version_map
);
1545 Symbol_table::add_from_dynobj
<64, true>(
1546 Sized_dynobj
<64, true>* dynobj
,
1547 const unsigned char* syms
,
1549 const char* sym_names
,
1550 size_t sym_name_size
,
1551 const unsigned char* versym
,
1553 const std::vector
<const char*>* version_map
);
1557 Symbol_table::add_from_dynobj
<64, false>(
1558 Sized_dynobj
<64, false>* dynobj
,
1559 const unsigned char* syms
,
1561 const char* sym_names
,
1562 size_t sym_name_size
,
1563 const unsigned char* versym
,
1565 const std::vector
<const char*>* version_map
);
1567 } // End namespace gold.