2010-08-04 Tristan Gingold <gingold@adacore.com>
[binutils.git] / gprof / gprof.texi
blob70c4f88dd750dbb754e5ac38074a3d8a24cdfbba
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @c Copyright 1988, 1992, 1993, 1998, 1999, 2000, 2001, 2002, 2003,
4 @c 2004, 2007, 2008, 2009
5 @c Free Software Foundation, Inc.
6 @settitle GNU gprof
7 @setchapternewpage odd
9 @c man begin INCLUDE
10 @include bfdver.texi
11 @c man end
13 @ifinfo
14 @c This is a dir.info fragment to support semi-automated addition of
15 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
16 @format
17 START-INFO-DIR-ENTRY
18 * gprof: (gprof).                Profiling your program's execution
19 END-INFO-DIR-ENTRY
20 @end format
21 @end ifinfo
23 @copying
24 This file documents the gprof profiler of the GNU system.
26 @c man begin COPYRIGHT
27 Copyright @copyright{} 1988, 1992, 1997, 1998, 1999, 2000, 2001, 2003,
28 2007, 2008, 2009 Free Software Foundation, Inc.
30 Permission is granted to copy, distribute and/or modify this document
31 under the terms of the GNU Free Documentation License, Version 1.3
32 or any later version published by the Free Software Foundation;
33 with no Invariant Sections, with no Front-Cover Texts, and with no
34 Back-Cover Texts.  A copy of the license is included in the
35 section entitled ``GNU Free Documentation License''.
37 @c man end
38 @end copying
40 @finalout
41 @smallbook
43 @titlepage
44 @title GNU gprof
45 @subtitle The @sc{gnu} Profiler 
46 @ifset VERSION_PACKAGE
47 @subtitle @value{VERSION_PACKAGE}
48 @end ifset
49 @subtitle Version @value{VERSION}
50 @author Jay Fenlason and Richard Stallman
52 @page
54 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
55 can use it to determine which parts of a program are taking most of the
56 execution time.  We assume that you know how to write, compile, and
57 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
58 Eric S. Raymond made some minor corrections and additions in 2003.
60 @vskip 0pt plus 1filll
61 Copyright @copyright{} 1988, 1992, 1997, 1998, 1999, 2000, 2003, 2008,
62 2009 Free Software Foundation, Inc.
64       Permission is granted to copy, distribute and/or modify this document
65       under the terms of the GNU Free Documentation License, Version 1.3
66       or any later version published by the Free Software Foundation;
67       with no Invariant Sections, with no Front-Cover Texts, and with no
68       Back-Cover Texts.  A copy of the license is included in the
69       section entitled ``GNU Free Documentation License''.
71 @end titlepage
72 @contents
74 @ifnottex
75 @node Top
76 @top Profiling a Program: Where Does It Spend Its Time?
78 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
79 can use it to determine which parts of a program are taking most of the
80 execution time.  We assume that you know how to write, compile, and
81 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
83 This manual is for @code{gprof}
84 @ifset VERSION_PACKAGE
85 @value{VERSION_PACKAGE}
86 @end ifset
87 version @value{VERSION}.
89 This document is distributed under the terms of the GNU Free
90 Documentation License version 1.3.  A copy of the license is included
91 in the section entitled ``GNU Free Documentation License''.
93 @menu
94 * Introduction::        What profiling means, and why it is useful.
96 * Compiling::           How to compile your program for profiling.
97 * Executing::           Executing your program to generate profile data
98 * Invoking::            How to run @code{gprof}, and its options
100 * Output::              Interpreting @code{gprof}'s output
102 * Inaccuracy::          Potential problems you should be aware of
103 * How do I?::           Answers to common questions
104 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
105 * Details::             Details of how profiling is done
106 * GNU Free Documentation License::  GNU Free Documentation License
107 @end menu
108 @end ifnottex
110 @node Introduction
111 @chapter Introduction to Profiling
113 @ifset man
114 @c man title gprof display call graph profile data
116 @smallexample
117 @c man begin SYNOPSIS
118 gprof [ -[abcDhilLrsTvwxyz] ] [ -[ACeEfFJnNOpPqQZ][@var{name}] ] 
119  [ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
120  [ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
121  [ --[no-]annotated-source[=@var{name}] ] 
122  [ --[no-]exec-counts[=@var{name}] ]
123  [ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
124  [ --[no-]time=@var{name}] [ --all-lines ] [ --brief ] 
125  [ --debug[=@var{level}] ] [ --function-ordering ] 
126  [ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
127  [ --display-unused-functions ] [ --file-format=@var{name} ]
128  [ --file-info ] [ --help ] [ --line ] [ --min-count=@var{n} ]
129  [ --no-static ] [ --print-path ] [ --separate-files ]
130  [ --static-call-graph ] [ --sum ] [ --table-length=@var{len} ]
131  [ --traditional ] [ --version ] [ --width=@var{n} ]
132  [ --ignore-non-functions ] [ --demangle[=@var{STYLE}] ]
133  [ --no-demangle ] [--external-symbol-table=name] 
134  [ @var{image-file} ] [ @var{profile-file} @dots{} ]
135 @c man end
136 @end smallexample
138 @c man begin DESCRIPTION
139 @code{gprof} produces an execution profile of C, Pascal, or Fortran77 
140 programs.  The effect of called routines is incorporated in the profile 
141 of each caller.  The profile data is taken from the call graph profile file
142 (@file{gmon.out} default) which is created by programs
143 that are compiled with the @samp{-pg} option of
144 @code{cc}, @code{pc}, and @code{f77}.
145 The @samp{-pg} option also links in versions of the library routines
146 that are compiled for profiling.  @code{Gprof} reads the given object 
147 file (the default is @code{a.out}) and establishes the relation between
148 its symbol table and the call graph profile from @file{gmon.out}.
149 If more than one profile file is specified, the @code{gprof}
150 output shows the sum of the profile information in the given profile files.
152 @code{Gprof} calculates the amount of time spent in each routine.
153 Next, these times are propagated along the edges of the call graph.
154 Cycles are discovered, and calls into a cycle are made to share the time
155 of the cycle.
157 @c man end
159 @c man begin BUGS
160 The granularity of the sampling is shown, but remains
161 statistical at best.
162 We assume that the time for each execution of a function
163 can be expressed by the total time for the function divided
164 by the number of times the function is called.
165 Thus the time propagated along the call graph arcs to the function's
166 parents is directly proportional to the number of times that
167 arc is traversed.
169 Parents that are not themselves profiled will have the time of
170 their profiled children propagated to them, but they will appear
171 to be spontaneously invoked in the call graph listing, and will
172 not have their time propagated further.
173 Similarly, signal catchers, even though profiled, will appear
174 to be spontaneous (although for more obscure reasons).
175 Any profiled children of signal catchers should have their times
176 propagated properly, unless the signal catcher was invoked during
177 the execution of the profiling routine, in which case all is lost.
179 The profiled program must call @code{exit}(2)
180 or return normally for the profiling information to be saved
181 in the @file{gmon.out} file.
182 @c man end
184 @c man begin FILES
185 @table @code
186 @item @file{a.out}
187 the namelist and text space.
188 @item @file{gmon.out}
189 dynamic call graph and profile.
190 @item @file{gmon.sum}
191 summarized dynamic call graph and profile.  
192 @end table
193 @c man end
195 @c man begin SEEALSO
196 monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
198 ``An Execution Profiler for Modular Programs'',
199 by S. Graham, P. Kessler, M. McKusick;
200 Software - Practice and Experience,
201 Vol. 13, pp. 671-685, 1983.
203 ``gprof: A Call Graph Execution Profiler'',
204 by S. Graham, P. Kessler, M. McKusick;
205 Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
206 SIGPLAN Notices, Vol. 17, No  6, pp. 120-126, June 1982.
207 @c man end
208 @end ifset
210 Profiling allows you to learn where your program spent its time and which
211 functions called which other functions while it was executing.  This
212 information can show you which pieces of your program are slower than you
213 expected, and might be candidates for rewriting to make your program
214 execute faster.  It can also tell you which functions are being called more
215 or less often than you expected.  This may help you spot bugs that had
216 otherwise been unnoticed.
218 Since the profiler uses information collected during the actual execution
219 of your program, it can be used on programs that are too large or too
220 complex to analyze by reading the source.  However, how your program is run
221 will affect the information that shows up in the profile data.  If you
222 don't use some feature of your program while it is being profiled, no
223 profile information will be generated for that feature.
225 Profiling has several steps:
227 @itemize @bullet
228 @item
229 You must compile and link your program with profiling enabled.
230 @xref{Compiling, ,Compiling a Program for Profiling}.
232 @item
233 You must execute your program to generate a profile data file.
234 @xref{Executing, ,Executing the Program}.
236 @item
237 You must run @code{gprof} to analyze the profile data.
238 @xref{Invoking, ,@code{gprof} Command Summary}.
239 @end itemize
241 The next three chapters explain these steps in greater detail.
243 @c man begin DESCRIPTION
245 Several forms of output are available from the analysis.
247 The @dfn{flat profile} shows how much time your program spent in each function,
248 and how many times that function was called.  If you simply want to know
249 which functions burn most of the cycles, it is stated concisely here.
250 @xref{Flat Profile, ,The Flat Profile}.
252 The @dfn{call graph} shows, for each function, which functions called it, which
253 other functions it called, and how many times.  There is also an estimate
254 of how much time was spent in the subroutines of each function.  This can
255 suggest places where you might try to eliminate function calls that use a
256 lot of time.  @xref{Call Graph, ,The Call Graph}.
258 The @dfn{annotated source} listing is a copy of the program's
259 source code, labeled with the number of times each line of the
260 program was executed.  @xref{Annotated Source, ,The Annotated Source
261 Listing}.
262 @c man end
264 To better understand how profiling works, you may wish to read
265 a description of its implementation.
266 @xref{Implementation, ,Implementation of Profiling}.
268 @node Compiling
269 @chapter Compiling a Program for Profiling
271 The first step in generating profile information for your program is
272 to compile and link it with profiling enabled.
274 To compile a source file for profiling, specify the @samp{-pg} option when
275 you run the compiler.  (This is in addition to the options you normally
276 use.)
278 To link the program for profiling, if you use a compiler such as @code{cc}
279 to do the linking, simply specify @samp{-pg} in addition to your usual
280 options.  The same option, @samp{-pg}, alters either compilation or linking
281 to do what is necessary for profiling.  Here are examples:
283 @example
284 cc -g -c myprog.c utils.c -pg
285 cc -o myprog myprog.o utils.o -pg
286 @end example
288 The @samp{-pg} option also works with a command that both compiles and links:
290 @example
291 cc -o myprog myprog.c utils.c -g -pg
292 @end example
294 Note: The @samp{-pg} option must be part of your compilation options
295 as well as your link options.  If it is not then no call-graph data
296 will be gathered and when you run @code{gprof} you will get an error
297 message like this:
299 @example
300 gprof: gmon.out file is missing call-graph data
301 @end example
303 If you add the @samp{-Q} switch to suppress the printing of the call
304 graph data you will still be able to see the time samples:
306 @example
307 Flat profile:
309 Each sample counts as 0.01 seconds.
310   %   cumulative   self              self     total           
311  time   seconds   seconds    calls  Ts/call  Ts/call  name    
312  44.12      0.07     0.07                             zazLoop
313  35.29      0.14     0.06                             main
314  20.59      0.17     0.04                             bazMillion
315 @end example
317 If you run the linker @code{ld} directly instead of through a compiler
318 such as @code{cc}, you may have to specify a profiling startup file
319 @file{gcrt0.o} as the first input file instead of the usual startup
320 file @file{crt0.o}.  In addition, you would probably want to
321 specify the profiling C library, @file{libc_p.a}, by writing
322 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
323 necessary, but doing this gives you number-of-calls information for
324 standard library functions such as @code{read} and @code{open}.  For
325 example:
327 @example
328 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
329 @end example
331 If you are running the program on a system which supports shared
332 libraries you may run into problems with the profiling support code in
333 a shared library being called before that library has been fully
334 initialised.  This is usually detected by the program encountering a
335 segmentation fault as soon as it is run.  The solution is to link
336 against a static version of the library containing the profiling
337 support code, which for @code{gcc} users can be done via the
338 @samp{-static} or @samp{-static-libgcc} command line option.  For
339 example:
341 @example
342 gcc -g -pg -static-libgcc myprog.c utils.c -o myprog
343 @end example
345 If you compile only some of the modules of the program with @samp{-pg}, you
346 can still profile the program, but you won't get complete information about
347 the modules that were compiled without @samp{-pg}.  The only information
348 you get for the functions in those modules is the total time spent in them;
349 there is no record of how many times they were called, or from where.  This
350 will not affect the flat profile (except that the @code{calls} field for
351 the functions will be blank), but will greatly reduce the usefulness of the
352 call graph.
354 If you wish to perform line-by-line profiling you should use the
355 @code{gcov} tool instead of @code{gprof}.  See that tool's manual or
356 info pages for more details of how to do this.
358 Note, older versions of @code{gcc} produce line-by-line profiling
359 information that works with @code{gprof} rather than @code{gcov} so
360 there is still support for displaying this kind of information in
361 @code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
363 It also worth noting that @code{gcc} implements a
364 @samp{-finstrument-functions} command line option which will insert
365 calls to special user supplied instrumentation routines at the entry
366 and exit of every function in their program.  This can be used to
367 implement an alternative profiling scheme.
369 @node Executing
370 @chapter Executing the Program
372 Once the program is compiled for profiling, you must run it in order to
373 generate the information that @code{gprof} needs.  Simply run the program
374 as usual, using the normal arguments, file names, etc.  The program should
375 run normally, producing the same output as usual.  It will, however, run
376 somewhat slower than normal because of the time spent collecting and
377 writing the profile data.
379 The way you run the program---the arguments and input that you give
380 it---may have a dramatic effect on what the profile information shows.  The
381 profile data will describe the parts of the program that were activated for
382 the particular input you use.  For example, if the first command you give
383 to your program is to quit, the profile data will show the time used in
384 initialization and in cleanup, but not much else.
386 Your program will write the profile data into a file called @file{gmon.out}
387 just before exiting.  If there is already a file called @file{gmon.out},
388 its contents are overwritten.  There is currently no way to tell the
389 program to write the profile data under a different name, but you can rename
390 the file afterwards if you are concerned that it may be overwritten.
392 In order to write the @file{gmon.out} file properly, your program must exit
393 normally: by returning from @code{main} or by calling @code{exit}.  Calling
394 the low-level function @code{_exit} does not write the profile data, and
395 neither does abnormal termination due to an unhandled signal.
397 The @file{gmon.out} file is written in the program's @emph{current working
398 directory} at the time it exits.  This means that if your program calls
399 @code{chdir}, the @file{gmon.out} file will be left in the last directory
400 your program @code{chdir}'d to.  If you don't have permission to write in
401 this directory, the file is not written, and you will get an error message.
403 Older versions of the @sc{gnu} profiling library may also write a file
404 called @file{bb.out}.  This file, if present, contains an human-readable
405 listing of the basic-block execution counts.  Unfortunately, the
406 appearance of a human-readable @file{bb.out} means the basic-block
407 counts didn't get written into @file{gmon.out}.
408 The Perl script @code{bbconv.pl}, included with the @code{gprof}
409 source distribution, will convert a @file{bb.out} file into
410 a format readable by @code{gprof}.  Invoke it like this:
412 @smallexample
413 bbconv.pl < bb.out > @var{bh-data}
414 @end smallexample
416 This translates the information in @file{bb.out} into a form that
417 @code{gprof} can understand.  But you still need to tell @code{gprof}
418 about the existence of this translated information.  To do that, include
419 @var{bb-data} on the @code{gprof} command line, @emph{along with
420 @file{gmon.out}}, like this:
422 @smallexample
423 gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
424 @end smallexample
426 @node Invoking
427 @chapter @code{gprof} Command Summary
429 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
430 to interpret the information in it.  The @code{gprof} program prints a
431 flat profile and a call graph on standard output.  Typically you would
432 redirect the output of @code{gprof} into a file with @samp{>}.
434 You run @code{gprof} like this:
436 @smallexample
437 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
438 @end smallexample
440 @noindent
441 Here square-brackets indicate optional arguments.
443 If you omit the executable file name, the file @file{a.out} is used.  If
444 you give no profile data file name, the file @file{gmon.out} is used.  If
445 any file is not in the proper format, or if the profile data file does not
446 appear to belong to the executable file, an error message is printed.
448 You can give more than one profile data file by entering all their names
449 after the executable file name; then the statistics in all the data files
450 are summed together.
452 The order of these options does not matter.
454 @menu
455 * Output Options::      Controlling @code{gprof}'s output style
456 * Analysis Options::    Controlling how @code{gprof} analyzes its data
457 * Miscellaneous Options::
458 * Deprecated Options::  Options you no longer need to use, but which
459                             have been retained for compatibility
460 * Symspecs::            Specifying functions to include or exclude
461 @end menu
463 @node Output Options
464 @section Output Options
466 @c man begin OPTIONS
467 These options specify which of several output formats
468 @code{gprof} should produce.
470 Many of these options take an optional @dfn{symspec} to specify
471 functions to be included or excluded.  These options can be
472 specified multiple times, with different symspecs, to include
473 or exclude sets of symbols.  @xref{Symspecs, ,Symspecs}.
475 Specifying any of these options overrides the default (@samp{-p -q}),
476 which prints a flat profile and call graph analysis
477 for all functions.
479 @table @code
481 @item -A[@var{symspec}]
482 @itemx --annotated-source[=@var{symspec}]
483 The @samp{-A} option causes @code{gprof} to print annotated source code.
484 If @var{symspec} is specified, print output only for matching symbols.
485 @xref{Annotated Source, ,The Annotated Source Listing}.
487 @item -b
488 @itemx --brief
489 If the @samp{-b} option is given, @code{gprof} doesn't print the
490 verbose blurbs that try to explain the meaning of all of the fields in
491 the tables.  This is useful if you intend to print out the output, or
492 are tired of seeing the blurbs.
494 @item -C[@var{symspec}]
495 @itemx --exec-counts[=@var{symspec}]
496 The @samp{-C} option causes @code{gprof} to
497 print a tally of functions and the number of times each was called.
498 If @var{symspec} is specified, print tally only for matching symbols.
500 If the profile data file contains basic-block count records, specifying
501 the @samp{-l} option, along with @samp{-C}, will cause basic-block
502 execution counts to be tallied and displayed.
504 @item -i
505 @itemx --file-info
506 The @samp{-i} option causes @code{gprof} to display summary information
507 about the profile data file(s) and then exit.  The number of histogram,
508 call graph, and basic-block count records is displayed.
510 @item -I @var{dirs}
511 @itemx --directory-path=@var{dirs}
512 The @samp{-I} option specifies a list of search directories in
513 which to find source files.  Environment variable @var{GPROF_PATH}
514 can also be used to convey this information.
515 Used mostly for annotated source output.
517 @item -J[@var{symspec}]
518 @itemx --no-annotated-source[=@var{symspec}]
519 The @samp{-J} option causes @code{gprof} not to
520 print annotated source code.
521 If @var{symspec} is specified, @code{gprof} prints annotated source,
522 but excludes matching symbols.
524 @item -L
525 @itemx --print-path
526 Normally, source filenames are printed with the path
527 component suppressed.  The @samp{-L} option causes @code{gprof}
528 to print the full pathname of
529 source filenames, which is determined
530 from symbolic debugging information in the image file
531 and is relative to the directory in which the compiler
532 was invoked.
534 @item -p[@var{symspec}]
535 @itemx --flat-profile[=@var{symspec}]
536 The @samp{-p} option causes @code{gprof} to print a flat profile.
537 If @var{symspec} is specified, print flat profile only for matching symbols.
538 @xref{Flat Profile, ,The Flat Profile}.
540 @item -P[@var{symspec}]
541 @itemx --no-flat-profile[=@var{symspec}]
542 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
543 If @var{symspec} is specified, @code{gprof} prints a flat profile,
544 but excludes matching symbols.
546 @item -q[@var{symspec}]
547 @itemx --graph[=@var{symspec}]
548 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
549 If @var{symspec} is specified, print call graph only for matching symbols
550 and their children.
551 @xref{Call Graph, ,The Call Graph}.
553 @item -Q[@var{symspec}]
554 @itemx --no-graph[=@var{symspec}]
555 The @samp{-Q} option causes @code{gprof} to suppress printing the
556 call graph.
557 If @var{symspec} is specified, @code{gprof} prints a call graph,
558 but excludes matching symbols.
560 @item -t
561 @itemx --table-length=@var{num}
562 The @samp{-t} option causes the @var{num} most active source lines in
563 each source file to be listed when source annotation is enabled.  The
564 default is 10.
566 @item -y
567 @itemx --separate-files
568 This option affects annotated source output only.
569 Normally, @code{gprof} prints annotated source files
570 to standard-output.  If this option is specified,
571 annotated source for a file named @file{path/@var{filename}}
572 is generated in the file @file{@var{filename}-ann}.  If the underlying
573 file system would truncate @file{@var{filename}-ann} so that it
574 overwrites the original @file{@var{filename}}, @code{gprof} generates
575 annotated source in the file @file{@var{filename}.ann} instead (if the
576 original file name has an extension, that extension is @emph{replaced}
577 with @file{.ann}).
579 @item -Z[@var{symspec}]
580 @itemx --no-exec-counts[=@var{symspec}]
581 The @samp{-Z} option causes @code{gprof} not to
582 print a tally of functions and the number of times each was called.
583 If @var{symspec} is specified, print tally, but exclude matching symbols.
585 @item -r
586 @itemx --function-ordering
587 The @samp{--function-ordering} option causes @code{gprof} to print a
588 suggested function ordering for the program based on profiling data.
589 This option suggests an ordering which may improve paging, tlb and
590 cache behavior for the program on systems which support arbitrary
591 ordering of functions in an executable.
593 The exact details of how to force the linker to place functions
594 in a particular order is system dependent and out of the scope of this
595 manual.
597 @item -R @var{map_file}
598 @itemx --file-ordering @var{map_file}
599 The @samp{--file-ordering} option causes @code{gprof} to print a
600 suggested .o link line ordering for the program based on profiling data.
601 This option suggests an ordering which may improve paging, tlb and
602 cache behavior for the program on systems which do not support arbitrary
603 ordering of functions in an executable.
605 Use of the @samp{-a} argument is highly recommended with this option.
607 The @var{map_file} argument is a pathname to a file which provides
608 function name to object file mappings.  The format of the file is similar to
609 the output of the program @code{nm}.
611 @smallexample
612 @group
613 c-parse.o:00000000 T yyparse
614 c-parse.o:00000004 C yyerrflag
615 c-lang.o:00000000 T maybe_objc_method_name
616 c-lang.o:00000000 T print_lang_statistics
617 c-lang.o:00000000 T recognize_objc_keyword
618 c-decl.o:00000000 T print_lang_identifier
619 c-decl.o:00000000 T print_lang_type
620 @dots{}
622 @end group
623 @end smallexample
625 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
626 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
628 @item -T
629 @itemx --traditional
630 The @samp{-T} option causes @code{gprof} to print its output in
631 ``traditional'' BSD style.
633 @item -w @var{width}
634 @itemx --width=@var{width}
635 Sets width of output lines to @var{width}.
636 Currently only used when printing the function index at the bottom
637 of the call graph.
639 @item -x
640 @itemx --all-lines
641 This option affects annotated source output only.
642 By default, only the lines at the beginning of a basic-block
643 are annotated.  If this option is specified, every line in
644 a basic-block is annotated by repeating the annotation for the
645 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
647 @item --demangle[=@var{style}]
648 @itemx --no-demangle
649 These options control whether C++ symbol names should be demangled when
650 printing output.  The default is to demangle symbols.  The
651 @code{--no-demangle} option may be used to turn off demangling. Different 
652 compilers have different mangling styles.  The optional demangling style 
653 argument can be used to choose an appropriate demangling style for your 
654 compiler.
655 @end table
657 @node Analysis Options
658 @section Analysis Options
660 @table @code
662 @item -a
663 @itemx --no-static
664 The @samp{-a} option causes @code{gprof} to suppress the printing of
665 statically declared (private) functions.  (These are functions whose
666 names are not listed as global, and which are not visible outside the
667 file/function/block where they were defined.)  Time spent in these
668 functions, calls to/from them, etc., will all be attributed to the
669 function that was loaded directly before it in the executable file.
670 @c This is compatible with Unix @code{gprof}, but a bad idea.  
671 This option affects both the flat profile and the call graph.
673 @item -c
674 @itemx --static-call-graph
675 The @samp{-c} option causes the call graph of the program to be
676 augmented by a heuristic which examines the text space of the object
677 file and identifies function calls in the binary machine code.
678 Since normal call graph records are only generated when functions are
679 entered, this option identifies children that could have been called,
680 but never were.  Calls to functions that were not compiled with
681 profiling enabled are also identified, but only if symbol table
682 entries are present for them.
683 Calls to dynamic library routines are typically @emph{not} found
684 by this option.
685 Parents or children identified via this heuristic
686 are indicated in the call graph with call counts of @samp{0}.
688 @item -D
689 @itemx --ignore-non-functions
690 The @samp{-D} option causes @code{gprof} to ignore symbols which
691 are not known to be functions.  This option will give more accurate
692 profile data on systems where it is supported (Solaris and HPUX for
693 example).
695 @item -k @var{from}/@var{to}
696 The @samp{-k} option allows you to delete from the call graph any arcs from
697 symbols matching symspec @var{from} to those matching symspec @var{to}.
699 @item -l
700 @itemx --line
701 The @samp{-l} option enables line-by-line profiling, which causes
702 histogram hits to be charged to individual source code lines,
703 instead of functions.  This feature only works with programs compiled
704 by older versions of the @code{gcc} compiler.  Newer versions of
705 @code{gcc} are designed to work with the @code{gcov} tool instead.
707 If the program was compiled with basic-block counting enabled,
708 this option will also identify how many times each line of
709 code was executed.
710 While line-by-line profiling can help isolate where in a large function
711 a program is spending its time, it also significantly increases
712 the running time of @code{gprof}, and magnifies statistical
713 inaccuracies.
714 @xref{Sampling Error, ,Statistical Sampling Error}.
716 @item -m @var{num}
717 @itemx --min-count=@var{num}
718 This option affects execution count output only.
719 Symbols that are executed less than @var{num} times are suppressed.
721 @item -n@var{symspec}
722 @itemx --time=@var{symspec}
723 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
724 to only propagate times for symbols matching @var{symspec}.
726 @item -N@var{symspec}
727 @itemx --no-time=@var{symspec}
728 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
729 not to propagate times for symbols matching @var{symspec}.
731 @item -S@var{filename}
732 @itemx --external-symbol-table=@var{filename}
733 The @samp{-S} option causes @code{gprof} to read an external symbol table
734 file, such as @file{/proc/kallsyms}, rather than read the symbol table 
735 from the given object file (the default is @code{a.out}). This is useful 
736 for profiling kernel modules.
738 @item -z
739 @itemx --display-unused-functions
740 If you give the @samp{-z} option, @code{gprof} will mention all
741 functions in the flat profile, even those that were never called, and
742 that had no time spent in them.  This is useful in conjunction with the
743 @samp{-c} option for discovering which routines were never called.
745 @end table
747 @node Miscellaneous Options
748 @section Miscellaneous Options
750 @table @code
752 @item -d[@var{num}]
753 @itemx --debug[=@var{num}]
754 The @samp{-d @var{num}} option specifies debugging options.
755 If @var{num} is not specified, enable all debugging.
756 @xref{Debugging, ,Debugging @code{gprof}}.
758 @item -h
759 @itemx --help
760 The @samp{-h} option prints command line usage.
762 @item -O@var{name}
763 @itemx --file-format=@var{name}
764 Selects the format of the profile data files.  Recognized formats are
765 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
766 @samp{prof} (not yet supported).
768 @item -s
769 @itemx --sum
770 The @samp{-s} option causes @code{gprof} to summarize the information
771 in the profile data files it read in, and write out a profile data
772 file called @file{gmon.sum}, which contains all the information from
773 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
774 may be one of the specified input files; the effect of this is to
775 merge the data in the other input files into @file{gmon.sum}.
777 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
778 cumulative data in the file @file{gmon.sum}.
780 @item -v
781 @itemx --version
782 The @samp{-v} flag causes @code{gprof} to print the current version
783 number, and then exit.
785 @end table
787 @node Deprecated Options
788 @section Deprecated Options
790 @table @code
792 These options have been replaced with newer versions that use symspecs.
794 @item -e @var{function_name}
795 The @samp{-e @var{function}} option tells @code{gprof} to not print
796 information about the function @var{function_name} (and its
797 children@dots{}) in the call graph.  The function will still be listed
798 as a child of any functions that call it, but its index number will be
799 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
800 given; only one @var{function_name} may be indicated with each @samp{-e}
801 option. 
803 @item -E @var{function_name}
804 The @code{-E @var{function}} option works like the @code{-e} option, but
805 time spent in the function (and children who were not called from
806 anywhere else), will not be used to compute the percentages-of-time for
807 the call graph.  More than one @samp{-E} option may be given; only one
808 @var{function_name} may be indicated with each @samp{-E} option.
810 @item -f @var{function_name}
811 The @samp{-f @var{function}} option causes @code{gprof} to limit the
812 call graph to the function @var{function_name} and its children (and
813 their children@dots{}).  More than one @samp{-f} option may be given;
814 only one @var{function_name} may be indicated with each @samp{-f}
815 option.  
817 @item -F @var{function_name}
818 The @samp{-F @var{function}} option works like the @code{-f} option, but
819 only time spent in the function and its children (and their
820 children@dots{}) will be used to determine total-time and
821 percentages-of-time for the call graph.  More than one @samp{-F} option
822 may be given; only one @var{function_name} may be indicated with each
823 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
825 @end table
827 @c man end
829 Note that only one function can be specified with each @code{-e},
830 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
831 function, use multiple options.  For example, this command:
833 @example
834 gprof -e boring -f foo -f bar myprogram > gprof.output
835 @end example
837 @noindent
838 lists in the call graph all functions that were reached from either
839 @code{foo} or @code{bar} and were not reachable from @code{boring}.
841 @node Symspecs
842 @section Symspecs
844 Many of the output options allow functions to be included or excluded
845 using @dfn{symspecs} (symbol specifications), which observe the
846 following syntax:
848 @example
849   filename_containing_a_dot
850 | funcname_not_containing_a_dot
851 | linenumber
852 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
853 @end example
855 Here are some sample symspecs:
857 @table @samp
858 @item main.c
859 Selects everything in file @file{main.c}---the
860 dot in the string tells @code{gprof} to interpret
861 the string as a filename, rather than as
862 a function name.  To select a file whose
863 name does not contain a dot, a trailing colon
864 should be specified.  For example, @samp{odd:} is
865 interpreted as the file named @file{odd}.
867 @item main
868 Selects all functions named @samp{main}.
870 Note that there may be multiple instances of the same function name
871 because some of the definitions may be local (i.e., static).  Unless a
872 function name is unique in a program, you must use the colon notation
873 explained below to specify a function from a specific source file.
875 Sometimes, function names contain dots.  In such cases, it is necessary
876 to add a leading colon to the name.  For example, @samp{:.mul} selects
877 function @samp{.mul}.
879 In some object file formats, symbols have a leading underscore.
880 @code{gprof} will normally not print these underscores.  When you name a
881 symbol in a symspec, you should type it exactly as @code{gprof} prints
882 it in its output.  For example, if the compiler produces a symbol
883 @samp{_main} from your @code{main} function, @code{gprof} still prints
884 it as @samp{main} in its output, so you should use @samp{main} in
885 symspecs.
887 @item main.c:main
888 Selects function @samp{main} in file @file{main.c}.
890 @item main.c:134
891 Selects line 134 in file @file{main.c}.
892 @end table
894 @node Output
895 @chapter Interpreting @code{gprof}'s Output
897 @code{gprof} can produce several different output styles, the
898 most important of which are described below.  The simplest output
899 styles (file information, execution count, and function and file ordering)
900 are not described here, but are documented with the respective options
901 that trigger them.
902 @xref{Output Options, ,Output Options}.
904 @menu
905 * Flat Profile::        The flat profile shows how much time was spent
906                             executing directly in each function.
907 * Call Graph::          The call graph shows which functions called which
908                             others, and how much time each function used
909                             when its subroutine calls are included.
910 * Line-by-line::        @code{gprof} can analyze individual source code lines
911 * Annotated Source::    The annotated source listing displays source code
912                             labeled with execution counts
913 @end menu
916 @node Flat Profile
917 @section The Flat Profile
918 @cindex flat profile
920 The @dfn{flat profile} shows the total amount of time your program
921 spent executing each function.  Unless the @samp{-z} option is given,
922 functions with no apparent time spent in them, and no apparent calls
923 to them, are not mentioned.  Note that if a function was not compiled
924 for profiling, and didn't run long enough to show up on the program
925 counter histogram, it will be indistinguishable from a function that
926 was never called.
928 This is part of a flat profile for a small program:
930 @smallexample
931 @group
932 Flat profile:
934 Each sample counts as 0.01 seconds.
935   %   cumulative   self              self     total           
936  time   seconds   seconds    calls  ms/call  ms/call  name    
937  33.34      0.02     0.02     7208     0.00     0.00  open
938  16.67      0.03     0.01      244     0.04     0.12  offtime
939  16.67      0.04     0.01        8     1.25     1.25  memccpy
940  16.67      0.05     0.01        7     1.43     1.43  write
941  16.67      0.06     0.01                             mcount
942   0.00      0.06     0.00      236     0.00     0.00  tzset
943   0.00      0.06     0.00      192     0.00     0.00  tolower
944   0.00      0.06     0.00       47     0.00     0.00  strlen
945   0.00      0.06     0.00       45     0.00     0.00  strchr
946   0.00      0.06     0.00        1     0.00    50.00  main
947   0.00      0.06     0.00        1     0.00     0.00  memcpy
948   0.00      0.06     0.00        1     0.00    10.11  print
949   0.00      0.06     0.00        1     0.00     0.00  profil
950   0.00      0.06     0.00        1     0.00    50.00  report
951 @dots{}
952 @end group
953 @end smallexample
955 @noindent
956 The functions are sorted first by decreasing run-time spent in them,
957 then by decreasing number of calls, then alphabetically by name.  The
958 functions @samp{mcount} and @samp{profil} are part of the profiling
959 apparatus and appear in every flat profile; their time gives a measure of
960 the amount of overhead due to profiling.
962 Just before the column headers, a statement appears indicating
963 how much time each sample counted as.
964 This @dfn{sampling period} estimates the margin of error in each of the time
965 figures.  A time figure that is not much larger than this is not
966 reliable.  In this example, each sample counted as 0.01 seconds,
967 suggesting a 100 Hz sampling rate.
968 The program's total execution time was 0.06
969 seconds, as indicated by the @samp{cumulative seconds} field.  Since
970 each sample counted for 0.01 seconds, this means only six samples
971 were taken during the run.  Two of the samples occurred while the
972 program was in the @samp{open} function, as indicated by the
973 @samp{self seconds} field.  Each of the other four samples
974 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
975 and @samp{mcount}.
976 Since only six samples were taken, none of these values can
977 be regarded as particularly reliable.
978 In another run,
979 the @samp{self seconds} field for
980 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
981 @xref{Sampling Error, ,Statistical Sampling Error},
982 for a complete discussion.
984 The remaining functions in the listing (those whose
985 @samp{self seconds} field is @samp{0.00}) didn't appear
986 in the histogram samples at all.  However, the call graph
987 indicated that they were called, so therefore they are listed,
988 sorted in decreasing order by the @samp{calls} field.
989 Clearly some time was spent executing these functions,
990 but the paucity of histogram samples prevents any
991 determination of how much time each took.
993 Here is what the fields in each line mean:
995 @table @code
996 @item % time
997 This is the percentage of the total execution time your program spent
998 in this function.  These should all add up to 100%.
1000 @item cumulative seconds
1001 This is the cumulative total number of seconds the computer spent
1002 executing this functions, plus the time spent in all the functions
1003 above this one in this table.
1005 @item self seconds
1006 This is the number of seconds accounted for by this function alone.
1007 The flat profile listing is sorted first by this number.
1009 @item calls
1010 This is the total number of times the function was called.  If the
1011 function was never called, or the number of times it was called cannot
1012 be determined (probably because the function was not compiled with
1013 profiling enabled), the @dfn{calls} field is blank.
1015 @item self ms/call
1016 This represents the average number of milliseconds spent in this
1017 function per call, if this function is profiled.  Otherwise, this field
1018 is blank for this function.
1020 @item total ms/call
1021 This represents the average number of milliseconds spent in this
1022 function and its descendants per call, if this function is profiled.
1023 Otherwise, this field is blank for this function.
1024 This is the only field in the flat profile that uses call graph analysis.
1026 @item name
1027 This is the name of the function.   The flat profile is sorted by this
1028 field alphabetically after the @dfn{self seconds} and @dfn{calls}
1029 fields are sorted.
1030 @end table
1032 @node Call Graph
1033 @section The Call Graph
1034 @cindex call graph
1036 The @dfn{call graph} shows how much time was spent in each function
1037 and its children.  From this information, you can find functions that,
1038 while they themselves may not have used much time, called other
1039 functions that did use unusual amounts of time.
1041 Here is a sample call from a small program.  This call came from the
1042 same @code{gprof} run as the flat profile example in the previous
1043 section.
1045 @smallexample
1046 @group
1047 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
1049 index % time    self  children    called     name
1050                                                  <spontaneous>
1051 [1]    100.0    0.00    0.05                 start [1]
1052                 0.00    0.05       1/1           main [2]
1053                 0.00    0.00       1/2           on_exit [28]
1054                 0.00    0.00       1/1           exit [59]
1055 -----------------------------------------------
1056                 0.00    0.05       1/1           start [1]
1057 [2]    100.0    0.00    0.05       1         main [2]
1058                 0.00    0.05       1/1           report [3]
1059 -----------------------------------------------
1060                 0.00    0.05       1/1           main [2]
1061 [3]    100.0    0.00    0.05       1         report [3]
1062                 0.00    0.03       8/8           timelocal [6]
1063                 0.00    0.01       1/1           print [9]
1064                 0.00    0.01       9/9           fgets [12]
1065                 0.00    0.00      12/34          strncmp <cycle 1> [40]
1066                 0.00    0.00       8/8           lookup [20]
1067                 0.00    0.00       1/1           fopen [21]
1068                 0.00    0.00       8/8           chewtime [24]
1069                 0.00    0.00       8/16          skipspace [44]
1070 -----------------------------------------------
1071 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole> [4]
1072                 0.01        0.02     244+260         offtime <cycle 2> [7]
1073                 0.00        0.00     236+1           tzset <cycle 2> [26]
1074 -----------------------------------------------
1075 @end group
1076 @end smallexample
1078 The lines full of dashes divide this table into @dfn{entries}, one for each
1079 function.  Each entry has one or more lines.
1081 In each entry, the primary line is the one that starts with an index number
1082 in square brackets.  The end of this line says which function the entry is
1083 for.  The preceding lines in the entry describe the callers of this
1084 function and the following lines describe its subroutines (also called
1085 @dfn{children} when we speak of the call graph).
1087 The entries are sorted by time spent in the function and its subroutines.
1089 The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The 
1090 Flat Profile}) is never mentioned in the call graph.
1092 @menu
1093 * Primary::       Details of the primary line's contents.
1094 * Callers::       Details of caller-lines' contents.
1095 * Subroutines::   Details of subroutine-lines' contents.
1096 * Cycles::        When there are cycles of recursion,
1097                    such as @code{a} calls @code{b} calls @code{a}@dots{}
1098 @end menu
1100 @node Primary
1101 @subsection The Primary Line
1103 The @dfn{primary line} in a call graph entry is the line that
1104 describes the function which the entry is about and gives the overall
1105 statistics for this function.
1107 For reference, we repeat the primary line from the entry for function
1108 @code{report} in our main example, together with the heading line that
1109 shows the names of the fields:
1111 @smallexample
1112 @group
1113 index  % time    self  children called     name
1114 @dots{}
1115 [3]    100.0    0.00    0.05       1         report [3]
1116 @end group
1117 @end smallexample
1119 Here is what the fields in the primary line mean:
1121 @table @code
1122 @item index
1123 Entries are numbered with consecutive integers.  Each function
1124 therefore has an index number, which appears at the beginning of its
1125 primary line.
1127 Each cross-reference to a function, as a caller or subroutine of
1128 another, gives its index number as well as its name.  The index number
1129 guides you if you wish to look for the entry for that function.
1131 @item % time
1132 This is the percentage of the total time that was spent in this
1133 function, including time spent in subroutines called from this
1134 function.
1136 The time spent in this function is counted again for the callers of
1137 this function.  Therefore, adding up these percentages is meaningless.
1139 @item self
1140 This is the total amount of time spent in this function.  This
1141 should be identical to the number printed in the @code{seconds} field
1142 for this function in the flat profile.
1144 @item children
1145 This is the total amount of time spent in the subroutine calls made by
1146 this function.  This should be equal to the sum of all the @code{self}
1147 and @code{children} entries of the children listed directly below this
1148 function.
1150 @item called
1151 This is the number of times the function was called.
1153 If the function called itself recursively, there are two numbers,
1154 separated by a @samp{+}.  The first number counts non-recursive calls,
1155 and the second counts recursive calls.
1157 In the example above, the function @code{report} was called once from
1158 @code{main}.
1160 @item name
1161 This is the name of the current function.  The index number is
1162 repeated after it.
1164 If the function is part of a cycle of recursion, the cycle number is
1165 printed between the function's name and the index number
1166 (@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
1167 For example, if function @code{gnurr} is part of
1168 cycle number one, and has index number twelve, its primary line would
1169 be end like this:
1171 @example
1172 gnurr <cycle 1> [12]
1173 @end example
1174 @end table
1176 @node Callers
1177 @subsection Lines for a Function's Callers
1179 A function's entry has a line for each function it was called by.
1180 These lines' fields correspond to the fields of the primary line, but
1181 their meanings are different because of the difference in context.
1183 For reference, we repeat two lines from the entry for the function
1184 @code{report}, the primary line and one caller-line preceding it, together
1185 with the heading line that shows the names of the fields:
1187 @smallexample
1188 index  % time    self  children called     name
1189 @dots{}
1190                 0.00    0.05       1/1           main [2]
1191 [3]    100.0    0.00    0.05       1         report [3]
1192 @end smallexample
1194 Here are the meanings of the fields in the caller-line for @code{report}
1195 called from @code{main}:
1197 @table @code
1198 @item self
1199 An estimate of the amount of time spent in @code{report} itself when it was
1200 called from @code{main}.
1202 @item children
1203 An estimate of the amount of time spent in subroutines of @code{report}
1204 when @code{report} was called from @code{main}.
1206 The sum of the @code{self} and @code{children} fields is an estimate
1207 of the amount of time spent within calls to @code{report} from @code{main}.
1209 @item called
1210 Two numbers: the number of times @code{report} was called from @code{main},
1211 followed by the total number of non-recursive calls to @code{report} from
1212 all its callers.
1214 @item name and index number
1215 The name of the caller of @code{report} to which this line applies,
1216 followed by the caller's index number.
1218 Not all functions have entries in the call graph; some
1219 options to @code{gprof} request the omission of certain functions.
1220 When a caller has no entry of its own, it still has caller-lines
1221 in the entries of the functions it calls.
1223 If the caller is part of a recursion cycle, the cycle number is
1224 printed between the name and the index number.
1225 @end table
1227 If the identity of the callers of a function cannot be determined, a
1228 dummy caller-line is printed which has @samp{<spontaneous>} as the
1229 ``caller's name'' and all other fields blank.  This can happen for
1230 signal handlers.
1231 @c What if some calls have determinable callers' names but not all?
1232 @c FIXME - still relevant?
1234 @node Subroutines
1235 @subsection Lines for a Function's Subroutines
1237 A function's entry has a line for each of its subroutines---in other
1238 words, a line for each other function that it called.  These lines'
1239 fields correspond to the fields of the primary line, but their meanings
1240 are different because of the difference in context.
1242 For reference, we repeat two lines from the entry for the function
1243 @code{main}, the primary line and a line for a subroutine, together
1244 with the heading line that shows the names of the fields:
1246 @smallexample
1247 index  % time    self  children called     name
1248 @dots{}
1249 [2]    100.0    0.00    0.05       1         main [2]
1250                 0.00    0.05       1/1           report [3]
1251 @end smallexample
1253 Here are the meanings of the fields in the subroutine-line for @code{main}
1254 calling @code{report}:
1256 @table @code
1257 @item self
1258 An estimate of the amount of time spent directly within @code{report}
1259 when @code{report} was called from @code{main}.
1261 @item children
1262 An estimate of the amount of time spent in subroutines of @code{report}
1263 when @code{report} was called from @code{main}.
1265 The sum of the @code{self} and @code{children} fields is an estimate
1266 of the total time spent in calls to @code{report} from @code{main}.
1268 @item called
1269 Two numbers, the number of calls to @code{report} from @code{main}
1270 followed by the total number of non-recursive calls to @code{report}.
1271 This ratio is used to determine how much of @code{report}'s @code{self}
1272 and @code{children} time gets credited to @code{main}.
1273 @xref{Assumptions, ,Estimating @code{children} Times}.
1275 @item name
1276 The name of the subroutine of @code{main} to which this line applies,
1277 followed by the subroutine's index number.
1279 If the caller is part of a recursion cycle, the cycle number is
1280 printed between the name and the index number.
1281 @end table
1283 @node Cycles
1284 @subsection How Mutually Recursive Functions Are Described
1285 @cindex cycle
1286 @cindex recursion cycle
1288 The graph may be complicated by the presence of @dfn{cycles of
1289 recursion} in the call graph.  A cycle exists if a function calls
1290 another function that (directly or indirectly) calls (or appears to
1291 call) the original function.  For example: if @code{a} calls @code{b},
1292 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1294 Whenever there are call paths both ways between a pair of functions, they
1295 belong to the same cycle.  If @code{a} and @code{b} call each other and
1296 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1297 even if @code{b} only calls @code{a} if it was not called from @code{a},
1298 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1299 considered a cycle.
1301 The cycles are numbered with consecutive integers.  When a function
1302 belongs to a cycle, each time the function name appears in the call graph
1303 it is followed by @samp{<cycle @var{number}>}.
1305 The reason cycles matter is that they make the time values in the call
1306 graph paradoxical.  The ``time spent in children'' of @code{a} should
1307 include the time spent in its subroutine @code{b} and in @code{b}'s
1308 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1309 @code{a}'s time should be included in the children of @code{a}, when
1310 @code{a} is indirectly recursive?
1312 The way @code{gprof} resolves this paradox is by creating a single entry
1313 for the cycle as a whole.  The primary line of this entry describes the
1314 total time spent directly in the functions of the cycle.  The
1315 ``subroutines'' of the cycle are the individual functions of the cycle, and
1316 all other functions that were called directly by them.  The ``callers'' of
1317 the cycle are the functions, outside the cycle, that called functions in
1318 the cycle.
1320 Here is an example portion of a call graph which shows a cycle containing
1321 functions @code{a} and @code{b}.  The cycle was entered by a call to
1322 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1324 @smallexample
1325 index  % time    self  children called     name
1326 ----------------------------------------
1327                  1.77        0    1/1        main [2]
1328 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1329                  1.02        0    3          b <cycle 1> [4]
1330                  0.75        0    2          a <cycle 1> [5]
1331 ----------------------------------------
1332                                   3          a <cycle 1> [5]
1333 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1334                                   2          a <cycle 1> [5]
1335                     0        0    3/6        c [6]
1336 ----------------------------------------
1337                  1.77        0    1/1        main [2]
1338                                   2          b <cycle 1> [4]
1339 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1340                                   3          b <cycle 1> [4]
1341                     0        0    3/6        c [6]
1342 ----------------------------------------
1343 @end smallexample
1345 @noindent
1346 (The entire call graph for this program contains in addition an entry for
1347 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1348 @code{a} and @code{b}.)
1350 @smallexample
1351 index  % time    self  children called     name
1352                                              <spontaneous>
1353 [1]    100.00       0     1.93    0      start [1]
1354                  0.16     1.77    1/1        main [2]
1355 ----------------------------------------
1356                  0.16     1.77    1/1        start [1]
1357 [2]    100.00    0.16     1.77    1      main [2]
1358                  1.77        0    1/1        a <cycle 1> [5]
1359 ----------------------------------------
1360                  1.77        0    1/1        main [2]
1361 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1362                  1.02        0    3          b <cycle 1> [4]
1363                  0.75        0    2          a <cycle 1> [5]
1364                     0        0    6/6        c [6]
1365 ----------------------------------------
1366                                   3          a <cycle 1> [5]
1367 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1368                                   2          a <cycle 1> [5]
1369                     0        0    3/6        c [6]
1370 ----------------------------------------
1371                  1.77        0    1/1        main [2]
1372                                   2          b <cycle 1> [4]
1373 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1374                                   3          b <cycle 1> [4]
1375                     0        0    3/6        c [6]
1376 ----------------------------------------
1377                     0        0    3/6        b <cycle 1> [4]
1378                     0        0    3/6        a <cycle 1> [5]
1379 [6]      0.00       0        0    6      c [6]
1380 ----------------------------------------
1381 @end smallexample
1383 The @code{self} field of the cycle's primary line is the total time
1384 spent in all the functions of the cycle.  It equals the sum of the
1385 @code{self} fields for the individual functions in the cycle, found
1386 in the entry in the subroutine lines for these functions.
1388 The @code{children} fields of the cycle's primary line and subroutine lines
1389 count only subroutines outside the cycle.  Even though @code{a} calls
1390 @code{b}, the time spent in those calls to @code{b} is not counted in
1391 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1392 what to do when the time in those calls to @code{b} includes indirect
1393 recursive calls back to @code{a}.
1395 The @code{children} field of a caller-line in the cycle's entry estimates
1396 the amount of time spent @emph{in the whole cycle}, and its other
1397 subroutines, on the times when that caller called a function in the cycle.
1399 The @code{called} field in the primary line for the cycle has two numbers:
1400 first, the number of times functions in the cycle were called by functions
1401 outside the cycle; second, the number of times they were called by
1402 functions in the cycle (including times when a function in the cycle calls
1403 itself).  This is a generalization of the usual split into non-recursive and
1404 recursive calls.
1406 The @code{called} field of a subroutine-line for a cycle member in the
1407 cycle's entry says how many time that function was called from functions in
1408 the cycle.  The total of all these is the second number in the primary line's
1409 @code{called} field.
1411 In the individual entry for a function in a cycle, the other functions in
1412 the same cycle can appear as subroutines and as callers.  These lines show
1413 how many times each function in the cycle called or was called from each other
1414 function in the cycle.  The @code{self} and @code{children} fields in these
1415 lines are blank because of the difficulty of defining meanings for them
1416 when recursion is going on.
1418 @node Line-by-line
1419 @section Line-by-line Profiling
1421 @code{gprof}'s @samp{-l} option causes the program to perform
1422 @dfn{line-by-line} profiling.  In this mode, histogram
1423 samples are assigned not to functions, but to individual
1424 lines of source code.  This only works with programs compiled with
1425 older versions of the @code{gcc} compiler.  Newer versions of @code{gcc}
1426 use a different program - @code{gcov} - to display line-by-line
1427 profiling information.
1429 With the older versions of @code{gcc} the program usually has to be
1430 compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
1431 to generate debugging symbols for tracking source code lines.
1432 Note, in much older versions of @code{gcc} the program had to be
1433 compiled with the @samp{-a} command line option as well.
1435 The flat profile is the most useful output table
1436 in line-by-line mode.
1437 The call graph isn't as useful as normal, since
1438 the current version of @code{gprof} does not propagate
1439 call graph arcs from source code lines to the enclosing function.
1440 The call graph does, however, show each line of code
1441 that called each function, along with a count.
1443 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1444 Note that @code{ct_init} accounted for four histogram hits, and
1445 13327 calls to @code{init_block}.
1447 @smallexample
1448 Flat profile:
1450 Each sample counts as 0.01 seconds.
1451   %   cumulative   self              self     total           
1452  time   seconds   seconds    calls  us/call  us/call  name    
1453  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1456                      Call graph (explanation follows)
1459 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1461 index % time    self  children    called     name
1463                 0.00    0.00       1/13496       name_too_long
1464                 0.00    0.00      40/13496       deflate
1465                 0.00    0.00     128/13496       deflate_fast
1466                 0.00    0.00   13327/13496       ct_init
1467 [7]      0.0    0.00    0.00   13496         init_block
1469 @end smallexample
1471 Now let's look at some of @code{gprof}'s output from the same program run,
1472 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1473 four histogram hits are broken down into four lines of source code---one hit
1474 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1475 note how
1476 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1477 into one call from line 396, 3071 calls from line 384, 3730 calls
1478 from line 385, and 6525 calls from 387.
1480 @smallexample
1481 Flat profile:
1483 Each sample counts as 0.01 seconds.
1484   %   cumulative   self                    
1485  time   seconds   seconds    calls  name    
1486   7.69      0.10     0.01           ct_init (trees.c:349)
1487   7.69      0.11     0.01           ct_init (trees.c:351)
1488   7.69      0.12     0.01           ct_init (trees.c:382)
1489   7.69      0.13     0.01           ct_init (trees.c:385)
1492                      Call graph (explanation follows)
1495 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1497   % time    self  children    called     name
1499             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1500             0.00    0.00       1/13496       deflate (deflate.c:763)
1501             0.00    0.00       1/13496       ct_init (trees.c:396)
1502             0.00    0.00       2/13496       deflate (deflate.c:727)
1503             0.00    0.00       4/13496       deflate (deflate.c:686)
1504             0.00    0.00       5/13496       deflate (deflate.c:675)
1505             0.00    0.00      12/13496       deflate (deflate.c:679)
1506             0.00    0.00      16/13496       deflate (deflate.c:730)
1507             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1508             0.00    0.00    3071/13496       ct_init (trees.c:384)
1509             0.00    0.00    3730/13496       ct_init (trees.c:385)
1510             0.00    0.00    6525/13496       ct_init (trees.c:387)
1511 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1513 @end smallexample
1516 @node Annotated Source
1517 @section The Annotated Source Listing
1519 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1520 which lists the program's source code, each function labeled with the
1521 number of times it was called.  You may also need to specify the
1522 @samp{-I} option, if @code{gprof} can't find the source code files.
1524 With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
1525 -pg -a} augments your program with basic-block counting code, in
1526 addition to function counting code.  This enables @code{gprof} to
1527 determine how many times each line of code was executed.  With newer
1528 versions of @code{gcc} support for displaying basic-block counts is
1529 provided by the @code{gcov} program.
1531 For example, consider the following function, taken from gzip,
1532 with line numbers added:
1534 @smallexample
1535  1 ulg updcrc(s, n)
1536  2     uch *s;
1537  3     unsigned n;
1538  4 @{
1539  5     register ulg c;
1541  7     static ulg crc = (ulg)0xffffffffL;
1543  9     if (s == NULL) @{
1544 10         c = 0xffffffffL;
1545 11     @} else @{
1546 12         c = crc;
1547 13         if (n) do @{
1548 14             c = crc_32_tab[...];
1549 15         @} while (--n);
1550 16     @}
1551 17     crc = c;
1552 18     return c ^ 0xffffffffL;
1553 19 @}
1555 @end smallexample
1557 @code{updcrc} has at least five basic-blocks.
1558 One is the function itself.  The
1559 @code{if} statement on line 9 generates two more basic-blocks, one
1560 for each branch of the @code{if}.  A fourth basic-block results from
1561 the @code{if} on line 13, and the contents of the @code{do} loop form
1562 the fifth basic-block.  The compiler may also generate additional
1563 basic-blocks to handle various special cases.
1565 A program augmented for basic-block counting can be analyzed with
1566 @samp{gprof -l -A}.
1567 The @samp{-x} option is also helpful,
1568 to ensure that each line of code is labeled at least once.
1569 Here is @code{updcrc}'s
1570 annotated source listing for a sample @code{gzip} run:
1572 @smallexample
1573                 ulg updcrc(s, n)
1574                     uch *s;
1575                     unsigned n;
1576             2 ->@{
1577                     register ulg c;
1578                 
1579                     static ulg crc = (ulg)0xffffffffL;
1580                 
1581             2 ->    if (s == NULL) @{
1582             1 ->        c = 0xffffffffL;
1583             1 ->    @} else @{
1584             1 ->        c = crc;
1585             1 ->        if (n) do @{
1586         26312 ->            c = crc_32_tab[...];
1587 26312,1,26311 ->        @} while (--n);
1588                     @}
1589             2 ->    crc = c;
1590             2 ->    return c ^ 0xffffffffL;
1591             2 ->@}
1592 @end smallexample
1594 In this example, the function was called twice, passing once through
1595 each branch of the @code{if} statement.  The body of the @code{do}
1596 loop was executed a total of 26312 times.  Note how the @code{while}
1597 statement is annotated.  It began execution 26312 times, once for
1598 each iteration through the loop.  One of those times (the last time)
1599 it exited, while it branched back to the beginning of the loop 26311 times.
1601 @node Inaccuracy
1602 @chapter Inaccuracy of @code{gprof} Output
1604 @menu
1605 * Sampling Error::      Statistical margins of error
1606 * Assumptions::         Estimating children times
1607 @end menu
1609 @node Sampling Error
1610 @section Statistical Sampling Error
1612 The run-time figures that @code{gprof} gives you are based on a sampling
1613 process, so they are subject to statistical inaccuracy.  If a function runs
1614 only a small amount of time, so that on the average the sampling process
1615 ought to catch that function in the act only once, there is a pretty good
1616 chance it will actually find that function zero times, or twice.
1618 By contrast, the number-of-calls and basic-block figures are derived
1619 by counting, not sampling.  They are completely accurate and will not
1620 vary from run to run if your program is deterministic and single
1621 threaded.  In multi-threaded applications, or single threaded
1622 applications that link with multi-threaded libraries, the counts are
1623 only deterministic if the counting function is thread-safe.  (Note:
1624 beware that the mcount counting function in glibc is @emph{not}
1625 thread-safe).  @xref{Implementation, ,Implementation of Profiling}.
1627 The @dfn{sampling period} that is printed at the beginning of the flat
1628 profile says how often samples are taken.  The rule of thumb is that a
1629 run-time figure is accurate if it is considerably bigger than the sampling
1630 period.
1632 The actual amount of error can be predicted.
1633 For @var{n} samples, the @emph{expected} error
1634 is the square-root of @var{n}.  For example,
1635 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1636 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1637 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1638 or ten percent of the observed value.
1639 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1640 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1641 the expected error in @code{bar}'s run-time is 1 second,
1642 or one percent of the observed value.
1643 It is likely to
1644 vary this much @emph{on the average} from one profiling run to the next.
1645 (@emph{Sometimes} it will vary more.)
1647 This does not mean that a small run-time figure is devoid of information.
1648 If the program's @emph{total} run-time is large, a small run-time for one
1649 function does tell you that that function used an insignificant fraction of
1650 the whole program's time.  Usually this means it is not worth optimizing.
1652 One way to get more accuracy is to give your program more (but similar)
1653 input data so it will take longer.  Another way is to combine the data from
1654 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1656 @enumerate
1657 @item
1658 Run your program once.
1660 @item
1661 Issue the command @samp{mv gmon.out gmon.sum}.
1663 @item
1664 Run your program again, the same as before.
1666 @item
1667 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1669 @example
1670 gprof -s @var{executable-file} gmon.out gmon.sum
1671 @end example
1673 @item
1674 Repeat the last two steps as often as you wish.
1676 @item
1677 Analyze the cumulative data using this command:
1679 @example
1680 gprof @var{executable-file} gmon.sum > @var{output-file}
1681 @end example
1682 @end enumerate
1684 @node Assumptions
1685 @section Estimating @code{children} Times
1687 Some of the figures in the call graph are estimates---for example, the
1688 @code{children} time values and all the time figures in caller and
1689 subroutine lines.
1691 There is no direct information about these measurements in the profile
1692 data itself.  Instead, @code{gprof} estimates them by making an assumption
1693 about your program that might or might not be true.
1695 The assumption made is that the average time spent in each call to any
1696 function @code{foo} is not correlated with who called @code{foo}.  If
1697 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1698 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1699 @code{children} time, by assumption.
1701 This assumption is usually true enough, but for some programs it is far
1702 from true.  Suppose that @code{foo} returns very quickly when its argument
1703 is zero; suppose that @code{a} always passes zero as an argument, while
1704 other callers of @code{foo} pass other arguments.  In this program, all the
1705 time spent in @code{foo} is in the calls from callers other than @code{a}.
1706 But @code{gprof} has no way of knowing this; it will blindly and
1707 incorrectly charge 2 seconds of time in @code{foo} to the children of
1708 @code{a}.
1710 @c FIXME - has this been fixed?
1711 We hope some day to put more complete data into @file{gmon.out}, so that
1712 this assumption is no longer needed, if we can figure out how.  For the
1713 novice, the estimated figures are usually more useful than misleading.
1715 @node How do I?
1716 @chapter Answers to Common Questions
1718 @table @asis
1719 @item How can I get more exact information about hot spots in my program?
1721 Looking at the per-line call counts only tells part of the story.
1722 Because @code{gprof} can only report call times and counts by function,
1723 the best way to get finer-grained information on where the program
1724 is spending its time is to re-factor large functions into sequences
1725 of calls to smaller ones.  Beware however that this can introduce
1726 artificial hot spots since compiling with @samp{-pg} adds a significant
1727 overhead to function calls.  An alternative solution is to use a
1728 non-intrusive profiler, e.g.@: oprofile.
1730 @item How do I find which lines in my program were executed the most times?
1732 Use the @code{gcov} program.
1734 @item How do I find which lines in my program called a particular function?
1736 Use @samp{gprof -l} and lookup the function in the call graph.
1737 The callers will be broken down by function and line number.
1739 @item How do I analyze a program that runs for less than a second?
1741 Try using a shell script like this one:
1743 @example
1744 for i in `seq 1 100`; do
1745   fastprog
1746   mv gmon.out gmon.out.$i
1747 done
1749 gprof -s fastprog gmon.out.*
1751 gprof fastprog gmon.sum
1752 @end example
1754 If your program is completely deterministic, all the call counts
1755 will be simple multiples of 100 (i.e., a function called once in
1756 each run will appear with a call count of 100).
1758 @end table
1760 @node Incompatibilities
1761 @chapter Incompatibilities with Unix @code{gprof}
1763 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1764 file @file{gmon.out}, and provide essentially the same information.  But
1765 there are a few differences.
1767 @itemize @bullet
1768 @item
1769 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1770 for basic-block execution counts and non-realtime histograms.  A magic
1771 cookie and version number allows @code{gprof} to easily identify
1772 new style files.  Old BSD-style files can still be read.
1773 @xref{File Format, ,Profiling Data File Format}.
1775 @item
1776 For a recursive function, Unix @code{gprof} lists the function as a
1777 parent and as a child, with a @code{calls} field that lists the number
1778 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1779 the number of recursive calls in the primary line.
1781 @item
1782 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1783 @code{gprof} still lists it as a subroutine of functions that call it.
1785 @item
1786 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1787 in the form @samp{from/to}, instead of @samp{from to}.
1789 @item
1790 In the annotated source listing,
1791 if there are multiple basic blocks on the same line,
1792 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1794 @ignore - it does this now
1795 @item
1796 The function names printed in @sc{gnu} @code{gprof} output do not include
1797 the leading underscores that are added internally to the front of all
1798 C identifiers on many operating systems.
1799 @end ignore
1801 @item
1802 The blurbs, field widths, and output formats are different.  @sc{gnu}
1803 @code{gprof} prints blurbs after the tables, so that you can see the
1804 tables without skipping the blurbs.
1805 @end itemize
1807 @node Details
1808 @chapter Details of Profiling
1810 @menu
1811 * Implementation::      How a program collects profiling information
1812 * File Format::         Format of @samp{gmon.out} files
1813 * Internals::           @code{gprof}'s internal operation
1814 * Debugging::           Using @code{gprof}'s @samp{-d} option
1815 @end menu
1817 @node Implementation
1818 @section Implementation of Profiling
1820 Profiling works by changing how every function in your program is compiled
1821 so that when it is called, it will stash away some information about where
1822 it was called from.  From this, the profiler can figure out what function
1823 called it, and can count how many times it was called.  This change is made
1824 by the compiler when your program is compiled with the @samp{-pg} option,
1825 which causes every function to call @code{mcount}
1826 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1827 as one of its first operations.
1829 The @code{mcount} routine, included in the profiling library,
1830 is responsible for recording in an in-memory call graph table
1831 both its parent routine (the child) and its parent's parent.  This is
1832 typically done by examining the stack frame to find both
1833 the address of the child, and the return address in the original parent.
1834 Since this is a very machine-dependent operation, @code{mcount}
1835 itself is typically a short assembly-language stub routine
1836 that extracts the required
1837 information, and then calls @code{__mcount_internal}
1838 (a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
1839 @code{__mcount_internal} is responsible for maintaining
1840 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1841 and the number of times each of these call arcs was traversed.
1843 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1844 which allows a generic @code{mcount} function to extract the
1845 required information from the stack frame.  However, on some
1846 architectures, most notably the SPARC, using this builtin can be
1847 very computationally expensive, and an assembly language version
1848 of @code{mcount} is used for performance reasons.
1850 Number-of-calls information for library routines is collected by using a
1851 special version of the C library.  The programs in it are the same as in
1852 the usual C library, but they were compiled with @samp{-pg}.  If you
1853 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1854 profiling version of the library.
1856 Profiling also involves watching your program as it runs, and keeping a
1857 histogram of where the program counter happens to be every now and then.
1858 Typically the program counter is looked at around 100 times per second of
1859 run time, but the exact frequency may vary from system to system.
1861 This is done is one of two ways.  Most UNIX-like operating systems
1862 provide a @code{profil()} system call, which registers a memory
1863 array with the kernel, along with a scale
1864 factor that determines how the program's address space maps
1865 into the array.
1866 Typical scaling values cause every 2 to 8 bytes of address space
1867 to map into a single array slot.
1868 On every tick of the system clock
1869 (assuming the profiled program is running), the value of the
1870 program counter is examined and the corresponding slot in
1871 the memory array is incremented.  Since this is done in the kernel,
1872 which had to interrupt the process anyway to handle the clock
1873 interrupt, very little additional system overhead is required.
1875 However, some operating systems, most notably Linux 2.0 (and earlier),
1876 do not provide a @code{profil()} system call.  On such a system,
1877 arrangements are made for the kernel to periodically deliver
1878 a signal to the process (typically via @code{setitimer()}),
1879 which then performs the same operation of examining the
1880 program counter and incrementing a slot in the memory array.
1881 Since this method requires a signal to be delivered to
1882 user space every time a sample is taken, it uses considerably
1883 more overhead than kernel-based profiling.  Also, due to the
1884 added delay required to deliver the signal, this method is
1885 less accurate as well.
1887 A special startup routine allocates memory for the histogram and 
1888 either calls @code{profil()} or sets up
1889 a clock signal handler.
1890 This routine (@code{monstartup}) can be invoked in several ways.
1891 On Linux systems, a special profiling startup file @code{gcrt0.o},
1892 which invokes @code{monstartup} before @code{main},
1893 is used instead of the default @code{crt0.o}.
1894 Use of this special startup file is one of the effects
1895 of using @samp{gcc @dots{} -pg} to link.
1896 On SPARC systems, no special startup files are used.
1897 Rather, the @code{mcount} routine, when it is invoked for
1898 the first time (typically when @code{main} is called),
1899 calls @code{monstartup}.
1901 If the compiler's @samp{-a} option was used, basic-block counting
1902 is also enabled.  Each object file is then compiled with a static array
1903 of counts, initially zero.
1904 In the executable code, every time a new basic-block begins
1905 (i.e., when an @code{if} statement appears), an extra instruction
1906 is inserted to increment the corresponding count in the array.
1907 At compile time, a paired array was constructed that recorded
1908 the starting address of each basic-block.  Taken together,
1909 the two arrays record the starting address of every basic-block,
1910 along with the number of times it was executed.
1912 The profiling library also includes a function (@code{mcleanup}) which is
1913 typically registered using @code{atexit()} to be called as the
1914 program exits, and is responsible for writing the file @file{gmon.out}.
1915 Profiling is turned off, various headers are output, and the histogram
1916 is written, followed by the call-graph arcs and the basic-block counts.
1918 The output from @code{gprof} gives no indication of parts of your program that
1919 are limited by I/O or swapping bandwidth.  This is because samples of the
1920 program counter are taken at fixed intervals of the program's run time.
1921 Therefore, the
1922 time measurements in @code{gprof} output say nothing about time that your
1923 program was not running.  For example, a part of the program that creates
1924 so much data that it cannot all fit in physical memory at once may run very
1925 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1926 the other hand, sampling by run time has the advantage that the amount of
1927 load due to other users won't directly affect the output you get.
1929 @node File Format
1930 @section Profiling Data File Format
1932 The old BSD-derived file format used for profile data does not contain a
1933 magic cookie that allows to check whether a data file really is a
1934 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1935 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1936 uses a new file format that provides these features.  For backward
1937 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1938 format, but not all features are supported with it.  For example,
1939 basic-block execution counts cannot be accommodated by the old file
1940 format.
1942 The new file format is defined in header file @file{gmon_out.h}.  It
1943 consists of a header containing the magic cookie and a version number,
1944 as well as some spare bytes available for future extensions.  All data
1945 in a profile data file is in the native format of the target for which
1946 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically
1947 to the byte-order in use.
1949 In the new file format, the header is followed by a sequence of
1950 records.  Currently, there are three different record types: histogram
1951 records, call-graph arc records, and basic-block execution count
1952 records.  Each file can contain any number of each record type.  When
1953 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1954 compatible with each other and compute the union of all records.  For
1955 example, for basic-block execution counts, the union is simply the sum
1956 of all execution counts for each basic-block.
1958 @subsection Histogram Records
1960 Histogram records consist of a header that is followed by an array of
1961 bins.  The header contains the text-segment range that the histogram
1962 spans, the size of the histogram in bytes (unlike in the old BSD
1963 format, this does not include the size of the header), the rate of the
1964 profiling clock, and the physical dimension that the bin counts
1965 represent after being scaled by the profiling clock rate.  The
1966 physical dimension is specified in two parts: a long name of up to 15
1967 characters and a single character abbreviation.  For example, a
1968 histogram representing real-time would specify the long name as
1969 ``seconds'' and the abbreviation as ``s''.  This feature is useful for
1970 architectures that support performance monitor hardware (which,
1971 fortunately, is becoming increasingly common).  For example, under DEC
1972 OSF/1, the ``uprofile'' command can be used to produce a histogram of,
1973 say, instruction cache misses.  In this case, the dimension in the
1974 histogram header could be set to ``i-cache misses'' and the abbreviation
1975 could be set to ``1'' (because it is simply a count, not a physical
1976 dimension).  Also, the profiling rate would have to be set to 1 in
1977 this case.
1979 Histogram bins are 16-bit numbers and each bin represent an equal
1980 amount of text-space.  For example, if the text-segment is one
1981 thousand bytes long and if there are ten bins in the histogram, each
1982 bin represents one hundred bytes.
1985 @subsection Call-Graph Records
1987 Call-graph records have a format that is identical to the one used in
1988 the BSD-derived file format.  It consists of an arc in the call graph
1989 and a count indicating the number of times the arc was traversed
1990 during program execution.  Arcs are specified by a pair of addresses:
1991 the first must be within caller's function and the second must be
1992 within the callee's function.  When performing profiling at the
1993 function level, these addresses can point anywhere within the
1994 respective function.  However, when profiling at the line-level, it is
1995 better if the addresses are as close to the call-site/entry-point as
1996 possible.  This will ensure that the line-level call-graph is able to
1997 identify exactly which line of source code performed calls to a
1998 function.
2000 @subsection Basic-Block Execution Count Records
2002 Basic-block execution count records consist of a header followed by a
2003 sequence of address/count pairs.  The header simply specifies the
2004 length of the sequence.  In an address/count pair, the address
2005 identifies a basic-block and the count specifies the number of times
2006 that basic-block was executed.  Any address within the basic-address can
2007 be used.
2009 @node Internals
2010 @section @code{gprof}'s Internal Operation
2012 Like most programs, @code{gprof} begins by processing its options.
2013 During this stage, it may building its symspec list
2014 (@code{sym_ids.c:@-sym_id_add}), if
2015 options are specified which use symspecs.
2016 @code{gprof} maintains a single linked list of symspecs,
2017 which will eventually get turned into 12 symbol tables,
2018 organized into six include/exclude pairs---one
2019 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
2020 the call graph arcs (INCL_ARCS/EXCL_ARCS),
2021 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
2022 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
2023 the annotated source listing (INCL_ANNO/EXCL_ANNO),
2024 and the execution count listing (INCL_EXEC/EXCL_EXEC).
2026 After option processing, @code{gprof} finishes
2027 building the symspec list by adding all the symspecs in
2028 @code{default_excluded_list} to the exclude lists
2029 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
2030 EXCL_FLAT as well.
2031 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
2033 Next, the BFD library is called to open the object file,
2034 verify that it is an object file,
2035 and read its symbol table (@code{core.c:@-core_init}),
2036 using @code{bfd_canonicalize_symtab} after mallocing
2037 an appropriately sized array of symbols.  At this point,
2038 function mappings are read (if the @samp{--file-ordering} option
2039 has been specified), and the core text space is read into
2040 memory (if the @samp{-c} option was given).
2042 @code{gprof}'s own symbol table, an array of Sym structures,
2043 is now built.
2044 This is done in one of two ways, by one of two routines, depending
2045 on whether line-by-line profiling (@samp{-l} option) has been
2046 enabled.
2047 For normal profiling, the BFD canonical symbol table is scanned.
2048 For line-by-line profiling, every
2049 text space address is examined, and a new symbol table entry
2050 gets created every time the line number changes.
2051 In either case, two passes are made through the symbol
2052 table---one to count the size of the symbol table required,
2053 and the other to actually read the symbols.  In between the
2054 two passes, a single array of type @code{Sym} is created of
2055 the appropriate length.
2056 Finally, @code{symtab.c:@-symtab_finalize}
2057 is called to sort the symbol table and remove duplicate entries
2058 (entries with the same memory address).
2060 The symbol table must be a contiguous array for two reasons.
2061 First, the @code{qsort} library function (which sorts an array)
2062 will be used to sort the symbol table.
2063 Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
2064 which finds symbols
2065 based on memory address, uses a binary search algorithm
2066 which requires the symbol table to be a sorted array.
2067 Function symbols are indicated with an @code{is_func} flag.
2068 Line number symbols have no special flags set.
2069 Additionally, a symbol can have an @code{is_static} flag
2070 to indicate that it is a local symbol.
2072 With the symbol table read, the symspecs can now be translated
2073 into Syms (@code{sym_ids.c:@-sym_id_parse}).  Remember that a single
2074 symspec can match multiple symbols.
2075 An array of symbol tables
2076 (@code{syms}) is created, each entry of which is a symbol table
2077 of Syms to be included or excluded from a particular listing.
2078 The master symbol table and the symspecs are examined by nested
2079 loops, and every symbol that matches a symspec is inserted
2080 into the appropriate syms table.  This is done twice, once to
2081 count the size of each required symbol table, and again to build
2082 the tables, which have been malloced between passes.
2083 From now on, to determine whether a symbol is on an include
2084 or exclude symspec list, @code{gprof} simply uses its
2085 standard symbol lookup routine on the appropriate table
2086 in the @code{syms} array.
2088 Now the profile data file(s) themselves are read
2089 (@code{gmon_io.c:@-gmon_out_read}),
2090 first by checking for a new-style @samp{gmon.out} header,
2091 then assuming this is an old-style BSD @samp{gmon.out}
2092 if the magic number test failed.
2094 New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
2095 For the first histogram record, allocate a memory array to hold
2096 all the bins, and read them in.
2097 When multiple profile data files (or files with multiple histogram
2098 records) are read, the memory ranges of each pair of histogram records
2099 must be either equal, or non-overlapping.  For each pair of histogram
2100 records, the resolution (memory region size divided by the number of
2101 bins) must be the same.  The time unit must be the same for all 
2102 histogram records. If the above containts are met, all histograms
2103 for the same memory range are merged.
2105 As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
2106 the parent and child addresses
2107 are matched to symbol table entries, and a call graph arc is
2108 created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
2109 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
2110 a linked list is maintained of the parent's child arcs, and of the child's
2111 parent arcs.
2112 Both the child's call count and the arc's call count are
2113 incremented by the record's call count.
2115 Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
2116 but only if line-by-line profiling has been selected.
2117 Each basic-block address is matched to a corresponding line
2118 symbol in the symbol table, and an entry made in the symbol's
2119 bb_addr and bb_calls arrays.  Again, if multiple basic-block
2120 records are present for the same address, the call counts
2121 are cumulative.
2123 A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
2125 If histograms were present in the data files, assign them to symbols
2126 (@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
2127 bins and assigning them to symbols.  Since the symbol table
2128 is sorted in order of ascending memory addresses, we can
2129 simple follow along in the symbol table as we make our pass
2130 over the sample bins.
2131 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
2132 Depending on the histogram
2133 scale factor, a sample bin may span multiple symbols,
2134 in which case a fraction of the sample count is allocated
2135 to each symbol, proportional to the degree of overlap.
2136 This effect is rare for normal profiling, but overlaps
2137 are more common during line-by-line profiling, and can
2138 cause each of two adjacent lines to be credited with half
2139 a hit, for example.
2141 If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
2142 First, if @samp{-c} was specified, a machine-dependent
2143 routine (@code{find_call}) scans through each symbol's machine code,
2144 looking for subroutine call instructions, and adding them
2145 to the call graph with a zero call count.
2146 A topological sort is performed by depth-first numbering
2147 all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
2148 children are always numbered less than their parents,
2149 then making a array of pointers into the symbol table and sorting it into
2150 numerical order, which is reverse topological
2151 order (children appear before parents).
2152 Cycles are also detected at this point, all members
2153 of which are assigned the same topological number.
2154 Two passes are now made through this sorted array of symbol pointers.
2155 The first pass, from end to beginning (parents to children),
2156 computes the fraction of child time to propagate to each parent
2157 and a print flag.
2158 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
2159 with a parent's include or exclude (print or no print) property
2160 being propagated to its children, unless they themselves explicitly appear
2161 in INCL_GRAPH or EXCL_GRAPH.
2162 A second pass, from beginning to end (children to parents) actually
2163 propagates the timings along the call graph, subject
2164 to a check against INCL_TIME/EXCL_TIME.
2165 With the print flag, fractions, and timings now stored in the symbol
2166 structures, the topological sort array is now discarded, and a
2167 new array of pointers is assembled, this time sorted by propagated time.
2169 Finally, print the various outputs the user requested, which is now fairly
2170 straightforward.  The call graph (@code{cg_print.c:@-cg_print}) and
2171 flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
2172 already computed.  The annotated source listing
2173 (@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
2174 information, if present, to label each line of code with call counts,
2175 otherwise only the function call counts are presented.
2177 The function ordering code is marginally well documented
2178 in the source code itself (@code{cg_print.c}).  Basically,
2179 the functions with the most use and the most parents are
2180 placed first, followed by other functions with the most use,
2181 followed by lower use functions, followed by unused functions
2182 at the end.
2184 @node Debugging
2185 @section Debugging @code{gprof}
2187 If @code{gprof} was compiled with debugging enabled,
2188 the @samp{-d} option triggers debugging output
2189 (to stdout) which can be helpful in understanding its operation.
2190 The debugging number specified is interpreted as a sum of the following
2191 options:
2193 @table @asis
2194 @item 2 - Topological sort
2195 Monitor depth-first numbering of symbols during call graph analysis
2196 @item 4 - Cycles
2197 Shows symbols as they are identified as cycle heads
2198 @item 16 - Tallying
2199 As the call graph arcs are read, show each arc and how
2200 the total calls to each function are tallied
2201 @item 32 - Call graph arc sorting
2202 Details sorting individual parents/children within each call graph entry
2203 @item 64 - Reading histogram and call graph records
2204 Shows address ranges of histograms as they are read, and each
2205 call graph arc
2206 @item 128 - Symbol table
2207 Reading, classifying, and sorting the symbol table from the object file.
2208 For line-by-line profiling (@samp{-l} option), also shows line numbers
2209 being assigned to memory addresses.
2210 @item 256 - Static call graph
2211 Trace operation of @samp{-c} option
2212 @item 512 - Symbol table and arc table lookups
2213 Detail operation of lookup routines
2214 @item 1024 - Call graph propagation
2215 Shows how function times are propagated along the call graph
2216 @item 2048 - Basic-blocks
2217 Shows basic-block records as they are read from profile data
2218 (only meaningful with @samp{-l} option)
2219 @item 4096 - Symspecs
2220 Shows symspec-to-symbol pattern matching operation
2221 @item 8192 - Annotate source
2222 Tracks operation of @samp{-A} option
2223 @end table
2225 @node GNU Free Documentation License
2226 @appendix GNU Free Documentation License
2227 @include fdl.texi
2229 @bye
2231 NEEDS AN INDEX
2233 -T - "traditional BSD style": How is it different?  Should the
2234 differences be documented?
2236 example flat file adds up to 100.01%...
2238 note: time estimates now only go out to one decimal place (0.0), where
2239 they used to extend two (78.67).