* elf.c (_bfd_elf_rela_local_sym): New.
[binutils.git] / bfd / elf32-hppa.c
blob9f1357691a34a2198d6336c8d4ddb34399466632
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
153 struct elf32_hppa_stub_hash_entry {
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
158 /* The stub section. */
159 asection *stub_sec;
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
169 enum elf32_hppa_stub_type stub_type;
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
179 struct elf32_hppa_link_hash_entry {
181 struct elf_link_hash_entry elf;
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
194 /* The input section of the reloc. */
195 asection *sec;
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
217 struct elf32_hppa_link_hash_table {
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection *, const asection *,
290 const struct elf32_hppa_link_hash_entry *,
291 const Elf_Internal_Rela *));
293 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
294 PARAMS ((const asection *, const asection *,
295 struct elf32_hppa_link_hash_entry *,
296 const Elf_Internal_Rela *,
297 struct elf32_hppa_link_hash_table *));
299 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
300 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection *, const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_entry *, bfd_vma));
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry *, PTR));
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p PARAMS ((bfd *));
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
317 const char **, flagword *, asection **, bfd_vma *));
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd *, struct bfd_link_info *));
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd *, struct bfd_link_info *,
327 asection *, const Elf_Internal_Rela *));
329 static asection *elf32_hppa_gc_mark_hook
330 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
331 struct elf_link_hash_entry *, Elf_Internal_Sym *));
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry *, PTR));
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry *, PTR));
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry *, PTR));
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd *, struct bfd_link_info *));
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd *, struct bfd_link_info *));
364 static void hppa_record_segment_addr
365 PARAMS ((bfd *, asection *, PTR));
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
369 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
370 struct elf32_hppa_link_hash_entry *));
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
374 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR, const PTR));
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
395 /* Assorted hash table functions. */
397 /* Initialize an entry in the stub hash table. */
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
419 struct elf32_hppa_stub_hash_entry *eh;
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
432 return entry;
435 /* Initialize an entry in the link hash table. */
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
457 struct elf32_hppa_link_hash_entry *eh;
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
468 return entry;
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
483 if (ret == NULL)
484 return NULL;
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
488 bfd_release (abfd, ret);
489 return NULL;
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
514 return &ret->elf.root;
517 /* Build a name for an entry in the stub hash table. */
519 static char *
520 hppa_stub_name (input_section, sym_sec, hash, rel)
521 const asection *input_section;
522 const asection *sym_sec;
523 const struct elf32_hppa_link_hash_entry *hash;
524 const Elf_Internal_Rela *rel;
526 char *stub_name;
527 bfd_size_type len;
529 if (hash)
531 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
532 stub_name = bfd_malloc (len);
533 if (stub_name != NULL)
535 sprintf (stub_name, "%08x_%s+%x",
536 input_section->id & 0xffffffff,
537 hash->elf.root.root.string,
538 (int) rel->r_addend & 0xffffffff);
541 else
543 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name = bfd_malloc (len);
545 if (stub_name != NULL)
547 sprintf (stub_name, "%08x_%x:%x+%x",
548 input_section->id & 0xffffffff,
549 sym_sec->id & 0xffffffff,
550 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
551 (int) rel->r_addend & 0xffffffff);
554 return stub_name;
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
560 static struct elf32_hppa_stub_hash_entry *
561 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
562 const asection *input_section;
563 const asection *sym_sec;
564 struct elf32_hppa_link_hash_entry *hash;
565 const Elf_Internal_Rela *rel;
566 struct elf32_hppa_link_hash_table *htab;
568 struct elf32_hppa_stub_hash_entry *stub_entry;
569 const asection *id_sec;
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec = htab->stub_group[input_section->id].link_sec;
578 if (hash != NULL && hash->stub_cache != NULL
579 && hash->stub_cache->h == hash
580 && hash->stub_cache->id_sec == id_sec)
582 stub_entry = hash->stub_cache;
584 else
586 char *stub_name;
588 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
589 if (stub_name == NULL)
590 return NULL;
592 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
593 stub_name, false, false);
594 if (stub_entry == NULL)
596 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
597 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
598 bfd_archive_filename (input_section->owner),
599 input_section->name,
600 (long) rel->r_offset,
601 stub_name);
603 else
605 if (hash != NULL)
606 hash->stub_cache = stub_entry;
609 free (stub_name);
612 return stub_entry;
615 /* Add a new stub entry to the stub hash. Not all fields of the new
616 stub entry are initialised. */
618 static struct elf32_hppa_stub_hash_entry *
619 hppa_add_stub (stub_name, section, htab)
620 const char *stub_name;
621 asection *section;
622 struct elf32_hppa_link_hash_table *htab;
624 asection *link_sec;
625 asection *stub_sec;
626 struct elf32_hppa_stub_hash_entry *stub_entry;
628 link_sec = htab->stub_group[section->id].link_sec;
629 stub_sec = htab->stub_group[section->id].stub_sec;
630 if (stub_sec == NULL)
632 stub_sec = htab->stub_group[link_sec->id].stub_sec;
633 if (stub_sec == NULL)
635 bfd_size_type len;
636 char *s_name;
638 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
639 s_name = bfd_alloc (htab->stub_bfd, len);
640 if (s_name == NULL)
641 return NULL;
643 strcpy (s_name, link_sec->name);
644 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
645 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
646 if (stub_sec == NULL)
647 return NULL;
648 htab->stub_group[link_sec->id].stub_sec = stub_sec;
650 htab->stub_group[section->id].stub_sec = stub_sec;
653 /* Enter this entry into the linker stub hash table. */
654 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
655 true, false);
656 if (stub_entry == NULL)
658 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
659 bfd_archive_filename (section->owner),
660 stub_name);
661 return NULL;
664 stub_entry->stub_sec = stub_sec;
665 stub_entry->stub_offset = 0;
666 stub_entry->id_sec = link_sec;
667 return stub_entry;
670 /* Determine the type of stub needed, if any, for a call. */
672 static enum elf32_hppa_stub_type
673 hppa_type_of_stub (input_sec, rel, hash, destination)
674 asection *input_sec;
675 const Elf_Internal_Rela *rel;
676 struct elf32_hppa_link_hash_entry *hash;
677 bfd_vma destination;
679 bfd_vma location;
680 bfd_vma branch_offset;
681 bfd_vma max_branch_offset;
682 unsigned int r_type;
684 if (hash != NULL
685 && (((hash->elf.root.type == bfd_link_hash_defined
686 || hash->elf.root.type == bfd_link_hash_defweak)
687 && hash->elf.root.u.def.section->output_section == NULL)
688 || (hash->elf.root.type == bfd_link_hash_defweak
689 && hash->elf.dynindx != -1
690 && hash->elf.plt.offset != (bfd_vma) -1)
691 || hash->elf.root.type == bfd_link_hash_undefweak
692 || hash->elf.root.type == bfd_link_hash_undefined
693 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
695 /* If output_section is NULL, then it's a symbol defined in a
696 shared library. We will need an import stub. Decide between
697 hppa_stub_import and hppa_stub_import_shared later. For
698 shared links we need stubs for undefined or weak syms too;
699 They will presumably be resolved by the dynamic linker. */
700 return hppa_stub_import;
703 /* Determine where the call point is. */
704 location = (input_sec->output_offset
705 + input_sec->output_section->vma
706 + rel->r_offset);
708 branch_offset = destination - location - 8;
709 r_type = ELF32_R_TYPE (rel->r_info);
711 /* Determine if a long branch stub is needed. parisc branch offsets
712 are relative to the second instruction past the branch, ie. +8
713 bytes on from the branch instruction location. The offset is
714 signed and counts in units of 4 bytes. */
715 if (r_type == (unsigned int) R_PARISC_PCREL17F)
717 max_branch_offset = (1 << (17-1)) << 2;
719 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
721 max_branch_offset = (1 << (12-1)) << 2;
723 else /* R_PARISC_PCREL22F. */
725 max_branch_offset = (1 << (22-1)) << 2;
728 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
729 return hppa_stub_long_branch;
731 return hppa_stub_none;
734 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
735 IN_ARG contains the link info pointer. */
737 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
738 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
740 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
741 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
742 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
744 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
745 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
746 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
747 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
749 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
750 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
752 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
753 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
754 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
755 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
757 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
758 #define NOP 0x08000240 /* nop */
759 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
760 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
761 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
763 #ifndef R19_STUBS
764 #define R19_STUBS 1
765 #endif
767 #if R19_STUBS
768 #define LDW_R1_DLT LDW_R1_R19
769 #else
770 #define LDW_R1_DLT LDW_R1_DP
771 #endif
773 static boolean
774 hppa_build_one_stub (gen_entry, in_arg)
775 struct bfd_hash_entry *gen_entry;
776 PTR in_arg;
778 struct elf32_hppa_stub_hash_entry *stub_entry;
779 struct bfd_link_info *info;
780 struct elf32_hppa_link_hash_table *htab;
781 asection *stub_sec;
782 bfd *stub_bfd;
783 bfd_byte *loc;
784 bfd_vma sym_value;
785 bfd_vma insn;
786 bfd_vma off;
787 int val;
788 int size;
790 /* Massage our args to the form they really have. */
791 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
792 info = (struct bfd_link_info *) in_arg;
794 htab = hppa_link_hash_table (info);
795 stub_sec = stub_entry->stub_sec;
797 /* Make a note of the offset within the stubs for this entry. */
798 stub_entry->stub_offset = stub_sec->_raw_size;
799 loc = stub_sec->contents + stub_entry->stub_offset;
801 stub_bfd = stub_sec->owner;
803 switch (stub_entry->stub_type)
805 case hppa_stub_long_branch:
806 /* Create the long branch. A long branch is formed with "ldil"
807 loading the upper bits of the target address into a register,
808 then branching with "be" which adds in the lower bits.
809 The "be" has its delay slot nullified. */
810 sym_value = (stub_entry->target_value
811 + stub_entry->target_section->output_offset
812 + stub_entry->target_section->output_section->vma);
814 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
815 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
816 bfd_put_32 (stub_bfd, insn, loc);
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
819 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
820 bfd_put_32 (stub_bfd, insn, loc + 4);
822 size = 8;
823 break;
825 case hppa_stub_long_branch_shared:
826 /* Branches are relative. This is where we are going to. */
827 sym_value = (stub_entry->target_value
828 + stub_entry->target_section->output_offset
829 + stub_entry->target_section->output_section->vma);
831 /* And this is where we are coming from, more or less. */
832 sym_value -= (stub_entry->stub_offset
833 + stub_sec->output_offset
834 + stub_sec->output_section->vma);
836 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
837 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
838 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
839 bfd_put_32 (stub_bfd, insn, loc + 4);
841 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
842 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
843 bfd_put_32 (stub_bfd, insn, loc + 8);
844 size = 12;
845 break;
847 case hppa_stub_import:
848 case hppa_stub_import_shared:
849 off = stub_entry->h->elf.plt.offset;
850 if (off >= (bfd_vma) -2)
851 abort ();
853 off &= ~ (bfd_vma) 1;
854 sym_value = (off
855 + htab->splt->output_offset
856 + htab->splt->output_section->vma
857 - elf_gp (htab->splt->output_section->owner));
859 insn = ADDIL_DP;
860 #if R19_STUBS
861 if (stub_entry->stub_type == hppa_stub_import_shared)
862 insn = ADDIL_R19;
863 #endif
864 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
865 insn = hppa_rebuild_insn ((int) insn, val, 21);
866 bfd_put_32 (stub_bfd, insn, loc);
868 /* It is critical to use lrsel/rrsel here because we are using
869 two different offsets (+0 and +4) from sym_value. If we use
870 lsel/rsel then with unfortunate sym_values we will round
871 sym_value+4 up to the next 2k block leading to a mis-match
872 between the lsel and rsel value. */
873 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
874 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
875 bfd_put_32 (stub_bfd, insn, loc + 4);
877 if (htab->multi_subspace)
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 8);
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
886 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
888 size = 28;
890 else
892 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
893 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
894 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
895 bfd_put_32 (stub_bfd, insn, loc + 12);
897 size = 16;
900 if (!info->shared
901 && stub_entry->h != NULL
902 && stub_entry->h->pic_call)
904 /* Build the .plt entry needed to call a PIC function from
905 statically linked code. We don't need any relocs. */
906 bfd *dynobj;
907 struct elf32_hppa_link_hash_entry *eh;
908 bfd_vma value;
910 dynobj = htab->elf.dynobj;
911 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
913 if (eh->elf.root.type != bfd_link_hash_defined
914 && eh->elf.root.type != bfd_link_hash_defweak)
915 abort ();
917 value = (eh->elf.root.u.def.value
918 + eh->elf.root.u.def.section->output_offset
919 + eh->elf.root.u.def.section->output_section->vma);
921 /* Fill in the entry in the procedure linkage table.
923 The format of a plt entry is
924 <funcaddr>
925 <__gp>. */
927 bfd_put_32 (htab->splt->owner, value,
928 htab->splt->contents + off);
929 value = elf_gp (htab->splt->output_section->owner);
930 bfd_put_32 (htab->splt->owner, value,
931 htab->splt->contents + off + 4);
933 break;
935 case hppa_stub_export:
936 /* Branches are relative. This is where we are going to. */
937 sym_value = (stub_entry->target_value
938 + stub_entry->target_section->output_offset
939 + stub_entry->target_section->output_section->vma);
941 /* And this is where we are coming from. */
942 sym_value -= (stub_entry->stub_offset
943 + stub_sec->output_offset
944 + stub_sec->output_section->vma);
946 if (sym_value - 8 + 0x40000 >= 0x80000)
948 (*_bfd_error_handler)
949 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
950 bfd_archive_filename (stub_entry->target_section->owner),
951 stub_sec->name,
952 (long) stub_entry->stub_offset,
953 stub_entry->root.string);
954 bfd_set_error (bfd_error_bad_value);
955 return false;
958 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
959 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
960 bfd_put_32 (stub_bfd, insn, loc);
962 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
963 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
964 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
965 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
966 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
968 /* Point the function symbol at the stub. */
969 stub_entry->h->elf.root.u.def.section = stub_sec;
970 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
972 size = 24;
973 break;
975 default:
976 BFD_FAIL ();
977 return false;
980 stub_sec->_raw_size += size;
981 return true;
984 #undef LDIL_R1
985 #undef BE_SR4_R1
986 #undef BL_R1
987 #undef ADDIL_R1
988 #undef DEPI_R1
989 #undef ADDIL_DP
990 #undef LDW_R1_R21
991 #undef LDW_R1_DLT
992 #undef LDW_R1_R19
993 #undef ADDIL_R19
994 #undef LDW_R1_DP
995 #undef LDSID_R21_R1
996 #undef MTSP_R1
997 #undef BE_SR0_R21
998 #undef STW_RP
999 #undef BV_R0_R21
1000 #undef BL_RP
1001 #undef NOP
1002 #undef LDW_RP
1003 #undef LDSID_RP_R1
1004 #undef BE_SR0_RP
1006 /* As above, but don't actually build the stub. Just bump offset so
1007 we know stub section sizes. */
1009 static boolean
1010 hppa_size_one_stub (gen_entry, in_arg)
1011 struct bfd_hash_entry *gen_entry;
1012 PTR in_arg;
1014 struct elf32_hppa_stub_hash_entry *stub_entry;
1015 struct elf32_hppa_link_hash_table *htab;
1016 int size;
1018 /* Massage our args to the form they really have. */
1019 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1020 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1022 if (stub_entry->stub_type == hppa_stub_long_branch)
1023 size = 8;
1024 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1025 size = 12;
1026 else if (stub_entry->stub_type == hppa_stub_export)
1027 size = 24;
1028 else /* hppa_stub_import or hppa_stub_import_shared. */
1030 if (htab->multi_subspace)
1031 size = 28;
1032 else
1033 size = 16;
1036 stub_entry->stub_sec->_raw_size += size;
1037 return true;
1040 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1041 Additionally we set the default architecture and machine. */
1043 static boolean
1044 elf32_hppa_object_p (abfd)
1045 bfd *abfd;
1047 Elf_Internal_Ehdr * i_ehdrp;
1048 unsigned int flags;
1050 i_ehdrp = elf_elfheader (abfd);
1051 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1053 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1054 return false;
1056 else
1058 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1059 return false;
1062 flags = i_ehdrp->e_flags;
1063 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1065 case EFA_PARISC_1_0:
1066 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1067 case EFA_PARISC_1_1:
1068 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1069 case EFA_PARISC_2_0:
1070 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1071 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1072 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1074 return true;
1077 /* Undo the generic ELF code's subtraction of section->vma from the
1078 value of each external symbol. */
1080 static boolean
1081 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1082 bfd *abfd ATTRIBUTE_UNUSED;
1083 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1084 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1085 const char **namep ATTRIBUTE_UNUSED;
1086 flagword *flagsp ATTRIBUTE_UNUSED;
1087 asection **secp;
1088 bfd_vma *valp;
1090 *valp += (*secp)->vma;
1091 return true;
1094 /* Create the .plt and .got sections, and set up our hash table
1095 short-cuts to various dynamic sections. */
1097 static boolean
1098 elf32_hppa_create_dynamic_sections (abfd, info)
1099 bfd *abfd;
1100 struct bfd_link_info *info;
1102 struct elf32_hppa_link_hash_table *htab;
1104 /* Don't try to create the .plt and .got twice. */
1105 htab = hppa_link_hash_table (info);
1106 if (htab->splt != NULL)
1107 return true;
1109 /* Call the generic code to do most of the work. */
1110 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1111 return false;
1113 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1114 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1116 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1117 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1118 if (htab->srelgot == NULL
1119 || ! bfd_set_section_flags (abfd, htab->srelgot,
1120 (SEC_ALLOC
1121 | SEC_LOAD
1122 | SEC_HAS_CONTENTS
1123 | SEC_IN_MEMORY
1124 | SEC_LINKER_CREATED
1125 | SEC_READONLY))
1126 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1127 return false;
1129 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1130 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1132 return true;
1135 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1137 static void
1138 elf32_hppa_copy_indirect_symbol (dir, ind)
1139 struct elf_link_hash_entry *dir, *ind;
1141 struct elf32_hppa_link_hash_entry *edir, *eind;
1143 edir = (struct elf32_hppa_link_hash_entry *) dir;
1144 eind = (struct elf32_hppa_link_hash_entry *) ind;
1146 if (eind->dyn_relocs != NULL)
1148 if (edir->dyn_relocs != NULL)
1150 struct elf32_hppa_dyn_reloc_entry **pp;
1151 struct elf32_hppa_dyn_reloc_entry *p;
1153 if (ind->root.type == bfd_link_hash_indirect)
1154 abort ();
1156 /* Add reloc counts against the weak sym to the strong sym
1157 list. Merge any entries against the same section. */
1158 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1160 struct elf32_hppa_dyn_reloc_entry *q;
1162 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1163 if (q->sec == p->sec)
1165 #if RELATIVE_DYNRELOCS
1166 q->relative_count += p->relative_count;
1167 #endif
1168 q->count += p->count;
1169 *pp = p->next;
1170 break;
1172 if (q == NULL)
1173 pp = &p->next;
1175 *pp = edir->dyn_relocs;
1178 edir->dyn_relocs = eind->dyn_relocs;
1179 eind->dyn_relocs = NULL;
1182 _bfd_elf_link_hash_copy_indirect (dir, ind);
1185 /* Look through the relocs for a section during the first phase, and
1186 calculate needed space in the global offset table, procedure linkage
1187 table, and dynamic reloc sections. At this point we haven't
1188 necessarily read all the input files. */
1190 static boolean
1191 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1192 bfd *abfd;
1193 struct bfd_link_info *info;
1194 asection *sec;
1195 const Elf_Internal_Rela *relocs;
1197 Elf_Internal_Shdr *symtab_hdr;
1198 struct elf_link_hash_entry **sym_hashes;
1199 const Elf_Internal_Rela *rel;
1200 const Elf_Internal_Rela *rel_end;
1201 struct elf32_hppa_link_hash_table *htab;
1202 asection *sreloc;
1203 asection *stubreloc;
1205 if (info->relocateable)
1206 return true;
1208 htab = hppa_link_hash_table (info);
1209 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1210 sym_hashes = elf_sym_hashes (abfd);
1211 sreloc = NULL;
1212 stubreloc = NULL;
1214 rel_end = relocs + sec->reloc_count;
1215 for (rel = relocs; rel < rel_end; rel++)
1217 enum {
1218 NEED_GOT = 1,
1219 NEED_PLT = 2,
1220 NEED_DYNREL = 4,
1221 PLT_PLABEL = 8
1224 unsigned int r_symndx, r_type;
1225 struct elf32_hppa_link_hash_entry *h;
1226 int need_entry;
1228 r_symndx = ELF32_R_SYM (rel->r_info);
1230 if (r_symndx < symtab_hdr->sh_info)
1231 h = NULL;
1232 else
1233 h = ((struct elf32_hppa_link_hash_entry *)
1234 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1236 r_type = ELF32_R_TYPE (rel->r_info);
1238 switch (r_type)
1240 case R_PARISC_DLTIND14F:
1241 case R_PARISC_DLTIND14R:
1242 case R_PARISC_DLTIND21L:
1243 /* This symbol requires a global offset table entry. */
1244 need_entry = NEED_GOT;
1246 /* Mark this section as containing PIC code. */
1247 sec->flags |= SEC_HAS_GOT_REF;
1248 break;
1250 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1251 case R_PARISC_PLABEL21L:
1252 case R_PARISC_PLABEL32:
1253 /* If the addend is non-zero, we break badly. */
1254 if (rel->r_addend != 0)
1255 abort ();
1257 /* If we are creating a shared library, then we need to
1258 create a PLT entry for all PLABELs, because PLABELs with
1259 local symbols may be passed via a pointer to another
1260 object. Additionally, output a dynamic relocation
1261 pointing to the PLT entry.
1262 For executables, the original 32-bit ABI allowed two
1263 different styles of PLABELs (function pointers): For
1264 global functions, the PLABEL word points into the .plt
1265 two bytes past a (function address, gp) pair, and for
1266 local functions the PLABEL points directly at the
1267 function. The magic +2 for the first type allows us to
1268 differentiate between the two. As you can imagine, this
1269 is a real pain when it comes to generating code to call
1270 functions indirectly or to compare function pointers.
1271 We avoid the mess by always pointing a PLABEL into the
1272 .plt, even for local functions. */
1273 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1274 break;
1276 case R_PARISC_PCREL12F:
1277 htab->has_12bit_branch = 1;
1278 /* Fall thru. */
1279 case R_PARISC_PCREL17C:
1280 case R_PARISC_PCREL17F:
1281 htab->has_17bit_branch = 1;
1282 /* Fall thru. */
1283 case R_PARISC_PCREL22F:
1284 /* Function calls might need to go through the .plt, and
1285 might require long branch stubs. */
1286 if (h == NULL)
1288 /* We know local syms won't need a .plt entry, and if
1289 they need a long branch stub we can't guarantee that
1290 we can reach the stub. So just flag an error later
1291 if we're doing a shared link and find we need a long
1292 branch stub. */
1293 continue;
1295 else
1297 /* Global symbols will need a .plt entry if they remain
1298 global, and in most cases won't need a long branch
1299 stub. Unfortunately, we have to cater for the case
1300 where a symbol is forced local by versioning, or due
1301 to symbolic linking, and we lose the .plt entry. */
1302 need_entry = NEED_PLT;
1303 if (h->elf.type == STT_PARISC_MILLI)
1304 need_entry = 0;
1306 break;
1308 case R_PARISC_SEGBASE: /* Used to set segment base. */
1309 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1310 case R_PARISC_PCREL14F: /* PC relative load/store. */
1311 case R_PARISC_PCREL14R:
1312 case R_PARISC_PCREL17R: /* External branches. */
1313 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1314 /* We don't need to propagate the relocation if linking a
1315 shared object since these are section relative. */
1316 continue;
1318 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1319 case R_PARISC_DPREL14R:
1320 case R_PARISC_DPREL21L:
1321 if (info->shared)
1323 (*_bfd_error_handler)
1324 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1325 bfd_archive_filename (abfd),
1326 elf_hppa_howto_table[r_type].name);
1327 bfd_set_error (bfd_error_bad_value);
1328 return false;
1330 /* Fall through. */
1332 case R_PARISC_DIR17F: /* Used for external branches. */
1333 case R_PARISC_DIR17R:
1334 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1335 case R_PARISC_DIR14R:
1336 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1337 #if 1
1338 /* Help debug shared library creation. Any of the above
1339 relocs can be used in shared libs, but they may cause
1340 pages to become unshared. */
1341 if (info->shared)
1343 (*_bfd_error_handler)
1344 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1345 bfd_archive_filename (abfd),
1346 elf_hppa_howto_table[r_type].name);
1348 /* Fall through. */
1349 #endif
1351 case R_PARISC_DIR32: /* .word relocs. */
1352 /* We may want to output a dynamic relocation later. */
1353 need_entry = NEED_DYNREL;
1354 break;
1356 /* This relocation describes the C++ object vtable hierarchy.
1357 Reconstruct it for later use during GC. */
1358 case R_PARISC_GNU_VTINHERIT:
1359 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1360 &h->elf, rel->r_offset))
1361 return false;
1362 continue;
1364 /* This relocation describes which C++ vtable entries are actually
1365 used. Record for later use during GC. */
1366 case R_PARISC_GNU_VTENTRY:
1367 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1368 &h->elf, rel->r_addend))
1369 return false;
1370 continue;
1372 default:
1373 continue;
1376 /* Now carry out our orders. */
1377 if (need_entry & NEED_GOT)
1379 /* Allocate space for a GOT entry, as well as a dynamic
1380 relocation for this entry. */
1381 if (htab->sgot == NULL)
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1385 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1386 return false;
1389 if (h != NULL)
1391 h->elf.got.refcount += 1;
1393 else
1395 bfd_signed_vma *local_got_refcounts;
1397 /* This is a global offset table entry for a local symbol. */
1398 local_got_refcounts = elf_local_got_refcounts (abfd);
1399 if (local_got_refcounts == NULL)
1401 bfd_size_type size;
1403 /* Allocate space for local got offsets and local
1404 plt offsets. Done this way to save polluting
1405 elf_obj_tdata with another target specific
1406 pointer. */
1407 size = symtab_hdr->sh_info;
1408 size *= 2 * sizeof (bfd_signed_vma);
1409 local_got_refcounts = ((bfd_signed_vma *)
1410 bfd_zalloc (abfd, size));
1411 if (local_got_refcounts == NULL)
1412 return false;
1413 elf_local_got_refcounts (abfd) = local_got_refcounts;
1415 local_got_refcounts[r_symndx] += 1;
1419 if (need_entry & NEED_PLT)
1421 /* If we are creating a shared library, and this is a reloc
1422 against a weak symbol or a global symbol in a dynamic
1423 object, then we will be creating an import stub and a
1424 .plt entry for the symbol. Similarly, on a normal link
1425 to symbols defined in a dynamic object we'll need the
1426 import stub and a .plt entry. We don't know yet whether
1427 the symbol is defined or not, so make an entry anyway and
1428 clean up later in adjust_dynamic_symbol. */
1429 if ((sec->flags & SEC_ALLOC) != 0)
1431 if (h != NULL)
1433 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1434 h->elf.plt.refcount += 1;
1436 /* If this .plt entry is for a plabel, mark it so
1437 that adjust_dynamic_symbol will keep the entry
1438 even if it appears to be local. */
1439 if (need_entry & PLT_PLABEL)
1440 h->plabel = 1;
1442 else if (need_entry & PLT_PLABEL)
1444 bfd_signed_vma *local_got_refcounts;
1445 bfd_signed_vma *local_plt_refcounts;
1447 local_got_refcounts = elf_local_got_refcounts (abfd);
1448 if (local_got_refcounts == NULL)
1450 bfd_size_type size;
1452 /* Allocate space for local got offsets and local
1453 plt offsets. */
1454 size = symtab_hdr->sh_info;
1455 size *= 2 * sizeof (bfd_signed_vma);
1456 local_got_refcounts = ((bfd_signed_vma *)
1457 bfd_zalloc (abfd, size));
1458 if (local_got_refcounts == NULL)
1459 return false;
1460 elf_local_got_refcounts (abfd) = local_got_refcounts;
1462 local_plt_refcounts = (local_got_refcounts
1463 + symtab_hdr->sh_info);
1464 local_plt_refcounts[r_symndx] += 1;
1469 if (need_entry & NEED_DYNREL)
1471 /* Flag this symbol as having a non-got, non-plt reference
1472 so that we generate copy relocs if it turns out to be
1473 dynamic. */
1474 if (h != NULL && !info->shared)
1475 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1477 /* If we are creating a shared library then we need to copy
1478 the reloc into the shared library. However, if we are
1479 linking with -Bsymbolic, we need only copy absolute
1480 relocs or relocs against symbols that are not defined in
1481 an object we are including in the link. PC- or DP- or
1482 DLT-relative relocs against any local sym or global sym
1483 with DEF_REGULAR set, can be discarded. At this point we
1484 have not seen all the input files, so it is possible that
1485 DEF_REGULAR is not set now but will be set later (it is
1486 never cleared). We account for that possibility below by
1487 storing information in the dyn_relocs field of the
1488 hash table entry.
1490 A similar situation to the -Bsymbolic case occurs when
1491 creating shared libraries and symbol visibility changes
1492 render the symbol local.
1494 As it turns out, all the relocs we will be creating here
1495 are absolute, so we cannot remove them on -Bsymbolic
1496 links or visibility changes anyway. A STUB_REL reloc
1497 is absolute too, as in that case it is the reloc in the
1498 stub we will be creating, rather than copying the PCREL
1499 reloc in the branch.
1501 If on the other hand, we are creating an executable, we
1502 may need to keep relocations for symbols satisfied by a
1503 dynamic library if we manage to avoid copy relocs for the
1504 symbol. */
1505 if ((info->shared
1506 && (sec->flags & SEC_ALLOC) != 0
1507 && (IS_ABSOLUTE_RELOC (r_type)
1508 || (h != NULL
1509 && (!info->symbolic
1510 || h->elf.root.type == bfd_link_hash_defweak
1511 || (h->elf.elf_link_hash_flags
1512 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1513 || (!info->shared
1514 && (sec->flags & SEC_ALLOC) != 0
1515 && h != NULL
1516 && (h->elf.root.type == bfd_link_hash_defweak
1517 || (h->elf.elf_link_hash_flags
1518 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1520 struct elf32_hppa_dyn_reloc_entry *p;
1521 struct elf32_hppa_dyn_reloc_entry **head;
1523 /* Create a reloc section in dynobj and make room for
1524 this reloc. */
1525 if (sreloc == NULL)
1527 char *name;
1528 bfd *dynobj;
1530 name = (bfd_elf_string_from_elf_section
1531 (abfd,
1532 elf_elfheader (abfd)->e_shstrndx,
1533 elf_section_data (sec)->rel_hdr.sh_name));
1534 if (name == NULL)
1536 (*_bfd_error_handler)
1537 (_("Could not find relocation section for %s"),
1538 sec->name);
1539 bfd_set_error (bfd_error_bad_value);
1540 return false;
1543 if (htab->elf.dynobj == NULL)
1544 htab->elf.dynobj = abfd;
1546 dynobj = htab->elf.dynobj;
1547 sreloc = bfd_get_section_by_name (dynobj, name);
1548 if (sreloc == NULL)
1550 flagword flags;
1552 sreloc = bfd_make_section (dynobj, name);
1553 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1554 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1555 if ((sec->flags & SEC_ALLOC) != 0)
1556 flags |= SEC_ALLOC | SEC_LOAD;
1557 if (sreloc == NULL
1558 || !bfd_set_section_flags (dynobj, sreloc, flags)
1559 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1560 return false;
1563 elf_section_data (sec)->sreloc = sreloc;
1566 /* If this is a global symbol, we count the number of
1567 relocations we need for this symbol. */
1568 if (h != NULL)
1570 head = &h->dyn_relocs;
1572 else
1574 /* Track dynamic relocs needed for local syms too.
1575 We really need local syms available to do this
1576 easily. Oh well. */
1578 asection *s;
1579 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1580 sec, r_symndx);
1581 if (s == NULL)
1582 return false;
1584 head = ((struct elf32_hppa_dyn_reloc_entry **)
1585 &elf_section_data (s)->local_dynrel);
1588 p = *head;
1589 if (p == NULL || p->sec != sec)
1591 p = ((struct elf32_hppa_dyn_reloc_entry *)
1592 bfd_alloc (htab->elf.dynobj,
1593 (bfd_size_type) sizeof *p));
1594 if (p == NULL)
1595 return false;
1596 p->next = *head;
1597 *head = p;
1598 p->sec = sec;
1599 p->count = 0;
1600 #if RELATIVE_DYNRELOCS
1601 p->relative_count = 0;
1602 #endif
1605 p->count += 1;
1606 #if RELATIVE_DYNRELOCS
1607 if (!IS_ABSOLUTE_RELOC (rtype))
1608 p->relative_count += 1;
1609 #endif
1614 return true;
1617 /* Return the section that should be marked against garbage collection
1618 for a given relocation. */
1620 static asection *
1621 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1622 bfd *abfd;
1623 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1624 Elf_Internal_Rela *rel;
1625 struct elf_link_hash_entry *h;
1626 Elf_Internal_Sym *sym;
1628 if (h != NULL)
1630 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1632 case R_PARISC_GNU_VTINHERIT:
1633 case R_PARISC_GNU_VTENTRY:
1634 break;
1636 default:
1637 switch (h->root.type)
1639 case bfd_link_hash_defined:
1640 case bfd_link_hash_defweak:
1641 return h->root.u.def.section;
1643 case bfd_link_hash_common:
1644 return h->root.u.c.p->section;
1646 default:
1647 break;
1651 else
1653 if (!(elf_bad_symtab (abfd)
1654 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1655 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1656 && sym->st_shndx != SHN_COMMON))
1658 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1662 return NULL;
1665 /* Update the got and plt entry reference counts for the section being
1666 removed. */
1668 static boolean
1669 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1670 bfd *abfd;
1671 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1672 asection *sec;
1673 const Elf_Internal_Rela *relocs;
1675 Elf_Internal_Shdr *symtab_hdr;
1676 struct elf_link_hash_entry **sym_hashes;
1677 bfd_signed_vma *local_got_refcounts;
1678 bfd_signed_vma *local_plt_refcounts;
1679 const Elf_Internal_Rela *rel, *relend;
1680 unsigned long r_symndx;
1681 struct elf_link_hash_entry *h;
1682 struct elf32_hppa_link_hash_table *htab;
1683 bfd *dynobj;
1685 elf_section_data (sec)->local_dynrel = NULL;
1687 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1688 sym_hashes = elf_sym_hashes (abfd);
1689 local_got_refcounts = elf_local_got_refcounts (abfd);
1690 local_plt_refcounts = local_got_refcounts;
1691 if (local_plt_refcounts != NULL)
1692 local_plt_refcounts += symtab_hdr->sh_info;
1693 htab = hppa_link_hash_table (info);
1694 dynobj = htab->elf.dynobj;
1695 if (dynobj == NULL)
1696 return true;
1698 relend = relocs + sec->reloc_count;
1699 for (rel = relocs; rel < relend; rel++)
1700 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1702 case R_PARISC_DLTIND14F:
1703 case R_PARISC_DLTIND14R:
1704 case R_PARISC_DLTIND21L:
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1708 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1709 if (h->got.refcount > 0)
1710 h->got.refcount -= 1;
1712 else if (local_got_refcounts != NULL)
1714 if (local_got_refcounts[r_symndx] > 0)
1715 local_got_refcounts[r_symndx] -= 1;
1717 break;
1719 case R_PARISC_PCREL12F:
1720 case R_PARISC_PCREL17C:
1721 case R_PARISC_PCREL17F:
1722 case R_PARISC_PCREL22F:
1723 r_symndx = ELF32_R_SYM (rel->r_info);
1724 if (r_symndx >= symtab_hdr->sh_info)
1726 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1727 if (h->plt.refcount > 0)
1728 h->plt.refcount -= 1;
1730 break;
1732 case R_PARISC_PLABEL14R:
1733 case R_PARISC_PLABEL21L:
1734 case R_PARISC_PLABEL32:
1735 r_symndx = ELF32_R_SYM (rel->r_info);
1736 if (r_symndx >= symtab_hdr->sh_info)
1738 struct elf32_hppa_link_hash_entry *eh;
1739 struct elf32_hppa_dyn_reloc_entry **pp;
1740 struct elf32_hppa_dyn_reloc_entry *p;
1742 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1744 if (h->plt.refcount > 0)
1745 h->plt.refcount -= 1;
1747 eh = (struct elf32_hppa_link_hash_entry *) h;
1749 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1750 if (p->sec == sec)
1752 #if RELATIVE_DYNRELOCS
1753 if (!IS_ABSOLUTE_RELOC (rtype))
1754 p->relative_count -= 1;
1755 #endif
1756 p->count -= 1;
1757 if (p->count == 0)
1758 *pp = p->next;
1759 break;
1762 else if (local_plt_refcounts != NULL)
1764 if (local_plt_refcounts[r_symndx] > 0)
1765 local_plt_refcounts[r_symndx] -= 1;
1767 break;
1769 case R_PARISC_DIR32:
1770 r_symndx = ELF32_R_SYM (rel->r_info);
1771 if (r_symndx >= symtab_hdr->sh_info)
1773 struct elf32_hppa_link_hash_entry *eh;
1774 struct elf32_hppa_dyn_reloc_entry **pp;
1775 struct elf32_hppa_dyn_reloc_entry *p;
1777 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1779 eh = (struct elf32_hppa_link_hash_entry *) h;
1781 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1782 if (p->sec == sec)
1784 #if RELATIVE_DYNRELOCS
1785 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1786 p->relative_count -= 1;
1787 #endif
1788 p->count -= 1;
1789 if (p->count == 0)
1790 *pp = p->next;
1791 break;
1794 break;
1796 default:
1797 break;
1800 return true;
1803 /* Our own version of hide_symbol, so that we can keep plt entries for
1804 plabels. */
1806 static void
1807 elf32_hppa_hide_symbol (info, h)
1808 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1809 struct elf_link_hash_entry *h;
1811 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1812 h->dynindx = -1;
1813 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1815 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1816 h->plt.offset = (bfd_vma) -1;
1820 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1821 will be called from elflink.h. If elflink.h doesn't call our
1822 finish_dynamic_symbol routine, we'll need to do something about
1823 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1824 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1825 ((DYN) \
1826 && ((INFO)->shared \
1827 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1828 && ((H)->dynindx != -1 \
1829 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1831 /* Adjust a symbol defined by a dynamic object and referenced by a
1832 regular object. The current definition is in some section of the
1833 dynamic object, but we're not including those sections. We have to
1834 change the definition to something the rest of the link can
1835 understand. */
1837 static boolean
1838 elf32_hppa_adjust_dynamic_symbol (info, h)
1839 struct bfd_link_info *info;
1840 struct elf_link_hash_entry *h;
1842 struct elf32_hppa_link_hash_table *htab;
1843 struct elf32_hppa_link_hash_entry *eh;
1844 struct elf32_hppa_dyn_reloc_entry *p;
1845 asection *s;
1846 unsigned int power_of_two;
1848 /* If this is a function, put it in the procedure linkage table. We
1849 will fill in the contents of the procedure linkage table later,
1850 when we know the address of the .got section. */
1851 if (h->type == STT_FUNC
1852 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1854 if (!info->shared
1855 && h->plt.refcount > 0
1856 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1857 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1859 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1862 if (h->plt.refcount <= 0
1863 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1864 && h->root.type != bfd_link_hash_defweak
1865 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1866 && (!info->shared || info->symbolic)))
1868 /* The .plt entry is not needed when:
1869 a) Garbage collection has removed all references to the
1870 symbol, or
1871 b) We know for certain the symbol is defined in this
1872 object, and it's not a weak definition, nor is the symbol
1873 used by a plabel relocation. Either this object is the
1874 application or we are doing a shared symbolic link. */
1876 /* As a special sop to the hppa ABI, we keep a .plt entry
1877 for functions in sections containing PIC code. */
1878 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1879 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1880 else
1882 h->plt.offset = (bfd_vma) -1;
1883 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1887 return true;
1889 else
1890 h->plt.offset = (bfd_vma) -1;
1892 /* If this is a weak symbol, and there is a real definition, the
1893 processor independent code will have arranged for us to see the
1894 real definition first, and we can just use the same value. */
1895 if (h->weakdef != NULL)
1897 if (h->weakdef->root.type != bfd_link_hash_defined
1898 && h->weakdef->root.type != bfd_link_hash_defweak)
1899 abort ();
1900 h->root.u.def.section = h->weakdef->root.u.def.section;
1901 h->root.u.def.value = h->weakdef->root.u.def.value;
1902 return true;
1905 /* This is a reference to a symbol defined by a dynamic object which
1906 is not a function. */
1908 /* If we are creating a shared library, we must presume that the
1909 only references to the symbol are via the global offset table.
1910 For such cases we need not do anything here; the relocations will
1911 be handled correctly by relocate_section. */
1912 if (info->shared)
1913 return true;
1915 /* If there are no references to this symbol that do not use the
1916 GOT, we don't need to generate a copy reloc. */
1917 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1918 return true;
1920 eh = (struct elf32_hppa_link_hash_entry *) h;
1921 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1923 s = p->sec->output_section;
1924 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1925 break;
1928 /* If we didn't find any dynamic relocs in read-only sections, then
1929 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1930 if (p == NULL)
1932 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1933 return true;
1936 /* We must allocate the symbol in our .dynbss section, which will
1937 become part of the .bss section of the executable. There will be
1938 an entry for this symbol in the .dynsym section. The dynamic
1939 object will contain position independent code, so all references
1940 from the dynamic object to this symbol will go through the global
1941 offset table. The dynamic linker will use the .dynsym entry to
1942 determine the address it must put in the global offset table, so
1943 both the dynamic object and the regular object will refer to the
1944 same memory location for the variable. */
1946 htab = hppa_link_hash_table (info);
1948 /* We must generate a COPY reloc to tell the dynamic linker to
1949 copy the initial value out of the dynamic object and into the
1950 runtime process image. */
1951 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1953 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1954 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1957 /* We need to figure out the alignment required for this symbol. I
1958 have no idea how other ELF linkers handle this. */
1960 power_of_two = bfd_log2 (h->size);
1961 if (power_of_two > 3)
1962 power_of_two = 3;
1964 /* Apply the required alignment. */
1965 s = htab->sdynbss;
1966 s->_raw_size = BFD_ALIGN (s->_raw_size,
1967 (bfd_size_type) (1 << power_of_two));
1968 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1970 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1971 return false;
1974 /* Define the symbol as being at this point in the section. */
1975 h->root.u.def.section = s;
1976 h->root.u.def.value = s->_raw_size;
1978 /* Increment the section size to make room for the symbol. */
1979 s->_raw_size += h->size;
1981 return true;
1984 /* Called via elf_link_hash_traverse to create .plt entries for an
1985 application that uses statically linked PIC functions. Similar to
1986 the first part of elf32_hppa_adjust_dynamic_symbol. */
1988 static boolean
1989 mark_PIC_calls (h, inf)
1990 struct elf_link_hash_entry *h;
1991 PTR inf ATTRIBUTE_UNUSED;
1993 if (! (h->plt.refcount > 0
1994 && (h->root.type == bfd_link_hash_defined
1995 || h->root.type == bfd_link_hash_defweak)
1996 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1998 h->plt.offset = (bfd_vma) -1;
1999 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2000 return true;
2003 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2004 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2005 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2007 return true;
2010 /* Allocate space in the .plt for entries that won't have relocations.
2011 ie. pic_call and plabel entries. */
2013 static boolean
2014 allocate_plt_static (h, inf)
2015 struct elf_link_hash_entry *h;
2016 PTR inf;
2018 struct bfd_link_info *info;
2019 struct elf32_hppa_link_hash_table *htab;
2020 asection *s;
2022 if (h->root.type == bfd_link_hash_indirect
2023 || h->root.type == bfd_link_hash_warning)
2024 return true;
2026 info = (struct bfd_link_info *) inf;
2027 htab = hppa_link_hash_table (info);
2028 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2030 /* Make an entry in the .plt section for non-pic code that is
2031 calling pic code. */
2032 s = htab->splt;
2033 h->plt.offset = s->_raw_size;
2034 s->_raw_size += PLT_ENTRY_SIZE;
2036 else if (htab->elf.dynamic_sections_created
2037 && h->plt.refcount > 0)
2039 /* Make sure this symbol is output as a dynamic symbol.
2040 Undefined weak syms won't yet be marked as dynamic. */
2041 if (h->dynindx == -1
2042 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2043 && h->type != STT_PARISC_MILLI)
2045 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2046 return false;
2049 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2051 /* Allocate these later. */
2053 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2055 /* Make an entry in the .plt section for plabel references
2056 that won't have a .plt entry for other reasons. */
2057 s = htab->splt;
2058 h->plt.offset = s->_raw_size;
2059 s->_raw_size += PLT_ENTRY_SIZE;
2061 else
2063 /* No .plt entry needed. */
2064 h->plt.offset = (bfd_vma) -1;
2065 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2068 else
2070 h->plt.offset = (bfd_vma) -1;
2071 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2074 return true;
2077 /* Allocate space in .plt, .got and associated reloc sections for
2078 global syms. */
2080 static boolean
2081 allocate_dynrelocs (h, inf)
2082 struct elf_link_hash_entry *h;
2083 PTR inf;
2085 struct bfd_link_info *info;
2086 struct elf32_hppa_link_hash_table *htab;
2087 asection *s;
2088 struct elf32_hppa_link_hash_entry *eh;
2089 struct elf32_hppa_dyn_reloc_entry *p;
2091 if (h->root.type == bfd_link_hash_indirect
2092 || h->root.type == bfd_link_hash_warning)
2093 return true;
2095 info = (struct bfd_link_info *) inf;
2096 htab = hppa_link_hash_table (info);
2097 if (htab->elf.dynamic_sections_created
2098 && h->plt.offset != (bfd_vma) -1
2099 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2100 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2102 /* Make an entry in the .plt section. */
2103 s = htab->splt;
2104 h->plt.offset = s->_raw_size;
2105 s->_raw_size += PLT_ENTRY_SIZE;
2107 /* We also need to make an entry in the .rela.plt section. */
2108 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2109 htab->need_plt_stub = 1;
2112 if (h->got.refcount > 0)
2114 /* Make sure this symbol is output as a dynamic symbol.
2115 Undefined weak syms won't yet be marked as dynamic. */
2116 if (h->dynindx == -1
2117 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2118 && h->type != STT_PARISC_MILLI)
2120 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2121 return false;
2124 s = htab->sgot;
2125 h->got.offset = s->_raw_size;
2126 s->_raw_size += GOT_ENTRY_SIZE;
2127 if (htab->elf.dynamic_sections_created
2128 && (info->shared
2129 || (h->dynindx != -1
2130 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2132 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2135 else
2136 h->got.offset = (bfd_vma) -1;
2138 eh = (struct elf32_hppa_link_hash_entry *) h;
2139 if (eh->dyn_relocs == NULL)
2140 return true;
2142 /* If this is a -Bsymbolic shared link, then we need to discard all
2143 space allocated for dynamic pc-relative relocs against symbols
2144 defined in a regular object. For the normal shared case, discard
2145 space for relocs that have become local due to symbol visibility
2146 changes. */
2147 if (info->shared)
2149 #if RELATIVE_DYNRELOCS
2150 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2151 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2152 || info->symbolic))
2154 struct elf32_hppa_dyn_reloc_entry **pp;
2156 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2158 p->count -= p->relative_count;
2159 p->relative_count = 0;
2160 if (p->count == 0)
2161 *pp = p->next;
2162 else
2163 pp = &p->next;
2166 #endif
2168 else
2170 /* For the non-shared case, discard space for relocs against
2171 symbols which turn out to need copy relocs or are not
2172 dynamic. */
2173 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2174 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2176 || (htab->elf.dynamic_sections_created
2177 && (h->root.type == bfd_link_hash_undefweak
2178 || h->root.type == bfd_link_hash_undefined))))
2180 /* Make sure this symbol is output as a dynamic symbol.
2181 Undefined weak syms won't yet be marked as dynamic. */
2182 if (h->dynindx == -1
2183 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2184 && h->type != STT_PARISC_MILLI)
2186 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2187 return false;
2190 /* If that succeeded, we know we'll be keeping all the
2191 relocs. */
2192 if (h->dynindx != -1)
2193 goto keep;
2196 eh->dyn_relocs = NULL;
2197 return true;
2199 keep: ;
2202 /* Finally, allocate space. */
2203 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2205 asection *sreloc = elf_section_data (p->sec)->sreloc;
2206 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2209 return true;
2212 /* This function is called via elf_link_hash_traverse to force
2213 millicode symbols local so they do not end up as globals in the
2214 dynamic symbol table. We ought to be able to do this in
2215 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2216 for all dynamic symbols. Arguably, this is a bug in
2217 elf_adjust_dynamic_symbol. */
2219 static boolean
2220 clobber_millicode_symbols (h, info)
2221 struct elf_link_hash_entry *h;
2222 struct bfd_link_info *info;
2224 /* We only want to remove these from the dynamic symbol table.
2225 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2226 if (h->type == STT_PARISC_MILLI)
2228 struct elf32_hppa_link_hash_table *htab;
2229 unsigned short oldflags = h->elf_link_hash_flags;
2231 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2232 elf32_hppa_hide_symbol (info, h);
2233 htab = hppa_link_hash_table (info);
2234 _bfd_elf_strtab_delref (htab->elf.dynstr, h->dynstr_index);
2235 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2236 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2238 return true;
2241 /* Find any dynamic relocs that apply to read-only sections. */
2243 static boolean
2244 readonly_dynrelocs (h, inf)
2245 struct elf_link_hash_entry *h;
2246 PTR inf;
2248 struct elf32_hppa_link_hash_entry *eh;
2249 struct elf32_hppa_dyn_reloc_entry *p;
2251 eh = (struct elf32_hppa_link_hash_entry *) h;
2252 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2254 asection *s = p->sec->output_section;
2256 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2258 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2260 info->flags |= DF_TEXTREL;
2262 /* Not an error, just cut short the traversal. */
2263 return false;
2266 return true;
2269 /* Set the sizes of the dynamic sections. */
2271 static boolean
2272 elf32_hppa_size_dynamic_sections (output_bfd, info)
2273 bfd *output_bfd ATTRIBUTE_UNUSED;
2274 struct bfd_link_info *info;
2276 struct elf32_hppa_link_hash_table *htab;
2277 bfd *dynobj;
2278 bfd *ibfd;
2279 asection *s;
2280 boolean relocs;
2282 htab = hppa_link_hash_table (info);
2283 dynobj = htab->elf.dynobj;
2284 if (dynobj == NULL)
2285 abort ();
2287 if (htab->elf.dynamic_sections_created)
2289 /* Set the contents of the .interp section to the interpreter. */
2290 if (! info->shared)
2292 s = bfd_get_section_by_name (dynobj, ".interp");
2293 if (s == NULL)
2294 abort ();
2295 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2299 /* Force millicode symbols local. */
2300 elf_link_hash_traverse (&htab->elf,
2301 clobber_millicode_symbols,
2302 info);
2304 else
2306 /* Run through the function symbols, looking for any that are
2307 PIC, and mark them as needing .plt entries so that %r19 will
2308 be set up. */
2309 if (! info->shared)
2310 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2313 /* Set up .got and .plt offsets for local syms, and space for local
2314 dynamic relocs. */
2315 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2317 bfd_signed_vma *local_got;
2318 bfd_signed_vma *end_local_got;
2319 bfd_signed_vma *local_plt;
2320 bfd_signed_vma *end_local_plt;
2321 bfd_size_type locsymcount;
2322 Elf_Internal_Shdr *symtab_hdr;
2323 asection *srel;
2325 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2326 continue;
2328 for (s = ibfd->sections; s != NULL; s = s->next)
2330 struct elf32_hppa_dyn_reloc_entry *p;
2332 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2333 elf_section_data (s)->local_dynrel);
2334 p != NULL;
2335 p = p->next)
2337 if (!bfd_is_abs_section (p->sec)
2338 && bfd_is_abs_section (p->sec->output_section))
2340 /* Input section has been discarded, either because
2341 it is a copy of a linkonce section or due to
2342 linker script /DISCARD/, so we'll be discarding
2343 the relocs too. */
2345 else
2347 srel = elf_section_data (p->sec)->sreloc;
2348 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2353 local_got = elf_local_got_refcounts (ibfd);
2354 if (!local_got)
2355 continue;
2357 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2358 locsymcount = symtab_hdr->sh_info;
2359 end_local_got = local_got + locsymcount;
2360 s = htab->sgot;
2361 srel = htab->srelgot;
2362 for (; local_got < end_local_got; ++local_got)
2364 if (*local_got > 0)
2366 *local_got = s->_raw_size;
2367 s->_raw_size += GOT_ENTRY_SIZE;
2368 if (info->shared)
2369 srel->_raw_size += sizeof (Elf32_External_Rela);
2371 else
2372 *local_got = (bfd_vma) -1;
2375 local_plt = end_local_got;
2376 end_local_plt = local_plt + locsymcount;
2377 if (! htab->elf.dynamic_sections_created)
2379 /* Won't be used, but be safe. */
2380 for (; local_plt < end_local_plt; ++local_plt)
2381 *local_plt = (bfd_vma) -1;
2383 else
2385 s = htab->splt;
2386 srel = htab->srelplt;
2387 for (; local_plt < end_local_plt; ++local_plt)
2389 if (*local_plt > 0)
2391 *local_plt = s->_raw_size;
2392 s->_raw_size += PLT_ENTRY_SIZE;
2393 if (info->shared)
2394 srel->_raw_size += sizeof (Elf32_External_Rela);
2396 else
2397 *local_plt = (bfd_vma) -1;
2402 /* Do all the .plt entries without relocs first. The dynamic linker
2403 uses the last .plt reloc to find the end of the .plt (and hence
2404 the start of the .got) for lazy linking. */
2405 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2407 /* Allocate global sym .plt and .got entries, and space for global
2408 sym dynamic relocs. */
2409 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2411 /* The check_relocs and adjust_dynamic_symbol entry points have
2412 determined the sizes of the various dynamic sections. Allocate
2413 memory for them. */
2414 relocs = false;
2415 for (s = dynobj->sections; s != NULL; s = s->next)
2417 if ((s->flags & SEC_LINKER_CREATED) == 0)
2418 continue;
2420 if (s == htab->splt)
2422 if (htab->need_plt_stub)
2424 /* Make space for the plt stub at the end of the .plt
2425 section. We want this stub right at the end, up
2426 against the .got section. */
2427 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2428 int pltalign = bfd_section_alignment (dynobj, s);
2429 bfd_size_type mask;
2431 if (gotalign > pltalign)
2432 bfd_set_section_alignment (dynobj, s, gotalign);
2433 mask = ((bfd_size_type) 1 << gotalign) - 1;
2434 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2437 else if (s == htab->sgot)
2439 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2441 if (s->_raw_size != 0)
2443 /* Remember whether there are any reloc sections other
2444 than .rela.plt. */
2445 if (s != htab->srelplt)
2446 relocs = true;
2448 /* We use the reloc_count field as a counter if we need
2449 to copy relocs into the output file. */
2450 s->reloc_count = 0;
2453 else
2455 /* It's not one of our sections, so don't allocate space. */
2456 continue;
2459 if (s->_raw_size == 0)
2461 /* If we don't need this section, strip it from the
2462 output file. This is mostly to handle .rela.bss and
2463 .rela.plt. We must create both sections in
2464 create_dynamic_sections, because they must be created
2465 before the linker maps input sections to output
2466 sections. The linker does that before
2467 adjust_dynamic_symbol is called, and it is that
2468 function which decides whether anything needs to go
2469 into these sections. */
2470 _bfd_strip_section_from_output (info, s);
2471 continue;
2474 /* Allocate memory for the section contents. Zero it, because
2475 we may not fill in all the reloc sections. */
2476 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2477 if (s->contents == NULL && s->_raw_size != 0)
2478 return false;
2481 if (htab->elf.dynamic_sections_created)
2483 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2484 actually has nothing to do with the PLT, it is how we
2485 communicate the LTP value of a load module to the dynamic
2486 linker. */
2487 #define add_dynamic_entry(TAG, VAL) \
2488 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2490 if (!add_dynamic_entry (DT_PLTGOT, 0))
2491 return false;
2493 /* Add some entries to the .dynamic section. We fill in the
2494 values later, in elf32_hppa_finish_dynamic_sections, but we
2495 must add the entries now so that we get the correct size for
2496 the .dynamic section. The DT_DEBUG entry is filled in by the
2497 dynamic linker and used by the debugger. */
2498 if (!info->shared)
2500 if (!add_dynamic_entry (DT_DEBUG, 0))
2501 return false;
2504 if (htab->srelplt->_raw_size != 0)
2506 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2507 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2508 || !add_dynamic_entry (DT_JMPREL, 0))
2509 return false;
2512 if (relocs)
2514 if (!add_dynamic_entry (DT_RELA, 0)
2515 || !add_dynamic_entry (DT_RELASZ, 0)
2516 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2517 return false;
2519 /* If any dynamic relocs apply to a read-only section,
2520 then we need a DT_TEXTREL entry. */
2521 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
2523 if ((info->flags & DF_TEXTREL) != 0)
2525 if (!add_dynamic_entry (DT_TEXTREL, 0))
2526 return false;
2530 #undef add_dynamic_entry
2532 return true;
2535 /* External entry points for sizing and building linker stubs. */
2537 /* Determine and set the size of the stub section for a final link.
2539 The basic idea here is to examine all the relocations looking for
2540 PC-relative calls to a target that is unreachable with a "bl"
2541 instruction. */
2543 boolean
2544 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2545 add_stub_section, layout_sections_again)
2546 bfd *output_bfd;
2547 bfd *stub_bfd;
2548 struct bfd_link_info *info;
2549 boolean multi_subspace;
2550 bfd_signed_vma group_size;
2551 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2552 void (*layout_sections_again) PARAMS ((void));
2554 bfd *input_bfd;
2555 asection *section;
2556 asection **input_list, **list;
2557 Elf_Internal_Sym *local_syms, **all_local_syms;
2558 unsigned int bfd_indx, bfd_count;
2559 int top_id, top_index;
2560 struct elf32_hppa_link_hash_table *htab;
2561 bfd_size_type stub_group_size;
2562 boolean stubs_always_before_branch;
2563 boolean stub_changed = 0;
2564 boolean ret = 0;
2565 bfd_size_type amt;
2567 htab = hppa_link_hash_table (info);
2569 /* Stash our params away. */
2570 htab->stub_bfd = stub_bfd;
2571 htab->multi_subspace = multi_subspace;
2572 htab->add_stub_section = add_stub_section;
2573 htab->layout_sections_again = layout_sections_again;
2574 stubs_always_before_branch = group_size < 0;
2575 if (group_size < 0)
2576 stub_group_size = -group_size;
2577 else
2578 stub_group_size = group_size;
2579 if (stub_group_size == 1)
2581 /* Default values. */
2582 stub_group_size = 8000000;
2583 if (htab->has_17bit_branch || htab->multi_subspace)
2584 stub_group_size = 250000;
2585 if (htab->has_12bit_branch)
2586 stub_group_size = 7812;
2589 /* Count the number of input BFDs and find the top input section id. */
2590 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2591 input_bfd != NULL;
2592 input_bfd = input_bfd->link_next)
2594 bfd_count += 1;
2595 for (section = input_bfd->sections;
2596 section != NULL;
2597 section = section->next)
2599 if (top_id < section->id)
2600 top_id = section->id;
2604 amt = sizeof (struct map_stub) * (top_id + 1);
2605 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2606 if (htab->stub_group == NULL)
2607 return false;
2609 /* Make a list of input sections for each output section included in
2610 the link.
2612 We can't use output_bfd->section_count here to find the top output
2613 section index as some sections may have been removed, and
2614 _bfd_strip_section_from_output doesn't renumber the indices. */
2615 for (section = output_bfd->sections, top_index = 0;
2616 section != NULL;
2617 section = section->next)
2619 if (top_index < section->index)
2620 top_index = section->index;
2623 amt = sizeof (asection *) * (top_index + 1);
2624 input_list = (asection **) bfd_malloc (amt);
2625 if (input_list == NULL)
2626 return false;
2628 /* For sections we aren't interested in, mark their entries with a
2629 value we can check later. */
2630 list = input_list + top_index;
2632 *list = bfd_abs_section_ptr;
2633 while (list-- != input_list);
2635 for (section = output_bfd->sections;
2636 section != NULL;
2637 section = section->next)
2639 if ((section->flags & SEC_CODE) != 0)
2640 input_list[section->index] = NULL;
2643 /* Now actually build the lists. */
2644 for (input_bfd = info->input_bfds;
2645 input_bfd != NULL;
2646 input_bfd = input_bfd->link_next)
2648 for (section = input_bfd->sections;
2649 section != NULL;
2650 section = section->next)
2652 if (section->output_section != NULL
2653 && section->output_section->owner == output_bfd
2654 && section->output_section->index <= top_index)
2656 list = input_list + section->output_section->index;
2657 if (*list != bfd_abs_section_ptr)
2659 /* Steal the link_sec pointer for our list. */
2660 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2661 /* This happens to make the list in reverse order,
2662 which is what we want. */
2663 PREV_SEC (section) = *list;
2664 *list = section;
2670 /* See whether we can group stub sections together. Grouping stub
2671 sections may result in fewer stubs. More importantly, we need to
2672 put all .init* and .fini* stubs at the beginning of the .init or
2673 .fini output sections respectively, because glibc splits the
2674 _init and _fini functions into multiple parts. Putting a stub in
2675 the middle of a function is not a good idea. */
2676 list = input_list + top_index;
2679 asection *tail = *list;
2680 if (tail == bfd_abs_section_ptr)
2681 continue;
2682 while (tail != NULL)
2684 asection *curr;
2685 asection *prev;
2686 bfd_size_type total;
2688 curr = tail;
2689 if (tail->_cooked_size)
2690 total = tail->_cooked_size;
2691 else
2692 total = tail->_raw_size;
2693 while ((prev = PREV_SEC (curr)) != NULL
2694 && ((total += curr->output_offset - prev->output_offset)
2695 < stub_group_size))
2696 curr = prev;
2698 /* OK, the size from the start of CURR to the end is less
2699 than 250000 bytes and thus can be handled by one stub
2700 section. (or the tail section is itself larger than
2701 250000 bytes, in which case we may be toast.)
2702 We should really be keeping track of the total size of
2703 stubs added here, as stubs contribute to the final output
2704 section size. That's a little tricky, and this way will
2705 only break if stubs added total more than 12144 bytes, or
2706 1518 long branch stubs. It seems unlikely for more than
2707 1518 different functions to be called, especially from
2708 code only 250000 bytes long. */
2711 prev = PREV_SEC (tail);
2712 /* Set up this stub group. */
2713 htab->stub_group[tail->id].link_sec = curr;
2715 while (tail != curr && (tail = prev) != NULL);
2717 /* But wait, there's more! Input sections up to 250000
2718 bytes before the stub section can be handled by it too. */
2719 if (!stubs_always_before_branch)
2721 total = 0;
2722 while (prev != NULL
2723 && ((total += tail->output_offset - prev->output_offset)
2724 < stub_group_size))
2726 tail = prev;
2727 prev = PREV_SEC (tail);
2728 htab->stub_group[tail->id].link_sec = curr;
2731 tail = prev;
2734 while (list-- != input_list);
2735 free (input_list);
2736 #undef PREV_SEC
2738 /* We want to read in symbol extension records only once. To do this
2739 we need to read in the local symbols in parallel and save them for
2740 later use; so hold pointers to the local symbols in an array. */
2741 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2742 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2743 if (all_local_syms == NULL)
2744 return false;
2746 /* Walk over all the input BFDs, swapping in local symbols.
2747 If we are creating a shared library, create hash entries for the
2748 export stubs. */
2749 for (input_bfd = info->input_bfds, bfd_indx = 0;
2750 input_bfd != NULL;
2751 input_bfd = input_bfd->link_next, bfd_indx++)
2753 Elf_Internal_Shdr *symtab_hdr;
2754 Elf_Internal_Sym *isym;
2755 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2756 bfd_size_type sec_size;
2758 /* We'll need the symbol table in a second. */
2759 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2760 if (symtab_hdr->sh_info == 0)
2761 continue;
2763 /* We need an array of the local symbols attached to the input bfd.
2764 Unfortunately, we're going to have to read & swap them in. */
2765 sec_size = symtab_hdr->sh_info;
2766 sec_size *= sizeof (Elf_Internal_Sym);
2767 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2768 if (local_syms == NULL)
2770 goto error_ret_free_local;
2772 all_local_syms[bfd_indx] = local_syms;
2773 sec_size = symtab_hdr->sh_info;
2774 sec_size *= sizeof (Elf32_External_Sym);
2775 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2776 if (ext_syms == NULL)
2778 goto error_ret_free_local;
2781 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2782 || (bfd_bread (ext_syms, sec_size, input_bfd) != sec_size))
2784 free (ext_syms);
2785 goto error_ret_free_local;
2788 /* Swap the local symbols in. */
2789 isym = local_syms;
2790 esym = ext_syms;
2791 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2792 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2794 /* Now we can free the external symbols. */
2795 free (ext_syms);
2797 if (info->shared && htab->multi_subspace)
2799 struct elf_link_hash_entry **sym_hashes;
2800 struct elf_link_hash_entry **end_hashes;
2801 unsigned int symcount;
2803 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2804 - symtab_hdr->sh_info);
2805 sym_hashes = elf_sym_hashes (input_bfd);
2806 end_hashes = sym_hashes + symcount;
2808 /* Look through the global syms for functions; We need to
2809 build export stubs for all globally visible functions. */
2810 for (; sym_hashes < end_hashes; sym_hashes++)
2812 struct elf32_hppa_link_hash_entry *hash;
2814 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2816 while (hash->elf.root.type == bfd_link_hash_indirect
2817 || hash->elf.root.type == bfd_link_hash_warning)
2818 hash = ((struct elf32_hppa_link_hash_entry *)
2819 hash->elf.root.u.i.link);
2821 /* At this point in the link, undefined syms have been
2822 resolved, so we need to check that the symbol was
2823 defined in this BFD. */
2824 if ((hash->elf.root.type == bfd_link_hash_defined
2825 || hash->elf.root.type == bfd_link_hash_defweak)
2826 && hash->elf.type == STT_FUNC
2827 && hash->elf.root.u.def.section->output_section != NULL
2828 && (hash->elf.root.u.def.section->output_section->owner
2829 == output_bfd)
2830 && hash->elf.root.u.def.section->owner == input_bfd
2831 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2832 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2833 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2835 asection *sec;
2836 const char *stub_name;
2837 struct elf32_hppa_stub_hash_entry *stub_entry;
2839 sec = hash->elf.root.u.def.section;
2840 stub_name = hash->elf.root.root.string;
2841 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2842 stub_name,
2843 false, false);
2844 if (stub_entry == NULL)
2846 stub_entry = hppa_add_stub (stub_name, sec, htab);
2847 if (!stub_entry)
2848 goto error_ret_free_local;
2850 stub_entry->target_value = hash->elf.root.u.def.value;
2851 stub_entry->target_section = hash->elf.root.u.def.section;
2852 stub_entry->stub_type = hppa_stub_export;
2853 stub_entry->h = hash;
2854 stub_changed = 1;
2856 else
2858 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2859 bfd_archive_filename (input_bfd),
2860 stub_name);
2867 while (1)
2869 asection *stub_sec;
2871 for (input_bfd = info->input_bfds, bfd_indx = 0;
2872 input_bfd != NULL;
2873 input_bfd = input_bfd->link_next, bfd_indx++)
2875 Elf_Internal_Shdr *symtab_hdr;
2877 /* We'll need the symbol table in a second. */
2878 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2879 if (symtab_hdr->sh_info == 0)
2880 continue;
2882 local_syms = all_local_syms[bfd_indx];
2884 /* Walk over each section attached to the input bfd. */
2885 for (section = input_bfd->sections;
2886 section != NULL;
2887 section = section->next)
2889 Elf_Internal_Shdr *input_rel_hdr;
2890 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2891 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2893 /* If there aren't any relocs, then there's nothing more
2894 to do. */
2895 if ((section->flags & SEC_RELOC) == 0
2896 || section->reloc_count == 0)
2897 continue;
2899 /* If this section is a link-once section that will be
2900 discarded, then don't create any stubs. */
2901 if (section->output_section == NULL
2902 || section->output_section->owner != output_bfd)
2903 continue;
2905 /* Allocate space for the external relocations. */
2906 amt = section->reloc_count;
2907 amt *= sizeof (Elf32_External_Rela);
2908 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2909 if (external_relocs == NULL)
2911 goto error_ret_free_local;
2914 /* Likewise for the internal relocations. */
2915 amt = section->reloc_count;
2916 amt *= sizeof (Elf_Internal_Rela);
2917 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2918 if (internal_relocs == NULL)
2920 free (external_relocs);
2921 goto error_ret_free_local;
2924 /* Read in the external relocs. */
2925 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2926 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2927 || bfd_bread (external_relocs,
2928 input_rel_hdr->sh_size,
2929 input_bfd) != input_rel_hdr->sh_size)
2931 free (external_relocs);
2932 error_ret_free_internal:
2933 free (internal_relocs);
2934 goto error_ret_free_local;
2937 /* Swap in the relocs. */
2938 erela = external_relocs;
2939 erelaend = erela + section->reloc_count;
2940 irela = internal_relocs;
2941 for (; erela < erelaend; erela++, irela++)
2942 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2944 /* We're done with the external relocs, free them. */
2945 free (external_relocs);
2947 /* Now examine each relocation. */
2948 irela = internal_relocs;
2949 irelaend = irela + section->reloc_count;
2950 for (; irela < irelaend; irela++)
2952 unsigned int r_type, r_indx;
2953 enum elf32_hppa_stub_type stub_type;
2954 struct elf32_hppa_stub_hash_entry *stub_entry;
2955 asection *sym_sec;
2956 bfd_vma sym_value;
2957 bfd_vma destination;
2958 struct elf32_hppa_link_hash_entry *hash;
2959 char *stub_name;
2960 const asection *id_sec;
2962 r_type = ELF32_R_TYPE (irela->r_info);
2963 r_indx = ELF32_R_SYM (irela->r_info);
2965 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2967 bfd_set_error (bfd_error_bad_value);
2968 goto error_ret_free_internal;
2971 /* Only look for stubs on call instructions. */
2972 if (r_type != (unsigned int) R_PARISC_PCREL12F
2973 && r_type != (unsigned int) R_PARISC_PCREL17F
2974 && r_type != (unsigned int) R_PARISC_PCREL22F)
2975 continue;
2977 /* Now determine the call target, its name, value,
2978 section. */
2979 sym_sec = NULL;
2980 sym_value = 0;
2981 destination = 0;
2982 hash = NULL;
2983 if (r_indx < symtab_hdr->sh_info)
2985 /* It's a local symbol. */
2986 Elf_Internal_Sym *sym;
2987 Elf_Internal_Shdr *hdr;
2989 sym = local_syms + r_indx;
2990 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2991 sym_sec = hdr->bfd_section;
2992 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2993 sym_value = sym->st_value;
2994 destination = (sym_value + irela->r_addend
2995 + sym_sec->output_offset
2996 + sym_sec->output_section->vma);
2998 else
3000 /* It's an external symbol. */
3001 int e_indx;
3003 e_indx = r_indx - symtab_hdr->sh_info;
3004 hash = ((struct elf32_hppa_link_hash_entry *)
3005 elf_sym_hashes (input_bfd)[e_indx]);
3007 while (hash->elf.root.type == bfd_link_hash_indirect
3008 || hash->elf.root.type == bfd_link_hash_warning)
3009 hash = ((struct elf32_hppa_link_hash_entry *)
3010 hash->elf.root.u.i.link);
3012 if (hash->elf.root.type == bfd_link_hash_defined
3013 || hash->elf.root.type == bfd_link_hash_defweak)
3015 sym_sec = hash->elf.root.u.def.section;
3016 sym_value = hash->elf.root.u.def.value;
3017 if (sym_sec->output_section != NULL)
3018 destination = (sym_value + irela->r_addend
3019 + sym_sec->output_offset
3020 + sym_sec->output_section->vma);
3022 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3024 if (! info->shared)
3025 continue;
3027 else if (hash->elf.root.type == bfd_link_hash_undefined)
3029 if (! (info->shared
3030 && !info->no_undefined
3031 && (ELF_ST_VISIBILITY (hash->elf.other)
3032 == STV_DEFAULT)
3033 && hash->elf.type != STT_PARISC_MILLI))
3034 continue;
3036 else
3038 bfd_set_error (bfd_error_bad_value);
3039 goto error_ret_free_internal;
3043 /* Determine what (if any) linker stub is needed. */
3044 stub_type = hppa_type_of_stub (section, irela, hash,
3045 destination);
3046 if (stub_type == hppa_stub_none)
3047 continue;
3049 /* Support for grouping stub sections. */
3050 id_sec = htab->stub_group[section->id].link_sec;
3052 /* Get the name of this stub. */
3053 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3054 if (!stub_name)
3055 goto error_ret_free_internal;
3057 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3058 stub_name,
3059 false, false);
3060 if (stub_entry != NULL)
3062 /* The proper stub has already been created. */
3063 free (stub_name);
3064 continue;
3067 stub_entry = hppa_add_stub (stub_name, section, htab);
3068 if (stub_entry == NULL)
3070 free (stub_name);
3071 goto error_ret_free_local;
3074 stub_entry->target_value = sym_value;
3075 stub_entry->target_section = sym_sec;
3076 stub_entry->stub_type = stub_type;
3077 if (info->shared)
3079 if (stub_type == hppa_stub_import)
3080 stub_entry->stub_type = hppa_stub_import_shared;
3081 else if (stub_type == hppa_stub_long_branch)
3082 stub_entry->stub_type = hppa_stub_long_branch_shared;
3084 stub_entry->h = hash;
3085 stub_changed = 1;
3088 /* We're done with the internal relocs, free them. */
3089 free (internal_relocs);
3093 if (!stub_changed)
3094 break;
3096 /* OK, we've added some stubs. Find out the new size of the
3097 stub sections. */
3098 for (stub_sec = htab->stub_bfd->sections;
3099 stub_sec != NULL;
3100 stub_sec = stub_sec->next)
3102 stub_sec->_raw_size = 0;
3103 stub_sec->_cooked_size = 0;
3106 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3108 /* Ask the linker to do its stuff. */
3109 (*htab->layout_sections_again) ();
3110 stub_changed = 0;
3113 ret = 1;
3115 error_ret_free_local:
3116 while (bfd_count-- > 0)
3117 if (all_local_syms[bfd_count])
3118 free (all_local_syms[bfd_count]);
3119 free (all_local_syms);
3121 return ret;
3124 /* For a final link, this function is called after we have sized the
3125 stubs to provide a value for __gp. */
3127 boolean
3128 elf32_hppa_set_gp (abfd, info)
3129 bfd *abfd;
3130 struct bfd_link_info *info;
3132 struct elf32_hppa_link_hash_table *htab;
3133 struct elf_link_hash_entry *h;
3134 asection *sec;
3135 bfd_vma gp_val;
3137 htab = hppa_link_hash_table (info);
3138 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3140 if (h != NULL
3141 && (h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak))
3144 gp_val = h->root.u.def.value;
3145 sec = h->root.u.def.section;
3147 else
3149 /* Choose to point our LTP at, in this order, one of .plt, .got,
3150 or .data, if these sections exist. In the case of choosing
3151 .plt try to make the LTP ideal for addressing anywhere in the
3152 .plt or .got with a 14 bit signed offset. Typically, the end
3153 of the .plt is the start of the .got, so choose .plt + 0x2000
3154 if either the .plt or .got is larger than 0x2000. If both
3155 the .plt and .got are smaller than 0x2000, choose the end of
3156 the .plt section. */
3158 sec = htab->splt;
3159 if (sec != NULL)
3161 gp_val = sec->_raw_size;
3162 if (gp_val > 0x2000
3163 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3165 gp_val = 0x2000;
3168 else
3170 gp_val = 0;
3171 sec = htab->sgot;
3172 if (sec != NULL)
3174 /* We know we don't have a .plt. If .got is large,
3175 offset our LTP. */
3176 if (sec->_raw_size > 0x2000)
3177 gp_val = 0x2000;
3179 else
3181 /* No .plt or .got. Who cares what the LTP is? */
3182 sec = bfd_get_section_by_name (abfd, ".data");
3186 if (h != NULL)
3188 h->root.type = bfd_link_hash_defined;
3189 h->root.u.def.value = gp_val;
3190 if (sec != NULL)
3191 h->root.u.def.section = sec;
3192 else
3193 h->root.u.def.section = bfd_abs_section_ptr;
3197 if (sec != NULL && sec->output_section != NULL)
3198 gp_val += sec->output_section->vma + sec->output_offset;
3200 elf_gp (abfd) = gp_val;
3201 return true;
3204 /* Build all the stubs associated with the current output file. The
3205 stubs are kept in a hash table attached to the main linker hash
3206 table. We also set up the .plt entries for statically linked PIC
3207 functions here. This function is called via hppaelf_finish in the
3208 linker. */
3210 boolean
3211 elf32_hppa_build_stubs (info)
3212 struct bfd_link_info *info;
3214 asection *stub_sec;
3215 struct bfd_hash_table *table;
3216 struct elf32_hppa_link_hash_table *htab;
3218 htab = hppa_link_hash_table (info);
3220 for (stub_sec = htab->stub_bfd->sections;
3221 stub_sec != NULL;
3222 stub_sec = stub_sec->next)
3224 bfd_size_type size;
3226 /* Allocate memory to hold the linker stubs. */
3227 size = stub_sec->_raw_size;
3228 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3229 if (stub_sec->contents == NULL && size != 0)
3230 return false;
3231 stub_sec->_raw_size = 0;
3234 /* Build the stubs as directed by the stub hash table. */
3235 table = &htab->stub_hash_table;
3236 bfd_hash_traverse (table, hppa_build_one_stub, info);
3238 return true;
3241 /* Perform a final link. */
3243 static boolean
3244 elf32_hppa_final_link (abfd, info)
3245 bfd *abfd;
3246 struct bfd_link_info *info;
3248 asection *s;
3250 /* Invoke the regular ELF linker to do all the work. */
3251 if (!bfd_elf32_bfd_final_link (abfd, info))
3252 return false;
3254 /* If we're producing a final executable, sort the contents of the
3255 unwind section. Magic section names, but this is much safer than
3256 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3257 occurred. Consider what happens if someone inept creates a
3258 linker script that puts unwind information in .text. */
3259 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3260 if (s != NULL)
3262 bfd_size_type size;
3263 char *contents;
3265 size = s->_raw_size;
3266 contents = bfd_malloc (size);
3267 if (contents == NULL)
3268 return false;
3270 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3271 return false;
3273 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3275 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3276 return false;
3278 return true;
3281 /* Record the lowest address for the data and text segments. */
3283 static void
3284 hppa_record_segment_addr (abfd, section, data)
3285 bfd *abfd ATTRIBUTE_UNUSED;
3286 asection *section;
3287 PTR data;
3289 struct elf32_hppa_link_hash_table *htab;
3291 htab = (struct elf32_hppa_link_hash_table *) data;
3293 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3295 bfd_vma value = section->vma - section->filepos;
3297 if ((section->flags & SEC_READONLY) != 0)
3299 if (value < htab->text_segment_base)
3300 htab->text_segment_base = value;
3302 else
3304 if (value < htab->data_segment_base)
3305 htab->data_segment_base = value;
3310 /* Perform a relocation as part of a final link. */
3312 static bfd_reloc_status_type
3313 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3314 asection *input_section;
3315 bfd_byte *contents;
3316 const Elf_Internal_Rela *rel;
3317 bfd_vma value;
3318 struct elf32_hppa_link_hash_table *htab;
3319 asection *sym_sec;
3320 struct elf32_hppa_link_hash_entry *h;
3322 int insn;
3323 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3324 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3325 int r_format = howto->bitsize;
3326 enum hppa_reloc_field_selector_type_alt r_field;
3327 bfd *input_bfd = input_section->owner;
3328 bfd_vma offset = rel->r_offset;
3329 bfd_vma max_branch_offset = 0;
3330 bfd_byte *hit_data = contents + offset;
3331 bfd_signed_vma addend = rel->r_addend;
3332 bfd_vma location;
3333 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3334 int val;
3336 if (r_type == R_PARISC_NONE)
3337 return bfd_reloc_ok;
3339 insn = bfd_get_32 (input_bfd, hit_data);
3341 /* Find out where we are and where we're going. */
3342 location = (offset +
3343 input_section->output_offset +
3344 input_section->output_section->vma);
3346 switch (r_type)
3348 case R_PARISC_PCREL12F:
3349 case R_PARISC_PCREL17F:
3350 case R_PARISC_PCREL22F:
3351 /* If this is a call to a function defined in another dynamic
3352 library, or if it is a call to a PIC function in the same
3353 object, or if this is a shared link and it is a call to a
3354 weak symbol which may or may not be in the same object, then
3355 find the import stub in the stub hash. */
3356 if (sym_sec == NULL
3357 || sym_sec->output_section == NULL
3358 || (h != NULL
3359 && ((h->maybe_pic_call
3360 && !(input_section->flags & SEC_HAS_GOT_REF))
3361 || (h->elf.root.type == bfd_link_hash_defweak
3362 && h->elf.dynindx != -1
3363 && h->elf.plt.offset != (bfd_vma) -1))))
3365 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3366 h, rel, htab);
3367 if (stub_entry != NULL)
3369 value = (stub_entry->stub_offset
3370 + stub_entry->stub_sec->output_offset
3371 + stub_entry->stub_sec->output_section->vma);
3372 addend = 0;
3374 else if (sym_sec == NULL && h != NULL
3375 && h->elf.root.type == bfd_link_hash_undefweak)
3377 /* It's OK if undefined weak. Calls to undefined weak
3378 symbols behave as if the "called" function
3379 immediately returns. We can thus call to a weak
3380 function without first checking whether the function
3381 is defined. */
3382 value = location;
3383 addend = 8;
3385 else
3386 return bfd_reloc_notsupported;
3388 /* Fall thru. */
3390 case R_PARISC_PCREL21L:
3391 case R_PARISC_PCREL17C:
3392 case R_PARISC_PCREL17R:
3393 case R_PARISC_PCREL14R:
3394 case R_PARISC_PCREL14F:
3395 /* Make it a pc relative offset. */
3396 value -= location;
3397 addend -= 8;
3398 break;
3400 case R_PARISC_DPREL21L:
3401 case R_PARISC_DPREL14R:
3402 case R_PARISC_DPREL14F:
3403 /* For all the DP relative relocations, we need to examine the symbol's
3404 section. If it's a code section, then "data pointer relative" makes
3405 no sense. In that case we don't adjust the "value", and for 21 bit
3406 addil instructions, we change the source addend register from %dp to
3407 %r0. This situation commonly arises when a variable's "constness"
3408 is declared differently from the way the variable is defined. For
3409 instance: "extern int foo" with foo defined as "const int foo". */
3410 if (sym_sec == NULL)
3411 break;
3412 if ((sym_sec->flags & SEC_CODE) != 0)
3414 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3415 == (((int) OP_ADDIL << 26) | (27 << 21)))
3417 insn &= ~ (0x1f << 21);
3418 #if 1 /* debug them. */
3419 (*_bfd_error_handler)
3420 (_("%s(%s+0x%lx): fixing %s"),
3421 bfd_archive_filename (input_bfd),
3422 input_section->name,
3423 (long) rel->r_offset,
3424 howto->name);
3425 #endif
3427 /* Now try to make things easy for the dynamic linker. */
3429 break;
3431 /* Fall thru. */
3433 case R_PARISC_DLTIND21L:
3434 case R_PARISC_DLTIND14R:
3435 case R_PARISC_DLTIND14F:
3436 value -= elf_gp (input_section->output_section->owner);
3437 break;
3439 case R_PARISC_SEGREL32:
3440 if ((sym_sec->flags & SEC_CODE) != 0)
3441 value -= htab->text_segment_base;
3442 else
3443 value -= htab->data_segment_base;
3444 break;
3446 default:
3447 break;
3450 switch (r_type)
3452 case R_PARISC_DIR32:
3453 case R_PARISC_DIR14F:
3454 case R_PARISC_DIR17F:
3455 case R_PARISC_PCREL17C:
3456 case R_PARISC_PCREL14F:
3457 case R_PARISC_DPREL14F:
3458 case R_PARISC_PLABEL32:
3459 case R_PARISC_DLTIND14F:
3460 case R_PARISC_SEGBASE:
3461 case R_PARISC_SEGREL32:
3462 r_field = e_fsel;
3463 break;
3465 case R_PARISC_DIR21L:
3466 case R_PARISC_PCREL21L:
3467 case R_PARISC_DPREL21L:
3468 case R_PARISC_PLABEL21L:
3469 case R_PARISC_DLTIND21L:
3470 r_field = e_lrsel;
3471 break;
3473 case R_PARISC_DIR17R:
3474 case R_PARISC_PCREL17R:
3475 case R_PARISC_DIR14R:
3476 case R_PARISC_PCREL14R:
3477 case R_PARISC_DPREL14R:
3478 case R_PARISC_PLABEL14R:
3479 case R_PARISC_DLTIND14R:
3480 r_field = e_rrsel;
3481 break;
3483 case R_PARISC_PCREL12F:
3484 case R_PARISC_PCREL17F:
3485 case R_PARISC_PCREL22F:
3486 r_field = e_fsel;
3488 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3490 max_branch_offset = (1 << (17-1)) << 2;
3492 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3494 max_branch_offset = (1 << (12-1)) << 2;
3496 else
3498 max_branch_offset = (1 << (22-1)) << 2;
3501 /* sym_sec is NULL on undefined weak syms or when shared on
3502 undefined syms. We've already checked for a stub for the
3503 shared undefined case. */
3504 if (sym_sec == NULL)
3505 break;
3507 /* If the branch is out of reach, then redirect the
3508 call to the local stub for this function. */
3509 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3511 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3512 h, rel, htab);
3513 if (stub_entry == NULL)
3514 return bfd_reloc_notsupported;
3516 /* Munge up the value and addend so that we call the stub
3517 rather than the procedure directly. */
3518 value = (stub_entry->stub_offset
3519 + stub_entry->stub_sec->output_offset
3520 + stub_entry->stub_sec->output_section->vma
3521 - location);
3522 addend = -8;
3524 break;
3526 /* Something we don't know how to handle. */
3527 default:
3528 return bfd_reloc_notsupported;
3531 /* Make sure we can reach the stub. */
3532 if (max_branch_offset != 0
3533 && value + addend + max_branch_offset >= 2*max_branch_offset)
3535 (*_bfd_error_handler)
3536 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3537 bfd_archive_filename (input_bfd),
3538 input_section->name,
3539 (long) rel->r_offset,
3540 stub_entry->root.string);
3541 bfd_set_error (bfd_error_bad_value);
3542 return bfd_reloc_notsupported;
3545 val = hppa_field_adjust (value, addend, r_field);
3547 switch (r_type)
3549 case R_PARISC_PCREL12F:
3550 case R_PARISC_PCREL17C:
3551 case R_PARISC_PCREL17F:
3552 case R_PARISC_PCREL17R:
3553 case R_PARISC_PCREL22F:
3554 case R_PARISC_DIR17F:
3555 case R_PARISC_DIR17R:
3556 /* This is a branch. Divide the offset by four.
3557 Note that we need to decide whether it's a branch or
3558 otherwise by inspecting the reloc. Inspecting insn won't
3559 work as insn might be from a .word directive. */
3560 val >>= 2;
3561 break;
3563 default:
3564 break;
3567 insn = hppa_rebuild_insn (insn, val, r_format);
3569 /* Update the instruction word. */
3570 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3571 return bfd_reloc_ok;
3574 /* Relocate an HPPA ELF section. */
3576 static boolean
3577 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3578 contents, relocs, local_syms, local_sections)
3579 bfd *output_bfd;
3580 struct bfd_link_info *info;
3581 bfd *input_bfd;
3582 asection *input_section;
3583 bfd_byte *contents;
3584 Elf_Internal_Rela *relocs;
3585 Elf_Internal_Sym *local_syms;
3586 asection **local_sections;
3588 bfd_vma *local_got_offsets;
3589 struct elf32_hppa_link_hash_table *htab;
3590 Elf_Internal_Shdr *symtab_hdr;
3591 Elf_Internal_Rela *rel;
3592 Elf_Internal_Rela *relend;
3594 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3596 htab = hppa_link_hash_table (info);
3597 local_got_offsets = elf_local_got_offsets (input_bfd);
3599 rel = relocs;
3600 relend = relocs + input_section->reloc_count;
3601 for (; rel < relend; rel++)
3603 unsigned int r_type;
3604 reloc_howto_type *howto;
3605 unsigned int r_symndx;
3606 struct elf32_hppa_link_hash_entry *h;
3607 Elf_Internal_Sym *sym;
3608 asection *sym_sec;
3609 bfd_vma relocation;
3610 bfd_reloc_status_type r;
3611 const char *sym_name;
3612 boolean plabel;
3614 r_type = ELF32_R_TYPE (rel->r_info);
3615 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3617 bfd_set_error (bfd_error_bad_value);
3618 return false;
3620 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3621 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3622 continue;
3624 r_symndx = ELF32_R_SYM (rel->r_info);
3626 if (info->relocateable)
3628 /* This is a relocatable link. We don't have to change
3629 anything, unless the reloc is against a section symbol,
3630 in which case we have to adjust according to where the
3631 section symbol winds up in the output section. */
3632 if (r_symndx < symtab_hdr->sh_info)
3634 sym = local_syms + r_symndx;
3635 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3637 sym_sec = local_sections[r_symndx];
3638 rel->r_addend += sym_sec->output_offset;
3641 continue;
3644 /* This is a final link. */
3645 h = NULL;
3646 sym = NULL;
3647 sym_sec = NULL;
3648 if (r_symndx < symtab_hdr->sh_info)
3650 /* This is a local symbol, h defaults to NULL. */
3651 sym = local_syms + r_symndx;
3652 sym_sec = local_sections[r_symndx];
3653 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3655 else
3657 int indx;
3659 /* It's a global; Find its entry in the link hash. */
3660 indx = r_symndx - symtab_hdr->sh_info;
3661 h = ((struct elf32_hppa_link_hash_entry *)
3662 elf_sym_hashes (input_bfd)[indx]);
3663 while (h->elf.root.type == bfd_link_hash_indirect
3664 || h->elf.root.type == bfd_link_hash_warning)
3665 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3667 relocation = 0;
3668 if (h->elf.root.type == bfd_link_hash_defined
3669 || h->elf.root.type == bfd_link_hash_defweak)
3671 sym_sec = h->elf.root.u.def.section;
3672 /* If sym_sec->output_section is NULL, then it's a
3673 symbol defined in a shared library. */
3674 if (sym_sec->output_section != NULL)
3675 relocation = (h->elf.root.u.def.value
3676 + sym_sec->output_offset
3677 + sym_sec->output_section->vma);
3679 else if (h->elf.root.type == bfd_link_hash_undefweak)
3681 else if (info->shared && !info->no_undefined
3682 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3683 && h->elf.type != STT_PARISC_MILLI)
3685 if (info->symbolic && !info->allow_shlib_undefined)
3686 if (!((*info->callbacks->undefined_symbol)
3687 (info, h->elf.root.root.string, input_bfd,
3688 input_section, rel->r_offset, false)))
3689 return false;
3691 else
3693 if (!((*info->callbacks->undefined_symbol)
3694 (info, h->elf.root.root.string, input_bfd,
3695 input_section, rel->r_offset, true)))
3696 return false;
3700 /* Do any required modifications to the relocation value, and
3701 determine what types of dynamic info we need to output, if
3702 any. */
3703 plabel = 0;
3704 switch (r_type)
3706 case R_PARISC_DLTIND14F:
3707 case R_PARISC_DLTIND14R:
3708 case R_PARISC_DLTIND21L:
3710 bfd_vma off;
3711 boolean do_got = 0;
3713 /* Relocation is to the entry for this symbol in the
3714 global offset table. */
3715 if (h != NULL)
3717 boolean dyn;
3719 off = h->elf.got.offset;
3720 dyn = htab->elf.dynamic_sections_created;
3721 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3723 /* If we aren't going to call finish_dynamic_symbol,
3724 then we need to handle initialisation of the .got
3725 entry and create needed relocs here. Since the
3726 offset must always be a multiple of 4, we use the
3727 least significant bit to record whether we have
3728 initialised it already. */
3729 if ((off & 1) != 0)
3730 off &= ~1;
3731 else
3733 h->elf.got.offset |= 1;
3734 do_got = 1;
3738 else
3740 /* Local symbol case. */
3741 if (local_got_offsets == NULL)
3742 abort ();
3744 off = local_got_offsets[r_symndx];
3746 /* The offset must always be a multiple of 4. We use
3747 the least significant bit to record whether we have
3748 already generated the necessary reloc. */
3749 if ((off & 1) != 0)
3750 off &= ~1;
3751 else
3753 local_got_offsets[r_symndx] |= 1;
3754 do_got = 1;
3758 if (do_got)
3760 if (info->shared)
3762 /* Output a dynamic relocation for this GOT entry.
3763 In this case it is relative to the base of the
3764 object because the symbol index is zero. */
3765 Elf_Internal_Rela outrel;
3766 asection *srelgot = htab->srelgot;
3767 Elf32_External_Rela *loc;
3769 outrel.r_offset = (off
3770 + htab->sgot->output_offset
3771 + htab->sgot->output_section->vma);
3772 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3773 outrel.r_addend = relocation;
3774 loc = (Elf32_External_Rela *) srelgot->contents;
3775 loc += srelgot->reloc_count++;
3776 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3778 else
3779 bfd_put_32 (output_bfd, relocation,
3780 htab->sgot->contents + off);
3783 if (off >= (bfd_vma) -2)
3784 abort ();
3786 /* Add the base of the GOT to the relocation value. */
3787 relocation = (off
3788 + htab->sgot->output_offset
3789 + htab->sgot->output_section->vma);
3791 break;
3793 case R_PARISC_SEGREL32:
3794 /* If this is the first SEGREL relocation, then initialize
3795 the segment base values. */
3796 if (htab->text_segment_base == (bfd_vma) -1)
3797 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3798 break;
3800 case R_PARISC_PLABEL14R:
3801 case R_PARISC_PLABEL21L:
3802 case R_PARISC_PLABEL32:
3803 if (htab->elf.dynamic_sections_created)
3805 bfd_vma off;
3806 boolean do_plt = 0;
3808 /* If we have a global symbol with a PLT slot, then
3809 redirect this relocation to it. */
3810 if (h != NULL)
3812 off = h->elf.plt.offset;
3813 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3815 /* In a non-shared link, adjust_dynamic_symbols
3816 isn't called for symbols forced local. We
3817 need to write out the plt entry here. */
3818 if ((off & 1) != 0)
3819 off &= ~1;
3820 else
3822 h->elf.plt.offset |= 1;
3823 do_plt = 1;
3827 else
3829 bfd_vma *local_plt_offsets;
3831 if (local_got_offsets == NULL)
3832 abort ();
3834 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3835 off = local_plt_offsets[r_symndx];
3837 /* As for the local .got entry case, we use the last
3838 bit to record whether we've already initialised
3839 this local .plt entry. */
3840 if ((off & 1) != 0)
3841 off &= ~1;
3842 else
3844 local_plt_offsets[r_symndx] |= 1;
3845 do_plt = 1;
3849 if (do_plt)
3851 if (info->shared)
3853 /* Output a dynamic IPLT relocation for this
3854 PLT entry. */
3855 Elf_Internal_Rela outrel;
3856 asection *srelplt = htab->srelplt;
3857 Elf32_External_Rela *loc;
3859 outrel.r_offset = (off
3860 + htab->splt->output_offset
3861 + htab->splt->output_section->vma);
3862 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3863 outrel.r_addend = relocation;
3864 loc = (Elf32_External_Rela *) srelplt->contents;
3865 loc += srelplt->reloc_count++;
3866 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3868 else
3870 bfd_put_32 (output_bfd,
3871 relocation,
3872 htab->splt->contents + off);
3873 bfd_put_32 (output_bfd,
3874 elf_gp (htab->splt->output_section->owner),
3875 htab->splt->contents + off + 4);
3879 if (off >= (bfd_vma) -2)
3880 abort ();
3882 /* PLABELs contain function pointers. Relocation is to
3883 the entry for the function in the .plt. The magic +2
3884 offset signals to $$dyncall that the function pointer
3885 is in the .plt and thus has a gp pointer too.
3886 Exception: Undefined PLABELs should have a value of
3887 zero. */
3888 if (h == NULL
3889 || (h->elf.root.type != bfd_link_hash_undefweak
3890 && h->elf.root.type != bfd_link_hash_undefined))
3892 relocation = (off
3893 + htab->splt->output_offset
3894 + htab->splt->output_section->vma
3895 + 2);
3897 plabel = 1;
3899 /* Fall through and possibly emit a dynamic relocation. */
3901 case R_PARISC_DIR17F:
3902 case R_PARISC_DIR17R:
3903 case R_PARISC_DIR14F:
3904 case R_PARISC_DIR14R:
3905 case R_PARISC_DIR21L:
3906 case R_PARISC_DPREL14F:
3907 case R_PARISC_DPREL14R:
3908 case R_PARISC_DPREL21L:
3909 case R_PARISC_DIR32:
3910 /* r_symndx will be zero only for relocs against symbols
3911 from removed linkonce sections, or sections discarded by
3912 a linker script. */
3913 if (r_symndx == 0
3914 || (input_section->flags & SEC_ALLOC) == 0)
3915 break;
3917 /* The reloc types handled here and this conditional
3918 expression must match the code in ..check_relocs and
3919 allocate_dynrelocs. ie. We need exactly the same condition
3920 as in ..check_relocs, with some extra conditions (dynindx
3921 test in this case) to cater for relocs removed by
3922 allocate_dynrelocs. If you squint, the non-shared test
3923 here does indeed match the one in ..check_relocs, the
3924 difference being that here we test DEF_DYNAMIC as well as
3925 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3926 which is why we can't use just that test here.
3927 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3928 there all files have not been loaded. */
3929 if ((info->shared
3930 && (IS_ABSOLUTE_RELOC (r_type)
3931 || (h != NULL
3932 && h->elf.dynindx != -1
3933 && (!info->symbolic
3934 || (h->elf.elf_link_hash_flags
3935 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3936 || (!info->shared
3937 && h != NULL
3938 && h->elf.dynindx != -1
3939 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3940 && (((h->elf.elf_link_hash_flags
3941 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3942 && (h->elf.elf_link_hash_flags
3943 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3944 || h->elf.root.type == bfd_link_hash_undefweak
3945 || h->elf.root.type == bfd_link_hash_undefined)))
3947 Elf_Internal_Rela outrel;
3948 boolean skip;
3949 asection *sreloc;
3950 Elf32_External_Rela *loc;
3952 /* When generating a shared object, these relocations
3953 are copied into the output file to be resolved at run
3954 time. */
3956 outrel.r_offset = rel->r_offset;
3957 outrel.r_addend = rel->r_addend;
3958 skip = false;
3959 if (elf_section_data (input_section)->stab_info != NULL)
3961 bfd_vma off;
3963 off = (_bfd_stab_section_offset
3964 (output_bfd, &htab->elf.stab_info,
3965 input_section,
3966 &elf_section_data (input_section)->stab_info,
3967 rel->r_offset));
3968 if (off == (bfd_vma) -1)
3969 skip = true;
3970 outrel.r_offset = off;
3973 outrel.r_offset += (input_section->output_offset
3974 + input_section->output_section->vma);
3976 if (skip)
3978 memset (&outrel, 0, sizeof (outrel));
3980 else if (h != NULL
3981 && h->elf.dynindx != -1
3982 && (plabel
3983 || !IS_ABSOLUTE_RELOC (r_type)
3984 || !info->shared
3985 || !info->symbolic
3986 || (h->elf.elf_link_hash_flags
3987 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3989 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3991 else /* It's a local symbol, or one marked to become local. */
3993 int indx = 0;
3995 /* Add the absolute offset of the symbol. */
3996 outrel.r_addend += relocation;
3998 /* Global plabels need to be processed by the
3999 dynamic linker so that functions have at most one
4000 fptr. For this reason, we need to differentiate
4001 between global and local plabels, which we do by
4002 providing the function symbol for a global plabel
4003 reloc, and no symbol for local plabels. */
4004 if (! plabel
4005 && sym_sec != NULL
4006 && sym_sec->output_section != NULL
4007 && ! bfd_is_abs_section (sym_sec))
4009 indx = elf_section_data (sym_sec->output_section)->dynindx;
4010 /* We are turning this relocation into one
4011 against a section symbol, so subtract out the
4012 output section's address but not the offset
4013 of the input section in the output section. */
4014 outrel.r_addend -= sym_sec->output_section->vma;
4017 outrel.r_info = ELF32_R_INFO (indx, r_type);
4019 #if 0
4020 /* EH info can cause unaligned DIR32 relocs.
4021 Tweak the reloc type for the dynamic linker. */
4022 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4023 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4024 R_PARISC_DIR32U);
4025 #endif
4026 sreloc = elf_section_data (input_section)->sreloc;
4027 if (sreloc == NULL)
4028 abort ();
4030 loc = (Elf32_External_Rela *) sreloc->contents;
4031 loc += sreloc->reloc_count++;
4032 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4034 break;
4036 default:
4037 break;
4040 r = final_link_relocate (input_section, contents, rel, relocation,
4041 htab, sym_sec, h);
4043 if (r == bfd_reloc_ok)
4044 continue;
4046 if (h != NULL)
4047 sym_name = h->elf.root.root.string;
4048 else
4050 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4051 symtab_hdr->sh_link,
4052 sym->st_name);
4053 if (sym_name == NULL)
4054 return false;
4055 if (*sym_name == '\0')
4056 sym_name = bfd_section_name (input_bfd, sym_sec);
4059 howto = elf_hppa_howto_table + r_type;
4061 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4063 (*_bfd_error_handler)
4064 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4065 bfd_archive_filename (input_bfd),
4066 input_section->name,
4067 (long) rel->r_offset,
4068 howto->name,
4069 sym_name);
4070 bfd_set_error (bfd_error_bad_value);
4071 return false;
4073 else
4075 if (!((*info->callbacks->reloc_overflow)
4076 (info, sym_name, howto->name, (bfd_vma) 0,
4077 input_bfd, input_section, rel->r_offset)))
4078 return false;
4082 return true;
4085 /* Comparison function for qsort to sort unwind section during a
4086 final link. */
4088 static int
4089 hppa_unwind_entry_compare (a, b)
4090 const PTR a;
4091 const PTR b;
4093 const bfd_byte *ap, *bp;
4094 unsigned long av, bv;
4096 ap = (const bfd_byte *) a;
4097 av = (unsigned long) ap[0] << 24;
4098 av |= (unsigned long) ap[1] << 16;
4099 av |= (unsigned long) ap[2] << 8;
4100 av |= (unsigned long) ap[3];
4102 bp = (const bfd_byte *) b;
4103 bv = (unsigned long) bp[0] << 24;
4104 bv |= (unsigned long) bp[1] << 16;
4105 bv |= (unsigned long) bp[2] << 8;
4106 bv |= (unsigned long) bp[3];
4108 return av < bv ? -1 : av > bv ? 1 : 0;
4111 /* Finish up dynamic symbol handling. We set the contents of various
4112 dynamic sections here. */
4114 static boolean
4115 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4116 bfd *output_bfd;
4117 struct bfd_link_info *info;
4118 struct elf_link_hash_entry *h;
4119 Elf_Internal_Sym *sym;
4121 struct elf32_hppa_link_hash_table *htab;
4123 htab = hppa_link_hash_table (info);
4125 if (h->plt.offset != (bfd_vma) -1)
4127 bfd_vma value;
4129 if (h->plt.offset & 1)
4130 abort ();
4132 /* This symbol has an entry in the procedure linkage table. Set
4133 it up.
4135 The format of a plt entry is
4136 <funcaddr>
4137 <__gp>
4139 value = 0;
4140 if (h->root.type == bfd_link_hash_defined
4141 || h->root.type == bfd_link_hash_defweak)
4143 value = h->root.u.def.value;
4144 if (h->root.u.def.section->output_section != NULL)
4145 value += (h->root.u.def.section->output_offset
4146 + h->root.u.def.section->output_section->vma);
4149 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4151 Elf_Internal_Rela rel;
4152 Elf32_External_Rela *loc;
4154 /* Create a dynamic IPLT relocation for this entry. */
4155 rel.r_offset = (h->plt.offset
4156 + htab->splt->output_offset
4157 + htab->splt->output_section->vma);
4158 if (h->dynindx != -1)
4160 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4161 rel.r_addend = 0;
4163 else
4165 /* This symbol has been marked to become local, and is
4166 used by a plabel so must be kept in the .plt. */
4167 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4168 rel.r_addend = value;
4171 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4172 loc += htab->srelplt->reloc_count++;
4173 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4174 &rel, loc);
4176 else
4178 bfd_put_32 (htab->splt->owner,
4179 value,
4180 htab->splt->contents + h->plt.offset);
4181 bfd_put_32 (htab->splt->owner,
4182 elf_gp (htab->splt->output_section->owner),
4183 htab->splt->contents + h->plt.offset + 4);
4186 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4188 /* Mark the symbol as undefined, rather than as defined in
4189 the .plt section. Leave the value alone. */
4190 sym->st_shndx = SHN_UNDEF;
4194 if (h->got.offset != (bfd_vma) -1)
4196 Elf_Internal_Rela rel;
4197 Elf32_External_Rela *loc;
4199 /* This symbol has an entry in the global offset table. Set it
4200 up. */
4202 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4203 + htab->sgot->output_offset
4204 + htab->sgot->output_section->vma);
4206 /* If this is a -Bsymbolic link and the symbol is defined
4207 locally or was forced to be local because of a version file,
4208 we just want to emit a RELATIVE reloc. The entry in the
4209 global offset table will already have been initialized in the
4210 relocate_section function. */
4211 if (info->shared
4212 && (info->symbolic || h->dynindx == -1)
4213 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4215 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4216 rel.r_addend = (h->root.u.def.value
4217 + h->root.u.def.section->output_offset
4218 + h->root.u.def.section->output_section->vma);
4220 else
4222 if ((h->got.offset & 1) != 0)
4223 abort ();
4224 bfd_put_32 (output_bfd, (bfd_vma) 0,
4225 htab->sgot->contents + h->got.offset);
4226 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4227 rel.r_addend = 0;
4230 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4231 loc += htab->srelgot->reloc_count++;
4232 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4235 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4237 asection *s;
4238 Elf_Internal_Rela rel;
4239 Elf32_External_Rela *loc;
4241 /* This symbol needs a copy reloc. Set it up. */
4243 if (! (h->dynindx != -1
4244 && (h->root.type == bfd_link_hash_defined
4245 || h->root.type == bfd_link_hash_defweak)))
4246 abort ();
4248 s = htab->srelbss;
4250 rel.r_offset = (h->root.u.def.value
4251 + h->root.u.def.section->output_offset
4252 + h->root.u.def.section->output_section->vma);
4253 rel.r_addend = 0;
4254 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4255 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4256 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4259 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4260 if (h->root.root.string[0] == '_'
4261 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4262 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4264 sym->st_shndx = SHN_ABS;
4267 return true;
4270 /* Used to decide how to sort relocs in an optimal manner for the
4271 dynamic linker, before writing them out. */
4273 static enum elf_reloc_type_class
4274 elf32_hppa_reloc_type_class (rela)
4275 const Elf_Internal_Rela *rela;
4277 if (ELF32_R_SYM (rela->r_info) == 0)
4278 return reloc_class_relative;
4280 switch ((int) ELF32_R_TYPE (rela->r_info))
4282 case R_PARISC_IPLT:
4283 return reloc_class_plt;
4284 case R_PARISC_COPY:
4285 return reloc_class_copy;
4286 default:
4287 return reloc_class_normal;
4291 /* Finish up the dynamic sections. */
4293 static boolean
4294 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4295 bfd *output_bfd;
4296 struct bfd_link_info *info;
4298 bfd *dynobj;
4299 struct elf32_hppa_link_hash_table *htab;
4300 asection *sdyn;
4302 htab = hppa_link_hash_table (info);
4303 dynobj = htab->elf.dynobj;
4305 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4307 if (htab->elf.dynamic_sections_created)
4309 Elf32_External_Dyn *dyncon, *dynconend;
4311 if (sdyn == NULL)
4312 abort ();
4314 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4315 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4316 for (; dyncon < dynconend; dyncon++)
4318 Elf_Internal_Dyn dyn;
4319 asection *s;
4321 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4323 switch (dyn.d_tag)
4325 default:
4326 continue;
4328 case DT_PLTGOT:
4329 /* Use PLTGOT to set the GOT register. */
4330 dyn.d_un.d_ptr = elf_gp (output_bfd);
4331 break;
4333 case DT_JMPREL:
4334 s = htab->srelplt;
4335 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4336 break;
4338 case DT_PLTRELSZ:
4339 s = htab->srelplt;
4340 if (s->_cooked_size != 0)
4341 dyn.d_un.d_val = s->_cooked_size;
4342 else
4343 dyn.d_un.d_val = s->_raw_size;
4344 break;
4346 case DT_RELASZ:
4347 /* Don't count procedure linkage table relocs in the
4348 overall reloc count. */
4349 if (htab->srelplt != NULL)
4351 s = htab->srelplt->output_section;
4352 if (s->_cooked_size != 0)
4353 dyn.d_un.d_val -= s->_cooked_size;
4354 else
4355 dyn.d_un.d_val -= s->_raw_size;
4357 break;
4360 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4364 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4366 /* Fill in the first entry in the global offset table.
4367 We use it to point to our dynamic section, if we have one. */
4368 bfd_put_32 (output_bfd,
4369 (sdyn != NULL
4370 ? sdyn->output_section->vma + sdyn->output_offset
4371 : (bfd_vma) 0),
4372 htab->sgot->contents);
4374 /* The second entry is reserved for use by the dynamic linker. */
4375 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4377 /* Set .got entry size. */
4378 elf_section_data (htab->sgot->output_section)
4379 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4382 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4384 /* Set plt entry size. */
4385 elf_section_data (htab->splt->output_section)
4386 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4388 if (htab->need_plt_stub)
4390 /* Set up the .plt stub. */
4391 memcpy (htab->splt->contents
4392 + htab->splt->_raw_size - sizeof (plt_stub),
4393 plt_stub, sizeof (plt_stub));
4395 if ((htab->splt->output_offset
4396 + htab->splt->output_section->vma
4397 + htab->splt->_raw_size)
4398 != (htab->sgot->output_offset
4399 + htab->sgot->output_section->vma))
4401 (*_bfd_error_handler)
4402 (_(".got section not immediately after .plt section"));
4403 return false;
4408 return true;
4411 /* Tweak the OSABI field of the elf header. */
4413 static void
4414 elf32_hppa_post_process_headers (abfd, link_info)
4415 bfd *abfd;
4416 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4418 Elf_Internal_Ehdr * i_ehdrp;
4420 i_ehdrp = elf_elfheader (abfd);
4422 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4424 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4426 else
4428 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4432 /* Called when writing out an object file to decide the type of a
4433 symbol. */
4434 static int
4435 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4436 Elf_Internal_Sym *elf_sym;
4437 int type;
4439 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4440 return STT_PARISC_MILLI;
4441 else
4442 return type;
4445 /* Misc BFD support code. */
4446 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4447 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4448 #define elf_info_to_howto elf_hppa_info_to_howto
4449 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4451 /* Stuff for the BFD linker. */
4452 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4453 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4454 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4455 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4456 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4457 #define elf_backend_check_relocs elf32_hppa_check_relocs
4458 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4459 #define elf_backend_fake_sections elf_hppa_fake_sections
4460 #define elf_backend_relocate_section elf32_hppa_relocate_section
4461 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4462 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4463 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4464 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4465 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4466 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4467 #define elf_backend_object_p elf32_hppa_object_p
4468 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4469 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4470 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4471 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4473 #define elf_backend_can_gc_sections 1
4474 #define elf_backend_can_refcount 1
4475 #define elf_backend_plt_alignment 2
4476 #define elf_backend_want_got_plt 0
4477 #define elf_backend_plt_readonly 0
4478 #define elf_backend_want_plt_sym 0
4479 #define elf_backend_got_header_size 8
4481 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4482 #define TARGET_BIG_NAME "elf32-hppa"
4483 #define ELF_ARCH bfd_arch_hppa
4484 #define ELF_MACHINE_CODE EM_PARISC
4485 #define ELF_MAXPAGESIZE 0x1000
4487 #include "elf32-target.h"
4489 #undef TARGET_BIG_SYM
4490 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4491 #undef TARGET_BIG_NAME
4492 #define TARGET_BIG_NAME "elf32-hppa-linux"
4494 #define INCLUDED_TARGET_FILE 1
4495 #include "elf32-target.h"