1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
35 The linker uses three special entry points in the BFD target
36 vector. It is not necessary to write special routines for
37 these entry points when creating a new BFD back end, since
38 generic versions are provided. However, writing them can
39 speed up linking and make it use significantly less runtime
42 The first routine creates a hash table used by the other
43 routines. The second routine adds the symbols from an object
44 file to the hash table. The third routine takes all the
45 object files and links them together to create the output
46 file. These routines are designed so that the linker proper
47 does not need to know anything about the symbols in the object
48 files that it is linking. The linker merely arranges the
49 sections as directed by the linker script and lets BFD handle
50 the details of symbols and relocs.
52 The second routine and third routines are passed a pointer to
53 a <<struct bfd_link_info>> structure (defined in
54 <<bfdlink.h>>) which holds information relevant to the link,
55 including the linker hash table (which was created by the
56 first routine) and a set of callback functions to the linker
59 The generic linker routines are in <<linker.c>>, and use the
60 header file <<genlink.h>>. As of this writing, the only back
61 ends which have implemented versions of these routines are
62 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
63 routines are used as examples throughout this section.
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
74 Creating a linker hash table
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 The linker routines must create a hash table, which must be
79 derived from <<struct bfd_link_hash_table>> described in
80 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
81 create a derived hash table. This entry point is called using
82 the target vector of the linker output file.
84 The <<_bfd_link_hash_table_create>> entry point must allocate
85 and initialize an instance of the desired hash table. If the
86 back end does not require any additional information to be
87 stored with the entries in the hash table, the entry point may
88 simply create a <<struct bfd_link_hash_table>>. Most likely,
89 however, some additional information will be needed.
91 For example, with each entry in the hash table the a.out
92 linker keeps the index the symbol has in the final output file
93 (this index number is used so that when doing a relocatable
94 link the symbol index used in the output file can be quickly
95 filled in when copying over a reloc). The a.out linker code
96 defines the required structures and functions for a hash table
97 derived from <<struct bfd_link_hash_table>>. The a.out linker
98 hash table is created by the function
99 <<NAME(aout,link_hash_table_create)>>; it simply allocates
100 space for the hash table, initializes it, and returns a
103 When writing the linker routines for a new back end, you will
104 generally not know exactly which fields will be required until
105 you have finished. You should simply create a new hash table
106 which defines no additional fields, and then simply add fields
107 as they become necessary.
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
112 Adding symbols to the hash table
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 The linker proper will call the <<_bfd_link_add_symbols>>
117 entry point for each object file or archive which is to be
118 linked (typically these are the files named on the command
119 line, but some may also come from the linker script). The
120 entry point is responsible for examining the file. For an
121 object file, BFD must add any relevant symbol information to
122 the hash table. For an archive, BFD must determine which
123 elements of the archive should be used and adding them to the
126 The a.out version of this entry point is
127 <<NAME(aout,link_add_symbols)>>.
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
138 Differing file formats
140 Normally all the files involved in a link will be of the same
141 format, but it is also possible to link together different
142 format object files, and the back end must support that. The
143 <<_bfd_link_add_symbols>> entry point is called via the target
144 vector of the file to be added. This has an important
145 consequence: the function may not assume that the hash table
146 is the type created by the corresponding
147 <<_bfd_link_hash_table_create>> vector. All the
148 <<_bfd_link_add_symbols>> function can assume about the hash
149 table is that it is derived from <<struct
150 bfd_link_hash_table>>.
152 Sometimes the <<_bfd_link_add_symbols>> function must store
153 some information in the hash table entry to be used by the
154 <<_bfd_final_link>> function. In such a case the output bfd
155 xvec must be checked to make sure that the hash table was
156 created by an object file of the same format.
158 The <<_bfd_final_link>> routine must be prepared to handle a
159 hash entry without any extra information added by the
160 <<_bfd_link_add_symbols>> function. A hash entry without
161 extra information will also occur when the linker script
162 directs the linker to create a symbol. Note that, regardless
163 of how a hash table entry is added, all the fields will be
164 initialized to some sort of null value by the hash table entry
165 initialization function.
167 See <<ecoff_link_add_externals>> for an example of how to
168 check the output bfd before saving information (in this
169 case, the ECOFF external symbol debugging information) in a
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
175 Adding symbols from an object file
177 When the <<_bfd_link_add_symbols>> routine is passed an object
178 file, it must add all externally visible symbols in that
179 object file to the hash table. The actual work of adding the
180 symbol to the hash table is normally handled by the function
181 <<_bfd_generic_link_add_one_symbol>>. The
182 <<_bfd_link_add_symbols>> routine is responsible for reading
183 all the symbols from the object file and passing the correct
184 information to <<_bfd_generic_link_add_one_symbol>>.
186 The <<_bfd_link_add_symbols>> routine should not use
187 <<bfd_canonicalize_symtab>> to read the symbols. The point of
188 providing this routine is to avoid the overhead of converting
189 the symbols into generic <<asymbol>> structures.
191 @findex _bfd_generic_link_add_one_symbol
192 <<_bfd_generic_link_add_one_symbol>> handles the details of
193 combining common symbols, warning about multiple definitions,
194 and so forth. It takes arguments which describe the symbol to
195 add, notably symbol flags, a section, and an offset. The
196 symbol flags include such things as <<BSF_WEAK>> or
197 <<BSF_INDIRECT>>. The section is a section in the object
198 file, or something like <<bfd_und_section_ptr>> for an undefined
199 symbol or <<bfd_com_section_ptr>> for a common symbol.
201 If the <<_bfd_final_link>> routine is also going to need to
202 read the symbol information, the <<_bfd_link_add_symbols>>
203 routine should save it somewhere attached to the object file
204 BFD. However, the information should only be saved if the
205 <<keep_memory>> field of the <<info>> argument is TRUE, so
206 that the <<-no-keep-memory>> linker switch is effective.
208 The a.out function which adds symbols from an object file is
209 <<aout_link_add_object_symbols>>, and most of the interesting
210 work is in <<aout_link_add_symbols>>. The latter saves
211 pointers to the hash tables entries created by
212 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 so that the <<_bfd_final_link>> routine does not have to call
214 the hash table lookup routine to locate the entry.
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
219 Adding symbols from an archive
221 When the <<_bfd_link_add_symbols>> routine is passed an
222 archive, it must look through the symbols defined by the
223 archive and decide which elements of the archive should be
224 included in the link. For each such element it must call the
225 <<add_archive_element>> linker callback, and it must add the
226 symbols from the object file to the linker hash table.
228 @findex _bfd_generic_link_add_archive_symbols
229 In most cases the work of looking through the symbols in the
230 archive should be done by the
231 <<_bfd_generic_link_add_archive_symbols>> function. This
232 function builds a hash table from the archive symbol table and
233 looks through the list of undefined symbols to see which
234 elements should be included.
235 <<_bfd_generic_link_add_archive_symbols>> is passed a function
236 to call to make the final decision about adding an archive
237 element to the link and to do the actual work of adding the
238 symbols to the linker hash table.
240 The function passed to
241 <<_bfd_generic_link_add_archive_symbols>> must read the
242 symbols of the archive element and decide whether the archive
243 element should be included in the link. If the element is to
244 be included, the <<add_archive_element>> linker callback
245 routine must be called with the element as an argument, and
246 the elements symbols must be added to the linker hash table
247 just as though the element had itself been passed to the
248 <<_bfd_link_add_symbols>> function.
250 When the a.out <<_bfd_link_add_symbols>> function receives an
251 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
252 passing <<aout_link_check_archive_element>> as the function
253 argument. <<aout_link_check_archive_element>> calls
254 <<aout_link_check_ar_symbols>>. If the latter decides to add
255 the element (an element is only added if it provides a real,
256 non-common, definition for a previously undefined or common
257 symbol) it calls the <<add_archive_element>> callback and then
258 <<aout_link_check_archive_element>> calls
259 <<aout_link_add_symbols>> to actually add the symbols to the
262 The ECOFF back end is unusual in that it does not normally
263 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
264 archives already contain a hash table of symbols. The ECOFF
265 back end searches the archive itself to avoid the overhead of
266 creating a new hash table.
269 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
271 Performing the final link
273 @cindex _bfd_link_final_link in target vector
274 @cindex target vector (_bfd_final_link)
275 When all the input files have been processed, the linker calls
276 the <<_bfd_final_link>> entry point of the output BFD. This
277 routine is responsible for producing the final output file,
278 which has several aspects. It must relocate the contents of
279 the input sections and copy the data into the output sections.
280 It must build an output symbol table including any local
281 symbols from the input files and the global symbols from the
282 hash table. When producing relocatable output, it must
283 modify the input relocs and write them into the output file.
284 There may also be object format dependent work to be done.
286 The linker will also call the <<write_object_contents>> entry
287 point when the BFD is closed. The two entry points must work
288 together in order to produce the correct output file.
290 The details of how this works are inevitably dependent upon
291 the specific object file format. The a.out
292 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
295 @* Information provided by the linker::
296 @* Relocating the section contents::
297 @* Writing the symbol table::
301 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
303 Information provided by the linker
305 Before the linker calls the <<_bfd_final_link>> entry point,
306 it sets up some data structures for the function to use.
308 The <<input_bfds>> field of the <<bfd_link_info>> structure
309 will point to a list of all the input files included in the
310 link. These files are linked through the <<link_next>> field
311 of the <<bfd>> structure.
313 Each section in the output file will have a list of
314 <<link_order>> structures attached to the <<map_head.link_order>>
315 field (the <<link_order>> structure is defined in
316 <<bfdlink.h>>). These structures describe how to create the
317 contents of the output section in terms of the contents of
318 various input sections, fill constants, and, eventually, other
319 types of information. They also describe relocs that must be
320 created by the BFD backend, but do not correspond to any input
321 file; this is used to support -Ur, which builds constructors
322 while generating a relocatable object file.
325 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
327 Relocating the section contents
329 The <<_bfd_final_link>> function should look through the
330 <<link_order>> structures attached to each section of the
331 output file. Each <<link_order>> structure should either be
332 handled specially, or it should be passed to the function
333 <<_bfd_default_link_order>> which will do the right thing
334 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
336 For efficiency, a <<link_order>> of type
337 <<bfd_indirect_link_order>> whose associated section belongs
338 to a BFD of the same format as the output BFD must be handled
339 specially. This type of <<link_order>> describes part of an
340 output section in terms of a section belonging to one of the
341 input files. The <<_bfd_final_link>> function should read the
342 contents of the section and any associated relocs, apply the
343 relocs to the section contents, and write out the modified
344 section contents. If performing a relocatable link, the
345 relocs themselves must also be modified and written out.
347 @findex _bfd_relocate_contents
348 @findex _bfd_final_link_relocate
349 The functions <<_bfd_relocate_contents>> and
350 <<_bfd_final_link_relocate>> provide some general support for
351 performing the actual relocations, notably overflow checking.
352 Their arguments include information about the symbol the
353 relocation is against and a <<reloc_howto_type>> argument
354 which describes the relocation to perform. These functions
355 are defined in <<reloc.c>>.
357 The a.out function which handles reading, relocating, and
358 writing section contents is <<aout_link_input_section>>. The
359 actual relocation is done in <<aout_link_input_section_std>>
360 and <<aout_link_input_section_ext>>.
363 Writing the symbol table, , Relocating the section contents, Performing the Final Link
365 Writing the symbol table
367 The <<_bfd_final_link>> function must gather all the symbols
368 in the input files and write them out. It must also write out
369 all the symbols in the global hash table. This must be
370 controlled by the <<strip>> and <<discard>> fields of the
371 <<bfd_link_info>> structure.
373 The local symbols of the input files will not have been
374 entered into the linker hash table. The <<_bfd_final_link>>
375 routine must consider each input file and include the symbols
376 in the output file. It may be convenient to do this when
377 looking through the <<link_order>> structures, or it may be
378 done by stepping through the <<input_bfds>> list.
380 The <<_bfd_final_link>> routine must also traverse the global
381 hash table to gather all the externally visible symbols. It
382 is possible that most of the externally visible symbols may be
383 written out when considering the symbols of each input file,
384 but it is still necessary to traverse the hash table since the
385 linker script may have defined some symbols that are not in
386 any of the input files.
388 The <<strip>> field of the <<bfd_link_info>> structure
389 controls which symbols are written out. The possible values
390 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
391 then the <<keep_hash>> field of the <<bfd_link_info>>
392 structure is a hash table of symbols to keep; each symbol
393 should be looked up in this hash table, and only symbols which
394 are present should be included in the output file.
396 If the <<strip>> field of the <<bfd_link_info>> structure
397 permits local symbols to be written out, the <<discard>> field
398 is used to further controls which local symbols are included
399 in the output file. If the value is <<discard_l>>, then all
400 local symbols which begin with a certain prefix are discarded;
401 this is controlled by the <<bfd_is_local_label_name>> entry point.
403 The a.out backend handles symbols by calling
404 <<aout_link_write_symbols>> on each input BFD and then
405 traversing the global hash table with the function
406 <<aout_link_write_other_symbol>>. It builds a string table
407 while writing out the symbols, which is written to the output
408 file at the end of <<NAME(aout,final_link)>>.
411 static bfd_boolean generic_link_add_object_symbols
412 (bfd
*, struct bfd_link_info
*, bfd_boolean collect
);
413 static bfd_boolean generic_link_add_symbols
414 (bfd
*, struct bfd_link_info
*, bfd_boolean
);
415 static bfd_boolean generic_link_check_archive_element_no_collect
416 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
417 static bfd_boolean generic_link_check_archive_element_collect
418 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
419 static bfd_boolean generic_link_check_archive_element
420 (bfd
*, struct bfd_link_info
*, bfd_boolean
*, bfd_boolean
);
421 static bfd_boolean generic_link_add_symbol_list
422 (bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
424 static bfd_boolean generic_add_output_symbol
425 (bfd
*, size_t *psymalloc
, asymbol
*);
426 static bfd_boolean default_data_link_order
427 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*);
428 static bfd_boolean default_indirect_link_order
429 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*,
432 /* The link hash table structure is defined in bfdlink.h. It provides
433 a base hash table which the backend specific hash tables are built
436 /* Routine to create an entry in the link hash table. */
438 struct bfd_hash_entry
*
439 _bfd_link_hash_newfunc (struct bfd_hash_entry
*entry
,
440 struct bfd_hash_table
*table
,
443 /* Allocate the structure if it has not already been allocated by a
447 entry
= (struct bfd_hash_entry
*)
448 bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
453 /* Call the allocation method of the superclass. */
454 entry
= bfd_hash_newfunc (entry
, table
, string
);
457 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
459 /* Initialize the local fields. */
460 h
->type
= bfd_link_hash_new
;
461 memset (&h
->u
.undef
.next
, 0,
462 (sizeof (struct bfd_link_hash_entry
)
463 - offsetof (struct bfd_link_hash_entry
, u
.undef
.next
)));
469 /* Initialize a link hash table. The BFD argument is the one
470 responsible for creating this table. */
473 _bfd_link_hash_table_init
474 (struct bfd_link_hash_table
*table
,
475 bfd
*abfd ATTRIBUTE_UNUSED
,
476 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
477 struct bfd_hash_table
*,
479 unsigned int entsize
)
481 table
->undefs
= NULL
;
482 table
->undefs_tail
= NULL
;
483 table
->type
= bfd_link_generic_hash_table
;
485 return bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
488 /* Look up a symbol in a link hash table. If follow is TRUE, we
489 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
492 struct bfd_link_hash_entry
*
493 bfd_link_hash_lookup (struct bfd_link_hash_table
*table
,
499 struct bfd_link_hash_entry
*ret
;
501 ret
= ((struct bfd_link_hash_entry
*)
502 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
504 if (follow
&& ret
!= NULL
)
506 while (ret
->type
== bfd_link_hash_indirect
507 || ret
->type
== bfd_link_hash_warning
)
514 /* Look up a symbol in the main linker hash table if the symbol might
515 be wrapped. This should only be used for references to an
516 undefined symbol, not for definitions of a symbol. */
518 struct bfd_link_hash_entry
*
519 bfd_wrapped_link_hash_lookup (bfd
*abfd
,
520 struct bfd_link_info
*info
,
528 if (info
->wrap_hash
!= NULL
)
534 if (*l
== bfd_get_symbol_leading_char (abfd
) || *l
== info
->wrap_char
)
541 #define WRAP "__wrap_"
543 if (bfd_hash_lookup (info
->wrap_hash
, l
, FALSE
, FALSE
) != NULL
)
546 struct bfd_link_hash_entry
*h
;
548 /* This symbol is being wrapped. We want to replace all
549 references to SYM with references to __wrap_SYM. */
551 amt
= strlen (l
) + sizeof WRAP
+ 1;
552 n
= (char *) bfd_malloc (amt
);
560 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
568 #define REAL "__real_"
571 && CONST_STRNEQ (l
, REAL
)
572 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
573 FALSE
, FALSE
) != NULL
)
576 struct bfd_link_hash_entry
*h
;
578 /* This is a reference to __real_SYM, where SYM is being
579 wrapped. We want to replace all references to __real_SYM
580 with references to SYM. */
582 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
583 n
= (char *) bfd_malloc (amt
);
589 strcat (n
, l
+ sizeof REAL
- 1);
590 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
598 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
601 /* Traverse a generic link hash table. The only reason this is not a
602 macro is to do better type checking. This code presumes that an
603 argument passed as a struct bfd_hash_entry * may be caught as a
604 struct bfd_link_hash_entry * with no explicit cast required on the
608 bfd_link_hash_traverse
609 (struct bfd_link_hash_table
*table
,
610 bfd_boolean (*func
) (struct bfd_link_hash_entry
*, void *),
613 bfd_hash_traverse (&table
->table
,
614 (bfd_boolean (*) (struct bfd_hash_entry
*, void *)) func
,
618 /* Add a symbol to the linker hash table undefs list. */
621 bfd_link_add_undef (struct bfd_link_hash_table
*table
,
622 struct bfd_link_hash_entry
*h
)
624 BFD_ASSERT (h
->u
.undef
.next
== NULL
);
625 if (table
->undefs_tail
!= NULL
)
626 table
->undefs_tail
->u
.undef
.next
= h
;
627 if (table
->undefs
== NULL
)
629 table
->undefs_tail
= h
;
632 /* The undefs list was designed so that in normal use we don't need to
633 remove entries. However, if symbols on the list are changed from
634 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
635 bfd_link_hash_new for some reason, then they must be removed from the
636 list. Failure to do so might result in the linker attempting to add
637 the symbol to the list again at a later stage. */
640 bfd_link_repair_undef_list (struct bfd_link_hash_table
*table
)
642 struct bfd_link_hash_entry
**pun
;
644 pun
= &table
->undefs
;
647 struct bfd_link_hash_entry
*h
= *pun
;
649 if (h
->type
== bfd_link_hash_new
650 || h
->type
== bfd_link_hash_undefweak
)
652 *pun
= h
->u
.undef
.next
;
653 h
->u
.undef
.next
= NULL
;
654 if (h
== table
->undefs_tail
)
656 if (pun
== &table
->undefs
)
657 table
->undefs_tail
= NULL
;
659 /* pun points at an u.undef.next field. Go back to
660 the start of the link_hash_entry. */
661 table
->undefs_tail
= (struct bfd_link_hash_entry
*)
662 ((char *) pun
- ((char *) &h
->u
.undef
.next
- (char *) h
));
667 pun
= &h
->u
.undef
.next
;
671 /* Routine to create an entry in a generic link hash table. */
673 struct bfd_hash_entry
*
674 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry
*entry
,
675 struct bfd_hash_table
*table
,
678 /* Allocate the structure if it has not already been allocated by a
682 entry
= (struct bfd_hash_entry
*)
683 bfd_hash_allocate (table
, sizeof (struct generic_link_hash_entry
));
688 /* Call the allocation method of the superclass. */
689 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
692 struct generic_link_hash_entry
*ret
;
694 /* Set local fields. */
695 ret
= (struct generic_link_hash_entry
*) entry
;
696 ret
->written
= FALSE
;
703 /* Create a generic link hash table. */
705 struct bfd_link_hash_table
*
706 _bfd_generic_link_hash_table_create (bfd
*abfd
)
708 struct generic_link_hash_table
*ret
;
709 bfd_size_type amt
= sizeof (struct generic_link_hash_table
);
711 ret
= (struct generic_link_hash_table
*) bfd_malloc (amt
);
714 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
715 _bfd_generic_link_hash_newfunc
,
716 sizeof (struct generic_link_hash_entry
)))
725 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table
*hash
)
727 struct generic_link_hash_table
*ret
728 = (struct generic_link_hash_table
*) hash
;
730 bfd_hash_table_free (&ret
->root
.table
);
734 /* Grab the symbols for an object file when doing a generic link. We
735 store the symbols in the outsymbols field. We need to keep them
736 around for the entire link to ensure that we only read them once.
737 If we read them multiple times, we might wind up with relocs and
738 the hash table pointing to different instances of the symbol
742 bfd_generic_link_read_symbols (bfd
*abfd
)
744 if (bfd_get_outsymbols (abfd
) == NULL
)
749 symsize
= bfd_get_symtab_upper_bound (abfd
);
752 bfd_get_outsymbols (abfd
) = (struct bfd_symbol
**) bfd_alloc (abfd
,
754 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
756 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
759 bfd_get_symcount (abfd
) = symcount
;
765 /* Generic function to add symbols to from an object file to the
766 global hash table. This version does not automatically collect
767 constructors by name. */
770 _bfd_generic_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
772 return generic_link_add_symbols (abfd
, info
, FALSE
);
775 /* Generic function to add symbols from an object file to the global
776 hash table. This version automatically collects constructors by
777 name, as the collect2 program does. It should be used for any
778 target which does not provide some other mechanism for setting up
779 constructors and destructors; these are approximately those targets
780 for which gcc uses collect2 and do not support stabs. */
783 _bfd_generic_link_add_symbols_collect (bfd
*abfd
, struct bfd_link_info
*info
)
785 return generic_link_add_symbols (abfd
, info
, TRUE
);
788 /* Indicate that we are only retrieving symbol values from this
789 section. We want the symbols to act as though the values in the
790 file are absolute. */
793 _bfd_generic_link_just_syms (asection
*sec
,
794 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
796 sec
->output_section
= bfd_abs_section_ptr
;
797 sec
->output_offset
= sec
->vma
;
800 /* Add symbols from an object file to the global hash table. */
803 generic_link_add_symbols (bfd
*abfd
,
804 struct bfd_link_info
*info
,
809 switch (bfd_get_format (abfd
))
812 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
815 ret
= (_bfd_generic_link_add_archive_symbols
818 ? generic_link_check_archive_element_collect
819 : generic_link_check_archive_element_no_collect
)));
822 bfd_set_error (bfd_error_wrong_format
);
829 /* Add symbols from an object file to the global hash table. */
832 generic_link_add_object_symbols (bfd
*abfd
,
833 struct bfd_link_info
*info
,
836 bfd_size_type symcount
;
837 struct bfd_symbol
**outsyms
;
839 if (!bfd_generic_link_read_symbols (abfd
))
841 symcount
= _bfd_generic_link_get_symcount (abfd
);
842 outsyms
= _bfd_generic_link_get_symbols (abfd
);
843 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
, collect
);
846 /* We build a hash table of all symbols defined in an archive. */
848 /* An archive symbol may be defined by multiple archive elements.
849 This linked list is used to hold the elements. */
853 struct archive_list
*next
;
857 /* An entry in an archive hash table. */
859 struct archive_hash_entry
861 struct bfd_hash_entry root
;
862 /* Where the symbol is defined. */
863 struct archive_list
*defs
;
866 /* An archive hash table itself. */
868 struct archive_hash_table
870 struct bfd_hash_table table
;
873 /* Create a new entry for an archive hash table. */
875 static struct bfd_hash_entry
*
876 archive_hash_newfunc (struct bfd_hash_entry
*entry
,
877 struct bfd_hash_table
*table
,
880 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
882 /* Allocate the structure if it has not already been allocated by a
885 ret
= (struct archive_hash_entry
*)
886 bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
));
890 /* Call the allocation method of the superclass. */
891 ret
= ((struct archive_hash_entry
*)
892 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
896 /* Initialize the local fields. */
903 /* Initialize an archive hash table. */
906 archive_hash_table_init
907 (struct archive_hash_table
*table
,
908 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
909 struct bfd_hash_table
*,
911 unsigned int entsize
)
913 return bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
916 /* Look up an entry in an archive hash table. */
918 #define archive_hash_lookup(t, string, create, copy) \
919 ((struct archive_hash_entry *) \
920 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
922 /* Allocate space in an archive hash table. */
924 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
926 /* Free an archive hash table. */
928 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
930 /* Generic function to add symbols from an archive file to the global
931 hash file. This function presumes that the archive symbol table
932 has already been read in (this is normally done by the
933 bfd_check_format entry point). It looks through the undefined and
934 common symbols and searches the archive symbol table for them. If
935 it finds an entry, it includes the associated object file in the
938 The old linker looked through the archive symbol table for
939 undefined symbols. We do it the other way around, looking through
940 undefined symbols for symbols defined in the archive. The
941 advantage of the newer scheme is that we only have to look through
942 the list of undefined symbols once, whereas the old method had to
943 re-search the symbol table each time a new object file was added.
945 The CHECKFN argument is used to see if an object file should be
946 included. CHECKFN should set *PNEEDED to TRUE if the object file
947 should be included, and must also call the bfd_link_info
948 add_archive_element callback function and handle adding the symbols
949 to the global hash table. CHECKFN should only return FALSE if some
950 sort of error occurs.
952 For some formats, such as a.out, it is possible to look through an
953 object file but not actually include it in the link. The
954 archive_pass field in a BFD is used to avoid checking the symbols
955 of an object files too many times. When an object is included in
956 the link, archive_pass is set to -1. If an object is scanned but
957 not included, archive_pass is set to the pass number. The pass
958 number is incremented each time a new object file is included. The
959 pass number is used because when a new object file is included it
960 may create new undefined symbols which cause a previously examined
961 object file to be included. */
964 _bfd_generic_link_add_archive_symbols
966 struct bfd_link_info
*info
,
967 bfd_boolean (*checkfn
) (bfd
*, struct bfd_link_info
*, bfd_boolean
*))
971 register carsym
*arsym
;
973 struct archive_hash_table arsym_hash
;
975 struct bfd_link_hash_entry
**pundef
;
977 if (! bfd_has_map (abfd
))
979 /* An empty archive is a special case. */
980 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
982 bfd_set_error (bfd_error_no_armap
);
986 arsyms
= bfd_ardata (abfd
)->symdefs
;
987 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
989 /* In order to quickly determine whether an symbol is defined in
990 this archive, we build a hash table of the symbols. */
991 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
,
992 sizeof (struct archive_hash_entry
)))
994 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
996 struct archive_hash_entry
*arh
;
997 struct archive_list
*l
, **pp
;
999 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, TRUE
, FALSE
);
1002 l
= ((struct archive_list
*)
1003 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
1007 for (pp
= &arh
->defs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1013 /* The archive_pass field in the archive itself is used to
1014 initialize PASS, sine we may search the same archive multiple
1016 pass
= abfd
->archive_pass
+ 1;
1018 /* New undefined symbols are added to the end of the list, so we
1019 only need to look through it once. */
1020 pundef
= &info
->hash
->undefs
;
1021 while (*pundef
!= NULL
)
1023 struct bfd_link_hash_entry
*h
;
1024 struct archive_hash_entry
*arh
;
1025 struct archive_list
*l
;
1029 /* When a symbol is defined, it is not necessarily removed from
1031 if (h
->type
!= bfd_link_hash_undefined
1032 && h
->type
!= bfd_link_hash_common
)
1034 /* Remove this entry from the list, for general cleanliness
1035 and because we are going to look through the list again
1036 if we search any more libraries. We can't remove the
1037 entry if it is the tail, because that would lose any
1038 entries we add to the list later on (it would also cause
1039 us to lose track of whether the symbol has been
1041 if (*pundef
!= info
->hash
->undefs_tail
)
1042 *pundef
= (*pundef
)->u
.undef
.next
;
1044 pundef
= &(*pundef
)->u
.undef
.next
;
1048 /* Look for this symbol in the archive symbol map. */
1049 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, FALSE
, FALSE
);
1052 /* If we haven't found the exact symbol we're looking for,
1053 let's look for its import thunk */
1054 if (info
->pei386_auto_import
)
1056 bfd_size_type amt
= strlen (h
->root
.string
) + 10;
1057 char *buf
= (char *) bfd_malloc (amt
);
1061 sprintf (buf
, "__imp_%s", h
->root
.string
);
1062 arh
= archive_hash_lookup (&arsym_hash
, buf
, FALSE
, FALSE
);
1067 pundef
= &(*pundef
)->u
.undef
.next
;
1071 /* Look at all the objects which define this symbol. */
1072 for (l
= arh
->defs
; l
!= NULL
; l
= l
->next
)
1077 /* If the symbol has gotten defined along the way, quit. */
1078 if (h
->type
!= bfd_link_hash_undefined
1079 && h
->type
!= bfd_link_hash_common
)
1082 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1083 if (element
== NULL
)
1086 /* If we've already included this element, or if we've
1087 already checked it on this pass, continue. */
1088 if (element
->archive_pass
== -1
1089 || element
->archive_pass
== pass
)
1092 /* If we can't figure this element out, just ignore it. */
1093 if (! bfd_check_format (element
, bfd_object
))
1095 element
->archive_pass
= -1;
1099 /* CHECKFN will see if this element should be included, and
1100 go ahead and include it if appropriate. */
1101 if (! (*checkfn
) (element
, info
, &needed
))
1105 element
->archive_pass
= pass
;
1108 element
->archive_pass
= -1;
1110 /* Increment the pass count to show that we may need to
1111 recheck object files which were already checked. */
1116 pundef
= &(*pundef
)->u
.undef
.next
;
1119 archive_hash_table_free (&arsym_hash
);
1121 /* Save PASS in case we are called again. */
1122 abfd
->archive_pass
= pass
;
1127 archive_hash_table_free (&arsym_hash
);
1131 /* See if we should include an archive element. This version is used
1132 when we do not want to automatically collect constructors based on
1133 the symbol name, presumably because we have some other mechanism
1134 for finding them. */
1137 generic_link_check_archive_element_no_collect (
1139 struct bfd_link_info
*info
,
1140 bfd_boolean
*pneeded
)
1142 return generic_link_check_archive_element (abfd
, info
, pneeded
, FALSE
);
1145 /* See if we should include an archive element. This version is used
1146 when we want to automatically collect constructors based on the
1147 symbol name, as collect2 does. */
1150 generic_link_check_archive_element_collect (bfd
*abfd
,
1151 struct bfd_link_info
*info
,
1152 bfd_boolean
*pneeded
)
1154 return generic_link_check_archive_element (abfd
, info
, pneeded
, TRUE
);
1157 /* See if we should include an archive element. Optionally collect
1161 generic_link_check_archive_element (bfd
*abfd
,
1162 struct bfd_link_info
*info
,
1163 bfd_boolean
*pneeded
,
1164 bfd_boolean collect
)
1166 asymbol
**pp
, **ppend
;
1170 if (!bfd_generic_link_read_symbols (abfd
))
1173 pp
= _bfd_generic_link_get_symbols (abfd
);
1174 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1175 for (; pp
< ppend
; pp
++)
1178 struct bfd_link_hash_entry
*h
;
1182 /* We are only interested in globally visible symbols. */
1183 if (! bfd_is_com_section (p
->section
)
1184 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1187 /* We are only interested if we know something about this
1188 symbol, and it is undefined or common. An undefined weak
1189 symbol (type bfd_link_hash_undefweak) is not considered to be
1190 a reference when pulling files out of an archive. See the
1191 SVR4 ABI, p. 4-27. */
1192 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), FALSE
,
1195 || (h
->type
!= bfd_link_hash_undefined
1196 && h
->type
!= bfd_link_hash_common
))
1199 /* P is a symbol we are looking for. */
1201 if (! bfd_is_com_section (p
->section
))
1203 bfd_size_type symcount
;
1206 /* This object file defines this symbol, so pull it in. */
1207 if (! (*info
->callbacks
->add_archive_element
) (info
, abfd
,
1208 bfd_asymbol_name (p
)))
1210 symcount
= _bfd_generic_link_get_symcount (abfd
);
1211 symbols
= _bfd_generic_link_get_symbols (abfd
);
1212 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1219 /* P is a common symbol. */
1221 if (h
->type
== bfd_link_hash_undefined
)
1227 symbfd
= h
->u
.undef
.abfd
;
1230 /* This symbol was created as undefined from outside
1231 BFD. We assume that we should link in the object
1232 file. This is for the -u option in the linker. */
1233 if (! (*info
->callbacks
->add_archive_element
)
1234 (info
, abfd
, bfd_asymbol_name (p
)))
1240 /* Turn the symbol into a common symbol but do not link in
1241 the object file. This is how a.out works. Object
1242 formats that require different semantics must implement
1243 this function differently. This symbol is already on the
1244 undefs list. We add the section to a common section
1245 attached to symbfd to ensure that it is in a BFD which
1246 will be linked in. */
1247 h
->type
= bfd_link_hash_common
;
1248 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1249 bfd_hash_allocate (&info
->hash
->table
,
1250 sizeof (struct bfd_link_hash_common_entry
));
1251 if (h
->u
.c
.p
== NULL
)
1254 size
= bfd_asymbol_value (p
);
1257 power
= bfd_log2 (size
);
1260 h
->u
.c
.p
->alignment_power
= power
;
1262 if (p
->section
== bfd_com_section_ptr
)
1263 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1265 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1267 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1271 /* Adjust the size of the common symbol if necessary. This
1272 is how a.out works. Object formats that require
1273 different semantics must implement this function
1275 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1276 h
->u
.c
.size
= bfd_asymbol_value (p
);
1280 /* This archive element is not needed. */
1284 /* Add the symbols from an object file to the global hash table. ABFD
1285 is the object file. INFO is the linker information. SYMBOL_COUNT
1286 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1287 is TRUE if constructors should be automatically collected by name
1288 as is done by collect2. */
1291 generic_link_add_symbol_list (bfd
*abfd
,
1292 struct bfd_link_info
*info
,
1293 bfd_size_type symbol_count
,
1295 bfd_boolean collect
)
1297 asymbol
**pp
, **ppend
;
1300 ppend
= symbols
+ symbol_count
;
1301 for (; pp
< ppend
; pp
++)
1307 if ((p
->flags
& (BSF_INDIRECT
1312 || bfd_is_und_section (bfd_get_section (p
))
1313 || bfd_is_com_section (bfd_get_section (p
))
1314 || bfd_is_ind_section (bfd_get_section (p
)))
1318 struct generic_link_hash_entry
*h
;
1319 struct bfd_link_hash_entry
*bh
;
1321 string
= name
= bfd_asymbol_name (p
);
1322 if (((p
->flags
& BSF_INDIRECT
) != 0
1323 || bfd_is_ind_section (p
->section
))
1327 string
= bfd_asymbol_name (*pp
);
1329 else if ((p
->flags
& BSF_WARNING
) != 0
1332 /* The name of P is actually the warning string, and the
1333 next symbol is the one to warn about. */
1335 name
= bfd_asymbol_name (*pp
);
1339 if (! (_bfd_generic_link_add_one_symbol
1340 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1341 p
->value
, string
, FALSE
, collect
, &bh
)))
1343 h
= (struct generic_link_hash_entry
*) bh
;
1345 /* If this is a constructor symbol, and the linker didn't do
1346 anything with it, then we want to just pass the symbol
1347 through to the output file. This will happen when
1349 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1350 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1356 /* Save the BFD symbol so that we don't lose any backend
1357 specific information that may be attached to it. We only
1358 want this one if it gives more information than the
1359 existing one; we don't want to replace a defined symbol
1360 with an undefined one. This routine may be called with a
1361 hash table other than the generic hash table, so we only
1362 do this if we are certain that the hash table is a
1364 if (info
->output_bfd
->xvec
== abfd
->xvec
)
1367 || (! bfd_is_und_section (bfd_get_section (p
))
1368 && (! bfd_is_com_section (bfd_get_section (p
))
1369 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1372 /* BSF_OLD_COMMON is a hack to support COFF reloc
1373 reading, and it should go away when the COFF
1374 linker is switched to the new version. */
1375 if (bfd_is_com_section (bfd_get_section (p
)))
1376 p
->flags
|= BSF_OLD_COMMON
;
1380 /* Store a back pointer from the symbol to the hash
1381 table entry for the benefit of relaxation code until
1382 it gets rewritten to not use asymbol structures.
1383 Setting this is also used to check whether these
1384 symbols were set up by the generic linker. */
1392 /* We use a state table to deal with adding symbols from an object
1393 file. The first index into the state table describes the symbol
1394 from the object file. The second index into the state table is the
1395 type of the symbol in the hash table. */
1397 /* The symbol from the object file is turned into one of these row
1402 UNDEF_ROW
, /* Undefined. */
1403 UNDEFW_ROW
, /* Weak undefined. */
1404 DEF_ROW
, /* Defined. */
1405 DEFW_ROW
, /* Weak defined. */
1406 COMMON_ROW
, /* Common. */
1407 INDR_ROW
, /* Indirect. */
1408 WARN_ROW
, /* Warning. */
1409 SET_ROW
/* Member of set. */
1412 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1415 /* The actions to take in the state table. */
1420 UND
, /* Mark symbol undefined. */
1421 WEAK
, /* Mark symbol weak undefined. */
1422 DEF
, /* Mark symbol defined. */
1423 DEFW
, /* Mark symbol weak defined. */
1424 COM
, /* Mark symbol common. */
1425 REF
, /* Mark defined symbol referenced. */
1426 CREF
, /* Possibly warn about common reference to defined symbol. */
1427 CDEF
, /* Define existing common symbol. */
1428 NOACT
, /* No action. */
1429 BIG
, /* Mark symbol common using largest size. */
1430 MDEF
, /* Multiple definition error. */
1431 MIND
, /* Multiple indirect symbols. */
1432 IND
, /* Make indirect symbol. */
1433 CIND
, /* Make indirect symbol from existing common symbol. */
1434 SET
, /* Add value to set. */
1435 MWARN
, /* Make warning symbol. */
1436 WARN
, /* Issue warning. */
1437 CWARN
, /* Warn if referenced, else MWARN. */
1438 CYCLE
, /* Repeat with symbol pointed to. */
1439 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1440 WARNC
/* Issue warning and then CYCLE. */
1443 /* The state table itself. The first index is a link_row and the
1444 second index is a bfd_link_hash_type. */
1446 static const enum link_action link_action
[8][8] =
1448 /* current\prev new undef undefw def defw com indr warn */
1449 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1450 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1451 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1452 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1453 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1454 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1455 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, NOACT
},
1456 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1459 /* Most of the entries in the LINK_ACTION table are straightforward,
1460 but a few are somewhat subtle.
1462 A reference to an indirect symbol (UNDEF_ROW/indr or
1463 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1464 symbol and to the symbol the indirect symbol points to.
1466 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1467 causes the warning to be issued.
1469 A common definition of an indirect symbol (COMMON_ROW/indr) is
1470 treated as a multiple definition error. Likewise for an indirect
1471 definition of a common symbol (INDR_ROW/com).
1473 An indirect definition of a warning (INDR_ROW/warn) does not cause
1474 the warning to be issued.
1476 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1477 warning is created for the symbol the indirect symbol points to.
1479 Adding an entry to a set does not count as a reference to a set,
1480 and no warning is issued (SET_ROW/warn). */
1482 /* Return the BFD in which a hash entry has been defined, if known. */
1485 hash_entry_bfd (struct bfd_link_hash_entry
*h
)
1487 while (h
->type
== bfd_link_hash_warning
)
1493 case bfd_link_hash_undefined
:
1494 case bfd_link_hash_undefweak
:
1495 return h
->u
.undef
.abfd
;
1496 case bfd_link_hash_defined
:
1497 case bfd_link_hash_defweak
:
1498 return h
->u
.def
.section
->owner
;
1499 case bfd_link_hash_common
:
1500 return h
->u
.c
.p
->section
->owner
;
1505 /* Add a symbol to the global hash table.
1506 ABFD is the BFD the symbol comes from.
1507 NAME is the name of the symbol.
1508 FLAGS is the BSF_* bits associated with the symbol.
1509 SECTION is the section in which the symbol is defined; this may be
1510 bfd_und_section_ptr or bfd_com_section_ptr.
1511 VALUE is the value of the symbol, relative to the section.
1512 STRING is used for either an indirect symbol, in which case it is
1513 the name of the symbol to indirect to, or a warning symbol, in
1514 which case it is the warning string.
1515 COPY is TRUE if NAME or STRING must be copied into locally
1516 allocated memory if they need to be saved.
1517 COLLECT is TRUE if we should automatically collect gcc constructor
1518 or destructor names as collect2 does.
1519 HASHP, if not NULL, is a place to store the created hash table
1520 entry; if *HASHP is not NULL, the caller has already looked up
1521 the hash table entry, and stored it in *HASHP. */
1524 _bfd_generic_link_add_one_symbol (struct bfd_link_info
*info
,
1532 bfd_boolean collect
,
1533 struct bfd_link_hash_entry
**hashp
)
1536 struct bfd_link_hash_entry
*h
;
1539 if (bfd_is_ind_section (section
)
1540 || (flags
& BSF_INDIRECT
) != 0)
1542 else if ((flags
& BSF_WARNING
) != 0)
1544 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1546 else if (bfd_is_und_section (section
))
1548 if ((flags
& BSF_WEAK
) != 0)
1553 else if ((flags
& BSF_WEAK
) != 0)
1555 else if (bfd_is_com_section (section
))
1560 if (hashp
!= NULL
&& *hashp
!= NULL
)
1564 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1565 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, copy
, FALSE
);
1567 h
= bfd_link_hash_lookup (info
->hash
, name
, TRUE
, copy
, FALSE
);
1576 if (info
->notice_all
1577 || (info
->notice_hash
!= NULL
1578 && bfd_hash_lookup (info
->notice_hash
, name
, FALSE
, FALSE
) != NULL
))
1580 if (! (*info
->callbacks
->notice
) (info
, h
->root
.string
, abfd
, section
,
1590 enum link_action action
;
1593 action
= link_action
[(int) row
][(int) h
->type
];
1604 /* Make a new undefined symbol. */
1605 h
->type
= bfd_link_hash_undefined
;
1606 h
->u
.undef
.abfd
= abfd
;
1607 bfd_link_add_undef (info
->hash
, h
);
1611 /* Make a new weak undefined symbol. */
1612 h
->type
= bfd_link_hash_undefweak
;
1613 h
->u
.undef
.abfd
= abfd
;
1614 h
->u
.undef
.weak
= abfd
;
1618 /* We have found a definition for a symbol which was
1619 previously common. */
1620 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1621 if (! ((*info
->callbacks
->multiple_common
)
1622 (info
, h
->root
.string
,
1623 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1624 abfd
, bfd_link_hash_defined
, 0)))
1630 enum bfd_link_hash_type oldtype
;
1632 /* Define a symbol. */
1635 h
->type
= bfd_link_hash_defweak
;
1637 h
->type
= bfd_link_hash_defined
;
1638 h
->u
.def
.section
= section
;
1639 h
->u
.def
.value
= value
;
1641 /* If we have been asked to, we act like collect2 and
1642 identify all functions that might be global
1643 constructors and destructors and pass them up in a
1644 callback. We only do this for certain object file
1645 types, since many object file types can handle this
1647 if (collect
&& name
[0] == '_')
1651 /* A constructor or destructor name starts like this:
1652 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1653 the second are the same character (we accept any
1654 character there, in case a new object file format
1655 comes along with even worse naming restrictions). */
1657 #define CONS_PREFIX "GLOBAL_"
1658 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1663 if (s
[0] == 'G' && CONST_STRNEQ (s
, CONS_PREFIX
))
1667 c
= s
[CONS_PREFIX_LEN
+ 1];
1668 if ((c
== 'I' || c
== 'D')
1669 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1671 /* If this is a definition of a symbol which
1672 was previously weakly defined, we are in
1673 trouble. We have already added a
1674 constructor entry for the weak defined
1675 symbol, and now we are trying to add one
1676 for the new symbol. Fortunately, this case
1677 should never arise in practice. */
1678 if (oldtype
== bfd_link_hash_defweak
)
1681 if (! ((*info
->callbacks
->constructor
)
1683 h
->root
.string
, abfd
, section
, value
)))
1693 /* We have found a common definition for a symbol. */
1694 if (h
->type
== bfd_link_hash_new
)
1695 bfd_link_add_undef (info
->hash
, h
);
1696 h
->type
= bfd_link_hash_common
;
1697 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1698 bfd_hash_allocate (&info
->hash
->table
,
1699 sizeof (struct bfd_link_hash_common_entry
));
1700 if (h
->u
.c
.p
== NULL
)
1703 h
->u
.c
.size
= value
;
1705 /* Select a default alignment based on the size. This may
1706 be overridden by the caller. */
1710 power
= bfd_log2 (value
);
1713 h
->u
.c
.p
->alignment_power
= power
;
1716 /* The section of a common symbol is only used if the common
1717 symbol is actually allocated. It basically provides a
1718 hook for the linker script to decide which output section
1719 the common symbols should be put in. In most cases, the
1720 section of a common symbol will be bfd_com_section_ptr,
1721 the code here will choose a common symbol section named
1722 "COMMON", and the linker script will contain *(COMMON) in
1723 the appropriate place. A few targets use separate common
1724 sections for small symbols, and they require special
1726 if (section
== bfd_com_section_ptr
)
1728 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1729 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1731 else if (section
->owner
!= abfd
)
1733 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1735 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1738 h
->u
.c
.p
->section
= section
;
1742 /* A reference to a defined symbol. */
1743 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1744 h
->u
.undef
.next
= h
;
1748 /* We have found a common definition for a symbol which
1749 already had a common definition. Use the maximum of the
1750 two sizes, and use the section required by the larger symbol. */
1751 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1752 if (! ((*info
->callbacks
->multiple_common
)
1753 (info
, h
->root
.string
,
1754 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1755 abfd
, bfd_link_hash_common
, value
)))
1757 if (value
> h
->u
.c
.size
)
1761 h
->u
.c
.size
= value
;
1763 /* Select a default alignment based on the size. This may
1764 be overridden by the caller. */
1765 power
= bfd_log2 (value
);
1768 h
->u
.c
.p
->alignment_power
= power
;
1770 /* Some systems have special treatment for small commons,
1771 hence we want to select the section used by the larger
1772 symbol. This makes sure the symbol does not go in a
1773 small common section if it is now too large. */
1774 if (section
== bfd_com_section_ptr
)
1777 = bfd_make_section_old_way (abfd
, "COMMON");
1778 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1780 else if (section
->owner
!= abfd
)
1783 = bfd_make_section_old_way (abfd
, section
->name
);
1784 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1787 h
->u
.c
.p
->section
= section
;
1795 /* We have found a common definition for a symbol which
1796 was already defined. FIXME: It would nice if we could
1797 report the BFD which defined an indirect symbol, but we
1798 don't have anywhere to store the information. */
1799 if (h
->type
== bfd_link_hash_defined
1800 || h
->type
== bfd_link_hash_defweak
)
1801 obfd
= h
->u
.def
.section
->owner
;
1804 if (! ((*info
->callbacks
->multiple_common
)
1805 (info
, h
->root
.string
, obfd
, h
->type
, 0,
1806 abfd
, bfd_link_hash_common
, value
)))
1812 /* Multiple indirect symbols. This is OK if they both point
1813 to the same symbol. */
1814 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1818 /* Handle a multiple definition. */
1819 if (!info
->allow_multiple_definition
)
1821 asection
*msec
= NULL
;
1826 case bfd_link_hash_defined
:
1827 msec
= h
->u
.def
.section
;
1828 mval
= h
->u
.def
.value
;
1830 case bfd_link_hash_indirect
:
1831 msec
= bfd_ind_section_ptr
;
1838 /* Ignore a redefinition of an absolute symbol to the
1839 same value; it's harmless. */
1840 if (h
->type
== bfd_link_hash_defined
1841 && bfd_is_abs_section (msec
)
1842 && bfd_is_abs_section (section
)
1846 if (! ((*info
->callbacks
->multiple_definition
)
1847 (info
, h
->root
.string
, msec
->owner
, msec
, mval
,
1848 abfd
, section
, value
)))
1854 /* Create an indirect symbol from an existing common symbol. */
1855 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1856 if (! ((*info
->callbacks
->multiple_common
)
1857 (info
, h
->root
.string
,
1858 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1859 abfd
, bfd_link_hash_indirect
, 0)))
1863 /* Create an indirect symbol. */
1865 struct bfd_link_hash_entry
*inh
;
1867 /* STRING is the name of the symbol we want to indirect
1869 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, TRUE
,
1873 if (inh
->type
== bfd_link_hash_indirect
1874 && inh
->u
.i
.link
== h
)
1876 (*_bfd_error_handler
)
1877 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1878 abfd
, name
, string
);
1879 bfd_set_error (bfd_error_invalid_operation
);
1882 if (inh
->type
== bfd_link_hash_new
)
1884 inh
->type
= bfd_link_hash_undefined
;
1885 inh
->u
.undef
.abfd
= abfd
;
1886 bfd_link_add_undef (info
->hash
, inh
);
1889 /* If the indirect symbol has been referenced, we need to
1890 push the reference down to the symbol we are
1892 if (h
->type
!= bfd_link_hash_new
)
1898 h
->type
= bfd_link_hash_indirect
;
1904 /* Add an entry to a set. */
1905 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1906 abfd
, section
, value
))
1911 /* Issue a warning and cycle. */
1912 if (h
->u
.i
.warning
!= NULL
)
1914 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1915 h
->root
.string
, abfd
,
1918 /* Only issue a warning once. */
1919 h
->u
.i
.warning
= NULL
;
1923 /* Try again with the referenced symbol. */
1929 /* A reference to an indirect symbol. */
1930 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1931 h
->u
.undef
.next
= h
;
1937 /* Issue a warning. */
1938 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1939 hash_entry_bfd (h
), NULL
, 0))
1944 /* Warn if this symbol has been referenced already,
1945 otherwise add a warning. A symbol has been referenced if
1946 the u.undef.next field is not NULL, or it is the tail of the
1947 undefined symbol list. The REF case above helps to
1949 if (h
->u
.undef
.next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1951 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1952 hash_entry_bfd (h
), NULL
, 0))
1958 /* Make a warning symbol. */
1960 struct bfd_link_hash_entry
*sub
;
1962 /* STRING is the warning to give. */
1963 sub
= ((struct bfd_link_hash_entry
*)
1964 ((*info
->hash
->table
.newfunc
)
1965 (NULL
, &info
->hash
->table
, h
->root
.string
)));
1969 sub
->type
= bfd_link_hash_warning
;
1972 sub
->u
.i
.warning
= string
;
1976 size_t len
= strlen (string
) + 1;
1978 w
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1981 memcpy (w
, string
, len
);
1982 sub
->u
.i
.warning
= w
;
1985 bfd_hash_replace (&info
->hash
->table
,
1986 (struct bfd_hash_entry
*) h
,
1987 (struct bfd_hash_entry
*) sub
);
1999 /* Generic final link routine. */
2002 _bfd_generic_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2006 struct bfd_link_order
*p
;
2008 struct generic_write_global_symbol_info wginfo
;
2010 bfd_get_outsymbols (abfd
) = NULL
;
2011 bfd_get_symcount (abfd
) = 0;
2014 /* Mark all sections which will be included in the output file. */
2015 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2016 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2017 if (p
->type
== bfd_indirect_link_order
)
2018 p
->u
.indirect
.section
->linker_mark
= TRUE
;
2020 /* Build the output symbol table. */
2021 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
2022 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
2025 /* Accumulate the global symbols. */
2027 wginfo
.output_bfd
= abfd
;
2028 wginfo
.psymalloc
= &outsymalloc
;
2029 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
2030 _bfd_generic_link_write_global_symbol
,
2033 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2034 shouldn't really need one, since we have SYMCOUNT, but some old
2035 code still expects one. */
2036 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
2039 if (info
->relocatable
)
2041 /* Allocate space for the output relocs for each section. */
2042 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2045 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2047 if (p
->type
== bfd_section_reloc_link_order
2048 || p
->type
== bfd_symbol_reloc_link_order
)
2050 else if (p
->type
== bfd_indirect_link_order
)
2052 asection
*input_section
;
2059 input_section
= p
->u
.indirect
.section
;
2060 input_bfd
= input_section
->owner
;
2061 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
2065 relocs
= (arelent
**) bfd_malloc (relsize
);
2066 if (!relocs
&& relsize
!= 0)
2068 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2069 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2074 if (reloc_count
< 0)
2076 BFD_ASSERT ((unsigned long) reloc_count
2077 == input_section
->reloc_count
);
2078 o
->reloc_count
+= reloc_count
;
2081 if (o
->reloc_count
> 0)
2085 amt
= o
->reloc_count
;
2086 amt
*= sizeof (arelent
*);
2087 o
->orelocation
= (struct reloc_cache_entry
**) bfd_alloc (abfd
, amt
);
2088 if (!o
->orelocation
)
2090 o
->flags
|= SEC_RELOC
;
2091 /* Reset the count so that it can be used as an index
2092 when putting in the output relocs. */
2098 /* Handle all the link order information for the sections. */
2099 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2101 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2105 case bfd_section_reloc_link_order
:
2106 case bfd_symbol_reloc_link_order
:
2107 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2110 case bfd_indirect_link_order
:
2111 if (! default_indirect_link_order (abfd
, info
, o
, p
, TRUE
))
2115 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2125 /* Add an output symbol to the output BFD. */
2128 generic_add_output_symbol (bfd
*output_bfd
, size_t *psymalloc
, asymbol
*sym
)
2130 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2135 if (*psymalloc
== 0)
2140 amt
*= sizeof (asymbol
*);
2141 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
2142 if (newsyms
== NULL
)
2144 bfd_get_outsymbols (output_bfd
) = newsyms
;
2147 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2149 ++ bfd_get_symcount (output_bfd
);
2154 /* Handle the symbols for an input BFD. */
2157 _bfd_generic_link_output_symbols (bfd
*output_bfd
,
2159 struct bfd_link_info
*info
,
2165 if (!bfd_generic_link_read_symbols (input_bfd
))
2168 /* Create a filename symbol if we are supposed to. */
2169 if (info
->create_object_symbols_section
!= NULL
)
2173 for (sec
= input_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2175 if (sec
->output_section
== info
->create_object_symbols_section
)
2179 newsym
= bfd_make_empty_symbol (input_bfd
);
2182 newsym
->name
= input_bfd
->filename
;
2184 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2185 newsym
->section
= sec
;
2187 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2196 /* Adjust the values of the globally visible symbols, and write out
2198 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2199 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2200 for (; sym_ptr
< sym_end
; sym_ptr
++)
2203 struct generic_link_hash_entry
*h
;
2208 if ((sym
->flags
& (BSF_INDIRECT
2213 || bfd_is_und_section (bfd_get_section (sym
))
2214 || bfd_is_com_section (bfd_get_section (sym
))
2215 || bfd_is_ind_section (bfd_get_section (sym
)))
2217 if (sym
->udata
.p
!= NULL
)
2218 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2219 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2221 /* This case normally means that the main linker code
2222 deliberately ignored this constructor symbol. We
2223 should just pass it through. This will screw up if
2224 the constructor symbol is from a different,
2225 non-generic, object file format, but the case will
2226 only arise when linking with -r, which will probably
2227 fail anyhow, since there will be no way to represent
2228 the relocs in the output format being used. */
2231 else if (bfd_is_und_section (bfd_get_section (sym
)))
2232 h
= ((struct generic_link_hash_entry
*)
2233 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2234 bfd_asymbol_name (sym
),
2235 FALSE
, FALSE
, TRUE
));
2237 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2238 bfd_asymbol_name (sym
),
2239 FALSE
, FALSE
, TRUE
);
2243 /* Force all references to this symbol to point to
2244 the same area in memory. It is possible that
2245 this routine will be called with a hash table
2246 other than a generic hash table, so we double
2248 if (info
->output_bfd
->xvec
== input_bfd
->xvec
)
2251 *sym_ptr
= sym
= h
->sym
;
2254 switch (h
->root
.type
)
2257 case bfd_link_hash_new
:
2259 case bfd_link_hash_undefined
:
2261 case bfd_link_hash_undefweak
:
2262 sym
->flags
|= BSF_WEAK
;
2264 case bfd_link_hash_indirect
:
2265 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2267 case bfd_link_hash_defined
:
2268 sym
->flags
|= BSF_GLOBAL
;
2269 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2270 sym
->value
= h
->root
.u
.def
.value
;
2271 sym
->section
= h
->root
.u
.def
.section
;
2273 case bfd_link_hash_defweak
:
2274 sym
->flags
|= BSF_WEAK
;
2275 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2276 sym
->value
= h
->root
.u
.def
.value
;
2277 sym
->section
= h
->root
.u
.def
.section
;
2279 case bfd_link_hash_common
:
2280 sym
->value
= h
->root
.u
.c
.size
;
2281 sym
->flags
|= BSF_GLOBAL
;
2282 if (! bfd_is_com_section (sym
->section
))
2284 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2285 sym
->section
= bfd_com_section_ptr
;
2287 /* We do not set the section of the symbol to
2288 h->root.u.c.p->section. That value was saved so
2289 that we would know where to allocate the symbol
2290 if it was defined. In this case the type is
2291 still bfd_link_hash_common, so we did not define
2292 it, so we do not want to use that section. */
2298 /* This switch is straight from the old code in
2299 write_file_locals in ldsym.c. */
2300 if (info
->strip
== strip_all
2301 || (info
->strip
== strip_some
2302 && bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2303 FALSE
, FALSE
) == NULL
))
2305 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2307 /* If this symbol is marked as occurring now, rather
2308 than at the end, output it now. This is used for
2309 COFF C_EXT FCN symbols. FIXME: There must be a
2311 if (bfd_asymbol_bfd (sym
) == input_bfd
2312 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2317 else if (bfd_is_ind_section (sym
->section
))
2319 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2321 if (info
->strip
== strip_none
)
2326 else if (bfd_is_und_section (sym
->section
)
2327 || bfd_is_com_section (sym
->section
))
2329 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2331 if ((sym
->flags
& BSF_WARNING
) != 0)
2335 switch (info
->discard
)
2341 case discard_sec_merge
:
2343 if (info
->relocatable
2344 || ! (sym
->section
->flags
& SEC_MERGE
))
2348 if (bfd_is_local_label (input_bfd
, sym
))
2359 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2361 if (info
->strip
!= strip_all
)
2369 /* If this symbol is in a section which is not being included
2370 in the output file, then we don't want to output the
2372 if (!bfd_is_abs_section (sym
->section
)
2373 && bfd_section_removed_from_list (output_bfd
,
2374 sym
->section
->output_section
))
2379 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2389 /* Set the section and value of a generic BFD symbol based on a linker
2390 hash table entry. */
2393 set_symbol_from_hash (asymbol
*sym
, struct bfd_link_hash_entry
*h
)
2400 case bfd_link_hash_new
:
2401 /* This can happen when a constructor symbol is seen but we are
2402 not building constructors. */
2403 if (sym
->section
!= NULL
)
2405 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2409 sym
->flags
|= BSF_CONSTRUCTOR
;
2410 sym
->section
= bfd_abs_section_ptr
;
2414 case bfd_link_hash_undefined
:
2415 sym
->section
= bfd_und_section_ptr
;
2418 case bfd_link_hash_undefweak
:
2419 sym
->section
= bfd_und_section_ptr
;
2421 sym
->flags
|= BSF_WEAK
;
2423 case bfd_link_hash_defined
:
2424 sym
->section
= h
->u
.def
.section
;
2425 sym
->value
= h
->u
.def
.value
;
2427 case bfd_link_hash_defweak
:
2428 sym
->flags
|= BSF_WEAK
;
2429 sym
->section
= h
->u
.def
.section
;
2430 sym
->value
= h
->u
.def
.value
;
2432 case bfd_link_hash_common
:
2433 sym
->value
= h
->u
.c
.size
;
2434 if (sym
->section
== NULL
)
2435 sym
->section
= bfd_com_section_ptr
;
2436 else if (! bfd_is_com_section (sym
->section
))
2438 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2439 sym
->section
= bfd_com_section_ptr
;
2441 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2443 case bfd_link_hash_indirect
:
2444 case bfd_link_hash_warning
:
2445 /* FIXME: What should we do here? */
2450 /* Write out a global symbol, if it hasn't already been written out.
2451 This is called for each symbol in the hash table. */
2454 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry
*h
,
2457 struct generic_write_global_symbol_info
*wginfo
=
2458 (struct generic_write_global_symbol_info
*) data
;
2461 if (h
->root
.type
== bfd_link_hash_warning
)
2462 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2469 if (wginfo
->info
->strip
== strip_all
2470 || (wginfo
->info
->strip
== strip_some
2471 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2472 FALSE
, FALSE
) == NULL
))
2479 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2482 sym
->name
= h
->root
.root
.string
;
2486 set_symbol_from_hash (sym
, &h
->root
);
2488 sym
->flags
|= BSF_GLOBAL
;
2490 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2493 /* FIXME: No way to return failure. */
2500 /* Create a relocation. */
2503 _bfd_generic_reloc_link_order (bfd
*abfd
,
2504 struct bfd_link_info
*info
,
2506 struct bfd_link_order
*link_order
)
2510 if (! info
->relocatable
)
2512 if (sec
->orelocation
== NULL
)
2515 r
= (arelent
*) bfd_alloc (abfd
, sizeof (arelent
));
2519 r
->address
= link_order
->offset
;
2520 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2523 bfd_set_error (bfd_error_bad_value
);
2527 /* Get the symbol to use for the relocation. */
2528 if (link_order
->type
== bfd_section_reloc_link_order
)
2529 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2532 struct generic_link_hash_entry
*h
;
2534 h
= ((struct generic_link_hash_entry
*)
2535 bfd_wrapped_link_hash_lookup (abfd
, info
,
2536 link_order
->u
.reloc
.p
->u
.name
,
2537 FALSE
, FALSE
, TRUE
));
2541 if (! ((*info
->callbacks
->unattached_reloc
)
2542 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
2544 bfd_set_error (bfd_error_bad_value
);
2547 r
->sym_ptr_ptr
= &h
->sym
;
2550 /* If this is an inplace reloc, write the addend to the object file.
2551 Otherwise, store it in the reloc addend. */
2552 if (! r
->howto
->partial_inplace
)
2553 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2557 bfd_reloc_status_type rstat
;
2562 size
= bfd_get_reloc_size (r
->howto
);
2563 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2566 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2567 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2574 case bfd_reloc_outofrange
:
2576 case bfd_reloc_overflow
:
2577 if (! ((*info
->callbacks
->reloc_overflow
)
2579 (link_order
->type
== bfd_section_reloc_link_order
2580 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2581 : link_order
->u
.reloc
.p
->u
.name
),
2582 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2590 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2591 ok
= bfd_set_section_contents (abfd
, sec
, buf
, loc
, size
);
2599 sec
->orelocation
[sec
->reloc_count
] = r
;
2605 /* Allocate a new link_order for a section. */
2607 struct bfd_link_order
*
2608 bfd_new_link_order (bfd
*abfd
, asection
*section
)
2610 bfd_size_type amt
= sizeof (struct bfd_link_order
);
2611 struct bfd_link_order
*new_lo
;
2613 new_lo
= (struct bfd_link_order
*) bfd_zalloc (abfd
, amt
);
2617 new_lo
->type
= bfd_undefined_link_order
;
2619 if (section
->map_tail
.link_order
!= NULL
)
2620 section
->map_tail
.link_order
->next
= new_lo
;
2622 section
->map_head
.link_order
= new_lo
;
2623 section
->map_tail
.link_order
= new_lo
;
2628 /* Default link order processing routine. Note that we can not handle
2629 the reloc_link_order types here, since they depend upon the details
2630 of how the particular backends generates relocs. */
2633 _bfd_default_link_order (bfd
*abfd
,
2634 struct bfd_link_info
*info
,
2636 struct bfd_link_order
*link_order
)
2638 switch (link_order
->type
)
2640 case bfd_undefined_link_order
:
2641 case bfd_section_reloc_link_order
:
2642 case bfd_symbol_reloc_link_order
:
2645 case bfd_indirect_link_order
:
2646 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2648 case bfd_data_link_order
:
2649 return default_data_link_order (abfd
, info
, sec
, link_order
);
2653 /* Default routine to handle a bfd_data_link_order. */
2656 default_data_link_order (bfd
*abfd
,
2657 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2659 struct bfd_link_order
*link_order
)
2667 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2669 size
= link_order
->size
;
2673 fill
= link_order
->u
.data
.contents
;
2674 fill_size
= link_order
->u
.data
.size
;
2675 if (fill_size
!= 0 && fill_size
< size
)
2678 fill
= (bfd_byte
*) bfd_malloc (size
);
2683 memset (p
, (int) link_order
->u
.data
.contents
[0], (size_t) size
);
2688 memcpy (p
, link_order
->u
.data
.contents
, fill_size
);
2692 while (size
>= fill_size
);
2694 memcpy (p
, link_order
->u
.data
.contents
, (size_t) size
);
2695 size
= link_order
->size
;
2699 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2700 result
= bfd_set_section_contents (abfd
, sec
, fill
, loc
, size
);
2702 if (fill
!= link_order
->u
.data
.contents
)
2707 /* Default routine to handle a bfd_indirect_link_order. */
2710 default_indirect_link_order (bfd
*output_bfd
,
2711 struct bfd_link_info
*info
,
2712 asection
*output_section
,
2713 struct bfd_link_order
*link_order
,
2714 bfd_boolean generic_linker
)
2716 asection
*input_section
;
2718 bfd_byte
*contents
= NULL
;
2719 bfd_byte
*new_contents
;
2720 bfd_size_type sec_size
;
2723 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2725 input_section
= link_order
->u
.indirect
.section
;
2726 input_bfd
= input_section
->owner
;
2727 if (input_section
->size
== 0)
2730 BFD_ASSERT (input_section
->output_section
== output_section
);
2731 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2732 BFD_ASSERT (input_section
->size
== link_order
->size
);
2734 if (info
->relocatable
2735 && input_section
->reloc_count
> 0
2736 && output_section
->orelocation
== NULL
)
2738 /* Space has not been allocated for the output relocations.
2739 This can happen when we are called by a specific backend
2740 because somebody is attempting to link together different
2741 types of object files. Handling this case correctly is
2742 difficult, and sometimes impossible. */
2743 (*_bfd_error_handler
)
2744 (_("Attempt to do relocatable link with %s input and %s output"),
2745 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2746 bfd_set_error (bfd_error_wrong_format
);
2750 if (! generic_linker
)
2755 /* Get the canonical symbols. The generic linker will always
2756 have retrieved them by this point, but we are being called by
2757 a specific linker, presumably because we are linking
2758 different types of object files together. */
2759 if (!bfd_generic_link_read_symbols (input_bfd
))
2762 /* Since we have been called by a specific linker, rather than
2763 the generic linker, the values of the symbols will not be
2764 right. They will be the values as seen in the input file,
2765 not the values of the final link. We need to fix them up
2766 before we can relocate the section. */
2767 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2768 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2769 for (; sympp
< symppend
; sympp
++)
2772 struct bfd_link_hash_entry
*h
;
2776 if ((sym
->flags
& (BSF_INDIRECT
2781 || bfd_is_und_section (bfd_get_section (sym
))
2782 || bfd_is_com_section (bfd_get_section (sym
))
2783 || bfd_is_ind_section (bfd_get_section (sym
)))
2785 /* sym->udata may have been set by
2786 generic_link_add_symbol_list. */
2787 if (sym
->udata
.p
!= NULL
)
2788 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2789 else if (bfd_is_und_section (bfd_get_section (sym
)))
2790 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2791 bfd_asymbol_name (sym
),
2792 FALSE
, FALSE
, TRUE
);
2794 h
= bfd_link_hash_lookup (info
->hash
,
2795 bfd_asymbol_name (sym
),
2796 FALSE
, FALSE
, TRUE
);
2798 set_symbol_from_hash (sym
, h
);
2803 if ((output_section
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) == SEC_GROUP
2804 && input_section
->size
!= 0)
2806 /* Group section contents are set by bfd_elf_set_group_contents. */
2807 if (!output_bfd
->output_has_begun
)
2809 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2810 if (!bfd_set_section_contents (output_bfd
, output_section
, "", 0, 1))
2813 new_contents
= output_section
->contents
;
2814 BFD_ASSERT (new_contents
!= NULL
);
2815 BFD_ASSERT (input_section
->output_offset
== 0);
2819 /* Get and relocate the section contents. */
2820 sec_size
= (input_section
->rawsize
> input_section
->size
2821 ? input_section
->rawsize
2822 : input_section
->size
);
2823 contents
= (bfd_byte
*) bfd_malloc (sec_size
);
2824 if (contents
== NULL
&& sec_size
!= 0)
2826 new_contents
= (bfd_get_relocated_section_contents
2827 (output_bfd
, info
, link_order
, contents
,
2829 _bfd_generic_link_get_symbols (input_bfd
)));
2834 /* Output the section contents. */
2835 loc
= input_section
->output_offset
* bfd_octets_per_byte (output_bfd
);
2836 if (! bfd_set_section_contents (output_bfd
, output_section
,
2837 new_contents
, loc
, input_section
->size
))
2840 if (contents
!= NULL
)
2845 if (contents
!= NULL
)
2850 /* A little routine to count the number of relocs in a link_order
2854 _bfd_count_link_order_relocs (struct bfd_link_order
*link_order
)
2856 register unsigned int c
;
2857 register struct bfd_link_order
*l
;
2860 for (l
= link_order
; l
!= NULL
; l
= l
->next
)
2862 if (l
->type
== bfd_section_reloc_link_order
2863 || l
->type
== bfd_symbol_reloc_link_order
)
2872 bfd_link_split_section
2875 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2878 Return nonzero if @var{sec} should be split during a
2879 reloceatable or final link.
2881 .#define bfd_link_split_section(abfd, sec) \
2882 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2888 _bfd_generic_link_split_section (bfd
*abfd ATTRIBUTE_UNUSED
,
2889 asection
*sec ATTRIBUTE_UNUSED
)
2896 bfd_section_already_linked
2899 void bfd_section_already_linked (bfd *abfd, asection *sec,
2900 struct bfd_link_info *info);
2903 Check if @var{sec} has been already linked during a reloceatable
2906 .#define bfd_section_already_linked(abfd, sec, info) \
2907 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2912 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2913 once into the output. This routine checks each section, and
2914 arrange to discard it if a section of the same name has already
2915 been linked. This code assumes that all relevant sections have the
2916 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2917 section name. bfd_section_already_linked is called via
2918 bfd_map_over_sections. */
2920 /* The hash table. */
2922 static struct bfd_hash_table _bfd_section_already_linked_table
;
2924 /* Support routines for the hash table used by section_already_linked,
2925 initialize the table, traverse, lookup, fill in an entry and remove
2929 bfd_section_already_linked_table_traverse
2930 (bfd_boolean (*func
) (struct bfd_section_already_linked_hash_entry
*,
2931 void *), void *info
)
2933 bfd_hash_traverse (&_bfd_section_already_linked_table
,
2934 (bfd_boolean (*) (struct bfd_hash_entry
*,
2939 struct bfd_section_already_linked_hash_entry
*
2940 bfd_section_already_linked_table_lookup (const char *name
)
2942 return ((struct bfd_section_already_linked_hash_entry
*)
2943 bfd_hash_lookup (&_bfd_section_already_linked_table
, name
,
2948 bfd_section_already_linked_table_insert
2949 (struct bfd_section_already_linked_hash_entry
*already_linked_list
,
2952 struct bfd_section_already_linked
*l
;
2954 /* Allocate the memory from the same obstack as the hash table is
2956 l
= (struct bfd_section_already_linked
*)
2957 bfd_hash_allocate (&_bfd_section_already_linked_table
, sizeof *l
);
2961 l
->next
= already_linked_list
->entry
;
2962 already_linked_list
->entry
= l
;
2966 static struct bfd_hash_entry
*
2967 already_linked_newfunc (struct bfd_hash_entry
*entry ATTRIBUTE_UNUSED
,
2968 struct bfd_hash_table
*table
,
2969 const char *string ATTRIBUTE_UNUSED
)
2971 struct bfd_section_already_linked_hash_entry
*ret
=
2972 (struct bfd_section_already_linked_hash_entry
*)
2973 bfd_hash_allocate (table
, sizeof *ret
);
2984 bfd_section_already_linked_table_init (void)
2986 return bfd_hash_table_init_n (&_bfd_section_already_linked_table
,
2987 already_linked_newfunc
,
2988 sizeof (struct bfd_section_already_linked_hash_entry
),
2993 bfd_section_already_linked_table_free (void)
2995 bfd_hash_table_free (&_bfd_section_already_linked_table
);
2998 /* This is used on non-ELF inputs. */
3001 _bfd_generic_section_already_linked (bfd
*abfd
, asection
*sec
,
3002 struct bfd_link_info
*info
)
3006 struct bfd_section_already_linked
*l
;
3007 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
3010 if ((flags
& SEC_LINK_ONCE
) == 0)
3013 /* FIXME: When doing a relocatable link, we may have trouble
3014 copying relocations in other sections that refer to local symbols
3015 in the section being discarded. Those relocations will have to
3016 be converted somehow; as of this writing I'm not sure that any of
3017 the backends handle that correctly.
3019 It is tempting to instead not discard link once sections when
3020 doing a relocatable link (technically, they should be discarded
3021 whenever we are building constructors). However, that fails,
3022 because the linker winds up combining all the link once sections
3023 into a single large link once section, which defeats the purpose
3024 of having link once sections in the first place. */
3026 name
= bfd_get_section_name (abfd
, sec
);
3028 already_linked_list
= bfd_section_already_linked_table_lookup (name
);
3030 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
3032 bfd_boolean skip
= FALSE
;
3033 struct coff_comdat_info
*s_comdat
3034 = bfd_coff_get_comdat_section (abfd
, sec
);
3035 struct coff_comdat_info
*l_comdat
3036 = bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
);
3038 /* We may have 3 different sections on the list: group section,
3039 comdat section and linkonce section. SEC may be a linkonce or
3040 comdat section. We always ignore group section. For non-COFF
3041 inputs, we also ignore comdat section.
3043 FIXME: Is that safe to match a linkonce section with a comdat
3044 section for COFF inputs? */
3045 if ((l
->sec
->flags
& SEC_GROUP
) != 0)
3047 else if (bfd_get_flavour (abfd
) == bfd_target_coff_flavour
)
3049 if (s_comdat
!= NULL
3051 && strcmp (s_comdat
->name
, l_comdat
->name
) != 0)
3054 else if (l_comdat
!= NULL
)
3059 /* The section has already been linked. See if we should
3061 switch (flags
& SEC_LINK_DUPLICATES
)
3066 case SEC_LINK_DUPLICATES_DISCARD
:
3069 case SEC_LINK_DUPLICATES_ONE_ONLY
:
3070 (*_bfd_error_handler
)
3071 (_("%B: warning: ignoring duplicate section `%A'\n"),
3075 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
3076 /* FIXME: We should really dig out the contents of both
3077 sections and memcmp them. The COFF/PE spec says that
3078 the Microsoft linker does not implement this
3079 correctly, so I'm not going to bother doing it
3082 case SEC_LINK_DUPLICATES_SAME_SIZE
:
3083 if (sec
->size
!= l
->sec
->size
)
3084 (*_bfd_error_handler
)
3085 (_("%B: warning: duplicate section `%A' has different size\n"),
3090 /* Set the output_section field so that lang_add_section
3091 does not create a lang_input_section structure for this
3092 section. Since there might be a symbol in the section
3093 being discarded, we must retain a pointer to the section
3094 which we are really going to use. */
3095 sec
->output_section
= bfd_abs_section_ptr
;
3096 sec
->kept_section
= l
->sec
;
3102 /* This is the first section with this name. Record it. */
3103 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
3104 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
3107 /* Convert symbols in excluded output sections to use a kept section. */
3110 fix_syms (struct bfd_link_hash_entry
*h
, void *data
)
3112 bfd
*obfd
= (bfd
*) data
;
3114 if (h
->type
== bfd_link_hash_warning
)
3117 if (h
->type
== bfd_link_hash_defined
3118 || h
->type
== bfd_link_hash_defweak
)
3120 asection
*s
= h
->u
.def
.section
;
3122 && s
->output_section
!= NULL
3123 && (s
->output_section
->flags
& SEC_EXCLUDE
) != 0
3124 && bfd_section_removed_from_list (obfd
, s
->output_section
))
3128 h
->u
.def
.value
+= s
->output_offset
+ s
->output_section
->vma
;
3130 /* Find preceding kept section. */
3131 for (op1
= s
->output_section
->prev
; op1
!= NULL
; op1
= op1
->prev
)
3132 if ((op1
->flags
& SEC_EXCLUDE
) == 0
3133 && !bfd_section_removed_from_list (obfd
, op1
))
3136 /* Find following kept section. Start at prev->next because
3137 other sections may have been added after S was removed. */
3138 if (s
->output_section
->prev
!= NULL
)
3139 op
= s
->output_section
->prev
->next
;
3141 op
= s
->output_section
->owner
->sections
;
3142 for (; op
!= NULL
; op
= op
->next
)
3143 if ((op
->flags
& SEC_EXCLUDE
) == 0
3144 && !bfd_section_removed_from_list (obfd
, op
))
3147 /* Choose better of two sections, based on flags. The idea
3148 is to choose a section that will be in the same segment
3149 as S would have been if it was kept. */
3153 op
= bfd_abs_section_ptr
;
3155 else if (op
== NULL
)
3157 else if (((op1
->flags
^ op
->flags
)
3158 & (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_LOAD
)) != 0)
3160 if (((op
->flags
^ s
->flags
)
3161 & (SEC_ALLOC
| SEC_THREAD_LOCAL
)) != 0
3162 /* We prefer to choose a loaded section. Section S
3163 doesn't have SEC_LOAD set (it being excluded, that
3164 part of the flag processing didn't happen) so we
3165 can't compare that flag to those of OP and OP1. */
3166 || ((op1
->flags
& SEC_LOAD
) != 0
3167 && (op
->flags
& SEC_LOAD
) == 0))
3170 else if (((op1
->flags
^ op
->flags
) & SEC_READONLY
) != 0)
3172 if (((op
->flags
^ s
->flags
) & SEC_READONLY
) != 0)
3175 else if (((op1
->flags
^ op
->flags
) & SEC_CODE
) != 0)
3177 if (((op
->flags
^ s
->flags
) & SEC_CODE
) != 0)
3182 /* Flags we care about are the same. Prefer the following
3183 section if that will result in a positive valued sym. */
3184 if (h
->u
.def
.value
< op
->vma
)
3188 h
->u
.def
.value
-= op
->vma
;
3189 h
->u
.def
.section
= op
;
3197 _bfd_fix_excluded_sec_syms (bfd
*obfd
, struct bfd_link_info
*info
)
3199 bfd_link_hash_traverse (info
->hash
, fix_syms
, obfd
);
3204 bfd_generic_define_common_symbol
3207 bfd_boolean bfd_generic_define_common_symbol
3208 (bfd *output_bfd, struct bfd_link_info *info,
3209 struct bfd_link_hash_entry *h);
3212 Convert common symbol @var{h} into a defined symbol.
3213 Return TRUE on success and FALSE on failure.
3215 .#define bfd_define_common_symbol(output_bfd, info, h) \
3216 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3221 bfd_generic_define_common_symbol (bfd
*output_bfd
,
3222 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3223 struct bfd_link_hash_entry
*h
)
3225 unsigned int power_of_two
;
3226 bfd_vma alignment
, size
;
3229 BFD_ASSERT (h
!= NULL
&& h
->type
== bfd_link_hash_common
);
3232 power_of_two
= h
->u
.c
.p
->alignment_power
;
3233 section
= h
->u
.c
.p
->section
;
3235 /* Increase the size of the section to align the common symbol.
3236 The alignment must be a power of two. */
3237 alignment
= bfd_octets_per_byte (output_bfd
) << power_of_two
;
3238 BFD_ASSERT (alignment
!= 0 && (alignment
& -alignment
) == alignment
);
3239 section
->size
+= alignment
- 1;
3240 section
->size
&= -alignment
;
3242 /* Adjust the section's overall alignment if necessary. */
3243 if (power_of_two
> section
->alignment_power
)
3244 section
->alignment_power
= power_of_two
;
3246 /* Change the symbol from common to defined. */
3247 h
->type
= bfd_link_hash_defined
;
3248 h
->u
.def
.section
= section
;
3249 h
->u
.def
.value
= section
->size
;
3251 /* Increase the size of the section. */
3252 section
->size
+= size
;
3254 /* Make sure the section is allocated in memory, and make sure that
3255 it is no longer a common section. */
3256 section
->flags
|= SEC_ALLOC
;
3257 section
->flags
&= ~SEC_IS_COMMON
;
3263 bfd_find_version_for_sym
3266 struct bfd_elf_version_tree * bfd_find_version_for_sym
3267 (struct bfd_elf_version_tree *verdefs,
3268 const char *sym_name, bfd_boolean *hide);
3271 Search an elf version script tree for symbol versioning
3272 info and export / don't-export status for a given symbol.
3273 Return non-NULL on success and NULL on failure; also sets
3274 the output @samp{hide} boolean parameter.
3278 struct bfd_elf_version_tree
*
3279 bfd_find_version_for_sym (struct bfd_elf_version_tree
*verdefs
,
3280 const char *sym_name
,
3283 struct bfd_elf_version_tree
*t
;
3284 struct bfd_elf_version_tree
*local_ver
, *global_ver
, *exist_ver
;
3285 struct bfd_elf_version_tree
*star_local_ver
, *star_global_ver
;
3289 star_local_ver
= NULL
;
3290 star_global_ver
= NULL
;
3292 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3294 if (t
->globals
.list
!= NULL
)
3296 struct bfd_elf_version_expr
*d
= NULL
;
3298 while ((d
= (*t
->match
) (&t
->globals
, d
, sym_name
)) != NULL
)
3300 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3303 star_global_ver
= t
;
3307 /* If the match is a wildcard pattern, keep looking for
3308 a more explicit, perhaps even local, match. */
3317 if (t
->locals
.list
!= NULL
)
3319 struct bfd_elf_version_expr
*d
= NULL
;
3321 while ((d
= (*t
->match
) (&t
->locals
, d
, sym_name
)) != NULL
)
3323 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3327 /* If the match is a wildcard pattern, keep looking for
3328 a more explicit, perhaps even global, match. */
3331 /* An exact match overrides a global wildcard. */
3333 star_global_ver
= NULL
;
3343 if (global_ver
== NULL
&& local_ver
== NULL
)
3344 global_ver
= star_global_ver
;
3346 if (global_ver
!= NULL
)
3348 /* If we already have a versioned symbol that matches the
3349 node for this symbol, then we don't want to create a
3350 duplicate from the unversioned symbol. Instead hide the
3351 unversioned symbol. */
3352 *hide
= exist_ver
== global_ver
;
3356 if (local_ver
== NULL
)
3357 local_ver
= star_local_ver
;
3359 if (local_ver
!= NULL
)