daily update
[binutils.git] / bfd / section.c
blob72ffcd55ab77b8a69b1f62decfa333d1da4325c9
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 SECTION
25 Sections
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
32 Sections are supported in BFD in <<section.c>>.
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
74 INODE
75 Section Output, typedef asection, Section Input, Sections
77 SUBSECTION
78 Section output
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
115 SUBSECTION
116 Link orders
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
148 Here is the section structure:
150 CODE_FRAGMENT
152 .typedef struct bfd_section
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
158 . {* A unique sequence number. *}
159 . int id;
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
167 . {* The field flags contains attributes of the section. Some
168 . flags are read in from the object file, and some are
169 . synthesized from other information. *}
170 . flagword flags;
172 .#define SEC_NO_FLAGS 0x000
174 . {* Tells the OS to allocate space for this section when loading.
175 . This is clear for a section containing debug information only. *}
176 .#define SEC_ALLOC 0x001
178 . {* Tells the OS to load the section from the file when loading.
179 . This is clear for a .bss section. *}
180 .#define SEC_LOAD 0x002
182 . {* The section contains data still to be relocated, so there is
183 . some relocation information too. *}
184 .#define SEC_RELOC 0x004
186 . {* ELF reserves 4 processor specific bits and 8 operating system
187 . specific bits in sh_flags; at present we can get away with just
188 . one in communicating between the assembler and BFD, but this
189 . isn't a good long-term solution. *}
190 .#define SEC_ARCH_BIT_0 0x008
192 . {* A signal to the OS that the section contains read only data. *}
193 .#define SEC_READONLY 0x010
195 . {* The section contains code only. *}
196 .#define SEC_CODE 0x020
198 . {* The section contains data only. *}
199 .#define SEC_DATA 0x040
201 . {* The section will reside in ROM. *}
202 .#define SEC_ROM 0x080
204 . {* The section contains constructor information. This section
205 . type is used by the linker to create lists of constructors and
206 . destructors used by <<g++>>. When a back end sees a symbol
207 . which should be used in a constructor list, it creates a new
208 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
209 . the symbol to it, and builds a relocation. To build the lists
210 . of constructors, all the linker has to do is catenate all the
211 . sections called <<__CTOR_LIST__>> and relocate the data
212 . contained within - exactly the operations it would peform on
213 . standard data. *}
214 .#define SEC_CONSTRUCTOR 0x100
216 . {* The section has contents - a data section could be
217 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
218 . <<SEC_HAS_CONTENTS>> *}
219 .#define SEC_HAS_CONTENTS 0x200
221 . {* An instruction to the linker to not output the section
222 . even if it has information which would normally be written. *}
223 .#define SEC_NEVER_LOAD 0x400
225 . {* The section is a COFF shared library section. This flag is
226 . only for the linker. If this type of section appears in
227 . the input file, the linker must copy it to the output file
228 . without changing the vma or size. FIXME: Although this
229 . was originally intended to be general, it really is COFF
230 . specific (and the flag was renamed to indicate this). It
231 . might be cleaner to have some more general mechanism to
232 . allow the back end to control what the linker does with
233 . sections. *}
234 .#define SEC_COFF_SHARED_LIBRARY 0x800
236 . {* The section contains thread local data. *}
237 .#define SEC_THREAD_LOCAL 0x1000
239 . {* The section has GOT references. This flag is only for the
240 . linker, and is currently only used by the elf32-hppa back end.
241 . It will be set if global offset table references were detected
242 . in this section, which indicate to the linker that the section
243 . contains PIC code, and must be handled specially when doing a
244 . static link. *}
245 .#define SEC_HAS_GOT_REF 0x4000
247 . {* The section contains common symbols (symbols may be defined
248 . multiple times, the value of a symbol is the amount of
249 . space it requires, and the largest symbol value is the one
250 . used). Most targets have exactly one of these (which we
251 . translate to bfd_com_section_ptr), but ECOFF has two. *}
252 .#define SEC_IS_COMMON 0x8000
254 . {* The section contains only debugging information. For
255 . example, this is set for ELF .debug and .stab sections.
256 . strip tests this flag to see if a section can be
257 . discarded. *}
258 .#define SEC_DEBUGGING 0x10000
260 . {* The contents of this section are held in memory pointed to
261 . by the contents field. This is checked by bfd_get_section_contents,
262 . and the data is retrieved from memory if appropriate. *}
263 .#define SEC_IN_MEMORY 0x20000
265 . {* The contents of this section are to be excluded by the
266 . linker for executable and shared objects unless those
267 . objects are to be further relocated. *}
268 .#define SEC_EXCLUDE 0x40000
270 . {* The contents of this section are to be sorted based on the sum of
271 . the symbol and addend values specified by the associated relocation
272 . entries. Entries without associated relocation entries will be
273 . appended to the end of the section in an unspecified order. *}
274 .#define SEC_SORT_ENTRIES 0x80000
276 . {* When linking, duplicate sections of the same name should be
277 . discarded, rather than being combined into a single section as
278 . is usually done. This is similar to how common symbols are
279 . handled. See SEC_LINK_DUPLICATES below. *}
280 .#define SEC_LINK_ONCE 0x100000
282 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
283 . should handle duplicate sections. *}
284 .#define SEC_LINK_DUPLICATES 0x600000
286 . {* This value for SEC_LINK_DUPLICATES means that duplicate
287 . sections with the same name should simply be discarded. *}
288 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
290 . {* This value for SEC_LINK_DUPLICATES means that the linker
291 . should warn if there are any duplicate sections, although
292 . it should still only link one copy. *}
293 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000
295 . {* This value for SEC_LINK_DUPLICATES means that the linker
296 . should warn if any duplicate sections are a different size. *}
297 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000
299 . {* This value for SEC_LINK_DUPLICATES means that the linker
300 . should warn if any duplicate sections contain different
301 . contents. *}
302 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000
304 . {* This section was created by the linker as part of dynamic
305 . relocation or other arcane processing. It is skipped when
306 . going through the first-pass output, trusting that someone
307 . else up the line will take care of it later. *}
308 .#define SEC_LINKER_CREATED 0x800000
310 . {* This section should not be subject to garbage collection. *}
311 .#define SEC_KEEP 0x1000000
313 . {* This section contains "short" data, and should be placed
314 . "near" the GP. *}
315 .#define SEC_SMALL_DATA 0x2000000
317 . {* This section contains data which may be shared with other
318 . executables or shared objects. *}
319 .#define SEC_SHARED 0x4000000
321 . {* When a section with this flag is being linked, then if the size of
322 . the input section is less than a page, it should not cross a page
323 . boundary. If the size of the input section is one page or more, it
324 . should be aligned on a page boundary. *}
325 .#define SEC_BLOCK 0x8000000
327 . {* Conditionally link this section; do not link if there are no
328 . references found to any symbol in the section. *}
329 .#define SEC_CLINK 0x10000000
331 . {* Attempt to merge identical entities in the section.
332 . Entity size is given in the entsize field. *}
333 .#define SEC_MERGE 0x20000000
335 . {* If given with SEC_MERGE, entities to merge are zero terminated
336 . strings where entsize specifies character size instead of fixed
337 . size entries. *}
338 .#define SEC_STRINGS 0x40000000
340 . {* This section contains data about section groups. *}
341 .#define SEC_GROUP 0x80000000
343 . {* End of section flags. *}
345 . {* Some internal packed boolean fields. *}
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
357 . {* A mark flag used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
360 . {* The following flags are used by the ELF linker. *}
362 . {* Mark sections which have been allocated to segments. *}
363 . unsigned int segment_mark : 1;
365 . {* Type of sec_info information. *}
366 . unsigned int sec_info_type:3;
367 .#define ELF_INFO_TYPE_NONE 0
368 .#define ELF_INFO_TYPE_STABS 1
369 .#define ELF_INFO_TYPE_MERGE 2
370 .#define ELF_INFO_TYPE_EH_FRAME 3
371 .#define ELF_INFO_TYPE_JUST_SYMS 4
373 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
374 . unsigned int use_rela_p:1;
376 . {* Bits used by various backends. The generic code doesn't touch
377 . these fields. *}
379 . {* Nonzero if this section has TLS related relocations. *}
380 . unsigned int has_tls_reloc:1;
382 . {* Nonzero if this section has a gp reloc. *}
383 . unsigned int has_gp_reloc:1;
385 . {* Nonzero if this section needs the relax finalize pass. *}
386 . unsigned int need_finalize_relax:1;
388 . {* Whether relocations have been processed. *}
389 . unsigned int reloc_done : 1;
391 . {* End of internal packed boolean fields. *}
393 . {* The virtual memory address of the section - where it will be
394 . at run time. The symbols are relocated against this. The
395 . user_set_vma flag is maintained by bfd; if it's not set, the
396 . backend can assign addresses (for example, in <<a.out>>, where
397 . the default address for <<.data>> is dependent on the specific
398 . target and various flags). *}
399 . bfd_vma vma;
401 . {* The load address of the section - where it would be in a
402 . rom image; really only used for writing section header
403 . information. *}
404 . bfd_vma lma;
406 . {* The size of the section in octets, as it will be output.
407 . Contains a value even if the section has no contents (e.g., the
408 . size of <<.bss>>). *}
409 . bfd_size_type size;
411 . {* For input sections, the original size on disk of the section, in
412 . octets. This field is used by the linker relaxation code. It is
413 . currently only set for sections where the linker relaxation scheme
414 . doesn't cache altered section and reloc contents (stabs, eh_frame,
415 . SEC_MERGE, some coff relaxing targets), and thus the original size
416 . needs to be kept to read the section multiple times.
417 . For output sections, rawsize holds the section size calculated on
418 . a previous linker relaxation pass. *}
419 . bfd_size_type rawsize;
421 . {* If this section is going to be output, then this value is the
422 . offset in *bytes* into the output section of the first byte in the
423 . input section (byte ==> smallest addressable unit on the
424 . target). In most cases, if this was going to start at the
425 . 100th octet (8-bit quantity) in the output section, this value
426 . would be 100. However, if the target byte size is 16 bits
427 . (bfd_octets_per_byte is "2"), this value would be 50. *}
428 . bfd_vma output_offset;
430 . {* The output section through which to map on output. *}
431 . struct bfd_section *output_section;
433 . {* The alignment requirement of the section, as an exponent of 2 -
434 . e.g., 3 aligns to 2^3 (or 8). *}
435 . unsigned int alignment_power;
437 . {* If an input section, a pointer to a vector of relocation
438 . records for the data in this section. *}
439 . struct reloc_cache_entry *relocation;
441 . {* If an output section, a pointer to a vector of pointers to
442 . relocation records for the data in this section. *}
443 . struct reloc_cache_entry **orelocation;
445 . {* The number of relocation records in one of the above. *}
446 . unsigned reloc_count;
448 . {* Information below is back end specific - and not always used
449 . or updated. *}
451 . {* File position of section data. *}
452 . file_ptr filepos;
454 . {* File position of relocation info. *}
455 . file_ptr rel_filepos;
457 . {* File position of line data. *}
458 . file_ptr line_filepos;
460 . {* Pointer to data for applications. *}
461 . void *userdata;
463 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
464 . contents. *}
465 . unsigned char *contents;
467 . {* Attached line number information. *}
468 . alent *lineno;
470 . {* Number of line number records. *}
471 . unsigned int lineno_count;
473 . {* Entity size for merging purposes. *}
474 . unsigned int entsize;
476 . {* Points to the kept section if this section is a link-once section,
477 . and is discarded. *}
478 . struct bfd_section *kept_section;
480 . {* When a section is being output, this value changes as more
481 . linenumbers are written out. *}
482 . file_ptr moving_line_filepos;
484 . {* What the section number is in the target world. *}
485 . int target_index;
487 . void *used_by_bfd;
489 . {* If this is a constructor section then here is a list of the
490 . relocations created to relocate items within it. *}
491 . struct relent_chain *constructor_chain;
493 . {* The BFD which owns the section. *}
494 . bfd *owner;
496 . {* A symbol which points at this section only. *}
497 . struct bfd_symbol *symbol;
498 . struct bfd_symbol **symbol_ptr_ptr;
500 . struct bfd_link_order *link_order_head;
501 . struct bfd_link_order *link_order_tail;
502 .} asection;
504 .{* These sections are global, and are managed by BFD. The application
505 . and target back end are not permitted to change the values in
506 . these sections. New code should use the section_ptr macros rather
507 . than referring directly to the const sections. The const sections
508 . may eventually vanish. *}
509 .#define BFD_ABS_SECTION_NAME "*ABS*"
510 .#define BFD_UND_SECTION_NAME "*UND*"
511 .#define BFD_COM_SECTION_NAME "*COM*"
512 .#define BFD_IND_SECTION_NAME "*IND*"
514 .{* The absolute section. *}
515 .extern asection bfd_abs_section;
516 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
517 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
518 .{* Pointer to the undefined section. *}
519 .extern asection bfd_und_section;
520 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
521 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
522 .{* Pointer to the common section. *}
523 .extern asection bfd_com_section;
524 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
525 .{* Pointer to the indirect section. *}
526 .extern asection bfd_ind_section;
527 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
528 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
530 .#define bfd_is_const_section(SEC) \
531 . ( ((SEC) == bfd_abs_section_ptr) \
532 . || ((SEC) == bfd_und_section_ptr) \
533 . || ((SEC) == bfd_com_section_ptr) \
534 . || ((SEC) == bfd_ind_section_ptr))
536 .extern const struct bfd_symbol * const bfd_abs_symbol;
537 .extern const struct bfd_symbol * const bfd_com_symbol;
538 .extern const struct bfd_symbol * const bfd_und_symbol;
539 .extern const struct bfd_symbol * const bfd_ind_symbol;
541 .{* Macros to handle insertion and deletion of a bfd's sections. These
542 . only handle the list pointers, ie. do not adjust section_count,
543 . target_index etc. *}
544 .#define bfd_section_list_remove(ABFD, PS) \
545 . do \
546 . { \
547 . asection **_ps = PS; \
548 . asection *_s = *_ps; \
549 . *_ps = _s->next; \
550 . if (_s->next == NULL) \
551 . (ABFD)->section_tail = _ps; \
552 . } \
553 . while (0)
554 .#define bfd_section_list_insert(ABFD, PS, S) \
555 . do \
556 . { \
557 . asection **_ps = PS; \
558 . asection *_s = S; \
559 . _s->next = *_ps; \
560 . *_ps = _s; \
561 . if (_s->next == NULL) \
562 . (ABFD)->section_tail = &_s->next; \
563 . } \
564 . while (0)
568 /* We use a macro to initialize the static asymbol structures because
569 traditional C does not permit us to initialize a union member while
570 gcc warns if we don't initialize it. */
571 /* the_bfd, name, value, attr, section [, udata] */
572 #ifdef __STDC__
573 #define GLOBAL_SYM_INIT(NAME, SECTION) \
574 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
575 #else
576 #define GLOBAL_SYM_INIT(NAME, SECTION) \
577 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
578 #endif
580 /* These symbols are global, not specific to any BFD. Therefore, anything
581 that tries to change them is broken, and should be repaired. */
583 static const asymbol global_syms[] =
585 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
586 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
587 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
588 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
591 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
592 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \
593 asection SEC = \
594 /* name, id, index, next, flags, user_set_vma, */ \
595 { NAME, IDX, 0, NULL, FLAGS, 0, \
597 /* linker_mark, linker_has_input, gc_mark, segment_mark, */ \
598 0, 0, 1, 0, \
600 /* sec_info_type, use_rela_p, has_tls_reloc, has_gp_reloc, */ \
601 0, 0, 0, 0, \
603 /* need_finalize_relax, reloc_done, */ \
604 0, 0, \
606 /* vma, lma, size, rawsize */ \
607 0, 0, 0, 0, \
609 /* output_offset, output_section, alignment_power, */ \
610 0, (struct bfd_section *) &SEC, 0, \
612 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
613 NULL, NULL, 0, 0, 0, \
615 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
616 0, NULL, NULL, NULL, 0, \
618 /* entsize, kept_section, moving_line_filepos, */ \
619 0, NULL, 0, \
621 /* target_index, used_by_bfd, constructor_chain, owner, */ \
622 0, NULL, NULL, NULL, \
624 /* symbol, */ \
625 (struct bfd_symbol *) &global_syms[IDX], \
627 /* symbol_ptr_ptr, */ \
628 (struct bfd_symbol **) &SYM, \
630 /* link_order_head, link_order_tail */ \
631 NULL, NULL \
634 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
635 BFD_COM_SECTION_NAME, 0);
636 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
637 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
638 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
639 #undef STD_SECTION
641 struct section_hash_entry
643 struct bfd_hash_entry root;
644 asection section;
647 /* Initialize an entry in the section hash table. */
649 struct bfd_hash_entry *
650 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
651 struct bfd_hash_table *table,
652 const char *string)
654 /* Allocate the structure if it has not already been allocated by a
655 subclass. */
656 if (entry == NULL)
658 entry = (struct bfd_hash_entry *)
659 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
660 if (entry == NULL)
661 return entry;
664 /* Call the allocation method of the superclass. */
665 entry = bfd_hash_newfunc (entry, table, string);
666 if (entry != NULL)
667 memset (&((struct section_hash_entry *) entry)->section, 0,
668 sizeof (asection));
670 return entry;
673 #define section_hash_lookup(table, string, create, copy) \
674 ((struct section_hash_entry *) \
675 bfd_hash_lookup ((table), (string), (create), (copy)))
677 /* Initializes a new section. NEWSECT->NAME is already set. */
679 static asection *
680 bfd_section_init (bfd *abfd, asection *newsect)
682 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
684 newsect->id = section_id;
685 newsect->index = abfd->section_count;
686 newsect->owner = abfd;
688 /* Create a symbol whose only job is to point to this section. This
689 is useful for things like relocs which are relative to the base
690 of a section. */
691 newsect->symbol = bfd_make_empty_symbol (abfd);
692 if (newsect->symbol == NULL)
693 return NULL;
695 newsect->symbol->name = newsect->name;
696 newsect->symbol->value = 0;
697 newsect->symbol->section = newsect;
698 newsect->symbol->flags = BSF_SECTION_SYM;
700 newsect->symbol_ptr_ptr = &newsect->symbol;
702 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
703 return NULL;
705 section_id++;
706 abfd->section_count++;
707 *abfd->section_tail = newsect;
708 abfd->section_tail = &newsect->next;
709 return newsect;
713 DOCDD
714 INODE
715 section prototypes, , typedef asection, Sections
716 SUBSECTION
717 Section prototypes
719 These are the functions exported by the section handling part of BFD.
723 FUNCTION
724 bfd_section_list_clear
726 SYNOPSIS
727 void bfd_section_list_clear (bfd *);
729 DESCRIPTION
730 Clears the section list, and also resets the section count and
731 hash table entries.
734 void
735 bfd_section_list_clear (bfd *abfd)
737 abfd->sections = NULL;
738 abfd->section_tail = &abfd->sections;
739 abfd->section_count = 0;
740 memset (abfd->section_htab.table, 0,
741 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
745 FUNCTION
746 bfd_get_section_by_name
748 SYNOPSIS
749 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
751 DESCRIPTION
752 Run through @var{abfd} and return the one of the
753 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
754 @xref{Sections}, for more information.
756 This should only be used in special cases; the normal way to process
757 all sections of a given name is to use <<bfd_map_over_sections>> and
758 <<strcmp>> on the name (or better yet, base it on the section flags
759 or something else) for each section.
762 asection *
763 bfd_get_section_by_name (bfd *abfd, const char *name)
765 struct section_hash_entry *sh;
767 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
768 if (sh != NULL)
769 return &sh->section;
771 return NULL;
775 FUNCTION
776 bfd_get_section_by_name_if
778 SYNOPSIS
779 asection *bfd_get_section_by_name_if
780 (bfd *abfd,
781 const char *name,
782 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
783 void *obj);
785 DESCRIPTION
786 Call the provided function @var{func} for each section
787 attached to the BFD @var{abfd} whose name matches @var{name},
788 passing @var{obj} as an argument. The function will be called
789 as if by
791 | func (abfd, the_section, obj);
793 It returns the first section for which @var{func} returns true,
794 otherwise <<NULL>>.
798 asection *
799 bfd_get_section_by_name_if (bfd *abfd, const char *name,
800 bfd_boolean (*operation) (bfd *,
801 asection *,
802 void *),
803 void *user_storage)
805 struct section_hash_entry *sh;
806 unsigned long hash;
808 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
809 if (sh == NULL)
810 return NULL;
812 hash = sh->root.hash;
815 if ((*operation) (abfd, &sh->section, user_storage))
816 return &sh->section;
817 sh = (struct section_hash_entry *) sh->root.next;
819 while (sh != NULL && sh->root.hash == hash
820 && strcmp (sh->root.string, name) == 0);
822 return NULL;
826 FUNCTION
827 bfd_get_unique_section_name
829 SYNOPSIS
830 char *bfd_get_unique_section_name
831 (bfd *abfd, const char *templat, int *count);
833 DESCRIPTION
834 Invent a section name that is unique in @var{abfd} by tacking
835 a dot and a digit suffix onto the original @var{templat}. If
836 @var{count} is non-NULL, then it specifies the first number
837 tried as a suffix to generate a unique name. The value
838 pointed to by @var{count} will be incremented in this case.
841 char *
842 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
844 int num;
845 unsigned int len;
846 char *sname;
848 len = strlen (templat);
849 sname = bfd_malloc (len + 8);
850 if (sname == NULL)
851 return NULL;
852 memcpy (sname, templat, len);
853 num = 1;
854 if (count != NULL)
855 num = *count;
859 /* If we have a million sections, something is badly wrong. */
860 if (num > 999999)
861 abort ();
862 sprintf (sname + len, ".%d", num++);
864 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
866 if (count != NULL)
867 *count = num;
868 return sname;
872 FUNCTION
873 bfd_make_section_old_way
875 SYNOPSIS
876 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
878 DESCRIPTION
879 Create a new empty section called @var{name}
880 and attach it to the end of the chain of sections for the
881 BFD @var{abfd}. An attempt to create a section with a name which
882 is already in use returns its pointer without changing the
883 section chain.
885 It has the funny name since this is the way it used to be
886 before it was rewritten....
888 Possible errors are:
889 o <<bfd_error_invalid_operation>> -
890 If output has already started for this BFD.
891 o <<bfd_error_no_memory>> -
892 If memory allocation fails.
896 asection *
897 bfd_make_section_old_way (bfd *abfd, const char *name)
899 struct section_hash_entry *sh;
900 asection *newsect;
902 if (abfd->output_has_begun)
904 bfd_set_error (bfd_error_invalid_operation);
905 return NULL;
908 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
909 return bfd_abs_section_ptr;
911 if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
912 return bfd_com_section_ptr;
914 if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
915 return bfd_und_section_ptr;
917 if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
918 return bfd_ind_section_ptr;
920 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
921 if (sh == NULL)
922 return NULL;
924 newsect = &sh->section;
925 if (newsect->name != NULL)
927 /* Section already exists. */
928 return newsect;
931 newsect->name = name;
932 return bfd_section_init (abfd, newsect);
936 FUNCTION
937 bfd_make_section_anyway
939 SYNOPSIS
940 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
942 DESCRIPTION
943 Create a new empty section called @var{name} and attach it to the end of
944 the chain of sections for @var{abfd}. Create a new section even if there
945 is already a section with that name.
947 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
948 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
949 o <<bfd_error_no_memory>> - If memory allocation fails.
952 sec_ptr
953 bfd_make_section_anyway (bfd *abfd, const char *name)
955 struct section_hash_entry *sh;
956 asection *newsect;
958 if (abfd->output_has_begun)
960 bfd_set_error (bfd_error_invalid_operation);
961 return NULL;
964 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
965 if (sh == NULL)
966 return NULL;
968 newsect = &sh->section;
969 if (newsect->name != NULL)
971 /* We are making a section of the same name. Put it in the
972 section hash table. Even though we can't find it directly by a
973 hash lookup, we'll be able to find the section by traversing
974 sh->root.next quicker than looking at all the bfd sections. */
975 struct section_hash_entry *new_sh;
976 new_sh = (struct section_hash_entry *)
977 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
978 if (new_sh == NULL)
979 return NULL;
981 new_sh->root = sh->root;
982 sh->root.next = &new_sh->root;
983 newsect = &new_sh->section;
986 newsect->name = name;
987 return bfd_section_init (abfd, newsect);
991 FUNCTION
992 bfd_make_section
994 SYNOPSIS
995 asection *bfd_make_section (bfd *, const char *name);
997 DESCRIPTION
998 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
999 bfd_set_error ()) without changing the section chain if there is already a
1000 section named @var{name}. If there is an error, return <<NULL>> and set
1001 <<bfd_error>>.
1004 asection *
1005 bfd_make_section (bfd *abfd, const char *name)
1007 struct section_hash_entry *sh;
1008 asection *newsect;
1010 if (abfd->output_has_begun)
1012 bfd_set_error (bfd_error_invalid_operation);
1013 return NULL;
1016 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1017 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1018 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1019 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1020 return NULL;
1022 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1023 if (sh == NULL)
1024 return NULL;
1026 newsect = &sh->section;
1027 if (newsect->name != NULL)
1029 /* Section already exists. */
1030 return NULL;
1033 newsect->name = name;
1034 return bfd_section_init (abfd, newsect);
1038 FUNCTION
1039 bfd_set_section_flags
1041 SYNOPSIS
1042 bfd_boolean bfd_set_section_flags
1043 (bfd *abfd, asection *sec, flagword flags);
1045 DESCRIPTION
1046 Set the attributes of the section @var{sec} in the BFD
1047 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1048 <<FALSE>> on error. Possible error returns are:
1050 o <<bfd_error_invalid_operation>> -
1051 The section cannot have one or more of the attributes
1052 requested. For example, a .bss section in <<a.out>> may not
1053 have the <<SEC_HAS_CONTENTS>> field set.
1057 bfd_boolean
1058 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1059 sec_ptr section,
1060 flagword flags)
1062 section->flags = flags;
1063 return TRUE;
1067 FUNCTION
1068 bfd_map_over_sections
1070 SYNOPSIS
1071 void bfd_map_over_sections
1072 (bfd *abfd,
1073 void (*func) (bfd *abfd, asection *sect, void *obj),
1074 void *obj);
1076 DESCRIPTION
1077 Call the provided function @var{func} for each section
1078 attached to the BFD @var{abfd}, passing @var{obj} as an
1079 argument. The function will be called as if by
1081 | func (abfd, the_section, obj);
1083 This is the preferred method for iterating over sections; an
1084 alternative would be to use a loop:
1086 | section *p;
1087 | for (p = abfd->sections; p != NULL; p = p->next)
1088 | func (abfd, p, ...)
1092 void
1093 bfd_map_over_sections (bfd *abfd,
1094 void (*operation) (bfd *, asection *, void *),
1095 void *user_storage)
1097 asection *sect;
1098 unsigned int i = 0;
1100 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1101 (*operation) (abfd, sect, user_storage);
1103 if (i != abfd->section_count) /* Debugging */
1104 abort ();
1108 FUNCTION
1109 bfd_sections_find_if
1111 SYNOPSIS
1112 asection *bfd_sections_find_if
1113 (bfd *abfd,
1114 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1115 void *obj);
1117 DESCRIPTION
1118 Call the provided function @var{operation} for each section
1119 attached to the BFD @var{abfd}, passing @var{obj} as an
1120 argument. The function will be called as if by
1122 | operation (abfd, the_section, obj);
1124 It returns the first section for which @var{operation} returns true.
1128 asection *
1129 bfd_sections_find_if (bfd *abfd,
1130 bfd_boolean (*operation) (bfd *, asection *, void *),
1131 void *user_storage)
1133 asection *sect;
1135 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1136 if ((*operation) (abfd, sect, user_storage))
1137 break;
1139 return sect;
1143 FUNCTION
1144 bfd_set_section_size
1146 SYNOPSIS
1147 bfd_boolean bfd_set_section_size
1148 (bfd *abfd, asection *sec, bfd_size_type val);
1150 DESCRIPTION
1151 Set @var{sec} to the size @var{val}. If the operation is
1152 ok, then <<TRUE>> is returned, else <<FALSE>>.
1154 Possible error returns:
1155 o <<bfd_error_invalid_operation>> -
1156 Writing has started to the BFD, so setting the size is invalid.
1160 bfd_boolean
1161 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1163 /* Once you've started writing to any section you cannot create or change
1164 the size of any others. */
1166 if (abfd->output_has_begun)
1168 bfd_set_error (bfd_error_invalid_operation);
1169 return FALSE;
1172 ptr->size = val;
1173 return TRUE;
1177 FUNCTION
1178 bfd_set_section_contents
1180 SYNOPSIS
1181 bfd_boolean bfd_set_section_contents
1182 (bfd *abfd, asection *section, const void *data,
1183 file_ptr offset, bfd_size_type count);
1185 DESCRIPTION
1186 Sets the contents of the section @var{section} in BFD
1187 @var{abfd} to the data starting in memory at @var{data}. The
1188 data is written to the output section starting at offset
1189 @var{offset} for @var{count} octets.
1191 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1192 returns are:
1193 o <<bfd_error_no_contents>> -
1194 The output section does not have the <<SEC_HAS_CONTENTS>>
1195 attribute, so nothing can be written to it.
1196 o and some more too
1198 This routine is front end to the back end function
1199 <<_bfd_set_section_contents>>.
1203 bfd_boolean
1204 bfd_set_section_contents (bfd *abfd,
1205 sec_ptr section,
1206 const void *location,
1207 file_ptr offset,
1208 bfd_size_type count)
1210 bfd_size_type sz;
1212 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1214 bfd_set_error (bfd_error_no_contents);
1215 return FALSE;
1218 sz = section->size;
1219 if ((bfd_size_type) offset > sz
1220 || count > sz
1221 || offset + count > sz
1222 || count != (size_t) count)
1224 bfd_set_error (bfd_error_bad_value);
1225 return FALSE;
1228 switch (abfd->direction)
1230 case read_direction:
1231 case no_direction:
1232 bfd_set_error (bfd_error_invalid_operation);
1233 return FALSE;
1235 case write_direction:
1236 break;
1238 case both_direction:
1239 /* File is opened for update. `output_has_begun' some time ago when
1240 the file was created. Do not recompute sections sizes or alignments
1241 in _bfd_set_section_content. */
1242 abfd->output_has_begun = TRUE;
1243 break;
1246 /* Record a copy of the data in memory if desired. */
1247 if (section->contents
1248 && location != section->contents + offset)
1249 memcpy (section->contents + offset, location, (size_t) count);
1251 if (BFD_SEND (abfd, _bfd_set_section_contents,
1252 (abfd, section, location, offset, count)))
1254 abfd->output_has_begun = TRUE;
1255 return TRUE;
1258 return FALSE;
1262 FUNCTION
1263 bfd_get_section_contents
1265 SYNOPSIS
1266 bfd_boolean bfd_get_section_contents
1267 (bfd *abfd, asection *section, void *location, file_ptr offset,
1268 bfd_size_type count);
1270 DESCRIPTION
1271 Read data from @var{section} in BFD @var{abfd}
1272 into memory starting at @var{location}. The data is read at an
1273 offset of @var{offset} from the start of the input section,
1274 and is read for @var{count} bytes.
1276 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1277 flag set are requested or if the section does not have the
1278 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1279 with zeroes. If no errors occur, <<TRUE>> is returned, else
1280 <<FALSE>>.
1283 bfd_boolean
1284 bfd_get_section_contents (bfd *abfd,
1285 sec_ptr section,
1286 void *location,
1287 file_ptr offset,
1288 bfd_size_type count)
1290 bfd_size_type sz;
1292 if (section->flags & SEC_CONSTRUCTOR)
1294 memset (location, 0, (size_t) count);
1295 return TRUE;
1298 sz = section->rawsize ? section->rawsize : section->size;
1299 if ((bfd_size_type) offset > sz
1300 || count > sz
1301 || offset + count > sz
1302 || count != (size_t) count)
1304 bfd_set_error (bfd_error_bad_value);
1305 return FALSE;
1308 if (count == 0)
1309 /* Don't bother. */
1310 return TRUE;
1312 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1314 memset (location, 0, (size_t) count);
1315 return TRUE;
1318 if ((section->flags & SEC_IN_MEMORY) != 0)
1320 memcpy (location, section->contents + offset, (size_t) count);
1321 return TRUE;
1324 return BFD_SEND (abfd, _bfd_get_section_contents,
1325 (abfd, section, location, offset, count));
1329 FUNCTION
1330 bfd_malloc_and_get_section
1332 SYNOPSIS
1333 bfd_boolean bfd_malloc_and_get_section
1334 (bfd *abfd, asection *section, bfd_byte **buf);
1336 DESCRIPTION
1337 Read all data from @var{section} in BFD @var{abfd}
1338 into a buffer, *@var{buf}, malloc'd by this function.
1341 bfd_boolean
1342 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1344 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1345 bfd_byte *p = NULL;
1347 *buf = p;
1348 if (sz == 0)
1349 return TRUE;
1351 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1352 if (p == NULL)
1353 return FALSE;
1354 *buf = p;
1356 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1359 FUNCTION
1360 bfd_copy_private_section_data
1362 SYNOPSIS
1363 bfd_boolean bfd_copy_private_section_data
1364 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1366 DESCRIPTION
1367 Copy private section information from @var{isec} in the BFD
1368 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1369 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1370 returns are:
1372 o <<bfd_error_no_memory>> -
1373 Not enough memory exists to create private data for @var{osec}.
1375 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1376 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1377 . (ibfd, isection, obfd, osection))
1381 FUNCTION
1382 _bfd_strip_section_from_output
1384 SYNOPSIS
1385 void _bfd_strip_section_from_output
1386 (struct bfd_link_info *info, asection *section);
1388 DESCRIPTION
1389 Remove @var{section} from the output. If the output section
1390 becomes empty, remove it from the output bfd.
1392 This function won't actually do anything except twiddle flags
1393 if called too late in the linking process, when it's not safe
1394 to remove sections.
1396 void
1397 _bfd_strip_section_from_output (struct bfd_link_info *info, asection *s)
1399 asection *os;
1400 asection *is;
1401 bfd *abfd;
1403 s->flags |= SEC_EXCLUDE;
1405 /* If the section wasn't assigned to an output section, or the
1406 section has been discarded by the linker script, there's nothing
1407 more to do. */
1408 os = s->output_section;
1409 if (os == NULL || os->owner == NULL)
1410 return;
1412 /* If the output section has other (non-excluded) input sections, we
1413 can't remove it. */
1414 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1415 for (is = abfd->sections; is != NULL; is = is->next)
1416 if (is->output_section == os && (is->flags & SEC_EXCLUDE) == 0)
1417 return;
1419 /* If the output section is empty, flag it for removal too.
1420 See ldlang.c:strip_excluded_output_sections for the action. */
1421 os->flags |= SEC_EXCLUDE;
1425 FUNCTION
1426 bfd_generic_is_group_section
1428 SYNOPSIS
1429 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1431 DESCRIPTION
1432 Returns TRUE if @var{sec} is a member of a group.
1435 bfd_boolean
1436 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1437 const asection *sec ATTRIBUTE_UNUSED)
1439 return FALSE;
1443 FUNCTION
1444 bfd_generic_discard_group
1446 SYNOPSIS
1447 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1449 DESCRIPTION
1450 Remove all members of @var{group} from the output.
1453 bfd_boolean
1454 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1455 asection *group ATTRIBUTE_UNUSED)
1457 return TRUE;