1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "alloca-conf.h"
29 #include "elf32-m68hc1x.h"
30 #include "elf/m68hc11.h"
31 #include "opcode/m68hc11.h"
34 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
35 ((struct elf32_m68hc11_stub_hash_entry *) \
36 bfd_hash_lookup ((table), (string), (create), (copy)))
38 static struct elf32_m68hc11_stub_hash_entry
* m68hc12_add_stub
39 (const char *stub_name
,
41 struct m68hc11_elf_link_hash_table
*htab
);
43 static struct bfd_hash_entry
*stub_hash_newfunc
44 (struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *);
46 static void m68hc11_elf_set_symbol (bfd
* abfd
, struct bfd_link_info
*info
,
47 const char* name
, bfd_vma value
,
50 static bfd_boolean m68hc11_elf_export_one_stub
51 (struct bfd_hash_entry
*gen_entry
, void *in_arg
);
53 static void scan_sections_for_abi (bfd
*, asection
*, PTR
);
55 struct m68hc11_scan_param
57 struct m68hc11_page_info
* pinfo
;
58 bfd_boolean use_memory_banks
;
62 /* Create a 68HC11/68HC12 ELF linker hash table. */
64 struct m68hc11_elf_link_hash_table
*
65 m68hc11_elf_hash_table_create (bfd
*abfd
)
67 struct m68hc11_elf_link_hash_table
*ret
;
68 bfd_size_type amt
= sizeof (struct m68hc11_elf_link_hash_table
);
70 ret
= (struct m68hc11_elf_link_hash_table
*) bfd_malloc (amt
);
71 if (ret
== (struct m68hc11_elf_link_hash_table
*) NULL
)
75 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
76 _bfd_elf_link_hash_newfunc
,
77 sizeof (struct elf_link_hash_entry
)))
83 /* Init the stub hash table too. */
84 amt
= sizeof (struct bfd_hash_table
);
85 ret
->stub_hash_table
= (struct bfd_hash_table
*) bfd_malloc (amt
);
86 if (ret
->stub_hash_table
== NULL
)
91 if (!bfd_hash_table_init (ret
->stub_hash_table
, stub_hash_newfunc
,
92 sizeof (struct elf32_m68hc11_stub_hash_entry
)))
96 ret
->stub_section
= 0;
97 ret
->add_stub_section
= NULL
;
98 ret
->sym_cache
.abfd
= NULL
;
103 /* Free the derived linker hash table. */
106 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table
*hash
)
108 struct m68hc11_elf_link_hash_table
*ret
109 = (struct m68hc11_elf_link_hash_table
*) hash
;
111 bfd_hash_table_free (ret
->stub_hash_table
);
112 free (ret
->stub_hash_table
);
113 _bfd_generic_link_hash_table_free (hash
);
116 /* Assorted hash table functions. */
118 /* Initialize an entry in the stub hash table. */
120 static struct bfd_hash_entry
*
121 stub_hash_newfunc (struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
124 /* Allocate the structure if it has not already been allocated by a
128 entry
= bfd_hash_allocate (table
,
129 sizeof (struct elf32_m68hc11_stub_hash_entry
));
134 /* Call the allocation method of the superclass. */
135 entry
= bfd_hash_newfunc (entry
, table
, string
);
138 struct elf32_m68hc11_stub_hash_entry
*eh
;
140 /* Initialize the local fields. */
141 eh
= (struct elf32_m68hc11_stub_hash_entry
*) entry
;
144 eh
->target_value
= 0;
145 eh
->target_section
= NULL
;
151 /* Add a new stub entry to the stub hash. Not all fields of the new
152 stub entry are initialised. */
154 static struct elf32_m68hc11_stub_hash_entry
*
155 m68hc12_add_stub (const char *stub_name
, asection
*section
,
156 struct m68hc11_elf_link_hash_table
*htab
)
158 struct elf32_m68hc11_stub_hash_entry
*stub_entry
;
160 /* Enter this entry into the linker stub hash table. */
161 stub_entry
= m68hc12_stub_hash_lookup (htab
->stub_hash_table
, stub_name
,
163 if (stub_entry
== NULL
)
165 (*_bfd_error_handler
) (_("%B: cannot create stub entry %s"),
166 section
->owner
, stub_name
);
170 if (htab
->stub_section
== 0)
172 htab
->stub_section
= (*htab
->add_stub_section
) (".tramp",
173 htab
->tramp_section
);
176 stub_entry
->stub_sec
= htab
->stub_section
;
177 stub_entry
->stub_offset
= 0;
181 /* Hook called by the linker routine which adds symbols from an object
182 file. We use it for identify far symbols and force a loading of
183 the trampoline handler. */
186 elf32_m68hc11_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
187 Elf_Internal_Sym
*sym
,
188 const char **namep ATTRIBUTE_UNUSED
,
189 flagword
*flagsp ATTRIBUTE_UNUSED
,
190 asection
**secp ATTRIBUTE_UNUSED
,
191 bfd_vma
*valp ATTRIBUTE_UNUSED
)
193 if (sym
->st_other
& STO_M68HC12_FAR
)
195 struct elf_link_hash_entry
*h
;
197 h
= (struct elf_link_hash_entry
*)
198 bfd_link_hash_lookup (info
->hash
, "__far_trampoline",
199 FALSE
, FALSE
, FALSE
);
202 struct bfd_link_hash_entry
* entry
= NULL
;
204 _bfd_generic_link_add_one_symbol (info
, abfd
,
208 (bfd_vma
) 0, (const char*) NULL
,
209 FALSE
, FALSE
, &entry
);
216 /* External entry points for sizing and building linker stubs. */
218 /* Set up various things so that we can make a list of input sections
219 for each output section included in the link. Returns -1 on error,
220 0 when no stubs will be needed, and 1 on success. */
223 elf32_m68hc11_setup_section_lists (bfd
*output_bfd
, struct bfd_link_info
*info
)
226 unsigned int bfd_count
;
227 int top_id
, top_index
;
229 asection
**input_list
, **list
;
231 asection
*text_section
;
232 struct m68hc11_elf_link_hash_table
*htab
;
234 htab
= m68hc11_elf_hash_table (info
);
236 if (bfd_get_flavour (info
->output_bfd
) != bfd_target_elf_flavour
)
239 /* Count the number of input BFDs and find the top input section id.
240 Also search for an existing ".tramp" section so that we know
241 where generated trampolines must go. Default to ".text" if we
243 htab
->tramp_section
= 0;
245 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
247 input_bfd
= input_bfd
->link_next
)
250 for (section
= input_bfd
->sections
;
252 section
= section
->next
)
254 const char* name
= bfd_get_section_name (input_bfd
, section
);
256 if (!strcmp (name
, ".tramp"))
257 htab
->tramp_section
= section
;
259 if (!strcmp (name
, ".text"))
260 text_section
= section
;
262 if (top_id
< section
->id
)
263 top_id
= section
->id
;
266 htab
->bfd_count
= bfd_count
;
267 if (htab
->tramp_section
== 0)
268 htab
->tramp_section
= text_section
;
270 /* We can't use output_bfd->section_count here to find the top output
271 section index as some sections may have been removed, and
272 strip_excluded_output_sections doesn't renumber the indices. */
273 for (section
= output_bfd
->sections
, top_index
= 0;
275 section
= section
->next
)
277 if (top_index
< section
->index
)
278 top_index
= section
->index
;
281 htab
->top_index
= top_index
;
282 amt
= sizeof (asection
*) * (top_index
+ 1);
283 input_list
= (asection
**) bfd_malloc (amt
);
284 htab
->input_list
= input_list
;
285 if (input_list
== NULL
)
288 /* For sections we aren't interested in, mark their entries with a
289 value we can check later. */
290 list
= input_list
+ top_index
;
292 *list
= bfd_abs_section_ptr
;
293 while (list
-- != input_list
);
295 for (section
= output_bfd
->sections
;
297 section
= section
->next
)
299 if ((section
->flags
& SEC_CODE
) != 0)
300 input_list
[section
->index
] = NULL
;
306 /* Determine and set the size of the stub section for a final link.
308 The basic idea here is to examine all the relocations looking for
309 PC-relative calls to a target that is unreachable with a "bl"
313 elf32_m68hc11_size_stubs (bfd
*output_bfd
, bfd
*stub_bfd
,
314 struct bfd_link_info
*info
,
315 asection
* (*add_stub_section
) (const char*, asection
*))
319 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
320 unsigned int bfd_indx
, bfd_count
;
324 struct m68hc11_elf_link_hash_table
*htab
= m68hc11_elf_hash_table (info
);
326 /* Stash our params away. */
327 htab
->stub_bfd
= stub_bfd
;
328 htab
->add_stub_section
= add_stub_section
;
330 /* Count the number of input BFDs and find the top input section id. */
331 for (input_bfd
= info
->input_bfds
, bfd_count
= 0;
333 input_bfd
= input_bfd
->link_next
)
338 /* We want to read in symbol extension records only once. To do this
339 we need to read in the local symbols in parallel and save them for
340 later use; so hold pointers to the local symbols in an array. */
341 amt
= sizeof (Elf_Internal_Sym
*) * bfd_count
;
342 all_local_syms
= (Elf_Internal_Sym
**) bfd_zmalloc (amt
);
343 if (all_local_syms
== NULL
)
346 /* Walk over all the input BFDs, swapping in local symbols. */
347 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
349 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
351 Elf_Internal_Shdr
*symtab_hdr
;
353 /* We'll need the symbol table in a second. */
354 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
355 if (symtab_hdr
->sh_info
== 0)
358 /* We need an array of the local symbols attached to the input bfd. */
359 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
360 if (local_syms
== NULL
)
362 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
363 symtab_hdr
->sh_info
, 0,
365 /* Cache them for elf_link_input_bfd. */
366 symtab_hdr
->contents
= (unsigned char *) local_syms
;
368 if (local_syms
== NULL
)
370 free (all_local_syms
);
374 all_local_syms
[bfd_indx
] = local_syms
;
377 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
379 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
381 Elf_Internal_Shdr
*symtab_hdr
;
382 Elf_Internal_Sym
*local_syms
;
383 struct elf_link_hash_entry
** sym_hashes
;
385 sym_hashes
= elf_sym_hashes (input_bfd
);
387 /* We'll need the symbol table in a second. */
388 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
389 if (symtab_hdr
->sh_info
== 0)
392 local_syms
= all_local_syms
[bfd_indx
];
394 /* Walk over each section attached to the input bfd. */
395 for (section
= input_bfd
->sections
;
397 section
= section
->next
)
399 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
401 /* If there aren't any relocs, then there's nothing more
403 if ((section
->flags
& SEC_RELOC
) == 0
404 || section
->reloc_count
== 0)
407 /* If this section is a link-once section that will be
408 discarded, then don't create any stubs. */
409 if (section
->output_section
== NULL
410 || section
->output_section
->owner
!= output_bfd
)
413 /* Get the relocs. */
415 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
416 (Elf_Internal_Rela
*) NULL
,
418 if (internal_relocs
== NULL
)
419 goto error_ret_free_local
;
421 /* Now examine each relocation. */
422 irela
= internal_relocs
;
423 irelaend
= irela
+ section
->reloc_count
;
424 for (; irela
< irelaend
; irela
++)
426 unsigned int r_type
, r_indx
;
427 struct elf32_m68hc11_stub_hash_entry
*stub_entry
;
430 struct elf_link_hash_entry
*hash
;
431 const char *stub_name
;
432 Elf_Internal_Sym
*sym
;
434 r_type
= ELF32_R_TYPE (irela
->r_info
);
436 /* Only look at 16-bit relocs. */
437 if (r_type
!= (unsigned int) R_M68HC11_16
)
440 /* Now determine the call target, its name, value,
442 r_indx
= ELF32_R_SYM (irela
->r_info
);
443 if (r_indx
< symtab_hdr
->sh_info
)
445 /* It's a local symbol. */
446 Elf_Internal_Shdr
*hdr
;
449 sym
= local_syms
+ r_indx
;
450 is_far
= (sym
&& (sym
->st_other
& STO_M68HC12_FAR
));
454 if (sym
->st_shndx
>= elf_numsections (input_bfd
))
458 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
459 sym_sec
= hdr
->bfd_section
;
461 stub_name
= (bfd_elf_string_from_elf_section
462 (input_bfd
, symtab_hdr
->sh_link
,
464 sym_value
= sym
->st_value
;
469 /* It's an external symbol. */
472 e_indx
= r_indx
- symtab_hdr
->sh_info
;
473 hash
= (struct elf_link_hash_entry
*)
474 (sym_hashes
[e_indx
]);
476 while (hash
->root
.type
== bfd_link_hash_indirect
477 || hash
->root
.type
== bfd_link_hash_warning
)
478 hash
= ((struct elf_link_hash_entry
*)
479 hash
->root
.u
.i
.link
);
481 if (hash
->root
.type
== bfd_link_hash_defined
482 || hash
->root
.type
== bfd_link_hash_defweak
483 || hash
->root
.type
== bfd_link_hash_new
)
485 if (!(hash
->other
& STO_M68HC12_FAR
))
488 else if (hash
->root
.type
== bfd_link_hash_undefweak
)
492 else if (hash
->root
.type
== bfd_link_hash_undefined
)
498 bfd_set_error (bfd_error_bad_value
);
499 goto error_ret_free_internal
;
501 sym_sec
= hash
->root
.u
.def
.section
;
502 sym_value
= hash
->root
.u
.def
.value
;
503 stub_name
= hash
->root
.root
.string
;
507 goto error_ret_free_internal
;
509 stub_entry
= m68hc12_stub_hash_lookup
510 (htab
->stub_hash_table
,
513 if (stub_entry
== NULL
)
515 if (add_stub_section
== 0)
518 stub_entry
= m68hc12_add_stub (stub_name
, section
, htab
);
519 if (stub_entry
== NULL
)
521 error_ret_free_internal
:
522 if (elf_section_data (section
)->relocs
== NULL
)
523 free (internal_relocs
);
524 goto error_ret_free_local
;
528 stub_entry
->target_value
= sym_value
;
529 stub_entry
->target_section
= sym_sec
;
532 /* We're done with the internal relocs, free them. */
533 if (elf_section_data (section
)->relocs
== NULL
)
534 free (internal_relocs
);
538 if (add_stub_section
)
540 /* OK, we've added some stubs. Find out the new size of the
542 for (stub_sec
= htab
->stub_bfd
->sections
;
544 stub_sec
= stub_sec
->next
)
549 bfd_hash_traverse (htab
->stub_hash_table
, htab
->size_one_stub
, htab
);
551 free (all_local_syms
);
554 error_ret_free_local
:
555 free (all_local_syms
);
559 /* Export the trampoline addresses in the symbol table. */
561 m68hc11_elf_export_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
563 struct bfd_link_info
*info
;
564 struct m68hc11_elf_link_hash_table
*htab
;
565 struct elf32_m68hc11_stub_hash_entry
*stub_entry
;
569 info
= (struct bfd_link_info
*) in_arg
;
570 htab
= m68hc11_elf_hash_table (info
);
572 /* Massage our args to the form they really have. */
573 stub_entry
= (struct elf32_m68hc11_stub_hash_entry
*) gen_entry
;
575 /* Generate the trampoline according to HC11 or HC12. */
576 result
= (* htab
->build_one_stub
) (gen_entry
, in_arg
);
578 /* Make a printable name that does not conflict with the real function. */
579 name
= alloca (strlen (stub_entry
->root
.string
) + 16);
580 sprintf (name
, "tramp.%s", stub_entry
->root
.string
);
582 /* Export the symbol for debugging/disassembling. */
583 m68hc11_elf_set_symbol (htab
->stub_bfd
, info
, name
,
584 stub_entry
->stub_offset
,
585 stub_entry
->stub_sec
);
589 /* Export a symbol or set its value and section. */
591 m68hc11_elf_set_symbol (bfd
*abfd
, struct bfd_link_info
*info
,
592 const char *name
, bfd_vma value
, asection
*sec
)
594 struct elf_link_hash_entry
*h
;
596 h
= (struct elf_link_hash_entry
*)
597 bfd_link_hash_lookup (info
->hash
, name
, FALSE
, FALSE
, FALSE
);
600 _bfd_generic_link_add_one_symbol (info
, abfd
,
610 h
->root
.type
= bfd_link_hash_defined
;
611 h
->root
.u
.def
.value
= value
;
612 h
->root
.u
.def
.section
= sec
;
617 /* Build all the stubs associated with the current output file. The
618 stubs are kept in a hash table attached to the main linker hash
619 table. This function is called via m68hc12elf_finish in the
623 elf32_m68hc11_build_stubs (bfd
*abfd
, struct bfd_link_info
*info
)
626 struct bfd_hash_table
*table
;
627 struct m68hc11_elf_link_hash_table
*htab
;
628 struct m68hc11_scan_param param
;
630 m68hc11_elf_get_bank_parameters (info
);
631 htab
= m68hc11_elf_hash_table (info
);
633 for (stub_sec
= htab
->stub_bfd
->sections
;
635 stub_sec
= stub_sec
->next
)
639 /* Allocate memory to hold the linker stubs. */
640 size
= stub_sec
->size
;
641 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
642 if (stub_sec
->contents
== NULL
&& size
!= 0)
647 /* Build the stubs as directed by the stub hash table. */
648 table
= htab
->stub_hash_table
;
649 bfd_hash_traverse (table
, m68hc11_elf_export_one_stub
, info
);
651 /* Scan the output sections to see if we use the memory banks.
652 If so, export the symbols that define how the memory banks
653 are mapped. This is used by gdb and the simulator to obtain
654 the information. It can be used by programs to burn the eprom
655 at the good addresses. */
656 param
.use_memory_banks
= FALSE
;
657 param
.pinfo
= &htab
->pinfo
;
658 bfd_map_over_sections (abfd
, scan_sections_for_abi
, ¶m
);
659 if (param
.use_memory_banks
)
661 m68hc11_elf_set_symbol (abfd
, info
, BFD_M68HC11_BANK_START_NAME
,
662 htab
->pinfo
.bank_physical
,
663 bfd_abs_section_ptr
);
664 m68hc11_elf_set_symbol (abfd
, info
, BFD_M68HC11_BANK_VIRTUAL_NAME
,
665 htab
->pinfo
.bank_virtual
,
666 bfd_abs_section_ptr
);
667 m68hc11_elf_set_symbol (abfd
, info
, BFD_M68HC11_BANK_SIZE_NAME
,
668 htab
->pinfo
.bank_size
,
669 bfd_abs_section_ptr
);
676 m68hc11_elf_get_bank_parameters (struct bfd_link_info
*info
)
679 struct m68hc11_page_info
*pinfo
;
680 struct bfd_link_hash_entry
*h
;
682 pinfo
= &m68hc11_elf_hash_table (info
)->pinfo
;
683 if (pinfo
->bank_param_initialized
)
686 pinfo
->bank_virtual
= M68HC12_BANK_VIRT
;
687 pinfo
->bank_mask
= M68HC12_BANK_MASK
;
688 pinfo
->bank_physical
= M68HC12_BANK_BASE
;
689 pinfo
->bank_shift
= M68HC12_BANK_SHIFT
;
690 pinfo
->bank_size
= 1 << M68HC12_BANK_SHIFT
;
692 h
= bfd_link_hash_lookup (info
->hash
, BFD_M68HC11_BANK_START_NAME
,
694 if (h
!= (struct bfd_link_hash_entry
*) NULL
695 && h
->type
== bfd_link_hash_defined
)
696 pinfo
->bank_physical
= (h
->u
.def
.value
697 + h
->u
.def
.section
->output_section
->vma
698 + h
->u
.def
.section
->output_offset
);
700 h
= bfd_link_hash_lookup (info
->hash
, BFD_M68HC11_BANK_VIRTUAL_NAME
,
702 if (h
!= (struct bfd_link_hash_entry
*) NULL
703 && h
->type
== bfd_link_hash_defined
)
704 pinfo
->bank_virtual
= (h
->u
.def
.value
705 + h
->u
.def
.section
->output_section
->vma
706 + h
->u
.def
.section
->output_offset
);
708 h
= bfd_link_hash_lookup (info
->hash
, BFD_M68HC11_BANK_SIZE_NAME
,
710 if (h
!= (struct bfd_link_hash_entry
*) NULL
711 && h
->type
== bfd_link_hash_defined
)
712 pinfo
->bank_size
= (h
->u
.def
.value
713 + h
->u
.def
.section
->output_section
->vma
714 + h
->u
.def
.section
->output_offset
);
716 pinfo
->bank_shift
= 0;
717 for (i
= pinfo
->bank_size
; i
!= 0; i
>>= 1)
720 pinfo
->bank_mask
= (1 << pinfo
->bank_shift
) - 1;
721 pinfo
->bank_physical_end
= pinfo
->bank_physical
+ pinfo
->bank_size
;
722 pinfo
->bank_param_initialized
= 1;
724 h
= bfd_link_hash_lookup (info
->hash
, "__far_trampoline", FALSE
,
726 if (h
!= (struct bfd_link_hash_entry
*) NULL
727 && h
->type
== bfd_link_hash_defined
)
728 pinfo
->trampoline_addr
= (h
->u
.def
.value
729 + h
->u
.def
.section
->output_section
->vma
730 + h
->u
.def
.section
->output_offset
);
733 /* Return 1 if the address is in banked memory.
734 This can be applied to a virtual address and to a physical address. */
736 m68hc11_addr_is_banked (struct m68hc11_page_info
*pinfo
, bfd_vma addr
)
738 if (addr
>= pinfo
->bank_virtual
)
741 if (addr
>= pinfo
->bank_physical
&& addr
<= pinfo
->bank_physical_end
)
747 /* Return the physical address seen by the processor, taking
748 into account banked memory. */
750 m68hc11_phys_addr (struct m68hc11_page_info
*pinfo
, bfd_vma addr
)
752 if (addr
< pinfo
->bank_virtual
)
755 /* Map the address to the memory bank. */
756 addr
-= pinfo
->bank_virtual
;
757 addr
&= pinfo
->bank_mask
;
758 addr
+= pinfo
->bank_physical
;
762 /* Return the page number corresponding to an address in banked memory. */
764 m68hc11_phys_page (struct m68hc11_page_info
*pinfo
, bfd_vma addr
)
766 if (addr
< pinfo
->bank_virtual
)
769 /* Map the address to the memory bank. */
770 addr
-= pinfo
->bank_virtual
;
771 addr
>>= pinfo
->bank_shift
;
776 /* This function is used for relocs which are only used for relaxing,
777 which the linker should otherwise ignore. */
779 bfd_reloc_status_type
780 m68hc11_elf_ignore_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
781 arelent
*reloc_entry
,
782 asymbol
*symbol ATTRIBUTE_UNUSED
,
783 void *data ATTRIBUTE_UNUSED
,
784 asection
*input_section
,
786 char **error_message ATTRIBUTE_UNUSED
)
788 if (output_bfd
!= NULL
)
789 reloc_entry
->address
+= input_section
->output_offset
;
793 bfd_reloc_status_type
794 m68hc11_elf_special_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
795 arelent
*reloc_entry
,
797 void *data ATTRIBUTE_UNUSED
,
798 asection
*input_section
,
800 char **error_message ATTRIBUTE_UNUSED
)
802 if (output_bfd
!= (bfd
*) NULL
803 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
804 && (! reloc_entry
->howto
->partial_inplace
805 || reloc_entry
->addend
== 0))
807 reloc_entry
->address
+= input_section
->output_offset
;
811 if (output_bfd
!= NULL
)
812 return bfd_reloc_continue
;
814 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
815 return bfd_reloc_outofrange
;
820 /* Look through the relocs for a section during the first phase.
821 Since we don't do .gots or .plts, we just need to consider the
822 virtual table relocs for gc. */
825 elf32_m68hc11_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
826 asection
*sec
, const Elf_Internal_Rela
*relocs
)
828 Elf_Internal_Shdr
* symtab_hdr
;
829 struct elf_link_hash_entry
** sym_hashes
;
830 const Elf_Internal_Rela
* rel
;
831 const Elf_Internal_Rela
* rel_end
;
833 if (info
->relocatable
)
836 symtab_hdr
= & elf_tdata (abfd
)->symtab_hdr
;
837 sym_hashes
= elf_sym_hashes (abfd
);
838 rel_end
= relocs
+ sec
->reloc_count
;
840 for (rel
= relocs
; rel
< rel_end
; rel
++)
842 struct elf_link_hash_entry
* h
;
843 unsigned long r_symndx
;
845 r_symndx
= ELF32_R_SYM (rel
->r_info
);
847 if (r_symndx
< symtab_hdr
->sh_info
)
851 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
852 while (h
->root
.type
== bfd_link_hash_indirect
853 || h
->root
.type
== bfd_link_hash_warning
)
854 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
857 switch (ELF32_R_TYPE (rel
->r_info
))
859 /* This relocation describes the C++ object vtable hierarchy.
860 Reconstruct it for later use during GC. */
861 case R_M68HC11_GNU_VTINHERIT
:
862 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
866 /* This relocation describes which C++ vtable entries are actually
867 used. Record for later use during GC. */
868 case R_M68HC11_GNU_VTENTRY
:
869 BFD_ASSERT (h
!= NULL
);
871 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
880 /* Relocate a 68hc11/68hc12 ELF section. */
882 elf32_m68hc11_relocate_section (bfd
*output_bfd ATTRIBUTE_UNUSED
,
883 struct bfd_link_info
*info
,
884 bfd
*input_bfd
, asection
*input_section
,
885 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
886 Elf_Internal_Sym
*local_syms
,
887 asection
**local_sections
)
889 Elf_Internal_Shdr
*symtab_hdr
;
890 struct elf_link_hash_entry
**sym_hashes
;
891 Elf_Internal_Rela
*rel
, *relend
;
892 const char *name
= NULL
;
893 struct m68hc11_page_info
*pinfo
;
894 const struct elf_backend_data
* const ebd
= get_elf_backend_data (input_bfd
);
896 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
897 sym_hashes
= elf_sym_hashes (input_bfd
);
899 /* Get memory bank parameters. */
900 m68hc11_elf_get_bank_parameters (info
);
901 pinfo
= &m68hc11_elf_hash_table (info
)->pinfo
;
904 relend
= relocs
+ input_section
->reloc_count
;
905 for (; rel
< relend
; rel
++)
909 reloc_howto_type
*howto
;
910 unsigned long r_symndx
;
911 Elf_Internal_Sym
*sym
;
913 bfd_vma relocation
= 0;
914 bfd_reloc_status_type r
= bfd_reloc_undefined
;
919 bfd_boolean is_far
= FALSE
;
920 struct elf_link_hash_entry
*h
;
921 const char* stub_name
= 0;
923 r_symndx
= ELF32_R_SYM (rel
->r_info
);
924 r_type
= ELF32_R_TYPE (rel
->r_info
);
926 if (r_type
== R_M68HC11_GNU_VTENTRY
927 || r_type
== R_M68HC11_GNU_VTINHERIT
)
930 (*ebd
->elf_info_to_howto_rel
) (input_bfd
, &arel
, rel
);
936 if (r_symndx
< symtab_hdr
->sh_info
)
938 sym
= local_syms
+ r_symndx
;
939 sec
= local_sections
[r_symndx
];
940 relocation
= (sec
->output_section
->vma
943 is_far
= (sym
&& (sym
->st_other
& STO_M68HC12_FAR
));
945 stub_name
= (bfd_elf_string_from_elf_section
946 (input_bfd
, symtab_hdr
->sh_link
,
951 bfd_boolean unresolved_reloc
, warned
;
953 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
954 r_symndx
, symtab_hdr
, sym_hashes
,
955 h
, sec
, relocation
, unresolved_reloc
,
958 is_far
= (h
&& (h
->other
& STO_M68HC12_FAR
));
959 stub_name
= h
->root
.root
.string
;
962 if (sec
!= NULL
&& elf_discarded_section (sec
))
964 /* For relocs against symbols from removed linkonce sections,
965 or sections discarded by a linker script, we just want the
966 section contents zeroed. Avoid any special processing. */
967 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
973 if (info
->relocatable
)
975 /* This is a relocatable link. We don't have to change
976 anything, unless the reloc is against a section symbol,
977 in which case we have to adjust according to where the
978 section symbol winds up in the output section. */
979 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
980 rel
->r_addend
+= sec
->output_offset
;
985 name
= h
->root
.root
.string
;
988 name
= (bfd_elf_string_from_elf_section
989 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
990 if (name
== NULL
|| *name
== '\0')
991 name
= bfd_section_name (input_bfd
, sec
);
994 if (is_far
&& ELF32_R_TYPE (rel
->r_info
) == R_M68HC11_16
)
996 struct elf32_m68hc11_stub_hash_entry
* stub
;
997 struct m68hc11_elf_link_hash_table
*htab
;
999 htab
= m68hc11_elf_hash_table (info
);
1000 stub
= m68hc12_stub_hash_lookup (htab
->stub_hash_table
,
1001 name
, FALSE
, FALSE
);
1004 relocation
= stub
->stub_offset
1005 + stub
->stub_sec
->output_section
->vma
1006 + stub
->stub_sec
->output_offset
;
1011 /* Do the memory bank mapping. */
1012 phys_addr
= m68hc11_phys_addr (pinfo
, relocation
+ rel
->r_addend
);
1013 phys_page
= m68hc11_phys_page (pinfo
, relocation
+ rel
->r_addend
);
1017 /* Reloc used by 68HC12 call instruction. */
1018 bfd_put_16 (input_bfd
, phys_addr
,
1019 (bfd_byte
*) contents
+ rel
->r_offset
);
1020 bfd_put_8 (input_bfd
, phys_page
,
1021 (bfd_byte
*) contents
+ rel
->r_offset
+ 2);
1023 r_type
= R_M68HC11_NONE
;
1026 case R_M68HC11_NONE
:
1030 case R_M68HC11_LO16
:
1031 /* Reloc generated by %addr(expr) gas to obtain the
1032 address as mapped in the memory bank window. */
1033 relocation
= phys_addr
;
1036 case R_M68HC11_PAGE
:
1037 /* Reloc generated by %page(expr) gas to obtain the
1038 page number associated with the address. */
1039 relocation
= phys_page
;
1043 /* Get virtual address of instruction having the relocation. */
1048 msg
= _("Reference to the far symbol `%s' using a wrong "
1049 "relocation may result in incorrect execution");
1050 buf
= alloca (strlen (msg
) + strlen (name
) + 10);
1051 sprintf (buf
, msg
, name
);
1053 (* info
->callbacks
->warning
)
1054 (info
, buf
, name
, input_bfd
, NULL
, rel
->r_offset
);
1057 /* Get virtual address of instruction having the relocation. */
1058 insn_addr
= input_section
->output_section
->vma
1059 + input_section
->output_offset
1062 insn_page
= m68hc11_phys_page (pinfo
, insn_addr
);
1064 if (m68hc11_addr_is_banked (pinfo
, relocation
+ rel
->r_addend
)
1065 && m68hc11_addr_is_banked (pinfo
, insn_addr
)
1066 && phys_page
!= insn_page
)
1071 msg
= _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1072 "as current banked address [%lx:%04lx] (%lx)");
1074 buf
= alloca (strlen (msg
) + 128);
1075 sprintf (buf
, msg
, phys_page
, phys_addr
,
1076 (long) (relocation
+ rel
->r_addend
),
1077 insn_page
, m68hc11_phys_addr (pinfo
, insn_addr
),
1078 (long) (insn_addr
));
1079 if (!((*info
->callbacks
->warning
)
1080 (info
, buf
, name
, input_bfd
, input_section
,
1085 if (phys_page
!= 0 && insn_page
== 0)
1090 msg
= _("reference to a banked address [%lx:%04lx] in the "
1091 "normal address space at %04lx");
1093 buf
= alloca (strlen (msg
) + 128);
1094 sprintf (buf
, msg
, phys_page
, phys_addr
, insn_addr
);
1095 if (!((*info
->callbacks
->warning
)
1096 (info
, buf
, name
, input_bfd
, input_section
,
1100 relocation
= phys_addr
;
1104 /* If this is a banked address use the phys_addr so that
1105 we stay in the banked window. */
1106 if (m68hc11_addr_is_banked (pinfo
, relocation
+ rel
->r_addend
))
1107 relocation
= phys_addr
;
1110 if (r_type
!= R_M68HC11_NONE
)
1111 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1112 contents
, rel
->r_offset
,
1113 relocation
, rel
->r_addend
);
1115 if (r
!= bfd_reloc_ok
)
1117 const char * msg
= (const char *) 0;
1121 case bfd_reloc_overflow
:
1122 if (!((*info
->callbacks
->reloc_overflow
)
1123 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
1124 input_bfd
, input_section
, rel
->r_offset
)))
1128 case bfd_reloc_undefined
:
1129 if (!((*info
->callbacks
->undefined_symbol
)
1130 (info
, name
, input_bfd
, input_section
,
1131 rel
->r_offset
, TRUE
)))
1135 case bfd_reloc_outofrange
:
1136 msg
= _ ("internal error: out of range error");
1139 case bfd_reloc_notsupported
:
1140 msg
= _ ("internal error: unsupported relocation error");
1143 case bfd_reloc_dangerous
:
1144 msg
= _ ("internal error: dangerous error");
1148 msg
= _ ("internal error: unknown error");
1152 if (!((*info
->callbacks
->warning
)
1153 (info
, msg
, name
, input_bfd
, input_section
,
1166 /* Set and control ELF flags in ELF header. */
1169 _bfd_m68hc11_elf_set_private_flags (bfd
*abfd
, flagword flags
)
1171 BFD_ASSERT (!elf_flags_init (abfd
)
1172 || elf_elfheader (abfd
)->e_flags
== flags
);
1174 elf_elfheader (abfd
)->e_flags
= flags
;
1175 elf_flags_init (abfd
) = TRUE
;
1179 /* Merge backend specific data from an object file to the output
1180 object file when linking. */
1183 _bfd_m68hc11_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1187 bfd_boolean ok
= TRUE
;
1189 /* Check if we have the same endianess */
1190 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
1193 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1194 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1197 new_flags
= elf_elfheader (ibfd
)->e_flags
;
1198 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_M68HC11_ABI
;
1199 old_flags
= elf_elfheader (obfd
)->e_flags
;
1201 if (! elf_flags_init (obfd
))
1203 elf_flags_init (obfd
) = TRUE
;
1204 elf_elfheader (obfd
)->e_flags
= new_flags
;
1205 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
1206 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
1208 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
1209 && bfd_get_arch_info (obfd
)->the_default
)
1211 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
1212 bfd_get_mach (ibfd
)))
1219 /* Check ABI compatibility. */
1220 if ((new_flags
& E_M68HC11_I32
) != (old_flags
& E_M68HC11_I32
))
1222 (*_bfd_error_handler
)
1223 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1224 "and others for 32-bit integers"), ibfd
);
1227 if ((new_flags
& E_M68HC11_F64
) != (old_flags
& E_M68HC11_F64
))
1229 (*_bfd_error_handler
)
1230 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1231 "and others for 64-bit double"), ibfd
);
1235 /* Processor compatibility. */
1236 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags
, old_flags
))
1238 (*_bfd_error_handler
)
1239 (_("%B: linking files compiled for HCS12 with "
1240 "others compiled for HC12"), ibfd
);
1243 new_flags
= ((new_flags
& ~EF_M68HC11_MACH_MASK
)
1244 | (EF_M68HC11_MERGE_MACH (new_flags
, old_flags
)));
1246 elf_elfheader (obfd
)->e_flags
= new_flags
;
1248 new_flags
&= ~(EF_M68HC11_ABI
| EF_M68HC11_MACH_MASK
);
1249 old_flags
&= ~(EF_M68HC11_ABI
| EF_M68HC11_MACH_MASK
);
1251 /* Warn about any other mismatches */
1252 if (new_flags
!= old_flags
)
1254 (*_bfd_error_handler
)
1255 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1256 ibfd
, (unsigned long) new_flags
, (unsigned long) old_flags
);
1262 bfd_set_error (bfd_error_bad_value
);
1270 _bfd_m68hc11_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
1272 FILE *file
= (FILE *) ptr
;
1274 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
1276 /* Print normal ELF private data. */
1277 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
1279 /* xgettext:c-format */
1280 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
1282 if (elf_elfheader (abfd
)->e_flags
& E_M68HC11_I32
)
1283 fprintf (file
, _("[abi=32-bit int, "));
1285 fprintf (file
, _("[abi=16-bit int, "));
1287 if (elf_elfheader (abfd
)->e_flags
& E_M68HC11_F64
)
1288 fprintf (file
, _("64-bit double, "));
1290 fprintf (file
, _("32-bit double, "));
1292 if (strcmp (bfd_get_target (abfd
), "elf32-m68hc11") == 0)
1293 fprintf (file
, _("cpu=HC11]"));
1294 else if (elf_elfheader (abfd
)->e_flags
& EF_M68HCS12_MACH
)
1295 fprintf (file
, _("cpu=HCS12]"));
1297 fprintf (file
, _("cpu=HC12]"));
1299 if (elf_elfheader (abfd
)->e_flags
& E_M68HC12_BANKS
)
1300 fprintf (file
, _(" [memory=bank-model]"));
1302 fprintf (file
, _(" [memory=flat]"));
1309 static void scan_sections_for_abi (bfd
*abfd ATTRIBUTE_UNUSED
,
1310 asection
*asect
, void *arg
)
1312 struct m68hc11_scan_param
* p
= (struct m68hc11_scan_param
*) arg
;
1314 if (asect
->vma
>= p
->pinfo
->bank_virtual
)
1315 p
->use_memory_banks
= TRUE
;
1318 /* Tweak the OSABI field of the elf header. */
1321 elf32_m68hc11_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
1323 struct m68hc11_scan_param param
;
1328 m68hc11_elf_get_bank_parameters (link_info
);
1330 param
.use_memory_banks
= FALSE
;
1331 param
.pinfo
= &m68hc11_elf_hash_table (link_info
)->pinfo
;
1332 bfd_map_over_sections (abfd
, scan_sections_for_abi
, ¶m
);
1333 if (param
.use_memory_banks
)
1335 Elf_Internal_Ehdr
* i_ehdrp
;
1337 i_ehdrp
= elf_elfheader (abfd
);
1338 i_ehdrp
->e_flags
|= E_M68HC12_BANKS
;