2007-07-26 Michael Snyder <msnyder@access-company.com>
[binutils.git] / bfd / elf32-xtensa.c
blob2531df5810d90bf700a39baa168b7259d6dd5df3
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "sysdep.h"
22 #include "bfd.h"
24 #include <stdarg.h>
25 #include <strings.h>
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 /* Miscellaneous utility functions. */
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection *xtensa_get_property_section (asection *, const char *);
112 static flagword xtensa_get_property_predef_flags (asection *);
114 /* Other functions called directly by the linker. */
116 typedef void (*deps_callback_t)
117 (asection *, bfd_vma, asection *, bfd_vma, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
127 int elf32xtensa_size_opt;
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
134 typedef struct xtensa_relax_info_struct xtensa_relax_info;
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
142 xtensa_isa xtensa_default_isa;
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
149 static bfd_boolean relaxing_section = FALSE;
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
154 int elf32xtensa_no_literal_movement = 1;
157 static reloc_howto_type elf_howto_table[] =
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
161 FALSE, 0, 0, FALSE),
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
176 FALSE, 0, 0xffffffff, FALSE),
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
179 FALSE, 0, 0xffffffff, FALSE),
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
185 FALSE, 0, 0xffffffff, FALSE),
187 EMPTY_HOWTO (7),
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
204 EMPTY_HOWTO (13),
205 EMPTY_HOWTO (14),
207 /* GNU extension to record C++ vtable hierarchy. */
208 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
209 NULL, "R_XTENSA_GNU_VTINHERIT",
210 FALSE, 0, 0, FALSE),
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
214 FALSE, 0, 0, FALSE),
216 /* Relocations for supporting difference of symbols. */
217 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
219 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
221 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
224 /* General immediate operand relocations. */
225 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
256 /* "Alternate" relocations. The meaning of these is opcode-specific. */
257 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
289 #if DEBUG_GEN_RELOC
290 #define TRACE(str) \
291 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
292 #else
293 #define TRACE(str)
294 #endif
296 static reloc_howto_type *
297 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
298 bfd_reloc_code_real_type code)
300 switch (code)
302 case BFD_RELOC_NONE:
303 TRACE ("BFD_RELOC_NONE");
304 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
306 case BFD_RELOC_32:
307 TRACE ("BFD_RELOC_32");
308 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
310 case BFD_RELOC_XTENSA_DIFF8:
311 TRACE ("BFD_RELOC_XTENSA_DIFF8");
312 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
314 case BFD_RELOC_XTENSA_DIFF16:
315 TRACE ("BFD_RELOC_XTENSA_DIFF16");
316 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
318 case BFD_RELOC_XTENSA_DIFF32:
319 TRACE ("BFD_RELOC_XTENSA_DIFF32");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
322 case BFD_RELOC_XTENSA_RTLD:
323 TRACE ("BFD_RELOC_XTENSA_RTLD");
324 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
326 case BFD_RELOC_XTENSA_GLOB_DAT:
327 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
328 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
330 case BFD_RELOC_XTENSA_JMP_SLOT:
331 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
332 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
334 case BFD_RELOC_XTENSA_RELATIVE:
335 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
336 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
338 case BFD_RELOC_XTENSA_PLT:
339 TRACE ("BFD_RELOC_XTENSA_PLT");
340 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
342 case BFD_RELOC_XTENSA_OP0:
343 TRACE ("BFD_RELOC_XTENSA_OP0");
344 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
346 case BFD_RELOC_XTENSA_OP1:
347 TRACE ("BFD_RELOC_XTENSA_OP1");
348 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
350 case BFD_RELOC_XTENSA_OP2:
351 TRACE ("BFD_RELOC_XTENSA_OP2");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
354 case BFD_RELOC_XTENSA_ASM_EXPAND:
355 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
356 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
358 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
359 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
360 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
362 case BFD_RELOC_VTABLE_INHERIT:
363 TRACE ("BFD_RELOC_VTABLE_INHERIT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
366 case BFD_RELOC_VTABLE_ENTRY:
367 TRACE ("BFD_RELOC_VTABLE_ENTRY");
368 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
370 default:
371 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
372 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
374 unsigned n = (R_XTENSA_SLOT0_OP +
375 (code - BFD_RELOC_XTENSA_SLOT0_OP));
376 return &elf_howto_table[n];
379 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
380 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
382 unsigned n = (R_XTENSA_SLOT0_ALT +
383 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
384 return &elf_howto_table[n];
387 break;
390 TRACE ("Unknown");
391 return NULL;
394 static reloc_howto_type *
395 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 const char *r_name)
398 unsigned int i;
400 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
401 if (elf_howto_table[i].name != NULL
402 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
403 return &elf_howto_table[i];
405 return NULL;
409 /* Given an ELF "rela" relocation, find the corresponding howto and record
410 it in the BFD internal arelent representation of the relocation. */
412 static void
413 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
414 arelent *cache_ptr,
415 Elf_Internal_Rela *dst)
417 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
419 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
420 cache_ptr->howto = &elf_howto_table[r_type];
424 /* Functions for the Xtensa ELF linker. */
426 /* The name of the dynamic interpreter. This is put in the .interp
427 section. */
429 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
431 /* The size in bytes of an entry in the procedure linkage table.
432 (This does _not_ include the space for the literals associated with
433 the PLT entry.) */
435 #define PLT_ENTRY_SIZE 16
437 /* For _really_ large PLTs, we may need to alternate between literals
438 and code to keep the literals within the 256K range of the L32R
439 instructions in the code. It's unlikely that anyone would ever need
440 such a big PLT, but an arbitrary limit on the PLT size would be bad.
441 Thus, we split the PLT into chunks. Since there's very little
442 overhead (2 extra literals) for each chunk, the chunk size is kept
443 small so that the code for handling multiple chunks get used and
444 tested regularly. With 254 entries, there are 1K of literals for
445 each chunk, and that seems like a nice round number. */
447 #define PLT_ENTRIES_PER_CHUNK 254
449 /* PLT entries are actually used as stub functions for lazy symbol
450 resolution. Once the symbol is resolved, the stub function is never
451 invoked. Note: the 32-byte frame size used here cannot be changed
452 without a corresponding change in the runtime linker. */
454 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
456 0x6c, 0x10, 0x04, /* entry sp, 32 */
457 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
458 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
459 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
460 0x0a, 0x80, 0x00, /* jx a8 */
461 0 /* unused */
464 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
466 0x36, 0x41, 0x00, /* entry sp, 32 */
467 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
468 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
469 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
470 0xa0, 0x08, 0x00, /* jx a8 */
471 0 /* unused */
474 /* Xtensa ELF linker hash table. */
476 struct elf_xtensa_link_hash_table
478 struct elf_link_hash_table elf;
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sgot;
482 asection *sgotplt;
483 asection *srelgot;
484 asection *splt;
485 asection *srelplt;
486 asection *sgotloc;
487 asection *spltlittbl;
489 /* Total count of PLT relocations seen during check_relocs.
490 The actual PLT code must be split into multiple sections and all
491 the sections have to be created before size_dynamic_sections,
492 where we figure out the exact number of PLT entries that will be
493 needed. It is OK if this count is an overestimate, e.g., some
494 relocations may be removed by GC. */
495 int plt_reloc_count;
498 /* Get the Xtensa ELF linker hash table from a link_info structure. */
500 #define elf_xtensa_hash_table(p) \
501 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
503 /* Create an Xtensa ELF linker hash table. */
505 static struct bfd_link_hash_table *
506 elf_xtensa_link_hash_table_create (bfd *abfd)
508 struct elf_xtensa_link_hash_table *ret;
509 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
511 ret = bfd_malloc (amt);
512 if (ret == NULL)
513 return NULL;
515 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
516 _bfd_elf_link_hash_newfunc,
517 sizeof (struct elf_link_hash_entry)))
519 free (ret);
520 return NULL;
523 ret->sgot = NULL;
524 ret->sgotplt = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sgotloc = NULL;
529 ret->spltlittbl = NULL;
531 ret->plt_reloc_count = 0;
533 return &ret->elf.root;
536 static inline bfd_boolean
537 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
538 struct bfd_link_info *info)
540 /* Check if we should do dynamic things to this symbol. The
541 "ignore_protected" argument need not be set, because Xtensa code
542 does not require special handling of STV_PROTECTED to make function
543 pointer comparisons work properly. The PLT addresses are never
544 used for function pointers. */
546 return _bfd_elf_dynamic_symbol_p (h, info, 0);
550 static int
551 property_table_compare (const void *ap, const void *bp)
553 const property_table_entry *a = (const property_table_entry *) ap;
554 const property_table_entry *b = (const property_table_entry *) bp;
556 if (a->address == b->address)
558 if (a->size != b->size)
559 return (a->size - b->size);
561 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
562 return ((b->flags & XTENSA_PROP_ALIGN)
563 - (a->flags & XTENSA_PROP_ALIGN));
565 if ((a->flags & XTENSA_PROP_ALIGN)
566 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
568 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
569 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
571 if ((a->flags & XTENSA_PROP_UNREACHABLE)
572 != (b->flags & XTENSA_PROP_UNREACHABLE))
573 return ((b->flags & XTENSA_PROP_UNREACHABLE)
574 - (a->flags & XTENSA_PROP_UNREACHABLE));
576 return (a->flags - b->flags);
579 return (a->address - b->address);
583 static int
584 property_table_matches (const void *ap, const void *bp)
586 const property_table_entry *a = (const property_table_entry *) ap;
587 const property_table_entry *b = (const property_table_entry *) bp;
589 /* Check if one entry overlaps with the other. */
590 if ((b->address >= a->address && b->address < (a->address + a->size))
591 || (a->address >= b->address && a->address < (b->address + b->size)))
592 return 0;
594 return (a->address - b->address);
598 /* Get the literal table or property table entries for the given
599 section. Sets TABLE_P and returns the number of entries. On
600 error, returns a negative value. */
602 static int
603 xtensa_read_table_entries (bfd *abfd,
604 asection *section,
605 property_table_entry **table_p,
606 const char *sec_name,
607 bfd_boolean output_addr)
609 asection *table_section;
610 bfd_size_type table_size = 0;
611 bfd_byte *table_data;
612 property_table_entry *blocks;
613 int blk, block_count;
614 bfd_size_type num_records;
615 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
616 bfd_vma section_addr, off;
617 flagword predef_flags;
618 bfd_size_type table_entry_size, section_limit;
620 if (!section
621 || !(section->flags & SEC_ALLOC)
622 || (section->flags & SEC_DEBUGGING))
624 *table_p = NULL;
625 return 0;
628 table_section = xtensa_get_property_section (section, sec_name);
629 if (table_section)
630 table_size = table_section->size;
632 if (table_size == 0)
634 *table_p = NULL;
635 return 0;
638 predef_flags = xtensa_get_property_predef_flags (table_section);
639 table_entry_size = 12;
640 if (predef_flags)
641 table_entry_size -= 4;
643 num_records = table_size / table_entry_size;
644 table_data = retrieve_contents (abfd, table_section, TRUE);
645 blocks = (property_table_entry *)
646 bfd_malloc (num_records * sizeof (property_table_entry));
647 block_count = 0;
649 if (output_addr)
650 section_addr = section->output_section->vma + section->output_offset;
651 else
652 section_addr = section->vma;
654 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
655 if (internal_relocs && !table_section->reloc_done)
657 qsort (internal_relocs, table_section->reloc_count,
658 sizeof (Elf_Internal_Rela), internal_reloc_compare);
659 irel = internal_relocs;
661 else
662 irel = NULL;
664 section_limit = bfd_get_section_limit (abfd, section);
665 rel_end = internal_relocs + table_section->reloc_count;
667 for (off = 0; off < table_size; off += table_entry_size)
669 bfd_vma address = bfd_get_32 (abfd, table_data + off);
671 /* Skip any relocations before the current offset. This should help
672 avoid confusion caused by unexpected relocations for the preceding
673 table entry. */
674 while (irel &&
675 (irel->r_offset < off
676 || (irel->r_offset == off
677 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
679 irel += 1;
680 if (irel >= rel_end)
681 irel = 0;
684 if (irel && irel->r_offset == off)
686 bfd_vma sym_off;
687 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
688 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
690 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
691 continue;
693 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
694 BFD_ASSERT (sym_off == 0);
695 address += (section_addr + sym_off + irel->r_addend);
697 else
699 if (address < section_addr
700 || address >= section_addr + section_limit)
701 continue;
704 blocks[block_count].address = address;
705 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
706 if (predef_flags)
707 blocks[block_count].flags = predef_flags;
708 else
709 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
710 block_count++;
713 release_contents (table_section, table_data);
714 release_internal_relocs (table_section, internal_relocs);
716 if (block_count > 0)
718 /* Now sort them into address order for easy reference. */
719 qsort (blocks, block_count, sizeof (property_table_entry),
720 property_table_compare);
722 /* Check that the table contents are valid. Problems may occur,
723 for example, if an unrelocated object file is stripped. */
724 for (blk = 1; blk < block_count; blk++)
726 /* The only circumstance where two entries may legitimately
727 have the same address is when one of them is a zero-size
728 placeholder to mark a place where fill can be inserted.
729 The zero-size entry should come first. */
730 if (blocks[blk - 1].address == blocks[blk].address &&
731 blocks[blk - 1].size != 0)
733 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
734 abfd, section);
735 bfd_set_error (bfd_error_bad_value);
736 free (blocks);
737 return -1;
742 *table_p = blocks;
743 return block_count;
747 static property_table_entry *
748 elf_xtensa_find_property_entry (property_table_entry *property_table,
749 int property_table_size,
750 bfd_vma addr)
752 property_table_entry entry;
753 property_table_entry *rv;
755 if (property_table_size == 0)
756 return NULL;
758 entry.address = addr;
759 entry.size = 1;
760 entry.flags = 0;
762 rv = bsearch (&entry, property_table, property_table_size,
763 sizeof (property_table_entry), property_table_matches);
764 return rv;
768 static bfd_boolean
769 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
770 int lit_table_size,
771 bfd_vma addr)
773 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
774 return TRUE;
776 return FALSE;
780 /* Look through the relocs for a section during the first phase, and
781 calculate needed space in the dynamic reloc sections. */
783 static bfd_boolean
784 elf_xtensa_check_relocs (bfd *abfd,
785 struct bfd_link_info *info,
786 asection *sec,
787 const Elf_Internal_Rela *relocs)
789 struct elf_xtensa_link_hash_table *htab;
790 Elf_Internal_Shdr *symtab_hdr;
791 struct elf_link_hash_entry **sym_hashes;
792 const Elf_Internal_Rela *rel;
793 const Elf_Internal_Rela *rel_end;
795 if (info->relocatable)
796 return TRUE;
798 htab = elf_xtensa_hash_table (info);
799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
800 sym_hashes = elf_sym_hashes (abfd);
802 rel_end = relocs + sec->reloc_count;
803 for (rel = relocs; rel < rel_end; rel++)
805 unsigned int r_type;
806 unsigned long r_symndx;
807 struct elf_link_hash_entry *h;
809 r_symndx = ELF32_R_SYM (rel->r_info);
810 r_type = ELF32_R_TYPE (rel->r_info);
812 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
814 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
815 abfd, r_symndx);
816 return FALSE;
819 if (r_symndx < symtab_hdr->sh_info)
820 h = NULL;
821 else
823 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
824 while (h->root.type == bfd_link_hash_indirect
825 || h->root.type == bfd_link_hash_warning)
826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
829 switch (r_type)
831 case R_XTENSA_32:
832 if (h == NULL)
833 goto local_literal;
835 if ((sec->flags & SEC_ALLOC) != 0)
837 if (h->got.refcount <= 0)
838 h->got.refcount = 1;
839 else
840 h->got.refcount += 1;
842 break;
844 case R_XTENSA_PLT:
845 /* If this relocation is against a local symbol, then it's
846 exactly the same as a normal local GOT entry. */
847 if (h == NULL)
848 goto local_literal;
850 if ((sec->flags & SEC_ALLOC) != 0)
852 if (h->plt.refcount <= 0)
854 h->needs_plt = 1;
855 h->plt.refcount = 1;
857 else
858 h->plt.refcount += 1;
860 /* Keep track of the total PLT relocation count even if we
861 don't yet know whether the dynamic sections will be
862 created. */
863 htab->plt_reloc_count += 1;
865 if (elf_hash_table (info)->dynamic_sections_created)
867 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
868 return FALSE;
871 break;
873 local_literal:
874 if ((sec->flags & SEC_ALLOC) != 0)
876 bfd_signed_vma *local_got_refcounts;
878 /* This is a global offset table entry for a local symbol. */
879 local_got_refcounts = elf_local_got_refcounts (abfd);
880 if (local_got_refcounts == NULL)
882 bfd_size_type size;
884 size = symtab_hdr->sh_info;
885 size *= sizeof (bfd_signed_vma);
886 local_got_refcounts =
887 (bfd_signed_vma *) bfd_zalloc (abfd, size);
888 if (local_got_refcounts == NULL)
889 return FALSE;
890 elf_local_got_refcounts (abfd) = local_got_refcounts;
892 local_got_refcounts[r_symndx] += 1;
894 break;
896 case R_XTENSA_OP0:
897 case R_XTENSA_OP1:
898 case R_XTENSA_OP2:
899 case R_XTENSA_SLOT0_OP:
900 case R_XTENSA_SLOT1_OP:
901 case R_XTENSA_SLOT2_OP:
902 case R_XTENSA_SLOT3_OP:
903 case R_XTENSA_SLOT4_OP:
904 case R_XTENSA_SLOT5_OP:
905 case R_XTENSA_SLOT6_OP:
906 case R_XTENSA_SLOT7_OP:
907 case R_XTENSA_SLOT8_OP:
908 case R_XTENSA_SLOT9_OP:
909 case R_XTENSA_SLOT10_OP:
910 case R_XTENSA_SLOT11_OP:
911 case R_XTENSA_SLOT12_OP:
912 case R_XTENSA_SLOT13_OP:
913 case R_XTENSA_SLOT14_OP:
914 case R_XTENSA_SLOT0_ALT:
915 case R_XTENSA_SLOT1_ALT:
916 case R_XTENSA_SLOT2_ALT:
917 case R_XTENSA_SLOT3_ALT:
918 case R_XTENSA_SLOT4_ALT:
919 case R_XTENSA_SLOT5_ALT:
920 case R_XTENSA_SLOT6_ALT:
921 case R_XTENSA_SLOT7_ALT:
922 case R_XTENSA_SLOT8_ALT:
923 case R_XTENSA_SLOT9_ALT:
924 case R_XTENSA_SLOT10_ALT:
925 case R_XTENSA_SLOT11_ALT:
926 case R_XTENSA_SLOT12_ALT:
927 case R_XTENSA_SLOT13_ALT:
928 case R_XTENSA_SLOT14_ALT:
929 case R_XTENSA_ASM_EXPAND:
930 case R_XTENSA_ASM_SIMPLIFY:
931 case R_XTENSA_DIFF8:
932 case R_XTENSA_DIFF16:
933 case R_XTENSA_DIFF32:
934 /* Nothing to do for these. */
935 break;
937 case R_XTENSA_GNU_VTINHERIT:
938 /* This relocation describes the C++ object vtable hierarchy.
939 Reconstruct it for later use during GC. */
940 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
941 return FALSE;
942 break;
944 case R_XTENSA_GNU_VTENTRY:
945 /* This relocation describes which C++ vtable entries are actually
946 used. Record for later use during GC. */
947 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
948 return FALSE;
949 break;
951 default:
952 break;
956 return TRUE;
960 static void
961 elf_xtensa_make_sym_local (struct bfd_link_info *info,
962 struct elf_link_hash_entry *h)
964 if (info->shared)
966 if (h->plt.refcount > 0)
968 /* For shared objects, there's no need for PLT entries for local
969 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
970 if (h->got.refcount < 0)
971 h->got.refcount = 0;
972 h->got.refcount += h->plt.refcount;
973 h->plt.refcount = 0;
976 else
978 /* Don't need any dynamic relocations at all. */
979 h->plt.refcount = 0;
980 h->got.refcount = 0;
985 static void
986 elf_xtensa_hide_symbol (struct bfd_link_info *info,
987 struct elf_link_hash_entry *h,
988 bfd_boolean force_local)
990 /* For a shared link, move the plt refcount to the got refcount to leave
991 space for RELATIVE relocs. */
992 elf_xtensa_make_sym_local (info, h);
994 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
998 /* Return the section that should be marked against GC for a given
999 relocation. */
1001 static asection *
1002 elf_xtensa_gc_mark_hook (asection *sec,
1003 struct bfd_link_info *info,
1004 Elf_Internal_Rela *rel,
1005 struct elf_link_hash_entry *h,
1006 Elf_Internal_Sym *sym)
1008 /* Property sections are marked "KEEP" in the linker scripts, but they
1009 should not cause other sections to be marked. (This approach relies
1010 on elf_xtensa_discard_info to remove property table entries that
1011 describe discarded sections. Alternatively, it might be more
1012 efficient to avoid using "KEEP" in the linker scripts and instead use
1013 the gc_mark_extra_sections hook to mark only the property sections
1014 that describe marked sections. That alternative does not work well
1015 with the current property table sections, which do not correspond
1016 one-to-one with the sections they describe, but that should be fixed
1017 someday.) */
1018 if (xtensa_is_property_section (sec))
1019 return NULL;
1021 if (h != NULL)
1022 switch (ELF32_R_TYPE (rel->r_info))
1024 case R_XTENSA_GNU_VTINHERIT:
1025 case R_XTENSA_GNU_VTENTRY:
1026 return NULL;
1029 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1033 /* Update the GOT & PLT entry reference counts
1034 for the section being removed. */
1036 static bfd_boolean
1037 elf_xtensa_gc_sweep_hook (bfd *abfd,
1038 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1039 asection *sec,
1040 const Elf_Internal_Rela *relocs)
1042 Elf_Internal_Shdr *symtab_hdr;
1043 struct elf_link_hash_entry **sym_hashes;
1044 bfd_signed_vma *local_got_refcounts;
1045 const Elf_Internal_Rela *rel, *relend;
1047 if ((sec->flags & SEC_ALLOC) == 0)
1048 return TRUE;
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 local_got_refcounts = elf_local_got_refcounts (abfd);
1054 relend = relocs + sec->reloc_count;
1055 for (rel = relocs; rel < relend; rel++)
1057 unsigned long r_symndx;
1058 unsigned int r_type;
1059 struct elf_link_hash_entry *h = NULL;
1061 r_symndx = ELF32_R_SYM (rel->r_info);
1062 if (r_symndx >= symtab_hdr->sh_info)
1064 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1065 while (h->root.type == bfd_link_hash_indirect
1066 || h->root.type == bfd_link_hash_warning)
1067 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1070 r_type = ELF32_R_TYPE (rel->r_info);
1071 switch (r_type)
1073 case R_XTENSA_32:
1074 if (h == NULL)
1075 goto local_literal;
1076 if (h->got.refcount > 0)
1077 h->got.refcount--;
1078 break;
1080 case R_XTENSA_PLT:
1081 if (h == NULL)
1082 goto local_literal;
1083 if (h->plt.refcount > 0)
1084 h->plt.refcount--;
1085 break;
1087 local_literal:
1088 if (local_got_refcounts[r_symndx] > 0)
1089 local_got_refcounts[r_symndx] -= 1;
1090 break;
1092 default:
1093 break;
1097 return TRUE;
1101 /* Create all the dynamic sections. */
1103 static bfd_boolean
1104 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1106 struct elf_xtensa_link_hash_table *htab;
1107 flagword flags, noalloc_flags;
1109 htab = elf_xtensa_hash_table (info);
1111 /* First do all the standard stuff. */
1112 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1113 return FALSE;
1114 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1115 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1116 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1117 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1119 /* Create any extra PLT sections in case check_relocs has already
1120 been called on all the non-dynamic input files. */
1121 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1122 return FALSE;
1124 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1125 | SEC_LINKER_CREATED | SEC_READONLY);
1126 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1128 /* Mark the ".got.plt" section READONLY. */
1129 if (htab->sgotplt == NULL
1130 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1131 return FALSE;
1133 /* Create ".rela.got". */
1134 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1135 if (htab->srelgot == NULL
1136 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1137 return FALSE;
1139 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1140 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1141 if (htab->sgotloc == NULL
1142 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1143 return FALSE;
1145 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1146 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1147 noalloc_flags);
1148 if (htab->spltlittbl == NULL
1149 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1150 return FALSE;
1152 return TRUE;
1156 static bfd_boolean
1157 add_extra_plt_sections (struct bfd_link_info *info, int count)
1159 bfd *dynobj = elf_hash_table (info)->dynobj;
1160 int chunk;
1162 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1163 ".got.plt" sections. */
1164 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1166 char *sname;
1167 flagword flags;
1168 asection *s;
1170 /* Stop when we find a section has already been created. */
1171 if (elf_xtensa_get_plt_section (info, chunk))
1172 break;
1174 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1175 | SEC_LINKER_CREATED | SEC_READONLY);
1177 sname = (char *) bfd_malloc (10);
1178 sprintf (sname, ".plt.%u", chunk);
1179 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1180 if (s == NULL
1181 || ! bfd_set_section_alignment (dynobj, s, 2))
1182 return FALSE;
1184 sname = (char *) bfd_malloc (14);
1185 sprintf (sname, ".got.plt.%u", chunk);
1186 s = bfd_make_section_with_flags (dynobj, sname, flags);
1187 if (s == NULL
1188 || ! bfd_set_section_alignment (dynobj, s, 2))
1189 return FALSE;
1192 return TRUE;
1196 /* Adjust a symbol defined by a dynamic object and referenced by a
1197 regular object. The current definition is in some section of the
1198 dynamic object, but we're not including those sections. We have to
1199 change the definition to something the rest of the link can
1200 understand. */
1202 static bfd_boolean
1203 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1204 struct elf_link_hash_entry *h)
1206 /* If this is a weak symbol, and there is a real definition, the
1207 processor independent code will have arranged for us to see the
1208 real definition first, and we can just use the same value. */
1209 if (h->u.weakdef)
1211 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1212 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1213 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1214 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1215 return TRUE;
1218 /* This is a reference to a symbol defined by a dynamic object. The
1219 reference must go through the GOT, so there's no need for COPY relocs,
1220 .dynbss, etc. */
1222 return TRUE;
1226 static bfd_boolean
1227 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1229 struct bfd_link_info *info;
1230 struct elf_xtensa_link_hash_table *htab;
1231 bfd_boolean is_dynamic;
1233 if (h->root.type == bfd_link_hash_indirect)
1234 return TRUE;
1236 if (h->root.type == bfd_link_hash_warning)
1237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1239 info = (struct bfd_link_info *) arg;
1240 htab = elf_xtensa_hash_table (info);
1242 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1244 if (! is_dynamic)
1245 elf_xtensa_make_sym_local (info, h);
1247 if (h->plt.refcount > 0)
1248 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1250 if (h->got.refcount > 0)
1251 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1253 return TRUE;
1257 static void
1258 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1260 struct elf_xtensa_link_hash_table *htab;
1261 bfd *i;
1263 htab = elf_xtensa_hash_table (info);
1265 for (i = info->input_bfds; i; i = i->link_next)
1267 bfd_signed_vma *local_got_refcounts;
1268 bfd_size_type j, cnt;
1269 Elf_Internal_Shdr *symtab_hdr;
1271 local_got_refcounts = elf_local_got_refcounts (i);
1272 if (!local_got_refcounts)
1273 continue;
1275 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1276 cnt = symtab_hdr->sh_info;
1278 for (j = 0; j < cnt; ++j)
1280 if (local_got_refcounts[j] > 0)
1281 htab->srelgot->size += (local_got_refcounts[j]
1282 * sizeof (Elf32_External_Rela));
1288 /* Set the sizes of the dynamic sections. */
1290 static bfd_boolean
1291 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1292 struct bfd_link_info *info)
1294 struct elf_xtensa_link_hash_table *htab;
1295 bfd *dynobj, *abfd;
1296 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1297 bfd_boolean relplt, relgot;
1298 int plt_entries, plt_chunks, chunk;
1300 plt_entries = 0;
1301 plt_chunks = 0;
1303 htab = elf_xtensa_hash_table (info);
1304 dynobj = elf_hash_table (info)->dynobj;
1305 if (dynobj == NULL)
1306 abort ();
1307 srelgot = htab->srelgot;
1308 srelplt = htab->srelplt;
1310 if (elf_hash_table (info)->dynamic_sections_created)
1312 BFD_ASSERT (htab->srelgot != NULL
1313 && htab->srelplt != NULL
1314 && htab->sgot != NULL
1315 && htab->spltlittbl != NULL
1316 && htab->sgotloc != NULL);
1318 /* Set the contents of the .interp section to the interpreter. */
1319 if (info->executable)
1321 s = bfd_get_section_by_name (dynobj, ".interp");
1322 if (s == NULL)
1323 abort ();
1324 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1325 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1328 /* Allocate room for one word in ".got". */
1329 htab->sgot->size = 4;
1331 /* Allocate space in ".rela.got" for literals that reference global
1332 symbols and space in ".rela.plt" for literals that have PLT
1333 entries. */
1334 elf_link_hash_traverse (elf_hash_table (info),
1335 elf_xtensa_allocate_dynrelocs,
1336 (void *) info);
1338 /* If we are generating a shared object, we also need space in
1339 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1340 reference local symbols. */
1341 if (info->shared)
1342 elf_xtensa_allocate_local_got_size (info);
1344 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1345 each PLT entry, we need the PLT code plus a 4-byte literal.
1346 For each chunk of ".plt", we also need two more 4-byte
1347 literals, two corresponding entries in ".rela.got", and an
1348 8-byte entry in ".xt.lit.plt". */
1349 spltlittbl = htab->spltlittbl;
1350 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1351 plt_chunks =
1352 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1354 /* Iterate over all the PLT chunks, including any extra sections
1355 created earlier because the initial count of PLT relocations
1356 was an overestimate. */
1357 for (chunk = 0;
1358 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1359 chunk++)
1361 int chunk_entries;
1363 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1364 BFD_ASSERT (sgotplt != NULL);
1366 if (chunk < plt_chunks - 1)
1367 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1368 else if (chunk == plt_chunks - 1)
1369 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1370 else
1371 chunk_entries = 0;
1373 if (chunk_entries != 0)
1375 sgotplt->size = 4 * (chunk_entries + 2);
1376 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1377 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1378 spltlittbl->size += 8;
1380 else
1382 sgotplt->size = 0;
1383 splt->size = 0;
1387 /* Allocate space in ".got.loc" to match the total size of all the
1388 literal tables. */
1389 sgotloc = htab->sgotloc;
1390 sgotloc->size = spltlittbl->size;
1391 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1393 if (abfd->flags & DYNAMIC)
1394 continue;
1395 for (s = abfd->sections; s != NULL; s = s->next)
1397 if (! elf_discarded_section (s)
1398 && xtensa_is_littable_section (s)
1399 && s != spltlittbl)
1400 sgotloc->size += s->size;
1405 /* Allocate memory for dynamic sections. */
1406 relplt = FALSE;
1407 relgot = FALSE;
1408 for (s = dynobj->sections; s != NULL; s = s->next)
1410 const char *name;
1412 if ((s->flags & SEC_LINKER_CREATED) == 0)
1413 continue;
1415 /* It's OK to base decisions on the section name, because none
1416 of the dynobj section names depend upon the input files. */
1417 name = bfd_get_section_name (dynobj, s);
1419 if (CONST_STRNEQ (name, ".rela"))
1421 if (s->size != 0)
1423 if (strcmp (name, ".rela.plt") == 0)
1424 relplt = TRUE;
1425 else if (strcmp (name, ".rela.got") == 0)
1426 relgot = TRUE;
1428 /* We use the reloc_count field as a counter if we need
1429 to copy relocs into the output file. */
1430 s->reloc_count = 0;
1433 else if (! CONST_STRNEQ (name, ".plt.")
1434 && ! CONST_STRNEQ (name, ".got.plt.")
1435 && strcmp (name, ".got") != 0
1436 && strcmp (name, ".plt") != 0
1437 && strcmp (name, ".got.plt") != 0
1438 && strcmp (name, ".xt.lit.plt") != 0
1439 && strcmp (name, ".got.loc") != 0)
1441 /* It's not one of our sections, so don't allocate space. */
1442 continue;
1445 if (s->size == 0)
1447 /* If we don't need this section, strip it from the output
1448 file. We must create the ".plt*" and ".got.plt*"
1449 sections in create_dynamic_sections and/or check_relocs
1450 based on a conservative estimate of the PLT relocation
1451 count, because the sections must be created before the
1452 linker maps input sections to output sections. The
1453 linker does that before size_dynamic_sections, where we
1454 compute the exact size of the PLT, so there may be more
1455 of these sections than are actually needed. */
1456 s->flags |= SEC_EXCLUDE;
1458 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1460 /* Allocate memory for the section contents. */
1461 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1462 if (s->contents == NULL)
1463 return FALSE;
1467 if (elf_hash_table (info)->dynamic_sections_created)
1469 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1470 known until finish_dynamic_sections, but we need to get the relocs
1471 in place before they are sorted. */
1472 for (chunk = 0; chunk < plt_chunks; chunk++)
1474 Elf_Internal_Rela irela;
1475 bfd_byte *loc;
1477 irela.r_offset = 0;
1478 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1479 irela.r_addend = 0;
1481 loc = (srelgot->contents
1482 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1483 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1484 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1485 loc + sizeof (Elf32_External_Rela));
1486 srelgot->reloc_count += 2;
1489 /* Add some entries to the .dynamic section. We fill in the
1490 values later, in elf_xtensa_finish_dynamic_sections, but we
1491 must add the entries now so that we get the correct size for
1492 the .dynamic section. The DT_DEBUG entry is filled in by the
1493 dynamic linker and used by the debugger. */
1494 #define add_dynamic_entry(TAG, VAL) \
1495 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1497 if (info->executable)
1499 if (!add_dynamic_entry (DT_DEBUG, 0))
1500 return FALSE;
1503 if (relplt)
1505 if (!add_dynamic_entry (DT_PLTGOT, 0)
1506 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1507 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1508 || !add_dynamic_entry (DT_JMPREL, 0))
1509 return FALSE;
1512 if (relgot)
1514 if (!add_dynamic_entry (DT_RELA, 0)
1515 || !add_dynamic_entry (DT_RELASZ, 0)
1516 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1517 return FALSE;
1520 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1521 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1522 return FALSE;
1524 #undef add_dynamic_entry
1526 return TRUE;
1530 /* Perform the specified relocation. The instruction at (contents + address)
1531 is modified to set one operand to represent the value in "relocation". The
1532 operand position is determined by the relocation type recorded in the
1533 howto. */
1535 #define CALL_SEGMENT_BITS (30)
1536 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1538 static bfd_reloc_status_type
1539 elf_xtensa_do_reloc (reloc_howto_type *howto,
1540 bfd *abfd,
1541 asection *input_section,
1542 bfd_vma relocation,
1543 bfd_byte *contents,
1544 bfd_vma address,
1545 bfd_boolean is_weak_undef,
1546 char **error_message)
1548 xtensa_format fmt;
1549 xtensa_opcode opcode;
1550 xtensa_isa isa = xtensa_default_isa;
1551 static xtensa_insnbuf ibuff = NULL;
1552 static xtensa_insnbuf sbuff = NULL;
1553 bfd_vma self_address = 0;
1554 bfd_size_type input_size;
1555 int opnd, slot;
1556 uint32 newval;
1558 if (!ibuff)
1560 ibuff = xtensa_insnbuf_alloc (isa);
1561 sbuff = xtensa_insnbuf_alloc (isa);
1564 input_size = bfd_get_section_limit (abfd, input_section);
1566 switch (howto->type)
1568 case R_XTENSA_NONE:
1569 case R_XTENSA_DIFF8:
1570 case R_XTENSA_DIFF16:
1571 case R_XTENSA_DIFF32:
1572 return bfd_reloc_ok;
1574 case R_XTENSA_ASM_EXPAND:
1575 if (!is_weak_undef)
1577 /* Check for windowed CALL across a 1GB boundary. */
1578 xtensa_opcode opcode =
1579 get_expanded_call_opcode (contents + address,
1580 input_size - address, 0);
1581 if (is_windowed_call_opcode (opcode))
1583 self_address = (input_section->output_section->vma
1584 + input_section->output_offset
1585 + address);
1586 if ((self_address >> CALL_SEGMENT_BITS)
1587 != (relocation >> CALL_SEGMENT_BITS))
1589 *error_message = "windowed longcall crosses 1GB boundary; "
1590 "return may fail";
1591 return bfd_reloc_dangerous;
1595 return bfd_reloc_ok;
1597 case R_XTENSA_ASM_SIMPLIFY:
1599 /* Convert the L32R/CALLX to CALL. */
1600 bfd_reloc_status_type retval =
1601 elf_xtensa_do_asm_simplify (contents, address, input_size,
1602 error_message);
1603 if (retval != bfd_reloc_ok)
1604 return bfd_reloc_dangerous;
1606 /* The CALL needs to be relocated. Continue below for that part. */
1607 address += 3;
1608 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1610 break;
1612 case R_XTENSA_32:
1613 case R_XTENSA_PLT:
1615 bfd_vma x;
1616 x = bfd_get_32 (abfd, contents + address);
1617 x = x + relocation;
1618 bfd_put_32 (abfd, x, contents + address);
1620 return bfd_reloc_ok;
1623 /* Only instruction slot-specific relocations handled below.... */
1624 slot = get_relocation_slot (howto->type);
1625 if (slot == XTENSA_UNDEFINED)
1627 *error_message = "unexpected relocation";
1628 return bfd_reloc_dangerous;
1631 /* Read the instruction into a buffer and decode the opcode. */
1632 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1633 input_size - address);
1634 fmt = xtensa_format_decode (isa, ibuff);
1635 if (fmt == XTENSA_UNDEFINED)
1637 *error_message = "cannot decode instruction format";
1638 return bfd_reloc_dangerous;
1641 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1643 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1644 if (opcode == XTENSA_UNDEFINED)
1646 *error_message = "cannot decode instruction opcode";
1647 return bfd_reloc_dangerous;
1650 /* Check for opcode-specific "alternate" relocations. */
1651 if (is_alt_relocation (howto->type))
1653 if (opcode == get_l32r_opcode ())
1655 /* Handle the special-case of non-PC-relative L32R instructions. */
1656 bfd *output_bfd = input_section->output_section->owner;
1657 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1658 if (!lit4_sec)
1660 *error_message = "relocation references missing .lit4 section";
1661 return bfd_reloc_dangerous;
1663 self_address = ((lit4_sec->vma & ~0xfff)
1664 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1665 newval = relocation;
1666 opnd = 1;
1668 else if (opcode == get_const16_opcode ())
1670 /* ALT used for high 16 bits. */
1671 newval = relocation >> 16;
1672 opnd = 1;
1674 else
1676 /* No other "alternate" relocations currently defined. */
1677 *error_message = "unexpected relocation";
1678 return bfd_reloc_dangerous;
1681 else /* Not an "alternate" relocation.... */
1683 if (opcode == get_const16_opcode ())
1685 newval = relocation & 0xffff;
1686 opnd = 1;
1688 else
1690 /* ...normal PC-relative relocation.... */
1692 /* Determine which operand is being relocated. */
1693 opnd = get_relocation_opnd (opcode, howto->type);
1694 if (opnd == XTENSA_UNDEFINED)
1696 *error_message = "unexpected relocation";
1697 return bfd_reloc_dangerous;
1700 if (!howto->pc_relative)
1702 *error_message = "expected PC-relative relocation";
1703 return bfd_reloc_dangerous;
1706 /* Calculate the PC address for this instruction. */
1707 self_address = (input_section->output_section->vma
1708 + input_section->output_offset
1709 + address);
1711 newval = relocation;
1715 /* Apply the relocation. */
1716 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1717 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1718 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1719 sbuff, newval))
1721 const char *opname = xtensa_opcode_name (isa, opcode);
1722 const char *msg;
1724 msg = "cannot encode";
1725 if (is_direct_call_opcode (opcode))
1727 if ((relocation & 0x3) != 0)
1728 msg = "misaligned call target";
1729 else
1730 msg = "call target out of range";
1732 else if (opcode == get_l32r_opcode ())
1734 if ((relocation & 0x3) != 0)
1735 msg = "misaligned literal target";
1736 else if (is_alt_relocation (howto->type))
1737 msg = "literal target out of range (too many literals)";
1738 else if (self_address > relocation)
1739 msg = "literal target out of range (try using text-section-literals)";
1740 else
1741 msg = "literal placed after use";
1744 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1745 return bfd_reloc_dangerous;
1748 /* Check for calls across 1GB boundaries. */
1749 if (is_direct_call_opcode (opcode)
1750 && is_windowed_call_opcode (opcode))
1752 if ((self_address >> CALL_SEGMENT_BITS)
1753 != (relocation >> CALL_SEGMENT_BITS))
1755 *error_message =
1756 "windowed call crosses 1GB boundary; return may fail";
1757 return bfd_reloc_dangerous;
1761 /* Write the modified instruction back out of the buffer. */
1762 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1763 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1764 input_size - address);
1765 return bfd_reloc_ok;
1769 static char *
1770 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1772 /* To reduce the size of the memory leak,
1773 we only use a single message buffer. */
1774 static bfd_size_type alloc_size = 0;
1775 static char *message = NULL;
1776 bfd_size_type orig_len, len = 0;
1777 bfd_boolean is_append;
1779 VA_OPEN (ap, arglen);
1780 VA_FIXEDARG (ap, const char *, origmsg);
1782 is_append = (origmsg == message);
1784 orig_len = strlen (origmsg);
1785 len = orig_len + strlen (fmt) + arglen + 20;
1786 if (len > alloc_size)
1788 message = (char *) bfd_realloc (message, len);
1789 alloc_size = len;
1791 if (!is_append)
1792 memcpy (message, origmsg, orig_len);
1793 vsprintf (message + orig_len, fmt, ap);
1794 VA_CLOSE (ap);
1795 return message;
1799 /* This function is registered as the "special_function" in the
1800 Xtensa howto for handling simplify operations.
1801 bfd_perform_relocation / bfd_install_relocation use it to
1802 perform (install) the specified relocation. Since this replaces the code
1803 in bfd_perform_relocation, it is basically an Xtensa-specific,
1804 stripped-down version of bfd_perform_relocation. */
1806 static bfd_reloc_status_type
1807 bfd_elf_xtensa_reloc (bfd *abfd,
1808 arelent *reloc_entry,
1809 asymbol *symbol,
1810 void *data,
1811 asection *input_section,
1812 bfd *output_bfd,
1813 char **error_message)
1815 bfd_vma relocation;
1816 bfd_reloc_status_type flag;
1817 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1818 bfd_vma output_base = 0;
1819 reloc_howto_type *howto = reloc_entry->howto;
1820 asection *reloc_target_output_section;
1821 bfd_boolean is_weak_undef;
1823 if (!xtensa_default_isa)
1824 xtensa_default_isa = xtensa_isa_init (0, 0);
1826 /* ELF relocs are against symbols. If we are producing relocatable
1827 output, and the reloc is against an external symbol, the resulting
1828 reloc will also be against the same symbol. In such a case, we
1829 don't want to change anything about the way the reloc is handled,
1830 since it will all be done at final link time. This test is similar
1831 to what bfd_elf_generic_reloc does except that it lets relocs with
1832 howto->partial_inplace go through even if the addend is non-zero.
1833 (The real problem is that partial_inplace is set for XTENSA_32
1834 relocs to begin with, but that's a long story and there's little we
1835 can do about it now....) */
1837 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1839 reloc_entry->address += input_section->output_offset;
1840 return bfd_reloc_ok;
1843 /* Is the address of the relocation really within the section? */
1844 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1845 return bfd_reloc_outofrange;
1847 /* Work out which section the relocation is targeted at and the
1848 initial relocation command value. */
1850 /* Get symbol value. (Common symbols are special.) */
1851 if (bfd_is_com_section (symbol->section))
1852 relocation = 0;
1853 else
1854 relocation = symbol->value;
1856 reloc_target_output_section = symbol->section->output_section;
1858 /* Convert input-section-relative symbol value to absolute. */
1859 if ((output_bfd && !howto->partial_inplace)
1860 || reloc_target_output_section == NULL)
1861 output_base = 0;
1862 else
1863 output_base = reloc_target_output_section->vma;
1865 relocation += output_base + symbol->section->output_offset;
1867 /* Add in supplied addend. */
1868 relocation += reloc_entry->addend;
1870 /* Here the variable relocation holds the final address of the
1871 symbol we are relocating against, plus any addend. */
1872 if (output_bfd)
1874 if (!howto->partial_inplace)
1876 /* This is a partial relocation, and we want to apply the relocation
1877 to the reloc entry rather than the raw data. Everything except
1878 relocations against section symbols has already been handled
1879 above. */
1881 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1882 reloc_entry->addend = relocation;
1883 reloc_entry->address += input_section->output_offset;
1884 return bfd_reloc_ok;
1886 else
1888 reloc_entry->address += input_section->output_offset;
1889 reloc_entry->addend = 0;
1893 is_weak_undef = (bfd_is_und_section (symbol->section)
1894 && (symbol->flags & BSF_WEAK) != 0);
1895 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1896 (bfd_byte *) data, (bfd_vma) octets,
1897 is_weak_undef, error_message);
1899 if (flag == bfd_reloc_dangerous)
1901 /* Add the symbol name to the error message. */
1902 if (! *error_message)
1903 *error_message = "";
1904 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1905 strlen (symbol->name) + 17,
1906 symbol->name,
1907 (unsigned long) reloc_entry->addend);
1910 return flag;
1914 /* Set up an entry in the procedure linkage table. */
1916 static bfd_vma
1917 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1918 bfd *output_bfd,
1919 unsigned reloc_index)
1921 asection *splt, *sgotplt;
1922 bfd_vma plt_base, got_base;
1923 bfd_vma code_offset, lit_offset;
1924 int chunk;
1926 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1927 splt = elf_xtensa_get_plt_section (info, chunk);
1928 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1929 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1931 plt_base = splt->output_section->vma + splt->output_offset;
1932 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1934 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1935 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1937 /* Fill in the literal entry. This is the offset of the dynamic
1938 relocation entry. */
1939 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1940 sgotplt->contents + lit_offset);
1942 /* Fill in the entry in the procedure linkage table. */
1943 memcpy (splt->contents + code_offset,
1944 (bfd_big_endian (output_bfd)
1945 ? elf_xtensa_be_plt_entry
1946 : elf_xtensa_le_plt_entry),
1947 PLT_ENTRY_SIZE);
1948 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1949 plt_base + code_offset + 3),
1950 splt->contents + code_offset + 4);
1951 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1952 plt_base + code_offset + 6),
1953 splt->contents + code_offset + 7);
1954 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1955 plt_base + code_offset + 9),
1956 splt->contents + code_offset + 10);
1958 return plt_base + code_offset;
1962 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1963 both relocatable and final links. */
1965 static bfd_boolean
1966 elf_xtensa_relocate_section (bfd *output_bfd,
1967 struct bfd_link_info *info,
1968 bfd *input_bfd,
1969 asection *input_section,
1970 bfd_byte *contents,
1971 Elf_Internal_Rela *relocs,
1972 Elf_Internal_Sym *local_syms,
1973 asection **local_sections)
1975 struct elf_xtensa_link_hash_table *htab;
1976 Elf_Internal_Shdr *symtab_hdr;
1977 Elf_Internal_Rela *rel;
1978 Elf_Internal_Rela *relend;
1979 struct elf_link_hash_entry **sym_hashes;
1980 property_table_entry *lit_table = 0;
1981 int ltblsize = 0;
1982 char *error_message = NULL;
1983 bfd_size_type input_size;
1985 if (!xtensa_default_isa)
1986 xtensa_default_isa = xtensa_isa_init (0, 0);
1988 htab = elf_xtensa_hash_table (info);
1989 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1990 sym_hashes = elf_sym_hashes (input_bfd);
1992 if (elf_hash_table (info)->dynamic_sections_created)
1994 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1995 &lit_table, XTENSA_LIT_SEC_NAME,
1996 TRUE);
1997 if (ltblsize < 0)
1998 return FALSE;
2001 input_size = bfd_get_section_limit (input_bfd, input_section);
2003 rel = relocs;
2004 relend = relocs + input_section->reloc_count;
2005 for (; rel < relend; rel++)
2007 int r_type;
2008 reloc_howto_type *howto;
2009 unsigned long r_symndx;
2010 struct elf_link_hash_entry *h;
2011 Elf_Internal_Sym *sym;
2012 asection *sec;
2013 bfd_vma relocation;
2014 bfd_reloc_status_type r;
2015 bfd_boolean is_weak_undef;
2016 bfd_boolean unresolved_reloc;
2017 bfd_boolean warned;
2019 r_type = ELF32_R_TYPE (rel->r_info);
2020 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2021 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2022 continue;
2024 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2026 bfd_set_error (bfd_error_bad_value);
2027 return FALSE;
2029 howto = &elf_howto_table[r_type];
2031 r_symndx = ELF32_R_SYM (rel->r_info);
2033 h = NULL;
2034 sym = NULL;
2035 sec = NULL;
2036 is_weak_undef = FALSE;
2037 unresolved_reloc = FALSE;
2038 warned = FALSE;
2040 if (howto->partial_inplace && !info->relocatable)
2042 /* Because R_XTENSA_32 was made partial_inplace to fix some
2043 problems with DWARF info in partial links, there may be
2044 an addend stored in the contents. Take it out of there
2045 and move it back into the addend field of the reloc. */
2046 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2047 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2050 if (r_symndx < symtab_hdr->sh_info)
2052 sym = local_syms + r_symndx;
2053 sec = local_sections[r_symndx];
2054 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2056 else
2058 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2059 r_symndx, symtab_hdr, sym_hashes,
2060 h, sec, relocation,
2061 unresolved_reloc, warned);
2063 if (relocation == 0
2064 && !unresolved_reloc
2065 && h->root.type == bfd_link_hash_undefweak)
2066 is_weak_undef = TRUE;
2069 if (sec != NULL && elf_discarded_section (sec))
2071 /* For relocs against symbols from removed linkonce sections,
2072 or sections discarded by a linker script, we just want the
2073 section contents zeroed. Avoid any special processing. */
2074 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2075 rel->r_info = 0;
2076 rel->r_addend = 0;
2077 continue;
2080 if (info->relocatable)
2082 /* This is a relocatable link.
2083 1) If the reloc is against a section symbol, adjust
2084 according to the output section.
2085 2) If there is a new target for this relocation,
2086 the new target will be in the same output section.
2087 We adjust the relocation by the output section
2088 difference. */
2090 if (relaxing_section)
2092 /* Check if this references a section in another input file. */
2093 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2094 contents))
2095 return FALSE;
2096 r_type = ELF32_R_TYPE (rel->r_info);
2099 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2101 char *error_message = NULL;
2102 /* Convert ASM_SIMPLIFY into the simpler relocation
2103 so that they never escape a relaxing link. */
2104 r = contract_asm_expansion (contents, input_size, rel,
2105 &error_message);
2106 if (r != bfd_reloc_ok)
2108 if (!((*info->callbacks->reloc_dangerous)
2109 (info, error_message, input_bfd, input_section,
2110 rel->r_offset)))
2111 return FALSE;
2113 r_type = ELF32_R_TYPE (rel->r_info);
2116 /* This is a relocatable link, so we don't have to change
2117 anything unless the reloc is against a section symbol,
2118 in which case we have to adjust according to where the
2119 section symbol winds up in the output section. */
2120 if (r_symndx < symtab_hdr->sh_info)
2122 sym = local_syms + r_symndx;
2123 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2125 sec = local_sections[r_symndx];
2126 rel->r_addend += sec->output_offset + sym->st_value;
2130 /* If there is an addend with a partial_inplace howto,
2131 then move the addend to the contents. This is a hack
2132 to work around problems with DWARF in relocatable links
2133 with some previous version of BFD. Now we can't easily get
2134 rid of the hack without breaking backward compatibility.... */
2135 if (rel->r_addend)
2137 howto = &elf_howto_table[r_type];
2138 if (howto->partial_inplace)
2140 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2141 rel->r_addend, contents,
2142 rel->r_offset, FALSE,
2143 &error_message);
2144 if (r != bfd_reloc_ok)
2146 if (!((*info->callbacks->reloc_dangerous)
2147 (info, error_message, input_bfd, input_section,
2148 rel->r_offset)))
2149 return FALSE;
2151 rel->r_addend = 0;
2155 /* Done with work for relocatable link; continue with next reloc. */
2156 continue;
2159 /* This is a final link. */
2161 if (relaxing_section)
2163 /* Check if this references a section in another input file. */
2164 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2165 &relocation);
2167 /* Update some already cached values. */
2168 r_type = ELF32_R_TYPE (rel->r_info);
2169 howto = &elf_howto_table[r_type];
2172 /* Sanity check the address. */
2173 if (rel->r_offset >= input_size
2174 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2176 (*_bfd_error_handler)
2177 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2178 input_bfd, input_section, rel->r_offset, input_size);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2183 /* Generate dynamic relocations. */
2184 if (elf_hash_table (info)->dynamic_sections_created)
2186 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2188 if (dynamic_symbol && is_operand_relocation (r_type))
2190 /* This is an error. The symbol's real value won't be known
2191 until runtime and it's likely to be out of range anyway. */
2192 const char *name = h->root.root.string;
2193 error_message = vsprint_msg ("invalid relocation for dynamic "
2194 "symbol", ": %s",
2195 strlen (name) + 2, name);
2196 if (!((*info->callbacks->reloc_dangerous)
2197 (info, error_message, input_bfd, input_section,
2198 rel->r_offset)))
2199 return FALSE;
2201 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2202 && (input_section->flags & SEC_ALLOC) != 0
2203 && (dynamic_symbol || info->shared))
2205 Elf_Internal_Rela outrel;
2206 bfd_byte *loc;
2207 asection *srel;
2209 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2210 srel = htab->srelplt;
2211 else
2212 srel = htab->srelgot;
2214 BFD_ASSERT (srel != NULL);
2216 outrel.r_offset =
2217 _bfd_elf_section_offset (output_bfd, info,
2218 input_section, rel->r_offset);
2220 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2221 memset (&outrel, 0, sizeof outrel);
2222 else
2224 outrel.r_offset += (input_section->output_section->vma
2225 + input_section->output_offset);
2227 /* Complain if the relocation is in a read-only section
2228 and not in a literal pool. */
2229 if ((input_section->flags & SEC_READONLY) != 0
2230 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2231 outrel.r_offset))
2233 error_message =
2234 _("dynamic relocation in read-only section");
2235 if (!((*info->callbacks->reloc_dangerous)
2236 (info, error_message, input_bfd, input_section,
2237 rel->r_offset)))
2238 return FALSE;
2241 if (dynamic_symbol)
2243 outrel.r_addend = rel->r_addend;
2244 rel->r_addend = 0;
2246 if (r_type == R_XTENSA_32)
2248 outrel.r_info =
2249 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2250 relocation = 0;
2252 else /* r_type == R_XTENSA_PLT */
2254 outrel.r_info =
2255 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2257 /* Create the PLT entry and set the initial
2258 contents of the literal entry to the address of
2259 the PLT entry. */
2260 relocation =
2261 elf_xtensa_create_plt_entry (info, output_bfd,
2262 srel->reloc_count);
2264 unresolved_reloc = FALSE;
2266 else
2268 /* Generate a RELATIVE relocation. */
2269 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2270 outrel.r_addend = 0;
2274 loc = (srel->contents
2275 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2276 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2277 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2278 <= srel->size);
2282 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2283 because such sections are not SEC_ALLOC and thus ld.so will
2284 not process them. */
2285 if (unresolved_reloc
2286 && !((input_section->flags & SEC_DEBUGGING) != 0
2287 && h->def_dynamic))
2289 (*_bfd_error_handler)
2290 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2291 input_bfd,
2292 input_section,
2293 (long) rel->r_offset,
2294 howto->name,
2295 h->root.root.string);
2296 return FALSE;
2299 /* There's no point in calling bfd_perform_relocation here.
2300 Just go directly to our "special function". */
2301 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2302 relocation + rel->r_addend,
2303 contents, rel->r_offset, is_weak_undef,
2304 &error_message);
2306 if (r != bfd_reloc_ok && !warned)
2308 const char *name;
2310 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2311 BFD_ASSERT (error_message != NULL);
2313 if (h)
2314 name = h->root.root.string;
2315 else
2317 name = bfd_elf_string_from_elf_section
2318 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2319 if (name && *name == '\0')
2320 name = bfd_section_name (input_bfd, sec);
2322 if (name)
2324 if (rel->r_addend == 0)
2325 error_message = vsprint_msg (error_message, ": %s",
2326 strlen (name) + 2, name);
2327 else
2328 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2329 strlen (name) + 22,
2330 name, (int)rel->r_addend);
2333 if (!((*info->callbacks->reloc_dangerous)
2334 (info, error_message, input_bfd, input_section,
2335 rel->r_offset)))
2336 return FALSE;
2340 if (lit_table)
2341 free (lit_table);
2343 input_section->reloc_done = TRUE;
2345 return TRUE;
2349 /* Finish up dynamic symbol handling. There's not much to do here since
2350 the PLT and GOT entries are all set up by relocate_section. */
2352 static bfd_boolean
2353 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2354 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2355 struct elf_link_hash_entry *h,
2356 Elf_Internal_Sym *sym)
2358 if (h->needs_plt && !h->def_regular)
2360 /* Mark the symbol as undefined, rather than as defined in
2361 the .plt section. Leave the value alone. */
2362 sym->st_shndx = SHN_UNDEF;
2363 /* If the symbol is weak, we do need to clear the value.
2364 Otherwise, the PLT entry would provide a definition for
2365 the symbol even if the symbol wasn't defined anywhere,
2366 and so the symbol would never be NULL. */
2367 if (!h->ref_regular_nonweak)
2368 sym->st_value = 0;
2371 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2372 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2373 || h == elf_hash_table (info)->hgot)
2374 sym->st_shndx = SHN_ABS;
2376 return TRUE;
2380 /* Combine adjacent literal table entries in the output. Adjacent
2381 entries within each input section may have been removed during
2382 relaxation, but we repeat the process here, even though it's too late
2383 to shrink the output section, because it's important to minimize the
2384 number of literal table entries to reduce the start-up work for the
2385 runtime linker. Returns the number of remaining table entries or -1
2386 on error. */
2388 static int
2389 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2390 asection *sxtlit,
2391 asection *sgotloc)
2393 bfd_byte *contents;
2394 property_table_entry *table;
2395 bfd_size_type section_size, sgotloc_size;
2396 bfd_vma offset;
2397 int n, m, num;
2399 section_size = sxtlit->size;
2400 BFD_ASSERT (section_size % 8 == 0);
2401 num = section_size / 8;
2403 sgotloc_size = sgotloc->size;
2404 if (sgotloc_size != section_size)
2406 (*_bfd_error_handler)
2407 (_("internal inconsistency in size of .got.loc section"));
2408 return -1;
2411 table = bfd_malloc (num * sizeof (property_table_entry));
2412 if (table == 0)
2413 return -1;
2415 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2416 propagates to the output section, where it doesn't really apply and
2417 where it breaks the following call to bfd_malloc_and_get_section. */
2418 sxtlit->flags &= ~SEC_IN_MEMORY;
2420 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2422 if (contents != 0)
2423 free (contents);
2424 free (table);
2425 return -1;
2428 /* There should never be any relocations left at this point, so this
2429 is quite a bit easier than what is done during relaxation. */
2431 /* Copy the raw contents into a property table array and sort it. */
2432 offset = 0;
2433 for (n = 0; n < num; n++)
2435 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2436 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2437 offset += 8;
2439 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2441 for (n = 0; n < num; n++)
2443 bfd_boolean remove = FALSE;
2445 if (table[n].size == 0)
2446 remove = TRUE;
2447 else if (n > 0 &&
2448 (table[n-1].address + table[n-1].size == table[n].address))
2450 table[n-1].size += table[n].size;
2451 remove = TRUE;
2454 if (remove)
2456 for (m = n; m < num - 1; m++)
2458 table[m].address = table[m+1].address;
2459 table[m].size = table[m+1].size;
2462 n--;
2463 num--;
2467 /* Copy the data back to the raw contents. */
2468 offset = 0;
2469 for (n = 0; n < num; n++)
2471 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2472 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2473 offset += 8;
2476 /* Clear the removed bytes. */
2477 if ((bfd_size_type) (num * 8) < section_size)
2478 memset (&contents[num * 8], 0, section_size - num * 8);
2480 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2481 section_size))
2482 return -1;
2484 /* Copy the contents to ".got.loc". */
2485 memcpy (sgotloc->contents, contents, section_size);
2487 free (contents);
2488 free (table);
2489 return num;
2493 /* Finish up the dynamic sections. */
2495 static bfd_boolean
2496 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2497 struct bfd_link_info *info)
2499 struct elf_xtensa_link_hash_table *htab;
2500 bfd *dynobj;
2501 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2502 Elf32_External_Dyn *dyncon, *dynconend;
2503 int num_xtlit_entries;
2505 if (! elf_hash_table (info)->dynamic_sections_created)
2506 return TRUE;
2508 htab = elf_xtensa_hash_table (info);
2509 dynobj = elf_hash_table (info)->dynobj;
2510 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2511 BFD_ASSERT (sdyn != NULL);
2513 /* Set the first entry in the global offset table to the address of
2514 the dynamic section. */
2515 sgot = htab->sgot;
2516 if (sgot)
2518 BFD_ASSERT (sgot->size == 4);
2519 if (sdyn == NULL)
2520 bfd_put_32 (output_bfd, 0, sgot->contents);
2521 else
2522 bfd_put_32 (output_bfd,
2523 sdyn->output_section->vma + sdyn->output_offset,
2524 sgot->contents);
2527 srelplt = htab->srelplt;
2528 if (srelplt && srelplt->size != 0)
2530 asection *sgotplt, *srelgot, *spltlittbl;
2531 int chunk, plt_chunks, plt_entries;
2532 Elf_Internal_Rela irela;
2533 bfd_byte *loc;
2534 unsigned rtld_reloc;
2536 srelgot = htab->srelgot;
2537 spltlittbl = htab->spltlittbl;
2538 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2540 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2541 of them follow immediately after.... */
2542 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2544 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2545 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2546 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2547 break;
2549 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2551 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2552 plt_chunks =
2553 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2555 for (chunk = 0; chunk < plt_chunks; chunk++)
2557 int chunk_entries = 0;
2559 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2560 BFD_ASSERT (sgotplt != NULL);
2562 /* Emit special RTLD relocations for the first two entries in
2563 each chunk of the .got.plt section. */
2565 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2566 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2567 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2568 irela.r_offset = (sgotplt->output_section->vma
2569 + sgotplt->output_offset);
2570 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2571 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2572 rtld_reloc += 1;
2573 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2575 /* Next literal immediately follows the first. */
2576 loc += sizeof (Elf32_External_Rela);
2577 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2578 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2579 irela.r_offset = (sgotplt->output_section->vma
2580 + sgotplt->output_offset + 4);
2581 /* Tell rtld to set value to object's link map. */
2582 irela.r_addend = 2;
2583 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2584 rtld_reloc += 1;
2585 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587 /* Fill in the literal table. */
2588 if (chunk < plt_chunks - 1)
2589 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2590 else
2591 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2593 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2594 bfd_put_32 (output_bfd,
2595 sgotplt->output_section->vma + sgotplt->output_offset,
2596 spltlittbl->contents + (chunk * 8) + 0);
2597 bfd_put_32 (output_bfd,
2598 8 + (chunk_entries * 4),
2599 spltlittbl->contents + (chunk * 8) + 4);
2602 /* All the dynamic relocations have been emitted at this point.
2603 Make sure the relocation sections are the correct size. */
2604 if (srelgot->size != (sizeof (Elf32_External_Rela)
2605 * srelgot->reloc_count)
2606 || srelplt->size != (sizeof (Elf32_External_Rela)
2607 * srelplt->reloc_count))
2608 abort ();
2610 /* The .xt.lit.plt section has just been modified. This must
2611 happen before the code below which combines adjacent literal
2612 table entries, and the .xt.lit.plt contents have to be forced to
2613 the output here. */
2614 if (! bfd_set_section_contents (output_bfd,
2615 spltlittbl->output_section,
2616 spltlittbl->contents,
2617 spltlittbl->output_offset,
2618 spltlittbl->size))
2619 return FALSE;
2620 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2621 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2624 /* Combine adjacent literal table entries. */
2625 BFD_ASSERT (! info->relocatable);
2626 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2627 sgotloc = htab->sgotloc;
2628 BFD_ASSERT (sxtlit && sgotloc);
2629 num_xtlit_entries =
2630 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2631 if (num_xtlit_entries < 0)
2632 return FALSE;
2634 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2635 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2636 for (; dyncon < dynconend; dyncon++)
2638 Elf_Internal_Dyn dyn;
2640 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2642 switch (dyn.d_tag)
2644 default:
2645 break;
2647 case DT_XTENSA_GOT_LOC_SZ:
2648 dyn.d_un.d_val = num_xtlit_entries;
2649 break;
2651 case DT_XTENSA_GOT_LOC_OFF:
2652 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
2653 break;
2655 case DT_PLTGOT:
2656 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2657 break;
2659 case DT_JMPREL:
2660 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2661 break;
2663 case DT_PLTRELSZ:
2664 dyn.d_un.d_val = htab->srelplt->output_section->size;
2665 break;
2667 case DT_RELASZ:
2668 /* Adjust RELASZ to not include JMPREL. This matches what
2669 glibc expects and what is done for several other ELF
2670 targets (e.g., i386, alpha), but the "correct" behavior
2671 seems to be unresolved. Since the linker script arranges
2672 for .rela.plt to follow all other relocation sections, we
2673 don't have to worry about changing the DT_RELA entry. */
2674 if (htab->srelplt)
2675 dyn.d_un.d_val -= htab->srelplt->output_section->size;
2676 break;
2679 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2682 return TRUE;
2686 /* Functions for dealing with the e_flags field. */
2688 /* Merge backend specific data from an object file to the output
2689 object file when linking. */
2691 static bfd_boolean
2692 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2694 unsigned out_mach, in_mach;
2695 flagword out_flag, in_flag;
2697 /* Check if we have the same endianess. */
2698 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2699 return FALSE;
2701 /* Don't even pretend to support mixed-format linking. */
2702 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2703 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2704 return FALSE;
2706 out_flag = elf_elfheader (obfd)->e_flags;
2707 in_flag = elf_elfheader (ibfd)->e_flags;
2709 out_mach = out_flag & EF_XTENSA_MACH;
2710 in_mach = in_flag & EF_XTENSA_MACH;
2711 if (out_mach != in_mach)
2713 (*_bfd_error_handler)
2714 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2715 ibfd, out_mach, in_mach);
2716 bfd_set_error (bfd_error_wrong_format);
2717 return FALSE;
2720 if (! elf_flags_init (obfd))
2722 elf_flags_init (obfd) = TRUE;
2723 elf_elfheader (obfd)->e_flags = in_flag;
2725 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2726 && bfd_get_arch_info (obfd)->the_default)
2727 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2728 bfd_get_mach (ibfd));
2730 return TRUE;
2733 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2734 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2736 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2737 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2739 return TRUE;
2743 static bfd_boolean
2744 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2746 BFD_ASSERT (!elf_flags_init (abfd)
2747 || elf_elfheader (abfd)->e_flags == flags);
2749 elf_elfheader (abfd)->e_flags |= flags;
2750 elf_flags_init (abfd) = TRUE;
2752 return TRUE;
2756 static bfd_boolean
2757 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2759 FILE *f = (FILE *) farg;
2760 flagword e_flags = elf_elfheader (abfd)->e_flags;
2762 fprintf (f, "\nXtensa header:\n");
2763 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2764 fprintf (f, "\nMachine = Base\n");
2765 else
2766 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2768 fprintf (f, "Insn tables = %s\n",
2769 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2771 fprintf (f, "Literal tables = %s\n",
2772 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2774 return _bfd_elf_print_private_bfd_data (abfd, farg);
2778 /* Set the right machine number for an Xtensa ELF file. */
2780 static bfd_boolean
2781 elf_xtensa_object_p (bfd *abfd)
2783 int mach;
2784 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2786 switch (arch)
2788 case E_XTENSA_MACH:
2789 mach = bfd_mach_xtensa;
2790 break;
2791 default:
2792 return FALSE;
2795 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2796 return TRUE;
2800 /* The final processing done just before writing out an Xtensa ELF object
2801 file. This gets the Xtensa architecture right based on the machine
2802 number. */
2804 static void
2805 elf_xtensa_final_write_processing (bfd *abfd,
2806 bfd_boolean linker ATTRIBUTE_UNUSED)
2808 int mach;
2809 unsigned long val;
2811 switch (mach = bfd_get_mach (abfd))
2813 case bfd_mach_xtensa:
2814 val = E_XTENSA_MACH;
2815 break;
2816 default:
2817 return;
2820 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2821 elf_elfheader (abfd)->e_flags |= val;
2825 static enum elf_reloc_type_class
2826 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2828 switch ((int) ELF32_R_TYPE (rela->r_info))
2830 case R_XTENSA_RELATIVE:
2831 return reloc_class_relative;
2832 case R_XTENSA_JMP_SLOT:
2833 return reloc_class_plt;
2834 default:
2835 return reloc_class_normal;
2840 static bfd_boolean
2841 elf_xtensa_discard_info_for_section (bfd *abfd,
2842 struct elf_reloc_cookie *cookie,
2843 struct bfd_link_info *info,
2844 asection *sec)
2846 bfd_byte *contents;
2847 bfd_vma section_size;
2848 bfd_vma offset, actual_offset;
2849 bfd_size_type removed_bytes = 0;
2850 bfd_size_type entry_size;
2852 if (sec->output_section
2853 && bfd_is_abs_section (sec->output_section))
2854 return FALSE;
2856 if (xtensa_is_proptable_section (sec))
2857 entry_size = 12;
2858 else
2859 entry_size = 8;
2861 section_size = sec->size;
2862 if (section_size == 0 || section_size % entry_size != 0)
2863 return FALSE;
2865 contents = retrieve_contents (abfd, sec, info->keep_memory);
2866 if (!contents)
2867 return FALSE;
2869 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2870 if (!cookie->rels)
2872 release_contents (sec, contents);
2873 return FALSE;
2876 /* Sort the relocations. They should already be in order when
2877 relaxation is enabled, but it might not be. */
2878 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2879 internal_reloc_compare);
2881 cookie->rel = cookie->rels;
2882 cookie->relend = cookie->rels + sec->reloc_count;
2884 for (offset = 0; offset < section_size; offset += entry_size)
2886 actual_offset = offset - removed_bytes;
2888 /* The ...symbol_deleted_p function will skip over relocs but it
2889 won't adjust their offsets, so do that here. */
2890 while (cookie->rel < cookie->relend
2891 && cookie->rel->r_offset < offset)
2893 cookie->rel->r_offset -= removed_bytes;
2894 cookie->rel++;
2897 while (cookie->rel < cookie->relend
2898 && cookie->rel->r_offset == offset)
2900 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2902 /* Remove the table entry. (If the reloc type is NONE, then
2903 the entry has already been merged with another and deleted
2904 during relaxation.) */
2905 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2907 /* Shift the contents up. */
2908 if (offset + entry_size < section_size)
2909 memmove (&contents[actual_offset],
2910 &contents[actual_offset + entry_size],
2911 section_size - offset - entry_size);
2912 removed_bytes += entry_size;
2915 /* Remove this relocation. */
2916 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2919 /* Adjust the relocation offset for previous removals. This
2920 should not be done before calling ...symbol_deleted_p
2921 because it might mess up the offset comparisons there.
2922 Make sure the offset doesn't underflow in the case where
2923 the first entry is removed. */
2924 if (cookie->rel->r_offset >= removed_bytes)
2925 cookie->rel->r_offset -= removed_bytes;
2926 else
2927 cookie->rel->r_offset = 0;
2929 cookie->rel++;
2933 if (removed_bytes != 0)
2935 /* Adjust any remaining relocs (shouldn't be any). */
2936 for (; cookie->rel < cookie->relend; cookie->rel++)
2938 if (cookie->rel->r_offset >= removed_bytes)
2939 cookie->rel->r_offset -= removed_bytes;
2940 else
2941 cookie->rel->r_offset = 0;
2944 /* Clear the removed bytes. */
2945 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2947 pin_contents (sec, contents);
2948 pin_internal_relocs (sec, cookie->rels);
2950 /* Shrink size. */
2951 sec->size = section_size - removed_bytes;
2953 if (xtensa_is_littable_section (sec))
2955 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2956 if (sgotloc)
2957 sgotloc->size -= removed_bytes;
2960 else
2962 release_contents (sec, contents);
2963 release_internal_relocs (sec, cookie->rels);
2966 return (removed_bytes != 0);
2970 static bfd_boolean
2971 elf_xtensa_discard_info (bfd *abfd,
2972 struct elf_reloc_cookie *cookie,
2973 struct bfd_link_info *info)
2975 asection *sec;
2976 bfd_boolean changed = FALSE;
2978 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2980 if (xtensa_is_property_section (sec))
2982 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2983 changed = TRUE;
2987 return changed;
2991 static bfd_boolean
2992 elf_xtensa_ignore_discarded_relocs (asection *sec)
2994 return xtensa_is_property_section (sec);
2998 static unsigned int
2999 elf_xtensa_action_discarded (asection *sec)
3001 if (strcmp (".xt_except_table", sec->name) == 0)
3002 return 0;
3004 if (strcmp (".xt_except_desc", sec->name) == 0)
3005 return 0;
3007 return _bfd_elf_default_action_discarded (sec);
3011 /* Support for core dump NOTE sections. */
3013 static bfd_boolean
3014 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3016 int offset;
3017 unsigned int size;
3019 /* The size for Xtensa is variable, so don't try to recognize the format
3020 based on the size. Just assume this is GNU/Linux. */
3022 /* pr_cursig */
3023 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025 /* pr_pid */
3026 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028 /* pr_reg */
3029 offset = 72;
3030 size = note->descsz - offset - 4;
3032 /* Make a ".reg/999" section. */
3033 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3034 size, note->descpos + offset);
3038 static bfd_boolean
3039 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3041 switch (note->descsz)
3043 default:
3044 return FALSE;
3046 case 128: /* GNU/Linux elf_prpsinfo */
3047 elf_tdata (abfd)->core_program
3048 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3049 elf_tdata (abfd)->core_command
3050 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3053 /* Note that for some reason, a spurious space is tacked
3054 onto the end of the args in some (at least one anyway)
3055 implementations, so strip it off if it exists. */
3058 char *command = elf_tdata (abfd)->core_command;
3059 int n = strlen (command);
3061 if (0 < n && command[n - 1] == ' ')
3062 command[n - 1] = '\0';
3065 return TRUE;
3069 /* Generic Xtensa configurability stuff. */
3071 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3072 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080 static void
3081 init_call_opcodes (void)
3083 if (callx0_op == XTENSA_UNDEFINED)
3085 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3086 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3087 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3088 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3089 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3090 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3091 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3092 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3097 static bfd_boolean
3098 is_indirect_call_opcode (xtensa_opcode opcode)
3100 init_call_opcodes ();
3101 return (opcode == callx0_op
3102 || opcode == callx4_op
3103 || opcode == callx8_op
3104 || opcode == callx12_op);
3108 static bfd_boolean
3109 is_direct_call_opcode (xtensa_opcode opcode)
3111 init_call_opcodes ();
3112 return (opcode == call0_op
3113 || opcode == call4_op
3114 || opcode == call8_op
3115 || opcode == call12_op);
3119 static bfd_boolean
3120 is_windowed_call_opcode (xtensa_opcode opcode)
3122 init_call_opcodes ();
3123 return (opcode == call4_op
3124 || opcode == call8_op
3125 || opcode == call12_op
3126 || opcode == callx4_op
3127 || opcode == callx8_op
3128 || opcode == callx12_op);
3132 static xtensa_opcode
3133 get_const16_opcode (void)
3135 static bfd_boolean done_lookup = FALSE;
3136 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3137 if (!done_lookup)
3139 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3140 done_lookup = TRUE;
3142 return const16_opcode;
3146 static xtensa_opcode
3147 get_l32r_opcode (void)
3149 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3150 static bfd_boolean done_lookup = FALSE;
3152 if (!done_lookup)
3154 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3155 done_lookup = TRUE;
3157 return l32r_opcode;
3161 static bfd_vma
3162 l32r_offset (bfd_vma addr, bfd_vma pc)
3164 bfd_vma offset;
3166 offset = addr - ((pc+3) & -4);
3167 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3168 offset = (signed int) offset >> 2;
3169 BFD_ASSERT ((signed int) offset >> 16 == -1);
3170 return offset;
3174 static int
3175 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3177 xtensa_isa isa = xtensa_default_isa;
3178 int last_immed, last_opnd, opi;
3180 if (opcode == XTENSA_UNDEFINED)
3181 return XTENSA_UNDEFINED;
3183 /* Find the last visible PC-relative immediate operand for the opcode.
3184 If there are no PC-relative immediates, then choose the last visible
3185 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3186 last_immed = XTENSA_UNDEFINED;
3187 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3188 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3191 continue;
3192 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 last_immed = opi;
3195 break;
3197 if (last_immed == XTENSA_UNDEFINED
3198 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3199 last_immed = opi;
3201 if (last_immed < 0)
3202 return XTENSA_UNDEFINED;
3204 /* If the operand number was specified in an old-style relocation,
3205 check for consistency with the operand computed above. */
3206 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 int reloc_opnd = r_type - R_XTENSA_OP0;
3209 if (reloc_opnd != last_immed)
3210 return XTENSA_UNDEFINED;
3213 return last_immed;
3218 get_relocation_slot (int r_type)
3220 switch (r_type)
3222 case R_XTENSA_OP0:
3223 case R_XTENSA_OP1:
3224 case R_XTENSA_OP2:
3225 return 0;
3227 default:
3228 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3229 return r_type - R_XTENSA_SLOT0_OP;
3230 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3231 return r_type - R_XTENSA_SLOT0_ALT;
3232 break;
3235 return XTENSA_UNDEFINED;
3239 /* Get the opcode for a relocation. */
3241 static xtensa_opcode
3242 get_relocation_opcode (bfd *abfd,
3243 asection *sec,
3244 bfd_byte *contents,
3245 Elf_Internal_Rela *irel)
3247 static xtensa_insnbuf ibuff = NULL;
3248 static xtensa_insnbuf sbuff = NULL;
3249 xtensa_isa isa = xtensa_default_isa;
3250 xtensa_format fmt;
3251 int slot;
3253 if (contents == NULL)
3254 return XTENSA_UNDEFINED;
3256 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3257 return XTENSA_UNDEFINED;
3259 if (ibuff == NULL)
3261 ibuff = xtensa_insnbuf_alloc (isa);
3262 sbuff = xtensa_insnbuf_alloc (isa);
3265 /* Decode the instruction. */
3266 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3267 sec->size - irel->r_offset);
3268 fmt = xtensa_format_decode (isa, ibuff);
3269 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3270 if (slot == XTENSA_UNDEFINED)
3271 return XTENSA_UNDEFINED;
3272 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3273 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3277 bfd_boolean
3278 is_l32r_relocation (bfd *abfd,
3279 asection *sec,
3280 bfd_byte *contents,
3281 Elf_Internal_Rela *irel)
3283 xtensa_opcode opcode;
3284 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3285 return FALSE;
3286 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3287 return (opcode == get_l32r_opcode ());
3291 static bfd_size_type
3292 get_asm_simplify_size (bfd_byte *contents,
3293 bfd_size_type content_len,
3294 bfd_size_type offset)
3296 bfd_size_type insnlen, size = 0;
3298 /* Decode the size of the next two instructions. */
3299 insnlen = insn_decode_len (contents, content_len, offset);
3300 if (insnlen == 0)
3301 return 0;
3303 size += insnlen;
3305 insnlen = insn_decode_len (contents, content_len, offset + size);
3306 if (insnlen == 0)
3307 return 0;
3309 size += insnlen;
3310 return size;
3314 bfd_boolean
3315 is_alt_relocation (int r_type)
3317 return (r_type >= R_XTENSA_SLOT0_ALT
3318 && r_type <= R_XTENSA_SLOT14_ALT);
3322 bfd_boolean
3323 is_operand_relocation (int r_type)
3325 switch (r_type)
3327 case R_XTENSA_OP0:
3328 case R_XTENSA_OP1:
3329 case R_XTENSA_OP2:
3330 return TRUE;
3332 default:
3333 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3334 return TRUE;
3335 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3336 return TRUE;
3337 break;
3340 return FALSE;
3344 #define MIN_INSN_LENGTH 2
3346 /* Return 0 if it fails to decode. */
3348 bfd_size_type
3349 insn_decode_len (bfd_byte *contents,
3350 bfd_size_type content_len,
3351 bfd_size_type offset)
3353 int insn_len;
3354 xtensa_isa isa = xtensa_default_isa;
3355 xtensa_format fmt;
3356 static xtensa_insnbuf ibuff = NULL;
3358 if (offset + MIN_INSN_LENGTH > content_len)
3359 return 0;
3361 if (ibuff == NULL)
3362 ibuff = xtensa_insnbuf_alloc (isa);
3363 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3364 content_len - offset);
3365 fmt = xtensa_format_decode (isa, ibuff);
3366 if (fmt == XTENSA_UNDEFINED)
3367 return 0;
3368 insn_len = xtensa_format_length (isa, fmt);
3369 if (insn_len == XTENSA_UNDEFINED)
3370 return 0;
3371 return insn_len;
3375 /* Decode the opcode for a single slot instruction.
3376 Return 0 if it fails to decode or the instruction is multi-slot. */
3378 xtensa_opcode
3379 insn_decode_opcode (bfd_byte *contents,
3380 bfd_size_type content_len,
3381 bfd_size_type offset,
3382 int slot)
3384 xtensa_isa isa = xtensa_default_isa;
3385 xtensa_format fmt;
3386 static xtensa_insnbuf insnbuf = NULL;
3387 static xtensa_insnbuf slotbuf = NULL;
3389 if (offset + MIN_INSN_LENGTH > content_len)
3390 return XTENSA_UNDEFINED;
3392 if (insnbuf == NULL)
3394 insnbuf = xtensa_insnbuf_alloc (isa);
3395 slotbuf = xtensa_insnbuf_alloc (isa);
3398 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3399 content_len - offset);
3400 fmt = xtensa_format_decode (isa, insnbuf);
3401 if (fmt == XTENSA_UNDEFINED)
3402 return XTENSA_UNDEFINED;
3404 if (slot >= xtensa_format_num_slots (isa, fmt))
3405 return XTENSA_UNDEFINED;
3407 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3408 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3412 /* The offset is the offset in the contents.
3413 The address is the address of that offset. */
3415 static bfd_boolean
3416 check_branch_target_aligned (bfd_byte *contents,
3417 bfd_size_type content_length,
3418 bfd_vma offset,
3419 bfd_vma address)
3421 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3422 if (insn_len == 0)
3423 return FALSE;
3424 return check_branch_target_aligned_address (address, insn_len);
3428 static bfd_boolean
3429 check_loop_aligned (bfd_byte *contents,
3430 bfd_size_type content_length,
3431 bfd_vma offset,
3432 bfd_vma address)
3434 bfd_size_type loop_len, insn_len;
3435 xtensa_opcode opcode;
3437 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3438 if (opcode == XTENSA_UNDEFINED
3439 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3441 BFD_ASSERT (FALSE);
3442 return FALSE;
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3447 if (loop_len == 0 || insn_len == 0)
3449 BFD_ASSERT (FALSE);
3450 return FALSE;
3453 return check_branch_target_aligned_address (address + loop_len, insn_len);
3457 static bfd_boolean
3458 check_branch_target_aligned_address (bfd_vma addr, int len)
3460 if (len == 8)
3461 return (addr % 8 == 0);
3462 return ((addr >> 2) == ((addr + len - 1) >> 2));
3466 /* Instruction widening and narrowing. */
3468 /* When FLIX is available we need to access certain instructions only
3469 when they are 16-bit or 24-bit instructions. This table caches
3470 information about such instructions by walking through all the
3471 opcodes and finding the smallest single-slot format into which each
3472 can be encoded. */
3474 static xtensa_format *op_single_fmt_table = NULL;
3477 static void
3478 init_op_single_format_table (void)
3480 xtensa_isa isa = xtensa_default_isa;
3481 xtensa_insnbuf ibuf;
3482 xtensa_opcode opcode;
3483 xtensa_format fmt;
3484 int num_opcodes;
3486 if (op_single_fmt_table)
3487 return;
3489 ibuf = xtensa_insnbuf_alloc (isa);
3490 num_opcodes = xtensa_isa_num_opcodes (isa);
3492 op_single_fmt_table = (xtensa_format *)
3493 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3494 for (opcode = 0; opcode < num_opcodes; opcode++)
3496 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3497 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3499 if (xtensa_format_num_slots (isa, fmt) == 1
3500 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3502 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3503 int fmt_length = xtensa_format_length (isa, fmt);
3504 if (old_fmt == XTENSA_UNDEFINED
3505 || fmt_length < xtensa_format_length (isa, old_fmt))
3506 op_single_fmt_table[opcode] = fmt;
3510 xtensa_insnbuf_free (isa, ibuf);
3514 static xtensa_format
3515 get_single_format (xtensa_opcode opcode)
3517 init_op_single_format_table ();
3518 return op_single_fmt_table[opcode];
3522 /* For the set of narrowable instructions we do NOT include the
3523 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3524 involved during linker relaxation that may require these to
3525 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3526 requires special case code to ensure it only works when op1 == op2. */
3528 struct string_pair
3530 const char *wide;
3531 const char *narrow;
3534 struct string_pair narrowable[] =
3536 { "add", "add.n" },
3537 { "addi", "addi.n" },
3538 { "addmi", "addi.n" },
3539 { "l32i", "l32i.n" },
3540 { "movi", "movi.n" },
3541 { "ret", "ret.n" },
3542 { "retw", "retw.n" },
3543 { "s32i", "s32i.n" },
3544 { "or", "mov.n" } /* special case only when op1 == op2 */
3547 struct string_pair widenable[] =
3549 { "add", "add.n" },
3550 { "addi", "addi.n" },
3551 { "addmi", "addi.n" },
3552 { "beqz", "beqz.n" },
3553 { "bnez", "bnez.n" },
3554 { "l32i", "l32i.n" },
3555 { "movi", "movi.n" },
3556 { "ret", "ret.n" },
3557 { "retw", "retw.n" },
3558 { "s32i", "s32i.n" },
3559 { "or", "mov.n" } /* special case only when op1 == op2 */
3563 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3564 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3565 return the instruction buffer holding the narrow instruction. Otherwise,
3566 return 0. The set of valid narrowing are specified by a string table
3567 but require some special case operand checks in some cases. */
3569 static xtensa_insnbuf
3570 can_narrow_instruction (xtensa_insnbuf slotbuf,
3571 xtensa_format fmt,
3572 xtensa_opcode opcode)
3574 xtensa_isa isa = xtensa_default_isa;
3575 xtensa_format o_fmt;
3576 unsigned opi;
3578 static xtensa_insnbuf o_insnbuf = NULL;
3579 static xtensa_insnbuf o_slotbuf = NULL;
3581 if (o_insnbuf == NULL)
3583 o_insnbuf = xtensa_insnbuf_alloc (isa);
3584 o_slotbuf = xtensa_insnbuf_alloc (isa);
3587 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3589 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3591 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3593 uint32 value, newval;
3594 int i, operand_count, o_operand_count;
3595 xtensa_opcode o_opcode;
3597 /* Address does not matter in this case. We might need to
3598 fix it to handle branches/jumps. */
3599 bfd_vma self_address = 0;
3601 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3602 if (o_opcode == XTENSA_UNDEFINED)
3603 return 0;
3604 o_fmt = get_single_format (o_opcode);
3605 if (o_fmt == XTENSA_UNDEFINED)
3606 return 0;
3608 if (xtensa_format_length (isa, fmt) != 3
3609 || xtensa_format_length (isa, o_fmt) != 2)
3610 return 0;
3612 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3613 operand_count = xtensa_opcode_num_operands (isa, opcode);
3614 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3616 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3617 return 0;
3619 if (!is_or)
3621 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3622 return 0;
3624 else
3626 uint32 rawval0, rawval1, rawval2;
3628 if (o_operand_count + 1 != operand_count
3629 || xtensa_operand_get_field (isa, opcode, 0,
3630 fmt, 0, slotbuf, &rawval0) != 0
3631 || xtensa_operand_get_field (isa, opcode, 1,
3632 fmt, 0, slotbuf, &rawval1) != 0
3633 || xtensa_operand_get_field (isa, opcode, 2,
3634 fmt, 0, slotbuf, &rawval2) != 0
3635 || rawval1 != rawval2
3636 || rawval0 == rawval1 /* it is a nop */)
3637 return 0;
3640 for (i = 0; i < o_operand_count; ++i)
3642 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3643 slotbuf, &value)
3644 || xtensa_operand_decode (isa, opcode, i, &value))
3645 return 0;
3647 /* PC-relative branches need adjustment, but
3648 the PC-rel operand will always have a relocation. */
3649 newval = value;
3650 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3651 self_address)
3652 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3653 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3654 o_slotbuf, newval))
3655 return 0;
3658 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3659 return 0;
3661 return o_insnbuf;
3664 return 0;
3668 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3669 the action in-place directly into the contents and return TRUE. Otherwise,
3670 the return value is FALSE and the contents are not modified. */
3672 static bfd_boolean
3673 narrow_instruction (bfd_byte *contents,
3674 bfd_size_type content_length,
3675 bfd_size_type offset)
3677 xtensa_opcode opcode;
3678 bfd_size_type insn_len;
3679 xtensa_isa isa = xtensa_default_isa;
3680 xtensa_format fmt;
3681 xtensa_insnbuf o_insnbuf;
3683 static xtensa_insnbuf insnbuf = NULL;
3684 static xtensa_insnbuf slotbuf = NULL;
3686 if (insnbuf == NULL)
3688 insnbuf = xtensa_insnbuf_alloc (isa);
3689 slotbuf = xtensa_insnbuf_alloc (isa);
3692 BFD_ASSERT (offset < content_length);
3694 if (content_length < 2)
3695 return FALSE;
3697 /* We will hand-code a few of these for a little while.
3698 These have all been specified in the assembler aleady. */
3699 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3700 content_length - offset);
3701 fmt = xtensa_format_decode (isa, insnbuf);
3702 if (xtensa_format_num_slots (isa, fmt) != 1)
3703 return FALSE;
3705 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3706 return FALSE;
3708 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3709 if (opcode == XTENSA_UNDEFINED)
3710 return FALSE;
3711 insn_len = xtensa_format_length (isa, fmt);
3712 if (insn_len > content_length)
3713 return FALSE;
3715 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3716 if (o_insnbuf)
3718 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3719 content_length - offset);
3720 return TRUE;
3723 return FALSE;
3727 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3728 "density" instruction to a standard 3-byte instruction. If it is valid,
3729 return the instruction buffer holding the wide instruction. Otherwise,
3730 return 0. The set of valid widenings are specified by a string table
3731 but require some special case operand checks in some cases. */
3733 static xtensa_insnbuf
3734 can_widen_instruction (xtensa_insnbuf slotbuf,
3735 xtensa_format fmt,
3736 xtensa_opcode opcode)
3738 xtensa_isa isa = xtensa_default_isa;
3739 xtensa_format o_fmt;
3740 unsigned opi;
3742 static xtensa_insnbuf o_insnbuf = NULL;
3743 static xtensa_insnbuf o_slotbuf = NULL;
3745 if (o_insnbuf == NULL)
3747 o_insnbuf = xtensa_insnbuf_alloc (isa);
3748 o_slotbuf = xtensa_insnbuf_alloc (isa);
3751 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3753 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3754 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3755 || strcmp ("bnez", widenable[opi].wide) == 0);
3757 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3759 uint32 value, newval;
3760 int i, operand_count, o_operand_count, check_operand_count;
3761 xtensa_opcode o_opcode;
3763 /* Address does not matter in this case. We might need to fix it
3764 to handle branches/jumps. */
3765 bfd_vma self_address = 0;
3767 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3768 if (o_opcode == XTENSA_UNDEFINED)
3769 return 0;
3770 o_fmt = get_single_format (o_opcode);
3771 if (o_fmt == XTENSA_UNDEFINED)
3772 return 0;
3774 if (xtensa_format_length (isa, fmt) != 2
3775 || xtensa_format_length (isa, o_fmt) != 3)
3776 return 0;
3778 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3779 operand_count = xtensa_opcode_num_operands (isa, opcode);
3780 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3781 check_operand_count = o_operand_count;
3783 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3784 return 0;
3786 if (!is_or)
3788 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3789 return 0;
3791 else
3793 uint32 rawval0, rawval1;
3795 if (o_operand_count != operand_count + 1
3796 || xtensa_operand_get_field (isa, opcode, 0,
3797 fmt, 0, slotbuf, &rawval0) != 0
3798 || xtensa_operand_get_field (isa, opcode, 1,
3799 fmt, 0, slotbuf, &rawval1) != 0
3800 || rawval0 == rawval1 /* it is a nop */)
3801 return 0;
3803 if (is_branch)
3804 check_operand_count--;
3806 for (i = 0; i < check_operand_count; i++)
3808 int new_i = i;
3809 if (is_or && i == o_operand_count - 1)
3810 new_i = i - 1;
3811 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3812 slotbuf, &value)
3813 || xtensa_operand_decode (isa, opcode, new_i, &value))
3814 return 0;
3816 /* PC-relative branches need adjustment, but
3817 the PC-rel operand will always have a relocation. */
3818 newval = value;
3819 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3820 self_address)
3821 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3822 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3823 o_slotbuf, newval))
3824 return 0;
3827 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3828 return 0;
3830 return o_insnbuf;
3833 return 0;
3837 /* Attempt to widen an instruction. If the widening is valid, perform
3838 the action in-place directly into the contents and return TRUE. Otherwise,
3839 the return value is FALSE and the contents are not modified. */
3841 static bfd_boolean
3842 widen_instruction (bfd_byte *contents,
3843 bfd_size_type content_length,
3844 bfd_size_type offset)
3846 xtensa_opcode opcode;
3847 bfd_size_type insn_len;
3848 xtensa_isa isa = xtensa_default_isa;
3849 xtensa_format fmt;
3850 xtensa_insnbuf o_insnbuf;
3852 static xtensa_insnbuf insnbuf = NULL;
3853 static xtensa_insnbuf slotbuf = NULL;
3855 if (insnbuf == NULL)
3857 insnbuf = xtensa_insnbuf_alloc (isa);
3858 slotbuf = xtensa_insnbuf_alloc (isa);
3861 BFD_ASSERT (offset < content_length);
3863 if (content_length < 2)
3864 return FALSE;
3866 /* We will hand-code a few of these for a little while.
3867 These have all been specified in the assembler aleady. */
3868 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3869 content_length - offset);
3870 fmt = xtensa_format_decode (isa, insnbuf);
3871 if (xtensa_format_num_slots (isa, fmt) != 1)
3872 return FALSE;
3874 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3875 return FALSE;
3877 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3878 if (opcode == XTENSA_UNDEFINED)
3879 return FALSE;
3880 insn_len = xtensa_format_length (isa, fmt);
3881 if (insn_len > content_length)
3882 return FALSE;
3884 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3885 if (o_insnbuf)
3887 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3888 content_length - offset);
3889 return TRUE;
3891 return FALSE;
3895 /* Code for transforming CALLs at link-time. */
3897 static bfd_reloc_status_type
3898 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3899 bfd_vma address,
3900 bfd_vma content_length,
3901 char **error_message)
3903 static xtensa_insnbuf insnbuf = NULL;
3904 static xtensa_insnbuf slotbuf = NULL;
3905 xtensa_format core_format = XTENSA_UNDEFINED;
3906 xtensa_opcode opcode;
3907 xtensa_opcode direct_call_opcode;
3908 xtensa_isa isa = xtensa_default_isa;
3909 bfd_byte *chbuf = contents + address;
3910 int opn;
3912 if (insnbuf == NULL)
3914 insnbuf = xtensa_insnbuf_alloc (isa);
3915 slotbuf = xtensa_insnbuf_alloc (isa);
3918 if (content_length < address)
3920 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3921 return bfd_reloc_other;
3924 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3925 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3926 if (direct_call_opcode == XTENSA_UNDEFINED)
3928 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3929 return bfd_reloc_other;
3932 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3933 core_format = xtensa_format_lookup (isa, "x24");
3934 opcode = xtensa_opcode_lookup (isa, "or");
3935 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3936 for (opn = 0; opn < 3; opn++)
3938 uint32 regno = 1;
3939 xtensa_operand_encode (isa, opcode, opn, &regno);
3940 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3941 slotbuf, regno);
3943 xtensa_format_encode (isa, core_format, insnbuf);
3944 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3945 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3947 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3948 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3949 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3951 xtensa_format_encode (isa, core_format, insnbuf);
3952 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3953 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3954 content_length - address - 3);
3956 return bfd_reloc_ok;
3960 static bfd_reloc_status_type
3961 contract_asm_expansion (bfd_byte *contents,
3962 bfd_vma content_length,
3963 Elf_Internal_Rela *irel,
3964 char **error_message)
3966 bfd_reloc_status_type retval =
3967 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3968 error_message);
3970 if (retval != bfd_reloc_ok)
3971 return bfd_reloc_dangerous;
3973 /* Update the irel->r_offset field so that the right immediate and
3974 the right instruction are modified during the relocation. */
3975 irel->r_offset += 3;
3976 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3977 return bfd_reloc_ok;
3981 static xtensa_opcode
3982 swap_callx_for_call_opcode (xtensa_opcode opcode)
3984 init_call_opcodes ();
3986 if (opcode == callx0_op) return call0_op;
3987 if (opcode == callx4_op) return call4_op;
3988 if (opcode == callx8_op) return call8_op;
3989 if (opcode == callx12_op) return call12_op;
3991 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3992 return XTENSA_UNDEFINED;
3996 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3997 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3998 If not, return XTENSA_UNDEFINED. */
4000 #define L32R_TARGET_REG_OPERAND 0
4001 #define CONST16_TARGET_REG_OPERAND 0
4002 #define CALLN_SOURCE_OPERAND 0
4004 static xtensa_opcode
4005 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4007 static xtensa_insnbuf insnbuf = NULL;
4008 static xtensa_insnbuf slotbuf = NULL;
4009 xtensa_format fmt;
4010 xtensa_opcode opcode;
4011 xtensa_isa isa = xtensa_default_isa;
4012 uint32 regno, const16_regno, call_regno;
4013 int offset = 0;
4015 if (insnbuf == NULL)
4017 insnbuf = xtensa_insnbuf_alloc (isa);
4018 slotbuf = xtensa_insnbuf_alloc (isa);
4021 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4022 fmt = xtensa_format_decode (isa, insnbuf);
4023 if (fmt == XTENSA_UNDEFINED
4024 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4025 return XTENSA_UNDEFINED;
4027 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4028 if (opcode == XTENSA_UNDEFINED)
4029 return XTENSA_UNDEFINED;
4031 if (opcode == get_l32r_opcode ())
4033 if (p_uses_l32r)
4034 *p_uses_l32r = TRUE;
4035 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4036 fmt, 0, slotbuf, &regno)
4037 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4038 &regno))
4039 return XTENSA_UNDEFINED;
4041 else if (opcode == get_const16_opcode ())
4043 if (p_uses_l32r)
4044 *p_uses_l32r = FALSE;
4045 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4046 fmt, 0, slotbuf, &regno)
4047 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4048 &regno))
4049 return XTENSA_UNDEFINED;
4051 /* Check that the next instruction is also CONST16. */
4052 offset += xtensa_format_length (isa, fmt);
4053 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4054 fmt = xtensa_format_decode (isa, insnbuf);
4055 if (fmt == XTENSA_UNDEFINED
4056 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4057 return XTENSA_UNDEFINED;
4058 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4059 if (opcode != get_const16_opcode ())
4060 return XTENSA_UNDEFINED;
4062 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4063 fmt, 0, slotbuf, &const16_regno)
4064 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4065 &const16_regno)
4066 || const16_regno != regno)
4067 return XTENSA_UNDEFINED;
4069 else
4070 return XTENSA_UNDEFINED;
4072 /* Next instruction should be an CALLXn with operand 0 == regno. */
4073 offset += xtensa_format_length (isa, fmt);
4074 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4075 fmt = xtensa_format_decode (isa, insnbuf);
4076 if (fmt == XTENSA_UNDEFINED
4077 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4078 return XTENSA_UNDEFINED;
4079 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4080 if (opcode == XTENSA_UNDEFINED
4081 || !is_indirect_call_opcode (opcode))
4082 return XTENSA_UNDEFINED;
4084 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4085 fmt, 0, slotbuf, &call_regno)
4086 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4087 &call_regno))
4088 return XTENSA_UNDEFINED;
4090 if (call_regno != regno)
4091 return XTENSA_UNDEFINED;
4093 return opcode;
4097 /* Data structures used during relaxation. */
4099 /* r_reloc: relocation values. */
4101 /* Through the relaxation process, we need to keep track of the values
4102 that will result from evaluating relocations. The standard ELF
4103 relocation structure is not sufficient for this purpose because we're
4104 operating on multiple input files at once, so we need to know which
4105 input file a relocation refers to. The r_reloc structure thus
4106 records both the input file (bfd) and ELF relocation.
4108 For efficiency, an r_reloc also contains a "target_offset" field to
4109 cache the target-section-relative offset value that is represented by
4110 the relocation.
4112 The r_reloc also contains a virtual offset that allows multiple
4113 inserted literals to be placed at the same "address" with
4114 different offsets. */
4116 typedef struct r_reloc_struct r_reloc;
4118 struct r_reloc_struct
4120 bfd *abfd;
4121 Elf_Internal_Rela rela;
4122 bfd_vma target_offset;
4123 bfd_vma virtual_offset;
4127 /* The r_reloc structure is included by value in literal_value, but not
4128 every literal_value has an associated relocation -- some are simple
4129 constants. In such cases, we set all the fields in the r_reloc
4130 struct to zero. The r_reloc_is_const function should be used to
4131 detect this case. */
4133 static bfd_boolean
4134 r_reloc_is_const (const r_reloc *r_rel)
4136 return (r_rel->abfd == NULL);
4140 static bfd_vma
4141 r_reloc_get_target_offset (const r_reloc *r_rel)
4143 bfd_vma target_offset;
4144 unsigned long r_symndx;
4146 BFD_ASSERT (!r_reloc_is_const (r_rel));
4147 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4148 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4149 return (target_offset + r_rel->rela.r_addend);
4153 static struct elf_link_hash_entry *
4154 r_reloc_get_hash_entry (const r_reloc *r_rel)
4156 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4157 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4161 static asection *
4162 r_reloc_get_section (const r_reloc *r_rel)
4164 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4165 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4169 static bfd_boolean
4170 r_reloc_is_defined (const r_reloc *r_rel)
4172 asection *sec;
4173 if (r_rel == NULL)
4174 return FALSE;
4176 sec = r_reloc_get_section (r_rel);
4177 if (sec == bfd_abs_section_ptr
4178 || sec == bfd_com_section_ptr
4179 || sec == bfd_und_section_ptr)
4180 return FALSE;
4181 return TRUE;
4185 static void
4186 r_reloc_init (r_reloc *r_rel,
4187 bfd *abfd,
4188 Elf_Internal_Rela *irel,
4189 bfd_byte *contents,
4190 bfd_size_type content_length)
4192 int r_type;
4193 reloc_howto_type *howto;
4195 if (irel)
4197 r_rel->rela = *irel;
4198 r_rel->abfd = abfd;
4199 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4200 r_rel->virtual_offset = 0;
4201 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4202 howto = &elf_howto_table[r_type];
4203 if (howto->partial_inplace)
4205 bfd_vma inplace_val;
4206 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4208 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4209 r_rel->target_offset += inplace_val;
4212 else
4213 memset (r_rel, 0, sizeof (r_reloc));
4217 #if DEBUG
4219 static void
4220 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4222 if (r_reloc_is_defined (r_rel))
4224 asection *sec = r_reloc_get_section (r_rel);
4225 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4227 else if (r_reloc_get_hash_entry (r_rel))
4228 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4229 else
4230 fprintf (fp, " ?? + ");
4232 fprintf_vma (fp, r_rel->target_offset);
4233 if (r_rel->virtual_offset)
4235 fprintf (fp, " + ");
4236 fprintf_vma (fp, r_rel->virtual_offset);
4239 fprintf (fp, ")");
4242 #endif /* DEBUG */
4245 /* source_reloc: relocations that reference literals. */
4247 /* To determine whether literals can be coalesced, we need to first
4248 record all the relocations that reference the literals. The
4249 source_reloc structure below is used for this purpose. The
4250 source_reloc entries are kept in a per-literal-section array, sorted
4251 by offset within the literal section (i.e., target offset).
4253 The source_sec and r_rel.rela.r_offset fields identify the source of
4254 the relocation. The r_rel field records the relocation value, i.e.,
4255 the offset of the literal being referenced. The opnd field is needed
4256 to determine the range of the immediate field to which the relocation
4257 applies, so we can determine whether another literal with the same
4258 value is within range. The is_null field is true when the relocation
4259 is being removed (e.g., when an L32R is being removed due to a CALLX
4260 that is converted to a direct CALL). */
4262 typedef struct source_reloc_struct source_reloc;
4264 struct source_reloc_struct
4266 asection *source_sec;
4267 r_reloc r_rel;
4268 xtensa_opcode opcode;
4269 int opnd;
4270 bfd_boolean is_null;
4271 bfd_boolean is_abs_literal;
4275 static void
4276 init_source_reloc (source_reloc *reloc,
4277 asection *source_sec,
4278 const r_reloc *r_rel,
4279 xtensa_opcode opcode,
4280 int opnd,
4281 bfd_boolean is_abs_literal)
4283 reloc->source_sec = source_sec;
4284 reloc->r_rel = *r_rel;
4285 reloc->opcode = opcode;
4286 reloc->opnd = opnd;
4287 reloc->is_null = FALSE;
4288 reloc->is_abs_literal = is_abs_literal;
4292 /* Find the source_reloc for a particular source offset and relocation
4293 type. Note that the array is sorted by _target_ offset, so this is
4294 just a linear search. */
4296 static source_reloc *
4297 find_source_reloc (source_reloc *src_relocs,
4298 int src_count,
4299 asection *sec,
4300 Elf_Internal_Rela *irel)
4302 int i;
4304 for (i = 0; i < src_count; i++)
4306 if (src_relocs[i].source_sec == sec
4307 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4308 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4309 == ELF32_R_TYPE (irel->r_info)))
4310 return &src_relocs[i];
4313 return NULL;
4317 static int
4318 source_reloc_compare (const void *ap, const void *bp)
4320 const source_reloc *a = (const source_reloc *) ap;
4321 const source_reloc *b = (const source_reloc *) bp;
4323 if (a->r_rel.target_offset != b->r_rel.target_offset)
4324 return (a->r_rel.target_offset - b->r_rel.target_offset);
4326 /* We don't need to sort on these criteria for correctness,
4327 but enforcing a more strict ordering prevents unstable qsort
4328 from behaving differently with different implementations.
4329 Without the code below we get correct but different results
4330 on Solaris 2.7 and 2.8. We would like to always produce the
4331 same results no matter the host. */
4333 if ((!a->is_null) - (!b->is_null))
4334 return ((!a->is_null) - (!b->is_null));
4335 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4339 /* Literal values and value hash tables. */
4341 /* Literals with the same value can be coalesced. The literal_value
4342 structure records the value of a literal: the "r_rel" field holds the
4343 information from the relocation on the literal (if there is one) and
4344 the "value" field holds the contents of the literal word itself.
4346 The value_map structure records a literal value along with the
4347 location of a literal holding that value. The value_map hash table
4348 is indexed by the literal value, so that we can quickly check if a
4349 particular literal value has been seen before and is thus a candidate
4350 for coalescing. */
4352 typedef struct literal_value_struct literal_value;
4353 typedef struct value_map_struct value_map;
4354 typedef struct value_map_hash_table_struct value_map_hash_table;
4356 struct literal_value_struct
4358 r_reloc r_rel;
4359 unsigned long value;
4360 bfd_boolean is_abs_literal;
4363 struct value_map_struct
4365 literal_value val; /* The literal value. */
4366 r_reloc loc; /* Location of the literal. */
4367 value_map *next;
4370 struct value_map_hash_table_struct
4372 unsigned bucket_count;
4373 value_map **buckets;
4374 unsigned count;
4375 bfd_boolean has_last_loc;
4376 r_reloc last_loc;
4380 static void
4381 init_literal_value (literal_value *lit,
4382 const r_reloc *r_rel,
4383 unsigned long value,
4384 bfd_boolean is_abs_literal)
4386 lit->r_rel = *r_rel;
4387 lit->value = value;
4388 lit->is_abs_literal = is_abs_literal;
4392 static bfd_boolean
4393 literal_value_equal (const literal_value *src1,
4394 const literal_value *src2,
4395 bfd_boolean final_static_link)
4397 struct elf_link_hash_entry *h1, *h2;
4399 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4400 return FALSE;
4402 if (r_reloc_is_const (&src1->r_rel))
4403 return (src1->value == src2->value);
4405 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4406 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4407 return FALSE;
4409 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4410 return FALSE;
4412 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4413 return FALSE;
4415 if (src1->value != src2->value)
4416 return FALSE;
4418 /* Now check for the same section (if defined) or the same elf_hash
4419 (if undefined or weak). */
4420 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4421 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4422 if (r_reloc_is_defined (&src1->r_rel)
4423 && (final_static_link
4424 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4425 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4427 if (r_reloc_get_section (&src1->r_rel)
4428 != r_reloc_get_section (&src2->r_rel))
4429 return FALSE;
4431 else
4433 /* Require that the hash entries (i.e., symbols) be identical. */
4434 if (h1 != h2 || h1 == 0)
4435 return FALSE;
4438 if (src1->is_abs_literal != src2->is_abs_literal)
4439 return FALSE;
4441 return TRUE;
4445 /* Must be power of 2. */
4446 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4448 static value_map_hash_table *
4449 value_map_hash_table_init (void)
4451 value_map_hash_table *values;
4453 values = (value_map_hash_table *)
4454 bfd_zmalloc (sizeof (value_map_hash_table));
4455 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4456 values->count = 0;
4457 values->buckets = (value_map **)
4458 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4459 if (values->buckets == NULL)
4461 free (values);
4462 return NULL;
4464 values->has_last_loc = FALSE;
4466 return values;
4470 static void
4471 value_map_hash_table_delete (value_map_hash_table *table)
4473 free (table->buckets);
4474 free (table);
4478 static unsigned
4479 hash_bfd_vma (bfd_vma val)
4481 return (val >> 2) + (val >> 10);
4485 static unsigned
4486 literal_value_hash (const literal_value *src)
4488 unsigned hash_val;
4490 hash_val = hash_bfd_vma (src->value);
4491 if (!r_reloc_is_const (&src->r_rel))
4493 void *sec_or_hash;
4495 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4496 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4497 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4499 /* Now check for the same section and the same elf_hash. */
4500 if (r_reloc_is_defined (&src->r_rel))
4501 sec_or_hash = r_reloc_get_section (&src->r_rel);
4502 else
4503 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4504 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4506 return hash_val;
4510 /* Check if the specified literal_value has been seen before. */
4512 static value_map *
4513 value_map_get_cached_value (value_map_hash_table *map,
4514 const literal_value *val,
4515 bfd_boolean final_static_link)
4517 value_map *map_e;
4518 value_map *bucket;
4519 unsigned idx;
4521 idx = literal_value_hash (val);
4522 idx = idx & (map->bucket_count - 1);
4523 bucket = map->buckets[idx];
4524 for (map_e = bucket; map_e; map_e = map_e->next)
4526 if (literal_value_equal (&map_e->val, val, final_static_link))
4527 return map_e;
4529 return NULL;
4533 /* Record a new literal value. It is illegal to call this if VALUE
4534 already has an entry here. */
4536 static value_map *
4537 add_value_map (value_map_hash_table *map,
4538 const literal_value *val,
4539 const r_reloc *loc,
4540 bfd_boolean final_static_link)
4542 value_map **bucket_p;
4543 unsigned idx;
4545 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4546 if (val_e == NULL)
4548 bfd_set_error (bfd_error_no_memory);
4549 return NULL;
4552 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4553 val_e->val = *val;
4554 val_e->loc = *loc;
4556 idx = literal_value_hash (val);
4557 idx = idx & (map->bucket_count - 1);
4558 bucket_p = &map->buckets[idx];
4560 val_e->next = *bucket_p;
4561 *bucket_p = val_e;
4562 map->count++;
4563 /* FIXME: Consider resizing the hash table if we get too many entries. */
4565 return val_e;
4569 /* Lists of text actions (ta_) for narrowing, widening, longcall
4570 conversion, space fill, code & literal removal, etc. */
4572 /* The following text actions are generated:
4574 "ta_remove_insn" remove an instruction or instructions
4575 "ta_remove_longcall" convert longcall to call
4576 "ta_convert_longcall" convert longcall to nop/call
4577 "ta_narrow_insn" narrow a wide instruction
4578 "ta_widen" widen a narrow instruction
4579 "ta_fill" add fill or remove fill
4580 removed < 0 is a fill; branches to the fill address will be
4581 changed to address + fill size (e.g., address - removed)
4582 removed >= 0 branches to the fill address will stay unchanged
4583 "ta_remove_literal" remove a literal; this action is
4584 indicated when a literal is removed
4585 or replaced.
4586 "ta_add_literal" insert a new literal; this action is
4587 indicated when a literal has been moved.
4588 It may use a virtual_offset because
4589 multiple literals can be placed at the
4590 same location.
4592 For each of these text actions, we also record the number of bytes
4593 removed by performing the text action. In the case of a "ta_widen"
4594 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4596 typedef struct text_action_struct text_action;
4597 typedef struct text_action_list_struct text_action_list;
4598 typedef enum text_action_enum_t text_action_t;
4600 enum text_action_enum_t
4602 ta_none,
4603 ta_remove_insn, /* removed = -size */
4604 ta_remove_longcall, /* removed = -size */
4605 ta_convert_longcall, /* removed = 0 */
4606 ta_narrow_insn, /* removed = -1 */
4607 ta_widen_insn, /* removed = +1 */
4608 ta_fill, /* removed = +size */
4609 ta_remove_literal,
4610 ta_add_literal
4614 /* Structure for a text action record. */
4615 struct text_action_struct
4617 text_action_t action;
4618 asection *sec; /* Optional */
4619 bfd_vma offset;
4620 bfd_vma virtual_offset; /* Zero except for adding literals. */
4621 int removed_bytes;
4622 literal_value value; /* Only valid when adding literals. */
4624 text_action *next;
4628 /* List of all of the actions taken on a text section. */
4629 struct text_action_list_struct
4631 text_action *head;
4635 static text_action *
4636 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4638 text_action **m_p;
4640 /* It is not necessary to fill at the end of a section. */
4641 if (sec->size == offset)
4642 return NULL;
4644 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4646 text_action *t = *m_p;
4647 /* When the action is another fill at the same address,
4648 just increase the size. */
4649 if (t->offset == offset && t->action == ta_fill)
4650 return t;
4652 return NULL;
4656 static int
4657 compute_removed_action_diff (const text_action *ta,
4658 asection *sec,
4659 bfd_vma offset,
4660 int removed,
4661 int removable_space)
4663 int new_removed;
4664 int current_removed = 0;
4666 if (ta)
4667 current_removed = ta->removed_bytes;
4669 BFD_ASSERT (ta == NULL || ta->offset == offset);
4670 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4672 /* It is not necessary to fill at the end of a section. Clean this up. */
4673 if (sec->size == offset)
4674 new_removed = removable_space - 0;
4675 else
4677 int space;
4678 int added = -removed - current_removed;
4679 /* Ignore multiples of the section alignment. */
4680 added = ((1 << sec->alignment_power) - 1) & added;
4681 new_removed = (-added);
4683 /* Modify for removable. */
4684 space = removable_space - new_removed;
4685 new_removed = (removable_space
4686 - (((1 << sec->alignment_power) - 1) & space));
4688 return (new_removed - current_removed);
4692 static void
4693 adjust_fill_action (text_action *ta, int fill_diff)
4695 ta->removed_bytes += fill_diff;
4699 /* Add a modification action to the text. For the case of adding or
4700 removing space, modify any current fill and assume that
4701 "unreachable_space" bytes can be freely contracted. Note that a
4702 negative removed value is a fill. */
4704 static void
4705 text_action_add (text_action_list *l,
4706 text_action_t action,
4707 asection *sec,
4708 bfd_vma offset,
4709 int removed)
4711 text_action **m_p;
4712 text_action *ta;
4714 /* It is not necessary to fill at the end of a section. */
4715 if (action == ta_fill && sec->size == offset)
4716 return;
4718 /* It is not necessary to fill 0 bytes. */
4719 if (action == ta_fill && removed == 0)
4720 return;
4722 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4724 text_action *t = *m_p;
4725 /* When the action is another fill at the same address,
4726 just increase the size. */
4727 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4729 t->removed_bytes += removed;
4730 return;
4734 /* Create a new record and fill it up. */
4735 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4736 ta->action = action;
4737 ta->sec = sec;
4738 ta->offset = offset;
4739 ta->removed_bytes = removed;
4740 ta->next = (*m_p);
4741 *m_p = ta;
4745 static void
4746 text_action_add_literal (text_action_list *l,
4747 text_action_t action,
4748 const r_reloc *loc,
4749 const literal_value *value,
4750 int removed)
4752 text_action **m_p;
4753 text_action *ta;
4754 asection *sec = r_reloc_get_section (loc);
4755 bfd_vma offset = loc->target_offset;
4756 bfd_vma virtual_offset = loc->virtual_offset;
4758 BFD_ASSERT (action == ta_add_literal);
4760 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4762 if ((*m_p)->offset > offset
4763 && ((*m_p)->offset != offset
4764 || (*m_p)->virtual_offset > virtual_offset))
4765 break;
4768 /* Create a new record and fill it up. */
4769 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4770 ta->action = action;
4771 ta->sec = sec;
4772 ta->offset = offset;
4773 ta->virtual_offset = virtual_offset;
4774 ta->value = *value;
4775 ta->removed_bytes = removed;
4776 ta->next = (*m_p);
4777 *m_p = ta;
4781 static bfd_vma
4782 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4784 text_action *r;
4785 int removed = 0;
4787 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4789 if (r->offset < offset
4790 || (r->action == ta_fill && r->removed_bytes < 0))
4791 removed += r->removed_bytes;
4794 return (offset - removed);
4798 static unsigned
4799 action_list_count (text_action_list *action_list)
4801 text_action *r = action_list->head;
4802 unsigned count = 0;
4803 for (r = action_list->head; r != NULL; r = r->next)
4805 count++;
4807 return count;
4811 static bfd_vma
4812 offset_with_removed_text_before_fill (text_action_list *action_list,
4813 bfd_vma offset)
4815 text_action *r;
4816 int removed = 0;
4818 for (r = action_list->head; r && r->offset < offset; r = r->next)
4819 removed += r->removed_bytes;
4821 return (offset - removed);
4825 /* The find_insn_action routine will only find non-fill actions. */
4827 static text_action *
4828 find_insn_action (text_action_list *action_list, bfd_vma offset)
4830 text_action *t;
4831 for (t = action_list->head; t; t = t->next)
4833 if (t->offset == offset)
4835 switch (t->action)
4837 case ta_none:
4838 case ta_fill:
4839 break;
4840 case ta_remove_insn:
4841 case ta_remove_longcall:
4842 case ta_convert_longcall:
4843 case ta_narrow_insn:
4844 case ta_widen_insn:
4845 return t;
4846 case ta_remove_literal:
4847 case ta_add_literal:
4848 BFD_ASSERT (0);
4849 break;
4853 return NULL;
4857 #if DEBUG
4859 static void
4860 print_action_list (FILE *fp, text_action_list *action_list)
4862 text_action *r;
4864 fprintf (fp, "Text Action\n");
4865 for (r = action_list->head; r != NULL; r = r->next)
4867 const char *t = "unknown";
4868 switch (r->action)
4870 case ta_remove_insn:
4871 t = "remove_insn"; break;
4872 case ta_remove_longcall:
4873 t = "remove_longcall"; break;
4874 case ta_convert_longcall:
4875 t = "remove_longcall"; break;
4876 case ta_narrow_insn:
4877 t = "narrow_insn"; break;
4878 case ta_widen_insn:
4879 t = "widen_insn"; break;
4880 case ta_fill:
4881 t = "fill"; break;
4882 case ta_none:
4883 t = "none"; break;
4884 case ta_remove_literal:
4885 t = "remove_literal"; break;
4886 case ta_add_literal:
4887 t = "add_literal"; break;
4890 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4891 r->sec->owner->filename,
4892 r->sec->name, r->offset, t, r->removed_bytes);
4896 #endif /* DEBUG */
4899 /* Lists of literals being coalesced or removed. */
4901 /* In the usual case, the literal identified by "from" is being
4902 coalesced with another literal identified by "to". If the literal is
4903 unused and is being removed altogether, "to.abfd" will be NULL.
4904 The removed_literal entries are kept on a per-section list, sorted
4905 by the "from" offset field. */
4907 typedef struct removed_literal_struct removed_literal;
4908 typedef struct removed_literal_list_struct removed_literal_list;
4910 struct removed_literal_struct
4912 r_reloc from;
4913 r_reloc to;
4914 removed_literal *next;
4917 struct removed_literal_list_struct
4919 removed_literal *head;
4920 removed_literal *tail;
4924 /* Record that the literal at "from" is being removed. If "to" is not
4925 NULL, the "from" literal is being coalesced with the "to" literal. */
4927 static void
4928 add_removed_literal (removed_literal_list *removed_list,
4929 const r_reloc *from,
4930 const r_reloc *to)
4932 removed_literal *r, *new_r, *next_r;
4934 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4936 new_r->from = *from;
4937 if (to)
4938 new_r->to = *to;
4939 else
4940 new_r->to.abfd = NULL;
4941 new_r->next = NULL;
4943 r = removed_list->head;
4944 if (r == NULL)
4946 removed_list->head = new_r;
4947 removed_list->tail = new_r;
4949 /* Special check for common case of append. */
4950 else if (removed_list->tail->from.target_offset < from->target_offset)
4952 removed_list->tail->next = new_r;
4953 removed_list->tail = new_r;
4955 else
4957 while (r->from.target_offset < from->target_offset && r->next)
4959 r = r->next;
4961 next_r = r->next;
4962 r->next = new_r;
4963 new_r->next = next_r;
4964 if (next_r == NULL)
4965 removed_list->tail = new_r;
4970 /* Check if the list of removed literals contains an entry for the
4971 given address. Return the entry if found. */
4973 static removed_literal *
4974 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4976 removed_literal *r = removed_list->head;
4977 while (r && r->from.target_offset < addr)
4978 r = r->next;
4979 if (r && r->from.target_offset == addr)
4980 return r;
4981 return NULL;
4985 #if DEBUG
4987 static void
4988 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4990 removed_literal *r;
4991 r = removed_list->head;
4992 if (r)
4993 fprintf (fp, "Removed Literals\n");
4994 for (; r != NULL; r = r->next)
4996 print_r_reloc (fp, &r->from);
4997 fprintf (fp, " => ");
4998 if (r->to.abfd == NULL)
4999 fprintf (fp, "REMOVED");
5000 else
5001 print_r_reloc (fp, &r->to);
5002 fprintf (fp, "\n");
5006 #endif /* DEBUG */
5009 /* Per-section data for relaxation. */
5011 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5013 struct xtensa_relax_info_struct
5015 bfd_boolean is_relaxable_literal_section;
5016 bfd_boolean is_relaxable_asm_section;
5017 int visited; /* Number of times visited. */
5019 source_reloc *src_relocs; /* Array[src_count]. */
5020 int src_count;
5021 int src_next; /* Next src_relocs entry to assign. */
5023 removed_literal_list removed_list;
5024 text_action_list action_list;
5026 reloc_bfd_fix *fix_list;
5027 reloc_bfd_fix *fix_array;
5028 unsigned fix_array_count;
5030 /* Support for expanding the reloc array that is stored
5031 in the section structure. If the relocations have been
5032 reallocated, the newly allocated relocations will be referenced
5033 here along with the actual size allocated. The relocation
5034 count will always be found in the section structure. */
5035 Elf_Internal_Rela *allocated_relocs;
5036 unsigned relocs_count;
5037 unsigned allocated_relocs_count;
5040 struct elf_xtensa_section_data
5042 struct bfd_elf_section_data elf;
5043 xtensa_relax_info relax_info;
5047 static bfd_boolean
5048 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5050 if (!sec->used_by_bfd)
5052 struct elf_xtensa_section_data *sdata;
5053 bfd_size_type amt = sizeof (*sdata);
5055 sdata = bfd_zalloc (abfd, amt);
5056 if (sdata == NULL)
5057 return FALSE;
5058 sec->used_by_bfd = sdata;
5061 return _bfd_elf_new_section_hook (abfd, sec);
5065 static xtensa_relax_info *
5066 get_xtensa_relax_info (asection *sec)
5068 struct elf_xtensa_section_data *section_data;
5070 /* No info available if no section or if it is an output section. */
5071 if (!sec || sec == sec->output_section)
5072 return NULL;
5074 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5075 return &section_data->relax_info;
5079 static void
5080 init_xtensa_relax_info (asection *sec)
5082 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5084 relax_info->is_relaxable_literal_section = FALSE;
5085 relax_info->is_relaxable_asm_section = FALSE;
5086 relax_info->visited = 0;
5088 relax_info->src_relocs = NULL;
5089 relax_info->src_count = 0;
5090 relax_info->src_next = 0;
5092 relax_info->removed_list.head = NULL;
5093 relax_info->removed_list.tail = NULL;
5095 relax_info->action_list.head = NULL;
5097 relax_info->fix_list = NULL;
5098 relax_info->fix_array = NULL;
5099 relax_info->fix_array_count = 0;
5101 relax_info->allocated_relocs = NULL;
5102 relax_info->relocs_count = 0;
5103 relax_info->allocated_relocs_count = 0;
5107 /* Coalescing literals may require a relocation to refer to a section in
5108 a different input file, but the standard relocation information
5109 cannot express that. Instead, the reloc_bfd_fix structures are used
5110 to "fix" the relocations that refer to sections in other input files.
5111 These structures are kept on per-section lists. The "src_type" field
5112 records the relocation type in case there are multiple relocations on
5113 the same location. FIXME: This is ugly; an alternative might be to
5114 add new symbols with the "owner" field to some other input file. */
5116 struct reloc_bfd_fix_struct
5118 asection *src_sec;
5119 bfd_vma src_offset;
5120 unsigned src_type; /* Relocation type. */
5122 bfd *target_abfd;
5123 asection *target_sec;
5124 bfd_vma target_offset;
5125 bfd_boolean translated;
5127 reloc_bfd_fix *next;
5131 static reloc_bfd_fix *
5132 reloc_bfd_fix_init (asection *src_sec,
5133 bfd_vma src_offset,
5134 unsigned src_type,
5135 bfd *target_abfd,
5136 asection *target_sec,
5137 bfd_vma target_offset,
5138 bfd_boolean translated)
5140 reloc_bfd_fix *fix;
5142 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5143 fix->src_sec = src_sec;
5144 fix->src_offset = src_offset;
5145 fix->src_type = src_type;
5146 fix->target_abfd = target_abfd;
5147 fix->target_sec = target_sec;
5148 fix->target_offset = target_offset;
5149 fix->translated = translated;
5151 return fix;
5155 static void
5156 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5158 xtensa_relax_info *relax_info;
5160 relax_info = get_xtensa_relax_info (src_sec);
5161 fix->next = relax_info->fix_list;
5162 relax_info->fix_list = fix;
5166 static int
5167 fix_compare (const void *ap, const void *bp)
5169 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5170 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5172 if (a->src_offset != b->src_offset)
5173 return (a->src_offset - b->src_offset);
5174 return (a->src_type - b->src_type);
5178 static void
5179 cache_fix_array (asection *sec)
5181 unsigned i, count = 0;
5182 reloc_bfd_fix *r;
5183 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5185 if (relax_info == NULL)
5186 return;
5187 if (relax_info->fix_list == NULL)
5188 return;
5190 for (r = relax_info->fix_list; r != NULL; r = r->next)
5191 count++;
5193 relax_info->fix_array =
5194 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5195 relax_info->fix_array_count = count;
5197 r = relax_info->fix_list;
5198 for (i = 0; i < count; i++, r = r->next)
5200 relax_info->fix_array[count - 1 - i] = *r;
5201 relax_info->fix_array[count - 1 - i].next = NULL;
5204 qsort (relax_info->fix_array, relax_info->fix_array_count,
5205 sizeof (reloc_bfd_fix), fix_compare);
5209 static reloc_bfd_fix *
5210 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5212 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5213 reloc_bfd_fix *rv;
5214 reloc_bfd_fix key;
5216 if (relax_info == NULL)
5217 return NULL;
5218 if (relax_info->fix_list == NULL)
5219 return NULL;
5221 if (relax_info->fix_array == NULL)
5222 cache_fix_array (sec);
5224 key.src_offset = offset;
5225 key.src_type = type;
5226 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5227 sizeof (reloc_bfd_fix), fix_compare);
5228 return rv;
5232 /* Section caching. */
5234 typedef struct section_cache_struct section_cache_t;
5236 struct section_cache_struct
5238 asection *sec;
5240 bfd_byte *contents; /* Cache of the section contents. */
5241 bfd_size_type content_length;
5243 property_table_entry *ptbl; /* Cache of the section property table. */
5244 unsigned pte_count;
5246 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5247 unsigned reloc_count;
5251 static void
5252 init_section_cache (section_cache_t *sec_cache)
5254 memset (sec_cache, 0, sizeof (*sec_cache));
5258 static void
5259 clear_section_cache (section_cache_t *sec_cache)
5261 if (sec_cache->sec)
5263 release_contents (sec_cache->sec, sec_cache->contents);
5264 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5265 if (sec_cache->ptbl)
5266 free (sec_cache->ptbl);
5267 memset (sec_cache, 0, sizeof (sec_cache));
5272 static bfd_boolean
5273 section_cache_section (section_cache_t *sec_cache,
5274 asection *sec,
5275 struct bfd_link_info *link_info)
5277 bfd *abfd;
5278 property_table_entry *prop_table = NULL;
5279 int ptblsize = 0;
5280 bfd_byte *contents = NULL;
5281 Elf_Internal_Rela *internal_relocs = NULL;
5282 bfd_size_type sec_size;
5284 if (sec == NULL)
5285 return FALSE;
5286 if (sec == sec_cache->sec)
5287 return TRUE;
5289 abfd = sec->owner;
5290 sec_size = bfd_get_section_limit (abfd, sec);
5292 /* Get the contents. */
5293 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5294 if (contents == NULL && sec_size != 0)
5295 goto err;
5297 /* Get the relocations. */
5298 internal_relocs = retrieve_internal_relocs (abfd, sec,
5299 link_info->keep_memory);
5301 /* Get the entry table. */
5302 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5303 XTENSA_PROP_SEC_NAME, FALSE);
5304 if (ptblsize < 0)
5305 goto err;
5307 /* Fill in the new section cache. */
5308 clear_section_cache (sec_cache);
5309 memset (sec_cache, 0, sizeof (sec_cache));
5311 sec_cache->sec = sec;
5312 sec_cache->contents = contents;
5313 sec_cache->content_length = sec_size;
5314 sec_cache->relocs = internal_relocs;
5315 sec_cache->reloc_count = sec->reloc_count;
5316 sec_cache->pte_count = ptblsize;
5317 sec_cache->ptbl = prop_table;
5319 return TRUE;
5321 err:
5322 release_contents (sec, contents);
5323 release_internal_relocs (sec, internal_relocs);
5324 if (prop_table)
5325 free (prop_table);
5326 return FALSE;
5330 /* Extended basic blocks. */
5332 /* An ebb_struct represents an Extended Basic Block. Within this
5333 range, we guarantee that all instructions are decodable, the
5334 property table entries are contiguous, and no property table
5335 specifies a segment that cannot have instructions moved. This
5336 structure contains caches of the contents, property table and
5337 relocations for the specified section for easy use. The range is
5338 specified by ranges of indices for the byte offset, property table
5339 offsets and relocation offsets. These must be consistent. */
5341 typedef struct ebb_struct ebb_t;
5343 struct ebb_struct
5345 asection *sec;
5347 bfd_byte *contents; /* Cache of the section contents. */
5348 bfd_size_type content_length;
5350 property_table_entry *ptbl; /* Cache of the section property table. */
5351 unsigned pte_count;
5353 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5354 unsigned reloc_count;
5356 bfd_vma start_offset; /* Offset in section. */
5357 unsigned start_ptbl_idx; /* Offset in the property table. */
5358 unsigned start_reloc_idx; /* Offset in the relocations. */
5360 bfd_vma end_offset;
5361 unsigned end_ptbl_idx;
5362 unsigned end_reloc_idx;
5364 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5366 /* The unreachable property table at the end of this set of blocks;
5367 NULL if the end is not an unreachable block. */
5368 property_table_entry *ends_unreachable;
5372 enum ebb_target_enum
5374 EBB_NO_ALIGN = 0,
5375 EBB_DESIRE_TGT_ALIGN,
5376 EBB_REQUIRE_TGT_ALIGN,
5377 EBB_REQUIRE_LOOP_ALIGN,
5378 EBB_REQUIRE_ALIGN
5382 /* proposed_action_struct is similar to the text_action_struct except
5383 that is represents a potential transformation, not one that will
5384 occur. We build a list of these for an extended basic block
5385 and use them to compute the actual actions desired. We must be
5386 careful that the entire set of actual actions we perform do not
5387 break any relocations that would fit if the actions were not
5388 performed. */
5390 typedef struct proposed_action_struct proposed_action;
5392 struct proposed_action_struct
5394 enum ebb_target_enum align_type; /* for the target alignment */
5395 bfd_vma alignment_pow;
5396 text_action_t action;
5397 bfd_vma offset;
5398 int removed_bytes;
5399 bfd_boolean do_action; /* If false, then we will not perform the action. */
5403 /* The ebb_constraint_struct keeps a set of proposed actions for an
5404 extended basic block. */
5406 typedef struct ebb_constraint_struct ebb_constraint;
5408 struct ebb_constraint_struct
5410 ebb_t ebb;
5411 bfd_boolean start_movable;
5413 /* Bytes of extra space at the beginning if movable. */
5414 int start_extra_space;
5416 enum ebb_target_enum start_align;
5418 bfd_boolean end_movable;
5420 /* Bytes of extra space at the end if movable. */
5421 int end_extra_space;
5423 unsigned action_count;
5424 unsigned action_allocated;
5426 /* Array of proposed actions. */
5427 proposed_action *actions;
5429 /* Action alignments -- one for each proposed action. */
5430 enum ebb_target_enum *action_aligns;
5434 static void
5435 init_ebb_constraint (ebb_constraint *c)
5437 memset (c, 0, sizeof (ebb_constraint));
5441 static void
5442 free_ebb_constraint (ebb_constraint *c)
5444 if (c->actions)
5445 free (c->actions);
5449 static void
5450 init_ebb (ebb_t *ebb,
5451 asection *sec,
5452 bfd_byte *contents,
5453 bfd_size_type content_length,
5454 property_table_entry *prop_table,
5455 unsigned ptblsize,
5456 Elf_Internal_Rela *internal_relocs,
5457 unsigned reloc_count)
5459 memset (ebb, 0, sizeof (ebb_t));
5460 ebb->sec = sec;
5461 ebb->contents = contents;
5462 ebb->content_length = content_length;
5463 ebb->ptbl = prop_table;
5464 ebb->pte_count = ptblsize;
5465 ebb->relocs = internal_relocs;
5466 ebb->reloc_count = reloc_count;
5467 ebb->start_offset = 0;
5468 ebb->end_offset = ebb->content_length - 1;
5469 ebb->start_ptbl_idx = 0;
5470 ebb->end_ptbl_idx = ptblsize;
5471 ebb->start_reloc_idx = 0;
5472 ebb->end_reloc_idx = reloc_count;
5476 /* Extend the ebb to all decodable contiguous sections. The algorithm
5477 for building a basic block around an instruction is to push it
5478 forward until we hit the end of a section, an unreachable block or
5479 a block that cannot be transformed. Then we push it backwards
5480 searching for similar conditions. */
5482 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5483 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5484 static bfd_size_type insn_block_decodable_len
5485 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5487 static bfd_boolean
5488 extend_ebb_bounds (ebb_t *ebb)
5490 if (!extend_ebb_bounds_forward (ebb))
5491 return FALSE;
5492 if (!extend_ebb_bounds_backward (ebb))
5493 return FALSE;
5494 return TRUE;
5498 static bfd_boolean
5499 extend_ebb_bounds_forward (ebb_t *ebb)
5501 property_table_entry *the_entry, *new_entry;
5503 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5505 /* Stop when (1) we cannot decode an instruction, (2) we are at
5506 the end of the property tables, (3) we hit a non-contiguous property
5507 table entry, (4) we hit a NO_TRANSFORM region. */
5509 while (1)
5511 bfd_vma entry_end;
5512 bfd_size_type insn_block_len;
5514 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5515 insn_block_len =
5516 insn_block_decodable_len (ebb->contents, ebb->content_length,
5517 ebb->end_offset,
5518 entry_end - ebb->end_offset);
5519 if (insn_block_len != (entry_end - ebb->end_offset))
5521 (*_bfd_error_handler)
5522 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5523 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5524 return FALSE;
5526 ebb->end_offset += insn_block_len;
5528 if (ebb->end_offset == ebb->sec->size)
5529 ebb->ends_section = TRUE;
5531 /* Update the reloc counter. */
5532 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5533 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5534 < ebb->end_offset))
5536 ebb->end_reloc_idx++;
5539 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5540 return TRUE;
5542 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5543 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5544 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5545 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5546 break;
5548 if (the_entry->address + the_entry->size != new_entry->address)
5549 break;
5551 the_entry = new_entry;
5552 ebb->end_ptbl_idx++;
5555 /* Quick check for an unreachable or end of file just at the end. */
5556 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5558 if (ebb->end_offset == ebb->content_length)
5559 ebb->ends_section = TRUE;
5561 else
5563 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5564 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5565 && the_entry->address + the_entry->size == new_entry->address)
5566 ebb->ends_unreachable = new_entry;
5569 /* Any other ending requires exact alignment. */
5570 return TRUE;
5574 static bfd_boolean
5575 extend_ebb_bounds_backward (ebb_t *ebb)
5577 property_table_entry *the_entry, *new_entry;
5579 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5581 /* Stop when (1) we cannot decode the instructions in the current entry.
5582 (2) we are at the beginning of the property tables, (3) we hit a
5583 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5585 while (1)
5587 bfd_vma block_begin;
5588 bfd_size_type insn_block_len;
5590 block_begin = the_entry->address - ebb->sec->vma;
5591 insn_block_len =
5592 insn_block_decodable_len (ebb->contents, ebb->content_length,
5593 block_begin,
5594 ebb->start_offset - block_begin);
5595 if (insn_block_len != ebb->start_offset - block_begin)
5597 (*_bfd_error_handler)
5598 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5599 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5600 return FALSE;
5602 ebb->start_offset -= insn_block_len;
5604 /* Update the reloc counter. */
5605 while (ebb->start_reloc_idx > 0
5606 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5607 >= ebb->start_offset))
5609 ebb->start_reloc_idx--;
5612 if (ebb->start_ptbl_idx == 0)
5613 return TRUE;
5615 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5616 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5617 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5618 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5619 return TRUE;
5620 if (new_entry->address + new_entry->size != the_entry->address)
5621 return TRUE;
5623 the_entry = new_entry;
5624 ebb->start_ptbl_idx--;
5626 return TRUE;
5630 static bfd_size_type
5631 insn_block_decodable_len (bfd_byte *contents,
5632 bfd_size_type content_len,
5633 bfd_vma block_offset,
5634 bfd_size_type block_len)
5636 bfd_vma offset = block_offset;
5638 while (offset < block_offset + block_len)
5640 bfd_size_type insn_len = 0;
5642 insn_len = insn_decode_len (contents, content_len, offset);
5643 if (insn_len == 0)
5644 return (offset - block_offset);
5645 offset += insn_len;
5647 return (offset - block_offset);
5651 static void
5652 ebb_propose_action (ebb_constraint *c,
5653 enum ebb_target_enum align_type,
5654 bfd_vma alignment_pow,
5655 text_action_t action,
5656 bfd_vma offset,
5657 int removed_bytes,
5658 bfd_boolean do_action)
5660 proposed_action *act;
5662 if (c->action_allocated <= c->action_count)
5664 unsigned new_allocated, i;
5665 proposed_action *new_actions;
5667 new_allocated = (c->action_count + 2) * 2;
5668 new_actions = (proposed_action *)
5669 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5671 for (i = 0; i < c->action_count; i++)
5672 new_actions[i] = c->actions[i];
5673 if (c->actions)
5674 free (c->actions);
5675 c->actions = new_actions;
5676 c->action_allocated = new_allocated;
5679 act = &c->actions[c->action_count];
5680 act->align_type = align_type;
5681 act->alignment_pow = alignment_pow;
5682 act->action = action;
5683 act->offset = offset;
5684 act->removed_bytes = removed_bytes;
5685 act->do_action = do_action;
5687 c->action_count++;
5691 /* Access to internal relocations, section contents and symbols. */
5693 /* During relaxation, we need to modify relocations, section contents,
5694 and symbol definitions, and we need to keep the original values from
5695 being reloaded from the input files, i.e., we need to "pin" the
5696 modified values in memory. We also want to continue to observe the
5697 setting of the "keep-memory" flag. The following functions wrap the
5698 standard BFD functions to take care of this for us. */
5700 static Elf_Internal_Rela *
5701 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5703 Elf_Internal_Rela *internal_relocs;
5705 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5706 return NULL;
5708 internal_relocs = elf_section_data (sec)->relocs;
5709 if (internal_relocs == NULL)
5710 internal_relocs = (_bfd_elf_link_read_relocs
5711 (abfd, sec, NULL, NULL, keep_memory));
5712 return internal_relocs;
5716 static void
5717 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5719 elf_section_data (sec)->relocs = internal_relocs;
5723 static void
5724 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5726 if (internal_relocs
5727 && elf_section_data (sec)->relocs != internal_relocs)
5728 free (internal_relocs);
5732 static bfd_byte *
5733 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5735 bfd_byte *contents;
5736 bfd_size_type sec_size;
5738 sec_size = bfd_get_section_limit (abfd, sec);
5739 contents = elf_section_data (sec)->this_hdr.contents;
5741 if (contents == NULL && sec_size != 0)
5743 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5745 if (contents)
5746 free (contents);
5747 return NULL;
5749 if (keep_memory)
5750 elf_section_data (sec)->this_hdr.contents = contents;
5752 return contents;
5756 static void
5757 pin_contents (asection *sec, bfd_byte *contents)
5759 elf_section_data (sec)->this_hdr.contents = contents;
5763 static void
5764 release_contents (asection *sec, bfd_byte *contents)
5766 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5767 free (contents);
5771 static Elf_Internal_Sym *
5772 retrieve_local_syms (bfd *input_bfd)
5774 Elf_Internal_Shdr *symtab_hdr;
5775 Elf_Internal_Sym *isymbuf;
5776 size_t locsymcount;
5778 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5779 locsymcount = symtab_hdr->sh_info;
5781 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5782 if (isymbuf == NULL && locsymcount != 0)
5783 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5784 NULL, NULL, NULL);
5786 /* Save the symbols for this input file so they won't be read again. */
5787 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5788 symtab_hdr->contents = (unsigned char *) isymbuf;
5790 return isymbuf;
5794 /* Code for link-time relaxation. */
5796 /* Initialization for relaxation: */
5797 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5798 static bfd_boolean find_relaxable_sections
5799 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5800 static bfd_boolean collect_source_relocs
5801 (bfd *, asection *, struct bfd_link_info *);
5802 static bfd_boolean is_resolvable_asm_expansion
5803 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5804 bfd_boolean *);
5805 static Elf_Internal_Rela *find_associated_l32r_irel
5806 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5807 static bfd_boolean compute_text_actions
5808 (bfd *, asection *, struct bfd_link_info *);
5809 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5810 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5811 static bfd_boolean check_section_ebb_pcrels_fit
5812 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5813 const xtensa_opcode *);
5814 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5815 static void text_action_add_proposed
5816 (text_action_list *, const ebb_constraint *, asection *);
5817 static int compute_fill_extra_space (property_table_entry *);
5819 /* First pass: */
5820 static bfd_boolean compute_removed_literals
5821 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5822 static Elf_Internal_Rela *get_irel_at_offset
5823 (asection *, Elf_Internal_Rela *, bfd_vma);
5824 static bfd_boolean is_removable_literal
5825 (const source_reloc *, int, const source_reloc *, int, asection *,
5826 property_table_entry *, int);
5827 static bfd_boolean remove_dead_literal
5828 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5829 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5830 static bfd_boolean identify_literal_placement
5831 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5832 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5833 source_reloc *, property_table_entry *, int, section_cache_t *,
5834 bfd_boolean);
5835 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5836 static bfd_boolean coalesce_shared_literal
5837 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5838 static bfd_boolean move_shared_literal
5839 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5840 int, const r_reloc *, const literal_value *, section_cache_t *);
5842 /* Second pass: */
5843 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5844 static bfd_boolean translate_section_fixes (asection *);
5845 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5846 static void translate_reloc (const r_reloc *, r_reloc *);
5847 static void shrink_dynamic_reloc_sections
5848 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5849 static bfd_boolean move_literal
5850 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5851 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5852 static bfd_boolean relax_property_section
5853 (bfd *, asection *, struct bfd_link_info *);
5855 /* Third pass: */
5856 static bfd_boolean relax_section_symbols (bfd *, asection *);
5859 static bfd_boolean
5860 elf_xtensa_relax_section (bfd *abfd,
5861 asection *sec,
5862 struct bfd_link_info *link_info,
5863 bfd_boolean *again)
5865 static value_map_hash_table *values = NULL;
5866 static bfd_boolean relocations_analyzed = FALSE;
5867 xtensa_relax_info *relax_info;
5869 if (!relocations_analyzed)
5871 /* Do some overall initialization for relaxation. */
5872 values = value_map_hash_table_init ();
5873 if (values == NULL)
5874 return FALSE;
5875 relaxing_section = TRUE;
5876 if (!analyze_relocations (link_info))
5877 return FALSE;
5878 relocations_analyzed = TRUE;
5880 *again = FALSE;
5882 /* Don't mess with linker-created sections. */
5883 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5884 return TRUE;
5886 relax_info = get_xtensa_relax_info (sec);
5887 BFD_ASSERT (relax_info != NULL);
5889 switch (relax_info->visited)
5891 case 0:
5892 /* Note: It would be nice to fold this pass into
5893 analyze_relocations, but it is important for this step that the
5894 sections be examined in link order. */
5895 if (!compute_removed_literals (abfd, sec, link_info, values))
5896 return FALSE;
5897 *again = TRUE;
5898 break;
5900 case 1:
5901 if (values)
5902 value_map_hash_table_delete (values);
5903 values = NULL;
5904 if (!relax_section (abfd, sec, link_info))
5905 return FALSE;
5906 *again = TRUE;
5907 break;
5909 case 2:
5910 if (!relax_section_symbols (abfd, sec))
5911 return FALSE;
5912 break;
5915 relax_info->visited++;
5916 return TRUE;
5920 /* Initialization for relaxation. */
5922 /* This function is called once at the start of relaxation. It scans
5923 all the input sections and marks the ones that are relaxable (i.e.,
5924 literal sections with L32R relocations against them), and then
5925 collects source_reloc information for all the relocations against
5926 those relaxable sections. During this process, it also detects
5927 longcalls, i.e., calls relaxed by the assembler into indirect
5928 calls, that can be optimized back into direct calls. Within each
5929 extended basic block (ebb) containing an optimized longcall, it
5930 computes a set of "text actions" that can be performed to remove
5931 the L32R associated with the longcall while optionally preserving
5932 branch target alignments. */
5934 static bfd_boolean
5935 analyze_relocations (struct bfd_link_info *link_info)
5937 bfd *abfd;
5938 asection *sec;
5939 bfd_boolean is_relaxable = FALSE;
5941 /* Initialize the per-section relaxation info. */
5942 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5943 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5945 init_xtensa_relax_info (sec);
5948 /* Mark relaxable sections (and count relocations against each one). */
5949 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5952 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5953 return FALSE;
5956 /* Bail out if there are no relaxable sections. */
5957 if (!is_relaxable)
5958 return TRUE;
5960 /* Allocate space for source_relocs. */
5961 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5962 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5964 xtensa_relax_info *relax_info;
5966 relax_info = get_xtensa_relax_info (sec);
5967 if (relax_info->is_relaxable_literal_section
5968 || relax_info->is_relaxable_asm_section)
5970 relax_info->src_relocs = (source_reloc *)
5971 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5973 else
5974 relax_info->src_count = 0;
5977 /* Collect info on relocations against each relaxable section. */
5978 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5979 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5981 if (!collect_source_relocs (abfd, sec, link_info))
5982 return FALSE;
5985 /* Compute the text actions. */
5986 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5987 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5989 if (!compute_text_actions (abfd, sec, link_info))
5990 return FALSE;
5993 return TRUE;
5997 /* Find all the sections that might be relaxed. The motivation for
5998 this pass is that collect_source_relocs() needs to record _all_ the
5999 relocations that target each relaxable section. That is expensive
6000 and unnecessary unless the target section is actually going to be
6001 relaxed. This pass identifies all such sections by checking if
6002 they have L32Rs pointing to them. In the process, the total number
6003 of relocations targeting each section is also counted so that we
6004 know how much space to allocate for source_relocs against each
6005 relaxable literal section. */
6007 static bfd_boolean
6008 find_relaxable_sections (bfd *abfd,
6009 asection *sec,
6010 struct bfd_link_info *link_info,
6011 bfd_boolean *is_relaxable_p)
6013 Elf_Internal_Rela *internal_relocs;
6014 bfd_byte *contents;
6015 bfd_boolean ok = TRUE;
6016 unsigned i;
6017 xtensa_relax_info *source_relax_info;
6018 bfd_boolean is_l32r_reloc;
6020 internal_relocs = retrieve_internal_relocs (abfd, sec,
6021 link_info->keep_memory);
6022 if (internal_relocs == NULL)
6023 return ok;
6025 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6026 if (contents == NULL && sec->size != 0)
6028 ok = FALSE;
6029 goto error_return;
6032 source_relax_info = get_xtensa_relax_info (sec);
6033 for (i = 0; i < sec->reloc_count; i++)
6035 Elf_Internal_Rela *irel = &internal_relocs[i];
6036 r_reloc r_rel;
6037 asection *target_sec;
6038 xtensa_relax_info *target_relax_info;
6040 /* If this section has not already been marked as "relaxable", and
6041 if it contains any ASM_EXPAND relocations (marking expanded
6042 longcalls) that can be optimized into direct calls, then mark
6043 the section as "relaxable". */
6044 if (source_relax_info
6045 && !source_relax_info->is_relaxable_asm_section
6046 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6048 bfd_boolean is_reachable = FALSE;
6049 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6050 link_info, &is_reachable)
6051 && is_reachable)
6053 source_relax_info->is_relaxable_asm_section = TRUE;
6054 *is_relaxable_p = TRUE;
6058 r_reloc_init (&r_rel, abfd, irel, contents,
6059 bfd_get_section_limit (abfd, sec));
6061 target_sec = r_reloc_get_section (&r_rel);
6062 target_relax_info = get_xtensa_relax_info (target_sec);
6063 if (!target_relax_info)
6064 continue;
6066 /* Count PC-relative operand relocations against the target section.
6067 Note: The conditions tested here must match the conditions under
6068 which init_source_reloc is called in collect_source_relocs(). */
6069 is_l32r_reloc = FALSE;
6070 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6072 xtensa_opcode opcode =
6073 get_relocation_opcode (abfd, sec, contents, irel);
6074 if (opcode != XTENSA_UNDEFINED)
6076 is_l32r_reloc = (opcode == get_l32r_opcode ());
6077 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6078 || is_l32r_reloc)
6079 target_relax_info->src_count++;
6083 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6085 /* Mark the target section as relaxable. */
6086 target_relax_info->is_relaxable_literal_section = TRUE;
6087 *is_relaxable_p = TRUE;
6091 error_return:
6092 release_contents (sec, contents);
6093 release_internal_relocs (sec, internal_relocs);
6094 return ok;
6098 /* Record _all_ the relocations that point to relaxable sections, and
6099 get rid of ASM_EXPAND relocs by either converting them to
6100 ASM_SIMPLIFY or by removing them. */
6102 static bfd_boolean
6103 collect_source_relocs (bfd *abfd,
6104 asection *sec,
6105 struct bfd_link_info *link_info)
6107 Elf_Internal_Rela *internal_relocs;
6108 bfd_byte *contents;
6109 bfd_boolean ok = TRUE;
6110 unsigned i;
6111 bfd_size_type sec_size;
6113 internal_relocs = retrieve_internal_relocs (abfd, sec,
6114 link_info->keep_memory);
6115 if (internal_relocs == NULL)
6116 return ok;
6118 sec_size = bfd_get_section_limit (abfd, sec);
6119 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6120 if (contents == NULL && sec_size != 0)
6122 ok = FALSE;
6123 goto error_return;
6126 /* Record relocations against relaxable literal sections. */
6127 for (i = 0; i < sec->reloc_count; i++)
6129 Elf_Internal_Rela *irel = &internal_relocs[i];
6130 r_reloc r_rel;
6131 asection *target_sec;
6132 xtensa_relax_info *target_relax_info;
6134 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6136 target_sec = r_reloc_get_section (&r_rel);
6137 target_relax_info = get_xtensa_relax_info (target_sec);
6139 if (target_relax_info
6140 && (target_relax_info->is_relaxable_literal_section
6141 || target_relax_info->is_relaxable_asm_section))
6143 xtensa_opcode opcode = XTENSA_UNDEFINED;
6144 int opnd = -1;
6145 bfd_boolean is_abs_literal = FALSE;
6147 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6149 /* None of the current alternate relocs are PC-relative,
6150 and only PC-relative relocs matter here. However, we
6151 still need to record the opcode for literal
6152 coalescing. */
6153 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6154 if (opcode == get_l32r_opcode ())
6156 is_abs_literal = TRUE;
6157 opnd = 1;
6159 else
6160 opcode = XTENSA_UNDEFINED;
6162 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6164 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6165 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6168 if (opcode != XTENSA_UNDEFINED)
6170 int src_next = target_relax_info->src_next++;
6171 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6173 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6174 is_abs_literal);
6179 /* Now get rid of ASM_EXPAND relocations. At this point, the
6180 src_relocs array for the target literal section may still be
6181 incomplete, but it must at least contain the entries for the L32R
6182 relocations associated with ASM_EXPANDs because they were just
6183 added in the preceding loop over the relocations. */
6185 for (i = 0; i < sec->reloc_count; i++)
6187 Elf_Internal_Rela *irel = &internal_relocs[i];
6188 bfd_boolean is_reachable;
6190 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6191 &is_reachable))
6192 continue;
6194 if (is_reachable)
6196 Elf_Internal_Rela *l32r_irel;
6197 r_reloc r_rel;
6198 asection *target_sec;
6199 xtensa_relax_info *target_relax_info;
6201 /* Mark the source_reloc for the L32R so that it will be
6202 removed in compute_removed_literals(), along with the
6203 associated literal. */
6204 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6205 irel, internal_relocs);
6206 if (l32r_irel == NULL)
6207 continue;
6209 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6211 target_sec = r_reloc_get_section (&r_rel);
6212 target_relax_info = get_xtensa_relax_info (target_sec);
6214 if (target_relax_info
6215 && (target_relax_info->is_relaxable_literal_section
6216 || target_relax_info->is_relaxable_asm_section))
6218 source_reloc *s_reloc;
6220 /* Search the source_relocs for the entry corresponding to
6221 the l32r_irel. Note: The src_relocs array is not yet
6222 sorted, but it wouldn't matter anyway because we're
6223 searching by source offset instead of target offset. */
6224 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6225 target_relax_info->src_next,
6226 sec, l32r_irel);
6227 BFD_ASSERT (s_reloc);
6228 s_reloc->is_null = TRUE;
6231 /* Convert this reloc to ASM_SIMPLIFY. */
6232 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6233 R_XTENSA_ASM_SIMPLIFY);
6234 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6236 pin_internal_relocs (sec, internal_relocs);
6238 else
6240 /* It is resolvable but doesn't reach. We resolve now
6241 by eliminating the relocation -- the call will remain
6242 expanded into L32R/CALLX. */
6243 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6244 pin_internal_relocs (sec, internal_relocs);
6248 error_return:
6249 release_contents (sec, contents);
6250 release_internal_relocs (sec, internal_relocs);
6251 return ok;
6255 /* Return TRUE if the asm expansion can be resolved. Generally it can
6256 be resolved on a final link or when a partial link locates it in the
6257 same section as the target. Set "is_reachable" flag if the target of
6258 the call is within the range of a direct call, given the current VMA
6259 for this section and the target section. */
6261 bfd_boolean
6262 is_resolvable_asm_expansion (bfd *abfd,
6263 asection *sec,
6264 bfd_byte *contents,
6265 Elf_Internal_Rela *irel,
6266 struct bfd_link_info *link_info,
6267 bfd_boolean *is_reachable_p)
6269 asection *target_sec;
6270 bfd_vma target_offset;
6271 r_reloc r_rel;
6272 xtensa_opcode opcode, direct_call_opcode;
6273 bfd_vma self_address;
6274 bfd_vma dest_address;
6275 bfd_boolean uses_l32r;
6276 bfd_size_type sec_size;
6278 *is_reachable_p = FALSE;
6280 if (contents == NULL)
6281 return FALSE;
6283 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6284 return FALSE;
6286 sec_size = bfd_get_section_limit (abfd, sec);
6287 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6288 sec_size - irel->r_offset, &uses_l32r);
6289 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6290 if (!uses_l32r)
6291 return FALSE;
6293 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6294 if (direct_call_opcode == XTENSA_UNDEFINED)
6295 return FALSE;
6297 /* Check and see that the target resolves. */
6298 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6299 if (!r_reloc_is_defined (&r_rel))
6300 return FALSE;
6302 target_sec = r_reloc_get_section (&r_rel);
6303 target_offset = r_rel.target_offset;
6305 /* If the target is in a shared library, then it doesn't reach. This
6306 isn't supposed to come up because the compiler should never generate
6307 non-PIC calls on systems that use shared libraries, but the linker
6308 shouldn't crash regardless. */
6309 if (!target_sec->output_section)
6310 return FALSE;
6312 /* For relocatable sections, we can only simplify when the output
6313 section of the target is the same as the output section of the
6314 source. */
6315 if (link_info->relocatable
6316 && (target_sec->output_section != sec->output_section
6317 || is_reloc_sym_weak (abfd, irel)))
6318 return FALSE;
6320 self_address = (sec->output_section->vma
6321 + sec->output_offset + irel->r_offset + 3);
6322 dest_address = (target_sec->output_section->vma
6323 + target_sec->output_offset + target_offset);
6325 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6326 self_address, dest_address);
6328 if ((self_address >> CALL_SEGMENT_BITS) !=
6329 (dest_address >> CALL_SEGMENT_BITS))
6330 return FALSE;
6332 return TRUE;
6336 static Elf_Internal_Rela *
6337 find_associated_l32r_irel (bfd *abfd,
6338 asection *sec,
6339 bfd_byte *contents,
6340 Elf_Internal_Rela *other_irel,
6341 Elf_Internal_Rela *internal_relocs)
6343 unsigned i;
6345 for (i = 0; i < sec->reloc_count; i++)
6347 Elf_Internal_Rela *irel = &internal_relocs[i];
6349 if (irel == other_irel)
6350 continue;
6351 if (irel->r_offset != other_irel->r_offset)
6352 continue;
6353 if (is_l32r_relocation (abfd, sec, contents, irel))
6354 return irel;
6357 return NULL;
6361 static xtensa_opcode *
6362 build_reloc_opcodes (bfd *abfd,
6363 asection *sec,
6364 bfd_byte *contents,
6365 Elf_Internal_Rela *internal_relocs)
6367 unsigned i;
6368 xtensa_opcode *reloc_opcodes =
6369 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6370 for (i = 0; i < sec->reloc_count; i++)
6372 Elf_Internal_Rela *irel = &internal_relocs[i];
6373 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6375 return reloc_opcodes;
6379 /* The compute_text_actions function will build a list of potential
6380 transformation actions for code in the extended basic block of each
6381 longcall that is optimized to a direct call. From this list we
6382 generate a set of actions to actually perform that optimizes for
6383 space and, if not using size_opt, maintains branch target
6384 alignments.
6386 These actions to be performed are placed on a per-section list.
6387 The actual changes are performed by relax_section() in the second
6388 pass. */
6390 bfd_boolean
6391 compute_text_actions (bfd *abfd,
6392 asection *sec,
6393 struct bfd_link_info *link_info)
6395 xtensa_opcode *reloc_opcodes = NULL;
6396 xtensa_relax_info *relax_info;
6397 bfd_byte *contents;
6398 Elf_Internal_Rela *internal_relocs;
6399 bfd_boolean ok = TRUE;
6400 unsigned i;
6401 property_table_entry *prop_table = 0;
6402 int ptblsize = 0;
6403 bfd_size_type sec_size;
6405 relax_info = get_xtensa_relax_info (sec);
6406 BFD_ASSERT (relax_info);
6407 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6409 /* Do nothing if the section contains no optimized longcalls. */
6410 if (!relax_info->is_relaxable_asm_section)
6411 return ok;
6413 internal_relocs = retrieve_internal_relocs (abfd, sec,
6414 link_info->keep_memory);
6416 if (internal_relocs)
6417 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6418 internal_reloc_compare);
6420 sec_size = bfd_get_section_limit (abfd, sec);
6421 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6422 if (contents == NULL && sec_size != 0)
6424 ok = FALSE;
6425 goto error_return;
6428 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6429 XTENSA_PROP_SEC_NAME, FALSE);
6430 if (ptblsize < 0)
6432 ok = FALSE;
6433 goto error_return;
6436 for (i = 0; i < sec->reloc_count; i++)
6438 Elf_Internal_Rela *irel = &internal_relocs[i];
6439 bfd_vma r_offset;
6440 property_table_entry *the_entry;
6441 int ptbl_idx;
6442 ebb_t *ebb;
6443 ebb_constraint ebb_table;
6444 bfd_size_type simplify_size;
6446 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6447 continue;
6448 r_offset = irel->r_offset;
6450 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6451 if (simplify_size == 0)
6453 (*_bfd_error_handler)
6454 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6455 sec->owner, sec, r_offset);
6456 continue;
6459 /* If the instruction table is not around, then don't do this
6460 relaxation. */
6461 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6462 sec->vma + irel->r_offset);
6463 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6465 text_action_add (&relax_info->action_list,
6466 ta_convert_longcall, sec, r_offset,
6468 continue;
6471 /* If the next longcall happens to be at the same address as an
6472 unreachable section of size 0, then skip forward. */
6473 ptbl_idx = the_entry - prop_table;
6474 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6475 && the_entry->size == 0
6476 && ptbl_idx + 1 < ptblsize
6477 && (prop_table[ptbl_idx + 1].address
6478 == prop_table[ptbl_idx].address))
6480 ptbl_idx++;
6481 the_entry++;
6484 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
6485 /* NO_REORDER is OK */
6486 continue;
6488 init_ebb_constraint (&ebb_table);
6489 ebb = &ebb_table.ebb;
6490 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6491 internal_relocs, sec->reloc_count);
6492 ebb->start_offset = r_offset + simplify_size;
6493 ebb->end_offset = r_offset + simplify_size;
6494 ebb->start_ptbl_idx = ptbl_idx;
6495 ebb->end_ptbl_idx = ptbl_idx;
6496 ebb->start_reloc_idx = i;
6497 ebb->end_reloc_idx = i;
6499 /* Precompute the opcode for each relocation. */
6500 if (reloc_opcodes == NULL)
6501 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6502 internal_relocs);
6504 if (!extend_ebb_bounds (ebb)
6505 || !compute_ebb_proposed_actions (&ebb_table)
6506 || !compute_ebb_actions (&ebb_table)
6507 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6508 internal_relocs, &ebb_table,
6509 reloc_opcodes)
6510 || !check_section_ebb_reduces (&ebb_table))
6512 /* If anything goes wrong or we get unlucky and something does
6513 not fit, with our plan because of expansion between
6514 critical branches, just convert to a NOP. */
6516 text_action_add (&relax_info->action_list,
6517 ta_convert_longcall, sec, r_offset, 0);
6518 i = ebb_table.ebb.end_reloc_idx;
6519 free_ebb_constraint (&ebb_table);
6520 continue;
6523 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6525 /* Update the index so we do not go looking at the relocations
6526 we have already processed. */
6527 i = ebb_table.ebb.end_reloc_idx;
6528 free_ebb_constraint (&ebb_table);
6531 #if DEBUG
6532 if (relax_info->action_list.head)
6533 print_action_list (stderr, &relax_info->action_list);
6534 #endif
6536 error_return:
6537 release_contents (sec, contents);
6538 release_internal_relocs (sec, internal_relocs);
6539 if (prop_table)
6540 free (prop_table);
6541 if (reloc_opcodes)
6542 free (reloc_opcodes);
6544 return ok;
6548 /* Do not widen an instruction if it is preceeded by a
6549 loop opcode. It might cause misalignment. */
6551 static bfd_boolean
6552 prev_instr_is_a_loop (bfd_byte *contents,
6553 bfd_size_type content_length,
6554 bfd_size_type offset)
6556 xtensa_opcode prev_opcode;
6558 if (offset < 3)
6559 return FALSE;
6560 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6561 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6565 /* Find all of the possible actions for an extended basic block. */
6567 bfd_boolean
6568 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6570 const ebb_t *ebb = &ebb_table->ebb;
6571 unsigned rel_idx = ebb->start_reloc_idx;
6572 property_table_entry *entry, *start_entry, *end_entry;
6573 bfd_vma offset = 0;
6574 xtensa_isa isa = xtensa_default_isa;
6575 xtensa_format fmt;
6576 static xtensa_insnbuf insnbuf = NULL;
6577 static xtensa_insnbuf slotbuf = NULL;
6579 if (insnbuf == NULL)
6581 insnbuf = xtensa_insnbuf_alloc (isa);
6582 slotbuf = xtensa_insnbuf_alloc (isa);
6585 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6586 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6588 for (entry = start_entry; entry <= end_entry; entry++)
6590 bfd_vma start_offset, end_offset;
6591 bfd_size_type insn_len;
6593 start_offset = entry->address - ebb->sec->vma;
6594 end_offset = entry->address + entry->size - ebb->sec->vma;
6596 if (entry == start_entry)
6597 start_offset = ebb->start_offset;
6598 if (entry == end_entry)
6599 end_offset = ebb->end_offset;
6600 offset = start_offset;
6602 if (offset == entry->address - ebb->sec->vma
6603 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6605 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6606 BFD_ASSERT (offset != end_offset);
6607 if (offset == end_offset)
6608 return FALSE;
6610 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6611 offset);
6612 if (insn_len == 0)
6613 goto decode_error;
6615 if (check_branch_target_aligned_address (offset, insn_len))
6616 align_type = EBB_REQUIRE_TGT_ALIGN;
6618 ebb_propose_action (ebb_table, align_type, 0,
6619 ta_none, offset, 0, TRUE);
6622 while (offset != end_offset)
6624 Elf_Internal_Rela *irel;
6625 xtensa_opcode opcode;
6627 while (rel_idx < ebb->end_reloc_idx
6628 && (ebb->relocs[rel_idx].r_offset < offset
6629 || (ebb->relocs[rel_idx].r_offset == offset
6630 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6631 != R_XTENSA_ASM_SIMPLIFY))))
6632 rel_idx++;
6634 /* Check for longcall. */
6635 irel = &ebb->relocs[rel_idx];
6636 if (irel->r_offset == offset
6637 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6639 bfd_size_type simplify_size;
6641 simplify_size = get_asm_simplify_size (ebb->contents,
6642 ebb->content_length,
6643 irel->r_offset);
6644 if (simplify_size == 0)
6645 goto decode_error;
6647 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6648 ta_convert_longcall, offset, 0, TRUE);
6650 offset += simplify_size;
6651 continue;
6654 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6655 goto decode_error;
6656 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6657 ebb->content_length - offset);
6658 fmt = xtensa_format_decode (isa, insnbuf);
6659 if (fmt == XTENSA_UNDEFINED)
6660 goto decode_error;
6661 insn_len = xtensa_format_length (isa, fmt);
6662 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6663 goto decode_error;
6665 if (xtensa_format_num_slots (isa, fmt) != 1)
6667 offset += insn_len;
6668 continue;
6671 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6672 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6673 if (opcode == XTENSA_UNDEFINED)
6674 goto decode_error;
6676 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6677 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6678 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6680 /* Add an instruction narrow action. */
6681 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6682 ta_narrow_insn, offset, 0, FALSE);
6684 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6685 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6686 && ! prev_instr_is_a_loop (ebb->contents,
6687 ebb->content_length, offset))
6689 /* Add an instruction widen action. */
6690 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6691 ta_widen_insn, offset, 0, FALSE);
6693 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6695 /* Check for branch targets. */
6696 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6697 ta_none, offset, 0, TRUE);
6700 offset += insn_len;
6704 if (ebb->ends_unreachable)
6706 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6707 ta_fill, ebb->end_offset, 0, TRUE);
6710 return TRUE;
6712 decode_error:
6713 (*_bfd_error_handler)
6714 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6715 ebb->sec->owner, ebb->sec, offset);
6716 return FALSE;
6720 /* After all of the information has collected about the
6721 transformations possible in an EBB, compute the appropriate actions
6722 here in compute_ebb_actions. We still must check later to make
6723 sure that the actions do not break any relocations. The algorithm
6724 used here is pretty greedy. Basically, it removes as many no-ops
6725 as possible so that the end of the EBB has the same alignment
6726 characteristics as the original. First, it uses narrowing, then
6727 fill space at the end of the EBB, and finally widenings. If that
6728 does not work, it tries again with one fewer no-op removed. The
6729 optimization will only be performed if all of the branch targets
6730 that were aligned before transformation are also aligned after the
6731 transformation.
6733 When the size_opt flag is set, ignore the branch target alignments,
6734 narrow all wide instructions, and remove all no-ops unless the end
6735 of the EBB prevents it. */
6737 bfd_boolean
6738 compute_ebb_actions (ebb_constraint *ebb_table)
6740 unsigned i = 0;
6741 unsigned j;
6742 int removed_bytes = 0;
6743 ebb_t *ebb = &ebb_table->ebb;
6744 unsigned seg_idx_start = 0;
6745 unsigned seg_idx_end = 0;
6747 /* We perform this like the assembler relaxation algorithm: Start by
6748 assuming all instructions are narrow and all no-ops removed; then
6749 walk through.... */
6751 /* For each segment of this that has a solid constraint, check to
6752 see if there are any combinations that will keep the constraint.
6753 If so, use it. */
6754 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6756 bfd_boolean requires_text_end_align = FALSE;
6757 unsigned longcall_count = 0;
6758 unsigned longcall_convert_count = 0;
6759 unsigned narrowable_count = 0;
6760 unsigned narrowable_convert_count = 0;
6761 unsigned widenable_count = 0;
6762 unsigned widenable_convert_count = 0;
6764 proposed_action *action = NULL;
6765 int align = (1 << ebb_table->ebb.sec->alignment_power);
6767 seg_idx_start = seg_idx_end;
6769 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6771 action = &ebb_table->actions[i];
6772 if (action->action == ta_convert_longcall)
6773 longcall_count++;
6774 if (action->action == ta_narrow_insn)
6775 narrowable_count++;
6776 if (action->action == ta_widen_insn)
6777 widenable_count++;
6778 if (action->action == ta_fill)
6779 break;
6780 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6781 break;
6782 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6783 && !elf32xtensa_size_opt)
6784 break;
6786 seg_idx_end = i;
6788 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6789 requires_text_end_align = TRUE;
6791 if (elf32xtensa_size_opt && !requires_text_end_align
6792 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6793 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6795 longcall_convert_count = longcall_count;
6796 narrowable_convert_count = narrowable_count;
6797 widenable_convert_count = 0;
6799 else
6801 /* There is a constraint. Convert the max number of longcalls. */
6802 narrowable_convert_count = 0;
6803 longcall_convert_count = 0;
6804 widenable_convert_count = 0;
6806 for (j = 0; j < longcall_count; j++)
6808 int removed = (longcall_count - j) * 3 & (align - 1);
6809 unsigned desire_narrow = (align - removed) & (align - 1);
6810 unsigned desire_widen = removed;
6811 if (desire_narrow <= narrowable_count)
6813 narrowable_convert_count = desire_narrow;
6814 narrowable_convert_count +=
6815 (align * ((narrowable_count - narrowable_convert_count)
6816 / align));
6817 longcall_convert_count = (longcall_count - j);
6818 widenable_convert_count = 0;
6819 break;
6821 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6823 narrowable_convert_count = 0;
6824 longcall_convert_count = longcall_count - j;
6825 widenable_convert_count = desire_widen;
6826 break;
6831 /* Now the number of conversions are saved. Do them. */
6832 for (i = seg_idx_start; i < seg_idx_end; i++)
6834 action = &ebb_table->actions[i];
6835 switch (action->action)
6837 case ta_convert_longcall:
6838 if (longcall_convert_count != 0)
6840 action->action = ta_remove_longcall;
6841 action->do_action = TRUE;
6842 action->removed_bytes += 3;
6843 longcall_convert_count--;
6845 break;
6846 case ta_narrow_insn:
6847 if (narrowable_convert_count != 0)
6849 action->do_action = TRUE;
6850 action->removed_bytes += 1;
6851 narrowable_convert_count--;
6853 break;
6854 case ta_widen_insn:
6855 if (widenable_convert_count != 0)
6857 action->do_action = TRUE;
6858 action->removed_bytes -= 1;
6859 widenable_convert_count--;
6861 break;
6862 default:
6863 break;
6868 /* Now we move on to some local opts. Try to remove each of the
6869 remaining longcalls. */
6871 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6873 removed_bytes = 0;
6874 for (i = 0; i < ebb_table->action_count; i++)
6876 int old_removed_bytes = removed_bytes;
6877 proposed_action *action = &ebb_table->actions[i];
6879 if (action->do_action && action->action == ta_convert_longcall)
6881 bfd_boolean bad_alignment = FALSE;
6882 removed_bytes += 3;
6883 for (j = i + 1; j < ebb_table->action_count; j++)
6885 proposed_action *new_action = &ebb_table->actions[j];
6886 bfd_vma offset = new_action->offset;
6887 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6889 if (!check_branch_target_aligned
6890 (ebb_table->ebb.contents,
6891 ebb_table->ebb.content_length,
6892 offset, offset - removed_bytes))
6894 bad_alignment = TRUE;
6895 break;
6898 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6900 if (!check_loop_aligned (ebb_table->ebb.contents,
6901 ebb_table->ebb.content_length,
6902 offset,
6903 offset - removed_bytes))
6905 bad_alignment = TRUE;
6906 break;
6909 if (new_action->action == ta_narrow_insn
6910 && !new_action->do_action
6911 && ebb_table->ebb.sec->alignment_power == 2)
6913 /* Narrow an instruction and we are done. */
6914 new_action->do_action = TRUE;
6915 new_action->removed_bytes += 1;
6916 bad_alignment = FALSE;
6917 break;
6919 if (new_action->action == ta_widen_insn
6920 && new_action->do_action
6921 && ebb_table->ebb.sec->alignment_power == 2)
6923 /* Narrow an instruction and we are done. */
6924 new_action->do_action = FALSE;
6925 new_action->removed_bytes += 1;
6926 bad_alignment = FALSE;
6927 break;
6930 if (!bad_alignment)
6932 action->removed_bytes += 3;
6933 action->action = ta_remove_longcall;
6934 action->do_action = TRUE;
6937 removed_bytes = old_removed_bytes;
6938 if (action->do_action)
6939 removed_bytes += action->removed_bytes;
6943 removed_bytes = 0;
6944 for (i = 0; i < ebb_table->action_count; ++i)
6946 proposed_action *action = &ebb_table->actions[i];
6947 if (action->do_action)
6948 removed_bytes += action->removed_bytes;
6951 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6952 && ebb->ends_unreachable)
6954 proposed_action *action;
6955 int br;
6956 int extra_space;
6958 BFD_ASSERT (ebb_table->action_count != 0);
6959 action = &ebb_table->actions[ebb_table->action_count - 1];
6960 BFD_ASSERT (action->action == ta_fill);
6961 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6963 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6964 br = action->removed_bytes + removed_bytes + extra_space;
6965 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6967 action->removed_bytes = extra_space - br;
6969 return TRUE;
6973 /* The xlate_map is a sorted array of address mappings designed to
6974 answer the offset_with_removed_text() query with a binary search instead
6975 of a linear search through the section's action_list. */
6977 typedef struct xlate_map_entry xlate_map_entry_t;
6978 typedef struct xlate_map xlate_map_t;
6980 struct xlate_map_entry
6982 unsigned orig_address;
6983 unsigned new_address;
6984 unsigned size;
6987 struct xlate_map
6989 unsigned entry_count;
6990 xlate_map_entry_t *entry;
6994 static int
6995 xlate_compare (const void *a_v, const void *b_v)
6997 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6998 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6999 if (a->orig_address < b->orig_address)
7000 return -1;
7001 if (a->orig_address > (b->orig_address + b->size - 1))
7002 return 1;
7003 return 0;
7007 static bfd_vma
7008 xlate_offset_with_removed_text (const xlate_map_t *map,
7009 text_action_list *action_list,
7010 bfd_vma offset)
7012 xlate_map_entry_t tmp;
7013 void *r;
7014 xlate_map_entry_t *e;
7016 if (map == NULL)
7017 return offset_with_removed_text (action_list, offset);
7019 if (map->entry_count == 0)
7020 return offset;
7022 tmp.orig_address = offset;
7023 tmp.new_address = offset;
7024 tmp.size = 1;
7026 r = bsearch (&offset, map->entry, map->entry_count,
7027 sizeof (xlate_map_entry_t), &xlate_compare);
7028 e = (xlate_map_entry_t *) r;
7030 BFD_ASSERT (e != NULL);
7031 if (e == NULL)
7032 return offset;
7033 return e->new_address - e->orig_address + offset;
7037 /* Build a binary searchable offset translation map from a section's
7038 action list. */
7040 static xlate_map_t *
7041 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7043 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7044 text_action_list *action_list = &relax_info->action_list;
7045 unsigned num_actions = 0;
7046 text_action *r;
7047 int removed;
7048 xlate_map_entry_t *current_entry;
7050 if (map == NULL)
7051 return NULL;
7053 num_actions = action_list_count (action_list);
7054 map->entry = (xlate_map_entry_t *)
7055 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7056 if (map->entry == NULL)
7058 free (map);
7059 return NULL;
7061 map->entry_count = 0;
7063 removed = 0;
7064 current_entry = &map->entry[0];
7066 current_entry->orig_address = 0;
7067 current_entry->new_address = 0;
7068 current_entry->size = 0;
7070 for (r = action_list->head; r != NULL; r = r->next)
7072 unsigned orig_size = 0;
7073 switch (r->action)
7075 case ta_none:
7076 case ta_remove_insn:
7077 case ta_convert_longcall:
7078 case ta_remove_literal:
7079 case ta_add_literal:
7080 break;
7081 case ta_remove_longcall:
7082 orig_size = 6;
7083 break;
7084 case ta_narrow_insn:
7085 orig_size = 3;
7086 break;
7087 case ta_widen_insn:
7088 orig_size = 2;
7089 break;
7090 case ta_fill:
7091 break;
7093 current_entry->size =
7094 r->offset + orig_size - current_entry->orig_address;
7095 if (current_entry->size != 0)
7097 current_entry++;
7098 map->entry_count++;
7100 current_entry->orig_address = r->offset + orig_size;
7101 removed += r->removed_bytes;
7102 current_entry->new_address = r->offset + orig_size - removed;
7103 current_entry->size = 0;
7106 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7107 - current_entry->orig_address);
7108 if (current_entry->size != 0)
7109 map->entry_count++;
7111 return map;
7115 /* Free an offset translation map. */
7117 static void
7118 free_xlate_map (xlate_map_t *map)
7120 if (map && map->entry)
7121 free (map->entry);
7122 if (map)
7123 free (map);
7127 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7128 relocations in a section will fit if a proposed set of actions
7129 are performed. */
7131 static bfd_boolean
7132 check_section_ebb_pcrels_fit (bfd *abfd,
7133 asection *sec,
7134 bfd_byte *contents,
7135 Elf_Internal_Rela *internal_relocs,
7136 const ebb_constraint *constraint,
7137 const xtensa_opcode *reloc_opcodes)
7139 unsigned i, j;
7140 Elf_Internal_Rela *irel;
7141 xlate_map_t *xmap = NULL;
7142 bfd_boolean ok = TRUE;
7143 xtensa_relax_info *relax_info;
7145 relax_info = get_xtensa_relax_info (sec);
7147 if (relax_info && sec->reloc_count > 100)
7149 xmap = build_xlate_map (sec, relax_info);
7150 /* NULL indicates out of memory, but the slow version
7151 can still be used. */
7154 for (i = 0; i < sec->reloc_count; i++)
7156 r_reloc r_rel;
7157 bfd_vma orig_self_offset, orig_target_offset;
7158 bfd_vma self_offset, target_offset;
7159 int r_type;
7160 reloc_howto_type *howto;
7161 int self_removed_bytes, target_removed_bytes;
7163 irel = &internal_relocs[i];
7164 r_type = ELF32_R_TYPE (irel->r_info);
7166 howto = &elf_howto_table[r_type];
7167 /* We maintain the required invariant: PC-relative relocations
7168 that fit before linking must fit after linking. Thus we only
7169 need to deal with relocations to the same section that are
7170 PC-relative. */
7171 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7172 || !howto->pc_relative)
7173 continue;
7175 r_reloc_init (&r_rel, abfd, irel, contents,
7176 bfd_get_section_limit (abfd, sec));
7178 if (r_reloc_get_section (&r_rel) != sec)
7179 continue;
7181 orig_self_offset = irel->r_offset;
7182 orig_target_offset = r_rel.target_offset;
7184 self_offset = orig_self_offset;
7185 target_offset = orig_target_offset;
7187 if (relax_info)
7189 self_offset =
7190 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7191 orig_self_offset);
7192 target_offset =
7193 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7194 orig_target_offset);
7197 self_removed_bytes = 0;
7198 target_removed_bytes = 0;
7200 for (j = 0; j < constraint->action_count; ++j)
7202 proposed_action *action = &constraint->actions[j];
7203 bfd_vma offset = action->offset;
7204 int removed_bytes = action->removed_bytes;
7205 if (offset < orig_self_offset
7206 || (offset == orig_self_offset && action->action == ta_fill
7207 && action->removed_bytes < 0))
7208 self_removed_bytes += removed_bytes;
7209 if (offset < orig_target_offset
7210 || (offset == orig_target_offset && action->action == ta_fill
7211 && action->removed_bytes < 0))
7212 target_removed_bytes += removed_bytes;
7214 self_offset -= self_removed_bytes;
7215 target_offset -= target_removed_bytes;
7217 /* Try to encode it. Get the operand and check. */
7218 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7220 /* None of the current alternate relocs are PC-relative,
7221 and only PC-relative relocs matter here. */
7223 else
7225 xtensa_opcode opcode;
7226 int opnum;
7228 if (reloc_opcodes)
7229 opcode = reloc_opcodes[i];
7230 else
7231 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7232 if (opcode == XTENSA_UNDEFINED)
7234 ok = FALSE;
7235 break;
7238 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7239 if (opnum == XTENSA_UNDEFINED)
7241 ok = FALSE;
7242 break;
7245 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7247 ok = FALSE;
7248 break;
7253 if (xmap)
7254 free_xlate_map (xmap);
7256 return ok;
7260 static bfd_boolean
7261 check_section_ebb_reduces (const ebb_constraint *constraint)
7263 int removed = 0;
7264 unsigned i;
7266 for (i = 0; i < constraint->action_count; i++)
7268 const proposed_action *action = &constraint->actions[i];
7269 if (action->do_action)
7270 removed += action->removed_bytes;
7272 if (removed < 0)
7273 return FALSE;
7275 return TRUE;
7279 void
7280 text_action_add_proposed (text_action_list *l,
7281 const ebb_constraint *ebb_table,
7282 asection *sec)
7284 unsigned i;
7286 for (i = 0; i < ebb_table->action_count; i++)
7288 proposed_action *action = &ebb_table->actions[i];
7290 if (!action->do_action)
7291 continue;
7292 switch (action->action)
7294 case ta_remove_insn:
7295 case ta_remove_longcall:
7296 case ta_convert_longcall:
7297 case ta_narrow_insn:
7298 case ta_widen_insn:
7299 case ta_fill:
7300 case ta_remove_literal:
7301 text_action_add (l, action->action, sec, action->offset,
7302 action->removed_bytes);
7303 break;
7304 case ta_none:
7305 break;
7306 default:
7307 BFD_ASSERT (0);
7308 break;
7315 compute_fill_extra_space (property_table_entry *entry)
7317 int fill_extra_space;
7319 if (!entry)
7320 return 0;
7322 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7323 return 0;
7325 fill_extra_space = entry->size;
7326 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7328 /* Fill bytes for alignment:
7329 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7330 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7331 int nsm = (1 << pow) - 1;
7332 bfd_vma addr = entry->address + entry->size;
7333 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7334 fill_extra_space += align_fill;
7336 return fill_extra_space;
7340 /* First relaxation pass. */
7342 /* If the section contains relaxable literals, check each literal to
7343 see if it has the same value as another literal that has already
7344 been seen, either in the current section or a previous one. If so,
7345 add an entry to the per-section list of removed literals. The
7346 actual changes are deferred until the next pass. */
7348 static bfd_boolean
7349 compute_removed_literals (bfd *abfd,
7350 asection *sec,
7351 struct bfd_link_info *link_info,
7352 value_map_hash_table *values)
7354 xtensa_relax_info *relax_info;
7355 bfd_byte *contents;
7356 Elf_Internal_Rela *internal_relocs;
7357 source_reloc *src_relocs, *rel;
7358 bfd_boolean ok = TRUE;
7359 property_table_entry *prop_table = NULL;
7360 int ptblsize;
7361 int i, prev_i;
7362 bfd_boolean last_loc_is_prev = FALSE;
7363 bfd_vma last_target_offset = 0;
7364 section_cache_t target_sec_cache;
7365 bfd_size_type sec_size;
7367 init_section_cache (&target_sec_cache);
7369 /* Do nothing if it is not a relaxable literal section. */
7370 relax_info = get_xtensa_relax_info (sec);
7371 BFD_ASSERT (relax_info);
7372 if (!relax_info->is_relaxable_literal_section)
7373 return ok;
7375 internal_relocs = retrieve_internal_relocs (abfd, sec,
7376 link_info->keep_memory);
7378 sec_size = bfd_get_section_limit (abfd, sec);
7379 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7380 if (contents == NULL && sec_size != 0)
7382 ok = FALSE;
7383 goto error_return;
7386 /* Sort the source_relocs by target offset. */
7387 src_relocs = relax_info->src_relocs;
7388 qsort (src_relocs, relax_info->src_count,
7389 sizeof (source_reloc), source_reloc_compare);
7390 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7391 internal_reloc_compare);
7393 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7394 XTENSA_PROP_SEC_NAME, FALSE);
7395 if (ptblsize < 0)
7397 ok = FALSE;
7398 goto error_return;
7401 prev_i = -1;
7402 for (i = 0; i < relax_info->src_count; i++)
7404 Elf_Internal_Rela *irel = NULL;
7406 rel = &src_relocs[i];
7407 if (get_l32r_opcode () != rel->opcode)
7408 continue;
7409 irel = get_irel_at_offset (sec, internal_relocs,
7410 rel->r_rel.target_offset);
7412 /* If the relocation on this is not a simple R_XTENSA_32 or
7413 R_XTENSA_PLT then do not consider it. This may happen when
7414 the difference of two symbols is used in a literal. */
7415 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7416 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7417 continue;
7419 /* If the target_offset for this relocation is the same as the
7420 previous relocation, then we've already considered whether the
7421 literal can be coalesced. Skip to the next one.... */
7422 if (i != 0 && prev_i != -1
7423 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7424 continue;
7425 prev_i = i;
7427 if (last_loc_is_prev &&
7428 last_target_offset + 4 != rel->r_rel.target_offset)
7429 last_loc_is_prev = FALSE;
7431 /* Check if the relocation was from an L32R that is being removed
7432 because a CALLX was converted to a direct CALL, and check if
7433 there are no other relocations to the literal. */
7434 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7435 sec, prop_table, ptblsize))
7437 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7438 irel, rel, prop_table, ptblsize))
7440 ok = FALSE;
7441 goto error_return;
7443 last_target_offset = rel->r_rel.target_offset;
7444 continue;
7447 if (!identify_literal_placement (abfd, sec, contents, link_info,
7448 values,
7449 &last_loc_is_prev, irel,
7450 relax_info->src_count - i, rel,
7451 prop_table, ptblsize,
7452 &target_sec_cache, rel->is_abs_literal))
7454 ok = FALSE;
7455 goto error_return;
7457 last_target_offset = rel->r_rel.target_offset;
7460 #if DEBUG
7461 print_removed_literals (stderr, &relax_info->removed_list);
7462 print_action_list (stderr, &relax_info->action_list);
7463 #endif /* DEBUG */
7465 error_return:
7466 if (prop_table) free (prop_table);
7467 clear_section_cache (&target_sec_cache);
7469 release_contents (sec, contents);
7470 release_internal_relocs (sec, internal_relocs);
7471 return ok;
7475 static Elf_Internal_Rela *
7476 get_irel_at_offset (asection *sec,
7477 Elf_Internal_Rela *internal_relocs,
7478 bfd_vma offset)
7480 unsigned i;
7481 Elf_Internal_Rela *irel;
7482 unsigned r_type;
7483 Elf_Internal_Rela key;
7485 if (!internal_relocs)
7486 return NULL;
7488 key.r_offset = offset;
7489 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7490 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7491 if (!irel)
7492 return NULL;
7494 /* bsearch does not guarantee which will be returned if there are
7495 multiple matches. We need the first that is not an alignment. */
7496 i = irel - internal_relocs;
7497 while (i > 0)
7499 if (internal_relocs[i-1].r_offset != offset)
7500 break;
7501 i--;
7503 for ( ; i < sec->reloc_count; i++)
7505 irel = &internal_relocs[i];
7506 r_type = ELF32_R_TYPE (irel->r_info);
7507 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7508 return irel;
7511 return NULL;
7515 bfd_boolean
7516 is_removable_literal (const source_reloc *rel,
7517 int i,
7518 const source_reloc *src_relocs,
7519 int src_count,
7520 asection *sec,
7521 property_table_entry *prop_table,
7522 int ptblsize)
7524 const source_reloc *curr_rel;
7525 property_table_entry *entry;
7527 if (!rel->is_null)
7528 return FALSE;
7530 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7531 sec->vma + rel->r_rel.target_offset);
7532 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7533 return FALSE;
7535 for (++i; i < src_count; ++i)
7537 curr_rel = &src_relocs[i];
7538 /* If all others have the same target offset.... */
7539 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7540 return TRUE;
7542 if (!curr_rel->is_null
7543 && !xtensa_is_property_section (curr_rel->source_sec)
7544 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7545 return FALSE;
7547 return TRUE;
7551 bfd_boolean
7552 remove_dead_literal (bfd *abfd,
7553 asection *sec,
7554 struct bfd_link_info *link_info,
7555 Elf_Internal_Rela *internal_relocs,
7556 Elf_Internal_Rela *irel,
7557 source_reloc *rel,
7558 property_table_entry *prop_table,
7559 int ptblsize)
7561 property_table_entry *entry;
7562 xtensa_relax_info *relax_info;
7564 relax_info = get_xtensa_relax_info (sec);
7565 if (!relax_info)
7566 return FALSE;
7568 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7569 sec->vma + rel->r_rel.target_offset);
7571 /* Mark the unused literal so that it will be removed. */
7572 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7574 text_action_add (&relax_info->action_list,
7575 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7577 /* If the section is 4-byte aligned, do not add fill. */
7578 if (sec->alignment_power > 2)
7580 int fill_extra_space;
7581 bfd_vma entry_sec_offset;
7582 text_action *fa;
7583 property_table_entry *the_add_entry;
7584 int removed_diff;
7586 if (entry)
7587 entry_sec_offset = entry->address - sec->vma + entry->size;
7588 else
7589 entry_sec_offset = rel->r_rel.target_offset + 4;
7591 /* If the literal range is at the end of the section,
7592 do not add fill. */
7593 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7594 entry_sec_offset);
7595 fill_extra_space = compute_fill_extra_space (the_add_entry);
7597 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7598 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7599 -4, fill_extra_space);
7600 if (fa)
7601 adjust_fill_action (fa, removed_diff);
7602 else
7603 text_action_add (&relax_info->action_list,
7604 ta_fill, sec, entry_sec_offset, removed_diff);
7607 /* Zero out the relocation on this literal location. */
7608 if (irel)
7610 if (elf_hash_table (link_info)->dynamic_sections_created)
7611 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7613 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7614 pin_internal_relocs (sec, internal_relocs);
7617 /* Do not modify "last_loc_is_prev". */
7618 return TRUE;
7622 bfd_boolean
7623 identify_literal_placement (bfd *abfd,
7624 asection *sec,
7625 bfd_byte *contents,
7626 struct bfd_link_info *link_info,
7627 value_map_hash_table *values,
7628 bfd_boolean *last_loc_is_prev_p,
7629 Elf_Internal_Rela *irel,
7630 int remaining_src_rels,
7631 source_reloc *rel,
7632 property_table_entry *prop_table,
7633 int ptblsize,
7634 section_cache_t *target_sec_cache,
7635 bfd_boolean is_abs_literal)
7637 literal_value val;
7638 value_map *val_map;
7639 xtensa_relax_info *relax_info;
7640 bfd_boolean literal_placed = FALSE;
7641 r_reloc r_rel;
7642 unsigned long value;
7643 bfd_boolean final_static_link;
7644 bfd_size_type sec_size;
7646 relax_info = get_xtensa_relax_info (sec);
7647 if (!relax_info)
7648 return FALSE;
7650 sec_size = bfd_get_section_limit (abfd, sec);
7652 final_static_link =
7653 (!link_info->relocatable
7654 && !elf_hash_table (link_info)->dynamic_sections_created);
7656 /* The placement algorithm first checks to see if the literal is
7657 already in the value map. If so and the value map is reachable
7658 from all uses, then the literal is moved to that location. If
7659 not, then we identify the last location where a fresh literal was
7660 placed. If the literal can be safely moved there, then we do so.
7661 If not, then we assume that the literal is not to move and leave
7662 the literal where it is, marking it as the last literal
7663 location. */
7665 /* Find the literal value. */
7666 value = 0;
7667 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7668 if (!irel)
7670 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7671 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7673 init_literal_value (&val, &r_rel, value, is_abs_literal);
7675 /* Check if we've seen another literal with the same value that
7676 is in the same output section. */
7677 val_map = value_map_get_cached_value (values, &val, final_static_link);
7679 if (val_map
7680 && (r_reloc_get_section (&val_map->loc)->output_section
7681 == sec->output_section)
7682 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7683 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7685 /* No change to last_loc_is_prev. */
7686 literal_placed = TRUE;
7689 /* For relocatable links, do not try to move literals. To do it
7690 correctly might increase the number of relocations in an input
7691 section making the default relocatable linking fail. */
7692 if (!link_info->relocatable && !literal_placed
7693 && values->has_last_loc && !(*last_loc_is_prev_p))
7695 asection *target_sec = r_reloc_get_section (&values->last_loc);
7696 if (target_sec && target_sec->output_section == sec->output_section)
7698 /* Increment the virtual offset. */
7699 r_reloc try_loc = values->last_loc;
7700 try_loc.virtual_offset += 4;
7702 /* There is a last loc that was in the same output section. */
7703 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7704 && move_shared_literal (sec, link_info, rel,
7705 prop_table, ptblsize,
7706 &try_loc, &val, target_sec_cache))
7708 values->last_loc.virtual_offset += 4;
7709 literal_placed = TRUE;
7710 if (!val_map)
7711 val_map = add_value_map (values, &val, &try_loc,
7712 final_static_link);
7713 else
7714 val_map->loc = try_loc;
7719 if (!literal_placed)
7721 /* Nothing worked, leave the literal alone but update the last loc. */
7722 values->has_last_loc = TRUE;
7723 values->last_loc = rel->r_rel;
7724 if (!val_map)
7725 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7726 else
7727 val_map->loc = rel->r_rel;
7728 *last_loc_is_prev_p = TRUE;
7731 return TRUE;
7735 /* Check if the original relocations (presumably on L32R instructions)
7736 identified by reloc[0..N] can be changed to reference the literal
7737 identified by r_rel. If r_rel is out of range for any of the
7738 original relocations, then we don't want to coalesce the original
7739 literal with the one at r_rel. We only check reloc[0..N], where the
7740 offsets are all the same as for reloc[0] (i.e., they're all
7741 referencing the same literal) and where N is also bounded by the
7742 number of remaining entries in the "reloc" array. The "reloc" array
7743 is sorted by target offset so we know all the entries for the same
7744 literal will be contiguous. */
7746 static bfd_boolean
7747 relocations_reach (source_reloc *reloc,
7748 int remaining_relocs,
7749 const r_reloc *r_rel)
7751 bfd_vma from_offset, source_address, dest_address;
7752 asection *sec;
7753 int i;
7755 if (!r_reloc_is_defined (r_rel))
7756 return FALSE;
7758 sec = r_reloc_get_section (r_rel);
7759 from_offset = reloc[0].r_rel.target_offset;
7761 for (i = 0; i < remaining_relocs; i++)
7763 if (reloc[i].r_rel.target_offset != from_offset)
7764 break;
7766 /* Ignore relocations that have been removed. */
7767 if (reloc[i].is_null)
7768 continue;
7770 /* The original and new output section for these must be the same
7771 in order to coalesce. */
7772 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7773 != sec->output_section)
7774 return FALSE;
7776 /* Absolute literals in the same output section can always be
7777 combined. */
7778 if (reloc[i].is_abs_literal)
7779 continue;
7781 /* A literal with no PC-relative relocations can be moved anywhere. */
7782 if (reloc[i].opnd != -1)
7784 /* Otherwise, check to see that it fits. */
7785 source_address = (reloc[i].source_sec->output_section->vma
7786 + reloc[i].source_sec->output_offset
7787 + reloc[i].r_rel.rela.r_offset);
7788 dest_address = (sec->output_section->vma
7789 + sec->output_offset
7790 + r_rel->target_offset);
7792 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7793 source_address, dest_address))
7794 return FALSE;
7798 return TRUE;
7802 /* Move a literal to another literal location because it is
7803 the same as the other literal value. */
7805 static bfd_boolean
7806 coalesce_shared_literal (asection *sec,
7807 source_reloc *rel,
7808 property_table_entry *prop_table,
7809 int ptblsize,
7810 value_map *val_map)
7812 property_table_entry *entry;
7813 text_action *fa;
7814 property_table_entry *the_add_entry;
7815 int removed_diff;
7816 xtensa_relax_info *relax_info;
7818 relax_info = get_xtensa_relax_info (sec);
7819 if (!relax_info)
7820 return FALSE;
7822 entry = elf_xtensa_find_property_entry
7823 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7824 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7825 return TRUE;
7827 /* Mark that the literal will be coalesced. */
7828 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7830 text_action_add (&relax_info->action_list,
7831 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7833 /* If the section is 4-byte aligned, do not add fill. */
7834 if (sec->alignment_power > 2)
7836 int fill_extra_space;
7837 bfd_vma entry_sec_offset;
7839 if (entry)
7840 entry_sec_offset = entry->address - sec->vma + entry->size;
7841 else
7842 entry_sec_offset = rel->r_rel.target_offset + 4;
7844 /* If the literal range is at the end of the section,
7845 do not add fill. */
7846 fill_extra_space = 0;
7847 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7848 entry_sec_offset);
7849 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7850 fill_extra_space = the_add_entry->size;
7852 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7853 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7854 -4, fill_extra_space);
7855 if (fa)
7856 adjust_fill_action (fa, removed_diff);
7857 else
7858 text_action_add (&relax_info->action_list,
7859 ta_fill, sec, entry_sec_offset, removed_diff);
7862 return TRUE;
7866 /* Move a literal to another location. This may actually increase the
7867 total amount of space used because of alignments so we need to do
7868 this carefully. Also, it may make a branch go out of range. */
7870 static bfd_boolean
7871 move_shared_literal (asection *sec,
7872 struct bfd_link_info *link_info,
7873 source_reloc *rel,
7874 property_table_entry *prop_table,
7875 int ptblsize,
7876 const r_reloc *target_loc,
7877 const literal_value *lit_value,
7878 section_cache_t *target_sec_cache)
7880 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7881 text_action *fa, *target_fa;
7882 int removed_diff;
7883 xtensa_relax_info *relax_info, *target_relax_info;
7884 asection *target_sec;
7885 ebb_t *ebb;
7886 ebb_constraint ebb_table;
7887 bfd_boolean relocs_fit;
7889 /* If this routine always returns FALSE, the literals that cannot be
7890 coalesced will not be moved. */
7891 if (elf32xtensa_no_literal_movement)
7892 return FALSE;
7894 relax_info = get_xtensa_relax_info (sec);
7895 if (!relax_info)
7896 return FALSE;
7898 target_sec = r_reloc_get_section (target_loc);
7899 target_relax_info = get_xtensa_relax_info (target_sec);
7901 /* Literals to undefined sections may not be moved because they
7902 must report an error. */
7903 if (bfd_is_und_section (target_sec))
7904 return FALSE;
7906 src_entry = elf_xtensa_find_property_entry
7907 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7909 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7910 return FALSE;
7912 target_entry = elf_xtensa_find_property_entry
7913 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7914 target_sec->vma + target_loc->target_offset);
7916 if (!target_entry)
7917 return FALSE;
7919 /* Make sure that we have not broken any branches. */
7920 relocs_fit = FALSE;
7922 init_ebb_constraint (&ebb_table);
7923 ebb = &ebb_table.ebb;
7924 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7925 target_sec_cache->content_length,
7926 target_sec_cache->ptbl, target_sec_cache->pte_count,
7927 target_sec_cache->relocs, target_sec_cache->reloc_count);
7929 /* Propose to add 4 bytes + worst-case alignment size increase to
7930 destination. */
7931 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7932 ta_fill, target_loc->target_offset,
7933 -4 - (1 << target_sec->alignment_power), TRUE);
7935 /* Check all of the PC-relative relocations to make sure they still fit. */
7936 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7937 target_sec_cache->contents,
7938 target_sec_cache->relocs,
7939 &ebb_table, NULL);
7941 if (!relocs_fit)
7942 return FALSE;
7944 text_action_add_literal (&target_relax_info->action_list,
7945 ta_add_literal, target_loc, lit_value, -4);
7947 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7949 /* May need to add or remove some fill to maintain alignment. */
7950 int fill_extra_space;
7951 bfd_vma entry_sec_offset;
7953 entry_sec_offset =
7954 target_entry->address - target_sec->vma + target_entry->size;
7956 /* If the literal range is at the end of the section,
7957 do not add fill. */
7958 fill_extra_space = 0;
7959 the_add_entry =
7960 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7961 target_sec_cache->pte_count,
7962 entry_sec_offset);
7963 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7964 fill_extra_space = the_add_entry->size;
7966 target_fa = find_fill_action (&target_relax_info->action_list,
7967 target_sec, entry_sec_offset);
7968 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7969 entry_sec_offset, 4,
7970 fill_extra_space);
7971 if (target_fa)
7972 adjust_fill_action (target_fa, removed_diff);
7973 else
7974 text_action_add (&target_relax_info->action_list,
7975 ta_fill, target_sec, entry_sec_offset, removed_diff);
7978 /* Mark that the literal will be moved to the new location. */
7979 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7981 /* Remove the literal. */
7982 text_action_add (&relax_info->action_list,
7983 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7985 /* If the section is 4-byte aligned, do not add fill. */
7986 if (sec->alignment_power > 2 && target_entry != src_entry)
7988 int fill_extra_space;
7989 bfd_vma entry_sec_offset;
7991 if (src_entry)
7992 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7993 else
7994 entry_sec_offset = rel->r_rel.target_offset+4;
7996 /* If the literal range is at the end of the section,
7997 do not add fill. */
7998 fill_extra_space = 0;
7999 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8000 entry_sec_offset);
8001 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8002 fill_extra_space = the_add_entry->size;
8004 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8005 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8006 -4, fill_extra_space);
8007 if (fa)
8008 adjust_fill_action (fa, removed_diff);
8009 else
8010 text_action_add (&relax_info->action_list,
8011 ta_fill, sec, entry_sec_offset, removed_diff);
8014 return TRUE;
8018 /* Second relaxation pass. */
8020 /* Modify all of the relocations to point to the right spot, and if this
8021 is a relaxable section, delete the unwanted literals and fix the
8022 section size. */
8024 bfd_boolean
8025 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8027 Elf_Internal_Rela *internal_relocs;
8028 xtensa_relax_info *relax_info;
8029 bfd_byte *contents;
8030 bfd_boolean ok = TRUE;
8031 unsigned i;
8032 bfd_boolean rv = FALSE;
8033 bfd_boolean virtual_action;
8034 bfd_size_type sec_size;
8036 sec_size = bfd_get_section_limit (abfd, sec);
8037 relax_info = get_xtensa_relax_info (sec);
8038 BFD_ASSERT (relax_info);
8040 /* First translate any of the fixes that have been added already. */
8041 translate_section_fixes (sec);
8043 /* Handle property sections (e.g., literal tables) specially. */
8044 if (xtensa_is_property_section (sec))
8046 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8047 return relax_property_section (abfd, sec, link_info);
8050 internal_relocs = retrieve_internal_relocs (abfd, sec,
8051 link_info->keep_memory);
8052 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8053 if (contents == NULL && sec_size != 0)
8055 ok = FALSE;
8056 goto error_return;
8059 if (internal_relocs)
8061 for (i = 0; i < sec->reloc_count; i++)
8063 Elf_Internal_Rela *irel;
8064 xtensa_relax_info *target_relax_info;
8065 bfd_vma source_offset, old_source_offset;
8066 r_reloc r_rel;
8067 unsigned r_type;
8068 asection *target_sec;
8070 /* Locally change the source address.
8071 Translate the target to the new target address.
8072 If it points to this section and has been removed,
8073 NULLify it.
8074 Write it back. */
8076 irel = &internal_relocs[i];
8077 source_offset = irel->r_offset;
8078 old_source_offset = source_offset;
8080 r_type = ELF32_R_TYPE (irel->r_info);
8081 r_reloc_init (&r_rel, abfd, irel, contents,
8082 bfd_get_section_limit (abfd, sec));
8084 /* If this section could have changed then we may need to
8085 change the relocation's offset. */
8087 if (relax_info->is_relaxable_literal_section
8088 || relax_info->is_relaxable_asm_section)
8090 if (r_type != R_XTENSA_NONE
8091 && find_removed_literal (&relax_info->removed_list,
8092 irel->r_offset))
8094 /* Remove this relocation. */
8095 if (elf_hash_table (link_info)->dynamic_sections_created)
8096 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8097 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8098 irel->r_offset = offset_with_removed_text
8099 (&relax_info->action_list, irel->r_offset);
8100 pin_internal_relocs (sec, internal_relocs);
8101 continue;
8104 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8106 text_action *action =
8107 find_insn_action (&relax_info->action_list,
8108 irel->r_offset);
8109 if (action && (action->action == ta_convert_longcall
8110 || action->action == ta_remove_longcall))
8112 bfd_reloc_status_type retval;
8113 char *error_message = NULL;
8115 retval = contract_asm_expansion (contents, sec_size,
8116 irel, &error_message);
8117 if (retval != bfd_reloc_ok)
8119 (*link_info->callbacks->reloc_dangerous)
8120 (link_info, error_message, abfd, sec,
8121 irel->r_offset);
8122 goto error_return;
8124 /* Update the action so that the code that moves
8125 the contents will do the right thing. */
8126 if (action->action == ta_remove_longcall)
8127 action->action = ta_remove_insn;
8128 else
8129 action->action = ta_none;
8130 /* Refresh the info in the r_rel. */
8131 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8132 r_type = ELF32_R_TYPE (irel->r_info);
8136 source_offset = offset_with_removed_text
8137 (&relax_info->action_list, irel->r_offset);
8138 irel->r_offset = source_offset;
8141 /* If the target section could have changed then
8142 we may need to change the relocation's target offset. */
8144 target_sec = r_reloc_get_section (&r_rel);
8145 target_relax_info = get_xtensa_relax_info (target_sec);
8147 if (target_relax_info
8148 && (target_relax_info->is_relaxable_literal_section
8149 || target_relax_info->is_relaxable_asm_section))
8151 r_reloc new_reloc;
8152 reloc_bfd_fix *fix;
8153 bfd_vma addend_displacement;
8155 translate_reloc (&r_rel, &new_reloc);
8157 if (r_type == R_XTENSA_DIFF8
8158 || r_type == R_XTENSA_DIFF16
8159 || r_type == R_XTENSA_DIFF32)
8161 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8163 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8165 (*link_info->callbacks->reloc_dangerous)
8166 (link_info, _("invalid relocation address"),
8167 abfd, sec, old_source_offset);
8168 goto error_return;
8171 switch (r_type)
8173 case R_XTENSA_DIFF8:
8174 diff_value =
8175 bfd_get_8 (abfd, &contents[old_source_offset]);
8176 break;
8177 case R_XTENSA_DIFF16:
8178 diff_value =
8179 bfd_get_16 (abfd, &contents[old_source_offset]);
8180 break;
8181 case R_XTENSA_DIFF32:
8182 diff_value =
8183 bfd_get_32 (abfd, &contents[old_source_offset]);
8184 break;
8187 new_end_offset = offset_with_removed_text
8188 (&target_relax_info->action_list,
8189 r_rel.target_offset + diff_value);
8190 diff_value = new_end_offset - new_reloc.target_offset;
8192 switch (r_type)
8194 case R_XTENSA_DIFF8:
8195 diff_mask = 0xff;
8196 bfd_put_8 (abfd, diff_value,
8197 &contents[old_source_offset]);
8198 break;
8199 case R_XTENSA_DIFF16:
8200 diff_mask = 0xffff;
8201 bfd_put_16 (abfd, diff_value,
8202 &contents[old_source_offset]);
8203 break;
8204 case R_XTENSA_DIFF32:
8205 diff_mask = 0xffffffff;
8206 bfd_put_32 (abfd, diff_value,
8207 &contents[old_source_offset]);
8208 break;
8211 /* Check for overflow. */
8212 if ((diff_value & ~diff_mask) != 0)
8214 (*link_info->callbacks->reloc_dangerous)
8215 (link_info, _("overflow after relaxation"),
8216 abfd, sec, old_source_offset);
8217 goto error_return;
8220 pin_contents (sec, contents);
8223 /* FIXME: If the relocation still references a section in
8224 the same input file, the relocation should be modified
8225 directly instead of adding a "fix" record. */
8227 addend_displacement =
8228 new_reloc.target_offset + new_reloc.virtual_offset;
8230 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8231 r_reloc_get_section (&new_reloc),
8232 addend_displacement, TRUE);
8233 add_fix (sec, fix);
8236 pin_internal_relocs (sec, internal_relocs);
8240 if ((relax_info->is_relaxable_literal_section
8241 || relax_info->is_relaxable_asm_section)
8242 && relax_info->action_list.head)
8244 /* Walk through the planned actions and build up a table
8245 of move, copy and fill records. Use the move, copy and
8246 fill records to perform the actions once. */
8248 bfd_size_type size = sec->size;
8249 int removed = 0;
8250 bfd_size_type final_size, copy_size, orig_insn_size;
8251 bfd_byte *scratch = NULL;
8252 bfd_byte *dup_contents = NULL;
8253 bfd_size_type orig_size = size;
8254 bfd_vma orig_dot = 0;
8255 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8256 orig dot in physical memory. */
8257 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8258 bfd_vma dup_dot = 0;
8260 text_action *action = relax_info->action_list.head;
8262 final_size = sec->size;
8263 for (action = relax_info->action_list.head; action;
8264 action = action->next)
8266 final_size -= action->removed_bytes;
8269 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8270 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8272 /* The dot is the current fill location. */
8273 #if DEBUG
8274 print_action_list (stderr, &relax_info->action_list);
8275 #endif
8277 for (action = relax_info->action_list.head; action;
8278 action = action->next)
8280 virtual_action = FALSE;
8281 if (action->offset > orig_dot)
8283 orig_dot += orig_dot_copied;
8284 orig_dot_copied = 0;
8285 orig_dot_vo = 0;
8286 /* Out of the virtual world. */
8289 if (action->offset > orig_dot)
8291 copy_size = action->offset - orig_dot;
8292 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8293 orig_dot += copy_size;
8294 dup_dot += copy_size;
8295 BFD_ASSERT (action->offset == orig_dot);
8297 else if (action->offset < orig_dot)
8299 if (action->action == ta_fill
8300 && action->offset - action->removed_bytes == orig_dot)
8302 /* This is OK because the fill only effects the dup_dot. */
8304 else if (action->action == ta_add_literal)
8306 /* TBD. Might need to handle this. */
8309 if (action->offset == orig_dot)
8311 if (action->virtual_offset > orig_dot_vo)
8313 if (orig_dot_vo == 0)
8315 /* Need to copy virtual_offset bytes. Probably four. */
8316 copy_size = action->virtual_offset - orig_dot_vo;
8317 memmove (&dup_contents[dup_dot],
8318 &contents[orig_dot], copy_size);
8319 orig_dot_copied = copy_size;
8320 dup_dot += copy_size;
8322 virtual_action = TRUE;
8324 else
8325 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8327 switch (action->action)
8329 case ta_remove_literal:
8330 case ta_remove_insn:
8331 BFD_ASSERT (action->removed_bytes >= 0);
8332 orig_dot += action->removed_bytes;
8333 break;
8335 case ta_narrow_insn:
8336 orig_insn_size = 3;
8337 copy_size = 2;
8338 memmove (scratch, &contents[orig_dot], orig_insn_size);
8339 BFD_ASSERT (action->removed_bytes == 1);
8340 rv = narrow_instruction (scratch, final_size, 0);
8341 BFD_ASSERT (rv);
8342 memmove (&dup_contents[dup_dot], scratch, copy_size);
8343 orig_dot += orig_insn_size;
8344 dup_dot += copy_size;
8345 break;
8347 case ta_fill:
8348 if (action->removed_bytes >= 0)
8349 orig_dot += action->removed_bytes;
8350 else
8352 /* Already zeroed in dup_contents. Just bump the
8353 counters. */
8354 dup_dot += (-action->removed_bytes);
8356 break;
8358 case ta_none:
8359 BFD_ASSERT (action->removed_bytes == 0);
8360 break;
8362 case ta_convert_longcall:
8363 case ta_remove_longcall:
8364 /* These will be removed or converted before we get here. */
8365 BFD_ASSERT (0);
8366 break;
8368 case ta_widen_insn:
8369 orig_insn_size = 2;
8370 copy_size = 3;
8371 memmove (scratch, &contents[orig_dot], orig_insn_size);
8372 BFD_ASSERT (action->removed_bytes == -1);
8373 rv = widen_instruction (scratch, final_size, 0);
8374 BFD_ASSERT (rv);
8375 memmove (&dup_contents[dup_dot], scratch, copy_size);
8376 orig_dot += orig_insn_size;
8377 dup_dot += copy_size;
8378 break;
8380 case ta_add_literal:
8381 orig_insn_size = 0;
8382 copy_size = 4;
8383 BFD_ASSERT (action->removed_bytes == -4);
8384 /* TBD -- place the literal value here and insert
8385 into the table. */
8386 memset (&dup_contents[dup_dot], 0, 4);
8387 pin_internal_relocs (sec, internal_relocs);
8388 pin_contents (sec, contents);
8390 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8391 relax_info, &internal_relocs, &action->value))
8392 goto error_return;
8394 if (virtual_action)
8395 orig_dot_vo += copy_size;
8397 orig_dot += orig_insn_size;
8398 dup_dot += copy_size;
8399 break;
8401 default:
8402 /* Not implemented yet. */
8403 BFD_ASSERT (0);
8404 break;
8407 size -= action->removed_bytes;
8408 removed += action->removed_bytes;
8409 BFD_ASSERT (dup_dot <= final_size);
8410 BFD_ASSERT (orig_dot <= orig_size);
8413 orig_dot += orig_dot_copied;
8414 orig_dot_copied = 0;
8416 if (orig_dot != orig_size)
8418 copy_size = orig_size - orig_dot;
8419 BFD_ASSERT (orig_size > orig_dot);
8420 BFD_ASSERT (dup_dot + copy_size == final_size);
8421 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8422 orig_dot += copy_size;
8423 dup_dot += copy_size;
8425 BFD_ASSERT (orig_size == orig_dot);
8426 BFD_ASSERT (final_size == dup_dot);
8428 /* Move the dup_contents back. */
8429 if (final_size > orig_size)
8431 /* Contents need to be reallocated. Swap the dup_contents into
8432 contents. */
8433 sec->contents = dup_contents;
8434 free (contents);
8435 contents = dup_contents;
8436 pin_contents (sec, contents);
8438 else
8440 BFD_ASSERT (final_size <= orig_size);
8441 memset (contents, 0, orig_size);
8442 memcpy (contents, dup_contents, final_size);
8443 free (dup_contents);
8445 free (scratch);
8446 pin_contents (sec, contents);
8448 sec->size = final_size;
8451 error_return:
8452 release_internal_relocs (sec, internal_relocs);
8453 release_contents (sec, contents);
8454 return ok;
8458 static bfd_boolean
8459 translate_section_fixes (asection *sec)
8461 xtensa_relax_info *relax_info;
8462 reloc_bfd_fix *r;
8464 relax_info = get_xtensa_relax_info (sec);
8465 if (!relax_info)
8466 return TRUE;
8468 for (r = relax_info->fix_list; r != NULL; r = r->next)
8469 if (!translate_reloc_bfd_fix (r))
8470 return FALSE;
8472 return TRUE;
8476 /* Translate a fix given the mapping in the relax info for the target
8477 section. If it has already been translated, no work is required. */
8479 static bfd_boolean
8480 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8482 reloc_bfd_fix new_fix;
8483 asection *sec;
8484 xtensa_relax_info *relax_info;
8485 removed_literal *removed;
8486 bfd_vma new_offset, target_offset;
8488 if (fix->translated)
8489 return TRUE;
8491 sec = fix->target_sec;
8492 target_offset = fix->target_offset;
8494 relax_info = get_xtensa_relax_info (sec);
8495 if (!relax_info)
8497 fix->translated = TRUE;
8498 return TRUE;
8501 new_fix = *fix;
8503 /* The fix does not need to be translated if the section cannot change. */
8504 if (!relax_info->is_relaxable_literal_section
8505 && !relax_info->is_relaxable_asm_section)
8507 fix->translated = TRUE;
8508 return TRUE;
8511 /* If the literal has been moved and this relocation was on an
8512 opcode, then the relocation should move to the new literal
8513 location. Otherwise, the relocation should move within the
8514 section. */
8516 removed = FALSE;
8517 if (is_operand_relocation (fix->src_type))
8519 /* Check if the original relocation is against a literal being
8520 removed. */
8521 removed = find_removed_literal (&relax_info->removed_list,
8522 target_offset);
8525 if (removed)
8527 asection *new_sec;
8529 /* The fact that there is still a relocation to this literal indicates
8530 that the literal is being coalesced, not simply removed. */
8531 BFD_ASSERT (removed->to.abfd != NULL);
8533 /* This was moved to some other address (possibly another section). */
8534 new_sec = r_reloc_get_section (&removed->to);
8535 if (new_sec != sec)
8537 sec = new_sec;
8538 relax_info = get_xtensa_relax_info (sec);
8539 if (!relax_info ||
8540 (!relax_info->is_relaxable_literal_section
8541 && !relax_info->is_relaxable_asm_section))
8543 target_offset = removed->to.target_offset;
8544 new_fix.target_sec = new_sec;
8545 new_fix.target_offset = target_offset;
8546 new_fix.translated = TRUE;
8547 *fix = new_fix;
8548 return TRUE;
8551 target_offset = removed->to.target_offset;
8552 new_fix.target_sec = new_sec;
8555 /* The target address may have been moved within its section. */
8556 new_offset = offset_with_removed_text (&relax_info->action_list,
8557 target_offset);
8559 new_fix.target_offset = new_offset;
8560 new_fix.target_offset = new_offset;
8561 new_fix.translated = TRUE;
8562 *fix = new_fix;
8563 return TRUE;
8567 /* Fix up a relocation to take account of removed literals. */
8569 static void
8570 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8572 asection *sec;
8573 xtensa_relax_info *relax_info;
8574 removed_literal *removed;
8575 bfd_vma new_offset, target_offset, removed_bytes;
8577 *new_rel = *orig_rel;
8579 if (!r_reloc_is_defined (orig_rel))
8580 return;
8581 sec = r_reloc_get_section (orig_rel);
8583 relax_info = get_xtensa_relax_info (sec);
8584 BFD_ASSERT (relax_info);
8586 if (!relax_info->is_relaxable_literal_section
8587 && !relax_info->is_relaxable_asm_section)
8588 return;
8590 target_offset = orig_rel->target_offset;
8592 removed = FALSE;
8593 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8595 /* Check if the original relocation is against a literal being
8596 removed. */
8597 removed = find_removed_literal (&relax_info->removed_list,
8598 target_offset);
8600 if (removed && removed->to.abfd)
8602 asection *new_sec;
8604 /* The fact that there is still a relocation to this literal indicates
8605 that the literal is being coalesced, not simply removed. */
8606 BFD_ASSERT (removed->to.abfd != NULL);
8608 /* This was moved to some other address
8609 (possibly in another section). */
8610 *new_rel = removed->to;
8611 new_sec = r_reloc_get_section (new_rel);
8612 if (new_sec != sec)
8614 sec = new_sec;
8615 relax_info = get_xtensa_relax_info (sec);
8616 if (!relax_info
8617 || (!relax_info->is_relaxable_literal_section
8618 && !relax_info->is_relaxable_asm_section))
8619 return;
8621 target_offset = new_rel->target_offset;
8624 /* ...and the target address may have been moved within its section. */
8625 new_offset = offset_with_removed_text (&relax_info->action_list,
8626 target_offset);
8628 /* Modify the offset and addend. */
8629 removed_bytes = target_offset - new_offset;
8630 new_rel->target_offset = new_offset;
8631 new_rel->rela.r_addend -= removed_bytes;
8635 /* For dynamic links, there may be a dynamic relocation for each
8636 literal. The number of dynamic relocations must be computed in
8637 size_dynamic_sections, which occurs before relaxation. When a
8638 literal is removed, this function checks if there is a corresponding
8639 dynamic relocation and shrinks the size of the appropriate dynamic
8640 relocation section accordingly. At this point, the contents of the
8641 dynamic relocation sections have not yet been filled in, so there's
8642 nothing else that needs to be done. */
8644 static void
8645 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8646 bfd *abfd,
8647 asection *input_section,
8648 Elf_Internal_Rela *rel)
8650 struct elf_xtensa_link_hash_table *htab;
8651 Elf_Internal_Shdr *symtab_hdr;
8652 struct elf_link_hash_entry **sym_hashes;
8653 unsigned long r_symndx;
8654 int r_type;
8655 struct elf_link_hash_entry *h;
8656 bfd_boolean dynamic_symbol;
8658 htab = elf_xtensa_hash_table (info);
8659 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8660 sym_hashes = elf_sym_hashes (abfd);
8662 r_type = ELF32_R_TYPE (rel->r_info);
8663 r_symndx = ELF32_R_SYM (rel->r_info);
8665 if (r_symndx < symtab_hdr->sh_info)
8666 h = NULL;
8667 else
8668 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8670 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8672 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8673 && (input_section->flags & SEC_ALLOC) != 0
8674 && (dynamic_symbol || info->shared))
8676 asection *srel;
8677 bfd_boolean is_plt = FALSE;
8679 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8681 srel = htab->srelplt;
8682 is_plt = TRUE;
8684 else
8685 srel = htab->srelgot;
8687 /* Reduce size of the .rela.* section by one reloc. */
8688 BFD_ASSERT (srel != NULL);
8689 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8690 srel->size -= sizeof (Elf32_External_Rela);
8692 if (is_plt)
8694 asection *splt, *sgotplt, *srelgot;
8695 int reloc_index, chunk;
8697 /* Find the PLT reloc index of the entry being removed. This
8698 is computed from the size of ".rela.plt". It is needed to
8699 figure out which PLT chunk to resize. Usually "last index
8700 = size - 1" since the index starts at zero, but in this
8701 context, the size has just been decremented so there's no
8702 need to subtract one. */
8703 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8705 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8706 splt = elf_xtensa_get_plt_section (info, chunk);
8707 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8708 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8710 /* Check if an entire PLT chunk has just been eliminated. */
8711 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8713 /* The two magic GOT entries for that chunk can go away. */
8714 srelgot = htab->srelgot;
8715 BFD_ASSERT (srelgot != NULL);
8716 srelgot->reloc_count -= 2;
8717 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8718 sgotplt->size -= 8;
8720 /* There should be only one entry left (and it will be
8721 removed below). */
8722 BFD_ASSERT (sgotplt->size == 4);
8723 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8726 BFD_ASSERT (sgotplt->size >= 4);
8727 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8729 sgotplt->size -= 4;
8730 splt->size -= PLT_ENTRY_SIZE;
8736 /* Take an r_rel and move it to another section. This usually
8737 requires extending the interal_relocation array and pinning it. If
8738 the original r_rel is from the same BFD, we can complete this here.
8739 Otherwise, we add a fix record to let the final link fix the
8740 appropriate address. Contents and internal relocations for the
8741 section must be pinned after calling this routine. */
8743 static bfd_boolean
8744 move_literal (bfd *abfd,
8745 struct bfd_link_info *link_info,
8746 asection *sec,
8747 bfd_vma offset,
8748 bfd_byte *contents,
8749 xtensa_relax_info *relax_info,
8750 Elf_Internal_Rela **internal_relocs_p,
8751 const literal_value *lit)
8753 Elf_Internal_Rela *new_relocs = NULL;
8754 size_t new_relocs_count = 0;
8755 Elf_Internal_Rela this_rela;
8756 const r_reloc *r_rel;
8758 r_rel = &lit->r_rel;
8759 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8761 if (r_reloc_is_const (r_rel))
8762 bfd_put_32 (abfd, lit->value, contents + offset);
8763 else
8765 int r_type;
8766 unsigned i;
8767 asection *target_sec;
8768 reloc_bfd_fix *fix;
8769 unsigned insert_at;
8771 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8772 target_sec = r_reloc_get_section (r_rel);
8774 /* This is the difficult case. We have to create a fix up. */
8775 this_rela.r_offset = offset;
8776 this_rela.r_info = ELF32_R_INFO (0, r_type);
8777 this_rela.r_addend =
8778 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8779 bfd_put_32 (abfd, lit->value, contents + offset);
8781 /* Currently, we cannot move relocations during a relocatable link. */
8782 BFD_ASSERT (!link_info->relocatable);
8783 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8784 r_reloc_get_section (r_rel),
8785 r_rel->target_offset + r_rel->virtual_offset,
8786 FALSE);
8787 /* We also need to mark that relocations are needed here. */
8788 sec->flags |= SEC_RELOC;
8790 translate_reloc_bfd_fix (fix);
8791 /* This fix has not yet been translated. */
8792 add_fix (sec, fix);
8794 /* Add the relocation. If we have already allocated our own
8795 space for the relocations and we have room for more, then use
8796 it. Otherwise, allocate new space and move the literals. */
8797 insert_at = sec->reloc_count;
8798 for (i = 0; i < sec->reloc_count; ++i)
8800 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8802 insert_at = i;
8803 break;
8807 if (*internal_relocs_p != relax_info->allocated_relocs
8808 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8810 BFD_ASSERT (relax_info->allocated_relocs == NULL
8811 || sec->reloc_count == relax_info->relocs_count);
8813 if (relax_info->allocated_relocs_count == 0)
8814 new_relocs_count = (sec->reloc_count + 2) * 2;
8815 else
8816 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8818 new_relocs = (Elf_Internal_Rela *)
8819 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8820 if (!new_relocs)
8821 return FALSE;
8823 /* We could handle this more quickly by finding the split point. */
8824 if (insert_at != 0)
8825 memcpy (new_relocs, *internal_relocs_p,
8826 insert_at * sizeof (Elf_Internal_Rela));
8828 new_relocs[insert_at] = this_rela;
8830 if (insert_at != sec->reloc_count)
8831 memcpy (new_relocs + insert_at + 1,
8832 (*internal_relocs_p) + insert_at,
8833 (sec->reloc_count - insert_at)
8834 * sizeof (Elf_Internal_Rela));
8836 if (*internal_relocs_p != relax_info->allocated_relocs)
8838 /* The first time we re-allocate, we can only free the
8839 old relocs if they were allocated with bfd_malloc.
8840 This is not true when keep_memory is in effect. */
8841 if (!link_info->keep_memory)
8842 free (*internal_relocs_p);
8844 else
8845 free (*internal_relocs_p);
8846 relax_info->allocated_relocs = new_relocs;
8847 relax_info->allocated_relocs_count = new_relocs_count;
8848 elf_section_data (sec)->relocs = new_relocs;
8849 sec->reloc_count++;
8850 relax_info->relocs_count = sec->reloc_count;
8851 *internal_relocs_p = new_relocs;
8853 else
8855 if (insert_at != sec->reloc_count)
8857 unsigned idx;
8858 for (idx = sec->reloc_count; idx > insert_at; idx--)
8859 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8861 (*internal_relocs_p)[insert_at] = this_rela;
8862 sec->reloc_count++;
8863 if (relax_info->allocated_relocs)
8864 relax_info->relocs_count = sec->reloc_count;
8867 return TRUE;
8871 /* This is similar to relax_section except that when a target is moved,
8872 we shift addresses up. We also need to modify the size. This
8873 algorithm does NOT allow for relocations into the middle of the
8874 property sections. */
8876 static bfd_boolean
8877 relax_property_section (bfd *abfd,
8878 asection *sec,
8879 struct bfd_link_info *link_info)
8881 Elf_Internal_Rela *internal_relocs;
8882 bfd_byte *contents;
8883 unsigned i;
8884 bfd_boolean ok = TRUE;
8885 bfd_boolean is_full_prop_section;
8886 size_t last_zfill_target_offset = 0;
8887 asection *last_zfill_target_sec = NULL;
8888 bfd_size_type sec_size;
8889 bfd_size_type entry_size;
8891 sec_size = bfd_get_section_limit (abfd, sec);
8892 internal_relocs = retrieve_internal_relocs (abfd, sec,
8893 link_info->keep_memory);
8894 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8895 if (contents == NULL && sec_size != 0)
8897 ok = FALSE;
8898 goto error_return;
8901 is_full_prop_section = xtensa_is_proptable_section (sec);
8902 if (is_full_prop_section)
8903 entry_size = 12;
8904 else
8905 entry_size = 8;
8907 if (internal_relocs)
8909 for (i = 0; i < sec->reloc_count; i++)
8911 Elf_Internal_Rela *irel;
8912 xtensa_relax_info *target_relax_info;
8913 unsigned r_type;
8914 asection *target_sec;
8915 literal_value val;
8916 bfd_byte *size_p, *flags_p;
8918 /* Locally change the source address.
8919 Translate the target to the new target address.
8920 If it points to this section and has been removed, MOVE IT.
8921 Also, don't forget to modify the associated SIZE at
8922 (offset + 4). */
8924 irel = &internal_relocs[i];
8925 r_type = ELF32_R_TYPE (irel->r_info);
8926 if (r_type == R_XTENSA_NONE)
8927 continue;
8929 /* Find the literal value. */
8930 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8931 size_p = &contents[irel->r_offset + 4];
8932 flags_p = NULL;
8933 if (is_full_prop_section)
8934 flags_p = &contents[irel->r_offset + 8];
8935 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8937 target_sec = r_reloc_get_section (&val.r_rel);
8938 target_relax_info = get_xtensa_relax_info (target_sec);
8940 if (target_relax_info
8941 && (target_relax_info->is_relaxable_literal_section
8942 || target_relax_info->is_relaxable_asm_section ))
8944 /* Translate the relocation's destination. */
8945 bfd_vma new_offset, new_end_offset;
8946 long old_size, new_size;
8948 new_offset = offset_with_removed_text
8949 (&target_relax_info->action_list, val.r_rel.target_offset);
8951 /* Assert that we are not out of bounds. */
8952 old_size = bfd_get_32 (abfd, size_p);
8954 if (old_size == 0)
8956 /* Only the first zero-sized unreachable entry is
8957 allowed to expand. In this case the new offset
8958 should be the offset before the fill and the new
8959 size is the expansion size. For other zero-sized
8960 entries the resulting size should be zero with an
8961 offset before or after the fill address depending
8962 on whether the expanding unreachable entry
8963 preceeds it. */
8964 if (last_zfill_target_sec
8965 && last_zfill_target_sec == target_sec
8966 && last_zfill_target_offset == val.r_rel.target_offset)
8967 new_end_offset = new_offset;
8968 else
8970 new_end_offset = new_offset;
8971 new_offset = offset_with_removed_text_before_fill
8972 (&target_relax_info->action_list,
8973 val.r_rel.target_offset);
8975 /* If it is not unreachable and we have not yet
8976 seen an unreachable at this address, place it
8977 before the fill address. */
8978 if (!flags_p
8979 || (bfd_get_32 (abfd, flags_p)
8980 & XTENSA_PROP_UNREACHABLE) == 0)
8981 new_end_offset = new_offset;
8982 else
8984 last_zfill_target_sec = target_sec;
8985 last_zfill_target_offset = val.r_rel.target_offset;
8989 else
8991 new_end_offset = offset_with_removed_text_before_fill
8992 (&target_relax_info->action_list,
8993 val.r_rel.target_offset + old_size);
8996 new_size = new_end_offset - new_offset;
8998 if (new_size != old_size)
9000 bfd_put_32 (abfd, new_size, size_p);
9001 pin_contents (sec, contents);
9004 if (new_offset != val.r_rel.target_offset)
9006 bfd_vma diff = new_offset - val.r_rel.target_offset;
9007 irel->r_addend += diff;
9008 pin_internal_relocs (sec, internal_relocs);
9014 /* Combine adjacent property table entries. This is also done in
9015 finish_dynamic_sections() but at that point it's too late to
9016 reclaim the space in the output section, so we do this twice. */
9018 if (internal_relocs && (!link_info->relocatable
9019 || xtensa_is_littable_section (sec)))
9021 Elf_Internal_Rela *last_irel = NULL;
9022 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9023 int removed_bytes = 0;
9024 bfd_vma offset;
9025 bfd_vma section_size;
9026 flagword predef_flags;
9028 predef_flags = xtensa_get_property_predef_flags (sec);
9030 /* Walk over memory and relocations at the same time.
9031 This REQUIRES that the internal_relocs be sorted by offset. */
9032 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9033 internal_reloc_compare);
9035 pin_internal_relocs (sec, internal_relocs);
9036 pin_contents (sec, contents);
9038 next_rel = internal_relocs;
9039 rel_end = internal_relocs + sec->reloc_count;
9041 section_size = sec->size;
9042 BFD_ASSERT (section_size % entry_size == 0);
9044 for (offset = 0; offset < section_size; offset += entry_size)
9046 Elf_Internal_Rela *offset_rel, *extra_rel;
9047 bfd_vma bytes_to_remove, size, actual_offset;
9048 bfd_boolean remove_this_rel;
9049 flagword flags;
9051 /* Find the first relocation for the entry at the current offset.
9052 Adjust the offsets of any extra relocations for the previous
9053 entry. */
9054 offset_rel = NULL;
9055 if (next_rel)
9057 for (irel = next_rel; irel < rel_end; irel++)
9059 if ((irel->r_offset == offset
9060 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9061 || irel->r_offset > offset)
9063 offset_rel = irel;
9064 break;
9066 irel->r_offset -= removed_bytes;
9070 /* Find the next relocation (if there are any left). */
9071 extra_rel = NULL;
9072 if (offset_rel)
9074 for (irel = offset_rel + 1; irel < rel_end; irel++)
9076 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9078 extra_rel = irel;
9079 break;
9084 /* Check if there are relocations on the current entry. There
9085 should usually be a relocation on the offset field. If there
9086 are relocations on the size or flags, then we can't optimize
9087 this entry. Also, find the next relocation to examine on the
9088 next iteration. */
9089 if (offset_rel)
9091 if (offset_rel->r_offset >= offset + entry_size)
9093 next_rel = offset_rel;
9094 /* There are no relocations on the current entry, but we
9095 might still be able to remove it if the size is zero. */
9096 offset_rel = NULL;
9098 else if (offset_rel->r_offset > offset
9099 || (extra_rel
9100 && extra_rel->r_offset < offset + entry_size))
9102 /* There is a relocation on the size or flags, so we can't
9103 do anything with this entry. Continue with the next. */
9104 next_rel = offset_rel;
9105 continue;
9107 else
9109 BFD_ASSERT (offset_rel->r_offset == offset);
9110 offset_rel->r_offset -= removed_bytes;
9111 next_rel = offset_rel + 1;
9114 else
9115 next_rel = NULL;
9117 remove_this_rel = FALSE;
9118 bytes_to_remove = 0;
9119 actual_offset = offset - removed_bytes;
9120 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9122 if (is_full_prop_section)
9123 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9124 else
9125 flags = predef_flags;
9127 if (size == 0
9128 && (flags & XTENSA_PROP_ALIGN) == 0
9129 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9131 /* Always remove entries with zero size and no alignment. */
9132 bytes_to_remove = entry_size;
9133 if (offset_rel)
9134 remove_this_rel = TRUE;
9136 else if (offset_rel
9137 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9139 if (last_irel)
9141 flagword old_flags;
9142 bfd_vma old_size =
9143 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9144 bfd_vma old_address =
9145 (last_irel->r_addend
9146 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9147 bfd_vma new_address =
9148 (offset_rel->r_addend
9149 + bfd_get_32 (abfd, &contents[actual_offset]));
9150 if (is_full_prop_section)
9151 old_flags = bfd_get_32
9152 (abfd, &contents[last_irel->r_offset + 8]);
9153 else
9154 old_flags = predef_flags;
9156 if ((ELF32_R_SYM (offset_rel->r_info)
9157 == ELF32_R_SYM (last_irel->r_info))
9158 && old_address + old_size == new_address
9159 && old_flags == flags
9160 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9161 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9163 /* Fix the old size. */
9164 bfd_put_32 (abfd, old_size + size,
9165 &contents[last_irel->r_offset + 4]);
9166 bytes_to_remove = entry_size;
9167 remove_this_rel = TRUE;
9169 else
9170 last_irel = offset_rel;
9172 else
9173 last_irel = offset_rel;
9176 if (remove_this_rel)
9178 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9179 /* In case this is the last entry, move the relocation offset
9180 to the previous entry, if there is one. */
9181 if (offset_rel->r_offset >= bytes_to_remove)
9182 offset_rel->r_offset -= bytes_to_remove;
9183 else
9184 offset_rel->r_offset = 0;
9187 if (bytes_to_remove != 0)
9189 removed_bytes += bytes_to_remove;
9190 if (offset + bytes_to_remove < section_size)
9191 memmove (&contents[actual_offset],
9192 &contents[actual_offset + bytes_to_remove],
9193 section_size - offset - bytes_to_remove);
9197 if (removed_bytes)
9199 /* Fix up any extra relocations on the last entry. */
9200 for (irel = next_rel; irel < rel_end; irel++)
9201 irel->r_offset -= removed_bytes;
9203 /* Clear the removed bytes. */
9204 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9206 sec->size = section_size - removed_bytes;
9208 if (xtensa_is_littable_section (sec))
9210 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9211 if (sgotloc)
9212 sgotloc->size -= removed_bytes;
9217 error_return:
9218 release_internal_relocs (sec, internal_relocs);
9219 release_contents (sec, contents);
9220 return ok;
9224 /* Third relaxation pass. */
9226 /* Change symbol values to account for removed literals. */
9228 bfd_boolean
9229 relax_section_symbols (bfd *abfd, asection *sec)
9231 xtensa_relax_info *relax_info;
9232 unsigned int sec_shndx;
9233 Elf_Internal_Shdr *symtab_hdr;
9234 Elf_Internal_Sym *isymbuf;
9235 unsigned i, num_syms, num_locals;
9237 relax_info = get_xtensa_relax_info (sec);
9238 BFD_ASSERT (relax_info);
9240 if (!relax_info->is_relaxable_literal_section
9241 && !relax_info->is_relaxable_asm_section)
9242 return TRUE;
9244 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9246 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9247 isymbuf = retrieve_local_syms (abfd);
9249 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9250 num_locals = symtab_hdr->sh_info;
9252 /* Adjust the local symbols defined in this section. */
9253 for (i = 0; i < num_locals; i++)
9255 Elf_Internal_Sym *isym = &isymbuf[i];
9257 if (isym->st_shndx == sec_shndx)
9259 bfd_vma new_address = offset_with_removed_text
9260 (&relax_info->action_list, isym->st_value);
9261 bfd_vma new_size = isym->st_size;
9263 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9265 bfd_vma new_end = offset_with_removed_text
9266 (&relax_info->action_list, isym->st_value + isym->st_size);
9267 new_size = new_end - new_address;
9270 isym->st_value = new_address;
9271 isym->st_size = new_size;
9275 /* Now adjust the global symbols defined in this section. */
9276 for (i = 0; i < (num_syms - num_locals); i++)
9278 struct elf_link_hash_entry *sym_hash;
9280 sym_hash = elf_sym_hashes (abfd)[i];
9282 if (sym_hash->root.type == bfd_link_hash_warning)
9283 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9285 if ((sym_hash->root.type == bfd_link_hash_defined
9286 || sym_hash->root.type == bfd_link_hash_defweak)
9287 && sym_hash->root.u.def.section == sec)
9289 bfd_vma new_address = offset_with_removed_text
9290 (&relax_info->action_list, sym_hash->root.u.def.value);
9291 bfd_vma new_size = sym_hash->size;
9293 if (sym_hash->type == STT_FUNC)
9295 bfd_vma new_end = offset_with_removed_text
9296 (&relax_info->action_list,
9297 sym_hash->root.u.def.value + sym_hash->size);
9298 new_size = new_end - new_address;
9301 sym_hash->root.u.def.value = new_address;
9302 sym_hash->size = new_size;
9306 return TRUE;
9310 /* "Fix" handling functions, called while performing relocations. */
9312 static bfd_boolean
9313 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9314 bfd *input_bfd,
9315 asection *input_section,
9316 bfd_byte *contents)
9318 r_reloc r_rel;
9319 asection *sec, *old_sec;
9320 bfd_vma old_offset;
9321 int r_type = ELF32_R_TYPE (rel->r_info);
9322 reloc_bfd_fix *fix;
9324 if (r_type == R_XTENSA_NONE)
9325 return TRUE;
9327 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9328 if (!fix)
9329 return TRUE;
9331 r_reloc_init (&r_rel, input_bfd, rel, contents,
9332 bfd_get_section_limit (input_bfd, input_section));
9333 old_sec = r_reloc_get_section (&r_rel);
9334 old_offset = r_rel.target_offset;
9336 if (!old_sec || !r_reloc_is_defined (&r_rel))
9338 if (r_type != R_XTENSA_ASM_EXPAND)
9340 (*_bfd_error_handler)
9341 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9342 input_bfd, input_section, rel->r_offset,
9343 elf_howto_table[r_type].name);
9344 return FALSE;
9346 /* Leave it be. Resolution will happen in a later stage. */
9348 else
9350 sec = fix->target_sec;
9351 rel->r_addend += ((sec->output_offset + fix->target_offset)
9352 - (old_sec->output_offset + old_offset));
9354 return TRUE;
9358 static void
9359 do_fix_for_final_link (Elf_Internal_Rela *rel,
9360 bfd *input_bfd,
9361 asection *input_section,
9362 bfd_byte *contents,
9363 bfd_vma *relocationp)
9365 asection *sec;
9366 int r_type = ELF32_R_TYPE (rel->r_info);
9367 reloc_bfd_fix *fix;
9368 bfd_vma fixup_diff;
9370 if (r_type == R_XTENSA_NONE)
9371 return;
9373 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9374 if (!fix)
9375 return;
9377 sec = fix->target_sec;
9379 fixup_diff = rel->r_addend;
9380 if (elf_howto_table[fix->src_type].partial_inplace)
9382 bfd_vma inplace_val;
9383 BFD_ASSERT (fix->src_offset
9384 < bfd_get_section_limit (input_bfd, input_section));
9385 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9386 fixup_diff += inplace_val;
9389 *relocationp = (sec->output_section->vma
9390 + sec->output_offset
9391 + fix->target_offset - fixup_diff);
9395 /* Miscellaneous utility functions.... */
9397 static asection *
9398 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9400 struct elf_xtensa_link_hash_table *htab;
9401 bfd *dynobj;
9402 char plt_name[10];
9404 if (chunk == 0)
9406 htab = elf_xtensa_hash_table (info);
9407 return htab->splt;
9410 dynobj = elf_hash_table (info)->dynobj;
9411 sprintf (plt_name, ".plt.%u", chunk);
9412 return bfd_get_section_by_name (dynobj, plt_name);
9416 static asection *
9417 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9419 struct elf_xtensa_link_hash_table *htab;
9420 bfd *dynobj;
9421 char got_name[14];
9423 if (chunk == 0)
9425 htab = elf_xtensa_hash_table (info);
9426 return htab->sgotplt;
9429 dynobj = elf_hash_table (info)->dynobj;
9430 sprintf (got_name, ".got.plt.%u", chunk);
9431 return bfd_get_section_by_name (dynobj, got_name);
9435 /* Get the input section for a given symbol index.
9436 If the symbol is:
9437 . a section symbol, return the section;
9438 . a common symbol, return the common section;
9439 . an undefined symbol, return the undefined section;
9440 . an indirect symbol, follow the links;
9441 . an absolute value, return the absolute section. */
9443 static asection *
9444 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9446 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9447 asection *target_sec = NULL;
9448 if (r_symndx < symtab_hdr->sh_info)
9450 Elf_Internal_Sym *isymbuf;
9451 unsigned int section_index;
9453 isymbuf = retrieve_local_syms (abfd);
9454 section_index = isymbuf[r_symndx].st_shndx;
9456 if (section_index == SHN_UNDEF)
9457 target_sec = bfd_und_section_ptr;
9458 else if (section_index > 0 && section_index < SHN_LORESERVE)
9459 target_sec = bfd_section_from_elf_index (abfd, section_index);
9460 else if (section_index == SHN_ABS)
9461 target_sec = bfd_abs_section_ptr;
9462 else if (section_index == SHN_COMMON)
9463 target_sec = bfd_com_section_ptr;
9464 else
9465 /* Who knows? */
9466 target_sec = NULL;
9468 else
9470 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9471 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9473 while (h->root.type == bfd_link_hash_indirect
9474 || h->root.type == bfd_link_hash_warning)
9475 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9477 switch (h->root.type)
9479 case bfd_link_hash_defined:
9480 case bfd_link_hash_defweak:
9481 target_sec = h->root.u.def.section;
9482 break;
9483 case bfd_link_hash_common:
9484 target_sec = bfd_com_section_ptr;
9485 break;
9486 case bfd_link_hash_undefined:
9487 case bfd_link_hash_undefweak:
9488 target_sec = bfd_und_section_ptr;
9489 break;
9490 default: /* New indirect warning. */
9491 target_sec = bfd_und_section_ptr;
9492 break;
9495 return target_sec;
9499 static struct elf_link_hash_entry *
9500 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9502 unsigned long indx;
9503 struct elf_link_hash_entry *h;
9504 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9506 if (r_symndx < symtab_hdr->sh_info)
9507 return NULL;
9509 indx = r_symndx - symtab_hdr->sh_info;
9510 h = elf_sym_hashes (abfd)[indx];
9511 while (h->root.type == bfd_link_hash_indirect
9512 || h->root.type == bfd_link_hash_warning)
9513 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9514 return h;
9518 /* Get the section-relative offset for a symbol number. */
9520 static bfd_vma
9521 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9523 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9524 bfd_vma offset = 0;
9526 if (r_symndx < symtab_hdr->sh_info)
9528 Elf_Internal_Sym *isymbuf;
9529 isymbuf = retrieve_local_syms (abfd);
9530 offset = isymbuf[r_symndx].st_value;
9532 else
9534 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9535 struct elf_link_hash_entry *h =
9536 elf_sym_hashes (abfd)[indx];
9538 while (h->root.type == bfd_link_hash_indirect
9539 || h->root.type == bfd_link_hash_warning)
9540 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9541 if (h->root.type == bfd_link_hash_defined
9542 || h->root.type == bfd_link_hash_defweak)
9543 offset = h->root.u.def.value;
9545 return offset;
9549 static bfd_boolean
9550 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9552 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9553 struct elf_link_hash_entry *h;
9555 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9556 if (h && h->root.type == bfd_link_hash_defweak)
9557 return TRUE;
9558 return FALSE;
9562 static bfd_boolean
9563 pcrel_reloc_fits (xtensa_opcode opc,
9564 int opnd,
9565 bfd_vma self_address,
9566 bfd_vma dest_address)
9568 xtensa_isa isa = xtensa_default_isa;
9569 uint32 valp = dest_address;
9570 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9571 || xtensa_operand_encode (isa, opc, opnd, &valp))
9572 return FALSE;
9573 return TRUE;
9577 static bfd_boolean
9578 xtensa_is_property_section (asection *sec)
9580 if (xtensa_is_insntable_section (sec)
9581 || xtensa_is_littable_section (sec)
9582 || xtensa_is_proptable_section (sec))
9583 return TRUE;
9585 return FALSE;
9589 static bfd_boolean
9590 xtensa_is_insntable_section (asection *sec)
9592 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9593 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9594 return TRUE;
9596 return FALSE;
9600 static bfd_boolean
9601 xtensa_is_littable_section (asection *sec)
9603 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9604 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9605 return TRUE;
9607 return FALSE;
9611 static bfd_boolean
9612 xtensa_is_proptable_section (asection *sec)
9614 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9615 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9616 return TRUE;
9618 return FALSE;
9622 static int
9623 internal_reloc_compare (const void *ap, const void *bp)
9625 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9626 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9628 if (a->r_offset != b->r_offset)
9629 return (a->r_offset - b->r_offset);
9631 /* We don't need to sort on these criteria for correctness,
9632 but enforcing a more strict ordering prevents unstable qsort
9633 from behaving differently with different implementations.
9634 Without the code below we get correct but different results
9635 on Solaris 2.7 and 2.8. We would like to always produce the
9636 same results no matter the host. */
9638 if (a->r_info != b->r_info)
9639 return (a->r_info - b->r_info);
9641 return (a->r_addend - b->r_addend);
9645 static int
9646 internal_reloc_matches (const void *ap, const void *bp)
9648 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9649 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9651 /* Check if one entry overlaps with the other; this shouldn't happen
9652 except when searching for a match. */
9653 return (a->r_offset - b->r_offset);
9657 /* Predicate function used to look up a section in a particular group. */
9659 static bfd_boolean
9660 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9662 const char *gname = inf;
9663 const char *group_name = elf_group_name (sec);
9665 return (group_name == gname
9666 || (group_name != NULL
9667 && gname != NULL
9668 && strcmp (group_name, gname) == 0));
9672 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9674 asection *
9675 xtensa_get_property_section (asection *sec, const char *base_name)
9677 const char *suffix, *group_name;
9678 char *prop_sec_name;
9679 asection *prop_sec;
9681 group_name = elf_group_name (sec);
9682 if (group_name)
9684 suffix = strrchr (sec->name, '.');
9685 if (suffix == sec->name)
9686 suffix = 0;
9687 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9688 + (suffix ? strlen (suffix) : 0));
9689 strcpy (prop_sec_name, base_name);
9690 if (suffix)
9691 strcat (prop_sec_name, suffix);
9693 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9695 char *linkonce_kind = 0;
9697 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9698 linkonce_kind = "x.";
9699 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9700 linkonce_kind = "p.";
9701 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9702 linkonce_kind = "prop.";
9703 else
9704 abort ();
9706 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9707 + strlen (linkonce_kind) + 1);
9708 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9709 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9711 suffix = sec->name + linkonce_len;
9712 /* For backward compatibility, replace "t." instead of inserting
9713 the new linkonce_kind (but not for "prop" sections). */
9714 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9715 suffix += 2;
9716 strcat (prop_sec_name + linkonce_len, suffix);
9718 else
9719 prop_sec_name = strdup (base_name);
9721 /* Check if the section already exists. */
9722 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9723 match_section_group,
9724 (void *) group_name);
9725 /* If not, create it. */
9726 if (! prop_sec)
9728 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9729 flags |= (bfd_get_section_flags (sec->owner, sec)
9730 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9732 prop_sec = bfd_make_section_anyway_with_flags
9733 (sec->owner, strdup (prop_sec_name), flags);
9734 if (! prop_sec)
9735 return 0;
9737 elf_group_name (prop_sec) = group_name;
9740 free (prop_sec_name);
9741 return prop_sec;
9745 flagword
9746 xtensa_get_property_predef_flags (asection *sec)
9748 if (xtensa_is_insntable_section (sec))
9749 return (XTENSA_PROP_INSN
9750 | XTENSA_PROP_NO_TRANSFORM
9751 | XTENSA_PROP_INSN_NO_REORDER);
9753 if (xtensa_is_littable_section (sec))
9754 return (XTENSA_PROP_LITERAL
9755 | XTENSA_PROP_NO_TRANSFORM
9756 | XTENSA_PROP_INSN_NO_REORDER);
9758 return 0;
9762 /* Other functions called directly by the linker. */
9764 bfd_boolean
9765 xtensa_callback_required_dependence (bfd *abfd,
9766 asection *sec,
9767 struct bfd_link_info *link_info,
9768 deps_callback_t callback,
9769 void *closure)
9771 Elf_Internal_Rela *internal_relocs;
9772 bfd_byte *contents;
9773 unsigned i;
9774 bfd_boolean ok = TRUE;
9775 bfd_size_type sec_size;
9777 sec_size = bfd_get_section_limit (abfd, sec);
9779 /* ".plt*" sections have no explicit relocations but they contain L32R
9780 instructions that reference the corresponding ".got.plt*" sections. */
9781 if ((sec->flags & SEC_LINKER_CREATED) != 0
9782 && CONST_STRNEQ (sec->name, ".plt"))
9784 asection *sgotplt;
9786 /* Find the corresponding ".got.plt*" section. */
9787 if (sec->name[4] == '\0')
9788 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9789 else
9791 char got_name[14];
9792 int chunk = 0;
9794 BFD_ASSERT (sec->name[4] == '.');
9795 chunk = strtol (&sec->name[5], NULL, 10);
9797 sprintf (got_name, ".got.plt.%u", chunk);
9798 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9800 BFD_ASSERT (sgotplt);
9802 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9803 section referencing a literal at the very beginning of
9804 ".got.plt". This is very close to the real dependence, anyway. */
9805 (*callback) (sec, sec_size, sgotplt, 0, closure);
9808 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9809 when building uclibc, which runs "ld -b binary /dev/null". */
9810 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9811 return ok;
9813 internal_relocs = retrieve_internal_relocs (abfd, sec,
9814 link_info->keep_memory);
9815 if (internal_relocs == NULL
9816 || sec->reloc_count == 0)
9817 return ok;
9819 /* Cache the contents for the duration of this scan. */
9820 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9821 if (contents == NULL && sec_size != 0)
9823 ok = FALSE;
9824 goto error_return;
9827 if (!xtensa_default_isa)
9828 xtensa_default_isa = xtensa_isa_init (0, 0);
9830 for (i = 0; i < sec->reloc_count; i++)
9832 Elf_Internal_Rela *irel = &internal_relocs[i];
9833 if (is_l32r_relocation (abfd, sec, contents, irel))
9835 r_reloc l32r_rel;
9836 asection *target_sec;
9837 bfd_vma target_offset;
9839 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9840 target_sec = NULL;
9841 target_offset = 0;
9842 /* L32Rs must be local to the input file. */
9843 if (r_reloc_is_defined (&l32r_rel))
9845 target_sec = r_reloc_get_section (&l32r_rel);
9846 target_offset = l32r_rel.target_offset;
9848 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9849 closure);
9853 error_return:
9854 release_internal_relocs (sec, internal_relocs);
9855 release_contents (sec, contents);
9856 return ok;
9859 /* The default literal sections should always be marked as "code" (i.e.,
9860 SHF_EXECINSTR). This is particularly important for the Linux kernel
9861 module loader so that the literals are not placed after the text. */
9862 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9864 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9865 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9866 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9867 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9868 { NULL, 0, 0, 0, 0 }
9871 #ifndef ELF_ARCH
9872 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9873 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9874 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9875 #define TARGET_BIG_NAME "elf32-xtensa-be"
9876 #define ELF_ARCH bfd_arch_xtensa
9878 #define ELF_MACHINE_CODE EM_XTENSA
9879 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9881 #if XCHAL_HAVE_MMU
9882 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9883 #else /* !XCHAL_HAVE_MMU */
9884 #define ELF_MAXPAGESIZE 1
9885 #endif /* !XCHAL_HAVE_MMU */
9886 #endif /* ELF_ARCH */
9888 #define elf_backend_can_gc_sections 1
9889 #define elf_backend_can_refcount 1
9890 #define elf_backend_plt_readonly 1
9891 #define elf_backend_got_header_size 4
9892 #define elf_backend_want_dynbss 0
9893 #define elf_backend_want_got_plt 1
9895 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9897 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9898 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9899 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9900 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9901 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9902 #define bfd_elf32_bfd_reloc_name_lookup \
9903 elf_xtensa_reloc_name_lookup
9904 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9905 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9907 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9908 #define elf_backend_check_relocs elf_xtensa_check_relocs
9909 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9910 #define elf_backend_discard_info elf_xtensa_discard_info
9911 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9912 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9913 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9914 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9915 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9916 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9917 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9918 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9919 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9920 #define elf_backend_object_p elf_xtensa_object_p
9921 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9922 #define elf_backend_relocate_section elf_xtensa_relocate_section
9923 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9924 #define elf_backend_omit_section_dynsym \
9925 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9926 #define elf_backend_special_sections elf_xtensa_special_sections
9927 #define elf_backend_action_discarded elf_xtensa_action_discarded
9929 #include "elf32-target.h"