1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o
, off_t offset
, off_t len
)
56 return ftruncate(o
, offset
+ len
);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed
;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters
->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size
)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list
* segment_list
,
101 const Layout::Section_list
* section_list
,
102 const Layout::Section_list
* unattached_section_list
,
103 const Stringpool
* secnamepool
,
104 const Output_section
* shstrtab_section
)
106 segment_list_(segment_list
),
107 section_list_(section_list
),
108 unattached_section_list_(unattached_section_list
),
109 secnamepool_(secnamepool
),
110 shstrtab_section_(shstrtab_section
)
114 // Compute the current data size.
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
121 if (!parameters
->options().relocatable())
123 for (Layout::Segment_list::const_iterator p
=
124 this->segment_list_
->begin();
125 p
!= this->segment_list_
->end();
127 if ((*p
)->type() == elfcpp::PT_LOAD
)
128 count
+= (*p
)->output_section_count();
132 for (Layout::Section_list::const_iterator p
=
133 this->section_list_
->begin();
134 p
!= this->section_list_
->end();
136 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
139 count
+= this->unattached_section_list_
->size();
141 const int size
= parameters
->target().get_size();
144 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
146 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
150 return count
* shdr_size
;
153 // Write out the section headers.
156 Output_section_headers::do_write(Output_file
* of
)
158 switch (parameters
->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE
:
162 this->do_sized_write
<32, false>(of
);
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG
:
167 this->do_sized_write
<32, true>(of
);
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE
:
172 this->do_sized_write
<64, false>(of
);
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG
:
177 this->do_sized_write
<64, true>(of
);
185 template<int size
, bool big_endian
>
187 Output_section_headers::do_sized_write(Output_file
* of
)
189 off_t all_shdrs_size
= this->data_size();
190 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
192 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
193 unsigned char* v
= view
;
196 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
197 oshdr
.put_sh_name(0);
198 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
199 oshdr
.put_sh_flags(0);
200 oshdr
.put_sh_addr(0);
201 oshdr
.put_sh_offset(0);
203 size_t section_count
= (this->data_size()
204 / elfcpp::Elf_sizes
<size
>::shdr_size
);
205 if (section_count
< elfcpp::SHN_LORESERVE
)
206 oshdr
.put_sh_size(0);
208 oshdr
.put_sh_size(section_count
);
210 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
211 if (shstrndx
< elfcpp::SHN_LORESERVE
)
212 oshdr
.put_sh_link(0);
214 oshdr
.put_sh_link(shstrndx
);
216 size_t segment_count
= this->segment_list_
->size();
217 oshdr
.put_sh_info(segment_count
>= elfcpp::PN_XNUM
? segment_count
: 0);
219 oshdr
.put_sh_addralign(0);
220 oshdr
.put_sh_entsize(0);
225 unsigned int shndx
= 1;
226 if (!parameters
->options().relocatable())
228 for (Layout::Segment_list::const_iterator p
=
229 this->segment_list_
->begin();
230 p
!= this->segment_list_
->end();
232 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
239 for (Layout::Section_list::const_iterator p
=
240 this->section_list_
->begin();
241 p
!= this->section_list_
->end();
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
247 && (*p
)->type() != elfcpp::SHT_GROUP
)
249 gold_assert(shndx
== (*p
)->out_shndx());
250 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
251 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
257 for (Layout::Section_list::const_iterator p
=
258 this->unattached_section_list_
->begin();
259 p
!= this->unattached_section_list_
->end();
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p
)->type() == elfcpp::SHT_GROUP
265 && parameters
->options().relocatable())
267 gold_assert(shndx
== (*p
)->out_shndx());
268 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
269 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
274 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list
& segment_list
)
281 : segment_list_(segment_list
)
286 Output_segment_headers::do_write(Output_file
* of
)
288 switch (parameters
->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE
:
292 this->do_sized_write
<32, false>(of
);
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG
:
297 this->do_sized_write
<32, true>(of
);
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE
:
302 this->do_sized_write
<64, false>(of
);
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG
:
307 this->do_sized_write
<64, true>(of
);
315 template<int size
, bool big_endian
>
317 Output_segment_headers::do_sized_write(Output_file
* of
)
319 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
320 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
321 gold_assert(all_phdrs_size
== this->data_size());
322 unsigned char* view
= of
->get_output_view(this->offset(),
324 unsigned char* v
= view
;
325 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
326 p
!= this->segment_list_
.end();
329 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
330 (*p
)->write_header(&ophdr
);
334 gold_assert(v
- view
== all_phdrs_size
);
336 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
340 Output_segment_headers::do_size() const
342 const int size
= parameters
->target().get_size();
345 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
347 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
351 return this->segment_list_
.size() * phdr_size
;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target
* target
,
357 const Symbol_table
* symtab
,
358 const Output_segment_headers
* osh
,
362 segment_header_(osh
),
363 section_header_(NULL
),
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
373 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
374 const Output_section
* shstrtab
)
376 this->section_header_
= shdrs
;
377 this->shstrtab_
= shstrtab
;
380 // Write out the file header.
383 Output_file_header::do_write(Output_file
* of
)
385 gold_assert(this->offset() == 0);
387 switch (parameters
->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE
:
391 this->do_sized_write
<32, false>(of
);
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG
:
396 this->do_sized_write
<32, true>(of
);
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE
:
401 this->do_sized_write
<64, false>(of
);
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG
:
406 this->do_sized_write
<64, true>(of
);
414 // Write out the file header with appropriate size and endianess.
416 template<int size
, bool big_endian
>
418 Output_file_header::do_sized_write(Output_file
* of
)
420 gold_assert(this->offset() == 0);
422 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
423 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
424 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
426 unsigned char e_ident
[elfcpp::EI_NIDENT
];
427 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
428 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
429 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
430 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
431 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
433 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
435 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
438 e_ident
[elfcpp::EI_DATA
] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB
);
441 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
442 oehdr
.put_e_ident(e_ident
);
445 if (parameters
->options().relocatable())
446 e_type
= elfcpp::ET_REL
;
447 else if (parameters
->options().output_is_position_independent())
448 e_type
= elfcpp::ET_DYN
;
450 e_type
= elfcpp::ET_EXEC
;
451 oehdr
.put_e_type(e_type
);
453 oehdr
.put_e_machine(this->target_
->machine_code());
454 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
456 oehdr
.put_e_entry(this->entry
<size
>());
458 if (this->segment_header_
== NULL
)
459 oehdr
.put_e_phoff(0);
461 oehdr
.put_e_phoff(this->segment_header_
->offset());
463 oehdr
.put_e_shoff(this->section_header_
->offset());
464 oehdr
.put_e_flags(this->target_
->processor_specific_flags());
465 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
467 if (this->segment_header_
== NULL
)
469 oehdr
.put_e_phentsize(0);
470 oehdr
.put_e_phnum(0);
474 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
475 size_t phnum
= (this->segment_header_
->data_size()
476 / elfcpp::Elf_sizes
<size
>::phdr_size
);
477 if (phnum
> elfcpp::PN_XNUM
)
478 phnum
= elfcpp::PN_XNUM
;
479 oehdr
.put_e_phnum(phnum
);
482 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
483 size_t section_count
= (this->section_header_
->data_size()
484 / elfcpp::Elf_sizes
<size
>::shdr_size
);
486 if (section_count
< elfcpp::SHN_LORESERVE
)
487 oehdr
.put_e_shnum(this->section_header_
->data_size()
488 / elfcpp::Elf_sizes
<size
>::shdr_size
);
490 oehdr
.put_e_shnum(0);
492 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
493 if (shstrndx
< elfcpp::SHN_LORESERVE
)
494 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
496 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters
->target().adjust_elf_header(view
, ehdr_size
);
502 of
->write_output_view(0, ehdr_size
, view
);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
509 typename
elfcpp::Elf_types
<size
>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning
= (this->entry_
!= NULL
513 && !parameters
->options().relocatable()
514 && !parameters
->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry
= this->entry_
;
521 Symbol
* sym
= this->symtab_
->lookup(entry
);
523 typename Sized_symbol
<size
>::Value_type v
;
526 Sized_symbol
<size
>* ssym
;
527 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
528 if (!ssym
->is_defined() && should_issue_warning
)
529 gold_warning("entry symbol '%s' exists but is not defined", entry
);
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
537 v
= strtoull(entry
, &endptr
, 0);
540 if (should_issue_warning
)
541 gold_warning("cannot find entry symbol '%s'", entry
);
549 // Compute the current data size.
552 Output_file_header::do_size() const
554 const int size
= parameters
->target().get_size();
556 return elfcpp::Elf_sizes
<32>::ehdr_size
;
558 return elfcpp::Elf_sizes
<64>::ehdr_size
;
563 // Output_data_const methods.
566 Output_data_const::do_write(Output_file
* of
)
568 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
571 // Output_data_const_buffer methods.
574 Output_data_const_buffer::do_write(Output_file
* of
)
576 of
->write(this->offset(), this->p_
, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
584 Output_section_data::set_output_section(Output_section
* os
)
586 gold_assert(this->output_section_
== NULL
);
587 this->output_section_
= os
;
588 this->do_adjust_output_section(os
);
591 // Return the section index of the output section.
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_
!= NULL
);
597 return this->output_section_
->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
604 Output_section_data::set_addralign(uint64_t addralign
)
606 this->addralign_
= addralign
;
607 if (this->output_section_
!= NULL
608 && this->output_section_
->addralign() < addralign
)
609 this->output_section_
->set_addralign(addralign
);
612 // Output_data_strtab methods.
614 // Set the final data size.
617 Output_data_strtab::set_final_data_size()
619 this->strtab_
->set_string_offsets();
620 this->set_data_size(this->strtab_
->get_strtab_size());
623 // Write out a string table.
626 Output_data_strtab::do_write(Output_file
* of
)
628 this->strtab_
->write(of
, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic
, int size
, bool big_endian
>
636 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
643 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
644 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
645 is_section_symbol_(false), shndx_(INVALID_CODE
)
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_
== type
);
649 this->u1_
.gsym
= gsym
;
652 this->set_needs_dynsym_index();
655 template<bool dynamic
, int size
, bool big_endian
>
656 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
659 Sized_relobj
<size
, big_endian
>* relobj
,
664 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
665 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
666 is_section_symbol_(false), shndx_(shndx
)
668 gold_assert(shndx
!= INVALID_CODE
);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_
== type
);
671 this->u1_
.gsym
= gsym
;
672 this->u2_
.relobj
= relobj
;
674 this->set_needs_dynsym_index();
677 // A reloc against a local symbol.
679 template<bool dynamic
, int size
, bool big_endian
>
680 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
681 Sized_relobj
<size
, big_endian
>* relobj
,
682 unsigned int local_sym_index
,
688 bool is_section_symbol
)
689 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
690 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
691 is_section_symbol_(is_section_symbol
), shndx_(INVALID_CODE
)
693 gold_assert(local_sym_index
!= GSYM_CODE
694 && local_sym_index
!= INVALID_CODE
);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_
== type
);
697 this->u1_
.relobj
= relobj
;
700 this->set_needs_dynsym_index();
703 template<bool dynamic
, int size
, bool big_endian
>
704 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
705 Sized_relobj
<size
, big_endian
>* relobj
,
706 unsigned int local_sym_index
,
712 bool is_section_symbol
)
713 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
714 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
715 is_section_symbol_(is_section_symbol
), shndx_(shndx
)
717 gold_assert(local_sym_index
!= GSYM_CODE
718 && local_sym_index
!= INVALID_CODE
);
719 gold_assert(shndx
!= INVALID_CODE
);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_
== type
);
722 this->u1_
.relobj
= relobj
;
723 this->u2_
.relobj
= relobj
;
725 this->set_needs_dynsym_index();
728 // A reloc against the STT_SECTION symbol of an output section.
730 template<bool dynamic
, int size
, bool big_endian
>
731 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
736 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE
)
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_
== type
);
745 this->set_needs_dynsym_index();
747 os
->set_needs_symtab_index();
750 template<bool dynamic
, int size
, bool big_endian
>
751 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
754 Sized_relobj
<size
, big_endian
>* relobj
,
757 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx
)
761 gold_assert(shndx
!= INVALID_CODE
);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_
== type
);
765 this->u2_
.relobj
= relobj
;
767 this->set_needs_dynsym_index();
769 os
->set_needs_symtab_index();
772 // An absolute relocation.
774 template<bool dynamic
, int size
, bool big_endian
>
775 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
779 : address_(address
), local_sym_index_(0), type_(type
),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE
)
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_
== type
);
785 this->u1_
.relobj
= NULL
;
789 template<bool dynamic
, int size
, bool big_endian
>
790 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
792 Sized_relobj
<size
, big_endian
>* relobj
,
795 : address_(address
), local_sym_index_(0), type_(type
),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx
)
799 gold_assert(shndx
!= INVALID_CODE
);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_
== type
);
802 this->u1_
.relobj
= NULL
;
803 this->u2_
.relobj
= relobj
;
806 // A target specific relocation.
808 template<bool dynamic
, int size
, bool big_endian
>
809 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
814 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE
)
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_
== type
);
824 template<bool dynamic
, int size
, bool big_endian
>
825 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
828 Sized_relobj
<size
, big_endian
>* relobj
,
831 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx
)
835 gold_assert(shndx
!= INVALID_CODE
);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_
== type
);
839 this->u2_
.relobj
= relobj
;
842 // Record that we need a dynamic symbol index for this relocation.
844 template<bool dynamic
, int size
, bool big_endian
>
846 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
847 set_needs_dynsym_index()
849 if (this->is_symbolless_
)
851 switch (this->local_sym_index_
)
857 this->u1_
.gsym
->set_needs_dynsym_entry();
861 this->u1_
.os
->set_needs_dynsym_index();
865 // The target must take care of this if necessary.
873 const unsigned int lsi
= this->local_sym_index_
;
874 if (!this->is_section_symbol_
)
875 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
877 this->u1_
.relobj
->output_section(lsi
)->set_needs_dynsym_index();
883 // Get the symbol index of a relocation.
885 template<bool dynamic
, int size
, bool big_endian
>
887 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
891 if (this->is_symbolless_
)
893 switch (this->local_sym_index_
)
899 if (this->u1_
.gsym
== NULL
)
902 index
= this->u1_
.gsym
->dynsym_index();
904 index
= this->u1_
.gsym
->symtab_index();
909 index
= this->u1_
.os
->dynsym_index();
911 index
= this->u1_
.os
->symtab_index();
915 index
= parameters
->target().reloc_symbol_index(this->u1_
.arg
,
920 // Relocations without symbols use a symbol index of 0.
926 const unsigned int lsi
= this->local_sym_index_
;
927 if (!this->is_section_symbol_
)
930 index
= this->u1_
.relobj
->dynsym_index(lsi
);
932 index
= this->u1_
.relobj
->symtab_index(lsi
);
936 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
937 gold_assert(os
!= NULL
);
939 index
= os
->dynsym_index();
941 index
= os
->symtab_index();
946 gold_assert(index
!= -1U);
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
953 template<bool dynamic
, int size
, bool big_endian
>
954 typename
elfcpp::Elf_types
<size
>::Elf_Addr
955 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
956 local_section_offset(Addend addend
) const
958 gold_assert(this->local_sym_index_
!= GSYM_CODE
959 && this->local_sym_index_
!= SECTION_CODE
960 && this->local_sym_index_
!= TARGET_CODE
961 && this->local_sym_index_
!= INVALID_CODE
962 && this->local_sym_index_
!= 0
963 && this->is_section_symbol_
);
964 const unsigned int lsi
= this->local_sym_index_
;
965 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
966 gold_assert(os
!= NULL
);
967 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
968 if (offset
!= invalid_address
)
969 return offset
+ addend
;
970 // This is a merge section.
971 offset
= os
->output_address(this->u1_
.relobj
, lsi
, addend
);
972 gold_assert(offset
!= invalid_address
);
976 // Get the output address of a relocation.
978 template<bool dynamic
, int size
, bool big_endian
>
979 typename
elfcpp::Elf_types
<size
>::Elf_Addr
980 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
982 Address address
= this->address_
;
983 if (this->shndx_
!= INVALID_CODE
)
985 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
986 gold_assert(os
!= NULL
);
987 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
988 if (off
!= invalid_address
)
989 address
+= os
->address() + off
;
992 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
994 gold_assert(address
!= invalid_address
);
997 else if (this->u2_
.od
!= NULL
)
998 address
+= this->u2_
.od
->address();
1002 // Write out the offset and info fields of a Rel or Rela relocation
1005 template<bool dynamic
, int size
, bool big_endian
>
1006 template<typename Write_rel
>
1008 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
1009 Write_rel
* wr
) const
1011 wr
->put_r_offset(this->get_address());
1012 unsigned int sym_index
= this->get_symbol_index();
1013 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
1016 // Write out a Rel relocation.
1018 template<bool dynamic
, int size
, bool big_endian
>
1020 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
1021 unsigned char* pov
) const
1023 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
1024 this->write_rel(&orel
);
1027 // Get the value of the symbol referred to by a Rel relocation.
1029 template<bool dynamic
, int size
, bool big_endian
>
1030 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1031 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
1032 Addend addend
) const
1034 if (this->local_sym_index_
== GSYM_CODE
)
1036 const Sized_symbol
<size
>* sym
;
1037 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
1038 return sym
->value() + addend
;
1040 gold_assert(this->local_sym_index_
!= SECTION_CODE
1041 && this->local_sym_index_
!= TARGET_CODE
1042 && this->local_sym_index_
!= INVALID_CODE
1043 && this->local_sym_index_
!= 0
1044 && !this->is_section_symbol_
);
1045 const unsigned int lsi
= this->local_sym_index_
;
1046 const Symbol_value
<size
>* symval
= this->u1_
.relobj
->local_symbol(lsi
);
1047 return symval
->value(this->u1_
.relobj
, addend
);
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1056 template<bool dynamic
, int size
, bool big_endian
>
1058 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1059 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1062 if (this->is_relative_
)
1064 if (!r2
.is_relative_
)
1066 // Otherwise sort by reloc address below.
1068 else if (r2
.is_relative_
)
1072 unsigned int sym1
= this->get_symbol_index();
1073 unsigned int sym2
= r2
.get_symbol_index();
1076 else if (sym1
> sym2
)
1078 // Otherwise sort by reloc address.
1081 section_offset_type addr1
= this->get_address();
1082 section_offset_type addr2
= r2
.get_address();
1085 else if (addr1
> addr2
)
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1
= this->type_
;
1091 unsigned int type2
= r2
.type_
;
1094 else if (type1
> type2
)
1097 // These relocs appear to be exactly the same.
1101 // Write out a Rela relocation.
1103 template<bool dynamic
, int size
, bool big_endian
>
1105 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
1106 unsigned char* pov
) const
1108 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
1109 this->rel_
.write_rel(&orel
);
1110 Addend addend
= this->addend_
;
1111 if (this->rel_
.is_target_specific())
1112 addend
= parameters
->target().reloc_addend(this->rel_
.target_arg(),
1113 this->rel_
.type(), addend
);
1114 else if (this->rel_
.is_symbolless())
1115 addend
= this->rel_
.symbol_value(addend
);
1116 else if (this->rel_
.is_local_section_symbol())
1117 addend
= this->rel_
.local_section_offset(addend
);
1118 orel
.put_r_addend(addend
);
1121 // Output_data_reloc_base methods.
1123 // Adjust the output section.
1125 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1127 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1128 ::do_adjust_output_section(Output_section
* os
)
1130 if (sh_type
== elfcpp::SHT_REL
)
1131 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1132 else if (sh_type
== elfcpp::SHT_RELA
)
1133 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1142 os
->set_should_link_to_symtab();
1143 else if (parameters
->doing_static_link())
1146 os
->set_should_link_to_dynsym();
1149 // Write out relocation data.
1151 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1153 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1156 const off_t off
= this->offset();
1157 const off_t oview_size
= this->data_size();
1158 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1160 if (this->sort_relocs())
1162 gold_assert(dynamic
);
1163 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1164 Sort_relocs_comparison());
1167 unsigned char* pov
= oview
;
1168 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1169 p
!= this->relocs_
.end();
1176 gold_assert(pov
- oview
== oview_size
);
1178 of
->write_output_view(off
, oview_size
, oview
);
1180 // We no longer need the relocation entries.
1181 this->relocs_
.clear();
1184 // Class Output_relocatable_relocs.
1186 template<int sh_type
, int size
, bool big_endian
>
1188 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1190 this->set_data_size(this->rr_
->output_reloc_count()
1191 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1194 // class Output_data_group.
1196 template<int size
, bool big_endian
>
1197 Output_data_group
<size
, big_endian
>::Output_data_group(
1198 Sized_relobj
<size
, big_endian
>* relobj
,
1199 section_size_type entry_count
,
1200 elfcpp::Elf_Word flags
,
1201 std::vector
<unsigned int>* input_shndxes
)
1202 : Output_section_data(entry_count
* 4, 4, false),
1206 this->input_shndxes_
.swap(*input_shndxes
);
1209 // Write out the section group, which means translating the section
1210 // indexes to apply to the output file.
1212 template<int size
, bool big_endian
>
1214 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1216 const off_t off
= this->offset();
1217 const section_size_type oview_size
=
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1221 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1222 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1225 for (std::vector
<unsigned int>::const_iterator p
=
1226 this->input_shndxes_
.begin();
1227 p
!= this->input_shndxes_
.end();
1230 Output_section
* os
= this->relobj_
->output_section(*p
);
1232 unsigned int output_shndx
;
1234 output_shndx
= os
->out_shndx();
1237 this->relobj_
->error(_("section group retained but "
1238 "group element discarded"));
1242 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1245 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1246 gold_assert(wrote
== oview_size
);
1248 of
->write_output_view(off
, oview_size
, oview
);
1250 // We no longer need this information.
1251 this->input_shndxes_
.clear();
1254 // Output_data_got::Got_entry methods.
1256 // Write out the entry.
1258 template<int size
, bool big_endian
>
1260 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1264 switch (this->local_sym_index_
)
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
1271 Symbol
* gsym
= this->u_
.gsym
;
1272 if (this->use_plt_offset_
&& gsym
->has_plt_offset())
1273 val
= (parameters
->target().plt_section_for_global(gsym
)->address()
1274 + gsym
->plt_offset());
1277 Sized_symbol
<size
>* sgsym
;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1282 val
= sgsym
->value();
1288 val
= this->u_
.constant
;
1293 const Sized_relobj
<size
, big_endian
>* object
= this->u_
.object
;
1294 const unsigned int lsi
= this->local_sym_index_
;
1295 const Symbol_value
<size
>* symval
= object
->local_symbol(lsi
);
1296 if (!this->use_plt_offset_
)
1297 val
= symval
->value(this->u_
.object
, 0);
1300 const Output_data
* plt
=
1301 parameters
->target().plt_section_for_local(object
, lsi
);
1302 val
= plt
->address() + object
->local_plt_offset(lsi
);
1308 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1311 // Output_data_got methods.
1313 // Add an entry for a global symbol to the GOT. This returns true if
1314 // this is a new GOT entry, false if the symbol already had a GOT
1317 template<int size
, bool big_endian
>
1319 Output_data_got
<size
, big_endian
>::add_global(
1321 unsigned int got_type
)
1323 if (gsym
->has_got_offset(got_type
))
1326 this->entries_
.push_back(Got_entry(gsym
, false));
1327 this->set_got_size();
1328 gsym
->set_got_offset(got_type
, this->last_got_offset());
1332 // Like add_global, but use the PLT offset.
1334 template<int size
, bool big_endian
>
1336 Output_data_got
<size
, big_endian
>::add_global_plt(Symbol
* gsym
,
1337 unsigned int got_type
)
1339 if (gsym
->has_got_offset(got_type
))
1342 this->entries_
.push_back(Got_entry(gsym
, true));
1343 this->set_got_size();
1344 gsym
->set_got_offset(got_type
, this->last_got_offset());
1348 // Add an entry for a global symbol to the GOT, and add a dynamic
1349 // relocation of type R_TYPE for the GOT entry.
1351 template<int size
, bool big_endian
>
1353 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1355 unsigned int got_type
,
1357 unsigned int r_type
)
1359 if (gsym
->has_got_offset(got_type
))
1362 this->entries_
.push_back(Got_entry());
1363 this->set_got_size();
1364 unsigned int got_offset
= this->last_got_offset();
1365 gsym
->set_got_offset(got_type
, got_offset
);
1366 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1369 template<int size
, bool big_endian
>
1371 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1373 unsigned int got_type
,
1375 unsigned int r_type
)
1377 if (gsym
->has_got_offset(got_type
))
1380 this->entries_
.push_back(Got_entry());
1381 this->set_got_size();
1382 unsigned int got_offset
= this->last_got_offset();
1383 gsym
->set_got_offset(got_type
, got_offset
);
1384 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1387 // Add a pair of entries for a global symbol to the GOT, and add
1388 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389 // If R_TYPE_2 == 0, add the second entry with no relocation.
1390 template<int size
, bool big_endian
>
1392 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1394 unsigned int got_type
,
1396 unsigned int r_type_1
,
1397 unsigned int r_type_2
)
1399 if (gsym
->has_got_offset(got_type
))
1402 this->entries_
.push_back(Got_entry());
1403 unsigned int got_offset
= this->last_got_offset();
1404 gsym
->set_got_offset(got_type
, got_offset
);
1405 rel_dyn
->add_global(gsym
, r_type_1
, this, got_offset
);
1407 this->entries_
.push_back(Got_entry());
1410 got_offset
= this->last_got_offset();
1411 rel_dyn
->add_global(gsym
, r_type_2
, this, got_offset
);
1414 this->set_got_size();
1417 template<int size
, bool big_endian
>
1419 Output_data_got
<size
, big_endian
>::add_global_pair_with_rela(
1421 unsigned int got_type
,
1423 unsigned int r_type_1
,
1424 unsigned int r_type_2
)
1426 if (gsym
->has_got_offset(got_type
))
1429 this->entries_
.push_back(Got_entry());
1430 unsigned int got_offset
= this->last_got_offset();
1431 gsym
->set_got_offset(got_type
, got_offset
);
1432 rela_dyn
->add_global(gsym
, r_type_1
, this, got_offset
, 0);
1434 this->entries_
.push_back(Got_entry());
1437 got_offset
= this->last_got_offset();
1438 rela_dyn
->add_global(gsym
, r_type_2
, this, got_offset
, 0);
1441 this->set_got_size();
1444 // Add an entry for a local symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already has a GOT
1448 template<int size
, bool big_endian
>
1450 Output_data_got
<size
, big_endian
>::add_local(
1451 Sized_relobj
<size
, big_endian
>* object
,
1452 unsigned int symndx
,
1453 unsigned int got_type
)
1455 if (object
->local_has_got_offset(symndx
, got_type
))
1458 this->entries_
.push_back(Got_entry(object
, symndx
, false));
1459 this->set_got_size();
1460 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1464 // Like add_local, but use the PLT offset.
1466 template<int size
, bool big_endian
>
1468 Output_data_got
<size
, big_endian
>::add_local_plt(
1469 Sized_relobj
<size
, big_endian
>* object
,
1470 unsigned int symndx
,
1471 unsigned int got_type
)
1473 if (object
->local_has_got_offset(symndx
, got_type
))
1476 this->entries_
.push_back(Got_entry(object
, symndx
, true));
1477 this->set_got_size();
1478 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1482 // Add an entry for a local symbol to the GOT, and add a dynamic
1483 // relocation of type R_TYPE for the GOT entry.
1485 template<int size
, bool big_endian
>
1487 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1488 Sized_relobj
<size
, big_endian
>* object
,
1489 unsigned int symndx
,
1490 unsigned int got_type
,
1492 unsigned int r_type
)
1494 if (object
->local_has_got_offset(symndx
, got_type
))
1497 this->entries_
.push_back(Got_entry());
1498 this->set_got_size();
1499 unsigned int got_offset
= this->last_got_offset();
1500 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1501 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1504 template<int size
, bool big_endian
>
1506 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1507 Sized_relobj
<size
, big_endian
>* object
,
1508 unsigned int symndx
,
1509 unsigned int got_type
,
1511 unsigned int r_type
)
1513 if (object
->local_has_got_offset(symndx
, got_type
))
1516 this->entries_
.push_back(Got_entry());
1517 this->set_got_size();
1518 unsigned int got_offset
= this->last_got_offset();
1519 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1520 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1523 // Add a pair of entries for a local symbol to the GOT, and add
1524 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525 // If R_TYPE_2 == 0, add the second entry with no relocation.
1526 template<int size
, bool big_endian
>
1528 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1529 Sized_relobj
<size
, big_endian
>* object
,
1530 unsigned int symndx
,
1532 unsigned int got_type
,
1534 unsigned int r_type_1
,
1535 unsigned int r_type_2
)
1537 if (object
->local_has_got_offset(symndx
, got_type
))
1540 this->entries_
.push_back(Got_entry());
1541 unsigned int got_offset
= this->last_got_offset();
1542 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1543 Output_section
* os
= object
->output_section(shndx
);
1544 rel_dyn
->add_output_section(os
, r_type_1
, this, got_offset
);
1546 this->entries_
.push_back(Got_entry(object
, symndx
, false));
1549 got_offset
= this->last_got_offset();
1550 rel_dyn
->add_output_section(os
, r_type_2
, this, got_offset
);
1553 this->set_got_size();
1556 template<int size
, bool big_endian
>
1558 Output_data_got
<size
, big_endian
>::add_local_pair_with_rela(
1559 Sized_relobj
<size
, big_endian
>* object
,
1560 unsigned int symndx
,
1562 unsigned int got_type
,
1564 unsigned int r_type_1
,
1565 unsigned int r_type_2
)
1567 if (object
->local_has_got_offset(symndx
, got_type
))
1570 this->entries_
.push_back(Got_entry());
1571 unsigned int got_offset
= this->last_got_offset();
1572 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1573 Output_section
* os
= object
->output_section(shndx
);
1574 rela_dyn
->add_output_section(os
, r_type_1
, this, got_offset
, 0);
1576 this->entries_
.push_back(Got_entry(object
, symndx
, false));
1579 got_offset
= this->last_got_offset();
1580 rela_dyn
->add_output_section(os
, r_type_2
, this, got_offset
, 0);
1583 this->set_got_size();
1586 // Write out the GOT.
1588 template<int size
, bool big_endian
>
1590 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1592 const int add
= size
/ 8;
1594 const off_t off
= this->offset();
1595 const off_t oview_size
= this->data_size();
1596 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1598 unsigned char* pov
= oview
;
1599 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1600 p
!= this->entries_
.end();
1607 gold_assert(pov
- oview
== oview_size
);
1609 of
->write_output_view(off
, oview_size
, oview
);
1611 // We no longer need the GOT entries.
1612 this->entries_
.clear();
1615 // Output_data_dynamic::Dynamic_entry methods.
1617 // Write out the entry.
1619 template<int size
, bool big_endian
>
1621 Output_data_dynamic::Dynamic_entry::write(
1623 const Stringpool
* pool
) const
1625 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1626 switch (this->offset_
)
1628 case DYNAMIC_NUMBER
:
1632 case DYNAMIC_SECTION_SIZE
:
1633 val
= this->u_
.od
->data_size();
1634 if (this->od2
!= NULL
)
1635 val
+= this->od2
->data_size();
1638 case DYNAMIC_SYMBOL
:
1640 const Sized_symbol
<size
>* s
=
1641 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1646 case DYNAMIC_STRING
:
1647 val
= pool
->get_offset(this->u_
.str
);
1651 val
= this->u_
.od
->address() + this->offset_
;
1655 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1656 dw
.put_d_tag(this->tag_
);
1660 // Output_data_dynamic methods.
1662 // Adjust the output section to set the entry size.
1665 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1667 if (parameters
->target().get_size() == 32)
1668 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1669 else if (parameters
->target().get_size() == 64)
1670 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1675 // Set the final data size.
1678 Output_data_dynamic::set_final_data_size()
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
1682 if (this->entries_
.empty() || this->entries_
.back().tag() != elfcpp::DT_NULL
)
1684 int extra
= parameters
->options().spare_dynamic_tags();
1685 for (int i
= 0; i
< extra
; ++i
)
1686 this->add_constant(elfcpp::DT_NULL
, 0);
1687 this->add_constant(elfcpp::DT_NULL
, 0);
1691 if (parameters
->target().get_size() == 32)
1692 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1693 else if (parameters
->target().get_size() == 64)
1694 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1697 this->set_data_size(this->entries_
.size() * dyn_size
);
1700 // Write out the dynamic entries.
1703 Output_data_dynamic::do_write(Output_file
* of
)
1705 switch (parameters
->size_and_endianness())
1707 #ifdef HAVE_TARGET_32_LITTLE
1708 case Parameters::TARGET_32_LITTLE
:
1709 this->sized_write
<32, false>(of
);
1712 #ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG
:
1714 this->sized_write
<32, true>(of
);
1717 #ifdef HAVE_TARGET_64_LITTLE
1718 case Parameters::TARGET_64_LITTLE
:
1719 this->sized_write
<64, false>(of
);
1722 #ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG
:
1724 this->sized_write
<64, true>(of
);
1732 template<int size
, bool big_endian
>
1734 Output_data_dynamic::sized_write(Output_file
* of
)
1736 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1738 const off_t offset
= this->offset();
1739 const off_t oview_size
= this->data_size();
1740 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1742 unsigned char* pov
= oview
;
1743 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1744 p
!= this->entries_
.end();
1747 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1751 gold_assert(pov
- oview
== oview_size
);
1753 of
->write_output_view(offset
, oview_size
, oview
);
1755 // We no longer need the dynamic entries.
1756 this->entries_
.clear();
1759 // Class Output_symtab_xindex.
1762 Output_symtab_xindex::do_write(Output_file
* of
)
1764 const off_t offset
= this->offset();
1765 const off_t oview_size
= this->data_size();
1766 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1768 memset(oview
, 0, oview_size
);
1770 if (parameters
->target().is_big_endian())
1771 this->endian_do_write
<true>(oview
);
1773 this->endian_do_write
<false>(oview
);
1775 of
->write_output_view(offset
, oview_size
, oview
);
1777 // We no longer need the data.
1778 this->entries_
.clear();
1781 template<bool big_endian
>
1783 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1785 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1786 p
!= this->entries_
.end();
1789 unsigned int symndx
= p
->first
;
1790 gold_assert(symndx
* 4 < this->data_size());
1791 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ symndx
* 4, p
->second
);
1795 // Output_section::Input_section methods.
1797 // Return the data size. For an input section we store the size here.
1798 // For an Output_section_data, we have to ask it for the size.
1801 Output_section::Input_section::data_size() const
1803 if (this->is_input_section())
1804 return this->u1_
.data_size
;
1806 return this->u2_
.posd
->data_size();
1809 // Return the object for an input section.
1812 Output_section::Input_section::relobj() const
1814 if (this->is_input_section())
1815 return this->u2_
.object
;
1816 else if (this->is_merge_section())
1818 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
1819 return this->u2_
.pomb
->first_relobj();
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_
.poris
->relobj();
1827 // Return the input section index for an input section.
1830 Output_section::Input_section::shndx() const
1832 if (this->is_input_section())
1833 return this->shndx_
;
1834 else if (this->is_merge_section())
1836 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
1837 return this->u2_
.pomb
->first_shndx();
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_
.poris
->shndx();
1845 // Set the address and file offset.
1848 Output_section::Input_section::set_address_and_file_offset(
1851 off_t section_file_offset
)
1853 if (this->is_input_section())
1854 this->u2_
.object
->set_section_offset(this->shndx_
,
1855 file_offset
- section_file_offset
);
1857 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1860 // Reset the address and file offset.
1863 Output_section::Input_section::reset_address_and_file_offset()
1865 if (!this->is_input_section())
1866 this->u2_
.posd
->reset_address_and_file_offset();
1869 // Finalize the data size.
1872 Output_section::Input_section::finalize_data_size()
1874 if (!this->is_input_section())
1875 this->u2_
.posd
->finalize_data_size();
1878 // Try to turn an input offset into an output offset. We want to
1879 // return the output offset relative to the start of this
1880 // Input_section in the output section.
1883 Output_section::Input_section::output_offset(
1884 const Relobj
* object
,
1886 section_offset_type offset
,
1887 section_offset_type
* poutput
) const
1889 if (!this->is_input_section())
1890 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1893 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1900 // Return whether this is the merge section for the input section
1904 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1905 unsigned int shndx
) const
1907 if (this->is_input_section())
1909 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1912 // Write out the data. We don't have to do anything for an input
1913 // section--they are handled via Object::relocate--but this is where
1914 // we write out the data for an Output_section_data.
1917 Output_section::Input_section::write(Output_file
* of
)
1919 if (!this->is_input_section())
1920 this->u2_
.posd
->write(of
);
1923 // Write the data to a buffer. As for write(), we don't have to do
1924 // anything for an input section.
1927 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1929 if (!this->is_input_section())
1930 this->u2_
.posd
->write_to_buffer(buffer
);
1933 // Print to a map file.
1936 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
1938 switch (this->shndx_
)
1940 case OUTPUT_SECTION_CODE
:
1941 case MERGE_DATA_SECTION_CODE
:
1942 case MERGE_STRING_SECTION_CODE
:
1943 this->u2_
.posd
->print_to_mapfile(mapfile
);
1946 case RELAXED_INPUT_SECTION_CODE
:
1948 Output_relaxed_input_section
* relaxed_section
=
1949 this->relaxed_input_section();
1950 mapfile
->print_input_section(relaxed_section
->relobj(),
1951 relaxed_section
->shndx());
1955 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
1960 // Output_section methods.
1962 // Construct an Output_section. NAME will point into a Stringpool.
1964 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1965 elfcpp::Elf_Xword flags
)
1970 link_section_(NULL
),
1972 info_section_(NULL
),
1977 order_(ORDER_INVALID
),
1982 first_input_offset_(0),
1984 postprocessing_buffer_(NULL
),
1985 needs_symtab_index_(false),
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
1988 should_link_to_dynsym_(false),
1989 after_input_sections_(false),
1990 requires_postprocessing_(false),
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
1993 info_uses_section_index_(false),
1994 input_section_order_specified_(false),
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
1999 is_small_section_(false),
2000 is_large_section_(false),
2001 generate_code_fills_at_write_(false),
2002 is_entsize_zero_(false),
2003 section_offsets_need_adjustment_(false),
2005 always_keeps_input_sections_(false),
2008 lookup_maps_(new Output_section_lookup_maps
)
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2013 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
2014 this->set_address(0);
2017 Output_section::~Output_section()
2019 delete this->checkpoint_
;
2022 // Set the entry size.
2025 Output_section::set_entsize(uint64_t v
)
2027 if (this->is_entsize_zero_
)
2029 else if (this->entsize_
== 0)
2031 else if (this->entsize_
!= v
)
2034 this->is_entsize_zero_
= 1;
2038 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2039 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040 // relocation section which applies to this section, or 0 if none, or
2041 // -1U if more than one. Return the offset of the input section
2042 // within the output section. Return -1 if the input section will
2043 // receive special handling. In the normal case we don't always keep
2044 // track of input sections for an Output_section. Instead, each
2045 // Object keeps track of the Output_section for each of its input
2046 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047 // track of input sections here; this is used when SECTIONS appears in
2050 template<int size
, bool big_endian
>
2052 Output_section::add_input_section(Layout
* layout
,
2053 Sized_relobj
<size
, big_endian
>* object
,
2055 const char* secname
,
2056 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2057 unsigned int reloc_shndx
,
2058 bool have_sections_script
)
2060 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
2061 if ((addralign
& (addralign
- 1)) != 0)
2063 object
->error(_("invalid alignment %lu for section \"%s\""),
2064 static_cast<unsigned long>(addralign
), secname
);
2068 if (addralign
> this->addralign_
)
2069 this->addralign_
= addralign
;
2071 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
2072 uint64_t entsize
= shdr
.get_sh_entsize();
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname
, ".debug_str") == 0)
2078 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
2082 this->update_flags_for_input_section(sh_flags
);
2083 this->set_entsize(entsize
);
2085 // If this is a SHF_MERGE section, we pass all the input sections to
2086 // a Output_data_merge. We don't try to handle relocations for such
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
2089 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
2091 && shdr
.get_sh_size() > 0)
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
2095 bool keeps_input_sections
= (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters
->target().may_relax());
2099 if (this->add_merge_input_section(object
, shndx
, sh_flags
, entsize
,
2100 addralign
, keeps_input_sections
))
2102 // Tell the relocation routines that they need to call the
2103 // output_offset method to determine the final address.
2108 off_t offset_in_section
= this->current_data_size_for_child();
2109 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
2114 // generating to avoid adjusting them during relaxation.
2115 if (!this->generate_code_fills_at_write_
2116 && !have_sections_script
2117 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2118 && parameters
->target().has_code_fill()
2119 && parameters
->target().may_relax())
2121 gold_assert(this->fills_
.empty());
2122 this->generate_code_fills_at_write_
= true;
2125 if (aligned_offset_in_section
> offset_in_section
2126 && !this->generate_code_fills_at_write_
2127 && !have_sections_script
2128 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2129 && parameters
->target().has_code_fill())
2131 // We need to add some fill data. Using fill_list_ when
2132 // possible is an optimization, since we will often have fill
2133 // sections without input sections.
2134 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
2135 if (this->input_sections_
.empty())
2136 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
2139 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2140 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
2141 this->input_sections_
.push_back(Input_section(odc
));
2145 section_size_type input_section_size
= shdr
.get_sh_size();
2146 section_size_type uncompressed_size
;
2147 if (object
->section_is_compressed(shndx
, &uncompressed_size
))
2148 input_section_size
= uncompressed_size
;
2150 this->set_current_data_size_for_child(aligned_offset_in_section
2151 + input_section_size
);
2153 // We need to keep track of this section if we are already keeping
2154 // track of sections, or if we are relaxing. Also, if this is a
2155 // section which requires sorting, or which may require sorting in
2156 // the future, we keep track of the sections. If the
2157 // --section-ordering-file option is used to specify the order of
2158 // sections, we need to keep track of sections.
2159 if (this->always_keeps_input_sections_
2160 || have_sections_script
2161 || !this->input_sections_
.empty()
2162 || this->may_sort_attached_input_sections()
2163 || this->must_sort_attached_input_sections()
2164 || parameters
->options().user_set_Map()
2165 || parameters
->target().may_relax()
2166 || parameters
->options().section_ordering_file())
2168 Input_section
isecn(object
, shndx
, shdr
.get_sh_size(), addralign
);
2169 if (parameters
->options().section_ordering_file())
2171 unsigned int section_order_index
=
2172 layout
->find_section_order_index(std::string(secname
));
2173 if (section_order_index
!= 0)
2175 isecn
.set_section_order_index(section_order_index
);
2176 this->set_input_section_order_specified();
2179 this->input_sections_
.push_back(isecn
);
2182 return aligned_offset_in_section
;
2185 // Add arbitrary data to an output section.
2188 Output_section::add_output_section_data(Output_section_data
* posd
)
2190 Input_section
inp(posd
);
2191 this->add_output_section_data(&inp
);
2193 if (posd
->is_data_size_valid())
2195 off_t offset_in_section
= this->current_data_size_for_child();
2196 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2198 this->set_current_data_size_for_child(aligned_offset_in_section
2199 + posd
->data_size());
2203 // Add a relaxed input section.
2206 Output_section::add_relaxed_input_section(Output_relaxed_input_section
* poris
)
2208 Input_section
inp(poris
);
2209 this->add_output_section_data(&inp
);
2210 if (this->lookup_maps_
->is_valid())
2211 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2212 poris
->shndx(), poris
);
2214 // For a relaxed section, we use the current data size. Linker scripts
2215 // get all the input sections, including relaxed one from an output
2216 // section and add them back to them same output section to compute the
2217 // output section size. If we do not account for sizes of relaxed input
2218 // sections, an output section would be incorrectly sized.
2219 off_t offset_in_section
= this->current_data_size_for_child();
2220 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2221 poris
->addralign());
2222 this->set_current_data_size_for_child(aligned_offset_in_section
2223 + poris
->current_data_size());
2226 // Add arbitrary data to an output section by Input_section.
2229 Output_section::add_output_section_data(Input_section
* inp
)
2231 if (this->input_sections_
.empty())
2232 this->first_input_offset_
= this->current_data_size_for_child();
2234 this->input_sections_
.push_back(*inp
);
2236 uint64_t addralign
= inp
->addralign();
2237 if (addralign
> this->addralign_
)
2238 this->addralign_
= addralign
;
2240 inp
->set_output_section(this);
2243 // Add a merge section to an output section.
2246 Output_section::add_output_merge_section(Output_section_data
* posd
,
2247 bool is_string
, uint64_t entsize
)
2249 Input_section
inp(posd
, is_string
, entsize
);
2250 this->add_output_section_data(&inp
);
2253 // Add an input section to a SHF_MERGE section.
2256 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
2257 uint64_t flags
, uint64_t entsize
,
2259 bool keeps_input_sections
)
2261 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
2263 // We only merge strings if the alignment is not more than the
2264 // character size. This could be handled, but it's unusual.
2265 if (is_string
&& addralign
> entsize
)
2268 // We cannot restore merged input section states.
2269 gold_assert(this->checkpoint_
== NULL
);
2271 // Look up merge sections by required properties.
2272 // Currently, we only invalidate the lookup maps in script processing
2273 // and relaxation. We should not have done either when we reach here.
2274 // So we assume that the lookup maps are valid to simply code.
2275 gold_assert(this->lookup_maps_
->is_valid());
2276 Merge_section_properties
msp(is_string
, entsize
, addralign
);
2277 Output_merge_base
* pomb
= this->lookup_maps_
->find_merge_section(msp
);
2278 bool is_new
= false;
2281 gold_assert(pomb
->is_string() == is_string
2282 && pomb
->entsize() == entsize
2283 && pomb
->addralign() == addralign
);
2287 // Create a new Output_merge_data or Output_merge_string_data.
2289 pomb
= new Output_merge_data(entsize
, addralign
);
2295 pomb
= new Output_merge_string
<char>(addralign
);
2298 pomb
= new Output_merge_string
<uint16_t>(addralign
);
2301 pomb
= new Output_merge_string
<uint32_t>(addralign
);
2307 // If we need to do script processing or relaxation, we need to keep
2308 // the original input sections to rebuild the fast lookup maps.
2309 if (keeps_input_sections
)
2310 pomb
->set_keeps_input_sections();
2314 if (pomb
->add_input_section(object
, shndx
))
2316 // Add new merge section to this output section and link merge
2317 // section properties to new merge section in map.
2320 this->add_output_merge_section(pomb
, is_string
, entsize
);
2321 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2324 // Add input section to new merge section and link input section to new
2325 // merge section in map.
2326 this->lookup_maps_
->add_merge_input_section(object
, shndx
, pomb
);
2331 // If add_input_section failed, delete new merge section to avoid
2332 // exporting empty merge sections in Output_section::get_input_section.
2339 // Build a relaxation map to speed up relaxation of existing input sections.
2340 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2343 Output_section::build_relaxation_map(
2344 const Input_section_list
& input_sections
,
2346 Relaxation_map
* relaxation_map
) const
2348 for (size_t i
= 0; i
< limit
; ++i
)
2350 const Input_section
& is(input_sections
[i
]);
2351 if (is
.is_input_section() || is
.is_relaxed_input_section())
2353 Section_id
sid(is
.relobj(), is
.shndx());
2354 (*relaxation_map
)[sid
] = i
;
2359 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2360 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2361 // indices of INPUT_SECTIONS.
2364 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2365 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
2366 const Relaxation_map
& map
,
2367 Input_section_list
* input_sections
)
2369 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2371 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2372 Section_id
sid(poris
->relobj(), poris
->shndx());
2373 Relaxation_map::const_iterator p
= map
.find(sid
);
2374 gold_assert(p
!= map
.end());
2375 gold_assert((*input_sections
)[p
->second
].is_input_section());
2376 (*input_sections
)[p
->second
] = Input_section(poris
);
2380 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2381 // is a vector of pointers to Output_relaxed_input_section or its derived
2382 // classes. The relaxed sections must correspond to existing input sections.
2385 Output_section::convert_input_sections_to_relaxed_sections(
2386 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
)
2388 gold_assert(parameters
->target().may_relax());
2390 // We want to make sure that restore_states does not undo the effect of
2391 // this. If there is no checkpoint active, just search the current
2392 // input section list and replace the sections there. If there is
2393 // a checkpoint, also replace the sections there.
2395 // By default, we look at the whole list.
2396 size_t limit
= this->input_sections_
.size();
2398 if (this->checkpoint_
!= NULL
)
2400 // Replace input sections with relaxed input section in the saved
2401 // copy of the input section list.
2402 if (this->checkpoint_
->input_sections_saved())
2405 this->build_relaxation_map(
2406 *(this->checkpoint_
->input_sections()),
2407 this->checkpoint_
->input_sections()->size(),
2409 this->convert_input_sections_in_list_to_relaxed_sections(
2412 this->checkpoint_
->input_sections());
2416 // We have not copied the input section list yet. Instead, just
2417 // look at the portion that would be saved.
2418 limit
= this->checkpoint_
->input_sections_size();
2422 // Convert input sections in input_section_list.
2424 this->build_relaxation_map(this->input_sections_
, limit
, &map
);
2425 this->convert_input_sections_in_list_to_relaxed_sections(
2428 &this->input_sections_
);
2430 // Update fast look-up map.
2431 if (this->lookup_maps_
->is_valid())
2432 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2434 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2435 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2436 poris
->shndx(), poris
);
2440 // Update the output section flags based on input section flags.
2443 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2445 // If we created the section with SHF_ALLOC clear, we set the
2446 // address. If we are now setting the SHF_ALLOC flag, we need to
2448 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2449 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2450 this->mark_address_invalid();
2452 this->flags_
|= (flags
2453 & (elfcpp::SHF_WRITE
2455 | elfcpp::SHF_EXECINSTR
));
2457 if ((flags
& elfcpp::SHF_MERGE
) == 0)
2458 this->flags_
&=~ elfcpp::SHF_MERGE
;
2461 if (this->current_data_size_for_child() == 0)
2462 this->flags_
|= elfcpp::SHF_MERGE
;
2465 if ((flags
& elfcpp::SHF_STRINGS
) == 0)
2466 this->flags_
&=~ elfcpp::SHF_STRINGS
;
2469 if (this->current_data_size_for_child() == 0)
2470 this->flags_
|= elfcpp::SHF_STRINGS
;
2474 // Find the merge section into which an input section with index SHNDX in
2475 // OBJECT has been added. Return NULL if none found.
2477 Output_section_data
*
2478 Output_section::find_merge_section(const Relobj
* object
,
2479 unsigned int shndx
) const
2481 if (!this->lookup_maps_
->is_valid())
2482 this->build_lookup_maps();
2483 return this->lookup_maps_
->find_merge_section(object
, shndx
);
2486 // Build the lookup maps for merge and relaxed sections. This is needs
2487 // to be declared as a const methods so that it is callable with a const
2488 // Output_section pointer. The method only updates states of the maps.
2491 Output_section::build_lookup_maps() const
2493 this->lookup_maps_
->clear();
2494 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2495 p
!= this->input_sections_
.end();
2498 if (p
->is_merge_section())
2500 Output_merge_base
* pomb
= p
->output_merge_base();
2501 Merge_section_properties
msp(pomb
->is_string(), pomb
->entsize(),
2503 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2504 for (Output_merge_base::Input_sections::const_iterator is
=
2505 pomb
->input_sections_begin();
2506 is
!= pomb
->input_sections_end();
2509 const Const_section_id
& csid
= *is
;
2510 this->lookup_maps_
->add_merge_input_section(csid
.first
,
2515 else if (p
->is_relaxed_input_section())
2517 Output_relaxed_input_section
* poris
= p
->relaxed_input_section();
2518 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2519 poris
->shndx(), poris
);
2524 // Find an relaxed input section corresponding to an input section
2525 // in OBJECT with index SHNDX.
2527 const Output_relaxed_input_section
*
2528 Output_section::find_relaxed_input_section(const Relobj
* object
,
2529 unsigned int shndx
) const
2531 if (!this->lookup_maps_
->is_valid())
2532 this->build_lookup_maps();
2533 return this->lookup_maps_
->find_relaxed_input_section(object
, shndx
);
2536 // Given an address OFFSET relative to the start of input section
2537 // SHNDX in OBJECT, return whether this address is being included in
2538 // the final link. This should only be called if SHNDX in OBJECT has
2539 // a special mapping.
2542 Output_section::is_input_address_mapped(const Relobj
* object
,
2546 // Look at the Output_section_data_maps first.
2547 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2549 posd
= this->find_relaxed_input_section(object
, shndx
);
2553 section_offset_type output_offset
;
2554 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2556 return output_offset
!= -1;
2559 // Fall back to the slow look-up.
2560 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2561 p
!= this->input_sections_
.end();
2564 section_offset_type output_offset
;
2565 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2566 return output_offset
!= -1;
2569 // By default we assume that the address is mapped. This should
2570 // only be called after we have passed all sections to Layout. At
2571 // that point we should know what we are discarding.
2575 // Given an address OFFSET relative to the start of input section
2576 // SHNDX in object OBJECT, return the output offset relative to the
2577 // start of the input section in the output section. This should only
2578 // be called if SHNDX in OBJECT has a special mapping.
2581 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2582 section_offset_type offset
) const
2584 // This can only be called meaningfully when we know the data size
2586 gold_assert(this->is_data_size_valid());
2588 // Look at the Output_section_data_maps first.
2589 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2591 posd
= this->find_relaxed_input_section(object
, shndx
);
2594 section_offset_type output_offset
;
2595 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2597 return output_offset
;
2600 // Fall back to the slow look-up.
2601 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2602 p
!= this->input_sections_
.end();
2605 section_offset_type output_offset
;
2606 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2607 return output_offset
;
2612 // Return the output virtual address of OFFSET relative to the start
2613 // of input section SHNDX in object OBJECT.
2616 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2619 uint64_t addr
= this->address() + this->first_input_offset_
;
2621 // Look at the Output_section_data_maps first.
2622 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2624 posd
= this->find_relaxed_input_section(object
, shndx
);
2625 if (posd
!= NULL
&& posd
->is_address_valid())
2627 section_offset_type output_offset
;
2628 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2630 return posd
->address() + output_offset
;
2633 // Fall back to the slow look-up.
2634 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2635 p
!= this->input_sections_
.end();
2638 addr
= align_address(addr
, p
->addralign());
2639 section_offset_type output_offset
;
2640 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2642 if (output_offset
== -1)
2644 return addr
+ output_offset
;
2646 addr
+= p
->data_size();
2649 // If we get here, it means that we don't know the mapping for this
2650 // input section. This might happen in principle if
2651 // add_input_section were called before add_output_section_data.
2652 // But it should never actually happen.
2657 // Find the output address of the start of the merged section for
2658 // input section SHNDX in object OBJECT.
2661 Output_section::find_starting_output_address(const Relobj
* object
,
2663 uint64_t* paddr
) const
2665 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2666 // Looking up the merge section map does not always work as we sometimes
2667 // find a merge section without its address set.
2668 uint64_t addr
= this->address() + this->first_input_offset_
;
2669 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2670 p
!= this->input_sections_
.end();
2673 addr
= align_address(addr
, p
->addralign());
2675 // It would be nice if we could use the existing output_offset
2676 // method to get the output offset of input offset 0.
2677 // Unfortunately we don't know for sure that input offset 0 is
2679 if (p
->is_merge_section_for(object
, shndx
))
2685 addr
+= p
->data_size();
2688 // We couldn't find a merge output section for this input section.
2692 // Set the data size of an Output_section. This is where we handle
2693 // setting the addresses of any Output_section_data objects.
2696 Output_section::set_final_data_size()
2698 if (this->input_sections_
.empty())
2700 this->set_data_size(this->current_data_size_for_child());
2704 if (this->must_sort_attached_input_sections()
2705 || this->input_section_order_specified())
2706 this->sort_attached_input_sections();
2708 uint64_t address
= this->address();
2709 off_t startoff
= this->offset();
2710 off_t off
= startoff
+ this->first_input_offset_
;
2711 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2712 p
!= this->input_sections_
.end();
2715 off
= align_address(off
, p
->addralign());
2716 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2718 off
+= p
->data_size();
2721 this->set_data_size(off
- startoff
);
2724 // Reset the address and file offset.
2727 Output_section::do_reset_address_and_file_offset()
2729 // An unallocated section has no address. Forcing this means that
2730 // we don't need special treatment for symbols defined in debug
2731 // sections. We do the same in the constructor. This does not
2732 // apply to NOLOAD sections though.
2733 if (((this->flags_
& elfcpp::SHF_ALLOC
) == 0) && !this->is_noload_
)
2734 this->set_address(0);
2736 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2737 p
!= this->input_sections_
.end();
2739 p
->reset_address_and_file_offset();
2742 // Return true if address and file offset have the values after reset.
2745 Output_section::do_address_and_file_offset_have_reset_values() const
2747 if (this->is_offset_valid())
2750 // An unallocated section has address 0 after its construction or a reset.
2751 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0)
2752 return this->is_address_valid() && this->address() == 0;
2754 return !this->is_address_valid();
2757 // Set the TLS offset. Called only for SHT_TLS sections.
2760 Output_section::do_set_tls_offset(uint64_t tls_base
)
2762 this->tls_offset_
= this->address() - tls_base
;
2765 // In a few cases we need to sort the input sections attached to an
2766 // output section. This is used to implement the type of constructor
2767 // priority ordering implemented by the GNU linker, in which the
2768 // priority becomes part of the section name and the sections are
2769 // sorted by name. We only do this for an output section if we see an
2770 // attached input section matching ".ctor.*", ".dtor.*",
2771 // ".init_array.*" or ".fini_array.*".
2773 class Output_section::Input_section_sort_entry
2776 Input_section_sort_entry()
2777 : input_section_(), index_(-1U), section_has_name_(false),
2781 Input_section_sort_entry(const Input_section
& input_section
,
2783 bool must_sort_attached_input_sections
)
2784 : input_section_(input_section
), index_(index
),
2785 section_has_name_(input_section
.is_input_section()
2786 || input_section
.is_relaxed_input_section())
2788 if (this->section_has_name_
2789 && must_sort_attached_input_sections
)
2791 // This is only called single-threaded from Layout::finalize,
2792 // so it is OK to lock. Unfortunately we have no way to pass
2794 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
2795 Object
* obj
= (input_section
.is_input_section()
2796 ? input_section
.relobj()
2797 : input_section
.relaxed_input_section()->relobj());
2798 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
2800 // This is a slow operation, which should be cached in
2801 // Layout::layout if this becomes a speed problem.
2802 this->section_name_
= obj
->section_name(input_section
.shndx());
2806 // Return the Input_section.
2807 const Input_section
&
2808 input_section() const
2810 gold_assert(this->index_
!= -1U);
2811 return this->input_section_
;
2814 // The index of this entry in the original list. This is used to
2815 // make the sort stable.
2819 gold_assert(this->index_
!= -1U);
2820 return this->index_
;
2823 // Whether there is a section name.
2825 section_has_name() const
2826 { return this->section_has_name_
; }
2828 // The section name.
2830 section_name() const
2832 gold_assert(this->section_has_name_
);
2833 return this->section_name_
;
2836 // Return true if the section name has a priority. This is assumed
2837 // to be true if it has a dot after the initial dot.
2839 has_priority() const
2841 gold_assert(this->section_has_name_
);
2842 return this->section_name_
.find('.', 1) != std::string::npos
;
2845 // Return true if this an input file whose base name matches
2846 // FILE_NAME. The base name must have an extension of ".o", and
2847 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2848 // This is to match crtbegin.o as well as crtbeginS.o without
2849 // getting confused by other possibilities. Overall matching the
2850 // file name this way is a dreadful hack, but the GNU linker does it
2851 // in order to better support gcc, and we need to be compatible.
2853 match_file_name(const char* match_file_name
) const
2855 const std::string
& file_name(this->input_section_
.relobj()->name());
2856 const char* base_name
= lbasename(file_name
.c_str());
2857 size_t match_len
= strlen(match_file_name
);
2858 if (strncmp(base_name
, match_file_name
, match_len
) != 0)
2860 size_t base_len
= strlen(base_name
);
2861 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
2863 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
2866 // Returns 1 if THIS should appear before S in section order, -1 if S
2867 // appears before THIS and 0 if they are not comparable.
2869 compare_section_ordering(const Input_section_sort_entry
& s
) const
2871 unsigned int this_secn_index
= this->input_section_
.section_order_index();
2872 unsigned int s_secn_index
= s
.input_section().section_order_index();
2873 if (this_secn_index
> 0 && s_secn_index
> 0)
2875 if (this_secn_index
< s_secn_index
)
2877 else if (this_secn_index
> s_secn_index
)
2884 // The Input_section we are sorting.
2885 Input_section input_section_
;
2886 // The index of this Input_section in the original list.
2887 unsigned int index_
;
2888 // Whether this Input_section has a section name--it won't if this
2889 // is some random Output_section_data.
2890 bool section_has_name_
;
2891 // The section name if there is one.
2892 std::string section_name_
;
2895 // Return true if S1 should come before S2 in the output section.
2898 Output_section::Input_section_sort_compare::operator()(
2899 const Output_section::Input_section_sort_entry
& s1
,
2900 const Output_section::Input_section_sort_entry
& s2
) const
2902 // crtbegin.o must come first.
2903 bool s1_begin
= s1
.match_file_name("crtbegin");
2904 bool s2_begin
= s2
.match_file_name("crtbegin");
2905 if (s1_begin
|| s2_begin
)
2911 return s1
.index() < s2
.index();
2914 // crtend.o must come last.
2915 bool s1_end
= s1
.match_file_name("crtend");
2916 bool s2_end
= s2
.match_file_name("crtend");
2917 if (s1_end
|| s2_end
)
2923 return s1
.index() < s2
.index();
2926 // We sort all the sections with no names to the end.
2927 if (!s1
.section_has_name() || !s2
.section_has_name())
2929 if (s1
.section_has_name())
2931 if (s2
.section_has_name())
2933 return s1
.index() < s2
.index();
2936 // A section with a priority follows a section without a priority.
2937 bool s1_has_priority
= s1
.has_priority();
2938 bool s2_has_priority
= s2
.has_priority();
2939 if (s1_has_priority
&& !s2_has_priority
)
2941 if (!s1_has_priority
&& s2_has_priority
)
2944 // Check if a section order exists for these sections through a section
2945 // ordering file. If sequence_num is 0, an order does not exist.
2946 int sequence_num
= s1
.compare_section_ordering(s2
);
2947 if (sequence_num
!= 0)
2948 return sequence_num
== 1;
2950 // Otherwise we sort by name.
2951 int compare
= s1
.section_name().compare(s2
.section_name());
2955 // Otherwise we keep the input order.
2956 return s1
.index() < s2
.index();
2959 // Return true if S1 should come before S2 in an .init_array or .fini_array
2963 Output_section::Input_section_sort_init_fini_compare::operator()(
2964 const Output_section::Input_section_sort_entry
& s1
,
2965 const Output_section::Input_section_sort_entry
& s2
) const
2967 // We sort all the sections with no names to the end.
2968 if (!s1
.section_has_name() || !s2
.section_has_name())
2970 if (s1
.section_has_name())
2972 if (s2
.section_has_name())
2974 return s1
.index() < s2
.index();
2977 // A section without a priority follows a section with a priority.
2978 // This is the reverse of .ctors and .dtors sections.
2979 bool s1_has_priority
= s1
.has_priority();
2980 bool s2_has_priority
= s2
.has_priority();
2981 if (s1_has_priority
&& !s2_has_priority
)
2983 if (!s1_has_priority
&& s2_has_priority
)
2986 // Check if a section order exists for these sections through a section
2987 // ordering file. If sequence_num is 0, an order does not exist.
2988 int sequence_num
= s1
.compare_section_ordering(s2
);
2989 if (sequence_num
!= 0)
2990 return sequence_num
== 1;
2992 // Otherwise we sort by name.
2993 int compare
= s1
.section_name().compare(s2
.section_name());
2997 // Otherwise we keep the input order.
2998 return s1
.index() < s2
.index();
3001 // Return true if S1 should come before S2. Sections that do not match
3002 // any pattern in the section ordering file are placed ahead of the sections
3003 // that match some pattern.
3006 Output_section::Input_section_sort_section_order_index_compare::operator()(
3007 const Output_section::Input_section_sort_entry
& s1
,
3008 const Output_section::Input_section_sort_entry
& s2
) const
3010 unsigned int s1_secn_index
= s1
.input_section().section_order_index();
3011 unsigned int s2_secn_index
= s2
.input_section().section_order_index();
3013 // Keep input order if section ordering cannot determine order.
3014 if (s1_secn_index
== s2_secn_index
)
3015 return s1
.index() < s2
.index();
3017 return s1_secn_index
< s2_secn_index
;
3020 // Sort the input sections attached to an output section.
3023 Output_section::sort_attached_input_sections()
3025 if (this->attached_input_sections_are_sorted_
)
3028 if (this->checkpoint_
!= NULL
3029 && !this->checkpoint_
->input_sections_saved())
3030 this->checkpoint_
->save_input_sections();
3032 // The only thing we know about an input section is the object and
3033 // the section index. We need the section name. Recomputing this
3034 // is slow but this is an unusual case. If this becomes a speed
3035 // problem we can cache the names as required in Layout::layout.
3037 // We start by building a larger vector holding a copy of each
3038 // Input_section, plus its current index in the list and its name.
3039 std::vector
<Input_section_sort_entry
> sort_list
;
3042 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3043 p
!= this->input_sections_
.end();
3045 sort_list
.push_back(Input_section_sort_entry(*p
, i
,
3046 this->must_sort_attached_input_sections()));
3048 // Sort the input sections.
3049 if (this->must_sort_attached_input_sections())
3051 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3052 || this->type() == elfcpp::SHT_INIT_ARRAY
3053 || this->type() == elfcpp::SHT_FINI_ARRAY
)
3054 std::sort(sort_list
.begin(), sort_list
.end(),
3055 Input_section_sort_init_fini_compare());
3057 std::sort(sort_list
.begin(), sort_list
.end(),
3058 Input_section_sort_compare());
3062 gold_assert(parameters
->options().section_ordering_file());
3063 std::sort(sort_list
.begin(), sort_list
.end(),
3064 Input_section_sort_section_order_index_compare());
3067 // Copy the sorted input sections back to our list.
3068 this->input_sections_
.clear();
3069 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
3070 p
!= sort_list
.end();
3072 this->input_sections_
.push_back(p
->input_section());
3075 // Remember that we sorted the input sections, since we might get
3077 this->attached_input_sections_are_sorted_
= true;
3080 // Write the section header to *OSHDR.
3082 template<int size
, bool big_endian
>
3084 Output_section::write_header(const Layout
* layout
,
3085 const Stringpool
* secnamepool
,
3086 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
3088 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
3089 oshdr
->put_sh_type(this->type_
);
3091 elfcpp::Elf_Xword flags
= this->flags_
;
3092 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
3093 flags
|= elfcpp::SHF_INFO_LINK
;
3094 oshdr
->put_sh_flags(flags
);
3096 oshdr
->put_sh_addr(this->address());
3097 oshdr
->put_sh_offset(this->offset());
3098 oshdr
->put_sh_size(this->data_size());
3099 if (this->link_section_
!= NULL
)
3100 oshdr
->put_sh_link(this->link_section_
->out_shndx());
3101 else if (this->should_link_to_symtab_
)
3102 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
3103 else if (this->should_link_to_dynsym_
)
3104 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
3106 oshdr
->put_sh_link(this->link_
);
3108 elfcpp::Elf_Word info
;
3109 if (this->info_section_
!= NULL
)
3111 if (this->info_uses_section_index_
)
3112 info
= this->info_section_
->out_shndx();
3114 info
= this->info_section_
->symtab_index();
3116 else if (this->info_symndx_
!= NULL
)
3117 info
= this->info_symndx_
->symtab_index();
3120 oshdr
->put_sh_info(info
);
3122 oshdr
->put_sh_addralign(this->addralign_
);
3123 oshdr
->put_sh_entsize(this->entsize_
);
3126 // Write out the data. For input sections the data is written out by
3127 // Object::relocate, but we have to handle Output_section_data objects
3131 Output_section::do_write(Output_file
* of
)
3133 gold_assert(!this->requires_postprocessing());
3135 // If the target performs relaxation, we delay filler generation until now.
3136 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3138 off_t output_section_file_offset
= this->offset();
3139 for (Fill_list::iterator p
= this->fills_
.begin();
3140 p
!= this->fills_
.end();
3143 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3144 of
->write(output_section_file_offset
+ p
->section_offset(),
3145 fill_data
.data(), fill_data
.size());
3148 off_t off
= this->offset() + this->first_input_offset_
;
3149 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3150 p
!= this->input_sections_
.end();
3153 off_t aligned_off
= align_address(off
, p
->addralign());
3154 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3156 size_t fill_len
= aligned_off
- off
;
3157 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3158 of
->write(off
, fill_data
.data(), fill_data
.size());
3162 off
= aligned_off
+ p
->data_size();
3166 // If a section requires postprocessing, create the buffer to use.
3169 Output_section::create_postprocessing_buffer()
3171 gold_assert(this->requires_postprocessing());
3173 if (this->postprocessing_buffer_
!= NULL
)
3176 if (!this->input_sections_
.empty())
3178 off_t off
= this->first_input_offset_
;
3179 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3180 p
!= this->input_sections_
.end();
3183 off
= align_address(off
, p
->addralign());
3184 p
->finalize_data_size();
3185 off
+= p
->data_size();
3187 this->set_current_data_size_for_child(off
);
3190 off_t buffer_size
= this->current_data_size_for_child();
3191 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
3194 // Write all the data of an Output_section into the postprocessing
3195 // buffer. This is used for sections which require postprocessing,
3196 // such as compression. Input sections are handled by
3197 // Object::Relocate.
3200 Output_section::write_to_postprocessing_buffer()
3202 gold_assert(this->requires_postprocessing());
3204 // If the target performs relaxation, we delay filler generation until now.
3205 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3207 unsigned char* buffer
= this->postprocessing_buffer();
3208 for (Fill_list::iterator p
= this->fills_
.begin();
3209 p
!= this->fills_
.end();
3212 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3213 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
3217 off_t off
= this->first_input_offset_
;
3218 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3219 p
!= this->input_sections_
.end();
3222 off_t aligned_off
= align_address(off
, p
->addralign());
3223 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3225 size_t fill_len
= aligned_off
- off
;
3226 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3227 memcpy(buffer
+ off
, fill_data
.data(), fill_data
.size());
3230 p
->write_to_buffer(buffer
+ aligned_off
);
3231 off
= aligned_off
+ p
->data_size();
3235 // Get the input sections for linker script processing. We leave
3236 // behind the Output_section_data entries. Note that this may be
3237 // slightly incorrect for merge sections. We will leave them behind,
3238 // but it is possible that the script says that they should follow
3239 // some other input sections, as in:
3240 // .rodata { *(.rodata) *(.rodata.cst*) }
3241 // For that matter, we don't handle this correctly:
3242 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3243 // With luck this will never matter.
3246 Output_section::get_input_sections(
3248 const std::string
& fill
,
3249 std::list
<Input_section
>* input_sections
)
3251 if (this->checkpoint_
!= NULL
3252 && !this->checkpoint_
->input_sections_saved())
3253 this->checkpoint_
->save_input_sections();
3255 // Invalidate fast look-up maps.
3256 this->lookup_maps_
->invalidate();
3258 uint64_t orig_address
= address
;
3260 address
= align_address(address
, this->addralign());
3262 Input_section_list remaining
;
3263 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3264 p
!= this->input_sections_
.end();
3267 if (p
->is_input_section()
3268 || p
->is_relaxed_input_section()
3269 || p
->is_merge_section())
3270 input_sections
->push_back(*p
);
3273 uint64_t aligned_address
= align_address(address
, p
->addralign());
3274 if (aligned_address
!= address
&& !fill
.empty())
3276 section_size_type length
=
3277 convert_to_section_size_type(aligned_address
- address
);
3278 std::string this_fill
;
3279 this_fill
.reserve(length
);
3280 while (this_fill
.length() + fill
.length() <= length
)
3282 if (this_fill
.length() < length
)
3283 this_fill
.append(fill
, 0, length
- this_fill
.length());
3285 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
3286 remaining
.push_back(Input_section(posd
));
3288 address
= aligned_address
;
3290 remaining
.push_back(*p
);
3292 p
->finalize_data_size();
3293 address
+= p
->data_size();
3297 this->input_sections_
.swap(remaining
);
3298 this->first_input_offset_
= 0;
3300 uint64_t data_size
= address
- orig_address
;
3301 this->set_current_data_size_for_child(data_size
);
3305 // Add a script input section. SIS is an Output_section::Input_section,
3306 // which can be either a plain input section or a special input section like
3307 // a relaxed input section. For a special input section, its size must be
3311 Output_section::add_script_input_section(const Input_section
& sis
)
3313 uint64_t data_size
= sis
.data_size();
3314 uint64_t addralign
= sis
.addralign();
3315 if (addralign
> this->addralign_
)
3316 this->addralign_
= addralign
;
3318 off_t offset_in_section
= this->current_data_size_for_child();
3319 off_t aligned_offset_in_section
= align_address(offset_in_section
,
3322 this->set_current_data_size_for_child(aligned_offset_in_section
3325 this->input_sections_
.push_back(sis
);
3327 // Update fast lookup maps if necessary.
3328 if (this->lookup_maps_
->is_valid())
3330 if (sis
.is_merge_section())
3332 Output_merge_base
* pomb
= sis
.output_merge_base();
3333 Merge_section_properties
msp(pomb
->is_string(), pomb
->entsize(),
3335 this->lookup_maps_
->add_merge_section(msp
, pomb
);
3336 for (Output_merge_base::Input_sections::const_iterator p
=
3337 pomb
->input_sections_begin();
3338 p
!= pomb
->input_sections_end();
3340 this->lookup_maps_
->add_merge_input_section(p
->first
, p
->second
,
3343 else if (sis
.is_relaxed_input_section())
3345 Output_relaxed_input_section
* poris
= sis
.relaxed_input_section();
3346 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
3347 poris
->shndx(), poris
);
3352 // Save states for relaxation.
3355 Output_section::save_states()
3357 gold_assert(this->checkpoint_
== NULL
);
3358 Checkpoint_output_section
* checkpoint
=
3359 new Checkpoint_output_section(this->addralign_
, this->flags_
,
3360 this->input_sections_
,
3361 this->first_input_offset_
,
3362 this->attached_input_sections_are_sorted_
);
3363 this->checkpoint_
= checkpoint
;
3364 gold_assert(this->fills_
.empty());
3368 Output_section::discard_states()
3370 gold_assert(this->checkpoint_
!= NULL
);
3371 delete this->checkpoint_
;
3372 this->checkpoint_
= NULL
;
3373 gold_assert(this->fills_
.empty());
3375 // Simply invalidate the fast lookup maps since we do not keep
3377 this->lookup_maps_
->invalidate();
3381 Output_section::restore_states()
3383 gold_assert(this->checkpoint_
!= NULL
);
3384 Checkpoint_output_section
* checkpoint
= this->checkpoint_
;
3386 this->addralign_
= checkpoint
->addralign();
3387 this->flags_
= checkpoint
->flags();
3388 this->first_input_offset_
= checkpoint
->first_input_offset();
3390 if (!checkpoint
->input_sections_saved())
3392 // If we have not copied the input sections, just resize it.
3393 size_t old_size
= checkpoint
->input_sections_size();
3394 gold_assert(this->input_sections_
.size() >= old_size
);
3395 this->input_sections_
.resize(old_size
);
3399 // We need to copy the whole list. This is not efficient for
3400 // extremely large output with hundreads of thousands of input
3401 // objects. We may need to re-think how we should pass sections
3403 this->input_sections_
= *checkpoint
->input_sections();
3406 this->attached_input_sections_are_sorted_
=
3407 checkpoint
->attached_input_sections_are_sorted();
3409 // Simply invalidate the fast lookup maps since we do not keep
3411 this->lookup_maps_
->invalidate();
3414 // Update the section offsets of input sections in this. This is required if
3415 // relaxation causes some input sections to change sizes.
3418 Output_section::adjust_section_offsets()
3420 if (!this->section_offsets_need_adjustment_
)
3424 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3425 p
!= this->input_sections_
.end();
3428 off
= align_address(off
, p
->addralign());
3429 if (p
->is_input_section())
3430 p
->relobj()->set_section_offset(p
->shndx(), off
);
3431 off
+= p
->data_size();
3434 this->section_offsets_need_adjustment_
= false;
3437 // Print to the map file.
3440 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
3442 mapfile
->print_output_section(this);
3444 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3445 p
!= this->input_sections_
.end();
3447 p
->print_to_mapfile(mapfile
);
3450 // Print stats for merge sections to stderr.
3453 Output_section::print_merge_stats()
3455 Input_section_list::iterator p
;
3456 for (p
= this->input_sections_
.begin();
3457 p
!= this->input_sections_
.end();
3459 p
->print_merge_stats(this->name_
);
3462 // Output segment methods.
3464 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3474 is_max_align_known_(false),
3475 are_addresses_set_(false),
3476 is_large_data_segment_(false)
3478 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3480 if (type
== elfcpp::PT_TLS
)
3481 this->flags_
= elfcpp::PF_R
;
3484 // Add an Output_section to a PT_LOAD Output_segment.
3487 Output_segment::add_output_section_to_load(Layout
* layout
,
3489 elfcpp::Elf_Word seg_flags
)
3491 gold_assert(this->type() == elfcpp::PT_LOAD
);
3492 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
3493 gold_assert(!this->is_max_align_known_
);
3494 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
3496 this->update_flags_for_output_section(seg_flags
);
3498 // We don't want to change the ordering if we have a linker script
3499 // with a SECTIONS clause.
3500 Output_section_order order
= os
->order();
3501 if (layout
->script_options()->saw_sections_clause())
3502 order
= static_cast<Output_section_order
>(0);
3504 gold_assert(order
!= ORDER_INVALID
);
3506 this->output_lists_
[order
].push_back(os
);
3509 // Add an Output_section to a non-PT_LOAD Output_segment.
3512 Output_segment::add_output_section_to_nonload(Output_section
* os
,
3513 elfcpp::Elf_Word seg_flags
)
3515 gold_assert(this->type() != elfcpp::PT_LOAD
);
3516 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
3517 gold_assert(!this->is_max_align_known_
);
3519 this->update_flags_for_output_section(seg_flags
);
3521 this->output_lists_
[0].push_back(os
);
3524 // Remove an Output_section from this segment. It is an error if it
3528 Output_segment::remove_output_section(Output_section
* os
)
3530 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3532 Output_data_list
* pdl
= &this->output_lists_
[i
];
3533 for (Output_data_list::iterator p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
3545 // Add an Output_data (which need not be an Output_section) to the
3546 // start of a segment.
3549 Output_segment::add_initial_output_data(Output_data
* od
)
3551 gold_assert(!this->is_max_align_known_
);
3552 Output_data_list::iterator p
= this->output_lists_
[0].begin();
3553 this->output_lists_
[0].insert(p
, od
);
3556 // Return true if this segment has any sections which hold actual
3557 // data, rather than being a BSS section.
3560 Output_segment::has_any_data_sections() const
3562 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3564 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3565 for (Output_data_list::const_iterator p
= pdl
->begin();
3569 if (!(*p
)->is_section())
3571 if ((*p
)->output_section()->type() != elfcpp::SHT_NOBITS
)
3578 // Return whether the first data section is a relro section.
3581 Output_segment::is_first_section_relro() const
3583 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3585 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3588 Output_data
* p
= pdl
->front();
3589 return p
->is_section() && p
->output_section()->is_relro();
3595 // Return the maximum alignment of the Output_data in Output_segment.
3598 Output_segment::maximum_alignment()
3600 if (!this->is_max_align_known_
)
3602 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3604 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3605 uint64_t addralign
= Output_segment::maximum_alignment_list(pdl
);
3606 if (addralign
> this->max_align_
)
3607 this->max_align_
= addralign
;
3609 this->is_max_align_known_
= true;
3612 return this->max_align_
;
3615 // Return the maximum alignment of a list of Output_data.
3618 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
3621 for (Output_data_list::const_iterator p
= pdl
->begin();
3625 uint64_t addralign
= (*p
)->addralign();
3626 if (addralign
> ret
)
3632 // Return whether this segment has any dynamic relocs.
3635 Output_segment::has_dynamic_reloc() const
3637 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3638 if (this->has_dynamic_reloc_list(&this->output_lists_
[i
]))
3643 // Return whether this Output_data_list has any dynamic relocs.
3646 Output_segment::has_dynamic_reloc_list(const Output_data_list
* pdl
) const
3648 for (Output_data_list::const_iterator p
= pdl
->begin();
3651 if ((*p
)->has_dynamic_reloc())
3656 // Set the section addresses for an Output_segment. If RESET is true,
3657 // reset the addresses first. ADDR is the address and *POFF is the
3658 // file offset. Set the section indexes starting with *PSHNDX.
3659 // Return the address of the immediately following segment. Update
3660 // *POFF and *PSHNDX.
3663 Output_segment::set_section_addresses(const Layout
* layout
, bool reset
,
3665 unsigned int increase_relro
,
3667 unsigned int* pshndx
)
3669 gold_assert(this->type_
== elfcpp::PT_LOAD
);
3671 off_t orig_off
= *poff
;
3673 // If we have relro sections, we need to pad forward now so that the
3674 // relro sections plus INCREASE_RELRO end on a common page boundary.
3675 if (parameters
->options().relro()
3676 && this->is_first_section_relro()
3677 && (!this->are_addresses_set_
|| reset
))
3679 uint64_t relro_size
= 0;
3681 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3683 Output_data_list
* pdl
= &this->output_lists_
[i
];
3684 Output_data_list::iterator p
;
3685 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
3687 if (!(*p
)->is_section())
3689 Output_section
* pos
= (*p
)->output_section();
3690 if (!pos
->is_relro())
3692 if ((*p
)->is_address_valid())
3693 relro_size
+= (*p
)->data_size();
3696 // FIXME: This could be faster.
3697 (*p
)->set_address_and_file_offset(addr
+ relro_size
,
3699 relro_size
+= (*p
)->data_size();
3700 (*p
)->reset_address_and_file_offset();
3703 if (p
!= pdl
->end())
3706 relro_size
+= increase_relro
;
3708 uint64_t page_align
= parameters
->target().common_pagesize();
3710 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3711 uint64_t desired_align
= page_align
- (relro_size
% page_align
);
3712 if (desired_align
< *poff
% page_align
)
3713 *poff
+= page_align
- *poff
% page_align
;
3714 *poff
+= desired_align
- *poff
% page_align
;
3715 addr
+= *poff
- orig_off
;
3719 if (!reset
&& this->are_addresses_set_
)
3721 gold_assert(this->paddr_
== addr
);
3722 addr
= this->vaddr_
;
3726 this->vaddr_
= addr
;
3727 this->paddr_
= addr
;
3728 this->are_addresses_set_
= true;
3731 bool in_tls
= false;
3733 this->offset_
= orig_off
;
3737 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3739 addr
= this->set_section_list_addresses(layout
, reset
,
3740 &this->output_lists_
[i
],
3741 addr
, poff
, pshndx
, &in_tls
);
3742 if (i
< static_cast<int>(ORDER_SMALL_BSS
))
3744 this->filesz_
= *poff
- orig_off
;
3751 // If the last section was a TLS section, align upward to the
3752 // alignment of the TLS segment, so that the overall size of the TLS
3753 // segment is aligned.
3756 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
3757 *poff
= align_address(*poff
, segment_align
);
3760 this->memsz_
= *poff
- orig_off
;
3762 // Ignore the file offset adjustments made by the BSS Output_data
3769 // Set the addresses and file offsets in a list of Output_data
3773 Output_segment::set_section_list_addresses(const Layout
* layout
, bool reset
,
3774 Output_data_list
* pdl
,
3775 uint64_t addr
, off_t
* poff
,
3776 unsigned int* pshndx
,
3779 off_t startoff
= *poff
;
3781 off_t off
= startoff
;
3782 for (Output_data_list::iterator p
= pdl
->begin();
3787 (*p
)->reset_address_and_file_offset();
3789 // When using a linker script the section will most likely
3790 // already have an address.
3791 if (!(*p
)->is_address_valid())
3793 uint64_t align
= (*p
)->addralign();
3795 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
3797 // Give the first TLS section the alignment of the
3798 // entire TLS segment. Otherwise the TLS segment as a
3799 // whole may be misaligned.
3802 Output_segment
* tls_segment
= layout
->tls_segment();
3803 gold_assert(tls_segment
!= NULL
);
3804 uint64_t segment_align
= tls_segment
->maximum_alignment();
3805 gold_assert(segment_align
>= align
);
3806 align
= segment_align
;
3813 // If this is the first section after the TLS segment,
3814 // align it to at least the alignment of the TLS
3815 // segment, so that the size of the overall TLS segment
3819 uint64_t segment_align
=
3820 layout
->tls_segment()->maximum_alignment();
3821 if (segment_align
> align
)
3822 align
= segment_align
;
3828 off
= align_address(off
, align
);
3829 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
3833 // The script may have inserted a skip forward, but it
3834 // better not have moved backward.
3835 if ((*p
)->address() >= addr
+ (off
- startoff
))
3836 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
3839 if (!layout
->script_options()->saw_sections_clause())
3843 Output_section
* os
= (*p
)->output_section();
3845 // Cast to unsigned long long to avoid format warnings.
3846 unsigned long long previous_dot
=
3847 static_cast<unsigned long long>(addr
+ (off
- startoff
));
3848 unsigned long long dot
=
3849 static_cast<unsigned long long>((*p
)->address());
3852 gold_error(_("dot moves backward in linker script "
3853 "from 0x%llx to 0x%llx"), previous_dot
, dot
);
3855 gold_error(_("address of section '%s' moves backward "
3856 "from 0x%llx to 0x%llx"),
3857 os
->name(), previous_dot
, dot
);
3860 (*p
)->set_file_offset(off
);
3861 (*p
)->finalize_data_size();
3864 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3865 // section. Such a section does not affect the size of a
3867 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
3868 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
3869 off
+= (*p
)->data_size();
3871 if ((*p
)->is_section())
3873 (*p
)->set_out_shndx(*pshndx
);
3879 return addr
+ (off
- startoff
);
3882 // For a non-PT_LOAD segment, set the offset from the sections, if
3883 // any. Add INCREASE to the file size and the memory size.
3886 Output_segment::set_offset(unsigned int increase
)
3888 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
3890 gold_assert(!this->are_addresses_set_
);
3892 // A non-load section only uses output_lists_[0].
3894 Output_data_list
* pdl
= &this->output_lists_
[0];
3898 gold_assert(increase
== 0);
3901 this->are_addresses_set_
= true;
3903 this->min_p_align_
= 0;
3909 // Find the first and last section by address.
3910 const Output_data
* first
= NULL
;
3911 const Output_data
* last_data
= NULL
;
3912 const Output_data
* last_bss
= NULL
;
3913 for (Output_data_list::const_iterator p
= pdl
->begin();
3918 || (*p
)->address() < first
->address()
3919 || ((*p
)->address() == first
->address()
3920 && (*p
)->data_size() < first
->data_size()))
3922 const Output_data
** plast
;
3923 if ((*p
)->is_section()
3924 && (*p
)->output_section()->type() == elfcpp::SHT_NOBITS
)
3929 || (*p
)->address() > (*plast
)->address()
3930 || ((*p
)->address() == (*plast
)->address()
3931 && (*p
)->data_size() > (*plast
)->data_size()))
3935 this->vaddr_
= first
->address();
3936 this->paddr_
= (first
->has_load_address()
3937 ? first
->load_address()
3939 this->are_addresses_set_
= true;
3940 this->offset_
= first
->offset();
3942 if (last_data
== NULL
)
3945 this->filesz_
= (last_data
->address()
3946 + last_data
->data_size()
3949 const Output_data
* last
= last_bss
!= NULL
? last_bss
: last_data
;
3950 this->memsz_
= (last
->address()
3954 this->filesz_
+= increase
;
3955 this->memsz_
+= increase
;
3957 // If this is a TLS segment, align the memory size. The code in
3958 // set_section_list ensures that the section after the TLS segment
3959 // is aligned to give us room.
3960 if (this->type_
== elfcpp::PT_TLS
)
3962 uint64_t segment_align
= this->maximum_alignment();
3963 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
3964 this->memsz_
= align_address(this->memsz_
, segment_align
);
3968 // Set the TLS offsets of the sections in the PT_TLS segment.
3971 Output_segment::set_tls_offsets()
3973 gold_assert(this->type_
== elfcpp::PT_TLS
);
3975 for (Output_data_list::iterator p
= this->output_lists_
[0].begin();
3976 p
!= this->output_lists_
[0].end();
3978 (*p
)->set_tls_offset(this->vaddr_
);
3981 // Return the load address of the first section.
3984 Output_segment::first_section_load_address() const
3986 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
3988 const Output_data_list
* pdl
= &this->output_lists_
[i
];
3989 for (Output_data_list::const_iterator p
= pdl
->begin();
3993 if ((*p
)->is_section())
3994 return ((*p
)->has_load_address()
3995 ? (*p
)->load_address()
4002 // Return the number of Output_sections in an Output_segment.
4005 Output_segment::output_section_count() const
4007 unsigned int ret
= 0;
4008 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4009 ret
+= this->output_section_count_list(&this->output_lists_
[i
]);
4013 // Return the number of Output_sections in an Output_data_list.
4016 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
4018 unsigned int count
= 0;
4019 for (Output_data_list::const_iterator p
= pdl
->begin();
4023 if ((*p
)->is_section())
4029 // Return the section attached to the list segment with the lowest
4030 // load address. This is used when handling a PHDRS clause in a
4034 Output_segment::section_with_lowest_load_address() const
4036 Output_section
* found
= NULL
;
4037 uint64_t found_lma
= 0;
4038 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4039 this->lowest_load_address_in_list(&this->output_lists_
[i
], &found
,
4044 // Look through a list for a section with a lower load address.
4047 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
4048 Output_section
** found
,
4049 uint64_t* found_lma
) const
4051 for (Output_data_list::const_iterator p
= pdl
->begin();
4055 if (!(*p
)->is_section())
4057 Output_section
* os
= static_cast<Output_section
*>(*p
);
4058 uint64_t lma
= (os
->has_load_address()
4059 ? os
->load_address()
4061 if (*found
== NULL
|| lma
< *found_lma
)
4069 // Write the segment data into *OPHDR.
4071 template<int size
, bool big_endian
>
4073 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
4075 ophdr
->put_p_type(this->type_
);
4076 ophdr
->put_p_offset(this->offset_
);
4077 ophdr
->put_p_vaddr(this->vaddr_
);
4078 ophdr
->put_p_paddr(this->paddr_
);
4079 ophdr
->put_p_filesz(this->filesz_
);
4080 ophdr
->put_p_memsz(this->memsz_
);
4081 ophdr
->put_p_flags(this->flags_
);
4082 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
4085 // Write the section headers into V.
4087 template<int size
, bool big_endian
>
4089 Output_segment::write_section_headers(const Layout
* layout
,
4090 const Stringpool
* secnamepool
,
4092 unsigned int* pshndx
) const
4094 // Every section that is attached to a segment must be attached to a
4095 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4097 if (this->type_
!= elfcpp::PT_LOAD
)
4100 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4102 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4103 v
= this->write_section_headers_list
<size
, big_endian
>(layout
,
4112 template<int size
, bool big_endian
>
4114 Output_segment::write_section_headers_list(const Layout
* layout
,
4115 const Stringpool
* secnamepool
,
4116 const Output_data_list
* pdl
,
4118 unsigned int* pshndx
) const
4120 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
4121 for (Output_data_list::const_iterator p
= pdl
->begin();
4125 if ((*p
)->is_section())
4127 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
4128 gold_assert(*pshndx
== ps
->out_shndx());
4129 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
4130 ps
->write_header(layout
, secnamepool
, &oshdr
);
4138 // Print the output sections to the map file.
4141 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
4143 if (this->type() != elfcpp::PT_LOAD
)
4145 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4146 this->print_section_list_to_mapfile(mapfile
, &this->output_lists_
[i
]);
4149 // Print an output section list to the map file.
4152 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
4153 const Output_data_list
* pdl
) const
4155 for (Output_data_list::const_iterator p
= pdl
->begin();
4158 (*p
)->print_to_mapfile(mapfile
);
4161 // Output_file methods.
4163 Output_file::Output_file(const char* name
)
4168 map_is_anonymous_(false),
4169 is_temporary_(false)
4173 // Try to open an existing file. Returns false if the file doesn't
4174 // exist, has a size of 0 or can't be mmapped.
4177 Output_file::open_for_modification()
4179 // The name "-" means "stdout".
4180 if (strcmp(this->name_
, "-") == 0)
4183 // Don't bother opening files with a size of zero.
4185 if (::stat(this->name_
, &s
) != 0 || s
.st_size
== 0)
4188 int o
= open_descriptor(-1, this->name_
, O_RDWR
, 0);
4190 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4192 this->file_size_
= s
.st_size
;
4194 // If the file can't be mmapped, copying the content to an anonymous
4195 // map will probably negate the performance benefits of incremental
4196 // linking. This could be helped by using views and loading only
4197 // the necessary parts, but this is not supported as of now.
4198 if (!this->map_no_anonymous())
4200 release_descriptor(o
, true);
4202 this->file_size_
= 0;
4209 // Open the output file.
4212 Output_file::open(off_t file_size
)
4214 this->file_size_
= file_size
;
4216 // Unlink the file first; otherwise the open() may fail if the file
4217 // is busy (e.g. it's an executable that's currently being executed).
4219 // However, the linker may be part of a system where a zero-length
4220 // file is created for it to write to, with tight permissions (gcc
4221 // 2.95 did something like this). Unlinking the file would work
4222 // around those permission controls, so we only unlink if the file
4223 // has a non-zero size. We also unlink only regular files to avoid
4224 // trouble with directories/etc.
4226 // If we fail, continue; this command is merely a best-effort attempt
4227 // to improve the odds for open().
4229 // We let the name "-" mean "stdout"
4230 if (!this->is_temporary_
)
4232 if (strcmp(this->name_
, "-") == 0)
4233 this->o_
= STDOUT_FILENO
;
4237 if (::stat(this->name_
, &s
) == 0
4238 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
4241 ::unlink(this->name_
);
4242 else if (!parameters
->options().relocatable())
4244 // If we don't unlink the existing file, add execute
4245 // permission where read permissions already exist
4246 // and where the umask permits.
4247 int mask
= ::umask(0);
4249 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
4250 ::chmod(this->name_
, s
.st_mode
& ~mask
);
4254 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
4255 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
4258 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4266 // Resize the output file.
4269 Output_file::resize(off_t file_size
)
4271 // If the mmap is mapping an anonymous memory buffer, this is easy:
4272 // just mremap to the new size. If it's mapping to a file, we want
4273 // to unmap to flush to the file, then remap after growing the file.
4274 if (this->map_is_anonymous_
)
4276 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
4278 if (base
== MAP_FAILED
)
4279 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
4280 this->base_
= static_cast<unsigned char*>(base
);
4281 this->file_size_
= file_size
;
4286 this->file_size_
= file_size
;
4287 if (!this->map_no_anonymous())
4288 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
4292 // Map an anonymous block of memory which will later be written to the
4293 // file. Return whether the map succeeded.
4296 Output_file::map_anonymous()
4298 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4299 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
4300 if (base
!= MAP_FAILED
)
4302 this->map_is_anonymous_
= true;
4303 this->base_
= static_cast<unsigned char*>(base
);
4309 // Map the file into memory. Return whether the mapping succeeded.
4312 Output_file::map_no_anonymous()
4314 const int o
= this->o_
;
4316 // If the output file is not a regular file, don't try to mmap it;
4317 // instead, we'll mmap a block of memory (an anonymous buffer), and
4318 // then later write the buffer to the file.
4320 struct stat statbuf
;
4321 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
4322 || ::fstat(o
, &statbuf
) != 0
4323 || !S_ISREG(statbuf
.st_mode
)
4324 || this->is_temporary_
)
4327 // Ensure that we have disk space available for the file. If we
4328 // don't do this, it is possible that we will call munmap, close,
4329 // and exit with dirty buffers still in the cache with no assigned
4330 // disk blocks. If the disk is out of space at that point, the
4331 // output file will wind up incomplete, but we will have already
4332 // exited. The alternative to fallocate would be to use fdatasync,
4333 // but that would be a more significant performance hit.
4334 if (::posix_fallocate(o
, 0, this->file_size_
) < 0)
4335 gold_fatal(_("%s: %s"), this->name_
, strerror(errno
));
4337 // Map the file into memory.
4338 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4341 // The mmap call might fail because of file system issues: the file
4342 // system might not support mmap at all, or it might not support
4343 // mmap with PROT_WRITE.
4344 if (base
== MAP_FAILED
)
4347 this->map_is_anonymous_
= false;
4348 this->base_
= static_cast<unsigned char*>(base
);
4352 // Map the file into memory.
4357 if (this->map_no_anonymous())
4360 // The mmap call might fail because of file system issues: the file
4361 // system might not support mmap at all, or it might not support
4362 // mmap with PROT_WRITE. I'm not sure which errno values we will
4363 // see in all cases, so if the mmap fails for any reason and we
4364 // don't care about file contents, try for an anonymous map.
4365 if (this->map_anonymous())
4368 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4369 this->name_
, static_cast<unsigned long>(this->file_size_
),
4373 // Unmap the file from memory.
4376 Output_file::unmap()
4378 if (::munmap(this->base_
, this->file_size_
) < 0)
4379 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
4383 // Close the output file.
4386 Output_file::close()
4388 // If the map isn't file-backed, we need to write it now.
4389 if (this->map_is_anonymous_
&& !this->is_temporary_
)
4391 size_t bytes_to_write
= this->file_size_
;
4393 while (bytes_to_write
> 0)
4395 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
4397 if (bytes_written
== 0)
4398 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
4399 else if (bytes_written
< 0)
4400 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
4403 bytes_to_write
-= bytes_written
;
4404 offset
+= bytes_written
;
4410 // We don't close stdout or stderr
4411 if (this->o_
!= STDOUT_FILENO
4412 && this->o_
!= STDERR_FILENO
4413 && !this->is_temporary_
)
4414 if (::close(this->o_
) < 0)
4415 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
4419 // Instantiate the templates we need. We could use the configure
4420 // script to restrict this to only the ones for implemented targets.
4422 #ifdef HAVE_TARGET_32_LITTLE
4425 Output_section::add_input_section
<32, false>(
4427 Sized_relobj
<32, false>* object
,
4429 const char* secname
,
4430 const elfcpp::Shdr
<32, false>& shdr
,
4431 unsigned int reloc_shndx
,
4432 bool have_sections_script
);
4435 #ifdef HAVE_TARGET_32_BIG
4438 Output_section::add_input_section
<32, true>(
4440 Sized_relobj
<32, true>* object
,
4442 const char* secname
,
4443 const elfcpp::Shdr
<32, true>& shdr
,
4444 unsigned int reloc_shndx
,
4445 bool have_sections_script
);
4448 #ifdef HAVE_TARGET_64_LITTLE
4451 Output_section::add_input_section
<64, false>(
4453 Sized_relobj
<64, false>* object
,
4455 const char* secname
,
4456 const elfcpp::Shdr
<64, false>& shdr
,
4457 unsigned int reloc_shndx
,
4458 bool have_sections_script
);
4461 #ifdef HAVE_TARGET_64_BIG
4464 Output_section::add_input_section
<64, true>(
4466 Sized_relobj
<64, true>* object
,
4468 const char* secname
,
4469 const elfcpp::Shdr
<64, true>& shdr
,
4470 unsigned int reloc_shndx
,
4471 bool have_sections_script
);
4474 #ifdef HAVE_TARGET_32_LITTLE
4476 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
4479 #ifdef HAVE_TARGET_32_BIG
4481 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
4484 #ifdef HAVE_TARGET_64_LITTLE
4486 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
4489 #ifdef HAVE_TARGET_64_BIG
4491 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
4494 #ifdef HAVE_TARGET_32_LITTLE
4496 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
4499 #ifdef HAVE_TARGET_32_BIG
4501 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
4504 #ifdef HAVE_TARGET_64_LITTLE
4506 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
4509 #ifdef HAVE_TARGET_64_BIG
4511 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
4514 #ifdef HAVE_TARGET_32_LITTLE
4516 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
4519 #ifdef HAVE_TARGET_32_BIG
4521 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
4524 #ifdef HAVE_TARGET_64_LITTLE
4526 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
4529 #ifdef HAVE_TARGET_64_BIG
4531 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
4534 #ifdef HAVE_TARGET_32_LITTLE
4536 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
4539 #ifdef HAVE_TARGET_32_BIG
4541 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
4544 #ifdef HAVE_TARGET_64_LITTLE
4546 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
4549 #ifdef HAVE_TARGET_64_BIG
4551 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
4554 #ifdef HAVE_TARGET_32_LITTLE
4556 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
4559 #ifdef HAVE_TARGET_32_BIG
4561 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
4564 #ifdef HAVE_TARGET_64_LITTLE
4566 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
4569 #ifdef HAVE_TARGET_64_BIG
4571 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
4574 #ifdef HAVE_TARGET_32_LITTLE
4576 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
4579 #ifdef HAVE_TARGET_32_BIG
4581 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
4584 #ifdef HAVE_TARGET_64_LITTLE
4586 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
4589 #ifdef HAVE_TARGET_64_BIG
4591 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
4594 #ifdef HAVE_TARGET_32_LITTLE
4596 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
4599 #ifdef HAVE_TARGET_32_BIG
4601 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
4604 #ifdef HAVE_TARGET_64_LITTLE
4606 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
4609 #ifdef HAVE_TARGET_64_BIG
4611 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
4614 #ifdef HAVE_TARGET_32_LITTLE
4616 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
4619 #ifdef HAVE_TARGET_32_BIG
4621 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
4624 #ifdef HAVE_TARGET_64_LITTLE
4626 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
4629 #ifdef HAVE_TARGET_64_BIG
4631 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
4634 #ifdef HAVE_TARGET_32_LITTLE
4636 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
4639 #ifdef HAVE_TARGET_32_BIG
4641 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
4644 #ifdef HAVE_TARGET_64_LITTLE
4646 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
4649 #ifdef HAVE_TARGET_64_BIG
4651 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
4654 #ifdef HAVE_TARGET_32_LITTLE
4656 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
4659 #ifdef HAVE_TARGET_32_BIG
4661 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
4664 #ifdef HAVE_TARGET_64_LITTLE
4666 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
4669 #ifdef HAVE_TARGET_64_BIG
4671 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
4674 #ifdef HAVE_TARGET_32_LITTLE
4676 class Output_data_group
<32, false>;
4679 #ifdef HAVE_TARGET_32_BIG
4681 class Output_data_group
<32, true>;
4684 #ifdef HAVE_TARGET_64_LITTLE
4686 class Output_data_group
<64, false>;
4689 #ifdef HAVE_TARGET_64_BIG
4691 class Output_data_group
<64, true>;
4694 #ifdef HAVE_TARGET_32_LITTLE
4696 class Output_data_got
<32, false>;
4699 #ifdef HAVE_TARGET_32_BIG
4701 class Output_data_got
<32, true>;
4704 #ifdef HAVE_TARGET_64_LITTLE
4706 class Output_data_got
<64, false>;
4709 #ifdef HAVE_TARGET_64_BIG
4711 class Output_data_got
<64, true>;
4714 } // End namespace gold.