* ldlex.l (WILDCHAR): Add the caret and exclamation point
[binutils.git] / gold / output.cc
blobffc5d691096895d51964f51efea58f4ed252ef59
1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
56 return ftruncate(o, offset + len);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
60 namespace gold
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
75 uint64_t
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
82 // Return the default alignment for a size--32 or 64.
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
114 // Compute the current data size.
116 off_t
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
130 else
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
139 count += this->unattached_section_list_->size();
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
150 return count * shdr_size;
153 // Write out the section headers.
155 void
156 Output_section_headers::do_write(Output_file* of)
158 switch (parameters->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
223 v += shdr_size;
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
235 &shndx);
237 else
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
274 of->write_output_view(this->offset(), all_shdrs_size, view);
277 // Output_segment_header methods.
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
285 void
286 Output_segment_headers::do_write(Output_file* of)
288 switch (parameters->size_and_endianness())
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
334 gold_assert(v - view == all_phdrs_size);
336 of->write_output_view(this->offset(), all_phdrs_size, view);
339 off_t
340 Output_segment_headers::do_size() const
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
351 return this->segment_list_.size() * phdr_size;
354 // Output_file_header methods.
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
367 this->set_data_size(this->do_size());
370 // Set the section table information for a file header.
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
380 // Write out the file header.
382 void
383 Output_file_header::do_write(Output_file* of)
385 gold_assert(this->offset() == 0);
387 switch (parameters->size_and_endianness())
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
414 // Write out the file header with appropriate size and endianess.
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
420 gold_assert(this->offset() == 0);
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
456 oehdr.put_e_entry(this->entry<size>());
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467 if (this->segment_header_ == NULL)
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
472 else
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
502 of->write_output_view(0, ehdr_size, view);
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
521 Symbol* sym = this->symtab_->lookup(entry);
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
532 else
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
546 return v;
549 // Compute the current data size.
551 off_t
552 Output_file_header::do_size() const
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
563 // Output_data_const methods.
565 void
566 Output_data_const::do_write(Output_file* of)
568 of->write(this->offset(), this->data_.data(), this->data_.size());
571 // Output_data_const_buffer methods.
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
576 of->write(this->offset(), this->p_, this->data_size());
579 // Output_section_data methods.
581 // Record the output section, and set the entry size and such.
583 void
584 Output_section_data::set_output_section(Output_section* os)
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
591 // Return the section index of the output section.
593 unsigned int
594 Output_section_data::do_out_shndx() const
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
612 // Output_data_strtab methods.
614 // Set the final data size.
616 void
617 Output_data_strtab::set_final_data_size()
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
623 // Write out a string table.
625 void
626 Output_data_strtab::do_write(Output_file* of)
628 this->strtab_->write(of, this->offset());
631 // Output_reloc methods.
633 // A reloc against a global symbol.
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
677 // A reloc against a local symbol.
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
728 // A reloc against the STT_SECTION symbol of an output section.
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
772 // An absolute relocation.
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
806 // A target specific relocation.
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
842 // Record that we need a dynamic symbol index for this relocation.
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
853 case INVALID_CODE:
854 gold_unreachable();
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
868 case 0:
869 break;
871 default:
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
879 break;
883 // Get the symbol index of a relocation.
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
895 case INVALID_CODE:
896 gold_unreachable();
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
924 default:
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
934 else
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
944 break;
946 gold_assert(index != -1U);
947 return index;
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
976 // Get the output address of a relocation.
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1016 // Write out a Rel relocation.
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1027 // Get the value of the symbol referred to by a Rel relocation.
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1034 if (this->local_sym_index_ == GSYM_CODE)
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1056 template<bool dynamic, int size, bool big_endian>
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1062 if (this->is_relative_)
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1097 // These relocs appear to be exactly the same.
1098 return 0;
1101 // Write out a Rela relocation.
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1121 // Output_data_reloc_base methods.
1123 // Adjust the output section.
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1141 if (!dynamic)
1142 os->set_should_link_to_symtab();
1143 else if (parameters->doing_static_link())
1145 else
1146 os->set_should_link_to_dynsym();
1149 // Write out relocation data.
1151 template<int sh_type, bool dynamic, int size, bool big_endian>
1152 void
1153 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1154 Output_file* of)
1156 const off_t off = this->offset();
1157 const off_t oview_size = this->data_size();
1158 unsigned char* const oview = of->get_output_view(off, oview_size);
1160 if (this->sort_relocs())
1162 gold_assert(dynamic);
1163 std::sort(this->relocs_.begin(), this->relocs_.end(),
1164 Sort_relocs_comparison());
1167 unsigned char* pov = oview;
1168 for (typename Relocs::const_iterator p = this->relocs_.begin();
1169 p != this->relocs_.end();
1170 ++p)
1172 p->write(pov);
1173 pov += reloc_size;
1176 gold_assert(pov - oview == oview_size);
1178 of->write_output_view(off, oview_size, oview);
1180 // We no longer need the relocation entries.
1181 this->relocs_.clear();
1184 // Class Output_relocatable_relocs.
1186 template<int sh_type, int size, bool big_endian>
1187 void
1188 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1190 this->set_data_size(this->rr_->output_reloc_count()
1191 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1194 // class Output_data_group.
1196 template<int size, bool big_endian>
1197 Output_data_group<size, big_endian>::Output_data_group(
1198 Sized_relobj<size, big_endian>* relobj,
1199 section_size_type entry_count,
1200 elfcpp::Elf_Word flags,
1201 std::vector<unsigned int>* input_shndxes)
1202 : Output_section_data(entry_count * 4, 4, false),
1203 relobj_(relobj),
1204 flags_(flags)
1206 this->input_shndxes_.swap(*input_shndxes);
1209 // Write out the section group, which means translating the section
1210 // indexes to apply to the output file.
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_group<size, big_endian>::do_write(Output_file* of)
1216 const off_t off = this->offset();
1217 const section_size_type oview_size =
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview = of->get_output_view(off, oview_size);
1221 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1222 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1223 ++contents;
1225 for (std::vector<unsigned int>::const_iterator p =
1226 this->input_shndxes_.begin();
1227 p != this->input_shndxes_.end();
1228 ++p, ++contents)
1230 Output_section* os = this->relobj_->output_section(*p);
1232 unsigned int output_shndx;
1233 if (os != NULL)
1234 output_shndx = os->out_shndx();
1235 else
1237 this->relobj_->error(_("section group retained but "
1238 "group element discarded"));
1239 output_shndx = 0;
1242 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1245 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1246 gold_assert(wrote == oview_size);
1248 of->write_output_view(off, oview_size, oview);
1250 // We no longer need this information.
1251 this->input_shndxes_.clear();
1254 // Output_data_got::Got_entry methods.
1256 // Write out the entry.
1258 template<int size, bool big_endian>
1259 void
1260 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1262 Valtype val = 0;
1264 switch (this->local_sym_index_)
1266 case GSYM_CODE:
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
1271 Symbol* gsym = this->u_.gsym;
1272 if (this->use_plt_offset_ && gsym->has_plt_offset())
1273 val = (parameters->target().plt_section_for_global(gsym)->address()
1274 + gsym->plt_offset());
1275 else
1277 Sized_symbol<size>* sgsym;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1282 val = sgsym->value();
1285 break;
1287 case CONSTANT_CODE:
1288 val = this->u_.constant;
1289 break;
1291 default:
1293 const Sized_relobj<size, big_endian>* object = this->u_.object;
1294 const unsigned int lsi = this->local_sym_index_;
1295 const Symbol_value<size>* symval = object->local_symbol(lsi);
1296 if (!this->use_plt_offset_)
1297 val = symval->value(this->u_.object, 0);
1298 else
1300 const Output_data* plt =
1301 parameters->target().plt_section_for_local(object, lsi);
1302 val = plt->address() + object->local_plt_offset(lsi);
1305 break;
1308 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1311 // Output_data_got methods.
1313 // Add an entry for a global symbol to the GOT. This returns true if
1314 // this is a new GOT entry, false if the symbol already had a GOT
1315 // entry.
1317 template<int size, bool big_endian>
1318 bool
1319 Output_data_got<size, big_endian>::add_global(
1320 Symbol* gsym,
1321 unsigned int got_type)
1323 if (gsym->has_got_offset(got_type))
1324 return false;
1326 this->entries_.push_back(Got_entry(gsym, false));
1327 this->set_got_size();
1328 gsym->set_got_offset(got_type, this->last_got_offset());
1329 return true;
1332 // Like add_global, but use the PLT offset.
1334 template<int size, bool big_endian>
1335 bool
1336 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1337 unsigned int got_type)
1339 if (gsym->has_got_offset(got_type))
1340 return false;
1342 this->entries_.push_back(Got_entry(gsym, true));
1343 this->set_got_size();
1344 gsym->set_got_offset(got_type, this->last_got_offset());
1345 return true;
1348 // Add an entry for a global symbol to the GOT, and add a dynamic
1349 // relocation of type R_TYPE for the GOT entry.
1351 template<int size, bool big_endian>
1352 void
1353 Output_data_got<size, big_endian>::add_global_with_rel(
1354 Symbol* gsym,
1355 unsigned int got_type,
1356 Rel_dyn* rel_dyn,
1357 unsigned int r_type)
1359 if (gsym->has_got_offset(got_type))
1360 return;
1362 this->entries_.push_back(Got_entry());
1363 this->set_got_size();
1364 unsigned int got_offset = this->last_got_offset();
1365 gsym->set_got_offset(got_type, got_offset);
1366 rel_dyn->add_global(gsym, r_type, this, got_offset);
1369 template<int size, bool big_endian>
1370 void
1371 Output_data_got<size, big_endian>::add_global_with_rela(
1372 Symbol* gsym,
1373 unsigned int got_type,
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type)
1377 if (gsym->has_got_offset(got_type))
1378 return;
1380 this->entries_.push_back(Got_entry());
1381 this->set_got_size();
1382 unsigned int got_offset = this->last_got_offset();
1383 gsym->set_got_offset(got_type, got_offset);
1384 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1387 // Add a pair of entries for a global symbol to the GOT, and add
1388 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389 // If R_TYPE_2 == 0, add the second entry with no relocation.
1390 template<int size, bool big_endian>
1391 void
1392 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1393 Symbol* gsym,
1394 unsigned int got_type,
1395 Rel_dyn* rel_dyn,
1396 unsigned int r_type_1,
1397 unsigned int r_type_2)
1399 if (gsym->has_got_offset(got_type))
1400 return;
1402 this->entries_.push_back(Got_entry());
1403 unsigned int got_offset = this->last_got_offset();
1404 gsym->set_got_offset(got_type, got_offset);
1405 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1407 this->entries_.push_back(Got_entry());
1408 if (r_type_2 != 0)
1410 got_offset = this->last_got_offset();
1411 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1414 this->set_got_size();
1417 template<int size, bool big_endian>
1418 void
1419 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1420 Symbol* gsym,
1421 unsigned int got_type,
1422 Rela_dyn* rela_dyn,
1423 unsigned int r_type_1,
1424 unsigned int r_type_2)
1426 if (gsym->has_got_offset(got_type))
1427 return;
1429 this->entries_.push_back(Got_entry());
1430 unsigned int got_offset = this->last_got_offset();
1431 gsym->set_got_offset(got_type, got_offset);
1432 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1434 this->entries_.push_back(Got_entry());
1435 if (r_type_2 != 0)
1437 got_offset = this->last_got_offset();
1438 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1441 this->set_got_size();
1444 // Add an entry for a local symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already has a GOT
1446 // entry.
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_local(
1451 Sized_relobj<size, big_endian>* object,
1452 unsigned int symndx,
1453 unsigned int got_type)
1455 if (object->local_has_got_offset(symndx, got_type))
1456 return false;
1458 this->entries_.push_back(Got_entry(object, symndx, false));
1459 this->set_got_size();
1460 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1461 return true;
1464 // Like add_local, but use the PLT offset.
1466 template<int size, bool big_endian>
1467 bool
1468 Output_data_got<size, big_endian>::add_local_plt(
1469 Sized_relobj<size, big_endian>* object,
1470 unsigned int symndx,
1471 unsigned int got_type)
1473 if (object->local_has_got_offset(symndx, got_type))
1474 return false;
1476 this->entries_.push_back(Got_entry(object, symndx, true));
1477 this->set_got_size();
1478 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1479 return true;
1482 // Add an entry for a local symbol to the GOT, and add a dynamic
1483 // relocation of type R_TYPE for the GOT entry.
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_with_rel(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int got_type,
1491 Rel_dyn* rel_dyn,
1492 unsigned int r_type)
1494 if (object->local_has_got_offset(symndx, got_type))
1495 return;
1497 this->entries_.push_back(Got_entry());
1498 this->set_got_size();
1499 unsigned int got_offset = this->last_got_offset();
1500 object->set_local_got_offset(symndx, got_type, got_offset);
1501 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1504 template<int size, bool big_endian>
1505 void
1506 Output_data_got<size, big_endian>::add_local_with_rela(
1507 Sized_relobj<size, big_endian>* object,
1508 unsigned int symndx,
1509 unsigned int got_type,
1510 Rela_dyn* rela_dyn,
1511 unsigned int r_type)
1513 if (object->local_has_got_offset(symndx, got_type))
1514 return;
1516 this->entries_.push_back(Got_entry());
1517 this->set_got_size();
1518 unsigned int got_offset = this->last_got_offset();
1519 object->set_local_got_offset(symndx, got_type, got_offset);
1520 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1523 // Add a pair of entries for a local symbol to the GOT, and add
1524 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525 // If R_TYPE_2 == 0, add the second entry with no relocation.
1526 template<int size, bool big_endian>
1527 void
1528 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1529 Sized_relobj<size, big_endian>* object,
1530 unsigned int symndx,
1531 unsigned int shndx,
1532 unsigned int got_type,
1533 Rel_dyn* rel_dyn,
1534 unsigned int r_type_1,
1535 unsigned int r_type_2)
1537 if (object->local_has_got_offset(symndx, got_type))
1538 return;
1540 this->entries_.push_back(Got_entry());
1541 unsigned int got_offset = this->last_got_offset();
1542 object->set_local_got_offset(symndx, got_type, got_offset);
1543 Output_section* os = object->output_section(shndx);
1544 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1546 this->entries_.push_back(Got_entry(object, symndx, false));
1547 if (r_type_2 != 0)
1549 got_offset = this->last_got_offset();
1550 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1553 this->set_got_size();
1556 template<int size, bool big_endian>
1557 void
1558 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1559 Sized_relobj<size, big_endian>* object,
1560 unsigned int symndx,
1561 unsigned int shndx,
1562 unsigned int got_type,
1563 Rela_dyn* rela_dyn,
1564 unsigned int r_type_1,
1565 unsigned int r_type_2)
1567 if (object->local_has_got_offset(symndx, got_type))
1568 return;
1570 this->entries_.push_back(Got_entry());
1571 unsigned int got_offset = this->last_got_offset();
1572 object->set_local_got_offset(symndx, got_type, got_offset);
1573 Output_section* os = object->output_section(shndx);
1574 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1576 this->entries_.push_back(Got_entry(object, symndx, false));
1577 if (r_type_2 != 0)
1579 got_offset = this->last_got_offset();
1580 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1583 this->set_got_size();
1586 // Write out the GOT.
1588 template<int size, bool big_endian>
1589 void
1590 Output_data_got<size, big_endian>::do_write(Output_file* of)
1592 const int add = size / 8;
1594 const off_t off = this->offset();
1595 const off_t oview_size = this->data_size();
1596 unsigned char* const oview = of->get_output_view(off, oview_size);
1598 unsigned char* pov = oview;
1599 for (typename Got_entries::const_iterator p = this->entries_.begin();
1600 p != this->entries_.end();
1601 ++p)
1603 p->write(pov);
1604 pov += add;
1607 gold_assert(pov - oview == oview_size);
1609 of->write_output_view(off, oview_size, oview);
1611 // We no longer need the GOT entries.
1612 this->entries_.clear();
1615 // Output_data_dynamic::Dynamic_entry methods.
1617 // Write out the entry.
1619 template<int size, bool big_endian>
1620 void
1621 Output_data_dynamic::Dynamic_entry::write(
1622 unsigned char* pov,
1623 const Stringpool* pool) const
1625 typename elfcpp::Elf_types<size>::Elf_WXword val;
1626 switch (this->offset_)
1628 case DYNAMIC_NUMBER:
1629 val = this->u_.val;
1630 break;
1632 case DYNAMIC_SECTION_SIZE:
1633 val = this->u_.od->data_size();
1634 if (this->od2 != NULL)
1635 val += this->od2->data_size();
1636 break;
1638 case DYNAMIC_SYMBOL:
1640 const Sized_symbol<size>* s =
1641 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1642 val = s->value();
1644 break;
1646 case DYNAMIC_STRING:
1647 val = pool->get_offset(this->u_.str);
1648 break;
1650 default:
1651 val = this->u_.od->address() + this->offset_;
1652 break;
1655 elfcpp::Dyn_write<size, big_endian> dw(pov);
1656 dw.put_d_tag(this->tag_);
1657 dw.put_d_val(val);
1660 // Output_data_dynamic methods.
1662 // Adjust the output section to set the entry size.
1664 void
1665 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1667 if (parameters->target().get_size() == 32)
1668 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1669 else if (parameters->target().get_size() == 64)
1670 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1671 else
1672 gold_unreachable();
1675 // Set the final data size.
1677 void
1678 Output_data_dynamic::set_final_data_size()
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
1682 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1684 int extra = parameters->options().spare_dynamic_tags();
1685 for (int i = 0; i < extra; ++i)
1686 this->add_constant(elfcpp::DT_NULL, 0);
1687 this->add_constant(elfcpp::DT_NULL, 0);
1690 int dyn_size;
1691 if (parameters->target().get_size() == 32)
1692 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1693 else if (parameters->target().get_size() == 64)
1694 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1695 else
1696 gold_unreachable();
1697 this->set_data_size(this->entries_.size() * dyn_size);
1700 // Write out the dynamic entries.
1702 void
1703 Output_data_dynamic::do_write(Output_file* of)
1705 switch (parameters->size_and_endianness())
1707 #ifdef HAVE_TARGET_32_LITTLE
1708 case Parameters::TARGET_32_LITTLE:
1709 this->sized_write<32, false>(of);
1710 break;
1711 #endif
1712 #ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG:
1714 this->sized_write<32, true>(of);
1715 break;
1716 #endif
1717 #ifdef HAVE_TARGET_64_LITTLE
1718 case Parameters::TARGET_64_LITTLE:
1719 this->sized_write<64, false>(of);
1720 break;
1721 #endif
1722 #ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG:
1724 this->sized_write<64, true>(of);
1725 break;
1726 #endif
1727 default:
1728 gold_unreachable();
1732 template<int size, bool big_endian>
1733 void
1734 Output_data_dynamic::sized_write(Output_file* of)
1736 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1738 const off_t offset = this->offset();
1739 const off_t oview_size = this->data_size();
1740 unsigned char* const oview = of->get_output_view(offset, oview_size);
1742 unsigned char* pov = oview;
1743 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1744 p != this->entries_.end();
1745 ++p)
1747 p->write<size, big_endian>(pov, this->pool_);
1748 pov += dyn_size;
1751 gold_assert(pov - oview == oview_size);
1753 of->write_output_view(offset, oview_size, oview);
1755 // We no longer need the dynamic entries.
1756 this->entries_.clear();
1759 // Class Output_symtab_xindex.
1761 void
1762 Output_symtab_xindex::do_write(Output_file* of)
1764 const off_t offset = this->offset();
1765 const off_t oview_size = this->data_size();
1766 unsigned char* const oview = of->get_output_view(offset, oview_size);
1768 memset(oview, 0, oview_size);
1770 if (parameters->target().is_big_endian())
1771 this->endian_do_write<true>(oview);
1772 else
1773 this->endian_do_write<false>(oview);
1775 of->write_output_view(offset, oview_size, oview);
1777 // We no longer need the data.
1778 this->entries_.clear();
1781 template<bool big_endian>
1782 void
1783 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1785 for (Xindex_entries::const_iterator p = this->entries_.begin();
1786 p != this->entries_.end();
1787 ++p)
1789 unsigned int symndx = p->first;
1790 gold_assert(symndx * 4 < this->data_size());
1791 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1795 // Output_section::Input_section methods.
1797 // Return the data size. For an input section we store the size here.
1798 // For an Output_section_data, we have to ask it for the size.
1800 off_t
1801 Output_section::Input_section::data_size() const
1803 if (this->is_input_section())
1804 return this->u1_.data_size;
1805 else
1806 return this->u2_.posd->data_size();
1809 // Return the object for an input section.
1811 Relobj*
1812 Output_section::Input_section::relobj() const
1814 if (this->is_input_section())
1815 return this->u2_.object;
1816 else if (this->is_merge_section())
1818 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1819 return this->u2_.pomb->first_relobj();
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_.poris->relobj();
1823 else
1824 gold_unreachable();
1827 // Return the input section index for an input section.
1829 unsigned int
1830 Output_section::Input_section::shndx() const
1832 if (this->is_input_section())
1833 return this->shndx_;
1834 else if (this->is_merge_section())
1836 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1837 return this->u2_.pomb->first_shndx();
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_.poris->shndx();
1841 else
1842 gold_unreachable();
1845 // Set the address and file offset.
1847 void
1848 Output_section::Input_section::set_address_and_file_offset(
1849 uint64_t address,
1850 off_t file_offset,
1851 off_t section_file_offset)
1853 if (this->is_input_section())
1854 this->u2_.object->set_section_offset(this->shndx_,
1855 file_offset - section_file_offset);
1856 else
1857 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1860 // Reset the address and file offset.
1862 void
1863 Output_section::Input_section::reset_address_and_file_offset()
1865 if (!this->is_input_section())
1866 this->u2_.posd->reset_address_and_file_offset();
1869 // Finalize the data size.
1871 void
1872 Output_section::Input_section::finalize_data_size()
1874 if (!this->is_input_section())
1875 this->u2_.posd->finalize_data_size();
1878 // Try to turn an input offset into an output offset. We want to
1879 // return the output offset relative to the start of this
1880 // Input_section in the output section.
1882 inline bool
1883 Output_section::Input_section::output_offset(
1884 const Relobj* object,
1885 unsigned int shndx,
1886 section_offset_type offset,
1887 section_offset_type* poutput) const
1889 if (!this->is_input_section())
1890 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1891 else
1893 if (this->shndx_ != shndx || this->u2_.object != object)
1894 return false;
1895 *poutput = offset;
1896 return true;
1900 // Return whether this is the merge section for the input section
1901 // SHNDX in OBJECT.
1903 inline bool
1904 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1905 unsigned int shndx) const
1907 if (this->is_input_section())
1908 return false;
1909 return this->u2_.posd->is_merge_section_for(object, shndx);
1912 // Write out the data. We don't have to do anything for an input
1913 // section--they are handled via Object::relocate--but this is where
1914 // we write out the data for an Output_section_data.
1916 void
1917 Output_section::Input_section::write(Output_file* of)
1919 if (!this->is_input_section())
1920 this->u2_.posd->write(of);
1923 // Write the data to a buffer. As for write(), we don't have to do
1924 // anything for an input section.
1926 void
1927 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1929 if (!this->is_input_section())
1930 this->u2_.posd->write_to_buffer(buffer);
1933 // Print to a map file.
1935 void
1936 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1938 switch (this->shndx_)
1940 case OUTPUT_SECTION_CODE:
1941 case MERGE_DATA_SECTION_CODE:
1942 case MERGE_STRING_SECTION_CODE:
1943 this->u2_.posd->print_to_mapfile(mapfile);
1944 break;
1946 case RELAXED_INPUT_SECTION_CODE:
1948 Output_relaxed_input_section* relaxed_section =
1949 this->relaxed_input_section();
1950 mapfile->print_input_section(relaxed_section->relobj(),
1951 relaxed_section->shndx());
1953 break;
1954 default:
1955 mapfile->print_input_section(this->u2_.object, this->shndx_);
1956 break;
1960 // Output_section methods.
1962 // Construct an Output_section. NAME will point into a Stringpool.
1964 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1965 elfcpp::Elf_Xword flags)
1966 : name_(name),
1967 addralign_(0),
1968 entsize_(0),
1969 load_address_(0),
1970 link_section_(NULL),
1971 link_(0),
1972 info_section_(NULL),
1973 info_symndx_(NULL),
1974 info_(0),
1975 type_(type),
1976 flags_(flags),
1977 order_(ORDER_INVALID),
1978 out_shndx_(-1U),
1979 symtab_index_(0),
1980 dynsym_index_(0),
1981 input_sections_(),
1982 first_input_offset_(0),
1983 fills_(),
1984 postprocessing_buffer_(NULL),
1985 needs_symtab_index_(false),
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
1988 should_link_to_dynsym_(false),
1989 after_input_sections_(false),
1990 requires_postprocessing_(false),
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
1993 info_uses_section_index_(false),
1994 input_section_order_specified_(false),
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
1998 is_relro_(false),
1999 is_small_section_(false),
2000 is_large_section_(false),
2001 generate_code_fills_at_write_(false),
2002 is_entsize_zero_(false),
2003 section_offsets_need_adjustment_(false),
2004 is_noload_(false),
2005 always_keeps_input_sections_(false),
2006 tls_offset_(0),
2007 checkpoint_(NULL),
2008 lookup_maps_(new Output_section_lookup_maps)
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2012 // sections.
2013 if ((flags & elfcpp::SHF_ALLOC) == 0)
2014 this->set_address(0);
2017 Output_section::~Output_section()
2019 delete this->checkpoint_;
2022 // Set the entry size.
2024 void
2025 Output_section::set_entsize(uint64_t v)
2027 if (this->is_entsize_zero_)
2029 else if (this->entsize_ == 0)
2030 this->entsize_ = v;
2031 else if (this->entsize_ != v)
2033 this->entsize_ = 0;
2034 this->is_entsize_zero_ = 1;
2038 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2039 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040 // relocation section which applies to this section, or 0 if none, or
2041 // -1U if more than one. Return the offset of the input section
2042 // within the output section. Return -1 if the input section will
2043 // receive special handling. In the normal case we don't always keep
2044 // track of input sections for an Output_section. Instead, each
2045 // Object keeps track of the Output_section for each of its input
2046 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047 // track of input sections here; this is used when SECTIONS appears in
2048 // a linker script.
2050 template<int size, bool big_endian>
2051 off_t
2052 Output_section::add_input_section(Layout* layout,
2053 Sized_relobj<size, big_endian>* object,
2054 unsigned int shndx,
2055 const char* secname,
2056 const elfcpp::Shdr<size, big_endian>& shdr,
2057 unsigned int reloc_shndx,
2058 bool have_sections_script)
2060 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2061 if ((addralign & (addralign - 1)) != 0)
2063 object->error(_("invalid alignment %lu for section \"%s\""),
2064 static_cast<unsigned long>(addralign), secname);
2065 addralign = 1;
2068 if (addralign > this->addralign_)
2069 this->addralign_ = addralign;
2071 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2072 uint64_t entsize = shdr.get_sh_entsize();
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname, ".debug_str") == 0)
2078 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2079 entsize = 1;
2082 this->update_flags_for_input_section(sh_flags);
2083 this->set_entsize(entsize);
2085 // If this is a SHF_MERGE section, we pass all the input sections to
2086 // a Output_data_merge. We don't try to handle relocations for such
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
2089 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2090 && reloc_shndx == 0
2091 && shdr.get_sh_size() > 0)
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
2095 bool keeps_input_sections = (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters->target().may_relax());
2099 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2100 addralign, keeps_input_sections))
2102 // Tell the relocation routines that they need to call the
2103 // output_offset method to determine the final address.
2104 return -1;
2108 off_t offset_in_section = this->current_data_size_for_child();
2109 off_t aligned_offset_in_section = align_address(offset_in_section,
2110 addralign);
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
2114 // generating to avoid adjusting them during relaxation.
2115 if (!this->generate_code_fills_at_write_
2116 && !have_sections_script
2117 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2118 && parameters->target().has_code_fill()
2119 && parameters->target().may_relax())
2121 gold_assert(this->fills_.empty());
2122 this->generate_code_fills_at_write_ = true;
2125 if (aligned_offset_in_section > offset_in_section
2126 && !this->generate_code_fills_at_write_
2127 && !have_sections_script
2128 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2129 && parameters->target().has_code_fill())
2131 // We need to add some fill data. Using fill_list_ when
2132 // possible is an optimization, since we will often have fill
2133 // sections without input sections.
2134 off_t fill_len = aligned_offset_in_section - offset_in_section;
2135 if (this->input_sections_.empty())
2136 this->fills_.push_back(Fill(offset_in_section, fill_len));
2137 else
2139 std::string fill_data(parameters->target().code_fill(fill_len));
2140 Output_data_const* odc = new Output_data_const(fill_data, 1);
2141 this->input_sections_.push_back(Input_section(odc));
2145 section_size_type input_section_size = shdr.get_sh_size();
2146 section_size_type uncompressed_size;
2147 if (object->section_is_compressed(shndx, &uncompressed_size))
2148 input_section_size = uncompressed_size;
2150 this->set_current_data_size_for_child(aligned_offset_in_section
2151 + input_section_size);
2153 // We need to keep track of this section if we are already keeping
2154 // track of sections, or if we are relaxing. Also, if this is a
2155 // section which requires sorting, or which may require sorting in
2156 // the future, we keep track of the sections. If the
2157 // --section-ordering-file option is used to specify the order of
2158 // sections, we need to keep track of sections.
2159 if (this->always_keeps_input_sections_
2160 || have_sections_script
2161 || !this->input_sections_.empty()
2162 || this->may_sort_attached_input_sections()
2163 || this->must_sort_attached_input_sections()
2164 || parameters->options().user_set_Map()
2165 || parameters->target().may_relax()
2166 || parameters->options().section_ordering_file())
2168 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2169 if (parameters->options().section_ordering_file())
2171 unsigned int section_order_index =
2172 layout->find_section_order_index(std::string(secname));
2173 if (section_order_index != 0)
2175 isecn.set_section_order_index(section_order_index);
2176 this->set_input_section_order_specified();
2179 this->input_sections_.push_back(isecn);
2182 return aligned_offset_in_section;
2185 // Add arbitrary data to an output section.
2187 void
2188 Output_section::add_output_section_data(Output_section_data* posd)
2190 Input_section inp(posd);
2191 this->add_output_section_data(&inp);
2193 if (posd->is_data_size_valid())
2195 off_t offset_in_section = this->current_data_size_for_child();
2196 off_t aligned_offset_in_section = align_address(offset_in_section,
2197 posd->addralign());
2198 this->set_current_data_size_for_child(aligned_offset_in_section
2199 + posd->data_size());
2203 // Add a relaxed input section.
2205 void
2206 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2208 Input_section inp(poris);
2209 this->add_output_section_data(&inp);
2210 if (this->lookup_maps_->is_valid())
2211 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2212 poris->shndx(), poris);
2214 // For a relaxed section, we use the current data size. Linker scripts
2215 // get all the input sections, including relaxed one from an output
2216 // section and add them back to them same output section to compute the
2217 // output section size. If we do not account for sizes of relaxed input
2218 // sections, an output section would be incorrectly sized.
2219 off_t offset_in_section = this->current_data_size_for_child();
2220 off_t aligned_offset_in_section = align_address(offset_in_section,
2221 poris->addralign());
2222 this->set_current_data_size_for_child(aligned_offset_in_section
2223 + poris->current_data_size());
2226 // Add arbitrary data to an output section by Input_section.
2228 void
2229 Output_section::add_output_section_data(Input_section* inp)
2231 if (this->input_sections_.empty())
2232 this->first_input_offset_ = this->current_data_size_for_child();
2234 this->input_sections_.push_back(*inp);
2236 uint64_t addralign = inp->addralign();
2237 if (addralign > this->addralign_)
2238 this->addralign_ = addralign;
2240 inp->set_output_section(this);
2243 // Add a merge section to an output section.
2245 void
2246 Output_section::add_output_merge_section(Output_section_data* posd,
2247 bool is_string, uint64_t entsize)
2249 Input_section inp(posd, is_string, entsize);
2250 this->add_output_section_data(&inp);
2253 // Add an input section to a SHF_MERGE section.
2255 bool
2256 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2257 uint64_t flags, uint64_t entsize,
2258 uint64_t addralign,
2259 bool keeps_input_sections)
2261 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2263 // We only merge strings if the alignment is not more than the
2264 // character size. This could be handled, but it's unusual.
2265 if (is_string && addralign > entsize)
2266 return false;
2268 // We cannot restore merged input section states.
2269 gold_assert(this->checkpoint_ == NULL);
2271 // Look up merge sections by required properties.
2272 // Currently, we only invalidate the lookup maps in script processing
2273 // and relaxation. We should not have done either when we reach here.
2274 // So we assume that the lookup maps are valid to simply code.
2275 gold_assert(this->lookup_maps_->is_valid());
2276 Merge_section_properties msp(is_string, entsize, addralign);
2277 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2278 bool is_new = false;
2279 if (pomb != NULL)
2281 gold_assert(pomb->is_string() == is_string
2282 && pomb->entsize() == entsize
2283 && pomb->addralign() == addralign);
2285 else
2287 // Create a new Output_merge_data or Output_merge_string_data.
2288 if (!is_string)
2289 pomb = new Output_merge_data(entsize, addralign);
2290 else
2292 switch (entsize)
2294 case 1:
2295 pomb = new Output_merge_string<char>(addralign);
2296 break;
2297 case 2:
2298 pomb = new Output_merge_string<uint16_t>(addralign);
2299 break;
2300 case 4:
2301 pomb = new Output_merge_string<uint32_t>(addralign);
2302 break;
2303 default:
2304 return false;
2307 // If we need to do script processing or relaxation, we need to keep
2308 // the original input sections to rebuild the fast lookup maps.
2309 if (keeps_input_sections)
2310 pomb->set_keeps_input_sections();
2311 is_new = true;
2314 if (pomb->add_input_section(object, shndx))
2316 // Add new merge section to this output section and link merge
2317 // section properties to new merge section in map.
2318 if (is_new)
2320 this->add_output_merge_section(pomb, is_string, entsize);
2321 this->lookup_maps_->add_merge_section(msp, pomb);
2324 // Add input section to new merge section and link input section to new
2325 // merge section in map.
2326 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2327 return true;
2329 else
2331 // If add_input_section failed, delete new merge section to avoid
2332 // exporting empty merge sections in Output_section::get_input_section.
2333 if (is_new)
2334 delete pomb;
2335 return false;
2339 // Build a relaxation map to speed up relaxation of existing input sections.
2340 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2342 void
2343 Output_section::build_relaxation_map(
2344 const Input_section_list& input_sections,
2345 size_t limit,
2346 Relaxation_map* relaxation_map) const
2348 for (size_t i = 0; i < limit; ++i)
2350 const Input_section& is(input_sections[i]);
2351 if (is.is_input_section() || is.is_relaxed_input_section())
2353 Section_id sid(is.relobj(), is.shndx());
2354 (*relaxation_map)[sid] = i;
2359 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2360 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2361 // indices of INPUT_SECTIONS.
2363 void
2364 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2365 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2366 const Relaxation_map& map,
2367 Input_section_list* input_sections)
2369 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2371 Output_relaxed_input_section* poris = relaxed_sections[i];
2372 Section_id sid(poris->relobj(), poris->shndx());
2373 Relaxation_map::const_iterator p = map.find(sid);
2374 gold_assert(p != map.end());
2375 gold_assert((*input_sections)[p->second].is_input_section());
2376 (*input_sections)[p->second] = Input_section(poris);
2380 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2381 // is a vector of pointers to Output_relaxed_input_section or its derived
2382 // classes. The relaxed sections must correspond to existing input sections.
2384 void
2385 Output_section::convert_input_sections_to_relaxed_sections(
2386 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2388 gold_assert(parameters->target().may_relax());
2390 // We want to make sure that restore_states does not undo the effect of
2391 // this. If there is no checkpoint active, just search the current
2392 // input section list and replace the sections there. If there is
2393 // a checkpoint, also replace the sections there.
2395 // By default, we look at the whole list.
2396 size_t limit = this->input_sections_.size();
2398 if (this->checkpoint_ != NULL)
2400 // Replace input sections with relaxed input section in the saved
2401 // copy of the input section list.
2402 if (this->checkpoint_->input_sections_saved())
2404 Relaxation_map map;
2405 this->build_relaxation_map(
2406 *(this->checkpoint_->input_sections()),
2407 this->checkpoint_->input_sections()->size(),
2408 &map);
2409 this->convert_input_sections_in_list_to_relaxed_sections(
2410 relaxed_sections,
2411 map,
2412 this->checkpoint_->input_sections());
2414 else
2416 // We have not copied the input section list yet. Instead, just
2417 // look at the portion that would be saved.
2418 limit = this->checkpoint_->input_sections_size();
2422 // Convert input sections in input_section_list.
2423 Relaxation_map map;
2424 this->build_relaxation_map(this->input_sections_, limit, &map);
2425 this->convert_input_sections_in_list_to_relaxed_sections(
2426 relaxed_sections,
2427 map,
2428 &this->input_sections_);
2430 // Update fast look-up map.
2431 if (this->lookup_maps_->is_valid())
2432 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2434 Output_relaxed_input_section* poris = relaxed_sections[i];
2435 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2436 poris->shndx(), poris);
2440 // Update the output section flags based on input section flags.
2442 void
2443 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2445 // If we created the section with SHF_ALLOC clear, we set the
2446 // address. If we are now setting the SHF_ALLOC flag, we need to
2447 // undo that.
2448 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2449 && (flags & elfcpp::SHF_ALLOC) != 0)
2450 this->mark_address_invalid();
2452 this->flags_ |= (flags
2453 & (elfcpp::SHF_WRITE
2454 | elfcpp::SHF_ALLOC
2455 | elfcpp::SHF_EXECINSTR));
2457 if ((flags & elfcpp::SHF_MERGE) == 0)
2458 this->flags_ &=~ elfcpp::SHF_MERGE;
2459 else
2461 if (this->current_data_size_for_child() == 0)
2462 this->flags_ |= elfcpp::SHF_MERGE;
2465 if ((flags & elfcpp::SHF_STRINGS) == 0)
2466 this->flags_ &=~ elfcpp::SHF_STRINGS;
2467 else
2469 if (this->current_data_size_for_child() == 0)
2470 this->flags_ |= elfcpp::SHF_STRINGS;
2474 // Find the merge section into which an input section with index SHNDX in
2475 // OBJECT has been added. Return NULL if none found.
2477 Output_section_data*
2478 Output_section::find_merge_section(const Relobj* object,
2479 unsigned int shndx) const
2481 if (!this->lookup_maps_->is_valid())
2482 this->build_lookup_maps();
2483 return this->lookup_maps_->find_merge_section(object, shndx);
2486 // Build the lookup maps for merge and relaxed sections. This is needs
2487 // to be declared as a const methods so that it is callable with a const
2488 // Output_section pointer. The method only updates states of the maps.
2490 void
2491 Output_section::build_lookup_maps() const
2493 this->lookup_maps_->clear();
2494 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2495 p != this->input_sections_.end();
2496 ++p)
2498 if (p->is_merge_section())
2500 Output_merge_base* pomb = p->output_merge_base();
2501 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2502 pomb->addralign());
2503 this->lookup_maps_->add_merge_section(msp, pomb);
2504 for (Output_merge_base::Input_sections::const_iterator is =
2505 pomb->input_sections_begin();
2506 is != pomb->input_sections_end();
2507 ++is)
2509 const Const_section_id& csid = *is;
2510 this->lookup_maps_->add_merge_input_section(csid.first,
2511 csid.second, pomb);
2515 else if (p->is_relaxed_input_section())
2517 Output_relaxed_input_section* poris = p->relaxed_input_section();
2518 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2519 poris->shndx(), poris);
2524 // Find an relaxed input section corresponding to an input section
2525 // in OBJECT with index SHNDX.
2527 const Output_relaxed_input_section*
2528 Output_section::find_relaxed_input_section(const Relobj* object,
2529 unsigned int shndx) const
2531 if (!this->lookup_maps_->is_valid())
2532 this->build_lookup_maps();
2533 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2536 // Given an address OFFSET relative to the start of input section
2537 // SHNDX in OBJECT, return whether this address is being included in
2538 // the final link. This should only be called if SHNDX in OBJECT has
2539 // a special mapping.
2541 bool
2542 Output_section::is_input_address_mapped(const Relobj* object,
2543 unsigned int shndx,
2544 off_t offset) const
2546 // Look at the Output_section_data_maps first.
2547 const Output_section_data* posd = this->find_merge_section(object, shndx);
2548 if (posd == NULL)
2549 posd = this->find_relaxed_input_section(object, shndx);
2551 if (posd != NULL)
2553 section_offset_type output_offset;
2554 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2555 gold_assert(found);
2556 return output_offset != -1;
2559 // Fall back to the slow look-up.
2560 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2561 p != this->input_sections_.end();
2562 ++p)
2564 section_offset_type output_offset;
2565 if (p->output_offset(object, shndx, offset, &output_offset))
2566 return output_offset != -1;
2569 // By default we assume that the address is mapped. This should
2570 // only be called after we have passed all sections to Layout. At
2571 // that point we should know what we are discarding.
2572 return true;
2575 // Given an address OFFSET relative to the start of input section
2576 // SHNDX in object OBJECT, return the output offset relative to the
2577 // start of the input section in the output section. This should only
2578 // be called if SHNDX in OBJECT has a special mapping.
2580 section_offset_type
2581 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2582 section_offset_type offset) const
2584 // This can only be called meaningfully when we know the data size
2585 // of this.
2586 gold_assert(this->is_data_size_valid());
2588 // Look at the Output_section_data_maps first.
2589 const Output_section_data* posd = this->find_merge_section(object, shndx);
2590 if (posd == NULL)
2591 posd = this->find_relaxed_input_section(object, shndx);
2592 if (posd != NULL)
2594 section_offset_type output_offset;
2595 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2596 gold_assert(found);
2597 return output_offset;
2600 // Fall back to the slow look-up.
2601 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2602 p != this->input_sections_.end();
2603 ++p)
2605 section_offset_type output_offset;
2606 if (p->output_offset(object, shndx, offset, &output_offset))
2607 return output_offset;
2609 gold_unreachable();
2612 // Return the output virtual address of OFFSET relative to the start
2613 // of input section SHNDX in object OBJECT.
2615 uint64_t
2616 Output_section::output_address(const Relobj* object, unsigned int shndx,
2617 off_t offset) const
2619 uint64_t addr = this->address() + this->first_input_offset_;
2621 // Look at the Output_section_data_maps first.
2622 const Output_section_data* posd = this->find_merge_section(object, shndx);
2623 if (posd == NULL)
2624 posd = this->find_relaxed_input_section(object, shndx);
2625 if (posd != NULL && posd->is_address_valid())
2627 section_offset_type output_offset;
2628 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2629 gold_assert(found);
2630 return posd->address() + output_offset;
2633 // Fall back to the slow look-up.
2634 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2635 p != this->input_sections_.end();
2636 ++p)
2638 addr = align_address(addr, p->addralign());
2639 section_offset_type output_offset;
2640 if (p->output_offset(object, shndx, offset, &output_offset))
2642 if (output_offset == -1)
2643 return -1ULL;
2644 return addr + output_offset;
2646 addr += p->data_size();
2649 // If we get here, it means that we don't know the mapping for this
2650 // input section. This might happen in principle if
2651 // add_input_section were called before add_output_section_data.
2652 // But it should never actually happen.
2654 gold_unreachable();
2657 // Find the output address of the start of the merged section for
2658 // input section SHNDX in object OBJECT.
2660 bool
2661 Output_section::find_starting_output_address(const Relobj* object,
2662 unsigned int shndx,
2663 uint64_t* paddr) const
2665 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2666 // Looking up the merge section map does not always work as we sometimes
2667 // find a merge section without its address set.
2668 uint64_t addr = this->address() + this->first_input_offset_;
2669 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2670 p != this->input_sections_.end();
2671 ++p)
2673 addr = align_address(addr, p->addralign());
2675 // It would be nice if we could use the existing output_offset
2676 // method to get the output offset of input offset 0.
2677 // Unfortunately we don't know for sure that input offset 0 is
2678 // mapped at all.
2679 if (p->is_merge_section_for(object, shndx))
2681 *paddr = addr;
2682 return true;
2685 addr += p->data_size();
2688 // We couldn't find a merge output section for this input section.
2689 return false;
2692 // Set the data size of an Output_section. This is where we handle
2693 // setting the addresses of any Output_section_data objects.
2695 void
2696 Output_section::set_final_data_size()
2698 if (this->input_sections_.empty())
2700 this->set_data_size(this->current_data_size_for_child());
2701 return;
2704 if (this->must_sort_attached_input_sections()
2705 || this->input_section_order_specified())
2706 this->sort_attached_input_sections();
2708 uint64_t address = this->address();
2709 off_t startoff = this->offset();
2710 off_t off = startoff + this->first_input_offset_;
2711 for (Input_section_list::iterator p = this->input_sections_.begin();
2712 p != this->input_sections_.end();
2713 ++p)
2715 off = align_address(off, p->addralign());
2716 p->set_address_and_file_offset(address + (off - startoff), off,
2717 startoff);
2718 off += p->data_size();
2721 this->set_data_size(off - startoff);
2724 // Reset the address and file offset.
2726 void
2727 Output_section::do_reset_address_and_file_offset()
2729 // An unallocated section has no address. Forcing this means that
2730 // we don't need special treatment for symbols defined in debug
2731 // sections. We do the same in the constructor. This does not
2732 // apply to NOLOAD sections though.
2733 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2734 this->set_address(0);
2736 for (Input_section_list::iterator p = this->input_sections_.begin();
2737 p != this->input_sections_.end();
2738 ++p)
2739 p->reset_address_and_file_offset();
2742 // Return true if address and file offset have the values after reset.
2744 bool
2745 Output_section::do_address_and_file_offset_have_reset_values() const
2747 if (this->is_offset_valid())
2748 return false;
2750 // An unallocated section has address 0 after its construction or a reset.
2751 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2752 return this->is_address_valid() && this->address() == 0;
2753 else
2754 return !this->is_address_valid();
2757 // Set the TLS offset. Called only for SHT_TLS sections.
2759 void
2760 Output_section::do_set_tls_offset(uint64_t tls_base)
2762 this->tls_offset_ = this->address() - tls_base;
2765 // In a few cases we need to sort the input sections attached to an
2766 // output section. This is used to implement the type of constructor
2767 // priority ordering implemented by the GNU linker, in which the
2768 // priority becomes part of the section name and the sections are
2769 // sorted by name. We only do this for an output section if we see an
2770 // attached input section matching ".ctor.*", ".dtor.*",
2771 // ".init_array.*" or ".fini_array.*".
2773 class Output_section::Input_section_sort_entry
2775 public:
2776 Input_section_sort_entry()
2777 : input_section_(), index_(-1U), section_has_name_(false),
2778 section_name_()
2781 Input_section_sort_entry(const Input_section& input_section,
2782 unsigned int index,
2783 bool must_sort_attached_input_sections)
2784 : input_section_(input_section), index_(index),
2785 section_has_name_(input_section.is_input_section()
2786 || input_section.is_relaxed_input_section())
2788 if (this->section_has_name_
2789 && must_sort_attached_input_sections)
2791 // This is only called single-threaded from Layout::finalize,
2792 // so it is OK to lock. Unfortunately we have no way to pass
2793 // in a Task token.
2794 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2795 Object* obj = (input_section.is_input_section()
2796 ? input_section.relobj()
2797 : input_section.relaxed_input_section()->relobj());
2798 Task_lock_obj<Object> tl(dummy_task, obj);
2800 // This is a slow operation, which should be cached in
2801 // Layout::layout if this becomes a speed problem.
2802 this->section_name_ = obj->section_name(input_section.shndx());
2806 // Return the Input_section.
2807 const Input_section&
2808 input_section() const
2810 gold_assert(this->index_ != -1U);
2811 return this->input_section_;
2814 // The index of this entry in the original list. This is used to
2815 // make the sort stable.
2816 unsigned int
2817 index() const
2819 gold_assert(this->index_ != -1U);
2820 return this->index_;
2823 // Whether there is a section name.
2824 bool
2825 section_has_name() const
2826 { return this->section_has_name_; }
2828 // The section name.
2829 const std::string&
2830 section_name() const
2832 gold_assert(this->section_has_name_);
2833 return this->section_name_;
2836 // Return true if the section name has a priority. This is assumed
2837 // to be true if it has a dot after the initial dot.
2838 bool
2839 has_priority() const
2841 gold_assert(this->section_has_name_);
2842 return this->section_name_.find('.', 1) != std::string::npos;
2845 // Return true if this an input file whose base name matches
2846 // FILE_NAME. The base name must have an extension of ".o", and
2847 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2848 // This is to match crtbegin.o as well as crtbeginS.o without
2849 // getting confused by other possibilities. Overall matching the
2850 // file name this way is a dreadful hack, but the GNU linker does it
2851 // in order to better support gcc, and we need to be compatible.
2852 bool
2853 match_file_name(const char* match_file_name) const
2855 const std::string& file_name(this->input_section_.relobj()->name());
2856 const char* base_name = lbasename(file_name.c_str());
2857 size_t match_len = strlen(match_file_name);
2858 if (strncmp(base_name, match_file_name, match_len) != 0)
2859 return false;
2860 size_t base_len = strlen(base_name);
2861 if (base_len != match_len + 2 && base_len != match_len + 3)
2862 return false;
2863 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2866 // Returns 1 if THIS should appear before S in section order, -1 if S
2867 // appears before THIS and 0 if they are not comparable.
2869 compare_section_ordering(const Input_section_sort_entry& s) const
2871 unsigned int this_secn_index = this->input_section_.section_order_index();
2872 unsigned int s_secn_index = s.input_section().section_order_index();
2873 if (this_secn_index > 0 && s_secn_index > 0)
2875 if (this_secn_index < s_secn_index)
2876 return 1;
2877 else if (this_secn_index > s_secn_index)
2878 return -1;
2880 return 0;
2883 private:
2884 // The Input_section we are sorting.
2885 Input_section input_section_;
2886 // The index of this Input_section in the original list.
2887 unsigned int index_;
2888 // Whether this Input_section has a section name--it won't if this
2889 // is some random Output_section_data.
2890 bool section_has_name_;
2891 // The section name if there is one.
2892 std::string section_name_;
2895 // Return true if S1 should come before S2 in the output section.
2897 bool
2898 Output_section::Input_section_sort_compare::operator()(
2899 const Output_section::Input_section_sort_entry& s1,
2900 const Output_section::Input_section_sort_entry& s2) const
2902 // crtbegin.o must come first.
2903 bool s1_begin = s1.match_file_name("crtbegin");
2904 bool s2_begin = s2.match_file_name("crtbegin");
2905 if (s1_begin || s2_begin)
2907 if (!s1_begin)
2908 return false;
2909 if (!s2_begin)
2910 return true;
2911 return s1.index() < s2.index();
2914 // crtend.o must come last.
2915 bool s1_end = s1.match_file_name("crtend");
2916 bool s2_end = s2.match_file_name("crtend");
2917 if (s1_end || s2_end)
2919 if (!s1_end)
2920 return true;
2921 if (!s2_end)
2922 return false;
2923 return s1.index() < s2.index();
2926 // We sort all the sections with no names to the end.
2927 if (!s1.section_has_name() || !s2.section_has_name())
2929 if (s1.section_has_name())
2930 return true;
2931 if (s2.section_has_name())
2932 return false;
2933 return s1.index() < s2.index();
2936 // A section with a priority follows a section without a priority.
2937 bool s1_has_priority = s1.has_priority();
2938 bool s2_has_priority = s2.has_priority();
2939 if (s1_has_priority && !s2_has_priority)
2940 return false;
2941 if (!s1_has_priority && s2_has_priority)
2942 return true;
2944 // Check if a section order exists for these sections through a section
2945 // ordering file. If sequence_num is 0, an order does not exist.
2946 int sequence_num = s1.compare_section_ordering(s2);
2947 if (sequence_num != 0)
2948 return sequence_num == 1;
2950 // Otherwise we sort by name.
2951 int compare = s1.section_name().compare(s2.section_name());
2952 if (compare != 0)
2953 return compare < 0;
2955 // Otherwise we keep the input order.
2956 return s1.index() < s2.index();
2959 // Return true if S1 should come before S2 in an .init_array or .fini_array
2960 // output section.
2962 bool
2963 Output_section::Input_section_sort_init_fini_compare::operator()(
2964 const Output_section::Input_section_sort_entry& s1,
2965 const Output_section::Input_section_sort_entry& s2) const
2967 // We sort all the sections with no names to the end.
2968 if (!s1.section_has_name() || !s2.section_has_name())
2970 if (s1.section_has_name())
2971 return true;
2972 if (s2.section_has_name())
2973 return false;
2974 return s1.index() < s2.index();
2977 // A section without a priority follows a section with a priority.
2978 // This is the reverse of .ctors and .dtors sections.
2979 bool s1_has_priority = s1.has_priority();
2980 bool s2_has_priority = s2.has_priority();
2981 if (s1_has_priority && !s2_has_priority)
2982 return true;
2983 if (!s1_has_priority && s2_has_priority)
2984 return false;
2986 // Check if a section order exists for these sections through a section
2987 // ordering file. If sequence_num is 0, an order does not exist.
2988 int sequence_num = s1.compare_section_ordering(s2);
2989 if (sequence_num != 0)
2990 return sequence_num == 1;
2992 // Otherwise we sort by name.
2993 int compare = s1.section_name().compare(s2.section_name());
2994 if (compare != 0)
2995 return compare < 0;
2997 // Otherwise we keep the input order.
2998 return s1.index() < s2.index();
3001 // Return true if S1 should come before S2. Sections that do not match
3002 // any pattern in the section ordering file are placed ahead of the sections
3003 // that match some pattern.
3005 bool
3006 Output_section::Input_section_sort_section_order_index_compare::operator()(
3007 const Output_section::Input_section_sort_entry& s1,
3008 const Output_section::Input_section_sort_entry& s2) const
3010 unsigned int s1_secn_index = s1.input_section().section_order_index();
3011 unsigned int s2_secn_index = s2.input_section().section_order_index();
3013 // Keep input order if section ordering cannot determine order.
3014 if (s1_secn_index == s2_secn_index)
3015 return s1.index() < s2.index();
3017 return s1_secn_index < s2_secn_index;
3020 // Sort the input sections attached to an output section.
3022 void
3023 Output_section::sort_attached_input_sections()
3025 if (this->attached_input_sections_are_sorted_)
3026 return;
3028 if (this->checkpoint_ != NULL
3029 && !this->checkpoint_->input_sections_saved())
3030 this->checkpoint_->save_input_sections();
3032 // The only thing we know about an input section is the object and
3033 // the section index. We need the section name. Recomputing this
3034 // is slow but this is an unusual case. If this becomes a speed
3035 // problem we can cache the names as required in Layout::layout.
3037 // We start by building a larger vector holding a copy of each
3038 // Input_section, plus its current index in the list and its name.
3039 std::vector<Input_section_sort_entry> sort_list;
3041 unsigned int i = 0;
3042 for (Input_section_list::iterator p = this->input_sections_.begin();
3043 p != this->input_sections_.end();
3044 ++p, ++i)
3045 sort_list.push_back(Input_section_sort_entry(*p, i,
3046 this->must_sort_attached_input_sections()));
3048 // Sort the input sections.
3049 if (this->must_sort_attached_input_sections())
3051 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3052 || this->type() == elfcpp::SHT_INIT_ARRAY
3053 || this->type() == elfcpp::SHT_FINI_ARRAY)
3054 std::sort(sort_list.begin(), sort_list.end(),
3055 Input_section_sort_init_fini_compare());
3056 else
3057 std::sort(sort_list.begin(), sort_list.end(),
3058 Input_section_sort_compare());
3060 else
3062 gold_assert(parameters->options().section_ordering_file());
3063 std::sort(sort_list.begin(), sort_list.end(),
3064 Input_section_sort_section_order_index_compare());
3067 // Copy the sorted input sections back to our list.
3068 this->input_sections_.clear();
3069 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3070 p != sort_list.end();
3071 ++p)
3072 this->input_sections_.push_back(p->input_section());
3073 sort_list.clear();
3075 // Remember that we sorted the input sections, since we might get
3076 // called again.
3077 this->attached_input_sections_are_sorted_ = true;
3080 // Write the section header to *OSHDR.
3082 template<int size, bool big_endian>
3083 void
3084 Output_section::write_header(const Layout* layout,
3085 const Stringpool* secnamepool,
3086 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3088 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3089 oshdr->put_sh_type(this->type_);
3091 elfcpp::Elf_Xword flags = this->flags_;
3092 if (this->info_section_ != NULL && this->info_uses_section_index_)
3093 flags |= elfcpp::SHF_INFO_LINK;
3094 oshdr->put_sh_flags(flags);
3096 oshdr->put_sh_addr(this->address());
3097 oshdr->put_sh_offset(this->offset());
3098 oshdr->put_sh_size(this->data_size());
3099 if (this->link_section_ != NULL)
3100 oshdr->put_sh_link(this->link_section_->out_shndx());
3101 else if (this->should_link_to_symtab_)
3102 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3103 else if (this->should_link_to_dynsym_)
3104 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3105 else
3106 oshdr->put_sh_link(this->link_);
3108 elfcpp::Elf_Word info;
3109 if (this->info_section_ != NULL)
3111 if (this->info_uses_section_index_)
3112 info = this->info_section_->out_shndx();
3113 else
3114 info = this->info_section_->symtab_index();
3116 else if (this->info_symndx_ != NULL)
3117 info = this->info_symndx_->symtab_index();
3118 else
3119 info = this->info_;
3120 oshdr->put_sh_info(info);
3122 oshdr->put_sh_addralign(this->addralign_);
3123 oshdr->put_sh_entsize(this->entsize_);
3126 // Write out the data. For input sections the data is written out by
3127 // Object::relocate, but we have to handle Output_section_data objects
3128 // here.
3130 void
3131 Output_section::do_write(Output_file* of)
3133 gold_assert(!this->requires_postprocessing());
3135 // If the target performs relaxation, we delay filler generation until now.
3136 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3138 off_t output_section_file_offset = this->offset();
3139 for (Fill_list::iterator p = this->fills_.begin();
3140 p != this->fills_.end();
3141 ++p)
3143 std::string fill_data(parameters->target().code_fill(p->length()));
3144 of->write(output_section_file_offset + p->section_offset(),
3145 fill_data.data(), fill_data.size());
3148 off_t off = this->offset() + this->first_input_offset_;
3149 for (Input_section_list::iterator p = this->input_sections_.begin();
3150 p != this->input_sections_.end();
3151 ++p)
3153 off_t aligned_off = align_address(off, p->addralign());
3154 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3156 size_t fill_len = aligned_off - off;
3157 std::string fill_data(parameters->target().code_fill(fill_len));
3158 of->write(off, fill_data.data(), fill_data.size());
3161 p->write(of);
3162 off = aligned_off + p->data_size();
3166 // If a section requires postprocessing, create the buffer to use.
3168 void
3169 Output_section::create_postprocessing_buffer()
3171 gold_assert(this->requires_postprocessing());
3173 if (this->postprocessing_buffer_ != NULL)
3174 return;
3176 if (!this->input_sections_.empty())
3178 off_t off = this->first_input_offset_;
3179 for (Input_section_list::iterator p = this->input_sections_.begin();
3180 p != this->input_sections_.end();
3181 ++p)
3183 off = align_address(off, p->addralign());
3184 p->finalize_data_size();
3185 off += p->data_size();
3187 this->set_current_data_size_for_child(off);
3190 off_t buffer_size = this->current_data_size_for_child();
3191 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3194 // Write all the data of an Output_section into the postprocessing
3195 // buffer. This is used for sections which require postprocessing,
3196 // such as compression. Input sections are handled by
3197 // Object::Relocate.
3199 void
3200 Output_section::write_to_postprocessing_buffer()
3202 gold_assert(this->requires_postprocessing());
3204 // If the target performs relaxation, we delay filler generation until now.
3205 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3207 unsigned char* buffer = this->postprocessing_buffer();
3208 for (Fill_list::iterator p = this->fills_.begin();
3209 p != this->fills_.end();
3210 ++p)
3212 std::string fill_data(parameters->target().code_fill(p->length()));
3213 memcpy(buffer + p->section_offset(), fill_data.data(),
3214 fill_data.size());
3217 off_t off = this->first_input_offset_;
3218 for (Input_section_list::iterator p = this->input_sections_.begin();
3219 p != this->input_sections_.end();
3220 ++p)
3222 off_t aligned_off = align_address(off, p->addralign());
3223 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3225 size_t fill_len = aligned_off - off;
3226 std::string fill_data(parameters->target().code_fill(fill_len));
3227 memcpy(buffer + off, fill_data.data(), fill_data.size());
3230 p->write_to_buffer(buffer + aligned_off);
3231 off = aligned_off + p->data_size();
3235 // Get the input sections for linker script processing. We leave
3236 // behind the Output_section_data entries. Note that this may be
3237 // slightly incorrect for merge sections. We will leave them behind,
3238 // but it is possible that the script says that they should follow
3239 // some other input sections, as in:
3240 // .rodata { *(.rodata) *(.rodata.cst*) }
3241 // For that matter, we don't handle this correctly:
3242 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3243 // With luck this will never matter.
3245 uint64_t
3246 Output_section::get_input_sections(
3247 uint64_t address,
3248 const std::string& fill,
3249 std::list<Input_section>* input_sections)
3251 if (this->checkpoint_ != NULL
3252 && !this->checkpoint_->input_sections_saved())
3253 this->checkpoint_->save_input_sections();
3255 // Invalidate fast look-up maps.
3256 this->lookup_maps_->invalidate();
3258 uint64_t orig_address = address;
3260 address = align_address(address, this->addralign());
3262 Input_section_list remaining;
3263 for (Input_section_list::iterator p = this->input_sections_.begin();
3264 p != this->input_sections_.end();
3265 ++p)
3267 if (p->is_input_section()
3268 || p->is_relaxed_input_section()
3269 || p->is_merge_section())
3270 input_sections->push_back(*p);
3271 else
3273 uint64_t aligned_address = align_address(address, p->addralign());
3274 if (aligned_address != address && !fill.empty())
3276 section_size_type length =
3277 convert_to_section_size_type(aligned_address - address);
3278 std::string this_fill;
3279 this_fill.reserve(length);
3280 while (this_fill.length() + fill.length() <= length)
3281 this_fill += fill;
3282 if (this_fill.length() < length)
3283 this_fill.append(fill, 0, length - this_fill.length());
3285 Output_section_data* posd = new Output_data_const(this_fill, 0);
3286 remaining.push_back(Input_section(posd));
3288 address = aligned_address;
3290 remaining.push_back(*p);
3292 p->finalize_data_size();
3293 address += p->data_size();
3297 this->input_sections_.swap(remaining);
3298 this->first_input_offset_ = 0;
3300 uint64_t data_size = address - orig_address;
3301 this->set_current_data_size_for_child(data_size);
3302 return data_size;
3305 // Add a script input section. SIS is an Output_section::Input_section,
3306 // which can be either a plain input section or a special input section like
3307 // a relaxed input section. For a special input section, its size must be
3308 // finalized.
3310 void
3311 Output_section::add_script_input_section(const Input_section& sis)
3313 uint64_t data_size = sis.data_size();
3314 uint64_t addralign = sis.addralign();
3315 if (addralign > this->addralign_)
3316 this->addralign_ = addralign;
3318 off_t offset_in_section = this->current_data_size_for_child();
3319 off_t aligned_offset_in_section = align_address(offset_in_section,
3320 addralign);
3322 this->set_current_data_size_for_child(aligned_offset_in_section
3323 + data_size);
3325 this->input_sections_.push_back(sis);
3327 // Update fast lookup maps if necessary.
3328 if (this->lookup_maps_->is_valid())
3330 if (sis.is_merge_section())
3332 Output_merge_base* pomb = sis.output_merge_base();
3333 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3334 pomb->addralign());
3335 this->lookup_maps_->add_merge_section(msp, pomb);
3336 for (Output_merge_base::Input_sections::const_iterator p =
3337 pomb->input_sections_begin();
3338 p != pomb->input_sections_end();
3339 ++p)
3340 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3341 pomb);
3343 else if (sis.is_relaxed_input_section())
3345 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3346 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3347 poris->shndx(), poris);
3352 // Save states for relaxation.
3354 void
3355 Output_section::save_states()
3357 gold_assert(this->checkpoint_ == NULL);
3358 Checkpoint_output_section* checkpoint =
3359 new Checkpoint_output_section(this->addralign_, this->flags_,
3360 this->input_sections_,
3361 this->first_input_offset_,
3362 this->attached_input_sections_are_sorted_);
3363 this->checkpoint_ = checkpoint;
3364 gold_assert(this->fills_.empty());
3367 void
3368 Output_section::discard_states()
3370 gold_assert(this->checkpoint_ != NULL);
3371 delete this->checkpoint_;
3372 this->checkpoint_ = NULL;
3373 gold_assert(this->fills_.empty());
3375 // Simply invalidate the fast lookup maps since we do not keep
3376 // track of them.
3377 this->lookup_maps_->invalidate();
3380 void
3381 Output_section::restore_states()
3383 gold_assert(this->checkpoint_ != NULL);
3384 Checkpoint_output_section* checkpoint = this->checkpoint_;
3386 this->addralign_ = checkpoint->addralign();
3387 this->flags_ = checkpoint->flags();
3388 this->first_input_offset_ = checkpoint->first_input_offset();
3390 if (!checkpoint->input_sections_saved())
3392 // If we have not copied the input sections, just resize it.
3393 size_t old_size = checkpoint->input_sections_size();
3394 gold_assert(this->input_sections_.size() >= old_size);
3395 this->input_sections_.resize(old_size);
3397 else
3399 // We need to copy the whole list. This is not efficient for
3400 // extremely large output with hundreads of thousands of input
3401 // objects. We may need to re-think how we should pass sections
3402 // to scripts.
3403 this->input_sections_ = *checkpoint->input_sections();
3406 this->attached_input_sections_are_sorted_ =
3407 checkpoint->attached_input_sections_are_sorted();
3409 // Simply invalidate the fast lookup maps since we do not keep
3410 // track of them.
3411 this->lookup_maps_->invalidate();
3414 // Update the section offsets of input sections in this. This is required if
3415 // relaxation causes some input sections to change sizes.
3417 void
3418 Output_section::adjust_section_offsets()
3420 if (!this->section_offsets_need_adjustment_)
3421 return;
3423 off_t off = 0;
3424 for (Input_section_list::iterator p = this->input_sections_.begin();
3425 p != this->input_sections_.end();
3426 ++p)
3428 off = align_address(off, p->addralign());
3429 if (p->is_input_section())
3430 p->relobj()->set_section_offset(p->shndx(), off);
3431 off += p->data_size();
3434 this->section_offsets_need_adjustment_ = false;
3437 // Print to the map file.
3439 void
3440 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3442 mapfile->print_output_section(this);
3444 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3445 p != this->input_sections_.end();
3446 ++p)
3447 p->print_to_mapfile(mapfile);
3450 // Print stats for merge sections to stderr.
3452 void
3453 Output_section::print_merge_stats()
3455 Input_section_list::iterator p;
3456 for (p = this->input_sections_.begin();
3457 p != this->input_sections_.end();
3458 ++p)
3459 p->print_merge_stats(this->name_);
3462 // Output segment methods.
3464 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3465 : vaddr_(0),
3466 paddr_(0),
3467 memsz_(0),
3468 max_align_(0),
3469 min_p_align_(0),
3470 offset_(0),
3471 filesz_(0),
3472 type_(type),
3473 flags_(flags),
3474 is_max_align_known_(false),
3475 are_addresses_set_(false),
3476 is_large_data_segment_(false)
3478 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3479 // the flags.
3480 if (type == elfcpp::PT_TLS)
3481 this->flags_ = elfcpp::PF_R;
3484 // Add an Output_section to a PT_LOAD Output_segment.
3486 void
3487 Output_segment::add_output_section_to_load(Layout* layout,
3488 Output_section* os,
3489 elfcpp::Elf_Word seg_flags)
3491 gold_assert(this->type() == elfcpp::PT_LOAD);
3492 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3493 gold_assert(!this->is_max_align_known_);
3494 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3496 this->update_flags_for_output_section(seg_flags);
3498 // We don't want to change the ordering if we have a linker script
3499 // with a SECTIONS clause.
3500 Output_section_order order = os->order();
3501 if (layout->script_options()->saw_sections_clause())
3502 order = static_cast<Output_section_order>(0);
3503 else
3504 gold_assert(order != ORDER_INVALID);
3506 this->output_lists_[order].push_back(os);
3509 // Add an Output_section to a non-PT_LOAD Output_segment.
3511 void
3512 Output_segment::add_output_section_to_nonload(Output_section* os,
3513 elfcpp::Elf_Word seg_flags)
3515 gold_assert(this->type() != elfcpp::PT_LOAD);
3516 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3517 gold_assert(!this->is_max_align_known_);
3519 this->update_flags_for_output_section(seg_flags);
3521 this->output_lists_[0].push_back(os);
3524 // Remove an Output_section from this segment. It is an error if it
3525 // is not present.
3527 void
3528 Output_segment::remove_output_section(Output_section* os)
3530 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3532 Output_data_list* pdl = &this->output_lists_[i];
3533 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3535 if (*p == os)
3537 pdl->erase(p);
3538 return;
3542 gold_unreachable();
3545 // Add an Output_data (which need not be an Output_section) to the
3546 // start of a segment.
3548 void
3549 Output_segment::add_initial_output_data(Output_data* od)
3551 gold_assert(!this->is_max_align_known_);
3552 Output_data_list::iterator p = this->output_lists_[0].begin();
3553 this->output_lists_[0].insert(p, od);
3556 // Return true if this segment has any sections which hold actual
3557 // data, rather than being a BSS section.
3559 bool
3560 Output_segment::has_any_data_sections() const
3562 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3564 const Output_data_list* pdl = &this->output_lists_[i];
3565 for (Output_data_list::const_iterator p = pdl->begin();
3566 p != pdl->end();
3567 ++p)
3569 if (!(*p)->is_section())
3570 return true;
3571 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3572 return true;
3575 return false;
3578 // Return whether the first data section is a relro section.
3580 bool
3581 Output_segment::is_first_section_relro() const
3583 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3585 const Output_data_list* pdl = &this->output_lists_[i];
3586 if (!pdl->empty())
3588 Output_data* p = pdl->front();
3589 return p->is_section() && p->output_section()->is_relro();
3592 return false;
3595 // Return the maximum alignment of the Output_data in Output_segment.
3597 uint64_t
3598 Output_segment::maximum_alignment()
3600 if (!this->is_max_align_known_)
3602 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3604 const Output_data_list* pdl = &this->output_lists_[i];
3605 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3606 if (addralign > this->max_align_)
3607 this->max_align_ = addralign;
3609 this->is_max_align_known_ = true;
3612 return this->max_align_;
3615 // Return the maximum alignment of a list of Output_data.
3617 uint64_t
3618 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3620 uint64_t ret = 0;
3621 for (Output_data_list::const_iterator p = pdl->begin();
3622 p != pdl->end();
3623 ++p)
3625 uint64_t addralign = (*p)->addralign();
3626 if (addralign > ret)
3627 ret = addralign;
3629 return ret;
3632 // Return whether this segment has any dynamic relocs.
3634 bool
3635 Output_segment::has_dynamic_reloc() const
3637 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3638 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3639 return true;
3640 return false;
3643 // Return whether this Output_data_list has any dynamic relocs.
3645 bool
3646 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3648 for (Output_data_list::const_iterator p = pdl->begin();
3649 p != pdl->end();
3650 ++p)
3651 if ((*p)->has_dynamic_reloc())
3652 return true;
3653 return false;
3656 // Set the section addresses for an Output_segment. If RESET is true,
3657 // reset the addresses first. ADDR is the address and *POFF is the
3658 // file offset. Set the section indexes starting with *PSHNDX.
3659 // Return the address of the immediately following segment. Update
3660 // *POFF and *PSHNDX.
3662 uint64_t
3663 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3664 uint64_t addr,
3665 unsigned int increase_relro,
3666 off_t* poff,
3667 unsigned int* pshndx)
3669 gold_assert(this->type_ == elfcpp::PT_LOAD);
3671 off_t orig_off = *poff;
3673 // If we have relro sections, we need to pad forward now so that the
3674 // relro sections plus INCREASE_RELRO end on a common page boundary.
3675 if (parameters->options().relro()
3676 && this->is_first_section_relro()
3677 && (!this->are_addresses_set_ || reset))
3679 uint64_t relro_size = 0;
3680 off_t off = *poff;
3681 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3683 Output_data_list* pdl = &this->output_lists_[i];
3684 Output_data_list::iterator p;
3685 for (p = pdl->begin(); p != pdl->end(); ++p)
3687 if (!(*p)->is_section())
3688 break;
3689 Output_section* pos = (*p)->output_section();
3690 if (!pos->is_relro())
3691 break;
3692 if ((*p)->is_address_valid())
3693 relro_size += (*p)->data_size();
3694 else
3696 // FIXME: This could be faster.
3697 (*p)->set_address_and_file_offset(addr + relro_size,
3698 off + relro_size);
3699 relro_size += (*p)->data_size();
3700 (*p)->reset_address_and_file_offset();
3703 if (p != pdl->end())
3704 break;
3706 relro_size += increase_relro;
3708 uint64_t page_align = parameters->target().common_pagesize();
3710 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3711 uint64_t desired_align = page_align - (relro_size % page_align);
3712 if (desired_align < *poff % page_align)
3713 *poff += page_align - *poff % page_align;
3714 *poff += desired_align - *poff % page_align;
3715 addr += *poff - orig_off;
3716 orig_off = *poff;
3719 if (!reset && this->are_addresses_set_)
3721 gold_assert(this->paddr_ == addr);
3722 addr = this->vaddr_;
3724 else
3726 this->vaddr_ = addr;
3727 this->paddr_ = addr;
3728 this->are_addresses_set_ = true;
3731 bool in_tls = false;
3733 this->offset_ = orig_off;
3735 off_t off = 0;
3736 uint64_t ret;
3737 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3739 addr = this->set_section_list_addresses(layout, reset,
3740 &this->output_lists_[i],
3741 addr, poff, pshndx, &in_tls);
3742 if (i < static_cast<int>(ORDER_SMALL_BSS))
3744 this->filesz_ = *poff - orig_off;
3745 off = *poff;
3748 ret = addr;
3751 // If the last section was a TLS section, align upward to the
3752 // alignment of the TLS segment, so that the overall size of the TLS
3753 // segment is aligned.
3754 if (in_tls)
3756 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3757 *poff = align_address(*poff, segment_align);
3760 this->memsz_ = *poff - orig_off;
3762 // Ignore the file offset adjustments made by the BSS Output_data
3763 // objects.
3764 *poff = off;
3766 return ret;
3769 // Set the addresses and file offsets in a list of Output_data
3770 // structures.
3772 uint64_t
3773 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3774 Output_data_list* pdl,
3775 uint64_t addr, off_t* poff,
3776 unsigned int* pshndx,
3777 bool* in_tls)
3779 off_t startoff = *poff;
3781 off_t off = startoff;
3782 for (Output_data_list::iterator p = pdl->begin();
3783 p != pdl->end();
3784 ++p)
3786 if (reset)
3787 (*p)->reset_address_and_file_offset();
3789 // When using a linker script the section will most likely
3790 // already have an address.
3791 if (!(*p)->is_address_valid())
3793 uint64_t align = (*p)->addralign();
3795 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3797 // Give the first TLS section the alignment of the
3798 // entire TLS segment. Otherwise the TLS segment as a
3799 // whole may be misaligned.
3800 if (!*in_tls)
3802 Output_segment* tls_segment = layout->tls_segment();
3803 gold_assert(tls_segment != NULL);
3804 uint64_t segment_align = tls_segment->maximum_alignment();
3805 gold_assert(segment_align >= align);
3806 align = segment_align;
3808 *in_tls = true;
3811 else
3813 // If this is the first section after the TLS segment,
3814 // align it to at least the alignment of the TLS
3815 // segment, so that the size of the overall TLS segment
3816 // is aligned.
3817 if (*in_tls)
3819 uint64_t segment_align =
3820 layout->tls_segment()->maximum_alignment();
3821 if (segment_align > align)
3822 align = segment_align;
3824 *in_tls = false;
3828 off = align_address(off, align);
3829 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3831 else
3833 // The script may have inserted a skip forward, but it
3834 // better not have moved backward.
3835 if ((*p)->address() >= addr + (off - startoff))
3836 off += (*p)->address() - (addr + (off - startoff));
3837 else
3839 if (!layout->script_options()->saw_sections_clause())
3840 gold_unreachable();
3841 else
3843 Output_section* os = (*p)->output_section();
3845 // Cast to unsigned long long to avoid format warnings.
3846 unsigned long long previous_dot =
3847 static_cast<unsigned long long>(addr + (off - startoff));
3848 unsigned long long dot =
3849 static_cast<unsigned long long>((*p)->address());
3851 if (os == NULL)
3852 gold_error(_("dot moves backward in linker script "
3853 "from 0x%llx to 0x%llx"), previous_dot, dot);
3854 else
3855 gold_error(_("address of section '%s' moves backward "
3856 "from 0x%llx to 0x%llx"),
3857 os->name(), previous_dot, dot);
3860 (*p)->set_file_offset(off);
3861 (*p)->finalize_data_size();
3864 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3865 // section. Such a section does not affect the size of a
3866 // PT_LOAD segment.
3867 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3868 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3869 off += (*p)->data_size();
3871 if ((*p)->is_section())
3873 (*p)->set_out_shndx(*pshndx);
3874 ++*pshndx;
3878 *poff = off;
3879 return addr + (off - startoff);
3882 // For a non-PT_LOAD segment, set the offset from the sections, if
3883 // any. Add INCREASE to the file size and the memory size.
3885 void
3886 Output_segment::set_offset(unsigned int increase)
3888 gold_assert(this->type_ != elfcpp::PT_LOAD);
3890 gold_assert(!this->are_addresses_set_);
3892 // A non-load section only uses output_lists_[0].
3894 Output_data_list* pdl = &this->output_lists_[0];
3896 if (pdl->empty())
3898 gold_assert(increase == 0);
3899 this->vaddr_ = 0;
3900 this->paddr_ = 0;
3901 this->are_addresses_set_ = true;
3902 this->memsz_ = 0;
3903 this->min_p_align_ = 0;
3904 this->offset_ = 0;
3905 this->filesz_ = 0;
3906 return;
3909 // Find the first and last section by address.
3910 const Output_data* first = NULL;
3911 const Output_data* last_data = NULL;
3912 const Output_data* last_bss = NULL;
3913 for (Output_data_list::const_iterator p = pdl->begin();
3914 p != pdl->end();
3915 ++p)
3917 if (first == NULL
3918 || (*p)->address() < first->address()
3919 || ((*p)->address() == first->address()
3920 && (*p)->data_size() < first->data_size()))
3921 first = *p;
3922 const Output_data** plast;
3923 if ((*p)->is_section()
3924 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
3925 plast = &last_bss;
3926 else
3927 plast = &last_data;
3928 if (*plast == NULL
3929 || (*p)->address() > (*plast)->address()
3930 || ((*p)->address() == (*plast)->address()
3931 && (*p)->data_size() > (*plast)->data_size()))
3932 *plast = *p;
3935 this->vaddr_ = first->address();
3936 this->paddr_ = (first->has_load_address()
3937 ? first->load_address()
3938 : this->vaddr_);
3939 this->are_addresses_set_ = true;
3940 this->offset_ = first->offset();
3942 if (last_data == NULL)
3943 this->filesz_ = 0;
3944 else
3945 this->filesz_ = (last_data->address()
3946 + last_data->data_size()
3947 - this->vaddr_);
3949 const Output_data* last = last_bss != NULL ? last_bss : last_data;
3950 this->memsz_ = (last->address()
3951 + last->data_size()
3952 - this->vaddr_);
3954 this->filesz_ += increase;
3955 this->memsz_ += increase;
3957 // If this is a TLS segment, align the memory size. The code in
3958 // set_section_list ensures that the section after the TLS segment
3959 // is aligned to give us room.
3960 if (this->type_ == elfcpp::PT_TLS)
3962 uint64_t segment_align = this->maximum_alignment();
3963 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3964 this->memsz_ = align_address(this->memsz_, segment_align);
3968 // Set the TLS offsets of the sections in the PT_TLS segment.
3970 void
3971 Output_segment::set_tls_offsets()
3973 gold_assert(this->type_ == elfcpp::PT_TLS);
3975 for (Output_data_list::iterator p = this->output_lists_[0].begin();
3976 p != this->output_lists_[0].end();
3977 ++p)
3978 (*p)->set_tls_offset(this->vaddr_);
3981 // Return the load address of the first section.
3983 uint64_t
3984 Output_segment::first_section_load_address() const
3986 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3988 const Output_data_list* pdl = &this->output_lists_[i];
3989 for (Output_data_list::const_iterator p = pdl->begin();
3990 p != pdl->end();
3991 ++p)
3993 if ((*p)->is_section())
3994 return ((*p)->has_load_address()
3995 ? (*p)->load_address()
3996 : (*p)->address());
3999 gold_unreachable();
4002 // Return the number of Output_sections in an Output_segment.
4004 unsigned int
4005 Output_segment::output_section_count() const
4007 unsigned int ret = 0;
4008 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4009 ret += this->output_section_count_list(&this->output_lists_[i]);
4010 return ret;
4013 // Return the number of Output_sections in an Output_data_list.
4015 unsigned int
4016 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4018 unsigned int count = 0;
4019 for (Output_data_list::const_iterator p = pdl->begin();
4020 p != pdl->end();
4021 ++p)
4023 if ((*p)->is_section())
4024 ++count;
4026 return count;
4029 // Return the section attached to the list segment with the lowest
4030 // load address. This is used when handling a PHDRS clause in a
4031 // linker script.
4033 Output_section*
4034 Output_segment::section_with_lowest_load_address() const
4036 Output_section* found = NULL;
4037 uint64_t found_lma = 0;
4038 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4039 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4040 &found_lma);
4041 return found;
4044 // Look through a list for a section with a lower load address.
4046 void
4047 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4048 Output_section** found,
4049 uint64_t* found_lma) const
4051 for (Output_data_list::const_iterator p = pdl->begin();
4052 p != pdl->end();
4053 ++p)
4055 if (!(*p)->is_section())
4056 continue;
4057 Output_section* os = static_cast<Output_section*>(*p);
4058 uint64_t lma = (os->has_load_address()
4059 ? os->load_address()
4060 : os->address());
4061 if (*found == NULL || lma < *found_lma)
4063 *found = os;
4064 *found_lma = lma;
4069 // Write the segment data into *OPHDR.
4071 template<int size, bool big_endian>
4072 void
4073 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4075 ophdr->put_p_type(this->type_);
4076 ophdr->put_p_offset(this->offset_);
4077 ophdr->put_p_vaddr(this->vaddr_);
4078 ophdr->put_p_paddr(this->paddr_);
4079 ophdr->put_p_filesz(this->filesz_);
4080 ophdr->put_p_memsz(this->memsz_);
4081 ophdr->put_p_flags(this->flags_);
4082 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4085 // Write the section headers into V.
4087 template<int size, bool big_endian>
4088 unsigned char*
4089 Output_segment::write_section_headers(const Layout* layout,
4090 const Stringpool* secnamepool,
4091 unsigned char* v,
4092 unsigned int* pshndx) const
4094 // Every section that is attached to a segment must be attached to a
4095 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4096 // segments.
4097 if (this->type_ != elfcpp::PT_LOAD)
4098 return v;
4100 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4102 const Output_data_list* pdl = &this->output_lists_[i];
4103 v = this->write_section_headers_list<size, big_endian>(layout,
4104 secnamepool,
4105 pdl,
4106 v, pshndx);
4109 return v;
4112 template<int size, bool big_endian>
4113 unsigned char*
4114 Output_segment::write_section_headers_list(const Layout* layout,
4115 const Stringpool* secnamepool,
4116 const Output_data_list* pdl,
4117 unsigned char* v,
4118 unsigned int* pshndx) const
4120 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4121 for (Output_data_list::const_iterator p = pdl->begin();
4122 p != pdl->end();
4123 ++p)
4125 if ((*p)->is_section())
4127 const Output_section* ps = static_cast<const Output_section*>(*p);
4128 gold_assert(*pshndx == ps->out_shndx());
4129 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4130 ps->write_header(layout, secnamepool, &oshdr);
4131 v += shdr_size;
4132 ++*pshndx;
4135 return v;
4138 // Print the output sections to the map file.
4140 void
4141 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4143 if (this->type() != elfcpp::PT_LOAD)
4144 return;
4145 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4146 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4149 // Print an output section list to the map file.
4151 void
4152 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4153 const Output_data_list* pdl) const
4155 for (Output_data_list::const_iterator p = pdl->begin();
4156 p != pdl->end();
4157 ++p)
4158 (*p)->print_to_mapfile(mapfile);
4161 // Output_file methods.
4163 Output_file::Output_file(const char* name)
4164 : name_(name),
4165 o_(-1),
4166 file_size_(0),
4167 base_(NULL),
4168 map_is_anonymous_(false),
4169 is_temporary_(false)
4173 // Try to open an existing file. Returns false if the file doesn't
4174 // exist, has a size of 0 or can't be mmapped.
4176 bool
4177 Output_file::open_for_modification()
4179 // The name "-" means "stdout".
4180 if (strcmp(this->name_, "-") == 0)
4181 return false;
4183 // Don't bother opening files with a size of zero.
4184 struct stat s;
4185 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4186 return false;
4188 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4189 if (o < 0)
4190 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4191 this->o_ = o;
4192 this->file_size_ = s.st_size;
4194 // If the file can't be mmapped, copying the content to an anonymous
4195 // map will probably negate the performance benefits of incremental
4196 // linking. This could be helped by using views and loading only
4197 // the necessary parts, but this is not supported as of now.
4198 if (!this->map_no_anonymous())
4200 release_descriptor(o, true);
4201 this->o_ = -1;
4202 this->file_size_ = 0;
4203 return false;
4206 return true;
4209 // Open the output file.
4211 void
4212 Output_file::open(off_t file_size)
4214 this->file_size_ = file_size;
4216 // Unlink the file first; otherwise the open() may fail if the file
4217 // is busy (e.g. it's an executable that's currently being executed).
4219 // However, the linker may be part of a system where a zero-length
4220 // file is created for it to write to, with tight permissions (gcc
4221 // 2.95 did something like this). Unlinking the file would work
4222 // around those permission controls, so we only unlink if the file
4223 // has a non-zero size. We also unlink only regular files to avoid
4224 // trouble with directories/etc.
4226 // If we fail, continue; this command is merely a best-effort attempt
4227 // to improve the odds for open().
4229 // We let the name "-" mean "stdout"
4230 if (!this->is_temporary_)
4232 if (strcmp(this->name_, "-") == 0)
4233 this->o_ = STDOUT_FILENO;
4234 else
4236 struct stat s;
4237 if (::stat(this->name_, &s) == 0
4238 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4240 if (s.st_size != 0)
4241 ::unlink(this->name_);
4242 else if (!parameters->options().relocatable())
4244 // If we don't unlink the existing file, add execute
4245 // permission where read permissions already exist
4246 // and where the umask permits.
4247 int mask = ::umask(0);
4248 ::umask(mask);
4249 s.st_mode |= (s.st_mode & 0444) >> 2;
4250 ::chmod(this->name_, s.st_mode & ~mask);
4254 int mode = parameters->options().relocatable() ? 0666 : 0777;
4255 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4256 mode);
4257 if (o < 0)
4258 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4259 this->o_ = o;
4263 this->map();
4266 // Resize the output file.
4268 void
4269 Output_file::resize(off_t file_size)
4271 // If the mmap is mapping an anonymous memory buffer, this is easy:
4272 // just mremap to the new size. If it's mapping to a file, we want
4273 // to unmap to flush to the file, then remap after growing the file.
4274 if (this->map_is_anonymous_)
4276 void* base = ::mremap(this->base_, this->file_size_, file_size,
4277 MREMAP_MAYMOVE);
4278 if (base == MAP_FAILED)
4279 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4280 this->base_ = static_cast<unsigned char*>(base);
4281 this->file_size_ = file_size;
4283 else
4285 this->unmap();
4286 this->file_size_ = file_size;
4287 if (!this->map_no_anonymous())
4288 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4292 // Map an anonymous block of memory which will later be written to the
4293 // file. Return whether the map succeeded.
4295 bool
4296 Output_file::map_anonymous()
4298 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4299 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4300 if (base != MAP_FAILED)
4302 this->map_is_anonymous_ = true;
4303 this->base_ = static_cast<unsigned char*>(base);
4304 return true;
4306 return false;
4309 // Map the file into memory. Return whether the mapping succeeded.
4311 bool
4312 Output_file::map_no_anonymous()
4314 const int o = this->o_;
4316 // If the output file is not a regular file, don't try to mmap it;
4317 // instead, we'll mmap a block of memory (an anonymous buffer), and
4318 // then later write the buffer to the file.
4319 void* base;
4320 struct stat statbuf;
4321 if (o == STDOUT_FILENO || o == STDERR_FILENO
4322 || ::fstat(o, &statbuf) != 0
4323 || !S_ISREG(statbuf.st_mode)
4324 || this->is_temporary_)
4325 return false;
4327 // Ensure that we have disk space available for the file. If we
4328 // don't do this, it is possible that we will call munmap, close,
4329 // and exit with dirty buffers still in the cache with no assigned
4330 // disk blocks. If the disk is out of space at that point, the
4331 // output file will wind up incomplete, but we will have already
4332 // exited. The alternative to fallocate would be to use fdatasync,
4333 // but that would be a more significant performance hit.
4334 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4335 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4337 // Map the file into memory.
4338 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4339 MAP_SHARED, o, 0);
4341 // The mmap call might fail because of file system issues: the file
4342 // system might not support mmap at all, or it might not support
4343 // mmap with PROT_WRITE.
4344 if (base == MAP_FAILED)
4345 return false;
4347 this->map_is_anonymous_ = false;
4348 this->base_ = static_cast<unsigned char*>(base);
4349 return true;
4352 // Map the file into memory.
4354 void
4355 Output_file::map()
4357 if (this->map_no_anonymous())
4358 return;
4360 // The mmap call might fail because of file system issues: the file
4361 // system might not support mmap at all, or it might not support
4362 // mmap with PROT_WRITE. I'm not sure which errno values we will
4363 // see in all cases, so if the mmap fails for any reason and we
4364 // don't care about file contents, try for an anonymous map.
4365 if (this->map_anonymous())
4366 return;
4368 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4369 this->name_, static_cast<unsigned long>(this->file_size_),
4370 strerror(errno));
4373 // Unmap the file from memory.
4375 void
4376 Output_file::unmap()
4378 if (::munmap(this->base_, this->file_size_) < 0)
4379 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4380 this->base_ = NULL;
4383 // Close the output file.
4385 void
4386 Output_file::close()
4388 // If the map isn't file-backed, we need to write it now.
4389 if (this->map_is_anonymous_ && !this->is_temporary_)
4391 size_t bytes_to_write = this->file_size_;
4392 size_t offset = 0;
4393 while (bytes_to_write > 0)
4395 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4396 bytes_to_write);
4397 if (bytes_written == 0)
4398 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4399 else if (bytes_written < 0)
4400 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4401 else
4403 bytes_to_write -= bytes_written;
4404 offset += bytes_written;
4408 this->unmap();
4410 // We don't close stdout or stderr
4411 if (this->o_ != STDOUT_FILENO
4412 && this->o_ != STDERR_FILENO
4413 && !this->is_temporary_)
4414 if (::close(this->o_) < 0)
4415 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4416 this->o_ = -1;
4419 // Instantiate the templates we need. We could use the configure
4420 // script to restrict this to only the ones for implemented targets.
4422 #ifdef HAVE_TARGET_32_LITTLE
4423 template
4424 off_t
4425 Output_section::add_input_section<32, false>(
4426 Layout* layout,
4427 Sized_relobj<32, false>* object,
4428 unsigned int shndx,
4429 const char* secname,
4430 const elfcpp::Shdr<32, false>& shdr,
4431 unsigned int reloc_shndx,
4432 bool have_sections_script);
4433 #endif
4435 #ifdef HAVE_TARGET_32_BIG
4436 template
4437 off_t
4438 Output_section::add_input_section<32, true>(
4439 Layout* layout,
4440 Sized_relobj<32, true>* object,
4441 unsigned int shndx,
4442 const char* secname,
4443 const elfcpp::Shdr<32, true>& shdr,
4444 unsigned int reloc_shndx,
4445 bool have_sections_script);
4446 #endif
4448 #ifdef HAVE_TARGET_64_LITTLE
4449 template
4450 off_t
4451 Output_section::add_input_section<64, false>(
4452 Layout* layout,
4453 Sized_relobj<64, false>* object,
4454 unsigned int shndx,
4455 const char* secname,
4456 const elfcpp::Shdr<64, false>& shdr,
4457 unsigned int reloc_shndx,
4458 bool have_sections_script);
4459 #endif
4461 #ifdef HAVE_TARGET_64_BIG
4462 template
4463 off_t
4464 Output_section::add_input_section<64, true>(
4465 Layout* layout,
4466 Sized_relobj<64, true>* object,
4467 unsigned int shndx,
4468 const char* secname,
4469 const elfcpp::Shdr<64, true>& shdr,
4470 unsigned int reloc_shndx,
4471 bool have_sections_script);
4472 #endif
4474 #ifdef HAVE_TARGET_32_LITTLE
4475 template
4476 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4477 #endif
4479 #ifdef HAVE_TARGET_32_BIG
4480 template
4481 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4482 #endif
4484 #ifdef HAVE_TARGET_64_LITTLE
4485 template
4486 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4487 #endif
4489 #ifdef HAVE_TARGET_64_BIG
4490 template
4491 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4492 #endif
4494 #ifdef HAVE_TARGET_32_LITTLE
4495 template
4496 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4497 #endif
4499 #ifdef HAVE_TARGET_32_BIG
4500 template
4501 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4502 #endif
4504 #ifdef HAVE_TARGET_64_LITTLE
4505 template
4506 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4507 #endif
4509 #ifdef HAVE_TARGET_64_BIG
4510 template
4511 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4512 #endif
4514 #ifdef HAVE_TARGET_32_LITTLE
4515 template
4516 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4517 #endif
4519 #ifdef HAVE_TARGET_32_BIG
4520 template
4521 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4522 #endif
4524 #ifdef HAVE_TARGET_64_LITTLE
4525 template
4526 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4527 #endif
4529 #ifdef HAVE_TARGET_64_BIG
4530 template
4531 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4532 #endif
4534 #ifdef HAVE_TARGET_32_LITTLE
4535 template
4536 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4537 #endif
4539 #ifdef HAVE_TARGET_32_BIG
4540 template
4541 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4542 #endif
4544 #ifdef HAVE_TARGET_64_LITTLE
4545 template
4546 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4547 #endif
4549 #ifdef HAVE_TARGET_64_BIG
4550 template
4551 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4552 #endif
4554 #ifdef HAVE_TARGET_32_LITTLE
4555 template
4556 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4557 #endif
4559 #ifdef HAVE_TARGET_32_BIG
4560 template
4561 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4562 #endif
4564 #ifdef HAVE_TARGET_64_LITTLE
4565 template
4566 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4567 #endif
4569 #ifdef HAVE_TARGET_64_BIG
4570 template
4571 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4572 #endif
4574 #ifdef HAVE_TARGET_32_LITTLE
4575 template
4576 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4577 #endif
4579 #ifdef HAVE_TARGET_32_BIG
4580 template
4581 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4582 #endif
4584 #ifdef HAVE_TARGET_64_LITTLE
4585 template
4586 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4587 #endif
4589 #ifdef HAVE_TARGET_64_BIG
4590 template
4591 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4592 #endif
4594 #ifdef HAVE_TARGET_32_LITTLE
4595 template
4596 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4597 #endif
4599 #ifdef HAVE_TARGET_32_BIG
4600 template
4601 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4602 #endif
4604 #ifdef HAVE_TARGET_64_LITTLE
4605 template
4606 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4607 #endif
4609 #ifdef HAVE_TARGET_64_BIG
4610 template
4611 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4612 #endif
4614 #ifdef HAVE_TARGET_32_LITTLE
4615 template
4616 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4617 #endif
4619 #ifdef HAVE_TARGET_32_BIG
4620 template
4621 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4622 #endif
4624 #ifdef HAVE_TARGET_64_LITTLE
4625 template
4626 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4627 #endif
4629 #ifdef HAVE_TARGET_64_BIG
4630 template
4631 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4632 #endif
4634 #ifdef HAVE_TARGET_32_LITTLE
4635 template
4636 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4637 #endif
4639 #ifdef HAVE_TARGET_32_BIG
4640 template
4641 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4642 #endif
4644 #ifdef HAVE_TARGET_64_LITTLE
4645 template
4646 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4647 #endif
4649 #ifdef HAVE_TARGET_64_BIG
4650 template
4651 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4652 #endif
4654 #ifdef HAVE_TARGET_32_LITTLE
4655 template
4656 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4657 #endif
4659 #ifdef HAVE_TARGET_32_BIG
4660 template
4661 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4662 #endif
4664 #ifdef HAVE_TARGET_64_LITTLE
4665 template
4666 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4667 #endif
4669 #ifdef HAVE_TARGET_64_BIG
4670 template
4671 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4672 #endif
4674 #ifdef HAVE_TARGET_32_LITTLE
4675 template
4676 class Output_data_group<32, false>;
4677 #endif
4679 #ifdef HAVE_TARGET_32_BIG
4680 template
4681 class Output_data_group<32, true>;
4682 #endif
4684 #ifdef HAVE_TARGET_64_LITTLE
4685 template
4686 class Output_data_group<64, false>;
4687 #endif
4689 #ifdef HAVE_TARGET_64_BIG
4690 template
4691 class Output_data_group<64, true>;
4692 #endif
4694 #ifdef HAVE_TARGET_32_LITTLE
4695 template
4696 class Output_data_got<32, false>;
4697 #endif
4699 #ifdef HAVE_TARGET_32_BIG
4700 template
4701 class Output_data_got<32, true>;
4702 #endif
4704 #ifdef HAVE_TARGET_64_LITTLE
4705 template
4706 class Output_data_got<64, false>;
4707 #endif
4709 #ifdef HAVE_TARGET_64_BIG
4710 template
4711 class Output_data_got<64, true>;
4712 #endif
4714 } // End namespace gold.