Add Elf_file interface which can be used by both Sized_relobj and
[binutils.git] / gold / target.h
blob8e00a4da5ab8472b2a68412a4cf82d99714daef7
1 // target.h -- target support for gold -*- C++ -*-
3 // The abstract class Target is the interface for target specific
4 // support. It defines abstract methods which each target must
5 // implement. Typically there will be one target per processor, but
6 // in some cases it may be necessary to have subclasses.
8 // For speed and consistency we want to use inline functions to handle
9 // relocation processing. So besides implementations of the abstract
10 // methods, each target is expected to define a template
11 // specialization of the relocation functions.
13 #ifndef GOLD_TARGET_H
14 #define GOLD_TARGET_H
16 #include <cassert>
18 #include "elfcpp.h"
20 namespace gold
23 class General_options;
24 class Object;
25 template<int size, bool big_endian>
26 class Sized_relobj;
27 template<int size, bool big_endian>
28 struct Relocate_info;
29 class Symbol;
30 template<int size>
31 class Sized_symbol;
32 class Symbol_table;
34 // The abstract class for target specific handling.
36 class Target
38 public:
39 virtual ~Target()
40 { }
42 // Return the bit size that this target implements. This should
43 // return 32 or 64.
44 int
45 get_size() const
46 { return this->pti_->size; }
48 // Return whether this target is big-endian.
49 bool
50 is_big_endian() const
51 { return this->pti_->is_big_endian; }
53 // Machine code to store in e_machine field of ELF header.
54 elfcpp::EM
55 machine_code() const
56 { return this->pti_->machine_code; }
58 // Whether this target has a specific make_symbol function.
59 bool
60 has_make_symbol() const
61 { return this->pti_->has_make_symbol; }
63 // Whether this target has a specific resolve function.
64 bool
65 has_resolve() const
66 { return this->pti_->has_resolve; }
68 // Return the default address to use for the text segment.
69 uint64_t
70 text_segment_address() const
71 { return this->pti_->text_segment_address; }
73 // Return the ABI specified page size.
74 uint64_t
75 abi_pagesize() const
76 { return this->pti_->abi_pagesize; }
78 // Return the common page size used on actual systems.
79 uint64_t
80 common_pagesize() const
81 { return this->pti_->common_pagesize; }
83 protected:
84 // This struct holds the constant information for a child class. We
85 // use a struct to avoid the overhead of virtual function calls for
86 // simple information.
87 struct Target_info
89 // Address size (32 or 64).
90 int size;
91 // Whether the target is big endian.
92 bool is_big_endian;
93 // The code to store in the e_machine field of the ELF header.
94 elfcpp::EM machine_code;
95 // Whether this target has a specific make_symbol function.
96 bool has_make_symbol;
97 // Whether this target has a specific resolve function.
98 bool has_resolve;
99 // The default text segment address.
100 uint64_t text_segment_address;
101 // The ABI specified page size.
102 uint64_t abi_pagesize;
103 // The common page size used by actual implementations.
104 uint64_t common_pagesize;
107 Target(const Target_info* pti)
108 : pti_(pti)
111 private:
112 Target(const Target&);
113 Target& operator=(const Target&);
115 // The target information.
116 const Target_info* pti_;
119 // The abstract class for a specific size and endianness of target.
120 // Each actual target implementation class should derive from an
121 // instantiation of Sized_target.
123 template<int size, bool big_endian>
124 class Sized_target : public Target
126 public:
127 // Make a new symbol table entry for the target. This should be
128 // overridden by a target which needs additional information in the
129 // symbol table. This will only be called if has_make_symbol()
130 // returns true.
131 virtual Sized_symbol<size>*
132 make_symbol()
133 { abort(); }
135 // Resolve a symbol for the target. This should be overridden by a
136 // target which needs to take special action. TO is the
137 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
138 // This will only be called if has_resolve() returns true.
139 virtual void
140 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*)
141 { abort(); }
143 // Scan the relocs for a section, and record any information
144 // required for the symbol. OPTIONS is the command line options.
145 // SYMTAB is the symbol table. OBJECT is the object in which the
146 // section appears. SH_TYPE is the type of the relocation section,
147 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
148 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
149 // number of local symbols. PLOCAL_SYMBOLS points to the local
150 // symbol data from OBJECT. GLOBAL_SYMBOLS is the array of pointers
151 // to the global symbol table from OBJECT.
152 virtual void
153 scan_relocs(const General_options& options,
154 Symbol_table* symtab,
155 Layout* layout,
156 Sized_relobj<size, big_endian>* object,
157 unsigned int sh_type,
158 const unsigned char* prelocs,
159 size_t reloc_count,
160 size_t local_symbol_count,
161 const unsigned char* plocal_symbols,
162 Symbol** global_symbols) = 0;
164 // Relocate section data. SH_TYPE is the type of the relocation
165 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
166 // information. RELOC_COUNT is the number of relocs. VIEW is a
167 // view into the output file holding the section contents,
168 // VIEW_ADDRESS is the virtual address of the view, and VIEW_SIZE is
169 // the size of the view.
170 virtual void
171 relocate_section(const Relocate_info<size, big_endian>*,
172 unsigned int sh_type,
173 const unsigned char* prelocs,
174 size_t reloc_count,
175 unsigned char* view,
176 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
177 off_t view_size) = 0;
179 protected:
180 Sized_target(const Target::Target_info* pti)
181 : Target(pti)
183 assert(pti->size == size);
184 assert(pti->is_big_endian ? big_endian : !big_endian);
188 } // End namespace gold.
190 #endif // !defined(GOLD_TARGET_H)