1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
28 BFD tries to maintain as much symbol information as it can when
29 it moves information from file to file. BFD passes information
30 to applications though the <<asymbol>> structure. When the
31 application requests the symbol table, BFD reads the table in
32 the native form and translates parts of it into the internal
33 format. To maintain more than the information passed to
34 applications, some targets keep some information ``behind the
35 scenes'' in a structure only the particular back end knows
36 about. For example, the coff back end keeps the original
37 symbol table structure as well as the canonical structure when
38 a BFD is read in. On output, the coff back end can reconstruct
39 the output symbol table so that no information is lost, even
40 information unique to coff which BFD doesn't know or
41 understand. If a coff symbol table were read, but were written
42 through an a.out back end, all the coff specific information
43 would be lost. The symbol table of a BFD
44 is not necessarily read in until a canonicalize request is
45 made. Then the BFD back end fills in a table provided by the
46 application with pointers to the canonical information. To
47 output symbols, the application provides BFD with a table of
48 pointers to pointers to <<asymbol>>s. This allows applications
49 like the linker to output a symbol as it was read, since the ``behind
50 the scenes'' information will be still available.
56 @* symbol handling functions::
60 Reading Symbols, Writing Symbols, Symbols, Symbols
64 There are two stages to reading a symbol table from a BFD:
65 allocating storage, and the actual reading process. This is an
66 excerpt from an application which reads the symbol table:
68 | long storage_needed;
69 | asymbol **symbol_table;
70 | long number_of_symbols;
73 | storage_needed = bfd_get_symtab_upper_bound (abfd);
75 | if (storage_needed < 0)
78 | if (storage_needed == 0)
81 | symbol_table = xmalloc (storage_needed);
84 | bfd_canonicalize_symtab (abfd, symbol_table);
86 | if (number_of_symbols < 0)
89 | for (i = 0; i < number_of_symbols; i++)
90 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw ("foo","a.out-sunos-big");
118 | bfd_set_format (abfd, bfd_object);
119 | new = bfd_make_empty_symbol (abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way (abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
128 | bfd_set_symtab (abfd, ptrs, 1);
135 | 00012345 A dummy_symbol
137 Many formats cannot represent arbitrary symbol information; for
138 instance, the <<a.out>> object format does not allow an
139 arbitrary number of sections. A symbol pointing to a section
140 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
144 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
148 Mini symbols provide read-only access to the symbol table.
149 They use less memory space, but require more time to access.
150 They can be useful for tools like nm or objdump, which may
151 have to handle symbol tables of extremely large executables.
153 The <<bfd_read_minisymbols>> function will read the symbols
154 into memory in an internal form. It will return a <<void *>>
155 pointer to a block of memory, a symbol count, and the size of
156 each symbol. The pointer is allocated using <<malloc>>, and
157 should be freed by the caller when it is no longer needed.
159 The function <<bfd_minisymbol_to_symbol>> will take a pointer
160 to a minisymbol, and a pointer to a structure returned by
161 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162 The return value may or may not be the same as the value from
163 <<bfd_make_empty_symbol>> which was passed in.
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
177 An <<asymbol>> has the form:
185 .typedef struct bfd_symbol
187 . {* A pointer to the BFD which owns the symbol. This information
188 . is necessary so that a back end can work out what additional
189 . information (invisible to the application writer) is carried
192 . This field is *almost* redundant, since you can use section->owner
193 . instead, except that some symbols point to the global sections
194 . bfd_{abs,com,und}_section. This could be fixed by making
195 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
207 . {* Attributes of a symbol. *}
208 .#define BSF_NO_FLAGS 0x00
210 . {* The symbol has local scope; <<static>> in <<C>>. The value
211 . is the offset into the section of the data. *}
212 .#define BSF_LOCAL (1 << 0)
214 . {* The symbol has global scope; initialized data in <<C>>. The
215 . value is the offset into the section of the data. *}
216 .#define BSF_GLOBAL (1 << 1)
218 . {* The symbol has global scope and is exported. The value is
219 . the offset into the section of the data. *}
220 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
222 . {* A normal C symbol would be one of:
223 . <<BSF_LOCAL>>, <<BSF_COMMON>>, <<BSF_UNDEFINED>> or
226 . {* The symbol is a debugging record. The value has an arbitrary
227 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
228 .#define BSF_DEBUGGING (1 << 2)
230 . {* The symbol denotes a function entry point. Used in ELF,
231 . perhaps others someday. *}
232 .#define BSF_FUNCTION (1 << 3)
234 . {* Used by the linker. *}
235 .#define BSF_KEEP (1 << 5)
236 .#define BSF_KEEP_G (1 << 6)
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK (1 << 7)
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM (1 << 8)
246 . {* The symbol used to be a common symbol, but now it is
248 .#define BSF_OLD_COMMON (1 << 9)
250 . {* In some files the type of a symbol sometimes alters its
251 . location in an output file - ie in coff a <<ISFCN>> symbol
252 . which is also <<C_EXT>> symbol appears where it was
253 . declared and not at the end of a section. This bit is set
254 . by the target BFD part to convey this information. *}
255 .#define BSF_NOT_AT_END (1 << 10)
257 . {* Signal that the symbol is the label of constructor section. *}
258 .#define BSF_CONSTRUCTOR (1 << 11)
260 . {* Signal that the symbol is a warning symbol. The name is a
261 . warning. The name of the next symbol is the one to warn about;
262 . if a reference is made to a symbol with the same name as the next
263 . symbol, a warning is issued by the linker. *}
264 .#define BSF_WARNING (1 << 12)
266 . {* Signal that the symbol is indirect. This symbol is an indirect
267 . pointer to the symbol with the same name as the next symbol. *}
268 .#define BSF_INDIRECT (1 << 13)
270 . {* BSF_FILE marks symbols that contain a file name. This is used
271 . for ELF STT_FILE symbols. *}
272 .#define BSF_FILE (1 << 14)
274 . {* Symbol is from dynamic linking information. *}
275 .#define BSF_DYNAMIC (1 << 15)
277 . {* The symbol denotes a data object. Used in ELF, and perhaps
279 .#define BSF_OBJECT (1 << 16)
281 . {* This symbol is a debugging symbol. The value is the offset
282 . into the section of the data. BSF_DEBUGGING should be set
284 .#define BSF_DEBUGGING_RELOC (1 << 17)
286 . {* This symbol is thread local. Used in ELF. *}
287 .#define BSF_THREAD_LOCAL (1 << 18)
289 . {* This symbol represents a complex relocation expression,
290 . with the expression tree serialized in the symbol name. *}
291 .#define BSF_RELC (1 << 19)
293 . {* This symbol represents a signed complex relocation expression,
294 . with the expression tree serialized in the symbol name. *}
295 .#define BSF_SRELC (1 << 20)
297 . {* This symbol was created by bfd_get_synthetic_symtab. *}
298 .#define BSF_SYNTHETIC (1 << 21)
300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301 . The dynamic linker will compute the value of this symbol by
302 . calling the function that it points to. BSF_FUNCTION must
303 . also be also set. *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 . {* This symbol is a globally unique data object. The dynamic linker
306 . will make sure that in the entire process there is just one symbol
307 . with this name and type in use. BSF_OBJECT must also be set. *}
308 .#define BSF_GNU_UNIQUE (1 << 23)
312 . {* A pointer to the section to which this symbol is
313 . relative. This will always be non NULL, there are special
314 . sections for undefined and absolute symbols. *}
315 . struct bfd_section *section;
317 . {* Back end special data. *}
332 #include "safe-ctype.h"
334 #include "aout/stab_gnu.h"
339 symbol handling functions, , typedef asymbol, Symbols
341 Symbol handling functions
346 bfd_get_symtab_upper_bound
349 Return the number of bytes required to store a vector of pointers
350 to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 including a terminal NULL pointer. If there are no symbols in
352 the BFD, then return 0. If an error occurs, return -1.
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
364 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
367 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 a compiler generated local label, else return FALSE.
372 bfd_is_local_label (bfd
*abfd
, asymbol
*sym
)
374 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375 starts with '.' is local. This would accidentally catch section names
376 if we didn't reject them here. */
377 if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_FILE
| BSF_SECTION_SYM
)) != 0)
379 if (sym
->name
== NULL
)
381 return bfd_is_local_label_name (abfd
, sym
->name
);
386 bfd_is_local_label_name
389 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
392 Return TRUE if a symbol with the name @var{name} in the BFD
393 @var{abfd} is a compiler generated local label, else return
394 FALSE. This just checks whether the name has the form of a
397 .#define bfd_is_local_label_name(abfd, name) \
398 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
404 bfd_is_target_special_symbol
407 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
410 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 special to the particular target represented by the BFD. Such symbols
412 should normally not be mentioned to the user.
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
421 bfd_canonicalize_symtab
424 Read the symbols from the BFD @var{abfd}, and fills in
425 the vector @var{location} with pointers to the symbols and
427 Return the actual number of symbol pointers, not
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
440 bfd_boolean bfd_set_symtab
441 (bfd *abfd, asymbol **location, unsigned int count);
444 Arrange that when the output BFD @var{abfd} is closed,
445 the table @var{location} of @var{count} pointers to symbols
450 bfd_set_symtab (bfd
*abfd
, asymbol
**location
, unsigned int symcount
)
452 if (abfd
->format
!= bfd_object
|| bfd_read_p (abfd
))
454 bfd_set_error (bfd_error_invalid_operation
);
458 bfd_get_outsymbols (abfd
) = location
;
459 bfd_get_symcount (abfd
) = symcount
;
465 bfd_print_symbol_vandf
468 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
471 Print the value and flags of the @var{symbol} supplied to the
475 bfd_print_symbol_vandf (bfd
*abfd
, void *arg
, asymbol
*symbol
)
479 flagword type
= symbol
->flags
;
481 if (symbol
->section
!= NULL
)
482 bfd_fprintf_vma (abfd
, file
, symbol
->value
+ symbol
->section
->vma
);
484 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
486 /* This presumes that a symbol can not be both BSF_DEBUGGING and
487 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
489 fprintf (file
, " %c%c%c%c%c%c%c",
491 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
492 : (type
& BSF_GLOBAL
) ? 'g'
493 : (type
& BSF_GNU_UNIQUE
) ? 'u' : ' '),
494 (type
& BSF_WEAK
) ? 'w' : ' ',
495 (type
& BSF_CONSTRUCTOR
) ? 'C' : ' ',
496 (type
& BSF_WARNING
) ? 'W' : ' ',
497 (type
& BSF_INDIRECT
) ? 'I' : (type
& BSF_GNU_INDIRECT_FUNCTION
) ? 'i' : ' ',
498 (type
& BSF_DEBUGGING
) ? 'd' : (type
& BSF_DYNAMIC
) ? 'D' : ' ',
499 ((type
& BSF_FUNCTION
)
503 : ((type
& BSF_OBJECT
) ? 'O' : ' '))));
508 bfd_make_empty_symbol
511 Create a new <<asymbol>> structure for the BFD @var{abfd}
512 and return a pointer to it.
514 This routine is necessary because each back end has private
515 information surrounding the <<asymbol>>. Building your own
516 <<asymbol>> and pointing to it will not create the private
517 information, and will cause problems later on.
519 .#define bfd_make_empty_symbol(abfd) \
520 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
526 _bfd_generic_make_empty_symbol
529 asymbol *_bfd_generic_make_empty_symbol (bfd *);
532 Create a new <<asymbol>> structure for the BFD @var{abfd}
533 and return a pointer to it. Used by core file routines,
534 binary back-end and anywhere else where no private info
539 _bfd_generic_make_empty_symbol (bfd
*abfd
)
541 bfd_size_type amt
= sizeof (asymbol
);
542 asymbol
*new = bfd_zalloc (abfd
, amt
);
550 bfd_make_debug_symbol
553 Create a new <<asymbol>> structure for the BFD @var{abfd},
554 to be used as a debugging symbol. Further details of its use have
555 yet to be worked out.
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
562 struct section_to_type
568 /* Map section names to POSIX/BSD single-character symbol types.
569 This table is probably incomplete. It is sorted for convenience of
570 adding entries. Since it is so short, a linear search is used. */
571 static const struct section_to_type stt
[] =
574 {"code", 't'}, /* MRI .text */
577 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
578 {".drectve", 'i'}, /* MSVC's .drective section */
579 {".edata", 'e'}, /* MSVC's .edata (export) section */
580 {".fini", 't'}, /* ELF fini section */
581 {".idata", 'i'}, /* MSVC's .idata (import) section */
582 {".init", 't'}, /* ELF init section */
583 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
584 {".rdata", 'r'}, /* Read only data. */
585 {".rodata", 'r'}, /* Read only data. */
586 {".sbss", 's'}, /* Small BSS (uninitialized data). */
587 {".scommon", 'c'}, /* Small common. */
588 {".sdata", 'g'}, /* Small initialized data. */
590 {"vars", 'd'}, /* MRI .data */
591 {"zerovars", 'b'}, /* MRI .bss */
595 /* Return the single-character symbol type corresponding to
596 section S, or '?' for an unknown COFF section.
598 Check for any leading string which matches, so .text5 returns
599 't' as well as .text */
602 coff_section_type (const char *s
)
604 const struct section_to_type
*t
;
606 for (t
= &stt
[0]; t
->section
; t
++)
607 if (!strncmp (s
, t
->section
, strlen (t
->section
)))
613 /* Return the single-character symbol type corresponding to section
614 SECTION, or '?' for an unknown section. This uses section flags to
617 FIXME These types are unhandled: c, i, e, p. If we handled these also,
618 we could perhaps obsolete coff_section_type. */
621 decode_section_type (const struct bfd_section
*section
)
623 if (section
->flags
& SEC_CODE
)
625 if (section
->flags
& SEC_DATA
)
627 if (section
->flags
& SEC_READONLY
)
629 else if (section
->flags
& SEC_SMALL_DATA
)
634 if ((section
->flags
& SEC_HAS_CONTENTS
) == 0)
636 if (section
->flags
& SEC_SMALL_DATA
)
641 if (section
->flags
& SEC_DEBUGGING
)
643 if ((section
->flags
& SEC_HAS_CONTENTS
) && (section
->flags
& SEC_READONLY
))
654 Return a character corresponding to the symbol
655 class of @var{symbol}, or '?' for an unknown class.
658 int bfd_decode_symclass (asymbol *symbol);
661 bfd_decode_symclass (asymbol
*symbol
)
665 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
667 if (bfd_is_und_section (symbol
->section
))
669 if (symbol
->flags
& BSF_WEAK
)
671 /* If weak, determine if it's specifically an object
672 or non-object weak. */
673 if (symbol
->flags
& BSF_OBJECT
)
681 if (bfd_is_ind_section (symbol
->section
))
683 if (symbol
->flags
& BSF_GNU_INDIRECT_FUNCTION
)
685 if (symbol
->flags
& BSF_WEAK
)
687 /* If weak, determine if it's specifically an object
688 or non-object weak. */
689 if (symbol
->flags
& BSF_OBJECT
)
694 if (symbol
->flags
& BSF_GNU_UNIQUE
)
696 if (!(symbol
->flags
& (BSF_GLOBAL
| BSF_LOCAL
)))
699 if (bfd_is_abs_section (symbol
->section
))
701 else if (symbol
->section
)
703 c
= coff_section_type (symbol
->section
->name
);
705 c
= decode_section_type (symbol
->section
);
709 if (symbol
->flags
& BSF_GLOBAL
)
713 /* We don't have to handle these cases just yet, but we will soon:
725 bfd_is_undefined_symclass
728 Returns non-zero if the class symbol returned by
729 bfd_decode_symclass represents an undefined symbol.
730 Returns zero otherwise.
733 bfd_boolean bfd_is_undefined_symclass (int symclass);
737 bfd_is_undefined_symclass (int symclass
)
739 return symclass
== 'U' || symclass
== 'w' || symclass
== 'v';
747 Fill in the basic info about symbol that nm needs.
748 Additional info may be added by the back-ends after
749 calling this function.
752 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
756 bfd_symbol_info (asymbol
*symbol
, symbol_info
*ret
)
758 ret
->type
= bfd_decode_symclass (symbol
);
760 if (bfd_is_undefined_symclass (ret
->type
))
763 ret
->value
= symbol
->value
+ symbol
->section
->vma
;
765 ret
->name
= symbol
->name
;
770 bfd_copy_private_symbol_data
773 bfd_boolean bfd_copy_private_symbol_data
774 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
777 Copy private symbol information from @var{isym} in the BFD
778 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
779 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
782 o <<bfd_error_no_memory>> -
783 Not enough memory exists to create private data for @var{osec}.
785 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
786 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
787 . (ibfd, isymbol, obfd, osymbol))
791 /* The generic version of the function which returns mini symbols.
792 This is used when the backend does not provide a more efficient
793 version. It just uses BFD asymbol structures as mini symbols. */
796 _bfd_generic_read_minisymbols (bfd
*abfd
,
802 asymbol
**syms
= NULL
;
806 storage
= bfd_get_dynamic_symtab_upper_bound (abfd
);
808 storage
= bfd_get_symtab_upper_bound (abfd
);
814 syms
= bfd_malloc (storage
);
819 symcount
= bfd_canonicalize_dynamic_symtab (abfd
, syms
);
821 symcount
= bfd_canonicalize_symtab (abfd
, syms
);
826 *sizep
= sizeof (asymbol
*);
830 bfd_set_error (bfd_error_no_symbols
);
836 /* The generic version of the function which converts a minisymbol to
837 an asymbol. We don't worry about the sym argument we are passed;
838 we just return the asymbol the minisymbol points to. */
841 _bfd_generic_minisymbol_to_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
842 bfd_boolean dynamic ATTRIBUTE_UNUSED
,
844 asymbol
*sym ATTRIBUTE_UNUSED
)
846 return *(asymbol
**) minisym
;
849 /* Look through stabs debugging information in .stab and .stabstr
850 sections to find the source file and line closest to a desired
851 location. This is used by COFF and ELF targets. It sets *pfound
852 to TRUE if it finds some information. The *pinfo field is used to
853 pass cached information in and out of this routine; this first time
854 the routine is called for a BFD, *pinfo should be NULL. The value
855 placed in *pinfo should be saved with the BFD, and passed back each
856 time this function is called. */
858 /* We use a cache by default. */
860 #define ENABLE_CACHING
862 /* We keep an array of indexentry structures to record where in the
863 stabs section we should look to find line number information for a
864 particular address. */
871 char *directory_name
;
876 /* Compare two indexentry structures. This is called via qsort. */
879 cmpindexentry (const void *a
, const void *b
)
881 const struct indexentry
*contestantA
= a
;
882 const struct indexentry
*contestantB
= b
;
884 if (contestantA
->val
< contestantB
->val
)
886 else if (contestantA
->val
> contestantB
->val
)
892 /* A pointer to this structure is stored in *pinfo. */
894 struct stab_find_info
896 /* The .stab section. */
898 /* The .stabstr section. */
900 /* The contents of the .stab section. */
902 /* The contents of the .stabstr section. */
905 /* A table that indexes stabs by memory address. */
906 struct indexentry
*indextable
;
907 /* The number of entries in indextable. */
910 #ifdef ENABLE_CACHING
911 /* Cached values to restart quickly. */
912 struct indexentry
*cached_indexentry
;
913 bfd_vma cached_offset
;
914 bfd_byte
*cached_stab
;
915 char *cached_file_name
;
918 /* Saved ptr to malloc'ed filename. */
923 _bfd_stab_section_find_nearest_line (bfd
*abfd
,
928 const char **pfilename
,
929 const char **pfnname
,
933 struct stab_find_info
*info
;
934 bfd_size_type stabsize
, strsize
;
935 bfd_byte
*stab
, *str
;
936 bfd_byte
*last_stab
= NULL
;
937 bfd_size_type stroff
;
938 struct indexentry
*indexentry
;
940 char *directory_name
;
942 bfd_boolean saw_line
, saw_func
;
945 *pfilename
= bfd_get_filename (abfd
);
949 /* Stabs entries use a 12 byte format:
950 4 byte string table index
952 1 byte stab other field
953 2 byte stab desc field
955 FIXME: This will have to change for a 64 bit object format.
957 The stabs symbols are divided into compilation units. For the
958 first entry in each unit, the type of 0, the value is the length
959 of the string table for this unit, and the desc field is the
960 number of stabs symbols for this unit. */
967 #define STABSIZE (12)
972 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
974 /* No stabs debugging information. */
978 stabsize
= (info
->stabsec
->rawsize
979 ? info
->stabsec
->rawsize
980 : info
->stabsec
->size
);
981 strsize
= (info
->strsec
->rawsize
982 ? info
->strsec
->rawsize
983 : info
->strsec
->size
);
987 long reloc_size
, reloc_count
;
988 arelent
**reloc_vector
;
992 bfd_size_type amt
= sizeof *info
;
994 info
= bfd_zalloc (abfd
, amt
);
998 /* FIXME: When using the linker --split-by-file or
999 --split-by-reloc options, it is possible for the .stab and
1000 .stabstr sections to be split. We should handle that. */
1002 info
->stabsec
= bfd_get_section_by_name (abfd
, ".stab");
1003 info
->strsec
= bfd_get_section_by_name (abfd
, ".stabstr");
1005 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
1007 /* Try SOM section names. */
1008 info
->stabsec
= bfd_get_section_by_name (abfd
, "$GDB_SYMBOLS$");
1009 info
->strsec
= bfd_get_section_by_name (abfd
, "$GDB_STRINGS$");
1011 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
1013 /* No stabs debugging information. Set *pinfo so that we
1014 can return quickly in the info != NULL case above. */
1020 stabsize
= (info
->stabsec
->rawsize
1021 ? info
->stabsec
->rawsize
1022 : info
->stabsec
->size
);
1023 strsize
= (info
->strsec
->rawsize
1024 ? info
->strsec
->rawsize
1025 : info
->strsec
->size
);
1027 info
->stabs
= bfd_alloc (abfd
, stabsize
);
1028 info
->strs
= bfd_alloc (abfd
, strsize
);
1029 if (info
->stabs
== NULL
|| info
->strs
== NULL
)
1032 if (! bfd_get_section_contents (abfd
, info
->stabsec
, info
->stabs
,
1034 || ! bfd_get_section_contents (abfd
, info
->strsec
, info
->strs
,
1038 /* If this is a relocatable object file, we have to relocate
1039 the entries in .stab. This should always be simple 32 bit
1040 relocations against symbols defined in this object file, so
1041 this should be no big deal. */
1042 reloc_size
= bfd_get_reloc_upper_bound (abfd
, info
->stabsec
);
1045 reloc_vector
= bfd_malloc (reloc_size
);
1046 if (reloc_vector
== NULL
&& reloc_size
!= 0)
1048 reloc_count
= bfd_canonicalize_reloc (abfd
, info
->stabsec
, reloc_vector
,
1050 if (reloc_count
< 0)
1052 if (reloc_vector
!= NULL
)
1053 free (reloc_vector
);
1056 if (reloc_count
> 0)
1060 for (pr
= reloc_vector
; *pr
!= NULL
; pr
++)
1067 /* Ignore R_*_NONE relocs. */
1068 if (r
->howto
->dst_mask
== 0)
1071 if (r
->howto
->rightshift
!= 0
1072 || r
->howto
->size
!= 2
1073 || r
->howto
->bitsize
!= 32
1074 || r
->howto
->pc_relative
1075 || r
->howto
->bitpos
!= 0
1076 || r
->howto
->dst_mask
!= 0xffffffff)
1078 (*_bfd_error_handler
)
1079 (_("Unsupported .stab relocation"));
1080 bfd_set_error (bfd_error_invalid_operation
);
1081 if (reloc_vector
!= NULL
)
1082 free (reloc_vector
);
1086 val
= bfd_get_32 (abfd
, info
->stabs
+ r
->address
);
1087 val
&= r
->howto
->src_mask
;
1088 sym
= *r
->sym_ptr_ptr
;
1089 val
+= sym
->value
+ sym
->section
->vma
+ r
->addend
;
1090 bfd_put_32 (abfd
, (bfd_vma
) val
, info
->stabs
+ r
->address
);
1094 if (reloc_vector
!= NULL
)
1095 free (reloc_vector
);
1097 /* First time through this function, build a table matching
1098 function VM addresses to stabs, then sort based on starting
1099 VM address. Do this in two passes: once to count how many
1100 table entries we'll need, and a second to actually build the
1103 info
->indextablesize
= 0;
1105 for (stab
= info
->stabs
; stab
< info
->stabs
+ stabsize
; stab
+= STABSIZE
)
1107 if (stab
[TYPEOFF
] == (bfd_byte
) N_SO
)
1109 /* N_SO with null name indicates EOF */
1110 if (bfd_get_32 (abfd
, stab
+ STRDXOFF
) == 0)
1113 /* if we did not see a function def, leave space for one. */
1115 ++info
->indextablesize
;
1119 /* two N_SO's in a row is a filename and directory. Skip */
1120 if (stab
+ STABSIZE
< info
->stabs
+ stabsize
1121 && *(stab
+ STABSIZE
+ TYPEOFF
) == (bfd_byte
) N_SO
)
1126 else if (stab
[TYPEOFF
] == (bfd_byte
) N_FUN
)
1129 ++info
->indextablesize
;
1134 ++info
->indextablesize
;
1136 if (info
->indextablesize
== 0)
1138 ++info
->indextablesize
;
1140 amt
= info
->indextablesize
;
1141 amt
*= sizeof (struct indexentry
);
1142 info
->indextable
= bfd_alloc (abfd
, amt
);
1143 if (info
->indextable
== NULL
)
1147 directory_name
= NULL
;
1150 for (i
= 0, stroff
= 0, stab
= info
->stabs
, str
= info
->strs
;
1151 i
< info
->indextablesize
&& stab
< info
->stabs
+ stabsize
;
1154 switch (stab
[TYPEOFF
])
1157 /* This is the first entry in a compilation unit. */
1158 if ((bfd_size_type
) ((info
->strs
+ strsize
) - str
) < stroff
)
1161 stroff
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1165 /* The main file name. */
1167 /* The following code creates a new indextable entry with
1168 a NULL function name if there were no N_FUNs in a file.
1169 Note that a N_SO without a file name is an EOF and
1170 there could be 2 N_SO following it with the new filename
1174 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1175 info
->indextable
[i
].stab
= last_stab
;
1176 info
->indextable
[i
].str
= str
;
1177 info
->indextable
[i
].directory_name
= directory_name
;
1178 info
->indextable
[i
].file_name
= file_name
;
1179 info
->indextable
[i
].function_name
= NULL
;
1184 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1185 if (*file_name
== '\0')
1187 directory_name
= NULL
;
1194 if (stab
+ STABSIZE
>= info
->stabs
+ stabsize
1195 || *(stab
+ STABSIZE
+ TYPEOFF
) != (bfd_byte
) N_SO
)
1197 directory_name
= NULL
;
1201 /* Two consecutive N_SOs are a directory and a
1204 directory_name
= file_name
;
1205 file_name
= ((char *) str
1206 + bfd_get_32 (abfd
, stab
+ STRDXOFF
));
1212 /* The name of an include file. */
1213 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1217 /* A function name. */
1219 name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1224 function_name
= name
;
1229 info
->indextable
[i
].val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1230 info
->indextable
[i
].stab
= stab
;
1231 info
->indextable
[i
].str
= str
;
1232 info
->indextable
[i
].directory_name
= directory_name
;
1233 info
->indextable
[i
].file_name
= file_name
;
1234 info
->indextable
[i
].function_name
= function_name
;
1242 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1243 info
->indextable
[i
].stab
= last_stab
;
1244 info
->indextable
[i
].str
= str
;
1245 info
->indextable
[i
].directory_name
= directory_name
;
1246 info
->indextable
[i
].file_name
= file_name
;
1247 info
->indextable
[i
].function_name
= NULL
;
1251 info
->indextable
[i
].val
= (bfd_vma
) -1;
1252 info
->indextable
[i
].stab
= info
->stabs
+ stabsize
;
1253 info
->indextable
[i
].str
= str
;
1254 info
->indextable
[i
].directory_name
= NULL
;
1255 info
->indextable
[i
].file_name
= NULL
;
1256 info
->indextable
[i
].function_name
= NULL
;
1259 info
->indextablesize
= i
;
1260 qsort (info
->indextable
, (size_t) i
, sizeof (struct indexentry
),
1266 /* We are passed a section relative offset. The offsets in the
1267 stabs information are absolute. */
1268 offset
+= bfd_get_section_vma (abfd
, section
);
1270 #ifdef ENABLE_CACHING
1271 if (info
->cached_indexentry
!= NULL
1272 && offset
>= info
->cached_offset
1273 && offset
< (info
->cached_indexentry
+ 1)->val
)
1275 stab
= info
->cached_stab
;
1276 indexentry
= info
->cached_indexentry
;
1277 file_name
= info
->cached_file_name
;
1285 /* Cache non-existent or invalid. Do binary search on
1290 high
= info
->indextablesize
- 1;
1293 mid
= (high
+ low
) / 2;
1294 if (offset
>= info
->indextable
[mid
].val
1295 && offset
< info
->indextable
[mid
+ 1].val
)
1297 indexentry
= &info
->indextable
[mid
];
1301 if (info
->indextable
[mid
].val
> offset
)
1307 if (indexentry
== NULL
)
1310 stab
= indexentry
->stab
+ STABSIZE
;
1311 file_name
= indexentry
->file_name
;
1314 directory_name
= indexentry
->directory_name
;
1315 str
= indexentry
->str
;
1319 for (; stab
< (indexentry
+1)->stab
; stab
+= STABSIZE
)
1326 switch (stab
[TYPEOFF
])
1329 /* The name of an include file. */
1330 val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1333 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1341 /* A line number. If the function was specified, then the value
1342 is relative to the start of the function. Otherwise, the
1343 value is an absolute address. */
1344 val
= ((indexentry
->function_name
? indexentry
->val
: 0)
1345 + bfd_get_32 (abfd
, stab
+ VALOFF
));
1346 /* If this line starts before our desired offset, or if it's
1347 the first line we've been able to find, use it. The
1348 !saw_line check works around a bug in GCC 2.95.3, which emits
1349 the first N_SLINE late. */
1350 if (!saw_line
|| val
<= offset
)
1352 *pline
= bfd_get_16 (abfd
, stab
+ DESCOFF
);
1354 #ifdef ENABLE_CACHING
1355 info
->cached_stab
= stab
;
1356 info
->cached_offset
= val
;
1357 info
->cached_file_name
= file_name
;
1358 info
->cached_indexentry
= indexentry
;
1368 if (saw_func
|| saw_line
)
1380 if (file_name
== NULL
|| IS_ABSOLUTE_PATH (file_name
)
1381 || directory_name
== NULL
)
1382 *pfilename
= file_name
;
1387 dirlen
= strlen (directory_name
);
1388 if (info
->filename
== NULL
1389 || strncmp (info
->filename
, directory_name
, dirlen
) != 0
1390 || strcmp (info
->filename
+ dirlen
, file_name
) != 0)
1394 /* Don't free info->filename here. objdump and other
1395 apps keep a copy of a previously returned file name
1397 len
= strlen (file_name
) + 1;
1398 info
->filename
= bfd_alloc (abfd
, dirlen
+ len
);
1399 if (info
->filename
== NULL
)
1401 memcpy (info
->filename
, directory_name
, dirlen
);
1402 memcpy (info
->filename
+ dirlen
, file_name
, len
);
1405 *pfilename
= info
->filename
;
1408 if (indexentry
->function_name
!= NULL
)
1412 /* This will typically be something like main:F(0,1), so we want
1413 to clobber the colon. It's OK to change the name, since the
1414 string is in our own local storage anyhow. */
1415 s
= strchr (indexentry
->function_name
, ':');
1419 *pfnname
= indexentry
->function_name
;