2002-02-18 David O'Brien <obrien@FreeBSD.org>
[binutils.git] / bfd / syms.c
blobb25306e448d30c89767b8d6d05d797e48926f0d7
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 SECTION
25 Symbols
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
75 | FAIL
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
86 | FAIL
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
110 | #include "bfd.h"
111 | main()
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
173 SUBSECTION
174 typedef asymbol
176 An <<asymbol>> has the form:
181 CODE_FRAGMENT
184 .typedef struct symbol_cache_entry
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
225 . {* The symbol is a debugging record. The value has an arbitary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
288 . flagword flags;
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
295 . {* Back end special data. *}
296 . union
298 . PTR p;
299 . bfd_vma i;
301 . udata;
303 .asymbol;
307 #include "bfd.h"
308 #include "sysdep.h"
309 #include "libbfd.h"
310 #include "safe-ctype.h"
311 #include "bfdlink.h"
312 #include "aout/stab_gnu.h"
314 static char coff_section_type PARAMS ((const char *));
315 static int cmpindexentry PARAMS ((const PTR, const PTR));
318 DOCDD
319 INODE
320 symbol handling functions, , typedef asymbol, Symbols
321 SUBSECTION
322 Symbol handling functions
326 FUNCTION
327 bfd_get_symtab_upper_bound
329 DESCRIPTION
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
341 FUNCTION
342 bfd_is_local_label
344 SYNOPSIS
345 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
347 DESCRIPTION
348 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return false.
352 boolean
353 bfd_is_local_label (abfd, sym)
354 bfd *abfd;
355 asymbol *sym;
357 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
358 starts with '.' is local. This would accidentally catch section names
359 if we didn't reject them here. */
360 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
361 return false;
362 if (sym->name == NULL)
363 return false;
364 return bfd_is_local_label_name (abfd, sym->name);
368 FUNCTION
369 bfd_is_local_label_name
371 SYNOPSIS
372 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
374 DESCRIPTION
375 Return true if a symbol with the name @var{name} in the BFD
376 @var{abfd} is a compiler generated local label, else return
377 false. This just checks whether the name has the form of a
378 local label.
380 .#define bfd_is_local_label_name(abfd, name) \
381 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
386 FUNCTION
387 bfd_canonicalize_symtab
389 DESCRIPTION
390 Read the symbols from the BFD @var{abfd}, and fills in
391 the vector @var{location} with pointers to the symbols and
392 a trailing NULL.
393 Return the actual number of symbol pointers, not
394 including the NULL.
396 .#define bfd_canonicalize_symtab(abfd, location) \
397 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
398 . (abfd, location))
403 FUNCTION
404 bfd_set_symtab
406 SYNOPSIS
407 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
409 DESCRIPTION
410 Arrange that when the output BFD @var{abfd} is closed,
411 the table @var{location} of @var{count} pointers to symbols
412 will be written.
415 boolean
416 bfd_set_symtab (abfd, location, symcount)
417 bfd *abfd;
418 asymbol **location;
419 unsigned int symcount;
421 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
423 bfd_set_error (bfd_error_invalid_operation);
424 return false;
427 bfd_get_outsymbols (abfd) = location;
428 bfd_get_symcount (abfd) = symcount;
429 return true;
433 FUNCTION
434 bfd_print_symbol_vandf
436 SYNOPSIS
437 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
439 DESCRIPTION
440 Print the value and flags of the @var{symbol} supplied to the
441 stream @var{file}.
443 void
444 bfd_print_symbol_vandf (abfd, arg, symbol)
445 bfd *abfd;
446 PTR arg;
447 asymbol *symbol;
449 FILE *file = (FILE *) arg;
450 flagword type = symbol->flags;
451 if (symbol->section != (asection *) NULL)
453 bfd_fprintf_vma (abfd, file,
454 symbol->value + symbol->section->vma);
456 else
458 bfd_fprintf_vma (abfd, file, symbol->value);
461 /* This presumes that a symbol can not be both BSF_DEBUGGING and
462 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
463 BSF_OBJECT. */
464 fprintf (file, " %c%c%c%c%c%c%c",
465 ((type & BSF_LOCAL)
466 ? (type & BSF_GLOBAL) ? '!' : 'l'
467 : (type & BSF_GLOBAL) ? 'g' : ' '),
468 (type & BSF_WEAK) ? 'w' : ' ',
469 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
470 (type & BSF_WARNING) ? 'W' : ' ',
471 (type & BSF_INDIRECT) ? 'I' : ' ',
472 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
473 ((type & BSF_FUNCTION)
474 ? 'F'
475 : ((type & BSF_FILE)
476 ? 'f'
477 : ((type & BSF_OBJECT) ? 'O' : ' '))));
481 FUNCTION
482 bfd_make_empty_symbol
484 DESCRIPTION
485 Create a new <<asymbol>> structure for the BFD @var{abfd}
486 and return a pointer to it.
488 This routine is necessary because each back end has private
489 information surrounding the <<asymbol>>. Building your own
490 <<asymbol>> and pointing to it will not create the private
491 information, and will cause problems later on.
493 .#define bfd_make_empty_symbol(abfd) \
494 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
499 FUNCTION
500 _bfd_generic_make_empty_symbol
502 SYNOPSIS
503 asymbol *_bfd_generic_make_empty_symbol (bfd *);
505 DESCRIPTION
506 Create a new <<asymbol>> structure for the BFD @var{abfd}
507 and return a pointer to it. Used by core file routines,
508 binary back-end and anywhere else where no private info
509 is needed.
512 asymbol *
513 _bfd_generic_make_empty_symbol (abfd)
514 bfd *abfd;
516 bfd_size_type amt = sizeof (asymbol);
517 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
518 if (new)
519 new->the_bfd = abfd;
520 return new;
524 FUNCTION
525 bfd_make_debug_symbol
527 DESCRIPTION
528 Create a new <<asymbol>> structure for the BFD @var{abfd},
529 to be used as a debugging symbol. Further details of its use have
530 yet to be worked out.
532 .#define bfd_make_debug_symbol(abfd,ptr,size) \
533 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
537 struct section_to_type
539 const char *section;
540 char type;
543 /* Map section names to POSIX/BSD single-character symbol types.
544 This table is probably incomplete. It is sorted for convenience of
545 adding entries. Since it is so short, a linear search is used. */
546 static const struct section_to_type stt[] =
548 {"*DEBUG*", 'N'},
549 {".bss", 'b'},
550 {"zerovars", 'b'}, /* MRI .bss */
551 {".data", 'd'},
552 {"vars", 'd'}, /* MRI .data */
553 {".rdata", 'r'}, /* Read only data. */
554 {".rodata", 'r'}, /* Read only data. */
555 {".sbss", 's'}, /* Small BSS (uninitialized data). */
556 {".scommon", 'c'}, /* Small common. */
557 {".sdata", 'g'}, /* Small initialized data. */
558 {".text", 't'},
559 {"code", 't'}, /* MRI .text */
560 {".drectve", 'i'}, /* MSVC's .drective section */
561 {".idata", 'i'}, /* MSVC's .idata (import) section */
562 {".edata", 'e'}, /* MSVC's .edata (export) section */
563 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
564 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
565 {0, 0}
568 /* Return the single-character symbol type corresponding to
569 section S, or '?' for an unknown COFF section.
571 Check for any leading string which matches, so .text5 returns
572 't' as well as .text */
574 static char
575 coff_section_type (s)
576 const char *s;
578 const struct section_to_type *t;
580 for (t = &stt[0]; t->section; t++)
581 if (!strncmp (s, t->section, strlen (t->section)))
582 return t->type;
584 return '?';
588 FUNCTION
589 bfd_decode_symclass
591 DESCRIPTION
592 Return a character corresponding to the symbol
593 class of @var{symbol}, or '?' for an unknown class.
595 SYNOPSIS
596 int bfd_decode_symclass(asymbol *symbol);
599 bfd_decode_symclass (symbol)
600 asymbol *symbol;
602 char c;
604 if (bfd_is_com_section (symbol->section))
605 return 'C';
606 if (bfd_is_und_section (symbol->section))
608 if (symbol->flags & BSF_WEAK)
610 /* If weak, determine if it's specifically an object
611 or non-object weak. */
612 if (symbol->flags & BSF_OBJECT)
613 return 'v';
614 else
615 return 'w';
617 else
618 return 'U';
620 if (bfd_is_ind_section (symbol->section))
621 return 'I';
622 if (symbol->flags & BSF_WEAK)
624 /* If weak, determine if it's specifically an object
625 or non-object weak. */
626 if (symbol->flags & BSF_OBJECT)
627 return 'V';
628 else
629 return 'W';
631 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
632 return '?';
634 if (bfd_is_abs_section (symbol->section))
635 c = 'a';
636 else if (symbol->section)
637 c = coff_section_type (symbol->section->name);
638 else
639 return '?';
640 if (symbol->flags & BSF_GLOBAL)
641 c = TOUPPER (c);
642 return c;
644 /* We don't have to handle these cases just yet, but we will soon:
645 N_SETV: 'v';
646 N_SETA: 'l';
647 N_SETT: 'x';
648 N_SETD: 'z';
649 N_SETB: 's';
650 N_INDR: 'i';
655 FUNCTION
656 bfd_is_undefined_symclass
658 DESCRIPTION
659 Returns non-zero if the class symbol returned by
660 bfd_decode_symclass represents an undefined symbol.
661 Returns zero otherwise.
663 SYNOPSIS
664 boolean bfd_is_undefined_symclass (int symclass);
667 boolean
668 bfd_is_undefined_symclass (symclass)
669 int symclass;
671 return symclass == 'U' || symclass == 'w' || symclass == 'v';
675 FUNCTION
676 bfd_symbol_info
678 DESCRIPTION
679 Fill in the basic info about symbol that nm needs.
680 Additional info may be added by the back-ends after
681 calling this function.
683 SYNOPSIS
684 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
687 void
688 bfd_symbol_info (symbol, ret)
689 asymbol *symbol;
690 symbol_info *ret;
692 ret->type = bfd_decode_symclass (symbol);
694 if (bfd_is_undefined_symclass (ret->type))
695 ret->value = 0;
696 else
697 ret->value = symbol->value + symbol->section->vma;
699 ret->name = symbol->name;
703 FUNCTION
704 bfd_copy_private_symbol_data
706 SYNOPSIS
707 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
709 DESCRIPTION
710 Copy private symbol information from @var{isym} in the BFD
711 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
712 Return <<true>> on success, <<false>> on error. Possible error
713 returns are:
715 o <<bfd_error_no_memory>> -
716 Not enough memory exists to create private data for @var{osec}.
718 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
719 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
720 . (ibfd, isymbol, obfd, osymbol))
724 /* The generic version of the function which returns mini symbols.
725 This is used when the backend does not provide a more efficient
726 version. It just uses BFD asymbol structures as mini symbols. */
728 long
729 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
730 bfd *abfd;
731 boolean dynamic;
732 PTR *minisymsp;
733 unsigned int *sizep;
735 long storage;
736 asymbol **syms = NULL;
737 long symcount;
739 if (dynamic)
740 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
741 else
742 storage = bfd_get_symtab_upper_bound (abfd);
743 if (storage < 0)
744 goto error_return;
745 if (storage == 0)
746 return 0;
748 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
749 if (syms == NULL)
750 goto error_return;
752 if (dynamic)
753 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
754 else
755 symcount = bfd_canonicalize_symtab (abfd, syms);
756 if (symcount < 0)
757 goto error_return;
759 *minisymsp = (PTR) syms;
760 *sizep = sizeof (asymbol *);
761 return symcount;
763 error_return:
764 if (syms != NULL)
765 free (syms);
766 return -1;
769 /* The generic version of the function which converts a minisymbol to
770 an asymbol. We don't worry about the sym argument we are passed;
771 we just return the asymbol the minisymbol points to. */
773 /*ARGSUSED*/
774 asymbol *
775 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
776 bfd *abfd ATTRIBUTE_UNUSED;
777 boolean dynamic ATTRIBUTE_UNUSED;
778 const PTR minisym;
779 asymbol *sym ATTRIBUTE_UNUSED;
781 return *(asymbol **) minisym;
784 /* Look through stabs debugging information in .stab and .stabstr
785 sections to find the source file and line closest to a desired
786 location. This is used by COFF and ELF targets. It sets *pfound
787 to true if it finds some information. The *pinfo field is used to
788 pass cached information in and out of this routine; this first time
789 the routine is called for a BFD, *pinfo should be NULL. The value
790 placed in *pinfo should be saved with the BFD, and passed back each
791 time this function is called. */
793 /* We use a cache by default. */
795 #define ENABLE_CACHING
797 /* We keep an array of indexentry structures to record where in the
798 stabs section we should look to find line number information for a
799 particular address. */
801 struct indexentry
803 bfd_vma val;
804 bfd_byte *stab;
805 bfd_byte *str;
806 char *directory_name;
807 char *file_name;
808 char *function_name;
811 /* Compare two indexentry structures. This is called via qsort. */
813 static int
814 cmpindexentry (a, b)
815 const PTR a;
816 const PTR b;
818 const struct indexentry *contestantA = (const struct indexentry *) a;
819 const struct indexentry *contestantB = (const struct indexentry *) b;
821 if (contestantA->val < contestantB->val)
822 return -1;
823 else if (contestantA->val > contestantB->val)
824 return 1;
825 else
826 return 0;
829 /* A pointer to this structure is stored in *pinfo. */
831 struct stab_find_info
833 /* The .stab section. */
834 asection *stabsec;
835 /* The .stabstr section. */
836 asection *strsec;
837 /* The contents of the .stab section. */
838 bfd_byte *stabs;
839 /* The contents of the .stabstr section. */
840 bfd_byte *strs;
842 /* A table that indexes stabs by memory address. */
843 struct indexentry *indextable;
844 /* The number of entries in indextable. */
845 int indextablesize;
847 #ifdef ENABLE_CACHING
848 /* Cached values to restart quickly. */
849 struct indexentry *cached_indexentry;
850 bfd_vma cached_offset;
851 bfd_byte *cached_stab;
852 char *cached_file_name;
853 #endif
855 /* Saved ptr to malloc'ed filename. */
856 char *filename;
859 boolean
860 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
861 pfilename, pfnname, pline, pinfo)
862 bfd *abfd;
863 asymbol **symbols;
864 asection *section;
865 bfd_vma offset;
866 boolean *pfound;
867 const char **pfilename;
868 const char **pfnname;
869 unsigned int *pline;
870 PTR *pinfo;
872 struct stab_find_info *info;
873 bfd_size_type stabsize, strsize;
874 bfd_byte *stab, *str;
875 bfd_byte *last_stab = NULL;
876 bfd_size_type stroff;
877 struct indexentry *indexentry;
878 char *file_name;
879 char *directory_name;
880 int saw_fun;
882 *pfound = false;
883 *pfilename = bfd_get_filename (abfd);
884 *pfnname = NULL;
885 *pline = 0;
887 /* Stabs entries use a 12 byte format:
888 4 byte string table index
889 1 byte stab type
890 1 byte stab other field
891 2 byte stab desc field
892 4 byte stab value
893 FIXME: This will have to change for a 64 bit object format.
895 The stabs symbols are divided into compilation units. For the
896 first entry in each unit, the type of 0, the value is the length
897 of the string table for this unit, and the desc field is the
898 number of stabs symbols for this unit. */
900 #define STRDXOFF (0)
901 #define TYPEOFF (4)
902 #define OTHEROFF (5)
903 #define DESCOFF (6)
904 #define VALOFF (8)
905 #define STABSIZE (12)
907 info = (struct stab_find_info *) *pinfo;
908 if (info != NULL)
910 if (info->stabsec == NULL || info->strsec == NULL)
912 /* No stabs debugging information. */
913 return true;
916 stabsize = info->stabsec->_raw_size;
917 strsize = info->strsec->_raw_size;
919 else
921 long reloc_size, reloc_count;
922 arelent **reloc_vector;
923 int i;
924 char *name;
925 char *function_name;
926 bfd_size_type amt = sizeof *info;
928 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
929 if (info == NULL)
930 return false;
932 /* FIXME: When using the linker --split-by-file or
933 --split-by-reloc options, it is possible for the .stab and
934 .stabstr sections to be split. We should handle that. */
936 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
937 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
939 if (info->stabsec == NULL || info->strsec == NULL)
941 /* No stabs debugging information. Set *pinfo so that we
942 can return quickly in the info != NULL case above. */
943 *pinfo = (PTR) info;
944 return true;
947 stabsize = info->stabsec->_raw_size;
948 strsize = info->strsec->_raw_size;
950 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
951 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
952 if (info->stabs == NULL || info->strs == NULL)
953 return false;
955 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
956 (bfd_vma) 0, stabsize)
957 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
958 (bfd_vma) 0, strsize))
959 return false;
961 /* If this is a relocateable object file, we have to relocate
962 the entries in .stab. This should always be simple 32 bit
963 relocations against symbols defined in this object file, so
964 this should be no big deal. */
965 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
966 if (reloc_size < 0)
967 return false;
968 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
969 if (reloc_vector == NULL && reloc_size != 0)
970 return false;
971 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
972 symbols);
973 if (reloc_count < 0)
975 if (reloc_vector != NULL)
976 free (reloc_vector);
977 return false;
979 if (reloc_count > 0)
981 arelent **pr;
983 for (pr = reloc_vector; *pr != NULL; pr++)
985 arelent *r;
986 unsigned long val;
987 asymbol *sym;
989 r = *pr;
990 if (r->howto->rightshift != 0
991 || r->howto->size != 2
992 || r->howto->bitsize != 32
993 || r->howto->pc_relative
994 || r->howto->bitpos != 0
995 || r->howto->dst_mask != 0xffffffff)
997 (*_bfd_error_handler)
998 (_("Unsupported .stab relocation"));
999 bfd_set_error (bfd_error_invalid_operation);
1000 if (reloc_vector != NULL)
1001 free (reloc_vector);
1002 return false;
1005 val = bfd_get_32 (abfd, info->stabs + r->address);
1006 val &= r->howto->src_mask;
1007 sym = *r->sym_ptr_ptr;
1008 val += sym->value + sym->section->vma + r->addend;
1009 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1013 if (reloc_vector != NULL)
1014 free (reloc_vector);
1016 /* First time through this function, build a table matching
1017 function VM addresses to stabs, then sort based on starting
1018 VM address. Do this in two passes: once to count how many
1019 table entries we'll need, and a second to actually build the
1020 table. */
1022 info->indextablesize = 0;
1023 saw_fun = 1;
1024 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1026 if (stab[TYPEOFF] == N_SO)
1028 /* N_SO with null name indicates EOF */
1029 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1030 continue;
1032 /* if we did not see a function def, leave space for one. */
1033 if (saw_fun == 0)
1034 ++info->indextablesize;
1036 saw_fun = 0;
1038 /* two N_SO's in a row is a filename and directory. Skip */
1039 if (stab + STABSIZE < info->stabs + stabsize
1040 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1042 stab += STABSIZE;
1045 else if (stab[TYPEOFF] == N_FUN)
1047 saw_fun = 1;
1048 ++info->indextablesize;
1052 if (saw_fun == 0)
1053 ++info->indextablesize;
1055 if (info->indextablesize == 0)
1056 return true;
1057 ++info->indextablesize;
1059 amt = info->indextablesize;
1060 amt *= sizeof (struct indexentry);
1061 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1062 if (info->indextable == NULL)
1063 return false;
1065 file_name = NULL;
1066 directory_name = NULL;
1067 saw_fun = 1;
1069 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1070 i < info->indextablesize && stab < info->stabs + stabsize;
1071 stab += STABSIZE)
1073 switch (stab[TYPEOFF])
1075 case 0:
1076 /* This is the first entry in a compilation unit. */
1077 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1078 break;
1079 str += stroff;
1080 stroff = bfd_get_32 (abfd, stab + VALOFF);
1081 break;
1083 case N_SO:
1084 /* The main file name. */
1086 /* The following code creates a new indextable entry with
1087 a NULL function name if there were no N_FUNs in a file.
1088 Note that a N_SO without a file name is an EOF and
1089 there could be 2 N_SO following it with the new filename
1090 and directory. */
1091 if (saw_fun == 0)
1093 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1094 info->indextable[i].stab = last_stab;
1095 info->indextable[i].str = str;
1096 info->indextable[i].directory_name = directory_name;
1097 info->indextable[i].file_name = file_name;
1098 info->indextable[i].function_name = NULL;
1099 ++i;
1101 saw_fun = 0;
1103 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1104 if (*file_name == '\0')
1106 directory_name = NULL;
1107 file_name = NULL;
1108 saw_fun = 1;
1110 else
1112 last_stab = stab;
1113 if (stab + STABSIZE >= info->stabs + stabsize
1114 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1116 directory_name = NULL;
1118 else
1120 /* Two consecutive N_SOs are a directory and a
1121 file name. */
1122 stab += STABSIZE;
1123 directory_name = file_name;
1124 file_name = ((char *) str
1125 + bfd_get_32 (abfd, stab + STRDXOFF));
1128 break;
1130 case N_SOL:
1131 /* The name of an include file. */
1132 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1133 break;
1135 case N_FUN:
1136 /* A function name. */
1137 saw_fun = 1;
1138 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1140 if (*name == '\0')
1141 name = NULL;
1143 function_name = name;
1145 if (name == NULL)
1146 continue;
1148 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1149 info->indextable[i].stab = stab;
1150 info->indextable[i].str = str;
1151 info->indextable[i].directory_name = directory_name;
1152 info->indextable[i].file_name = file_name;
1153 info->indextable[i].function_name = function_name;
1154 ++i;
1155 break;
1159 if (saw_fun == 0)
1161 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1162 info->indextable[i].stab = last_stab;
1163 info->indextable[i].str = str;
1164 info->indextable[i].directory_name = directory_name;
1165 info->indextable[i].file_name = file_name;
1166 info->indextable[i].function_name = NULL;
1167 ++i;
1170 info->indextable[i].val = (bfd_vma) -1;
1171 info->indextable[i].stab = info->stabs + stabsize;
1172 info->indextable[i].str = str;
1173 info->indextable[i].directory_name = NULL;
1174 info->indextable[i].file_name = NULL;
1175 info->indextable[i].function_name = NULL;
1176 ++i;
1178 info->indextablesize = i;
1179 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1180 cmpindexentry);
1182 *pinfo = (PTR) info;
1185 /* We are passed a section relative offset. The offsets in the
1186 stabs information are absolute. */
1187 offset += bfd_get_section_vma (abfd, section);
1189 #ifdef ENABLE_CACHING
1190 if (info->cached_indexentry != NULL
1191 && offset >= info->cached_offset
1192 && offset < (info->cached_indexentry + 1)->val)
1194 stab = info->cached_stab;
1195 indexentry = info->cached_indexentry;
1196 file_name = info->cached_file_name;
1198 else
1199 #endif
1201 /* Cache non-existant or invalid. Do binary search on
1202 indextable. */
1204 long low, high;
1205 long mid = -1;
1207 indexentry = NULL;
1209 low = 0;
1210 high = info->indextablesize - 1;
1211 while (low != high)
1213 mid = (high + low) / 2;
1214 if (offset >= info->indextable[mid].val
1215 && offset < info->indextable[mid + 1].val)
1217 indexentry = &info->indextable[mid];
1218 break;
1221 if (info->indextable[mid].val > offset)
1222 high = mid;
1223 else
1224 low = mid + 1;
1227 if (indexentry == NULL)
1228 return true;
1230 stab = indexentry->stab + STABSIZE;
1231 file_name = indexentry->file_name;
1234 directory_name = indexentry->directory_name;
1235 str = indexentry->str;
1237 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1239 boolean done;
1240 bfd_vma val;
1242 done = false;
1244 switch (stab[TYPEOFF])
1246 case N_SOL:
1247 /* The name of an include file. */
1248 val = bfd_get_32 (abfd, stab + VALOFF);
1249 if (val <= offset)
1251 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1252 *pline = 0;
1254 break;
1256 case N_SLINE:
1257 case N_DSLINE:
1258 case N_BSLINE:
1259 /* A line number. The value is relative to the start of the
1260 current function. */
1261 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1262 if (val <= offset)
1264 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1266 #ifdef ENABLE_CACHING
1267 info->cached_stab = stab;
1268 info->cached_offset = val;
1269 info->cached_file_name = file_name;
1270 info->cached_indexentry = indexentry;
1271 #endif
1273 if (val > offset)
1274 done = true;
1275 break;
1277 case N_FUN:
1278 case N_SO:
1279 done = true;
1280 break;
1283 if (done)
1284 break;
1287 *pfound = true;
1289 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1290 *pfilename = file_name;
1291 else
1293 size_t dirlen;
1295 dirlen = strlen (directory_name);
1296 if (info->filename == NULL
1297 || strncmp (info->filename, directory_name, dirlen) != 0
1298 || strcmp (info->filename + dirlen, file_name) != 0)
1300 if (info->filename != NULL)
1301 free (info->filename);
1302 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen
1303 + strlen (file_name) + 1);
1304 if (info->filename == NULL)
1305 return false;
1306 strcpy (info->filename, directory_name);
1307 strcpy (info->filename + dirlen, file_name);
1310 *pfilename = info->filename;
1313 if (indexentry->function_name != NULL)
1315 char *s;
1317 /* This will typically be something like main:F(0,1), so we want
1318 to clobber the colon. It's OK to change the name, since the
1319 string is in our own local storage anyhow. */
1321 s = strchr (indexentry->function_name, ':');
1322 if (s != NULL)
1323 *s = '\0';
1325 *pfnname = indexentry->function_name;
1328 return true;