1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
58 // Layout::Relaxation_debug_check methods.
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list
& sections
,
67 const Layout::Data_list
& special_outputs
)
69 for(Layout::Section_list::const_iterator p
= sections
.begin();
72 gold_assert((*p
)->address_and_file_offset_have_reset_values());
74 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
75 p
!= special_outputs
.end();
77 gold_assert((*p
)->address_and_file_offset_have_reset_values());
80 // Save information of SECTIONS for checking later.
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list
& sections
)
86 for(Layout::Section_list::const_iterator p
= sections
.begin();
90 Output_section
* os
= *p
;
92 info
.output_section
= os
;
93 info
.address
= os
->is_address_valid() ? os
->address() : 0;
94 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
95 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
96 this->section_infos_
.push_back(info
);
100 // Verify SECTIONS using previously recorded information.
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list
& sections
)
107 for(Layout::Section_list::const_iterator p
= sections
.begin();
111 Output_section
* os
= *p
;
112 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
113 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
114 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
116 if (i
>= this->section_infos_
.size())
118 gold_fatal("Section_info of %s missing.\n", os
->name());
120 const Section_info
& info
= this->section_infos_
[i
];
121 if (os
!= info
.output_section
)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info
.output_section
->name(), os
->name());
124 if (address
!= info
.address
125 || data_size
!= info
.data_size
126 || offset
!= info
.offset
)
127 gold_fatal("Section %s changed.\n", os
->name());
131 // Layout_task_runner methods.
133 // Lay out the sections. This is called after all the input objects
137 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
139 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
147 if (this->mapfile_
!= NULL
)
149 this->mapfile_
->print_discarded_sections(this->input_objects_
);
150 this->layout_
->print_to_mapfile(this->mapfile_
);
153 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
154 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
155 of
->set_is_temporary();
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_
, this->input_objects_
,
160 this->symtab_
, this->layout_
, workqueue
, of
);
165 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
166 : number_of_input_files_(number_of_input_files
),
167 script_options_(script_options
),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL
),
179 relro_segment_(NULL
),
181 symtab_section_(NULL
),
182 symtab_xindex_(NULL
),
183 dynsym_section_(NULL
),
184 dynsym_xindex_(NULL
),
185 dynamic_section_(NULL
),
186 dynamic_symbol_(NULL
),
188 eh_frame_section_(NULL
),
189 eh_frame_data_(NULL
),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL
),
192 build_id_note_(NULL
),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL
),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL
),
210 relaxation_debug_check_(NULL
)
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_
.reserve(12);
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_
.reserve(2);
220 // Initialize structure needed for an incremental build.
221 if (parameters
->options().incremental())
222 this->incremental_inputs_
= new Incremental_inputs
;
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_
.set_optimize();
229 // Hash a key we use to look up an output section mapping.
232 Layout::Hash_key::operator()(const Layout::Key
& k
) const
234 return k
.first
+ k
.second
.first
+ k
.second
.second
;
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
241 static const char* gdb_sections
[] =
243 // ".debug_aranges", // not used by gdb as of 6.7.1
249 // ".debug_pubnames", // not used by gdb as of 6.7.1
254 static const char* lines_only_debug_sections
[] =
256 // ".debug_aranges", // not used by gdb as of 6.7.1
262 // ".debug_pubnames", // not used by gdb as of 6.7.1
268 is_gdb_debug_section(const char* str
)
270 // We can do this faster: binary search or a hashtable. But why bother?
271 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
272 if (strcmp(str
, gdb_sections
[i
]) == 0)
278 is_lines_only_debug_section(const char* str
)
280 // We can do this faster: binary search or a hashtable. But why bother?
282 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
284 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
289 // Whether to include this section in the link.
291 template<int size
, bool big_endian
>
293 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
294 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
296 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
299 switch (shdr
.get_sh_type())
301 case elfcpp::SHT_NULL
:
302 case elfcpp::SHT_SYMTAB
:
303 case elfcpp::SHT_DYNSYM
:
304 case elfcpp::SHT_HASH
:
305 case elfcpp::SHT_DYNAMIC
:
306 case elfcpp::SHT_SYMTAB_SHNDX
:
309 case elfcpp::SHT_STRTAB
:
310 // Discard the sections which have special meanings in the ELF
311 // ABI. Keep others (e.g., .stabstr). We could also do this by
312 // checking the sh_link fields of the appropriate sections.
313 return (strcmp(name
, ".dynstr") != 0
314 && strcmp(name
, ".strtab") != 0
315 && strcmp(name
, ".shstrtab") != 0);
317 case elfcpp::SHT_RELA
:
318 case elfcpp::SHT_REL
:
319 case elfcpp::SHT_GROUP
:
320 // If we are emitting relocations these should be handled
322 gold_assert(!parameters
->options().relocatable()
323 && !parameters
->options().emit_relocs());
326 case elfcpp::SHT_PROGBITS
:
327 if (parameters
->options().strip_debug()
328 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
330 if (is_debug_info_section(name
))
333 if (parameters
->options().strip_debug_non_line()
334 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
336 // Debugging sections can only be recognized by name.
337 if (is_prefix_of(".debug", name
)
338 && !is_lines_only_debug_section(name
))
341 if (parameters
->options().strip_debug_gdb()
342 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
344 // Debugging sections can only be recognized by name.
345 if (is_prefix_of(".debug", name
)
346 && !is_gdb_debug_section(name
))
349 if (parameters
->options().strip_lto_sections()
350 && !parameters
->options().relocatable()
351 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
353 // Ignore LTO sections containing intermediate code.
354 if (is_prefix_of(".gnu.lto_", name
))
357 // The GNU linker strips .gnu_debuglink sections, so we do too.
358 // This is a feature used to keep debugging information in
360 if (strcmp(name
, ".gnu_debuglink") == 0)
369 // Return an output section named NAME, or NULL if there is none.
372 Layout::find_output_section(const char* name
) const
374 for (Section_list::const_iterator p
= this->section_list_
.begin();
375 p
!= this->section_list_
.end();
377 if (strcmp((*p
)->name(), name
) == 0)
382 // Return an output segment of type TYPE, with segment flags SET set
383 // and segment flags CLEAR clear. Return NULL if there is none.
386 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
387 elfcpp::Elf_Word clear
) const
389 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
390 p
!= this->segment_list_
.end();
392 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
393 && ((*p
)->flags() & set
) == set
394 && ((*p
)->flags() & clear
) == 0)
399 // Return the output section to use for section NAME with type TYPE
400 // and section flags FLAGS. NAME must be canonicalized in the string
401 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
402 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
403 // is used by the dynamic linker. IS_RELRO is true for a relro
404 // section. IS_LAST_RELRO is true for the last relro section.
405 // IS_FIRST_NON_RELRO is true for the first non-relro section.
408 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
409 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
410 bool is_interp
, bool is_dynamic_linker_section
,
411 bool is_relro
, bool is_last_relro
,
412 bool is_first_non_relro
)
414 elfcpp::Elf_Xword lookup_flags
= flags
;
416 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417 // read-write with read-only sections. Some other ELF linkers do
418 // not do this. FIXME: Perhaps there should be an option
420 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
422 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
423 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
424 std::pair
<Section_name_map::iterator
, bool> ins(
425 this->section_name_map_
.insert(v
));
428 return ins
.first
->second
;
431 // This is the first time we've seen this name/type/flags
432 // combination. For compatibility with the GNU linker, we
433 // combine sections with contents and zero flags with sections
434 // with non-zero flags. This is a workaround for cases where
435 // assembler code forgets to set section flags. FIXME: Perhaps
436 // there should be an option to control this.
437 Output_section
* os
= NULL
;
439 if (type
== elfcpp::SHT_PROGBITS
)
443 Output_section
* same_name
= this->find_output_section(name
);
444 if (same_name
!= NULL
445 && same_name
->type() == elfcpp::SHT_PROGBITS
446 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
449 else if ((flags
& elfcpp::SHF_TLS
) == 0)
451 elfcpp::Elf_Xword zero_flags
= 0;
452 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
453 Section_name_map::iterator p
=
454 this->section_name_map_
.find(zero_key
);
455 if (p
!= this->section_name_map_
.end())
461 os
= this->make_output_section(name
, type
, flags
, is_interp
,
462 is_dynamic_linker_section
, is_relro
,
463 is_last_relro
, is_first_non_relro
);
464 ins
.first
->second
= os
;
469 // Pick the output section to use for section NAME, in input file
470 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
471 // linker created section. IS_INPUT_SECTION is true if we are
472 // choosing an output section for an input section found in a input
473 // file. IS_INTERP is true if this is the .interp section.
474 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
475 // dynamic linker. IS_RELRO is true for a relro section.
476 // IS_LAST_RELRO is true for the last relro section.
477 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
478 // will return NULL if the input section should be discarded.
481 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
482 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
483 bool is_input_section
, bool is_interp
,
484 bool is_dynamic_linker_section
, bool is_relro
,
485 bool is_last_relro
, bool is_first_non_relro
)
487 // We should not see any input sections after we have attached
488 // sections to segments.
489 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
491 // Some flags in the input section should not be automatically
492 // copied to the output section.
493 flags
&= ~ (elfcpp::SHF_INFO_LINK
494 | elfcpp::SHF_LINK_ORDER
497 | elfcpp::SHF_STRINGS
);
499 if (this->script_options_
->saw_sections_clause())
501 // We are using a SECTIONS clause, so the output section is
502 // chosen based only on the name.
504 Script_sections
* ss
= this->script_options_
->script_sections();
505 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
506 Output_section
** output_section_slot
;
507 Script_sections::Section_type script_section_type
;
508 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
509 &script_section_type
);
512 // The SECTIONS clause says to discard this input section.
516 // We can only handle script section types ST_NONE and ST_NOLOAD.
517 switch (script_section_type
)
519 case Script_sections::ST_NONE
:
521 case Script_sections::ST_NOLOAD
:
522 flags
&= elfcpp::SHF_ALLOC
;
528 // If this is an orphan section--one not mentioned in the linker
529 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
530 // default processing below.
532 if (output_section_slot
!= NULL
)
534 if (*output_section_slot
!= NULL
)
536 (*output_section_slot
)->update_flags_for_input_section(flags
);
537 return *output_section_slot
;
540 // We don't put sections found in the linker script into
541 // SECTION_NAME_MAP_. That keeps us from getting confused
542 // if an orphan section is mapped to a section with the same
543 // name as one in the linker script.
545 name
= this->namepool_
.add(name
, false, NULL
);
548 this->make_output_section(name
, type
, flags
, is_interp
,
549 is_dynamic_linker_section
, is_relro
,
550 is_last_relro
, is_first_non_relro
);
551 os
->set_found_in_sections_clause();
553 // Special handling for NOLOAD sections.
554 if (script_section_type
== Script_sections::ST_NOLOAD
)
558 // The constructor of Output_section sets addresses of non-ALLOC
559 // sections to 0 by default. We don't want that for NOLOAD
560 // sections even if they have no SHF_ALLOC flag.
561 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
562 && os
->is_address_valid())
564 gold_assert(os
->address() == 0
565 && !os
->is_offset_valid()
566 && !os
->is_data_size_valid());
567 os
->reset_address_and_file_offset();
571 *output_section_slot
= os
;
576 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
578 // Turn NAME from the name of the input section into the name of the
581 size_t len
= strlen(name
);
583 && !this->script_options_
->saw_sections_clause()
584 && !parameters
->options().relocatable())
585 name
= Layout::output_section_name(name
, &len
);
587 Stringpool::Key name_key
;
588 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
590 // Find or make the output section. The output section is selected
591 // based on the section name, type, and flags.
592 return this->get_output_section(name
, name_key
, type
, flags
, is_interp
,
593 is_dynamic_linker_section
, is_relro
,
594 is_last_relro
, is_first_non_relro
);
597 // Return the output section to use for input section SHNDX, with name
598 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
599 // index of a relocation section which applies to this section, or 0
600 // if none, or -1U if more than one. RELOC_TYPE is the type of the
601 // relocation section if there is one. Set *OFF to the offset of this
602 // input section without the output section. Return NULL if the
603 // section should be discarded. Set *OFF to -1 if the section
604 // contents should not be written directly to the output file, but
605 // will instead receive special handling.
607 template<int size
, bool big_endian
>
609 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
610 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
611 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
615 if (!this->include_section(object
, name
, shdr
))
620 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
621 // correct section types. Force them here.
622 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
623 if (sh_type
== elfcpp::SHT_PROGBITS
)
625 static const char init_array_prefix
[] = ".init_array";
626 static const char preinit_array_prefix
[] = ".preinit_array";
627 static const char fini_array_prefix
[] = ".fini_array";
628 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
629 static size_t preinit_array_prefix_size
=
630 sizeof(preinit_array_prefix
) - 1;
631 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
633 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
634 sh_type
= elfcpp::SHT_INIT_ARRAY
;
635 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
637 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
638 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
639 sh_type
= elfcpp::SHT_FINI_ARRAY
;
642 // In a relocatable link a grouped section must not be combined with
643 // any other sections.
644 if (parameters
->options().relocatable()
645 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
647 name
= this->namepool_
.add(name
, true, NULL
);
648 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(), false,
649 false, false, false, false);
653 os
= this->choose_output_section(object
, name
, sh_type
,
654 shdr
.get_sh_flags(), true, false,
655 false, false, false, false);
660 // By default the GNU linker sorts input sections whose names match
661 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
662 // are sorted by name. This is used to implement constructor
663 // priority ordering. We are compatible.
664 if (!this->script_options_
->saw_sections_clause()
665 && (is_prefix_of(".ctors.", name
)
666 || is_prefix_of(".dtors.", name
)
667 || is_prefix_of(".init_array.", name
)
668 || is_prefix_of(".fini_array.", name
)))
669 os
->set_must_sort_attached_input_sections();
671 // FIXME: Handle SHF_LINK_ORDER somewhere.
673 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
674 this->script_options_
->saw_sections_clause());
675 this->have_added_input_section_
= true;
680 // Handle a relocation section when doing a relocatable link.
682 template<int size
, bool big_endian
>
684 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
686 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
687 Output_section
* data_section
,
688 Relocatable_relocs
* rr
)
690 gold_assert(parameters
->options().relocatable()
691 || parameters
->options().emit_relocs());
693 int sh_type
= shdr
.get_sh_type();
696 if (sh_type
== elfcpp::SHT_REL
)
698 else if (sh_type
== elfcpp::SHT_RELA
)
702 name
+= data_section
->name();
704 // In a relocatable link relocs for a grouped section must not be
705 // combined with other reloc sections.
707 if (!parameters
->options().relocatable()
708 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
709 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
710 shdr
.get_sh_flags(), false, false,
711 false, false, false, false);
714 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
715 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
716 false, false, false, false, false);
719 os
->set_should_link_to_symtab();
720 os
->set_info_section(data_section
);
722 Output_section_data
* posd
;
723 if (sh_type
== elfcpp::SHT_REL
)
725 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
726 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
730 else if (sh_type
== elfcpp::SHT_RELA
)
732 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
733 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
740 os
->add_output_section_data(posd
);
741 rr
->set_output_data(posd
);
746 // Handle a group section when doing a relocatable link.
748 template<int size
, bool big_endian
>
750 Layout::layout_group(Symbol_table
* symtab
,
751 Sized_relobj
<size
, big_endian
>* object
,
753 const char* group_section_name
,
754 const char* signature
,
755 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
756 elfcpp::Elf_Word flags
,
757 std::vector
<unsigned int>* shndxes
)
759 gold_assert(parameters
->options().relocatable());
760 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
761 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
762 Output_section
* os
= this->make_output_section(group_section_name
,
768 // We need to find a symbol with the signature in the symbol table.
769 // If we don't find one now, we need to look again later.
770 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
772 os
->set_info_symndx(sym
);
775 // Reserve some space to minimize reallocations.
776 if (this->group_signatures_
.empty())
777 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
779 // We will wind up using a symbol whose name is the signature.
780 // So just put the signature in the symbol name pool to save it.
781 signature
= symtab
->canonicalize_name(signature
);
782 this->group_signatures_
.push_back(Group_signature(os
, signature
));
785 os
->set_should_link_to_symtab();
788 section_size_type entry_count
=
789 convert_to_section_size_type(shdr
.get_sh_size() / 4);
790 Output_section_data
* posd
=
791 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
793 os
->add_output_section_data(posd
);
796 // Special GNU handling of sections name .eh_frame. They will
797 // normally hold exception frame data as defined by the C++ ABI
798 // (http://codesourcery.com/cxx-abi/).
800 template<int size
, bool big_endian
>
802 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
803 const unsigned char* symbols
,
805 const unsigned char* symbol_names
,
806 off_t symbol_names_size
,
808 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
809 unsigned int reloc_shndx
, unsigned int reloc_type
,
812 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
813 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
815 const char* const name
= ".eh_frame";
816 Output_section
* os
= this->choose_output_section(object
,
818 elfcpp::SHT_PROGBITS
,
821 false, false, false);
825 if (this->eh_frame_section_
== NULL
)
827 this->eh_frame_section_
= os
;
828 this->eh_frame_data_
= new Eh_frame();
830 if (parameters
->options().eh_frame_hdr())
832 Output_section
* hdr_os
=
833 this->choose_output_section(NULL
,
835 elfcpp::SHT_PROGBITS
,
838 false, false, false);
842 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
843 this->eh_frame_data_
);
844 hdr_os
->add_output_section_data(hdr_posd
);
846 hdr_os
->set_after_input_sections();
848 if (!this->script_options_
->saw_phdrs_clause())
850 Output_segment
* hdr_oseg
;
851 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
853 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
, false);
856 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
861 gold_assert(this->eh_frame_section_
== os
);
863 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
872 os
->update_flags_for_input_section(shdr
.get_sh_flags());
874 // We found a .eh_frame section we are going to optimize, so now
875 // we can add the set of optimized sections to the output
876 // section. We need to postpone adding this until we've found a
877 // section we can optimize so that the .eh_frame section in
878 // crtbegin.o winds up at the start of the output section.
879 if (!this->added_eh_frame_data_
)
881 os
->add_output_section_data(this->eh_frame_data_
);
882 this->added_eh_frame_data_
= true;
888 // We couldn't handle this .eh_frame section for some reason.
889 // Add it as a normal section.
890 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
891 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
892 saw_sections_clause
);
893 this->have_added_input_section_
= true;
899 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
900 // the output section.
903 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
904 elfcpp::Elf_Xword flags
,
905 Output_section_data
* posd
,
906 bool is_dynamic_linker_section
,
907 bool is_relro
, bool is_last_relro
,
908 bool is_first_non_relro
)
910 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
912 is_dynamic_linker_section
,
913 is_relro
, is_last_relro
,
916 os
->add_output_section_data(posd
);
920 // Map section flags to segment flags.
923 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
925 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
926 if ((flags
& elfcpp::SHF_WRITE
) != 0)
928 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
933 // Sometimes we compress sections. This is typically done for
934 // sections that are not part of normal program execution (such as
935 // .debug_* sections), and where the readers of these sections know
936 // how to deal with compressed sections. This routine doesn't say for
937 // certain whether we'll compress -- it depends on commandline options
938 // as well -- just whether this section is a candidate for compression.
939 // (The Output_compressed_section class decides whether to compress
940 // a given section, and picks the name of the compressed section.)
943 is_compressible_debug_section(const char* secname
)
945 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
948 // Make a new Output_section, and attach it to segments as
949 // appropriate. IS_INTERP is true if this is the .interp section.
950 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
951 // dynamic linker. IS_RELRO is true if this is a relro section.
952 // IS_LAST_RELRO is true if this is the last relro section.
953 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
956 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
957 elfcpp::Elf_Xword flags
, bool is_interp
,
958 bool is_dynamic_linker_section
, bool is_relro
,
959 bool is_last_relro
, bool is_first_non_relro
)
962 if ((flags
& elfcpp::SHF_ALLOC
) == 0
963 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
964 && is_compressible_debug_section(name
))
965 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
967 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
968 && parameters
->options().strip_debug_non_line()
969 && strcmp(".debug_abbrev", name
) == 0)
971 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
973 if (this->debug_info_
)
974 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
976 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
977 && parameters
->options().strip_debug_non_line()
978 && strcmp(".debug_info", name
) == 0)
980 os
= this->debug_info_
= new Output_reduced_debug_info_section(
982 if (this->debug_abbrev_
)
983 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
987 // FIXME: const_cast is ugly.
988 Target
* target
= const_cast<Target
*>(¶meters
->target());
989 os
= target
->make_output_section(name
, type
, flags
);
994 if (is_dynamic_linker_section
)
995 os
->set_is_dynamic_linker_section();
999 os
->set_is_last_relro();
1000 if (is_first_non_relro
)
1001 os
->set_is_first_non_relro();
1003 parameters
->target().new_output_section(os
);
1005 this->section_list_
.push_back(os
);
1007 // The GNU linker by default sorts some sections by priority, so we
1008 // do the same. We need to know that this might happen before we
1009 // attach any input sections.
1010 if (!this->script_options_
->saw_sections_clause()
1011 && (strcmp(name
, ".ctors") == 0
1012 || strcmp(name
, ".dtors") == 0
1013 || strcmp(name
, ".init_array") == 0
1014 || strcmp(name
, ".fini_array") == 0))
1015 os
->set_may_sort_attached_input_sections();
1017 // With -z relro, we have to recognize the special sections by name.
1018 // There is no other way.
1019 if (!this->script_options_
->saw_sections_clause()
1020 && parameters
->options().relro()
1021 && type
== elfcpp::SHT_PROGBITS
1022 && (flags
& elfcpp::SHF_ALLOC
) != 0
1023 && (flags
& elfcpp::SHF_WRITE
) != 0)
1025 if (strcmp(name
, ".data.rel.ro") == 0)
1027 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1030 os
->set_is_relro_local();
1034 // Check for .stab*str sections, as .stab* sections need to link to
1036 if (type
== elfcpp::SHT_STRTAB
1037 && !this->have_stabstr_section_
1038 && strncmp(name
, ".stab", 5) == 0
1039 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1040 this->have_stabstr_section_
= true;
1042 // If we have already attached the sections to segments, then we
1043 // need to attach this one now. This happens for sections created
1044 // directly by the linker.
1045 if (this->sections_are_attached_
)
1046 this->attach_section_to_segment(os
);
1051 // Attach output sections to segments. This is called after we have
1052 // seen all the input sections.
1055 Layout::attach_sections_to_segments()
1057 for (Section_list::iterator p
= this->section_list_
.begin();
1058 p
!= this->section_list_
.end();
1060 this->attach_section_to_segment(*p
);
1062 this->sections_are_attached_
= true;
1065 // Attach an output section to a segment.
1068 Layout::attach_section_to_segment(Output_section
* os
)
1070 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1071 this->unattached_section_list_
.push_back(os
);
1073 this->attach_allocated_section_to_segment(os
);
1076 // Attach an allocated output section to a segment.
1079 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1081 elfcpp::Elf_Xword flags
= os
->flags();
1082 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1084 if (parameters
->options().relocatable())
1087 // If we have a SECTIONS clause, we can't handle the attachment to
1088 // segments until after we've seen all the sections.
1089 if (this->script_options_
->saw_sections_clause())
1092 gold_assert(!this->script_options_
->saw_phdrs_clause());
1094 // This output section goes into a PT_LOAD segment.
1096 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1098 // Check for --section-start.
1100 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1102 // In general the only thing we really care about for PT_LOAD
1103 // segments is whether or not they are writable, so that is how we
1104 // search for them. Large data sections also go into their own
1105 // PT_LOAD segment. People who need segments sorted on some other
1106 // basis will have to use a linker script.
1108 Segment_list::const_iterator p
;
1109 for (p
= this->segment_list_
.begin();
1110 p
!= this->segment_list_
.end();
1113 if ((*p
)->type() != elfcpp::PT_LOAD
)
1115 if (!parameters
->options().omagic()
1116 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1118 // If -Tbss was specified, we need to separate the data and BSS
1120 if (parameters
->options().user_set_Tbss())
1122 if ((os
->type() == elfcpp::SHT_NOBITS
)
1123 == (*p
)->has_any_data_sections())
1126 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1131 if ((*p
)->are_addresses_set())
1134 (*p
)->add_initial_output_data(os
);
1135 (*p
)->update_flags_for_output_section(seg_flags
);
1136 (*p
)->set_addresses(addr
, addr
);
1140 (*p
)->add_output_section(os
, seg_flags
, true);
1144 if (p
== this->segment_list_
.end())
1146 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1148 if (os
->is_large_data_section())
1149 oseg
->set_is_large_data_segment();
1150 oseg
->add_output_section(os
, seg_flags
, true);
1152 oseg
->set_addresses(addr
, addr
);
1155 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1157 if (os
->type() == elfcpp::SHT_NOTE
)
1159 // See if we already have an equivalent PT_NOTE segment.
1160 for (p
= this->segment_list_
.begin();
1161 p
!= segment_list_
.end();
1164 if ((*p
)->type() == elfcpp::PT_NOTE
1165 && (((*p
)->flags() & elfcpp::PF_W
)
1166 == (seg_flags
& elfcpp::PF_W
)))
1168 (*p
)->add_output_section(os
, seg_flags
, false);
1173 if (p
== this->segment_list_
.end())
1175 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1177 oseg
->add_output_section(os
, seg_flags
, false);
1181 // If we see a loadable SHF_TLS section, we create a PT_TLS
1182 // segment. There can only be one such segment.
1183 if ((flags
& elfcpp::SHF_TLS
) != 0)
1185 if (this->tls_segment_
== NULL
)
1186 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1187 this->tls_segment_
->add_output_section(os
, seg_flags
, false);
1190 // If -z relro is in effect, and we see a relro section, we create a
1191 // PT_GNU_RELRO segment. There can only be one such segment.
1192 if (os
->is_relro() && parameters
->options().relro())
1194 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1195 if (this->relro_segment_
== NULL
)
1196 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1197 this->relro_segment_
->add_output_section(os
, seg_flags
, false);
1201 // Make an output section for a script.
1204 Layout::make_output_section_for_script(
1206 Script_sections::Section_type section_type
)
1208 name
= this->namepool_
.add(name
, false, NULL
);
1209 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1210 if (section_type
== Script_sections::ST_NOLOAD
)
1212 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1214 false, false, false, false);
1215 os
->set_found_in_sections_clause();
1216 if (section_type
== Script_sections::ST_NOLOAD
)
1217 os
->set_is_noload();
1221 // Return the number of segments we expect to see.
1224 Layout::expected_segment_count() const
1226 size_t ret
= this->segment_list_
.size();
1228 // If we didn't see a SECTIONS clause in a linker script, we should
1229 // already have the complete list of segments. Otherwise we ask the
1230 // SECTIONS clause how many segments it expects, and add in the ones
1231 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1233 if (!this->script_options_
->saw_sections_clause())
1237 const Script_sections
* ss
= this->script_options_
->script_sections();
1238 return ret
+ ss
->expected_segment_count(this);
1242 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1243 // is whether we saw a .note.GNU-stack section in the object file.
1244 // GNU_STACK_FLAGS is the section flags. The flags give the
1245 // protection required for stack memory. We record this in an
1246 // executable as a PT_GNU_STACK segment. If an object file does not
1247 // have a .note.GNU-stack segment, we must assume that it is an old
1248 // object. On some targets that will force an executable stack.
1251 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1253 if (!seen_gnu_stack
)
1254 this->input_without_gnu_stack_note_
= true;
1257 this->input_with_gnu_stack_note_
= true;
1258 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1259 this->input_requires_executable_stack_
= true;
1263 // Create automatic note sections.
1266 Layout::create_notes()
1268 this->create_gold_note();
1269 this->create_executable_stack_info();
1270 this->create_build_id();
1273 // Create the dynamic sections which are needed before we read the
1277 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1279 if (parameters
->doing_static_link())
1282 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1283 elfcpp::SHT_DYNAMIC
,
1285 | elfcpp::SHF_WRITE
),
1287 true, false, false);
1289 this->dynamic_symbol_
=
1290 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1291 this->dynamic_section_
, 0, 0,
1292 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1293 elfcpp::STV_HIDDEN
, 0, false, false);
1295 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1297 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1300 // For each output section whose name can be represented as C symbol,
1301 // define __start and __stop symbols for the section. This is a GNU
1305 Layout::define_section_symbols(Symbol_table
* symtab
)
1307 for (Section_list::const_iterator p
= this->section_list_
.begin();
1308 p
!= this->section_list_
.end();
1311 const char* const name
= (*p
)->name();
1312 if (is_cident(name
))
1314 const std::string
name_string(name
);
1315 const std::string
start_name(cident_section_start_prefix
1317 const std::string
stop_name(cident_section_stop_prefix
1320 symtab
->define_in_output_data(start_name
.c_str(),
1322 Symbol_table::PREDEFINED
,
1328 elfcpp::STV_DEFAULT
,
1330 false, // offset_is_from_end
1331 true); // only_if_ref
1333 symtab
->define_in_output_data(stop_name
.c_str(),
1335 Symbol_table::PREDEFINED
,
1341 elfcpp::STV_DEFAULT
,
1343 true, // offset_is_from_end
1344 true); // only_if_ref
1349 // Define symbols for group signatures.
1352 Layout::define_group_signatures(Symbol_table
* symtab
)
1354 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1355 p
!= this->group_signatures_
.end();
1358 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1360 p
->section
->set_info_symndx(sym
);
1363 // Force the name of the group section to the group
1364 // signature, and use the group's section symbol as the
1365 // signature symbol.
1366 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1368 const char* name
= this->namepool_
.add(p
->signature
,
1370 p
->section
->set_name(name
);
1372 p
->section
->set_needs_symtab_index();
1373 p
->section
->set_info_section_symndx(p
->section
);
1377 this->group_signatures_
.clear();
1380 // Find the first read-only PT_LOAD segment, creating one if
1384 Layout::find_first_load_seg()
1386 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1387 p
!= this->segment_list_
.end();
1390 if ((*p
)->type() == elfcpp::PT_LOAD
1391 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1392 && (parameters
->options().omagic()
1393 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1397 gold_assert(!this->script_options_
->saw_phdrs_clause());
1399 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1404 // Save states of all current output segments. Store saved states
1405 // in SEGMENT_STATES.
1408 Layout::save_segments(Segment_states
* segment_states
)
1410 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1411 p
!= this->segment_list_
.end();
1414 Output_segment
* segment
= *p
;
1416 Output_segment
* copy
= new Output_segment(*segment
);
1417 (*segment_states
)[segment
] = copy
;
1421 // Restore states of output segments and delete any segment not found in
1425 Layout::restore_segments(const Segment_states
* segment_states
)
1427 // Go through the segment list and remove any segment added in the
1429 this->tls_segment_
= NULL
;
1430 this->relro_segment_
= NULL
;
1431 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1432 while (list_iter
!= this->segment_list_
.end())
1434 Output_segment
* segment
= *list_iter
;
1435 Segment_states::const_iterator states_iter
=
1436 segment_states
->find(segment
);
1437 if (states_iter
!= segment_states
->end())
1439 const Output_segment
* copy
= states_iter
->second
;
1440 // Shallow copy to restore states.
1443 // Also fix up TLS and RELRO segment pointers as appropriate.
1444 if (segment
->type() == elfcpp::PT_TLS
)
1445 this->tls_segment_
= segment
;
1446 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1447 this->relro_segment_
= segment
;
1453 list_iter
= this->segment_list_
.erase(list_iter
);
1454 // This is a segment created during section layout. It should be
1455 // safe to remove it since we should have removed all pointers to it.
1461 // Clean up after relaxation so that sections can be laid out again.
1464 Layout::clean_up_after_relaxation()
1466 // Restore the segments to point state just prior to the relaxation loop.
1467 Script_sections
* script_section
= this->script_options_
->script_sections();
1468 script_section
->release_segments();
1469 this->restore_segments(this->segment_states_
);
1471 // Reset section addresses and file offsets
1472 for (Section_list::iterator p
= this->section_list_
.begin();
1473 p
!= this->section_list_
.end();
1476 (*p
)->restore_states();
1478 // If an input section changes size because of relaxation,
1479 // we need to adjust the section offsets of all input sections.
1480 // after such a section.
1481 if ((*p
)->section_offsets_need_adjustment())
1482 (*p
)->adjust_section_offsets();
1484 (*p
)->reset_address_and_file_offset();
1487 // Reset special output object address and file offsets.
1488 for (Data_list::iterator p
= this->special_output_list_
.begin();
1489 p
!= this->special_output_list_
.end();
1491 (*p
)->reset_address_and_file_offset();
1493 // A linker script may have created some output section data objects.
1494 // They are useless now.
1495 for (Output_section_data_list::const_iterator p
=
1496 this->script_output_section_data_list_
.begin();
1497 p
!= this->script_output_section_data_list_
.end();
1500 this->script_output_section_data_list_
.clear();
1503 // Prepare for relaxation.
1506 Layout::prepare_for_relaxation()
1508 // Create an relaxation debug check if in debugging mode.
1509 if (is_debugging_enabled(DEBUG_RELAXATION
))
1510 this->relaxation_debug_check_
= new Relaxation_debug_check();
1512 // Save segment states.
1513 this->segment_states_
= new Segment_states();
1514 this->save_segments(this->segment_states_
);
1516 for(Section_list::const_iterator p
= this->section_list_
.begin();
1517 p
!= this->section_list_
.end();
1519 (*p
)->save_states();
1521 if (is_debugging_enabled(DEBUG_RELAXATION
))
1522 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1523 this->section_list_
, this->special_output_list_
);
1525 // Also enable recording of output section data from scripts.
1526 this->record_output_section_data_from_script_
= true;
1529 // Relaxation loop body: If target has no relaxation, this runs only once
1530 // Otherwise, the target relaxation hook is called at the end of
1531 // each iteration. If the hook returns true, it means re-layout of
1532 // section is required.
1534 // The number of segments created by a linking script without a PHDRS
1535 // clause may be affected by section sizes and alignments. There is
1536 // a remote chance that relaxation causes different number of PT_LOAD
1537 // segments are created and sections are attached to different segments.
1538 // Therefore, we always throw away all segments created during section
1539 // layout. In order to be able to restart the section layout, we keep
1540 // a copy of the segment list right before the relaxation loop and use
1541 // that to restore the segments.
1543 // PASS is the current relaxation pass number.
1544 // SYMTAB is a symbol table.
1545 // PLOAD_SEG is the address of a pointer for the load segment.
1546 // PHDR_SEG is a pointer to the PHDR segment.
1547 // SEGMENT_HEADERS points to the output segment header.
1548 // FILE_HEADER points to the output file header.
1549 // PSHNDX is the address to store the output section index.
1552 Layout::relaxation_loop_body(
1555 Symbol_table
* symtab
,
1556 Output_segment
** pload_seg
,
1557 Output_segment
* phdr_seg
,
1558 Output_segment_headers
* segment_headers
,
1559 Output_file_header
* file_header
,
1560 unsigned int* pshndx
)
1562 // If this is not the first iteration, we need to clean up after
1563 // relaxation so that we can lay out the sections again.
1565 this->clean_up_after_relaxation();
1567 // If there is a SECTIONS clause, put all the input sections into
1568 // the required order.
1569 Output_segment
* load_seg
;
1570 if (this->script_options_
->saw_sections_clause())
1571 load_seg
= this->set_section_addresses_from_script(symtab
);
1572 else if (parameters
->options().relocatable())
1575 load_seg
= this->find_first_load_seg();
1577 if (parameters
->options().oformat_enum()
1578 != General_options::OBJECT_FORMAT_ELF
)
1581 // If the user set the address of the text segment, that may not be
1582 // compatible with putting the segment headers and file headers into
1584 if (parameters
->options().user_set_Ttext())
1587 gold_assert(phdr_seg
== NULL
1589 || this->script_options_
->saw_sections_clause());
1591 // If the address of the load segment we found has been set by
1592 // --section-start rather than by a script, then we don't want to
1593 // use it for the file and segment headers.
1594 if (load_seg
!= NULL
1595 && load_seg
->are_addresses_set()
1596 && !this->script_options_
->saw_sections_clause())
1599 // Lay out the segment headers.
1600 if (!parameters
->options().relocatable())
1602 gold_assert(segment_headers
!= NULL
);
1603 if (load_seg
!= NULL
)
1604 load_seg
->add_initial_output_data(segment_headers
);
1605 if (phdr_seg
!= NULL
)
1606 phdr_seg
->add_initial_output_data(segment_headers
);
1609 // Lay out the file header.
1610 if (load_seg
!= NULL
)
1611 load_seg
->add_initial_output_data(file_header
);
1613 if (this->script_options_
->saw_phdrs_clause()
1614 && !parameters
->options().relocatable())
1616 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1617 // clause in a linker script.
1618 Script_sections
* ss
= this->script_options_
->script_sections();
1619 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1622 // We set the output section indexes in set_segment_offsets and
1623 // set_section_indexes.
1626 // Set the file offsets of all the segments, and all the sections
1629 if (!parameters
->options().relocatable())
1630 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1632 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1634 // Verify that the dummy relaxation does not change anything.
1635 if (is_debugging_enabled(DEBUG_RELAXATION
))
1638 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1640 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1643 *pload_seg
= load_seg
;
1647 // Search the list of patterns and find the postion of the given section
1648 // name in the output section. If the section name matches a glob
1649 // pattern and a non-glob name, then the non-glob position takes
1650 // precedence. Return 0 if no match is found.
1653 Layout::find_section_order_index(const std::string
& section_name
)
1655 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
1656 map_it
= this->input_section_position_
.find(section_name
);
1657 if (map_it
!= this->input_section_position_
.end())
1658 return map_it
->second
;
1660 // Absolute match failed. Linear search the glob patterns.
1661 std::vector
<std::string
>::iterator it
;
1662 for (it
= this->input_section_glob_
.begin();
1663 it
!= this->input_section_glob_
.end();
1666 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
1668 map_it
= this->input_section_position_
.find(*it
);
1669 gold_assert(map_it
!= this->input_section_position_
.end());
1670 return map_it
->second
;
1676 // Read the sequence of input sections from the file specified with
1677 // --section-ordering-file.
1680 Layout::read_layout_from_file()
1682 const char* filename
= parameters
->options().section_ordering_file();
1688 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1689 filename
, strerror(errno
));
1691 std::getline(in
, line
); // this chops off the trailing \n, if any
1692 unsigned int position
= 1;
1696 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
1697 line
.resize(line
.length() - 1);
1698 // Ignore comments, beginning with '#'
1701 std::getline(in
, line
);
1704 this->input_section_position_
[line
] = position
;
1705 // Store all glob patterns in a vector.
1706 if (is_wildcard_string(line
.c_str()))
1707 this->input_section_glob_
.push_back(line
);
1709 std::getline(in
, line
);
1713 // Finalize the layout. When this is called, we have created all the
1714 // output sections and all the output segments which are based on
1715 // input sections. We have several things to do, and we have to do
1716 // them in the right order, so that we get the right results correctly
1719 // 1) Finalize the list of output segments and create the segment
1722 // 2) Finalize the dynamic symbol table and associated sections.
1724 // 3) Determine the final file offset of all the output segments.
1726 // 4) Determine the final file offset of all the SHF_ALLOC output
1729 // 5) Create the symbol table sections and the section name table
1732 // 6) Finalize the symbol table: set symbol values to their final
1733 // value and make a final determination of which symbols are going
1734 // into the output symbol table.
1736 // 7) Create the section table header.
1738 // 8) Determine the final file offset of all the output sections which
1739 // are not SHF_ALLOC, including the section table header.
1741 // 9) Finalize the ELF file header.
1743 // This function returns the size of the output file.
1746 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1747 Target
* target
, const Task
* task
)
1749 target
->finalize_sections(this, input_objects
, symtab
);
1751 this->count_local_symbols(task
, input_objects
);
1753 this->link_stabs_sections();
1755 Output_segment
* phdr_seg
= NULL
;
1756 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1758 // There was a dynamic object in the link. We need to create
1759 // some information for the dynamic linker.
1761 // Create the PT_PHDR segment which will hold the program
1763 if (!this->script_options_
->saw_phdrs_clause())
1764 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1766 // Create the dynamic symbol table, including the hash table.
1767 Output_section
* dynstr
;
1768 std::vector
<Symbol
*> dynamic_symbols
;
1769 unsigned int local_dynamic_count
;
1770 Versions
versions(*this->script_options()->version_script_info(),
1772 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1773 &local_dynamic_count
, &dynamic_symbols
,
1776 // Create the .interp section to hold the name of the
1777 // interpreter, and put it in a PT_INTERP segment.
1778 if (!parameters
->options().shared())
1779 this->create_interp(target
);
1781 // Finish the .dynamic section to hold the dynamic data, and put
1782 // it in a PT_DYNAMIC segment.
1783 this->finish_dynamic_section(input_objects
, symtab
);
1785 // We should have added everything we need to the dynamic string
1787 this->dynpool_
.set_string_offsets();
1789 // Create the version sections. We can't do this until the
1790 // dynamic string table is complete.
1791 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1792 dynamic_symbols
, dynstr
);
1794 // Set the size of the _DYNAMIC symbol. We can't do this until
1795 // after we call create_version_sections.
1796 this->set_dynamic_symbol_size(symtab
);
1799 if (this->incremental_inputs_
)
1801 this->incremental_inputs_
->finalize();
1802 this->create_incremental_info_sections();
1805 // Create segment headers.
1806 Output_segment_headers
* segment_headers
=
1807 (parameters
->options().relocatable()
1809 : new Output_segment_headers(this->segment_list_
));
1811 // Lay out the file header.
1812 Output_file_header
* file_header
1813 = new Output_file_header(target
, symtab
, segment_headers
,
1814 parameters
->options().entry());
1816 this->special_output_list_
.push_back(file_header
);
1817 if (segment_headers
!= NULL
)
1818 this->special_output_list_
.push_back(segment_headers
);
1820 // Find approriate places for orphan output sections if we are using
1822 if (this->script_options_
->saw_sections_clause())
1823 this->place_orphan_sections_in_script();
1825 Output_segment
* load_seg
;
1830 // Take a snapshot of the section layout as needed.
1831 if (target
->may_relax())
1832 this->prepare_for_relaxation();
1834 // Run the relaxation loop to lay out sections.
1837 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1838 phdr_seg
, segment_headers
, file_header
,
1842 while (target
->may_relax()
1843 && target
->relax(pass
, input_objects
, symtab
, this));
1845 // Set the file offsets of all the non-data sections we've seen so
1846 // far which don't have to wait for the input sections. We need
1847 // this in order to finalize local symbols in non-allocated
1849 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1851 // Set the section indexes of all unallocated sections seen so far,
1852 // in case any of them are somehow referenced by a symbol.
1853 shndx
= this->set_section_indexes(shndx
);
1855 // Create the symbol table sections.
1856 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1857 if (!parameters
->doing_static_link())
1858 this->assign_local_dynsym_offsets(input_objects
);
1860 // Process any symbol assignments from a linker script. This must
1861 // be called after the symbol table has been finalized.
1862 this->script_options_
->finalize_symbols(symtab
, this);
1864 // Create the .shstrtab section.
1865 Output_section
* shstrtab_section
= this->create_shstrtab();
1867 // Set the file offsets of the rest of the non-data sections which
1868 // don't have to wait for the input sections.
1869 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1871 // Now that all sections have been created, set the section indexes
1872 // for any sections which haven't been done yet.
1873 shndx
= this->set_section_indexes(shndx
);
1875 // Create the section table header.
1876 this->create_shdrs(shstrtab_section
, &off
);
1878 // If there are no sections which require postprocessing, we can
1879 // handle the section names now, and avoid a resize later.
1880 if (!this->any_postprocessing_sections_
)
1881 off
= this->set_section_offsets(off
,
1882 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1884 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1886 // Now we know exactly where everything goes in the output file
1887 // (except for non-allocated sections which require postprocessing).
1888 Output_data::layout_complete();
1890 this->output_file_size_
= off
;
1895 // Create a note header following the format defined in the ELF ABI.
1896 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1897 // of the section to create, DESCSZ is the size of the descriptor.
1898 // ALLOCATE is true if the section should be allocated in memory.
1899 // This returns the new note section. It sets *TRAILING_PADDING to
1900 // the number of trailing zero bytes required.
1903 Layout::create_note(const char* name
, int note_type
,
1904 const char* section_name
, size_t descsz
,
1905 bool allocate
, size_t* trailing_padding
)
1907 // Authorities all agree that the values in a .note field should
1908 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1909 // they differ on what the alignment is for 64-bit binaries.
1910 // The GABI says unambiguously they take 8-byte alignment:
1911 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1912 // Other documentation says alignment should always be 4 bytes:
1913 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1914 // GNU ld and GNU readelf both support the latter (at least as of
1915 // version 2.16.91), and glibc always generates the latter for
1916 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1918 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1919 const int size
= parameters
->target().get_size();
1921 const int size
= 32;
1924 // The contents of the .note section.
1925 size_t namesz
= strlen(name
) + 1;
1926 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1927 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1929 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1931 unsigned char* buffer
= new unsigned char[notehdrsz
];
1932 memset(buffer
, 0, notehdrsz
);
1934 bool is_big_endian
= parameters
->target().is_big_endian();
1940 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1941 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1942 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1946 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1947 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1948 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1951 else if (size
== 64)
1955 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1956 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1957 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1961 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1962 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1963 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1969 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1971 elfcpp::Elf_Xword flags
= 0;
1973 flags
= elfcpp::SHF_ALLOC
;
1974 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
1976 flags
, false, false,
1977 false, false, false, false);
1981 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1984 os
->add_output_section_data(posd
);
1986 *trailing_padding
= aligned_descsz
- descsz
;
1991 // For an executable or shared library, create a note to record the
1992 // version of gold used to create the binary.
1995 Layout::create_gold_note()
1997 if (parameters
->options().relocatable())
2000 std::string desc
= std::string("gold ") + gold::get_version_string();
2002 size_t trailing_padding
;
2003 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2004 ".note.gnu.gold-version", desc
.size(),
2005 false, &trailing_padding
);
2009 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2010 os
->add_output_section_data(posd
);
2012 if (trailing_padding
> 0)
2014 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2015 os
->add_output_section_data(posd
);
2019 // Record whether the stack should be executable. This can be set
2020 // from the command line using the -z execstack or -z noexecstack
2021 // options. Otherwise, if any input file has a .note.GNU-stack
2022 // section with the SHF_EXECINSTR flag set, the stack should be
2023 // executable. Otherwise, if at least one input file a
2024 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2025 // section, we use the target default for whether the stack should be
2026 // executable. Otherwise, we don't generate a stack note. When
2027 // generating a object file, we create a .note.GNU-stack section with
2028 // the appropriate marking. When generating an executable or shared
2029 // library, we create a PT_GNU_STACK segment.
2032 Layout::create_executable_stack_info()
2034 bool is_stack_executable
;
2035 if (parameters
->options().is_execstack_set())
2036 is_stack_executable
= parameters
->options().is_stack_executable();
2037 else if (!this->input_with_gnu_stack_note_
)
2041 if (this->input_requires_executable_stack_
)
2042 is_stack_executable
= true;
2043 else if (this->input_without_gnu_stack_note_
)
2044 is_stack_executable
=
2045 parameters
->target().is_default_stack_executable();
2047 is_stack_executable
= false;
2050 if (parameters
->options().relocatable())
2052 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2053 elfcpp::Elf_Xword flags
= 0;
2054 if (is_stack_executable
)
2055 flags
|= elfcpp::SHF_EXECINSTR
;
2056 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
, false,
2057 false, false, false, false);
2061 if (this->script_options_
->saw_phdrs_clause())
2063 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2064 if (is_stack_executable
)
2065 flags
|= elfcpp::PF_X
;
2066 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2070 // If --build-id was used, set up the build ID note.
2073 Layout::create_build_id()
2075 if (!parameters
->options().user_set_build_id())
2078 const char* style
= parameters
->options().build_id();
2079 if (strcmp(style
, "none") == 0)
2082 // Set DESCSZ to the size of the note descriptor. When possible,
2083 // set DESC to the note descriptor contents.
2086 if (strcmp(style
, "md5") == 0)
2088 else if (strcmp(style
, "sha1") == 0)
2090 else if (strcmp(style
, "uuid") == 0)
2092 const size_t uuidsz
= 128 / 8;
2094 char buffer
[uuidsz
];
2095 memset(buffer
, 0, uuidsz
);
2097 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2099 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2103 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2104 release_descriptor(descriptor
, true);
2106 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2107 else if (static_cast<size_t>(got
) != uuidsz
)
2108 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2112 desc
.assign(buffer
, uuidsz
);
2115 else if (strncmp(style
, "0x", 2) == 0)
2118 const char* p
= style
+ 2;
2121 if (hex_p(p
[0]) && hex_p(p
[1]))
2123 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2127 else if (*p
== '-' || *p
== ':')
2130 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2133 descsz
= desc
.size();
2136 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2139 size_t trailing_padding
;
2140 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2141 ".note.gnu.build-id", descsz
, true,
2148 // We know the value already, so we fill it in now.
2149 gold_assert(desc
.size() == descsz
);
2151 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2152 os
->add_output_section_data(posd
);
2154 if (trailing_padding
!= 0)
2156 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2157 os
->add_output_section_data(posd
);
2162 // We need to compute a checksum after we have completed the
2164 gold_assert(trailing_padding
== 0);
2165 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2166 os
->add_output_section_data(this->build_id_note_
);
2170 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2171 // field of the former should point to the latter. I'm not sure who
2172 // started this, but the GNU linker does it, and some tools depend
2176 Layout::link_stabs_sections()
2178 if (!this->have_stabstr_section_
)
2181 for (Section_list::iterator p
= this->section_list_
.begin();
2182 p
!= this->section_list_
.end();
2185 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2188 const char* name
= (*p
)->name();
2189 if (strncmp(name
, ".stab", 5) != 0)
2192 size_t len
= strlen(name
);
2193 if (strcmp(name
+ len
- 3, "str") != 0)
2196 std::string
stab_name(name
, len
- 3);
2197 Output_section
* stab_sec
;
2198 stab_sec
= this->find_output_section(stab_name
.c_str());
2199 if (stab_sec
!= NULL
)
2200 stab_sec
->set_link_section(*p
);
2204 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2205 // for the next run of incremental linking to check what has changed.
2208 Layout::create_incremental_info_sections()
2210 gold_assert(this->incremental_inputs_
!= NULL
);
2212 // Add the .gnu_incremental_inputs section.
2213 const char *incremental_inputs_name
=
2214 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2215 Output_section
* inputs_os
=
2216 this->make_output_section(incremental_inputs_name
,
2217 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2218 false, false, false, false, false);
2219 Output_section_data
* posd
=
2220 this->incremental_inputs_
->create_incremental_inputs_section_data();
2221 inputs_os
->add_output_section_data(posd
);
2223 // Add the .gnu_incremental_strtab section.
2224 const char *incremental_strtab_name
=
2225 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2226 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
2229 false, false, false);
2230 Output_data_strtab
* strtab_data
=
2231 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
2232 strtab_os
->add_output_section_data(strtab_data
);
2234 inputs_os
->set_link_section(strtab_data
);
2237 // Return whether SEG1 should be before SEG2 in the output file. This
2238 // is based entirely on the segment type and flags. When this is
2239 // called the segment addresses has normally not yet been set.
2242 Layout::segment_precedes(const Output_segment
* seg1
,
2243 const Output_segment
* seg2
)
2245 elfcpp::Elf_Word type1
= seg1
->type();
2246 elfcpp::Elf_Word type2
= seg2
->type();
2248 // The single PT_PHDR segment is required to precede any loadable
2249 // segment. We simply make it always first.
2250 if (type1
== elfcpp::PT_PHDR
)
2252 gold_assert(type2
!= elfcpp::PT_PHDR
);
2255 if (type2
== elfcpp::PT_PHDR
)
2258 // The single PT_INTERP segment is required to precede any loadable
2259 // segment. We simply make it always second.
2260 if (type1
== elfcpp::PT_INTERP
)
2262 gold_assert(type2
!= elfcpp::PT_INTERP
);
2265 if (type2
== elfcpp::PT_INTERP
)
2268 // We then put PT_LOAD segments before any other segments.
2269 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2271 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2274 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2275 // segment, because that is where the dynamic linker expects to find
2276 // it (this is just for efficiency; other positions would also work
2278 if (type1
== elfcpp::PT_TLS
2279 && type2
!= elfcpp::PT_TLS
2280 && type2
!= elfcpp::PT_GNU_RELRO
)
2282 if (type2
== elfcpp::PT_TLS
2283 && type1
!= elfcpp::PT_TLS
2284 && type1
!= elfcpp::PT_GNU_RELRO
)
2287 // We put the PT_GNU_RELRO segment last, because that is where the
2288 // dynamic linker expects to find it (as with PT_TLS, this is just
2290 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2292 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2295 const elfcpp::Elf_Word flags1
= seg1
->flags();
2296 const elfcpp::Elf_Word flags2
= seg2
->flags();
2298 // The order of non-PT_LOAD segments is unimportant. We simply sort
2299 // by the numeric segment type and flags values. There should not
2300 // be more than one segment with the same type and flags.
2301 if (type1
!= elfcpp::PT_LOAD
)
2304 return type1
< type2
;
2305 gold_assert(flags1
!= flags2
);
2306 return flags1
< flags2
;
2309 // If the addresses are set already, sort by load address.
2310 if (seg1
->are_addresses_set())
2312 if (!seg2
->are_addresses_set())
2315 unsigned int section_count1
= seg1
->output_section_count();
2316 unsigned int section_count2
= seg2
->output_section_count();
2317 if (section_count1
== 0 && section_count2
> 0)
2319 if (section_count1
> 0 && section_count2
== 0)
2322 uint64_t paddr1
= seg1
->first_section_load_address();
2323 uint64_t paddr2
= seg2
->first_section_load_address();
2324 if (paddr1
!= paddr2
)
2325 return paddr1
< paddr2
;
2327 else if (seg2
->are_addresses_set())
2330 // A segment which holds large data comes after a segment which does
2331 // not hold large data.
2332 if (seg1
->is_large_data_segment())
2334 if (!seg2
->is_large_data_segment())
2337 else if (seg2
->is_large_data_segment())
2340 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2341 // segments come before writable segments. Then writable segments
2342 // with data come before writable segments without data. Then
2343 // executable segments come before non-executable segments. Then
2344 // the unlikely case of a non-readable segment comes before the
2345 // normal case of a readable segment. If there are multiple
2346 // segments with the same type and flags, we require that the
2347 // address be set, and we sort by virtual address and then physical
2349 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2350 return (flags1
& elfcpp::PF_W
) == 0;
2351 if ((flags1
& elfcpp::PF_W
) != 0
2352 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2353 return seg1
->has_any_data_sections();
2354 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2355 return (flags1
& elfcpp::PF_X
) != 0;
2356 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2357 return (flags1
& elfcpp::PF_R
) == 0;
2359 // We shouldn't get here--we shouldn't create segments which we
2360 // can't distinguish.
2364 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2367 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2369 uint64_t unsigned_off
= off
;
2370 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2371 | (addr
& (abi_pagesize
- 1)));
2372 if (aligned_off
< unsigned_off
)
2373 aligned_off
+= abi_pagesize
;
2377 // Set the file offsets of all the segments, and all the sections they
2378 // contain. They have all been created. LOAD_SEG must be be laid out
2379 // first. Return the offset of the data to follow.
2382 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2383 unsigned int *pshndx
)
2385 // Sort them into the final order.
2386 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2387 Layout::Compare_segments());
2389 // Find the PT_LOAD segments, and set their addresses and offsets
2390 // and their section's addresses and offsets.
2392 if (parameters
->options().user_set_Ttext())
2393 addr
= parameters
->options().Ttext();
2394 else if (parameters
->options().output_is_position_independent())
2397 addr
= target
->default_text_segment_address();
2400 // If LOAD_SEG is NULL, then the file header and segment headers
2401 // will not be loadable. But they still need to be at offset 0 in
2402 // the file. Set their offsets now.
2403 if (load_seg
== NULL
)
2405 for (Data_list::iterator p
= this->special_output_list_
.begin();
2406 p
!= this->special_output_list_
.end();
2409 off
= align_address(off
, (*p
)->addralign());
2410 (*p
)->set_address_and_file_offset(0, off
);
2411 off
+= (*p
)->data_size();
2415 unsigned int increase_relro
= this->increase_relro_
;
2416 if (this->script_options_
->saw_sections_clause())
2419 const bool check_sections
= parameters
->options().check_sections();
2420 Output_segment
* last_load_segment
= NULL
;
2422 bool was_readonly
= false;
2423 for (Segment_list::iterator p
= this->segment_list_
.begin();
2424 p
!= this->segment_list_
.end();
2427 if ((*p
)->type() == elfcpp::PT_LOAD
)
2429 if (load_seg
!= NULL
&& load_seg
!= *p
)
2433 bool are_addresses_set
= (*p
)->are_addresses_set();
2434 if (are_addresses_set
)
2436 // When it comes to setting file offsets, we care about
2437 // the physical address.
2438 addr
= (*p
)->paddr();
2440 else if (parameters
->options().user_set_Tdata()
2441 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2442 && (!parameters
->options().user_set_Tbss()
2443 || (*p
)->has_any_data_sections()))
2445 addr
= parameters
->options().Tdata();
2446 are_addresses_set
= true;
2448 else if (parameters
->options().user_set_Tbss()
2449 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2450 && !(*p
)->has_any_data_sections())
2452 addr
= parameters
->options().Tbss();
2453 are_addresses_set
= true;
2456 uint64_t orig_addr
= addr
;
2457 uint64_t orig_off
= off
;
2459 uint64_t aligned_addr
= 0;
2460 uint64_t abi_pagesize
= target
->abi_pagesize();
2461 uint64_t common_pagesize
= target
->common_pagesize();
2463 if (!parameters
->options().nmagic()
2464 && !parameters
->options().omagic())
2465 (*p
)->set_minimum_p_align(common_pagesize
);
2467 if (!are_addresses_set
)
2469 // If the last segment was readonly, and this one is
2470 // not, then skip the address forward one page,
2471 // maintaining the same position within the page. This
2472 // lets us store both segments overlapping on a single
2473 // page in the file, but the loader will put them on
2474 // different pages in memory.
2476 addr
= align_address(addr
, (*p
)->maximum_alignment());
2477 aligned_addr
= addr
;
2479 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
2481 if ((addr
& (abi_pagesize
- 1)) != 0)
2482 addr
= addr
+ abi_pagesize
;
2485 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2488 if (!parameters
->options().nmagic()
2489 && !parameters
->options().omagic())
2490 off
= align_file_offset(off
, addr
, abi_pagesize
);
2491 else if (load_seg
== NULL
)
2493 // This is -N or -n with a section script which prevents
2494 // us from using a load segment. We need to ensure that
2495 // the file offset is aligned to the alignment of the
2496 // segment. This is because the linker script
2497 // implicitly assumed a zero offset. If we don't align
2498 // here, then the alignment of the sections in the
2499 // linker script may not match the alignment of the
2500 // sections in the set_section_addresses call below,
2501 // causing an error about dot moving backward.
2502 off
= align_address(off
, (*p
)->maximum_alignment());
2505 unsigned int shndx_hold
= *pshndx
;
2506 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2510 // Now that we know the size of this segment, we may be able
2511 // to save a page in memory, at the cost of wasting some
2512 // file space, by instead aligning to the start of a new
2513 // page. Here we use the real machine page size rather than
2514 // the ABI mandated page size.
2516 if (!are_addresses_set
&& aligned_addr
!= addr
)
2518 uint64_t first_off
= (common_pagesize
2520 & (common_pagesize
- 1)));
2521 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2524 && ((aligned_addr
& ~ (common_pagesize
- 1))
2525 != (new_addr
& ~ (common_pagesize
- 1)))
2526 && first_off
+ last_off
<= common_pagesize
)
2528 *pshndx
= shndx_hold
;
2529 addr
= align_address(aligned_addr
, common_pagesize
);
2530 addr
= align_address(addr
, (*p
)->maximum_alignment());
2531 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2532 off
= align_file_offset(off
, addr
, abi_pagesize
);
2533 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2541 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
2542 was_readonly
= true;
2544 // Implement --check-sections. We know that the segments
2545 // are sorted by LMA.
2546 if (check_sections
&& last_load_segment
!= NULL
)
2548 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2549 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2552 unsigned long long lb1
= last_load_segment
->paddr();
2553 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2554 unsigned long long lb2
= (*p
)->paddr();
2555 unsigned long long le2
= lb2
+ (*p
)->memsz();
2556 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2557 "[0x%llx -> 0x%llx]"),
2558 lb1
, le1
, lb2
, le2
);
2561 last_load_segment
= *p
;
2565 // Handle the non-PT_LOAD segments, setting their offsets from their
2566 // section's offsets.
2567 for (Segment_list::iterator p
= this->segment_list_
.begin();
2568 p
!= this->segment_list_
.end();
2571 if ((*p
)->type() != elfcpp::PT_LOAD
)
2572 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2577 // Set the TLS offsets for each section in the PT_TLS segment.
2578 if (this->tls_segment_
!= NULL
)
2579 this->tls_segment_
->set_tls_offsets();
2584 // Set the offsets of all the allocated sections when doing a
2585 // relocatable link. This does the same jobs as set_segment_offsets,
2586 // only for a relocatable link.
2589 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2590 unsigned int *pshndx
)
2594 file_header
->set_address_and_file_offset(0, 0);
2595 off
+= file_header
->data_size();
2597 for (Section_list::iterator p
= this->section_list_
.begin();
2598 p
!= this->section_list_
.end();
2601 // We skip unallocated sections here, except that group sections
2602 // have to come first.
2603 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2604 && (*p
)->type() != elfcpp::SHT_GROUP
)
2607 off
= align_address(off
, (*p
)->addralign());
2609 // The linker script might have set the address.
2610 if (!(*p
)->is_address_valid())
2611 (*p
)->set_address(0);
2612 (*p
)->set_file_offset(off
);
2613 (*p
)->finalize_data_size();
2614 off
+= (*p
)->data_size();
2616 (*p
)->set_out_shndx(*pshndx
);
2623 // Set the file offset of all the sections not associated with a
2627 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2629 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2630 p
!= this->unattached_section_list_
.end();
2633 // The symtab section is handled in create_symtab_sections.
2634 if (*p
== this->symtab_section_
)
2637 // If we've already set the data size, don't set it again.
2638 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2641 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2642 && (*p
)->requires_postprocessing())
2644 (*p
)->create_postprocessing_buffer();
2645 this->any_postprocessing_sections_
= true;
2648 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2649 && (*p
)->after_input_sections())
2651 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2652 && (!(*p
)->after_input_sections()
2653 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2655 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2656 && (!(*p
)->after_input_sections()
2657 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2660 off
= align_address(off
, (*p
)->addralign());
2661 (*p
)->set_file_offset(off
);
2662 (*p
)->finalize_data_size();
2663 off
+= (*p
)->data_size();
2665 // At this point the name must be set.
2666 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2667 this->namepool_
.add((*p
)->name(), false, NULL
);
2672 // Set the section indexes of all the sections not associated with a
2676 Layout::set_section_indexes(unsigned int shndx
)
2678 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2679 p
!= this->unattached_section_list_
.end();
2682 if (!(*p
)->has_out_shndx())
2684 (*p
)->set_out_shndx(shndx
);
2691 // Set the section addresses according to the linker script. This is
2692 // only called when we see a SECTIONS clause. This returns the
2693 // program segment which should hold the file header and segment
2694 // headers, if any. It will return NULL if they should not be in a
2698 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2700 Script_sections
* ss
= this->script_options_
->script_sections();
2701 gold_assert(ss
->saw_sections_clause());
2702 return this->script_options_
->set_section_addresses(symtab
, this);
2705 // Place the orphan sections in the linker script.
2708 Layout::place_orphan_sections_in_script()
2710 Script_sections
* ss
= this->script_options_
->script_sections();
2711 gold_assert(ss
->saw_sections_clause());
2713 // Place each orphaned output section in the script.
2714 for (Section_list::iterator p
= this->section_list_
.begin();
2715 p
!= this->section_list_
.end();
2718 if (!(*p
)->found_in_sections_clause())
2719 ss
->place_orphan(*p
);
2723 // Count the local symbols in the regular symbol table and the dynamic
2724 // symbol table, and build the respective string pools.
2727 Layout::count_local_symbols(const Task
* task
,
2728 const Input_objects
* input_objects
)
2730 // First, figure out an upper bound on the number of symbols we'll
2731 // be inserting into each pool. This helps us create the pools with
2732 // the right size, to avoid unnecessary hashtable resizing.
2733 unsigned int symbol_count
= 0;
2734 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2735 p
!= input_objects
->relobj_end();
2737 symbol_count
+= (*p
)->local_symbol_count();
2739 // Go from "upper bound" to "estimate." We overcount for two
2740 // reasons: we double-count symbols that occur in more than one
2741 // object file, and we count symbols that are dropped from the
2742 // output. Add it all together and assume we overcount by 100%.
2745 // We assume all symbols will go into both the sympool and dynpool.
2746 this->sympool_
.reserve(symbol_count
);
2747 this->dynpool_
.reserve(symbol_count
);
2749 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2750 p
!= input_objects
->relobj_end();
2753 Task_lock_obj
<Object
> tlo(task
, *p
);
2754 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2758 // Create the symbol table sections. Here we also set the final
2759 // values of the symbols. At this point all the loadable sections are
2760 // fully laid out. SHNUM is the number of sections so far.
2763 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2764 Symbol_table
* symtab
,
2770 if (parameters
->target().get_size() == 32)
2772 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2775 else if (parameters
->target().get_size() == 64)
2777 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2784 off
= align_address(off
, align
);
2785 off_t startoff
= off
;
2787 // Save space for the dummy symbol at the start of the section. We
2788 // never bother to write this out--it will just be left as zero.
2790 unsigned int local_symbol_index
= 1;
2792 // Add STT_SECTION symbols for each Output section which needs one.
2793 for (Section_list::iterator p
= this->section_list_
.begin();
2794 p
!= this->section_list_
.end();
2797 if (!(*p
)->needs_symtab_index())
2798 (*p
)->set_symtab_index(-1U);
2801 (*p
)->set_symtab_index(local_symbol_index
);
2802 ++local_symbol_index
;
2807 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2808 p
!= input_objects
->relobj_end();
2811 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2813 off
+= (index
- local_symbol_index
) * symsize
;
2814 local_symbol_index
= index
;
2817 unsigned int local_symcount
= local_symbol_index
;
2818 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2821 size_t dyn_global_index
;
2823 if (this->dynsym_section_
== NULL
)
2826 dyn_global_index
= 0;
2831 dyn_global_index
= this->dynsym_section_
->info();
2832 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2833 dynoff
= this->dynsym_section_
->offset() + locsize
;
2834 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2835 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2836 == this->dynsym_section_
->data_size() - locsize
);
2839 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2840 &this->sympool_
, &local_symcount
);
2842 if (!parameters
->options().strip_all())
2844 this->sympool_
.set_string_offsets();
2846 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2847 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2850 false, false, false);
2851 this->symtab_section_
= osymtab
;
2853 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2856 osymtab
->add_output_section_data(pos
);
2858 // We generate a .symtab_shndx section if we have more than
2859 // SHN_LORESERVE sections. Technically it is possible that we
2860 // don't need one, because it is possible that there are no
2861 // symbols in any of sections with indexes larger than
2862 // SHN_LORESERVE. That is probably unusual, though, and it is
2863 // easier to always create one than to compute section indexes
2864 // twice (once here, once when writing out the symbols).
2865 if (shnum
>= elfcpp::SHN_LORESERVE
)
2867 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2869 Output_section
* osymtab_xindex
=
2870 this->make_output_section(symtab_xindex_name
,
2871 elfcpp::SHT_SYMTAB_SHNDX
, 0, false,
2872 false, false, false, false);
2874 size_t symcount
= (off
- startoff
) / symsize
;
2875 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2877 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2879 osymtab_xindex
->set_link_section(osymtab
);
2880 osymtab_xindex
->set_addralign(4);
2881 osymtab_xindex
->set_entsize(4);
2883 osymtab_xindex
->set_after_input_sections();
2885 // This tells the driver code to wait until the symbol table
2886 // has written out before writing out the postprocessing
2887 // sections, including the .symtab_shndx section.
2888 this->any_postprocessing_sections_
= true;
2891 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2892 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2895 false, false, false);
2897 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2898 ostrtab
->add_output_section_data(pstr
);
2900 osymtab
->set_file_offset(startoff
);
2901 osymtab
->finalize_data_size();
2902 osymtab
->set_link_section(ostrtab
);
2903 osymtab
->set_info(local_symcount
);
2904 osymtab
->set_entsize(symsize
);
2910 // Create the .shstrtab section, which holds the names of the
2911 // sections. At the time this is called, we have created all the
2912 // output sections except .shstrtab itself.
2915 Layout::create_shstrtab()
2917 // FIXME: We don't need to create a .shstrtab section if we are
2918 // stripping everything.
2920 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2922 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
2923 false, false, false, false,
2926 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
2928 // We can't write out this section until we've set all the
2929 // section names, and we don't set the names of compressed
2930 // output sections until relocations are complete. FIXME: With
2931 // the current names we use, this is unnecessary.
2932 os
->set_after_input_sections();
2935 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2936 os
->add_output_section_data(posd
);
2941 // Create the section headers. SIZE is 32 or 64. OFF is the file
2945 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2947 Output_section_headers
* oshdrs
;
2948 oshdrs
= new Output_section_headers(this,
2949 &this->segment_list_
,
2950 &this->section_list_
,
2951 &this->unattached_section_list_
,
2954 off_t off
= align_address(*poff
, oshdrs
->addralign());
2955 oshdrs
->set_address_and_file_offset(0, off
);
2956 off
+= oshdrs
->data_size();
2958 this->section_headers_
= oshdrs
;
2961 // Count the allocated sections.
2964 Layout::allocated_output_section_count() const
2966 size_t section_count
= 0;
2967 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2968 p
!= this->segment_list_
.end();
2970 section_count
+= (*p
)->output_section_count();
2971 return section_count
;
2974 // Create the dynamic symbol table.
2977 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2978 Symbol_table
* symtab
,
2979 Output_section
**pdynstr
,
2980 unsigned int* plocal_dynamic_count
,
2981 std::vector
<Symbol
*>* pdynamic_symbols
,
2982 Versions
* pversions
)
2984 // Count all the symbols in the dynamic symbol table, and set the
2985 // dynamic symbol indexes.
2987 // Skip symbol 0, which is always all zeroes.
2988 unsigned int index
= 1;
2990 // Add STT_SECTION symbols for each Output section which needs one.
2991 for (Section_list::iterator p
= this->section_list_
.begin();
2992 p
!= this->section_list_
.end();
2995 if (!(*p
)->needs_dynsym_index())
2996 (*p
)->set_dynsym_index(-1U);
2999 (*p
)->set_dynsym_index(index
);
3004 // Count the local symbols that need to go in the dynamic symbol table,
3005 // and set the dynamic symbol indexes.
3006 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3007 p
!= input_objects
->relobj_end();
3010 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3014 unsigned int local_symcount
= index
;
3015 *plocal_dynamic_count
= local_symcount
;
3017 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3018 &this->dynpool_
, pversions
);
3022 const int size
= parameters
->target().get_size();
3025 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3028 else if (size
== 64)
3030 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3036 // Create the dynamic symbol table section.
3038 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3042 false, false, false);
3044 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3047 dynsym
->add_output_section_data(odata
);
3049 dynsym
->set_info(local_symcount
);
3050 dynsym
->set_entsize(symsize
);
3051 dynsym
->set_addralign(align
);
3053 this->dynsym_section_
= dynsym
;
3055 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3056 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3057 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3059 // If there are more than SHN_LORESERVE allocated sections, we
3060 // create a .dynsym_shndx section. It is possible that we don't
3061 // need one, because it is possible that there are no dynamic
3062 // symbols in any of the sections with indexes larger than
3063 // SHN_LORESERVE. This is probably unusual, though, and at this
3064 // time we don't know the actual section indexes so it is
3065 // inconvenient to check.
3066 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3068 Output_section
* dynsym_xindex
=
3069 this->choose_output_section(NULL
, ".dynsym_shndx",
3070 elfcpp::SHT_SYMTAB_SHNDX
,
3072 false, false, true, false, false, false);
3074 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3076 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3078 dynsym_xindex
->set_link_section(dynsym
);
3079 dynsym_xindex
->set_addralign(4);
3080 dynsym_xindex
->set_entsize(4);
3082 dynsym_xindex
->set_after_input_sections();
3084 // This tells the driver code to wait until the symbol table has
3085 // written out before writing out the postprocessing sections,
3086 // including the .dynsym_shndx section.
3087 this->any_postprocessing_sections_
= true;
3090 // Create the dynamic string table section.
3092 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3096 false, false, false);
3098 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3099 dynstr
->add_output_section_data(strdata
);
3101 dynsym
->set_link_section(dynstr
);
3102 this->dynamic_section_
->set_link_section(dynstr
);
3104 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3105 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3109 // Create the hash tables.
3111 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3112 || strcmp(parameters
->options().hash_style(), "both") == 0)
3114 unsigned char* phash
;
3115 unsigned int hashlen
;
3116 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3119 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
3126 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3130 hashsec
->add_output_section_data(hashdata
);
3132 hashsec
->set_link_section(dynsym
);
3133 hashsec
->set_entsize(4);
3135 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3138 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3139 || strcmp(parameters
->options().hash_style(), "both") == 0)
3141 unsigned char* phash
;
3142 unsigned int hashlen
;
3143 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3146 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
3147 elfcpp::SHT_GNU_HASH
,
3153 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3157 hashsec
->add_output_section_data(hashdata
);
3159 hashsec
->set_link_section(dynsym
);
3161 // For a 64-bit target, the entries in .gnu.hash do not have a
3162 // uniform size, so we only set the entry size for a 32-bit
3164 if (parameters
->target().get_size() == 32)
3165 hashsec
->set_entsize(4);
3167 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3171 // Assign offsets to each local portion of the dynamic symbol table.
3174 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3176 Output_section
* dynsym
= this->dynsym_section_
;
3177 gold_assert(dynsym
!= NULL
);
3179 off_t off
= dynsym
->offset();
3181 // Skip the dummy symbol at the start of the section.
3182 off
+= dynsym
->entsize();
3184 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3185 p
!= input_objects
->relobj_end();
3188 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3189 off
+= count
* dynsym
->entsize();
3193 // Create the version sections.
3196 Layout::create_version_sections(const Versions
* versions
,
3197 const Symbol_table
* symtab
,
3198 unsigned int local_symcount
,
3199 const std::vector
<Symbol
*>& dynamic_symbols
,
3200 const Output_section
* dynstr
)
3202 if (!versions
->any_defs() && !versions
->any_needs())
3205 switch (parameters
->size_and_endianness())
3207 #ifdef HAVE_TARGET_32_LITTLE
3208 case Parameters::TARGET_32_LITTLE
:
3209 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3211 dynamic_symbols
, dynstr
);
3214 #ifdef HAVE_TARGET_32_BIG
3215 case Parameters::TARGET_32_BIG
:
3216 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3218 dynamic_symbols
, dynstr
);
3221 #ifdef HAVE_TARGET_64_LITTLE
3222 case Parameters::TARGET_64_LITTLE
:
3223 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3225 dynamic_symbols
, dynstr
);
3228 #ifdef HAVE_TARGET_64_BIG
3229 case Parameters::TARGET_64_BIG
:
3230 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3232 dynamic_symbols
, dynstr
);
3240 // Create the version sections, sized version.
3242 template<int size
, bool big_endian
>
3244 Layout::sized_create_version_sections(
3245 const Versions
* versions
,
3246 const Symbol_table
* symtab
,
3247 unsigned int local_symcount
,
3248 const std::vector
<Symbol
*>& dynamic_symbols
,
3249 const Output_section
* dynstr
)
3251 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3252 elfcpp::SHT_GNU_versym
,
3255 false, false, false);
3257 unsigned char* vbuf
;
3259 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3264 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3267 vsec
->add_output_section_data(vdata
);
3268 vsec
->set_entsize(2);
3269 vsec
->set_link_section(this->dynsym_section_
);
3271 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3272 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3274 if (versions
->any_defs())
3276 Output_section
* vdsec
;
3277 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3278 elfcpp::SHT_GNU_verdef
,
3280 false, false, true, false, false,
3283 unsigned char* vdbuf
;
3284 unsigned int vdsize
;
3285 unsigned int vdentries
;
3286 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3287 &vdsize
, &vdentries
);
3289 Output_section_data
* vddata
=
3290 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3292 vdsec
->add_output_section_data(vddata
);
3293 vdsec
->set_link_section(dynstr
);
3294 vdsec
->set_info(vdentries
);
3296 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3297 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3300 if (versions
->any_needs())
3302 Output_section
* vnsec
;
3303 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3304 elfcpp::SHT_GNU_verneed
,
3306 false, false, true, false, false,
3309 unsigned char* vnbuf
;
3310 unsigned int vnsize
;
3311 unsigned int vnentries
;
3312 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3316 Output_section_data
* vndata
=
3317 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3319 vnsec
->add_output_section_data(vndata
);
3320 vnsec
->set_link_section(dynstr
);
3321 vnsec
->set_info(vnentries
);
3323 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3324 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3328 // Create the .interp section and PT_INTERP segment.
3331 Layout::create_interp(const Target
* target
)
3333 const char* interp
= parameters
->options().dynamic_linker();
3336 interp
= target
->dynamic_linker();
3337 gold_assert(interp
!= NULL
);
3340 size_t len
= strlen(interp
) + 1;
3342 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3344 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3345 elfcpp::SHT_PROGBITS
,
3348 false, false, false);
3349 osec
->add_output_section_data(odata
);
3351 if (!this->script_options_
->saw_phdrs_clause())
3353 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3355 oseg
->add_output_section(osec
, elfcpp::PF_R
, false);
3359 // Add dynamic tags for the PLT and the dynamic relocs. This is
3360 // called by the target-specific code. This does nothing if not doing
3363 // USE_REL is true for REL relocs rather than RELA relocs.
3365 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3367 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3368 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3369 // some targets have multiple reloc sections in PLT_REL.
3371 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3372 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3374 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3378 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3379 const Output_data
* plt_rel
,
3380 const Output_data_reloc_generic
* dyn_rel
,
3381 bool add_debug
, bool dynrel_includes_plt
)
3383 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3387 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3388 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3390 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3392 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3393 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3394 odyn
->add_constant(elfcpp::DT_PLTREL
,
3395 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3398 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3400 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3402 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3403 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3406 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3408 const int size
= parameters
->target().get_size();
3413 rel_tag
= elfcpp::DT_RELENT
;
3415 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3416 else if (size
== 64)
3417 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3423 rel_tag
= elfcpp::DT_RELAENT
;
3425 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3426 else if (size
== 64)
3427 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3431 odyn
->add_constant(rel_tag
, rel_size
);
3433 if (parameters
->options().combreloc())
3435 size_t c
= dyn_rel
->relative_reloc_count();
3437 odyn
->add_constant((use_rel
3438 ? elfcpp::DT_RELCOUNT
3439 : elfcpp::DT_RELACOUNT
),
3444 if (add_debug
&& !parameters
->options().shared())
3446 // The value of the DT_DEBUG tag is filled in by the dynamic
3447 // linker at run time, and used by the debugger.
3448 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3452 // Finish the .dynamic section and PT_DYNAMIC segment.
3455 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3456 const Symbol_table
* symtab
)
3458 if (!this->script_options_
->saw_phdrs_clause())
3460 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3463 oseg
->add_output_section(this->dynamic_section_
,
3464 elfcpp::PF_R
| elfcpp::PF_W
,
3468 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3470 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3471 p
!= input_objects
->dynobj_end();
3474 if (!(*p
)->is_needed()
3475 && (*p
)->input_file()->options().as_needed())
3477 // This dynamic object was linked with --as-needed, but it
3482 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3485 if (parameters
->options().shared())
3487 const char* soname
= parameters
->options().soname();
3489 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3492 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3493 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3494 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3496 sym
= symtab
->lookup(parameters
->options().fini());
3497 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3498 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3500 // Look for .init_array, .preinit_array and .fini_array by checking
3502 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3503 p
!= this->section_list_
.end();
3505 switch((*p
)->type())
3507 case elfcpp::SHT_FINI_ARRAY
:
3508 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3509 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3511 case elfcpp::SHT_INIT_ARRAY
:
3512 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3513 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3515 case elfcpp::SHT_PREINIT_ARRAY
:
3516 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3517 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3523 // Add a DT_RPATH entry if needed.
3524 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3527 std::string rpath_val
;
3528 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3532 if (rpath_val
.empty())
3533 rpath_val
= p
->name();
3536 // Eliminate duplicates.
3537 General_options::Dir_list::const_iterator q
;
3538 for (q
= rpath
.begin(); q
!= p
; ++q
)
3539 if (q
->name() == p
->name())
3544 rpath_val
+= p
->name();
3549 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3550 if (parameters
->options().enable_new_dtags())
3551 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3554 // Look for text segments that have dynamic relocations.
3555 bool have_textrel
= false;
3556 if (!this->script_options_
->saw_sections_clause())
3558 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3559 p
!= this->segment_list_
.end();
3562 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3563 && (*p
)->dynamic_reloc_count() > 0)
3565 have_textrel
= true;
3572 // We don't know the section -> segment mapping, so we are
3573 // conservative and just look for readonly sections with
3574 // relocations. If those sections wind up in writable segments,
3575 // then we have created an unnecessary DT_TEXTREL entry.
3576 for (Section_list::const_iterator p
= this->section_list_
.begin();
3577 p
!= this->section_list_
.end();
3580 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3581 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3582 && ((*p
)->dynamic_reloc_count() > 0))
3584 have_textrel
= true;
3590 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3591 // post-link tools can easily modify these flags if desired.
3592 unsigned int flags
= 0;
3595 // Add a DT_TEXTREL for compatibility with older loaders.
3596 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3597 flags
|= elfcpp::DF_TEXTREL
;
3599 if (parameters
->options().text())
3600 gold_error(_("read-only segment has dynamic relocations"));
3601 else if (parameters
->options().warn_shared_textrel()
3602 && parameters
->options().shared())
3603 gold_warning(_("shared library text segment is not shareable"));
3605 if (parameters
->options().shared() && this->has_static_tls())
3606 flags
|= elfcpp::DF_STATIC_TLS
;
3607 if (parameters
->options().origin())
3608 flags
|= elfcpp::DF_ORIGIN
;
3609 if (parameters
->options().Bsymbolic())
3611 flags
|= elfcpp::DF_SYMBOLIC
;
3612 // Add DT_SYMBOLIC for compatibility with older loaders.
3613 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3615 if (parameters
->options().now())
3616 flags
|= elfcpp::DF_BIND_NOW
;
3617 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3620 if (parameters
->options().initfirst())
3621 flags
|= elfcpp::DF_1_INITFIRST
;
3622 if (parameters
->options().interpose())
3623 flags
|= elfcpp::DF_1_INTERPOSE
;
3624 if (parameters
->options().loadfltr())
3625 flags
|= elfcpp::DF_1_LOADFLTR
;
3626 if (parameters
->options().nodefaultlib())
3627 flags
|= elfcpp::DF_1_NODEFLIB
;
3628 if (parameters
->options().nodelete())
3629 flags
|= elfcpp::DF_1_NODELETE
;
3630 if (parameters
->options().nodlopen())
3631 flags
|= elfcpp::DF_1_NOOPEN
;
3632 if (parameters
->options().nodump())
3633 flags
|= elfcpp::DF_1_NODUMP
;
3634 if (!parameters
->options().shared())
3635 flags
&= ~(elfcpp::DF_1_INITFIRST
3636 | elfcpp::DF_1_NODELETE
3637 | elfcpp::DF_1_NOOPEN
);
3638 if (parameters
->options().origin())
3639 flags
|= elfcpp::DF_1_ORIGIN
;
3640 if (parameters
->options().now())
3641 flags
|= elfcpp::DF_1_NOW
;
3643 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3646 // Set the size of the _DYNAMIC symbol table to be the size of the
3650 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3652 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3653 odyn
->finalize_data_size();
3654 off_t data_size
= odyn
->data_size();
3655 const int size
= parameters
->target().get_size();
3657 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3658 else if (size
== 64)
3659 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3664 // The mapping of input section name prefixes to output section names.
3665 // In some cases one prefix is itself a prefix of another prefix; in
3666 // such a case the longer prefix must come first. These prefixes are
3667 // based on the GNU linker default ELF linker script.
3669 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3670 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3672 MAPPING_INIT(".text.", ".text"),
3673 MAPPING_INIT(".ctors.", ".ctors"),
3674 MAPPING_INIT(".dtors.", ".dtors"),
3675 MAPPING_INIT(".rodata.", ".rodata"),
3676 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3677 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3678 MAPPING_INIT(".data.", ".data"),
3679 MAPPING_INIT(".bss.", ".bss"),
3680 MAPPING_INIT(".tdata.", ".tdata"),
3681 MAPPING_INIT(".tbss.", ".tbss"),
3682 MAPPING_INIT(".init_array.", ".init_array"),
3683 MAPPING_INIT(".fini_array.", ".fini_array"),
3684 MAPPING_INIT(".sdata.", ".sdata"),
3685 MAPPING_INIT(".sbss.", ".sbss"),
3686 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3687 // differently depending on whether it is creating a shared library.
3688 MAPPING_INIT(".sdata2.", ".sdata"),
3689 MAPPING_INIT(".sbss2.", ".sbss"),
3690 MAPPING_INIT(".lrodata.", ".lrodata"),
3691 MAPPING_INIT(".ldata.", ".ldata"),
3692 MAPPING_INIT(".lbss.", ".lbss"),
3693 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3694 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3695 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3696 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3697 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3698 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3699 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3700 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3701 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3702 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3703 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3704 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3705 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3706 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3707 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3708 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3709 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3710 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3711 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3712 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3713 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3717 const int Layout::section_name_mapping_count
=
3718 (sizeof(Layout::section_name_mapping
)
3719 / sizeof(Layout::section_name_mapping
[0]));
3721 // Choose the output section name to use given an input section name.
3722 // Set *PLEN to the length of the name. *PLEN is initialized to the
3726 Layout::output_section_name(const char* name
, size_t* plen
)
3728 // gcc 4.3 generates the following sorts of section names when it
3729 // needs a section name specific to a function:
3735 // .data.rel.local.FN
3737 // .data.rel.ro.local.FN
3744 // The GNU linker maps all of those to the part before the .FN,
3745 // except that .data.rel.local.FN is mapped to .data, and
3746 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3747 // beginning with .data.rel.ro.local are grouped together.
3749 // For an anonymous namespace, the string FN can contain a '.'.
3751 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3752 // GNU linker maps to .rodata.
3754 // The .data.rel.ro sections are used with -z relro. The sections
3755 // are recognized by name. We use the same names that the GNU
3756 // linker does for these sections.
3758 // It is hard to handle this in a principled way, so we don't even
3759 // try. We use a table of mappings. If the input section name is
3760 // not found in the table, we simply use it as the output section
3763 const Section_name_mapping
* psnm
= section_name_mapping
;
3764 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3766 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3768 *plen
= psnm
->tolen
;
3776 // Check if a comdat group or .gnu.linkonce section with the given
3777 // NAME is selected for the link. If there is already a section,
3778 // *KEPT_SECTION is set to point to the existing section and the
3779 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3780 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3781 // *KEPT_SECTION is set to the internal copy and the function returns
3785 Layout::find_or_add_kept_section(const std::string
& name
,
3790 Kept_section
** kept_section
)
3792 // It's normal to see a couple of entries here, for the x86 thunk
3793 // sections. If we see more than a few, we're linking a C++
3794 // program, and we resize to get more space to minimize rehashing.
3795 if (this->signatures_
.size() > 4
3796 && !this->resized_signatures_
)
3798 reserve_unordered_map(&this->signatures_
,
3799 this->number_of_input_files_
* 64);
3800 this->resized_signatures_
= true;
3803 Kept_section candidate
;
3804 std::pair
<Signatures::iterator
, bool> ins
=
3805 this->signatures_
.insert(std::make_pair(name
, candidate
));
3807 if (kept_section
!= NULL
)
3808 *kept_section
= &ins
.first
->second
;
3811 // This is the first time we've seen this signature.
3812 ins
.first
->second
.set_object(object
);
3813 ins
.first
->second
.set_shndx(shndx
);
3815 ins
.first
->second
.set_is_comdat();
3817 ins
.first
->second
.set_is_group_name();
3821 // We have already seen this signature.
3823 if (ins
.first
->second
.is_group_name())
3825 // We've already seen a real section group with this signature.
3826 // If the kept group is from a plugin object, and we're in the
3827 // replacement phase, accept the new one as a replacement.
3828 if (ins
.first
->second
.object() == NULL
3829 && parameters
->options().plugins()->in_replacement_phase())
3831 ins
.first
->second
.set_object(object
);
3832 ins
.first
->second
.set_shndx(shndx
);
3837 else if (is_group_name
)
3839 // This is a real section group, and we've already seen a
3840 // linkonce section with this signature. Record that we've seen
3841 // a section group, and don't include this section group.
3842 ins
.first
->second
.set_is_group_name();
3847 // We've already seen a linkonce section and this is a linkonce
3848 // section. These don't block each other--this may be the same
3849 // symbol name with different section types.
3854 // Store the allocated sections into the section list.
3857 Layout::get_allocated_sections(Section_list
* section_list
) const
3859 for (Section_list::const_iterator p
= this->section_list_
.begin();
3860 p
!= this->section_list_
.end();
3862 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3863 section_list
->push_back(*p
);
3866 // Create an output segment.
3869 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3871 gold_assert(!parameters
->options().relocatable());
3872 Output_segment
* oseg
= new Output_segment(type
, flags
);
3873 this->segment_list_
.push_back(oseg
);
3875 if (type
== elfcpp::PT_TLS
)
3876 this->tls_segment_
= oseg
;
3877 else if (type
== elfcpp::PT_GNU_RELRO
)
3878 this->relro_segment_
= oseg
;
3883 // Write out the Output_sections. Most won't have anything to write,
3884 // since most of the data will come from input sections which are
3885 // handled elsewhere. But some Output_sections do have Output_data.
3888 Layout::write_output_sections(Output_file
* of
) const
3890 for (Section_list::const_iterator p
= this->section_list_
.begin();
3891 p
!= this->section_list_
.end();
3894 if (!(*p
)->after_input_sections())
3899 // Write out data not associated with a section or the symbol table.
3902 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3904 if (!parameters
->options().strip_all())
3906 const Output_section
* symtab_section
= this->symtab_section_
;
3907 for (Section_list::const_iterator p
= this->section_list_
.begin();
3908 p
!= this->section_list_
.end();
3911 if ((*p
)->needs_symtab_index())
3913 gold_assert(symtab_section
!= NULL
);
3914 unsigned int index
= (*p
)->symtab_index();
3915 gold_assert(index
> 0 && index
!= -1U);
3916 off_t off
= (symtab_section
->offset()
3917 + index
* symtab_section
->entsize());
3918 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3923 const Output_section
* dynsym_section
= this->dynsym_section_
;
3924 for (Section_list::const_iterator p
= this->section_list_
.begin();
3925 p
!= this->section_list_
.end();
3928 if ((*p
)->needs_dynsym_index())
3930 gold_assert(dynsym_section
!= NULL
);
3931 unsigned int index
= (*p
)->dynsym_index();
3932 gold_assert(index
> 0 && index
!= -1U);
3933 off_t off
= (dynsym_section
->offset()
3934 + index
* dynsym_section
->entsize());
3935 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3939 // Write out the Output_data which are not in an Output_section.
3940 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3941 p
!= this->special_output_list_
.end();
3946 // Write out the Output_sections which can only be written after the
3947 // input sections are complete.
3950 Layout::write_sections_after_input_sections(Output_file
* of
)
3952 // Determine the final section offsets, and thus the final output
3953 // file size. Note we finalize the .shstrab last, to allow the
3954 // after_input_section sections to modify their section-names before
3956 if (this->any_postprocessing_sections_
)
3958 off_t off
= this->output_file_size_
;
3959 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3961 // Now that we've finalized the names, we can finalize the shstrab.
3963 this->set_section_offsets(off
,
3964 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3966 if (off
> this->output_file_size_
)
3969 this->output_file_size_
= off
;
3973 for (Section_list::const_iterator p
= this->section_list_
.begin();
3974 p
!= this->section_list_
.end();
3977 if ((*p
)->after_input_sections())
3981 this->section_headers_
->write(of
);
3984 // If the build ID requires computing a checksum, do so here, and
3985 // write it out. We compute a checksum over the entire file because
3986 // that is simplest.
3989 Layout::write_build_id(Output_file
* of
) const
3991 if (this->build_id_note_
== NULL
)
3994 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3996 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3997 this->build_id_note_
->data_size());
3999 const char* style
= parameters
->options().build_id();
4000 if (strcmp(style
, "sha1") == 0)
4003 sha1_init_ctx(&ctx
);
4004 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4005 sha1_finish_ctx(&ctx
, ov
);
4007 else if (strcmp(style
, "md5") == 0)
4011 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4012 md5_finish_ctx(&ctx
, ov
);
4017 of
->write_output_view(this->build_id_note_
->offset(),
4018 this->build_id_note_
->data_size(),
4021 of
->free_input_view(0, this->output_file_size_
, iv
);
4024 // Write out a binary file. This is called after the link is
4025 // complete. IN is the temporary output file we used to generate the
4026 // ELF code. We simply walk through the segments, read them from
4027 // their file offset in IN, and write them to their load address in
4028 // the output file. FIXME: with a bit more work, we could support
4029 // S-records and/or Intel hex format here.
4032 Layout::write_binary(Output_file
* in
) const
4034 gold_assert(parameters
->options().oformat_enum()
4035 == General_options::OBJECT_FORMAT_BINARY
);
4037 // Get the size of the binary file.
4038 uint64_t max_load_address
= 0;
4039 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4040 p
!= this->segment_list_
.end();
4043 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4045 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4046 if (max_paddr
> max_load_address
)
4047 max_load_address
= max_paddr
;
4051 Output_file
out(parameters
->options().output_file_name());
4052 out
.open(max_load_address
);
4054 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4055 p
!= this->segment_list_
.end();
4058 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4060 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4062 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4064 memcpy(vout
, vin
, (*p
)->filesz());
4065 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4066 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4073 // Print the output sections to the map file.
4076 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4078 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4079 p
!= this->segment_list_
.end();
4081 (*p
)->print_sections_to_mapfile(mapfile
);
4084 // Print statistical information to stderr. This is used for --stats.
4087 Layout::print_stats() const
4089 this->namepool_
.print_stats("section name pool");
4090 this->sympool_
.print_stats("output symbol name pool");
4091 this->dynpool_
.print_stats("dynamic name pool");
4093 for (Section_list::const_iterator p
= this->section_list_
.begin();
4094 p
!= this->section_list_
.end();
4096 (*p
)->print_merge_stats();
4099 // Write_sections_task methods.
4101 // We can always run this task.
4104 Write_sections_task::is_runnable()
4109 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4113 Write_sections_task::locks(Task_locker
* tl
)
4115 tl
->add(this, this->output_sections_blocker_
);
4116 tl
->add(this, this->final_blocker_
);
4119 // Run the task--write out the data.
4122 Write_sections_task::run(Workqueue
*)
4124 this->layout_
->write_output_sections(this->of_
);
4127 // Write_data_task methods.
4129 // We can always run this task.
4132 Write_data_task::is_runnable()
4137 // We need to unlock FINAL_BLOCKER when finished.
4140 Write_data_task::locks(Task_locker
* tl
)
4142 tl
->add(this, this->final_blocker_
);
4145 // Run the task--write out the data.
4148 Write_data_task::run(Workqueue
*)
4150 this->layout_
->write_data(this->symtab_
, this->of_
);
4153 // Write_symbols_task methods.
4155 // We can always run this task.
4158 Write_symbols_task::is_runnable()
4163 // We need to unlock FINAL_BLOCKER when finished.
4166 Write_symbols_task::locks(Task_locker
* tl
)
4168 tl
->add(this, this->final_blocker_
);
4171 // Run the task--write out the symbols.
4174 Write_symbols_task::run(Workqueue
*)
4176 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4177 this->layout_
->symtab_xindex(),
4178 this->layout_
->dynsym_xindex(), this->of_
);
4181 // Write_after_input_sections_task methods.
4183 // We can only run this task after the input sections have completed.
4186 Write_after_input_sections_task::is_runnable()
4188 if (this->input_sections_blocker_
->is_blocked())
4189 return this->input_sections_blocker_
;
4193 // We need to unlock FINAL_BLOCKER when finished.
4196 Write_after_input_sections_task::locks(Task_locker
* tl
)
4198 tl
->add(this, this->final_blocker_
);
4204 Write_after_input_sections_task::run(Workqueue
*)
4206 this->layout_
->write_sections_after_input_sections(this->of_
);
4209 // Close_task_runner methods.
4211 // Run the task--close the file.
4214 Close_task_runner::run(Workqueue
*, const Task
*)
4216 // If we need to compute a checksum for the BUILD if, we do so here.
4217 this->layout_
->write_build_id(this->of_
);
4219 // If we've been asked to create a binary file, we do so here.
4220 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4221 this->layout_
->write_binary(this->of_
);
4226 // Instantiate the templates we need. We could use the configure
4227 // script to restrict this to only the ones for implemented targets.
4229 #ifdef HAVE_TARGET_32_LITTLE
4232 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4234 const elfcpp::Shdr
<32, false>& shdr
,
4235 unsigned int, unsigned int, off_t
*);
4238 #ifdef HAVE_TARGET_32_BIG
4241 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4243 const elfcpp::Shdr
<32, true>& shdr
,
4244 unsigned int, unsigned int, off_t
*);
4247 #ifdef HAVE_TARGET_64_LITTLE
4250 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4252 const elfcpp::Shdr
<64, false>& shdr
,
4253 unsigned int, unsigned int, off_t
*);
4256 #ifdef HAVE_TARGET_64_BIG
4259 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4261 const elfcpp::Shdr
<64, true>& shdr
,
4262 unsigned int, unsigned int, off_t
*);
4265 #ifdef HAVE_TARGET_32_LITTLE
4268 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4269 unsigned int reloc_shndx
,
4270 const elfcpp::Shdr
<32, false>& shdr
,
4271 Output_section
* data_section
,
4272 Relocatable_relocs
* rr
);
4275 #ifdef HAVE_TARGET_32_BIG
4278 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4279 unsigned int reloc_shndx
,
4280 const elfcpp::Shdr
<32, true>& shdr
,
4281 Output_section
* data_section
,
4282 Relocatable_relocs
* rr
);
4285 #ifdef HAVE_TARGET_64_LITTLE
4288 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4289 unsigned int reloc_shndx
,
4290 const elfcpp::Shdr
<64, false>& shdr
,
4291 Output_section
* data_section
,
4292 Relocatable_relocs
* rr
);
4295 #ifdef HAVE_TARGET_64_BIG
4298 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4299 unsigned int reloc_shndx
,
4300 const elfcpp::Shdr
<64, true>& shdr
,
4301 Output_section
* data_section
,
4302 Relocatable_relocs
* rr
);
4305 #ifdef HAVE_TARGET_32_LITTLE
4308 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4309 Sized_relobj
<32, false>* object
,
4311 const char* group_section_name
,
4312 const char* signature
,
4313 const elfcpp::Shdr
<32, false>& shdr
,
4314 elfcpp::Elf_Word flags
,
4315 std::vector
<unsigned int>* shndxes
);
4318 #ifdef HAVE_TARGET_32_BIG
4321 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4322 Sized_relobj
<32, true>* object
,
4324 const char* group_section_name
,
4325 const char* signature
,
4326 const elfcpp::Shdr
<32, true>& shdr
,
4327 elfcpp::Elf_Word flags
,
4328 std::vector
<unsigned int>* shndxes
);
4331 #ifdef HAVE_TARGET_64_LITTLE
4334 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4335 Sized_relobj
<64, false>* object
,
4337 const char* group_section_name
,
4338 const char* signature
,
4339 const elfcpp::Shdr
<64, false>& shdr
,
4340 elfcpp::Elf_Word flags
,
4341 std::vector
<unsigned int>* shndxes
);
4344 #ifdef HAVE_TARGET_64_BIG
4347 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4348 Sized_relobj
<64, true>* object
,
4350 const char* group_section_name
,
4351 const char* signature
,
4352 const elfcpp::Shdr
<64, true>& shdr
,
4353 elfcpp::Elf_Word flags
,
4354 std::vector
<unsigned int>* shndxes
);
4357 #ifdef HAVE_TARGET_32_LITTLE
4360 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4361 const unsigned char* symbols
,
4363 const unsigned char* symbol_names
,
4364 off_t symbol_names_size
,
4366 const elfcpp::Shdr
<32, false>& shdr
,
4367 unsigned int reloc_shndx
,
4368 unsigned int reloc_type
,
4372 #ifdef HAVE_TARGET_32_BIG
4375 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4376 const unsigned char* symbols
,
4378 const unsigned char* symbol_names
,
4379 off_t symbol_names_size
,
4381 const elfcpp::Shdr
<32, true>& shdr
,
4382 unsigned int reloc_shndx
,
4383 unsigned int reloc_type
,
4387 #ifdef HAVE_TARGET_64_LITTLE
4390 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4391 const unsigned char* symbols
,
4393 const unsigned char* symbol_names
,
4394 off_t symbol_names_size
,
4396 const elfcpp::Shdr
<64, false>& shdr
,
4397 unsigned int reloc_shndx
,
4398 unsigned int reloc_type
,
4402 #ifdef HAVE_TARGET_64_BIG
4405 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4406 const unsigned char* symbols
,
4408 const unsigned char* symbol_names
,
4409 off_t symbol_names_size
,
4411 const elfcpp::Shdr
<64, true>& shdr
,
4412 unsigned int reloc_shndx
,
4413 unsigned int reloc_type
,
4417 } // End namespace gold.