* ar.c (long_options): Add target.
[binutils.git] / bfd / elf64-sparc.c
blob9f05b85fa576415af32044c3ea3dc50bb448d2bd
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
40 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
46 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
49 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
50 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
51 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
52 for the same location, R_SPARC_LO10 and R_SPARC_13. */
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 Elf_Internal_Shdr *rel_hdr,
57 asymbol **symbols, bfd_boolean dynamic)
59 PTR allocated = NULL;
60 bfd_byte *native_relocs;
61 arelent *relent;
62 unsigned int i;
63 int entsize;
64 bfd_size_type count;
65 arelent *relents;
67 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68 if (allocated == NULL)
69 goto error_return;
71 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73 goto error_return;
75 native_relocs = (bfd_byte *) allocated;
77 relents = asect->relocation + canon_reloc_count (asect);
79 entsize = rel_hdr->sh_entsize;
80 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
82 count = rel_hdr->sh_size / entsize;
84 for (i = 0, relent = relents; i < count;
85 i++, relent++, native_relocs += entsize)
87 Elf_Internal_Rela rela;
88 unsigned int r_type;
90 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
92 /* The address of an ELF reloc is section relative for an object
93 file, and absolute for an executable file or shared library.
94 The address of a normal BFD reloc is always section relative,
95 and the address of a dynamic reloc is absolute.. */
96 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 relent->address = rela.r_offset;
98 else
99 relent->address = rela.r_offset - asect->vma;
101 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
102 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103 else
105 asymbol **ps, *s;
107 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 s = *ps;
110 /* Canonicalize ELF section symbols. FIXME: Why? */
111 if ((s->flags & BSF_SECTION_SYM) == 0)
112 relent->sym_ptr_ptr = ps;
113 else
114 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
117 relent->addend = rela.r_addend;
119 r_type = ELF64_R_TYPE_ID (rela.r_info);
120 if (r_type == R_SPARC_OLO10)
122 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 relent[1].address = relent->address;
124 relent++;
125 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129 else
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
133 canon_reloc_count (asect) += relent - relents;
135 if (allocated != NULL)
136 free (allocated);
138 return TRUE;
140 error_return:
141 if (allocated != NULL)
142 free (allocated);
143 return FALSE;
146 /* Read in and swap the external relocs. */
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 asymbol **symbols, bfd_boolean dynamic)
152 struct bfd_elf_section_data * const d = elf_section_data (asect);
153 Elf_Internal_Shdr *rel_hdr;
154 Elf_Internal_Shdr *rel_hdr2;
155 bfd_size_type amt;
157 if (asect->relocation != NULL)
158 return TRUE;
160 if (! dynamic)
162 if ((asect->flags & SEC_RELOC) == 0
163 || asect->reloc_count == 0)
164 return TRUE;
166 rel_hdr = d->rel.hdr;
167 rel_hdr2 = d->rela.hdr;
169 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
170 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172 else
174 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 case because relocations against this section may use the
176 dynamic symbol table, and in that case bfd_section_from_shdr
177 in elf.c does not update the RELOC_COUNT. */
178 if (asect->size == 0)
179 return TRUE;
181 rel_hdr = &d->this_hdr;
182 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183 rel_hdr2 = NULL;
186 amt = asect->reloc_count;
187 amt *= 2 * sizeof (arelent);
188 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189 if (asect->relocation == NULL)
190 return FALSE;
192 /* The elf64_sparc_slurp_one_reloc_table routine increments
193 canon_reloc_count. */
194 canon_reloc_count (asect) = 0;
196 if (rel_hdr
197 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
198 dynamic))
199 return FALSE;
201 if (rel_hdr2
202 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
203 dynamic))
204 return FALSE;
206 return TRUE;
209 /* Canonicalize the relocs. */
211 static long
212 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
213 arelent **relptr, asymbol **symbols)
215 arelent *tblptr;
216 unsigned int i;
217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
219 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
220 return -1;
222 tblptr = section->relocation;
223 for (i = 0; i < canon_reloc_count (section); i++)
224 *relptr++ = tblptr++;
226 *relptr = NULL;
228 return canon_reloc_count (section);
232 /* Canonicalize the dynamic relocation entries. Note that we return
233 the dynamic relocations as a single block, although they are
234 actually associated with particular sections; the interface, which
235 was designed for SunOS style shared libraries, expects that there
236 is only one set of dynamic relocs. Any section that was actually
237 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
238 the dynamic symbol table, is considered to be a dynamic reloc
239 section. */
241 static long
242 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
243 asymbol **syms)
245 asection *s;
246 long ret;
248 if (elf_dynsymtab (abfd) == 0)
250 bfd_set_error (bfd_error_invalid_operation);
251 return -1;
254 ret = 0;
255 for (s = abfd->sections; s != NULL; s = s->next)
257 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
258 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
260 arelent *p;
261 long count, i;
263 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
264 return -1;
265 count = canon_reloc_count (s);
266 p = s->relocation;
267 for (i = 0; i < count; i++)
268 *storage++ = p++;
269 ret += count;
273 *storage = NULL;
275 return ret;
278 /* Write out the relocs. */
280 static void
281 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
283 bfd_boolean *failedp = (bfd_boolean *) data;
284 Elf_Internal_Shdr *rela_hdr;
285 bfd_vma addr_offset;
286 Elf64_External_Rela *outbound_relocas, *src_rela;
287 unsigned int idx, count;
288 asymbol *last_sym = 0;
289 int last_sym_idx = 0;
291 /* If we have already failed, don't do anything. */
292 if (*failedp)
293 return;
295 if ((sec->flags & SEC_RELOC) == 0)
296 return;
298 /* The linker backend writes the relocs out itself, and sets the
299 reloc_count field to zero to inhibit writing them here. Also,
300 sometimes the SEC_RELOC flag gets set even when there aren't any
301 relocs. */
302 if (sec->reloc_count == 0)
303 return;
305 /* We can combine two relocs that refer to the same address
306 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
307 latter is R_SPARC_13 with no associated symbol. */
308 count = 0;
309 for (idx = 0; idx < sec->reloc_count; idx++)
311 bfd_vma addr;
313 ++count;
315 addr = sec->orelocation[idx]->address;
316 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
317 && idx < sec->reloc_count - 1)
319 arelent *r = sec->orelocation[idx + 1];
321 if (r->howto->type == R_SPARC_13
322 && r->address == addr
323 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
324 && (*r->sym_ptr_ptr)->value == 0)
325 ++idx;
329 rela_hdr = elf_section_data (sec)->rela.hdr;
331 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
332 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
333 if (rela_hdr->contents == NULL)
335 *failedp = TRUE;
336 return;
339 /* Figure out whether the relocations are RELA or REL relocations. */
340 if (rela_hdr->sh_type != SHT_RELA)
341 abort ();
343 /* The address of an ELF reloc is section relative for an object
344 file, and absolute for an executable file or shared library.
345 The address of a BFD reloc is always section relative. */
346 addr_offset = 0;
347 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
348 addr_offset = sec->vma;
350 /* orelocation has the data, reloc_count has the count... */
351 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
352 src_rela = outbound_relocas;
354 for (idx = 0; idx < sec->reloc_count; idx++)
356 Elf_Internal_Rela dst_rela;
357 arelent *ptr;
358 asymbol *sym;
359 int n;
361 ptr = sec->orelocation[idx];
362 sym = *ptr->sym_ptr_ptr;
363 if (sym == last_sym)
364 n = last_sym_idx;
365 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
366 n = STN_UNDEF;
367 else
369 last_sym = sym;
370 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
371 if (n < 0)
373 *failedp = TRUE;
374 return;
376 last_sym_idx = n;
379 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
380 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
381 && ! _bfd_elf_validate_reloc (abfd, ptr))
383 *failedp = TRUE;
384 return;
387 if (ptr->howto->type == R_SPARC_LO10
388 && idx < sec->reloc_count - 1)
390 arelent *r = sec->orelocation[idx + 1];
392 if (r->howto->type == R_SPARC_13
393 && r->address == ptr->address
394 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
395 && (*r->sym_ptr_ptr)->value == 0)
397 idx++;
398 dst_rela.r_info
399 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
400 R_SPARC_OLO10));
402 else
403 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405 else
406 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
408 dst_rela.r_offset = ptr->address + addr_offset;
409 dst_rela.r_addend = ptr->addend;
411 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
412 ++src_rela;
416 /* Hook called by the linker routine which adds symbols from an object
417 file. We use it for STT_REGISTER symbols. */
419 static bfd_boolean
420 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
421 Elf_Internal_Sym *sym, const char **namep,
422 flagword *flagsp ATTRIBUTE_UNUSED,
423 asection **secp ATTRIBUTE_UNUSED,
424 bfd_vma *valp ATTRIBUTE_UNUSED)
426 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
428 if ((abfd->flags & DYNAMIC) == 0
429 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
430 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
432 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
434 int reg;
435 struct _bfd_sparc_elf_app_reg *p;
437 reg = (int)sym->st_value;
438 switch (reg & ~1)
440 case 2: reg -= 2; break;
441 case 6: reg -= 4; break;
442 default:
443 (*_bfd_error_handler)
444 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
445 abfd);
446 return FALSE;
449 if (info->output_bfd->xvec != abfd->xvec
450 || (abfd->flags & DYNAMIC) != 0)
452 /* STT_REGISTER only works when linking an elf64_sparc object.
453 If STT_REGISTER comes from a dynamic object, don't put it into
454 the output bfd. The dynamic linker will recheck it. */
455 *namep = NULL;
456 return TRUE;
459 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
461 if (p->name != NULL && strcmp (p->name, *namep))
463 (*_bfd_error_handler)
464 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
465 abfd, p->abfd, (int) sym->st_value,
466 **namep ? *namep : "#scratch",
467 *p->name ? p->name : "#scratch");
468 return FALSE;
471 if (p->name == NULL)
473 if (**namep)
475 struct elf_link_hash_entry *h;
477 h = (struct elf_link_hash_entry *)
478 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
480 if (h != NULL)
482 unsigned char type = h->type;
484 if (type > STT_FUNC)
485 type = 0;
486 (*_bfd_error_handler)
487 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
488 abfd, p->abfd, *namep, stt_types[type]);
489 return FALSE;
492 p->name = bfd_hash_allocate (&info->hash->table,
493 strlen (*namep) + 1);
494 if (!p->name)
495 return FALSE;
497 strcpy (p->name, *namep);
499 else
500 p->name = "";
501 p->bind = ELF_ST_BIND (sym->st_info);
502 p->abfd = abfd;
503 p->shndx = sym->st_shndx;
505 else
507 if (p->bind == STB_WEAK
508 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
510 p->bind = STB_GLOBAL;
511 p->abfd = abfd;
514 *namep = NULL;
515 return TRUE;
517 else if (*namep && **namep
518 && info->output_bfd->xvec == abfd->xvec)
520 int i;
521 struct _bfd_sparc_elf_app_reg *p;
523 p = _bfd_sparc_elf_hash_table(info)->app_regs;
524 for (i = 0; i < 4; i++, p++)
525 if (p->name != NULL && ! strcmp (p->name, *namep))
527 unsigned char type = ELF_ST_TYPE (sym->st_info);
529 if (type > STT_FUNC)
530 type = 0;
531 (*_bfd_error_handler)
532 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
533 abfd, p->abfd, *namep, stt_types[type]);
534 return FALSE;
537 return TRUE;
540 /* This function takes care of emitting STT_REGISTER symbols
541 which we cannot easily keep in the symbol hash table. */
543 static bfd_boolean
544 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
545 struct bfd_link_info *info,
546 PTR finfo,
547 int (*func) (PTR, const char *,
548 Elf_Internal_Sym *,
549 asection *,
550 struct elf_link_hash_entry *))
552 int reg;
553 struct _bfd_sparc_elf_app_reg *app_regs =
554 _bfd_sparc_elf_hash_table(info)->app_regs;
555 Elf_Internal_Sym sym;
557 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
558 at the end of the dynlocal list, so they came at the end of the local
559 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
560 to back up symtab->sh_info. */
561 if (elf_hash_table (info)->dynlocal)
563 bfd * dynobj = elf_hash_table (info)->dynobj;
564 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
565 struct elf_link_local_dynamic_entry *e;
567 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
568 if (e->input_indx == -1)
569 break;
570 if (e)
572 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
573 = e->dynindx;
577 if (info->strip == strip_all)
578 return TRUE;
580 for (reg = 0; reg < 4; reg++)
581 if (app_regs [reg].name != NULL)
583 if (info->strip == strip_some
584 && bfd_hash_lookup (info->keep_hash,
585 app_regs [reg].name,
586 FALSE, FALSE) == NULL)
587 continue;
589 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
590 sym.st_size = 0;
591 sym.st_other = 0;
592 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
593 sym.st_shndx = app_regs [reg].shndx;
594 if ((*func) (finfo, app_regs [reg].name, &sym,
595 sym.st_shndx == SHN_ABS
596 ? bfd_abs_section_ptr : bfd_und_section_ptr,
597 NULL) != 1)
598 return FALSE;
601 return TRUE;
604 static int
605 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
607 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
608 return STT_REGISTER;
609 else
610 return type;
613 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
614 even in SHN_UNDEF section. */
616 static void
617 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
619 elf_symbol_type *elfsym;
621 elfsym = (elf_symbol_type *) asym;
622 if (elfsym->internal_elf_sym.st_info
623 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
625 asym->flags |= BSF_GLOBAL;
630 /* Functions for dealing with the e_flags field. */
632 /* Merge backend specific data from an object file to the output
633 object file when linking. */
635 static bfd_boolean
636 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
638 bfd_boolean error;
639 flagword new_flags, old_flags;
640 int new_mm, old_mm;
642 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
643 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
644 return TRUE;
646 new_flags = elf_elfheader (ibfd)->e_flags;
647 old_flags = elf_elfheader (obfd)->e_flags;
649 if (!elf_flags_init (obfd)) /* First call, no flags set */
651 elf_flags_init (obfd) = TRUE;
652 elf_elfheader (obfd)->e_flags = new_flags;
655 else if (new_flags == old_flags) /* Compatible flags are ok */
658 else /* Incompatible flags */
660 error = FALSE;
662 #define EF_SPARC_ISA_EXTENSIONS \
663 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
665 if ((ibfd->flags & DYNAMIC) != 0)
667 /* We don't want dynamic objects memory ordering and
668 architecture to have any role. That's what dynamic linker
669 should do. */
670 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
671 new_flags |= (old_flags
672 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
674 else
676 /* Choose the highest architecture requirements. */
677 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
678 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
679 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
680 && (old_flags & EF_SPARC_HAL_R1))
682 error = TRUE;
683 (*_bfd_error_handler)
684 (_("%B: linking UltraSPARC specific with HAL specific code"),
685 ibfd);
687 /* Choose the most restrictive memory ordering. */
688 old_mm = (old_flags & EF_SPARCV9_MM);
689 new_mm = (new_flags & EF_SPARCV9_MM);
690 old_flags &= ~EF_SPARCV9_MM;
691 new_flags &= ~EF_SPARCV9_MM;
692 if (new_mm < old_mm)
693 old_mm = new_mm;
694 old_flags |= old_mm;
695 new_flags |= old_mm;
698 /* Warn about any other mismatches */
699 if (new_flags != old_flags)
701 error = TRUE;
702 (*_bfd_error_handler)
703 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
704 ibfd, (long) new_flags, (long) old_flags);
707 elf_elfheader (obfd)->e_flags = old_flags;
709 if (error)
711 bfd_set_error (bfd_error_bad_value);
712 return FALSE;
715 return TRUE;
718 /* MARCO: Set the correct entry size for the .stab section. */
720 static bfd_boolean
721 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
722 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
723 asection *sec)
725 const char *name;
727 name = bfd_get_section_name (abfd, sec);
729 if (strcmp (name, ".stab") == 0)
731 /* Even in the 64bit case the stab entries are only 12 bytes long. */
732 elf_section_data (sec)->this_hdr.sh_entsize = 12;
735 return TRUE;
738 /* Print a STT_REGISTER symbol to file FILE. */
740 static const char *
741 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
742 asymbol *symbol)
744 FILE *file = (FILE *) filep;
745 int reg, type;
747 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
748 != STT_REGISTER)
749 return NULL;
751 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
752 type = symbol->flags;
753 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
754 ((type & BSF_LOCAL)
755 ? (type & BSF_GLOBAL) ? '!' : 'l'
756 : (type & BSF_GLOBAL) ? 'g' : ' '),
757 (type & BSF_WEAK) ? 'w' : ' ');
758 if (symbol->name == NULL || symbol->name [0] == '\0')
759 return "#scratch";
760 else
761 return symbol->name;
764 static enum elf_reloc_type_class
765 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
767 switch ((int) ELF64_R_TYPE (rela->r_info))
769 case R_SPARC_RELATIVE:
770 return reloc_class_relative;
771 case R_SPARC_JMP_SLOT:
772 return reloc_class_plt;
773 case R_SPARC_COPY:
774 return reloc_class_copy;
775 default:
776 return reloc_class_normal;
780 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
781 standard ELF, because R_SPARC_OLO10 has secondary addend in
782 ELF64_R_TYPE_DATA field. This structure is used to redirect the
783 relocation handling routines. */
785 const struct elf_size_info elf64_sparc_size_info =
787 sizeof (Elf64_External_Ehdr),
788 sizeof (Elf64_External_Phdr),
789 sizeof (Elf64_External_Shdr),
790 sizeof (Elf64_External_Rel),
791 sizeof (Elf64_External_Rela),
792 sizeof (Elf64_External_Sym),
793 sizeof (Elf64_External_Dyn),
794 sizeof (Elf_External_Note),
795 4, /* hash-table entry size. */
796 /* Internal relocations per external relocations.
797 For link purposes we use just 1 internal per
798 1 external, for assembly and slurp symbol table
799 we use 2. */
801 64, /* arch_size. */
802 3, /* log_file_align. */
803 ELFCLASS64,
804 EV_CURRENT,
805 bfd_elf64_write_out_phdrs,
806 bfd_elf64_write_shdrs_and_ehdr,
807 bfd_elf64_checksum_contents,
808 elf64_sparc_write_relocs,
809 bfd_elf64_swap_symbol_in,
810 bfd_elf64_swap_symbol_out,
811 elf64_sparc_slurp_reloc_table,
812 bfd_elf64_slurp_symbol_table,
813 bfd_elf64_swap_dyn_in,
814 bfd_elf64_swap_dyn_out,
815 bfd_elf64_swap_reloc_in,
816 bfd_elf64_swap_reloc_out,
817 bfd_elf64_swap_reloca_in,
818 bfd_elf64_swap_reloca_out
821 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
822 #define TARGET_BIG_NAME "elf64-sparc"
823 #define ELF_ARCH bfd_arch_sparc
824 #define ELF_MAXPAGESIZE 0x100000
825 #define ELF_COMMONPAGESIZE 0x2000
827 /* This is the official ABI value. */
828 #define ELF_MACHINE_CODE EM_SPARCV9
830 /* This is the value that we used before the ABI was released. */
831 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
833 #define elf_backend_reloc_type_class \
834 elf64_sparc_reloc_type_class
835 #define bfd_elf64_get_reloc_upper_bound \
836 elf64_sparc_get_reloc_upper_bound
837 #define bfd_elf64_get_dynamic_reloc_upper_bound \
838 elf64_sparc_get_dynamic_reloc_upper_bound
839 #define bfd_elf64_canonicalize_reloc \
840 elf64_sparc_canonicalize_reloc
841 #define bfd_elf64_canonicalize_dynamic_reloc \
842 elf64_sparc_canonicalize_dynamic_reloc
843 #define elf_backend_add_symbol_hook \
844 elf64_sparc_add_symbol_hook
845 #define elf_backend_get_symbol_type \
846 elf64_sparc_get_symbol_type
847 #define elf_backend_symbol_processing \
848 elf64_sparc_symbol_processing
849 #define elf_backend_print_symbol_all \
850 elf64_sparc_print_symbol_all
851 #define elf_backend_output_arch_syms \
852 elf64_sparc_output_arch_syms
853 #define bfd_elf64_bfd_merge_private_bfd_data \
854 elf64_sparc_merge_private_bfd_data
855 #define elf_backend_fake_sections \
856 elf64_sparc_fake_sections
857 #define elf_backend_size_info \
858 elf64_sparc_size_info
860 #define elf_backend_plt_sym_val \
861 _bfd_sparc_elf_plt_sym_val
862 #define bfd_elf64_bfd_link_hash_table_create \
863 _bfd_sparc_elf_link_hash_table_create
864 #define bfd_elf64_bfd_link_hash_table_free \
865 _bfd_sparc_elf_link_hash_table_free
866 #define elf_info_to_howto \
867 _bfd_sparc_elf_info_to_howto
868 #define elf_backend_copy_indirect_symbol \
869 _bfd_sparc_elf_copy_indirect_symbol
870 #define bfd_elf64_bfd_reloc_type_lookup \
871 _bfd_sparc_elf_reloc_type_lookup
872 #define bfd_elf64_bfd_reloc_name_lookup \
873 _bfd_sparc_elf_reloc_name_lookup
874 #define bfd_elf64_bfd_relax_section \
875 _bfd_sparc_elf_relax_section
876 #define bfd_elf64_new_section_hook \
877 _bfd_sparc_elf_new_section_hook
879 #define elf_backend_create_dynamic_sections \
880 _bfd_sparc_elf_create_dynamic_sections
881 #define elf_backend_relocs_compatible \
882 _bfd_elf_relocs_compatible
883 #define elf_backend_check_relocs \
884 _bfd_sparc_elf_check_relocs
885 #define elf_backend_adjust_dynamic_symbol \
886 _bfd_sparc_elf_adjust_dynamic_symbol
887 #define elf_backend_omit_section_dynsym \
888 _bfd_sparc_elf_omit_section_dynsym
889 #define elf_backend_size_dynamic_sections \
890 _bfd_sparc_elf_size_dynamic_sections
891 #define elf_backend_relocate_section \
892 _bfd_sparc_elf_relocate_section
893 #define elf_backend_finish_dynamic_symbol \
894 _bfd_sparc_elf_finish_dynamic_symbol
895 #define elf_backend_finish_dynamic_sections \
896 _bfd_sparc_elf_finish_dynamic_sections
898 #define bfd_elf64_mkobject \
899 _bfd_sparc_elf_mkobject
900 #define elf_backend_object_p \
901 _bfd_sparc_elf_object_p
902 #define elf_backend_gc_mark_hook \
903 _bfd_sparc_elf_gc_mark_hook
904 #define elf_backend_gc_sweep_hook \
905 _bfd_sparc_elf_gc_sweep_hook
906 #define elf_backend_init_index_section \
907 _bfd_elf_init_1_index_section
909 #define elf_backend_can_gc_sections 1
910 #define elf_backend_can_refcount 1
911 #define elf_backend_want_got_plt 0
912 #define elf_backend_plt_readonly 0
913 #define elf_backend_want_plt_sym 1
914 #define elf_backend_got_header_size 8
915 #define elf_backend_rela_normal 1
917 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
918 #define elf_backend_plt_alignment 8
920 #define elf_backend_post_process_headers _bfd_elf_set_osabi
922 #include "elf64-target.h"
924 /* FreeBSD support */
925 #undef TARGET_BIG_SYM
926 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
927 #undef TARGET_BIG_NAME
928 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
929 #undef ELF_OSABI
930 #define ELF_OSABI ELFOSABI_FREEBSD
932 #undef elf64_bed
933 #define elf64_bed elf64_sparc_fbsd_bed
935 #include "elf64-target.h"
937 /* Solaris 2. */
939 #undef TARGET_BIG_SYM
940 #define TARGET_BIG_SYM bfd_elf64_sparc_sol2_vec
941 #undef TARGET_BIG_NAME
942 #define TARGET_BIG_NAME "elf64-sparc-sol2"
944 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
945 objects won't be recognized. */
946 #undef ELF_OSABI
948 #undef elf64_bed
949 #define elf64_bed elf64_sparc_sol2_bed
951 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
952 boundary. */
953 #undef elf_backend_static_tls_alignment
954 #define elf_backend_static_tls_alignment 16
956 #include "elf64-target.h"