1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
58 // Layout::Relaxation_debug_check methods.
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list
& sections
,
67 const Layout::Data_list
& special_outputs
)
69 for(Layout::Section_list::const_iterator p
= sections
.begin();
72 gold_assert((*p
)->address_and_file_offset_have_reset_values());
74 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
75 p
!= special_outputs
.end();
77 gold_assert((*p
)->address_and_file_offset_have_reset_values());
80 // Save information of SECTIONS for checking later.
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list
& sections
)
86 for(Layout::Section_list::const_iterator p
= sections
.begin();
90 Output_section
* os
= *p
;
92 info
.output_section
= os
;
93 info
.address
= os
->is_address_valid() ? os
->address() : 0;
94 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
95 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
96 this->section_infos_
.push_back(info
);
100 // Verify SECTIONS using previously recorded information.
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list
& sections
)
107 for(Layout::Section_list::const_iterator p
= sections
.begin();
111 Output_section
* os
= *p
;
112 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
113 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
114 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
116 if (i
>= this->section_infos_
.size())
118 gold_fatal("Section_info of %s missing.\n", os
->name());
120 const Section_info
& info
= this->section_infos_
[i
];
121 if (os
!= info
.output_section
)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info
.output_section
->name(), os
->name());
124 if (address
!= info
.address
125 || data_size
!= info
.data_size
126 || offset
!= info
.offset
)
127 gold_fatal("Section %s changed.\n", os
->name());
131 // Layout_task_runner methods.
133 // Lay out the sections. This is called after all the input objects
137 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
139 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
147 if (this->mapfile_
!= NULL
)
149 this->mapfile_
->print_discarded_sections(this->input_objects_
);
150 this->layout_
->print_to_mapfile(this->mapfile_
);
153 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
154 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
155 of
->set_is_temporary();
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_
, this->input_objects_
,
160 this->symtab_
, this->layout_
, workqueue
, of
);
165 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
166 : number_of_input_files_(number_of_input_files
),
167 script_options_(script_options
),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL
),
179 relro_segment_(NULL
),
181 symtab_section_(NULL
),
182 symtab_xindex_(NULL
),
183 dynsym_section_(NULL
),
184 dynsym_xindex_(NULL
),
185 dynamic_section_(NULL
),
186 dynamic_symbol_(NULL
),
188 eh_frame_section_(NULL
),
189 eh_frame_data_(NULL
),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL
),
192 build_id_note_(NULL
),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL
),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL
),
210 relaxation_debug_check_(NULL
)
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_
.reserve(12);
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_
.reserve(2);
220 // Initialize structure needed for an incremental build.
221 if (parameters
->options().incremental())
222 this->incremental_inputs_
= new Incremental_inputs
;
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_
.set_optimize();
229 // Hash a key we use to look up an output section mapping.
232 Layout::Hash_key::operator()(const Layout::Key
& k
) const
234 return k
.first
+ k
.second
.first
+ k
.second
.second
;
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
241 static const char* gdb_sections
[] =
243 // ".debug_aranges", // not used by gdb as of 6.7.1
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
255 static const char* lines_only_debug_sections
[] =
257 // ".debug_aranges", // not used by gdb as of 6.7.1
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
270 is_gdb_debug_section(const char* str
)
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
274 if (strcmp(str
, gdb_sections
[i
]) == 0)
280 is_lines_only_debug_section(const char* str
)
282 // We can do this faster: binary search or a hashtable. But why bother?
284 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
286 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
291 // Whether to include this section in the link.
293 template<int size
, bool big_endian
>
295 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
296 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
298 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
301 switch (shdr
.get_sh_type())
303 case elfcpp::SHT_NULL
:
304 case elfcpp::SHT_SYMTAB
:
305 case elfcpp::SHT_DYNSYM
:
306 case elfcpp::SHT_HASH
:
307 case elfcpp::SHT_DYNAMIC
:
308 case elfcpp::SHT_SYMTAB_SHNDX
:
311 case elfcpp::SHT_STRTAB
:
312 // Discard the sections which have special meanings in the ELF
313 // ABI. Keep others (e.g., .stabstr). We could also do this by
314 // checking the sh_link fields of the appropriate sections.
315 return (strcmp(name
, ".dynstr") != 0
316 && strcmp(name
, ".strtab") != 0
317 && strcmp(name
, ".shstrtab") != 0);
319 case elfcpp::SHT_RELA
:
320 case elfcpp::SHT_REL
:
321 case elfcpp::SHT_GROUP
:
322 // If we are emitting relocations these should be handled
324 gold_assert(!parameters
->options().relocatable()
325 && !parameters
->options().emit_relocs());
328 case elfcpp::SHT_PROGBITS
:
329 if (parameters
->options().strip_debug()
330 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
332 if (is_debug_info_section(name
))
335 if (parameters
->options().strip_debug_non_line()
336 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
338 // Debugging sections can only be recognized by name.
339 if (is_prefix_of(".debug", name
)
340 && !is_lines_only_debug_section(name
))
343 if (parameters
->options().strip_debug_gdb()
344 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
346 // Debugging sections can only be recognized by name.
347 if (is_prefix_of(".debug", name
)
348 && !is_gdb_debug_section(name
))
351 if (parameters
->options().strip_lto_sections()
352 && !parameters
->options().relocatable()
353 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
355 // Ignore LTO sections containing intermediate code.
356 if (is_prefix_of(".gnu.lto_", name
))
359 // The GNU linker strips .gnu_debuglink sections, so we do too.
360 // This is a feature used to keep debugging information in
362 if (strcmp(name
, ".gnu_debuglink") == 0)
371 // Return an output section named NAME, or NULL if there is none.
374 Layout::find_output_section(const char* name
) const
376 for (Section_list::const_iterator p
= this->section_list_
.begin();
377 p
!= this->section_list_
.end();
379 if (strcmp((*p
)->name(), name
) == 0)
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear. Return NULL if there is none.
388 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
389 elfcpp::Elf_Word clear
) const
391 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
392 p
!= this->segment_list_
.end();
394 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
395 && ((*p
)->flags() & set
) == set
396 && ((*p
)->flags() & clear
) == 0)
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS. NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
404 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker. IS_RELRO is true for a relro
406 // section. IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
410 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
411 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
412 Output_section_order order
, bool is_relro
)
414 elfcpp::Elf_Xword lookup_flags
= flags
;
416 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417 // read-write with read-only sections. Some other ELF linkers do
418 // not do this. FIXME: Perhaps there should be an option
420 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
422 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
423 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
424 std::pair
<Section_name_map::iterator
, bool> ins(
425 this->section_name_map_
.insert(v
));
428 return ins
.first
->second
;
431 // This is the first time we've seen this name/type/flags
432 // combination. For compatibility with the GNU linker, we
433 // combine sections with contents and zero flags with sections
434 // with non-zero flags. This is a workaround for cases where
435 // assembler code forgets to set section flags. FIXME: Perhaps
436 // there should be an option to control this.
437 Output_section
* os
= NULL
;
439 if (type
== elfcpp::SHT_PROGBITS
)
443 Output_section
* same_name
= this->find_output_section(name
);
444 if (same_name
!= NULL
445 && same_name
->type() == elfcpp::SHT_PROGBITS
446 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
449 else if ((flags
& elfcpp::SHF_TLS
) == 0)
451 elfcpp::Elf_Xword zero_flags
= 0;
452 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
453 Section_name_map::iterator p
=
454 this->section_name_map_
.find(zero_key
);
455 if (p
!= this->section_name_map_
.end())
461 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
463 ins
.first
->second
= os
;
468 // Pick the output section to use for section NAME, in input file
469 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
470 // linker created section. IS_INPUT_SECTION is true if we are
471 // choosing an output section for an input section found in a input
472 // file. IS_INTERP is true if this is the .interp section.
473 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
474 // dynamic linker. IS_RELRO is true for a relro section.
475 // IS_LAST_RELRO is true for the last relro section.
476 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
477 // will return NULL if the input section should be discarded.
480 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
481 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
482 bool is_input_section
, Output_section_order order
,
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags
&= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
495 | elfcpp::SHF_STRINGS
);
497 if (this->script_options_
->saw_sections_clause())
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
502 Script_sections
* ss
= this->script_options_
->script_sections();
503 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
504 Output_section
** output_section_slot
;
505 Script_sections::Section_type script_section_type
;
506 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
507 &script_section_type
);
510 // The SECTIONS clause says to discard this input section.
514 // We can only handle script section types ST_NONE and ST_NOLOAD.
515 switch (script_section_type
)
517 case Script_sections::ST_NONE
:
519 case Script_sections::ST_NOLOAD
:
520 flags
&= elfcpp::SHF_ALLOC
;
526 // If this is an orphan section--one not mentioned in the linker
527 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528 // default processing below.
530 if (output_section_slot
!= NULL
)
532 if (*output_section_slot
!= NULL
)
534 (*output_section_slot
)->update_flags_for_input_section(flags
);
535 return *output_section_slot
;
538 // We don't put sections found in the linker script into
539 // SECTION_NAME_MAP_. That keeps us from getting confused
540 // if an orphan section is mapped to a section with the same
541 // name as one in the linker script.
543 name
= this->namepool_
.add(name
, false, NULL
);
545 Output_section
* os
= this->make_output_section(name
, type
, flags
,
548 os
->set_found_in_sections_clause();
550 // Special handling for NOLOAD sections.
551 if (script_section_type
== Script_sections::ST_NOLOAD
)
555 // The constructor of Output_section sets addresses of non-ALLOC
556 // sections to 0 by default. We don't want that for NOLOAD
557 // sections even if they have no SHF_ALLOC flag.
558 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
559 && os
->is_address_valid())
561 gold_assert(os
->address() == 0
562 && !os
->is_offset_valid()
563 && !os
->is_data_size_valid());
564 os
->reset_address_and_file_offset();
568 *output_section_slot
= os
;
573 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
575 // Turn NAME from the name of the input section into the name of the
578 size_t len
= strlen(name
);
580 && !this->script_options_
->saw_sections_clause()
581 && !parameters
->options().relocatable())
582 name
= Layout::output_section_name(name
, &len
);
584 Stringpool::Key name_key
;
585 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
587 // Find or make the output section. The output section is selected
588 // based on the section name, type, and flags.
589 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
592 // Return the output section to use for input section SHNDX, with name
593 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
594 // index of a relocation section which applies to this section, or 0
595 // if none, or -1U if more than one. RELOC_TYPE is the type of the
596 // relocation section if there is one. Set *OFF to the offset of this
597 // input section without the output section. Return NULL if the
598 // section should be discarded. Set *OFF to -1 if the section
599 // contents should not be written directly to the output file, but
600 // will instead receive special handling.
602 template<int size
, bool big_endian
>
604 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
605 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
606 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
610 if (!this->include_section(object
, name
, shdr
))
615 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
616 // correct section types. Force them here.
617 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
618 if (sh_type
== elfcpp::SHT_PROGBITS
)
620 static const char init_array_prefix
[] = ".init_array";
621 static const char preinit_array_prefix
[] = ".preinit_array";
622 static const char fini_array_prefix
[] = ".fini_array";
623 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
624 static size_t preinit_array_prefix_size
=
625 sizeof(preinit_array_prefix
) - 1;
626 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
628 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
629 sh_type
= elfcpp::SHT_INIT_ARRAY
;
630 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
632 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
633 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
634 sh_type
= elfcpp::SHT_FINI_ARRAY
;
637 // In a relocatable link a grouped section must not be combined with
638 // any other sections.
639 if (parameters
->options().relocatable()
640 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
642 name
= this->namepool_
.add(name
, true, NULL
);
643 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(),
644 ORDER_INVALID
, false);
648 os
= this->choose_output_section(object
, name
, sh_type
,
649 shdr
.get_sh_flags(), true,
650 ORDER_INVALID
, false);
655 // By default the GNU linker sorts input sections whose names match
656 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
657 // are sorted by name. This is used to implement constructor
658 // priority ordering. We are compatible.
659 if (!this->script_options_
->saw_sections_clause()
660 && (is_prefix_of(".ctors.", name
)
661 || is_prefix_of(".dtors.", name
)
662 || is_prefix_of(".init_array.", name
)
663 || is_prefix_of(".fini_array.", name
)))
664 os
->set_must_sort_attached_input_sections();
666 // FIXME: Handle SHF_LINK_ORDER somewhere.
668 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
669 this->script_options_
->saw_sections_clause());
670 this->have_added_input_section_
= true;
675 // Handle a relocation section when doing a relocatable link.
677 template<int size
, bool big_endian
>
679 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
681 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
682 Output_section
* data_section
,
683 Relocatable_relocs
* rr
)
685 gold_assert(parameters
->options().relocatable()
686 || parameters
->options().emit_relocs());
688 int sh_type
= shdr
.get_sh_type();
691 if (sh_type
== elfcpp::SHT_REL
)
693 else if (sh_type
== elfcpp::SHT_RELA
)
697 name
+= data_section
->name();
699 // In a relocatable link relocs for a grouped section must not be
700 // combined with other reloc sections.
702 if (!parameters
->options().relocatable()
703 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
704 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
705 shdr
.get_sh_flags(), false,
706 ORDER_INVALID
, false);
709 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
710 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
711 ORDER_INVALID
, false);
714 os
->set_should_link_to_symtab();
715 os
->set_info_section(data_section
);
717 Output_section_data
* posd
;
718 if (sh_type
== elfcpp::SHT_REL
)
720 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
721 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
725 else if (sh_type
== elfcpp::SHT_RELA
)
727 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
728 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
735 os
->add_output_section_data(posd
);
736 rr
->set_output_data(posd
);
741 // Handle a group section when doing a relocatable link.
743 template<int size
, bool big_endian
>
745 Layout::layout_group(Symbol_table
* symtab
,
746 Sized_relobj
<size
, big_endian
>* object
,
748 const char* group_section_name
,
749 const char* signature
,
750 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
751 elfcpp::Elf_Word flags
,
752 std::vector
<unsigned int>* shndxes
)
754 gold_assert(parameters
->options().relocatable());
755 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
756 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
757 Output_section
* os
= this->make_output_section(group_section_name
,
760 ORDER_INVALID
, false);
762 // We need to find a symbol with the signature in the symbol table.
763 // If we don't find one now, we need to look again later.
764 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
766 os
->set_info_symndx(sym
);
769 // Reserve some space to minimize reallocations.
770 if (this->group_signatures_
.empty())
771 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
773 // We will wind up using a symbol whose name is the signature.
774 // So just put the signature in the symbol name pool to save it.
775 signature
= symtab
->canonicalize_name(signature
);
776 this->group_signatures_
.push_back(Group_signature(os
, signature
));
779 os
->set_should_link_to_symtab();
782 section_size_type entry_count
=
783 convert_to_section_size_type(shdr
.get_sh_size() / 4);
784 Output_section_data
* posd
=
785 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
787 os
->add_output_section_data(posd
);
790 // Special GNU handling of sections name .eh_frame. They will
791 // normally hold exception frame data as defined by the C++ ABI
792 // (http://codesourcery.com/cxx-abi/).
794 template<int size
, bool big_endian
>
796 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
797 const unsigned char* symbols
,
799 const unsigned char* symbol_names
,
800 off_t symbol_names_size
,
802 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
803 unsigned int reloc_shndx
, unsigned int reloc_type
,
806 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
807 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
809 const char* const name
= ".eh_frame";
810 Output_section
* os
= this->choose_output_section(object
, name
,
811 elfcpp::SHT_PROGBITS
,
812 elfcpp::SHF_ALLOC
, false,
813 ORDER_EHFRAME
, false);
817 if (this->eh_frame_section_
== NULL
)
819 this->eh_frame_section_
= os
;
820 this->eh_frame_data_
= new Eh_frame();
822 if (parameters
->options().eh_frame_hdr())
824 Output_section
* hdr_os
=
825 this->choose_output_section(NULL
, ".eh_frame_hdr",
826 elfcpp::SHT_PROGBITS
,
827 elfcpp::SHF_ALLOC
, false,
828 ORDER_EHFRAME
, false);
832 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
833 this->eh_frame_data_
);
834 hdr_os
->add_output_section_data(hdr_posd
);
836 hdr_os
->set_after_input_sections();
838 if (!this->script_options_
->saw_phdrs_clause())
840 Output_segment
* hdr_oseg
;
841 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
843 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
847 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
852 gold_assert(this->eh_frame_section_
== os
);
854 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
863 os
->update_flags_for_input_section(shdr
.get_sh_flags());
865 // We found a .eh_frame section we are going to optimize, so now
866 // we can add the set of optimized sections to the output
867 // section. We need to postpone adding this until we've found a
868 // section we can optimize so that the .eh_frame section in
869 // crtbegin.o winds up at the start of the output section.
870 if (!this->added_eh_frame_data_
)
872 os
->add_output_section_data(this->eh_frame_data_
);
873 this->added_eh_frame_data_
= true;
879 // We couldn't handle this .eh_frame section for some reason.
880 // Add it as a normal section.
881 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
882 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
883 saw_sections_clause
);
884 this->have_added_input_section_
= true;
890 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
891 // the output section.
894 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
895 elfcpp::Elf_Xword flags
,
896 Output_section_data
* posd
,
897 Output_section_order order
, bool is_relro
)
899 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
900 false, order
, is_relro
);
902 os
->add_output_section_data(posd
);
906 // Map section flags to segment flags.
909 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
911 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
912 if ((flags
& elfcpp::SHF_WRITE
) != 0)
914 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
919 // Sometimes we compress sections. This is typically done for
920 // sections that are not part of normal program execution (such as
921 // .debug_* sections), and where the readers of these sections know
922 // how to deal with compressed sections. This routine doesn't say for
923 // certain whether we'll compress -- it depends on commandline options
924 // as well -- just whether this section is a candidate for compression.
925 // (The Output_compressed_section class decides whether to compress
926 // a given section, and picks the name of the compressed section.)
929 is_compressible_debug_section(const char* secname
)
931 return (is_prefix_of(".debug", secname
));
934 // We may see compressed debug sections in input files. Return TRUE
935 // if this is the name of a compressed debug section.
938 is_compressed_debug_section(const char* secname
)
940 return (is_prefix_of(".zdebug", secname
));
943 // Make a new Output_section, and attach it to segments as
944 // appropriate. ORDER is the order in which this section should
945 // appear in the output segment. IS_RELRO is true if this is a relro
946 // (read-only after relocations) section.
949 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
950 elfcpp::Elf_Xword flags
,
951 Output_section_order order
, bool is_relro
)
954 if ((flags
& elfcpp::SHF_ALLOC
) == 0
955 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
956 && is_compressible_debug_section(name
))
957 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
959 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
960 && parameters
->options().strip_debug_non_line()
961 && strcmp(".debug_abbrev", name
) == 0)
963 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
965 if (this->debug_info_
)
966 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
968 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
969 && parameters
->options().strip_debug_non_line()
970 && strcmp(".debug_info", name
) == 0)
972 os
= this->debug_info_
= new Output_reduced_debug_info_section(
974 if (this->debug_abbrev_
)
975 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
979 // FIXME: const_cast is ugly.
980 Target
* target
= const_cast<Target
*>(¶meters
->target());
981 os
= target
->make_output_section(name
, type
, flags
);
984 // With -z relro, we have to recognize the special sections by name.
985 // There is no other way.
986 bool is_relro_local
= false;
987 if (!this->script_options_
->saw_sections_clause()
988 && parameters
->options().relro()
989 && type
== elfcpp::SHT_PROGBITS
990 && (flags
& elfcpp::SHF_ALLOC
) != 0
991 && (flags
& elfcpp::SHF_WRITE
) != 0)
993 if (strcmp(name
, ".data.rel.ro") == 0)
995 else if (strcmp(name
, ".data.rel.ro.local") == 0)
998 is_relro_local
= true;
1000 else if (type
== elfcpp::SHT_INIT_ARRAY
1001 || type
== elfcpp::SHT_FINI_ARRAY
1002 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1004 else if (strcmp(name
, ".ctors") == 0
1005 || strcmp(name
, ".dtors") == 0
1006 || strcmp(name
, ".jcr") == 0)
1013 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1014 order
= this->default_section_order(os
, is_relro_local
);
1016 os
->set_order(order
);
1018 parameters
->target().new_output_section(os
);
1020 this->section_list_
.push_back(os
);
1022 // The GNU linker by default sorts some sections by priority, so we
1023 // do the same. We need to know that this might happen before we
1024 // attach any input sections.
1025 if (!this->script_options_
->saw_sections_clause()
1026 && (strcmp(name
, ".ctors") == 0
1027 || strcmp(name
, ".dtors") == 0
1028 || strcmp(name
, ".init_array") == 0
1029 || strcmp(name
, ".fini_array") == 0))
1030 os
->set_may_sort_attached_input_sections();
1032 // Check for .stab*str sections, as .stab* sections need to link to
1034 if (type
== elfcpp::SHT_STRTAB
1035 && !this->have_stabstr_section_
1036 && strncmp(name
, ".stab", 5) == 0
1037 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1038 this->have_stabstr_section_
= true;
1040 // If we have already attached the sections to segments, then we
1041 // need to attach this one now. This happens for sections created
1042 // directly by the linker.
1043 if (this->sections_are_attached_
)
1044 this->attach_section_to_segment(os
);
1049 // Return the default order in which a section should be placed in an
1050 // output segment. This function captures a lot of the ideas in
1051 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1052 // linker created section is normally set when the section is created;
1053 // this function is used for input sections.
1055 Output_section_order
1056 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1058 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1059 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1060 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1061 bool is_bss
= false;
1066 case elfcpp::SHT_PROGBITS
:
1068 case elfcpp::SHT_NOBITS
:
1071 case elfcpp::SHT_RELA
:
1072 case elfcpp::SHT_REL
:
1074 return ORDER_DYNAMIC_RELOCS
;
1076 case elfcpp::SHT_HASH
:
1077 case elfcpp::SHT_DYNAMIC
:
1078 case elfcpp::SHT_SHLIB
:
1079 case elfcpp::SHT_DYNSYM
:
1080 case elfcpp::SHT_GNU_HASH
:
1081 case elfcpp::SHT_GNU_verdef
:
1082 case elfcpp::SHT_GNU_verneed
:
1083 case elfcpp::SHT_GNU_versym
:
1085 return ORDER_DYNAMIC_LINKER
;
1087 case elfcpp::SHT_NOTE
:
1088 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1091 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1092 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1094 if (!is_bss
&& !is_write
)
1098 if (strcmp(os
->name(), ".init") == 0)
1100 else if (strcmp(os
->name(), ".fini") == 0)
1103 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1107 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1109 if (os
->is_small_section())
1110 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1111 if (os
->is_large_section())
1112 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1114 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1117 // Attach output sections to segments. This is called after we have
1118 // seen all the input sections.
1121 Layout::attach_sections_to_segments()
1123 for (Section_list::iterator p
= this->section_list_
.begin();
1124 p
!= this->section_list_
.end();
1126 this->attach_section_to_segment(*p
);
1128 this->sections_are_attached_
= true;
1131 // Attach an output section to a segment.
1134 Layout::attach_section_to_segment(Output_section
* os
)
1136 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1137 this->unattached_section_list_
.push_back(os
);
1139 this->attach_allocated_section_to_segment(os
);
1142 // Attach an allocated output section to a segment.
1145 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1147 elfcpp::Elf_Xword flags
= os
->flags();
1148 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1150 if (parameters
->options().relocatable())
1153 // If we have a SECTIONS clause, we can't handle the attachment to
1154 // segments until after we've seen all the sections.
1155 if (this->script_options_
->saw_sections_clause())
1158 gold_assert(!this->script_options_
->saw_phdrs_clause());
1160 // This output section goes into a PT_LOAD segment.
1162 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1164 // Check for --section-start.
1166 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1168 // In general the only thing we really care about for PT_LOAD
1169 // segments is whether or not they are writable, so that is how we
1170 // search for them. Large data sections also go into their own
1171 // PT_LOAD segment. People who need segments sorted on some other
1172 // basis will have to use a linker script.
1174 Segment_list::const_iterator p
;
1175 for (p
= this->segment_list_
.begin();
1176 p
!= this->segment_list_
.end();
1179 if ((*p
)->type() != elfcpp::PT_LOAD
)
1181 if (!parameters
->options().omagic()
1182 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1184 // If -Tbss was specified, we need to separate the data and BSS
1186 if (parameters
->options().user_set_Tbss())
1188 if ((os
->type() == elfcpp::SHT_NOBITS
)
1189 == (*p
)->has_any_data_sections())
1192 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1197 if ((*p
)->are_addresses_set())
1200 (*p
)->add_initial_output_data(os
);
1201 (*p
)->update_flags_for_output_section(seg_flags
);
1202 (*p
)->set_addresses(addr
, addr
);
1206 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
1210 if (p
== this->segment_list_
.end())
1212 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1214 if (os
->is_large_data_section())
1215 oseg
->set_is_large_data_segment();
1216 oseg
->add_output_section_to_load(this, os
, seg_flags
);
1218 oseg
->set_addresses(addr
, addr
);
1221 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1223 if (os
->type() == elfcpp::SHT_NOTE
)
1225 // See if we already have an equivalent PT_NOTE segment.
1226 for (p
= this->segment_list_
.begin();
1227 p
!= segment_list_
.end();
1230 if ((*p
)->type() == elfcpp::PT_NOTE
1231 && (((*p
)->flags() & elfcpp::PF_W
)
1232 == (seg_flags
& elfcpp::PF_W
)))
1234 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
1239 if (p
== this->segment_list_
.end())
1241 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1243 oseg
->add_output_section_to_nonload(os
, seg_flags
);
1247 // If we see a loadable SHF_TLS section, we create a PT_TLS
1248 // segment. There can only be one such segment.
1249 if ((flags
& elfcpp::SHF_TLS
) != 0)
1251 if (this->tls_segment_
== NULL
)
1252 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1253 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1256 // If -z relro is in effect, and we see a relro section, we create a
1257 // PT_GNU_RELRO segment. There can only be one such segment.
1258 if (os
->is_relro() && parameters
->options().relro())
1260 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1261 if (this->relro_segment_
== NULL
)
1262 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1263 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1267 // Make an output section for a script.
1270 Layout::make_output_section_for_script(
1272 Script_sections::Section_type section_type
)
1274 name
= this->namepool_
.add(name
, false, NULL
);
1275 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1276 if (section_type
== Script_sections::ST_NOLOAD
)
1278 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1279 sh_flags
, ORDER_INVALID
,
1281 os
->set_found_in_sections_clause();
1282 if (section_type
== Script_sections::ST_NOLOAD
)
1283 os
->set_is_noload();
1287 // Return the number of segments we expect to see.
1290 Layout::expected_segment_count() const
1292 size_t ret
= this->segment_list_
.size();
1294 // If we didn't see a SECTIONS clause in a linker script, we should
1295 // already have the complete list of segments. Otherwise we ask the
1296 // SECTIONS clause how many segments it expects, and add in the ones
1297 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1299 if (!this->script_options_
->saw_sections_clause())
1303 const Script_sections
* ss
= this->script_options_
->script_sections();
1304 return ret
+ ss
->expected_segment_count(this);
1308 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1309 // is whether we saw a .note.GNU-stack section in the object file.
1310 // GNU_STACK_FLAGS is the section flags. The flags give the
1311 // protection required for stack memory. We record this in an
1312 // executable as a PT_GNU_STACK segment. If an object file does not
1313 // have a .note.GNU-stack segment, we must assume that it is an old
1314 // object. On some targets that will force an executable stack.
1317 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1319 if (!seen_gnu_stack
)
1320 this->input_without_gnu_stack_note_
= true;
1323 this->input_with_gnu_stack_note_
= true;
1324 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1325 this->input_requires_executable_stack_
= true;
1329 // Create automatic note sections.
1332 Layout::create_notes()
1334 this->create_gold_note();
1335 this->create_executable_stack_info();
1336 this->create_build_id();
1339 // Create the dynamic sections which are needed before we read the
1343 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1345 if (parameters
->doing_static_link())
1348 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1349 elfcpp::SHT_DYNAMIC
,
1351 | elfcpp::SHF_WRITE
),
1355 this->dynamic_symbol_
=
1356 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1357 this->dynamic_section_
, 0, 0,
1358 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1359 elfcpp::STV_HIDDEN
, 0, false, false);
1361 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1363 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1366 // For each output section whose name can be represented as C symbol,
1367 // define __start and __stop symbols for the section. This is a GNU
1371 Layout::define_section_symbols(Symbol_table
* symtab
)
1373 for (Section_list::const_iterator p
= this->section_list_
.begin();
1374 p
!= this->section_list_
.end();
1377 const char* const name
= (*p
)->name();
1378 if (is_cident(name
))
1380 const std::string
name_string(name
);
1381 const std::string
start_name(cident_section_start_prefix
1383 const std::string
stop_name(cident_section_stop_prefix
1386 symtab
->define_in_output_data(start_name
.c_str(),
1388 Symbol_table::PREDEFINED
,
1394 elfcpp::STV_DEFAULT
,
1396 false, // offset_is_from_end
1397 true); // only_if_ref
1399 symtab
->define_in_output_data(stop_name
.c_str(),
1401 Symbol_table::PREDEFINED
,
1407 elfcpp::STV_DEFAULT
,
1409 true, // offset_is_from_end
1410 true); // only_if_ref
1415 // Define symbols for group signatures.
1418 Layout::define_group_signatures(Symbol_table
* symtab
)
1420 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1421 p
!= this->group_signatures_
.end();
1424 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1426 p
->section
->set_info_symndx(sym
);
1429 // Force the name of the group section to the group
1430 // signature, and use the group's section symbol as the
1431 // signature symbol.
1432 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1434 const char* name
= this->namepool_
.add(p
->signature
,
1436 p
->section
->set_name(name
);
1438 p
->section
->set_needs_symtab_index();
1439 p
->section
->set_info_section_symndx(p
->section
);
1443 this->group_signatures_
.clear();
1446 // Find the first read-only PT_LOAD segment, creating one if
1450 Layout::find_first_load_seg()
1452 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1453 p
!= this->segment_list_
.end();
1456 if ((*p
)->type() == elfcpp::PT_LOAD
1457 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1458 && (parameters
->options().omagic()
1459 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1463 gold_assert(!this->script_options_
->saw_phdrs_clause());
1465 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1470 // Save states of all current output segments. Store saved states
1471 // in SEGMENT_STATES.
1474 Layout::save_segments(Segment_states
* segment_states
)
1476 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1477 p
!= this->segment_list_
.end();
1480 Output_segment
* segment
= *p
;
1482 Output_segment
* copy
= new Output_segment(*segment
);
1483 (*segment_states
)[segment
] = copy
;
1487 // Restore states of output segments and delete any segment not found in
1491 Layout::restore_segments(const Segment_states
* segment_states
)
1493 // Go through the segment list and remove any segment added in the
1495 this->tls_segment_
= NULL
;
1496 this->relro_segment_
= NULL
;
1497 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1498 while (list_iter
!= this->segment_list_
.end())
1500 Output_segment
* segment
= *list_iter
;
1501 Segment_states::const_iterator states_iter
=
1502 segment_states
->find(segment
);
1503 if (states_iter
!= segment_states
->end())
1505 const Output_segment
* copy
= states_iter
->second
;
1506 // Shallow copy to restore states.
1509 // Also fix up TLS and RELRO segment pointers as appropriate.
1510 if (segment
->type() == elfcpp::PT_TLS
)
1511 this->tls_segment_
= segment
;
1512 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1513 this->relro_segment_
= segment
;
1519 list_iter
= this->segment_list_
.erase(list_iter
);
1520 // This is a segment created during section layout. It should be
1521 // safe to remove it since we should have removed all pointers to it.
1527 // Clean up after relaxation so that sections can be laid out again.
1530 Layout::clean_up_after_relaxation()
1532 // Restore the segments to point state just prior to the relaxation loop.
1533 Script_sections
* script_section
= this->script_options_
->script_sections();
1534 script_section
->release_segments();
1535 this->restore_segments(this->segment_states_
);
1537 // Reset section addresses and file offsets
1538 for (Section_list::iterator p
= this->section_list_
.begin();
1539 p
!= this->section_list_
.end();
1542 (*p
)->restore_states();
1544 // If an input section changes size because of relaxation,
1545 // we need to adjust the section offsets of all input sections.
1546 // after such a section.
1547 if ((*p
)->section_offsets_need_adjustment())
1548 (*p
)->adjust_section_offsets();
1550 (*p
)->reset_address_and_file_offset();
1553 // Reset special output object address and file offsets.
1554 for (Data_list::iterator p
= this->special_output_list_
.begin();
1555 p
!= this->special_output_list_
.end();
1557 (*p
)->reset_address_and_file_offset();
1559 // A linker script may have created some output section data objects.
1560 // They are useless now.
1561 for (Output_section_data_list::const_iterator p
=
1562 this->script_output_section_data_list_
.begin();
1563 p
!= this->script_output_section_data_list_
.end();
1566 this->script_output_section_data_list_
.clear();
1569 // Prepare for relaxation.
1572 Layout::prepare_for_relaxation()
1574 // Create an relaxation debug check if in debugging mode.
1575 if (is_debugging_enabled(DEBUG_RELAXATION
))
1576 this->relaxation_debug_check_
= new Relaxation_debug_check();
1578 // Save segment states.
1579 this->segment_states_
= new Segment_states();
1580 this->save_segments(this->segment_states_
);
1582 for(Section_list::const_iterator p
= this->section_list_
.begin();
1583 p
!= this->section_list_
.end();
1585 (*p
)->save_states();
1587 if (is_debugging_enabled(DEBUG_RELAXATION
))
1588 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1589 this->section_list_
, this->special_output_list_
);
1591 // Also enable recording of output section data from scripts.
1592 this->record_output_section_data_from_script_
= true;
1595 // Relaxation loop body: If target has no relaxation, this runs only once
1596 // Otherwise, the target relaxation hook is called at the end of
1597 // each iteration. If the hook returns true, it means re-layout of
1598 // section is required.
1600 // The number of segments created by a linking script without a PHDRS
1601 // clause may be affected by section sizes and alignments. There is
1602 // a remote chance that relaxation causes different number of PT_LOAD
1603 // segments are created and sections are attached to different segments.
1604 // Therefore, we always throw away all segments created during section
1605 // layout. In order to be able to restart the section layout, we keep
1606 // a copy of the segment list right before the relaxation loop and use
1607 // that to restore the segments.
1609 // PASS is the current relaxation pass number.
1610 // SYMTAB is a symbol table.
1611 // PLOAD_SEG is the address of a pointer for the load segment.
1612 // PHDR_SEG is a pointer to the PHDR segment.
1613 // SEGMENT_HEADERS points to the output segment header.
1614 // FILE_HEADER points to the output file header.
1615 // PSHNDX is the address to store the output section index.
1618 Layout::relaxation_loop_body(
1621 Symbol_table
* symtab
,
1622 Output_segment
** pload_seg
,
1623 Output_segment
* phdr_seg
,
1624 Output_segment_headers
* segment_headers
,
1625 Output_file_header
* file_header
,
1626 unsigned int* pshndx
)
1628 // If this is not the first iteration, we need to clean up after
1629 // relaxation so that we can lay out the sections again.
1631 this->clean_up_after_relaxation();
1633 // If there is a SECTIONS clause, put all the input sections into
1634 // the required order.
1635 Output_segment
* load_seg
;
1636 if (this->script_options_
->saw_sections_clause())
1637 load_seg
= this->set_section_addresses_from_script(symtab
);
1638 else if (parameters
->options().relocatable())
1641 load_seg
= this->find_first_load_seg();
1643 if (parameters
->options().oformat_enum()
1644 != General_options::OBJECT_FORMAT_ELF
)
1647 // If the user set the address of the text segment, that may not be
1648 // compatible with putting the segment headers and file headers into
1650 if (parameters
->options().user_set_Ttext())
1653 gold_assert(phdr_seg
== NULL
1655 || this->script_options_
->saw_sections_clause());
1657 // If the address of the load segment we found has been set by
1658 // --section-start rather than by a script, then adjust the VMA and
1659 // LMA downward if possible to include the file and section headers.
1660 uint64_t header_gap
= 0;
1661 if (load_seg
!= NULL
1662 && load_seg
->are_addresses_set()
1663 && !this->script_options_
->saw_sections_clause()
1664 && !parameters
->options().relocatable())
1666 file_header
->finalize_data_size();
1667 segment_headers
->finalize_data_size();
1668 size_t sizeof_headers
= (file_header
->data_size()
1669 + segment_headers
->data_size());
1670 const uint64_t abi_pagesize
= target
->abi_pagesize();
1671 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
1672 hdr_paddr
&= ~(abi_pagesize
- 1);
1673 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
1674 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
1678 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
1679 load_seg
->paddr() - subtract
);
1680 header_gap
= subtract
- sizeof_headers
;
1684 // Lay out the segment headers.
1685 if (!parameters
->options().relocatable())
1687 gold_assert(segment_headers
!= NULL
);
1688 if (header_gap
!= 0 && load_seg
!= NULL
)
1690 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
1691 load_seg
->add_initial_output_data(z
);
1693 if (load_seg
!= NULL
)
1694 load_seg
->add_initial_output_data(segment_headers
);
1695 if (phdr_seg
!= NULL
)
1696 phdr_seg
->add_initial_output_data(segment_headers
);
1699 // Lay out the file header.
1700 if (load_seg
!= NULL
)
1701 load_seg
->add_initial_output_data(file_header
);
1703 if (this->script_options_
->saw_phdrs_clause()
1704 && !parameters
->options().relocatable())
1706 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1707 // clause in a linker script.
1708 Script_sections
* ss
= this->script_options_
->script_sections();
1709 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1712 // We set the output section indexes in set_segment_offsets and
1713 // set_section_indexes.
1716 // Set the file offsets of all the segments, and all the sections
1719 if (!parameters
->options().relocatable())
1720 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1722 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1724 // Verify that the dummy relaxation does not change anything.
1725 if (is_debugging_enabled(DEBUG_RELAXATION
))
1728 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1730 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1733 *pload_seg
= load_seg
;
1737 // Search the list of patterns and find the postion of the given section
1738 // name in the output section. If the section name matches a glob
1739 // pattern and a non-glob name, then the non-glob position takes
1740 // precedence. Return 0 if no match is found.
1743 Layout::find_section_order_index(const std::string
& section_name
)
1745 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
1746 map_it
= this->input_section_position_
.find(section_name
);
1747 if (map_it
!= this->input_section_position_
.end())
1748 return map_it
->second
;
1750 // Absolute match failed. Linear search the glob patterns.
1751 std::vector
<std::string
>::iterator it
;
1752 for (it
= this->input_section_glob_
.begin();
1753 it
!= this->input_section_glob_
.end();
1756 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
1758 map_it
= this->input_section_position_
.find(*it
);
1759 gold_assert(map_it
!= this->input_section_position_
.end());
1760 return map_it
->second
;
1766 // Read the sequence of input sections from the file specified with
1767 // --section-ordering-file.
1770 Layout::read_layout_from_file()
1772 const char* filename
= parameters
->options().section_ordering_file();
1778 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1779 filename
, strerror(errno
));
1781 std::getline(in
, line
); // this chops off the trailing \n, if any
1782 unsigned int position
= 1;
1786 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
1787 line
.resize(line
.length() - 1);
1788 // Ignore comments, beginning with '#'
1791 std::getline(in
, line
);
1794 this->input_section_position_
[line
] = position
;
1795 // Store all glob patterns in a vector.
1796 if (is_wildcard_string(line
.c_str()))
1797 this->input_section_glob_
.push_back(line
);
1799 std::getline(in
, line
);
1803 // Finalize the layout. When this is called, we have created all the
1804 // output sections and all the output segments which are based on
1805 // input sections. We have several things to do, and we have to do
1806 // them in the right order, so that we get the right results correctly
1809 // 1) Finalize the list of output segments and create the segment
1812 // 2) Finalize the dynamic symbol table and associated sections.
1814 // 3) Determine the final file offset of all the output segments.
1816 // 4) Determine the final file offset of all the SHF_ALLOC output
1819 // 5) Create the symbol table sections and the section name table
1822 // 6) Finalize the symbol table: set symbol values to their final
1823 // value and make a final determination of which symbols are going
1824 // into the output symbol table.
1826 // 7) Create the section table header.
1828 // 8) Determine the final file offset of all the output sections which
1829 // are not SHF_ALLOC, including the section table header.
1831 // 9) Finalize the ELF file header.
1833 // This function returns the size of the output file.
1836 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1837 Target
* target
, const Task
* task
)
1839 target
->finalize_sections(this, input_objects
, symtab
);
1841 this->count_local_symbols(task
, input_objects
);
1843 this->link_stabs_sections();
1845 Output_segment
* phdr_seg
= NULL
;
1846 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1848 // There was a dynamic object in the link. We need to create
1849 // some information for the dynamic linker.
1851 // Create the PT_PHDR segment which will hold the program
1853 if (!this->script_options_
->saw_phdrs_clause())
1854 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1856 // Create the dynamic symbol table, including the hash table.
1857 Output_section
* dynstr
;
1858 std::vector
<Symbol
*> dynamic_symbols
;
1859 unsigned int local_dynamic_count
;
1860 Versions
versions(*this->script_options()->version_script_info(),
1862 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1863 &local_dynamic_count
, &dynamic_symbols
,
1866 // Create the .interp section to hold the name of the
1867 // interpreter, and put it in a PT_INTERP segment.
1868 if (!parameters
->options().shared())
1869 this->create_interp(target
);
1871 // Finish the .dynamic section to hold the dynamic data, and put
1872 // it in a PT_DYNAMIC segment.
1873 this->finish_dynamic_section(input_objects
, symtab
);
1875 // We should have added everything we need to the dynamic string
1877 this->dynpool_
.set_string_offsets();
1879 // Create the version sections. We can't do this until the
1880 // dynamic string table is complete.
1881 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1882 dynamic_symbols
, dynstr
);
1884 // Set the size of the _DYNAMIC symbol. We can't do this until
1885 // after we call create_version_sections.
1886 this->set_dynamic_symbol_size(symtab
);
1889 // Create segment headers.
1890 Output_segment_headers
* segment_headers
=
1891 (parameters
->options().relocatable()
1893 : new Output_segment_headers(this->segment_list_
));
1895 // Lay out the file header.
1896 Output_file_header
* file_header
1897 = new Output_file_header(target
, symtab
, segment_headers
,
1898 parameters
->options().entry());
1900 this->special_output_list_
.push_back(file_header
);
1901 if (segment_headers
!= NULL
)
1902 this->special_output_list_
.push_back(segment_headers
);
1904 // Find approriate places for orphan output sections if we are using
1906 if (this->script_options_
->saw_sections_clause())
1907 this->place_orphan_sections_in_script();
1909 Output_segment
* load_seg
;
1914 // Take a snapshot of the section layout as needed.
1915 if (target
->may_relax())
1916 this->prepare_for_relaxation();
1918 // Run the relaxation loop to lay out sections.
1921 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1922 phdr_seg
, segment_headers
, file_header
,
1926 while (target
->may_relax()
1927 && target
->relax(pass
, input_objects
, symtab
, this));
1929 // Set the file offsets of all the non-data sections we've seen so
1930 // far which don't have to wait for the input sections. We need
1931 // this in order to finalize local symbols in non-allocated
1933 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1935 // Set the section indexes of all unallocated sections seen so far,
1936 // in case any of them are somehow referenced by a symbol.
1937 shndx
= this->set_section_indexes(shndx
);
1939 // Create the symbol table sections.
1940 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1941 if (!parameters
->doing_static_link())
1942 this->assign_local_dynsym_offsets(input_objects
);
1944 // Process any symbol assignments from a linker script. This must
1945 // be called after the symbol table has been finalized.
1946 this->script_options_
->finalize_symbols(symtab
, this);
1948 // Create the incremental inputs sections.
1949 if (this->incremental_inputs_
)
1951 this->incremental_inputs_
->finalize();
1952 this->create_incremental_info_sections(symtab
);
1955 // Create the .shstrtab section.
1956 Output_section
* shstrtab_section
= this->create_shstrtab();
1958 // Set the file offsets of the rest of the non-data sections which
1959 // don't have to wait for the input sections.
1960 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1962 // Now that all sections have been created, set the section indexes
1963 // for any sections which haven't been done yet.
1964 shndx
= this->set_section_indexes(shndx
);
1966 // Create the section table header.
1967 this->create_shdrs(shstrtab_section
, &off
);
1969 // If there are no sections which require postprocessing, we can
1970 // handle the section names now, and avoid a resize later.
1971 if (!this->any_postprocessing_sections_
)
1973 off
= this->set_section_offsets(off
,
1974 POSTPROCESSING_SECTIONS_PASS
);
1976 this->set_section_offsets(off
,
1977 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1980 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1982 // Now we know exactly where everything goes in the output file
1983 // (except for non-allocated sections which require postprocessing).
1984 Output_data::layout_complete();
1986 this->output_file_size_
= off
;
1991 // Create a note header following the format defined in the ELF ABI.
1992 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1993 // of the section to create, DESCSZ is the size of the descriptor.
1994 // ALLOCATE is true if the section should be allocated in memory.
1995 // This returns the new note section. It sets *TRAILING_PADDING to
1996 // the number of trailing zero bytes required.
1999 Layout::create_note(const char* name
, int note_type
,
2000 const char* section_name
, size_t descsz
,
2001 bool allocate
, size_t* trailing_padding
)
2003 // Authorities all agree that the values in a .note field should
2004 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2005 // they differ on what the alignment is for 64-bit binaries.
2006 // The GABI says unambiguously they take 8-byte alignment:
2007 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2008 // Other documentation says alignment should always be 4 bytes:
2009 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2010 // GNU ld and GNU readelf both support the latter (at least as of
2011 // version 2.16.91), and glibc always generates the latter for
2012 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2014 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2015 const int size
= parameters
->target().get_size();
2017 const int size
= 32;
2020 // The contents of the .note section.
2021 size_t namesz
= strlen(name
) + 1;
2022 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
2023 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
2025 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
2027 unsigned char* buffer
= new unsigned char[notehdrsz
];
2028 memset(buffer
, 0, notehdrsz
);
2030 bool is_big_endian
= parameters
->target().is_big_endian();
2036 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
2037 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
2038 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
2042 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
2043 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
2044 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
2047 else if (size
== 64)
2051 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
2052 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
2053 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
2057 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
2058 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
2059 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
2065 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
2067 elfcpp::Elf_Xword flags
= 0;
2068 Output_section_order order
= ORDER_INVALID
;
2071 flags
= elfcpp::SHF_ALLOC
;
2072 order
= ORDER_RO_NOTE
;
2074 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
2076 flags
, false, order
, false);
2080 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
2083 os
->add_output_section_data(posd
);
2085 *trailing_padding
= aligned_descsz
- descsz
;
2090 // For an executable or shared library, create a note to record the
2091 // version of gold used to create the binary.
2094 Layout::create_gold_note()
2096 if (parameters
->options().relocatable())
2099 std::string desc
= std::string("gold ") + gold::get_version_string();
2101 size_t trailing_padding
;
2102 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2103 ".note.gnu.gold-version", desc
.size(),
2104 false, &trailing_padding
);
2108 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2109 os
->add_output_section_data(posd
);
2111 if (trailing_padding
> 0)
2113 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2114 os
->add_output_section_data(posd
);
2118 // Record whether the stack should be executable. This can be set
2119 // from the command line using the -z execstack or -z noexecstack
2120 // options. Otherwise, if any input file has a .note.GNU-stack
2121 // section with the SHF_EXECINSTR flag set, the stack should be
2122 // executable. Otherwise, if at least one input file a
2123 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2124 // section, we use the target default for whether the stack should be
2125 // executable. Otherwise, we don't generate a stack note. When
2126 // generating a object file, we create a .note.GNU-stack section with
2127 // the appropriate marking. When generating an executable or shared
2128 // library, we create a PT_GNU_STACK segment.
2131 Layout::create_executable_stack_info()
2133 bool is_stack_executable
;
2134 if (parameters
->options().is_execstack_set())
2135 is_stack_executable
= parameters
->options().is_stack_executable();
2136 else if (!this->input_with_gnu_stack_note_
)
2140 if (this->input_requires_executable_stack_
)
2141 is_stack_executable
= true;
2142 else if (this->input_without_gnu_stack_note_
)
2143 is_stack_executable
=
2144 parameters
->target().is_default_stack_executable();
2146 is_stack_executable
= false;
2149 if (parameters
->options().relocatable())
2151 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2152 elfcpp::Elf_Xword flags
= 0;
2153 if (is_stack_executable
)
2154 flags
|= elfcpp::SHF_EXECINSTR
;
2155 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
2156 ORDER_INVALID
, false);
2160 if (this->script_options_
->saw_phdrs_clause())
2162 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2163 if (is_stack_executable
)
2164 flags
|= elfcpp::PF_X
;
2165 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2169 // If --build-id was used, set up the build ID note.
2172 Layout::create_build_id()
2174 if (!parameters
->options().user_set_build_id())
2177 const char* style
= parameters
->options().build_id();
2178 if (strcmp(style
, "none") == 0)
2181 // Set DESCSZ to the size of the note descriptor. When possible,
2182 // set DESC to the note descriptor contents.
2185 if (strcmp(style
, "md5") == 0)
2187 else if (strcmp(style
, "sha1") == 0)
2189 else if (strcmp(style
, "uuid") == 0)
2191 const size_t uuidsz
= 128 / 8;
2193 char buffer
[uuidsz
];
2194 memset(buffer
, 0, uuidsz
);
2196 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2198 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2202 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2203 release_descriptor(descriptor
, true);
2205 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2206 else if (static_cast<size_t>(got
) != uuidsz
)
2207 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2211 desc
.assign(buffer
, uuidsz
);
2214 else if (strncmp(style
, "0x", 2) == 0)
2217 const char* p
= style
+ 2;
2220 if (hex_p(p
[0]) && hex_p(p
[1]))
2222 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2226 else if (*p
== '-' || *p
== ':')
2229 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2232 descsz
= desc
.size();
2235 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2238 size_t trailing_padding
;
2239 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2240 ".note.gnu.build-id", descsz
, true,
2247 // We know the value already, so we fill it in now.
2248 gold_assert(desc
.size() == descsz
);
2250 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2251 os
->add_output_section_data(posd
);
2253 if (trailing_padding
!= 0)
2255 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2256 os
->add_output_section_data(posd
);
2261 // We need to compute a checksum after we have completed the
2263 gold_assert(trailing_padding
== 0);
2264 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2265 os
->add_output_section_data(this->build_id_note_
);
2269 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2270 // field of the former should point to the latter. I'm not sure who
2271 // started this, but the GNU linker does it, and some tools depend
2275 Layout::link_stabs_sections()
2277 if (!this->have_stabstr_section_
)
2280 for (Section_list::iterator p
= this->section_list_
.begin();
2281 p
!= this->section_list_
.end();
2284 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2287 const char* name
= (*p
)->name();
2288 if (strncmp(name
, ".stab", 5) != 0)
2291 size_t len
= strlen(name
);
2292 if (strcmp(name
+ len
- 3, "str") != 0)
2295 std::string
stab_name(name
, len
- 3);
2296 Output_section
* stab_sec
;
2297 stab_sec
= this->find_output_section(stab_name
.c_str());
2298 if (stab_sec
!= NULL
)
2299 stab_sec
->set_link_section(*p
);
2303 // Create .gnu_incremental_inputs and related sections needed
2304 // for the next run of incremental linking to check what has changed.
2307 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
2309 Incremental_inputs
* incr
= this->incremental_inputs_
;
2311 gold_assert(incr
!= NULL
);
2313 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2314 incr
->create_data_sections(symtab
);
2316 // Add the .gnu_incremental_inputs section.
2317 const char* incremental_inputs_name
=
2318 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2319 Output_section
* incremental_inputs_os
=
2320 this->make_output_section(incremental_inputs_name
,
2321 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2322 ORDER_INVALID
, false);
2323 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
2325 // Add the .gnu_incremental_symtab section.
2326 const char* incremental_symtab_name
=
2327 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
2328 Output_section
* incremental_symtab_os
=
2329 this->make_output_section(incremental_symtab_name
,
2330 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
2331 ORDER_INVALID
, false);
2332 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
2333 incremental_symtab_os
->set_entsize(4);
2335 // Add the .gnu_incremental_relocs section.
2336 const char* incremental_relocs_name
=
2337 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
2338 Output_section
* incremental_relocs_os
=
2339 this->make_output_section(incremental_relocs_name
,
2340 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
2341 ORDER_INVALID
, false);
2342 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
2343 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
2345 // Add the .gnu_incremental_got_plt section.
2346 const char* incremental_got_plt_name
=
2347 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
2348 Output_section
* incremental_got_plt_os
=
2349 this->make_output_section(incremental_got_plt_name
,
2350 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
2351 ORDER_INVALID
, false);
2352 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
2354 // Add the .gnu_incremental_strtab section.
2355 const char* incremental_strtab_name
=
2356 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2357 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
2358 elfcpp::SHT_STRTAB
, 0,
2359 ORDER_INVALID
, false);
2360 Output_data_strtab
* strtab_data
=
2361 new Output_data_strtab(incr
->get_stringpool());
2362 incremental_strtab_os
->add_output_section_data(strtab_data
);
2364 incremental_inputs_os
->set_after_input_sections();
2365 incremental_symtab_os
->set_after_input_sections();
2366 incremental_relocs_os
->set_after_input_sections();
2367 incremental_got_plt_os
->set_after_input_sections();
2369 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
2370 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
2371 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
2372 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
2375 // Return whether SEG1 should be before SEG2 in the output file. This
2376 // is based entirely on the segment type and flags. When this is
2377 // called the segment addresses has normally not yet been set.
2380 Layout::segment_precedes(const Output_segment
* seg1
,
2381 const Output_segment
* seg2
)
2383 elfcpp::Elf_Word type1
= seg1
->type();
2384 elfcpp::Elf_Word type2
= seg2
->type();
2386 // The single PT_PHDR segment is required to precede any loadable
2387 // segment. We simply make it always first.
2388 if (type1
== elfcpp::PT_PHDR
)
2390 gold_assert(type2
!= elfcpp::PT_PHDR
);
2393 if (type2
== elfcpp::PT_PHDR
)
2396 // The single PT_INTERP segment is required to precede any loadable
2397 // segment. We simply make it always second.
2398 if (type1
== elfcpp::PT_INTERP
)
2400 gold_assert(type2
!= elfcpp::PT_INTERP
);
2403 if (type2
== elfcpp::PT_INTERP
)
2406 // We then put PT_LOAD segments before any other segments.
2407 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2409 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2412 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2413 // segment, because that is where the dynamic linker expects to find
2414 // it (this is just for efficiency; other positions would also work
2416 if (type1
== elfcpp::PT_TLS
2417 && type2
!= elfcpp::PT_TLS
2418 && type2
!= elfcpp::PT_GNU_RELRO
)
2420 if (type2
== elfcpp::PT_TLS
2421 && type1
!= elfcpp::PT_TLS
2422 && type1
!= elfcpp::PT_GNU_RELRO
)
2425 // We put the PT_GNU_RELRO segment last, because that is where the
2426 // dynamic linker expects to find it (as with PT_TLS, this is just
2428 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2430 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2433 const elfcpp::Elf_Word flags1
= seg1
->flags();
2434 const elfcpp::Elf_Word flags2
= seg2
->flags();
2436 // The order of non-PT_LOAD segments is unimportant. We simply sort
2437 // by the numeric segment type and flags values. There should not
2438 // be more than one segment with the same type and flags.
2439 if (type1
!= elfcpp::PT_LOAD
)
2442 return type1
< type2
;
2443 gold_assert(flags1
!= flags2
);
2444 return flags1
< flags2
;
2447 // If the addresses are set already, sort by load address.
2448 if (seg1
->are_addresses_set())
2450 if (!seg2
->are_addresses_set())
2453 unsigned int section_count1
= seg1
->output_section_count();
2454 unsigned int section_count2
= seg2
->output_section_count();
2455 if (section_count1
== 0 && section_count2
> 0)
2457 if (section_count1
> 0 && section_count2
== 0)
2460 uint64_t paddr1
= (seg1
->are_addresses_set()
2462 : seg1
->first_section_load_address());
2463 uint64_t paddr2
= (seg2
->are_addresses_set()
2465 : seg2
->first_section_load_address());
2467 if (paddr1
!= paddr2
)
2468 return paddr1
< paddr2
;
2470 else if (seg2
->are_addresses_set())
2473 // A segment which holds large data comes after a segment which does
2474 // not hold large data.
2475 if (seg1
->is_large_data_segment())
2477 if (!seg2
->is_large_data_segment())
2480 else if (seg2
->is_large_data_segment())
2483 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2484 // segments come before writable segments. Then writable segments
2485 // with data come before writable segments without data. Then
2486 // executable segments come before non-executable segments. Then
2487 // the unlikely case of a non-readable segment comes before the
2488 // normal case of a readable segment. If there are multiple
2489 // segments with the same type and flags, we require that the
2490 // address be set, and we sort by virtual address and then physical
2492 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2493 return (flags1
& elfcpp::PF_W
) == 0;
2494 if ((flags1
& elfcpp::PF_W
) != 0
2495 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2496 return seg1
->has_any_data_sections();
2497 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2498 return (flags1
& elfcpp::PF_X
) != 0;
2499 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2500 return (flags1
& elfcpp::PF_R
) == 0;
2502 // We shouldn't get here--we shouldn't create segments which we
2503 // can't distinguish.
2507 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2510 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2512 uint64_t unsigned_off
= off
;
2513 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2514 | (addr
& (abi_pagesize
- 1)));
2515 if (aligned_off
< unsigned_off
)
2516 aligned_off
+= abi_pagesize
;
2520 // Set the file offsets of all the segments, and all the sections they
2521 // contain. They have all been created. LOAD_SEG must be be laid out
2522 // first. Return the offset of the data to follow.
2525 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2526 unsigned int* pshndx
)
2528 // Sort them into the final order.
2529 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2530 Layout::Compare_segments());
2532 // Find the PT_LOAD segments, and set their addresses and offsets
2533 // and their section's addresses and offsets.
2535 if (parameters
->options().user_set_Ttext())
2536 addr
= parameters
->options().Ttext();
2537 else if (parameters
->options().output_is_position_independent())
2540 addr
= target
->default_text_segment_address();
2543 // If LOAD_SEG is NULL, then the file header and segment headers
2544 // will not be loadable. But they still need to be at offset 0 in
2545 // the file. Set their offsets now.
2546 if (load_seg
== NULL
)
2548 for (Data_list::iterator p
= this->special_output_list_
.begin();
2549 p
!= this->special_output_list_
.end();
2552 off
= align_address(off
, (*p
)->addralign());
2553 (*p
)->set_address_and_file_offset(0, off
);
2554 off
+= (*p
)->data_size();
2558 unsigned int increase_relro
= this->increase_relro_
;
2559 if (this->script_options_
->saw_sections_clause())
2562 const bool check_sections
= parameters
->options().check_sections();
2563 Output_segment
* last_load_segment
= NULL
;
2565 bool was_readonly
= false;
2566 for (Segment_list::iterator p
= this->segment_list_
.begin();
2567 p
!= this->segment_list_
.end();
2570 if ((*p
)->type() == elfcpp::PT_LOAD
)
2572 if (load_seg
!= NULL
&& load_seg
!= *p
)
2576 bool are_addresses_set
= (*p
)->are_addresses_set();
2577 if (are_addresses_set
)
2579 // When it comes to setting file offsets, we care about
2580 // the physical address.
2581 addr
= (*p
)->paddr();
2583 else if (parameters
->options().user_set_Tdata()
2584 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2585 && (!parameters
->options().user_set_Tbss()
2586 || (*p
)->has_any_data_sections()))
2588 addr
= parameters
->options().Tdata();
2589 are_addresses_set
= true;
2591 else if (parameters
->options().user_set_Tbss()
2592 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2593 && !(*p
)->has_any_data_sections())
2595 addr
= parameters
->options().Tbss();
2596 are_addresses_set
= true;
2599 uint64_t orig_addr
= addr
;
2600 uint64_t orig_off
= off
;
2602 uint64_t aligned_addr
= 0;
2603 uint64_t abi_pagesize
= target
->abi_pagesize();
2604 uint64_t common_pagesize
= target
->common_pagesize();
2606 if (!parameters
->options().nmagic()
2607 && !parameters
->options().omagic())
2608 (*p
)->set_minimum_p_align(common_pagesize
);
2610 if (!are_addresses_set
)
2612 // If the last segment was readonly, and this one is
2613 // not, then skip the address forward one page,
2614 // maintaining the same position within the page. This
2615 // lets us store both segments overlapping on a single
2616 // page in the file, but the loader will put them on
2617 // different pages in memory.
2619 addr
= align_address(addr
, (*p
)->maximum_alignment());
2620 aligned_addr
= addr
;
2622 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
2624 if ((addr
& (abi_pagesize
- 1)) != 0)
2625 addr
= addr
+ abi_pagesize
;
2628 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2631 if (!parameters
->options().nmagic()
2632 && !parameters
->options().omagic())
2633 off
= align_file_offset(off
, addr
, abi_pagesize
);
2634 else if (load_seg
== NULL
)
2636 // This is -N or -n with a section script which prevents
2637 // us from using a load segment. We need to ensure that
2638 // the file offset is aligned to the alignment of the
2639 // segment. This is because the linker script
2640 // implicitly assumed a zero offset. If we don't align
2641 // here, then the alignment of the sections in the
2642 // linker script may not match the alignment of the
2643 // sections in the set_section_addresses call below,
2644 // causing an error about dot moving backward.
2645 off
= align_address(off
, (*p
)->maximum_alignment());
2648 unsigned int shndx_hold
= *pshndx
;
2649 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2653 // Now that we know the size of this segment, we may be able
2654 // to save a page in memory, at the cost of wasting some
2655 // file space, by instead aligning to the start of a new
2656 // page. Here we use the real machine page size rather than
2657 // the ABI mandated page size.
2659 if (!are_addresses_set
&& aligned_addr
!= addr
)
2661 uint64_t first_off
= (common_pagesize
2663 & (common_pagesize
- 1)));
2664 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2667 && ((aligned_addr
& ~ (common_pagesize
- 1))
2668 != (new_addr
& ~ (common_pagesize
- 1)))
2669 && first_off
+ last_off
<= common_pagesize
)
2671 *pshndx
= shndx_hold
;
2672 addr
= align_address(aligned_addr
, common_pagesize
);
2673 addr
= align_address(addr
, (*p
)->maximum_alignment());
2674 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2675 off
= align_file_offset(off
, addr
, abi_pagesize
);
2676 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2684 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
2685 was_readonly
= true;
2687 // Implement --check-sections. We know that the segments
2688 // are sorted by LMA.
2689 if (check_sections
&& last_load_segment
!= NULL
)
2691 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2692 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2695 unsigned long long lb1
= last_load_segment
->paddr();
2696 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2697 unsigned long long lb2
= (*p
)->paddr();
2698 unsigned long long le2
= lb2
+ (*p
)->memsz();
2699 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2700 "[0x%llx -> 0x%llx]"),
2701 lb1
, le1
, lb2
, le2
);
2704 last_load_segment
= *p
;
2708 // Handle the non-PT_LOAD segments, setting their offsets from their
2709 // section's offsets.
2710 for (Segment_list::iterator p
= this->segment_list_
.begin();
2711 p
!= this->segment_list_
.end();
2714 if ((*p
)->type() != elfcpp::PT_LOAD
)
2715 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2720 // Set the TLS offsets for each section in the PT_TLS segment.
2721 if (this->tls_segment_
!= NULL
)
2722 this->tls_segment_
->set_tls_offsets();
2727 // Set the offsets of all the allocated sections when doing a
2728 // relocatable link. This does the same jobs as set_segment_offsets,
2729 // only for a relocatable link.
2732 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2733 unsigned int* pshndx
)
2737 file_header
->set_address_and_file_offset(0, 0);
2738 off
+= file_header
->data_size();
2740 for (Section_list::iterator p
= this->section_list_
.begin();
2741 p
!= this->section_list_
.end();
2744 // We skip unallocated sections here, except that group sections
2745 // have to come first.
2746 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2747 && (*p
)->type() != elfcpp::SHT_GROUP
)
2750 off
= align_address(off
, (*p
)->addralign());
2752 // The linker script might have set the address.
2753 if (!(*p
)->is_address_valid())
2754 (*p
)->set_address(0);
2755 (*p
)->set_file_offset(off
);
2756 (*p
)->finalize_data_size();
2757 off
+= (*p
)->data_size();
2759 (*p
)->set_out_shndx(*pshndx
);
2766 // Set the file offset of all the sections not associated with a
2770 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2772 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2773 p
!= this->unattached_section_list_
.end();
2776 // The symtab section is handled in create_symtab_sections.
2777 if (*p
== this->symtab_section_
)
2780 // If we've already set the data size, don't set it again.
2781 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2784 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2785 && (*p
)->requires_postprocessing())
2787 (*p
)->create_postprocessing_buffer();
2788 this->any_postprocessing_sections_
= true;
2791 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2792 && (*p
)->after_input_sections())
2794 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2795 && (!(*p
)->after_input_sections()
2796 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2798 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2799 && (!(*p
)->after_input_sections()
2800 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2803 off
= align_address(off
, (*p
)->addralign());
2804 (*p
)->set_file_offset(off
);
2805 (*p
)->finalize_data_size();
2806 off
+= (*p
)->data_size();
2808 // At this point the name must be set.
2809 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2810 this->namepool_
.add((*p
)->name(), false, NULL
);
2815 // Set the section indexes of all the sections not associated with a
2819 Layout::set_section_indexes(unsigned int shndx
)
2821 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2822 p
!= this->unattached_section_list_
.end();
2825 if (!(*p
)->has_out_shndx())
2827 (*p
)->set_out_shndx(shndx
);
2834 // Set the section addresses according to the linker script. This is
2835 // only called when we see a SECTIONS clause. This returns the
2836 // program segment which should hold the file header and segment
2837 // headers, if any. It will return NULL if they should not be in a
2841 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2843 Script_sections
* ss
= this->script_options_
->script_sections();
2844 gold_assert(ss
->saw_sections_clause());
2845 return this->script_options_
->set_section_addresses(symtab
, this);
2848 // Place the orphan sections in the linker script.
2851 Layout::place_orphan_sections_in_script()
2853 Script_sections
* ss
= this->script_options_
->script_sections();
2854 gold_assert(ss
->saw_sections_clause());
2856 // Place each orphaned output section in the script.
2857 for (Section_list::iterator p
= this->section_list_
.begin();
2858 p
!= this->section_list_
.end();
2861 if (!(*p
)->found_in_sections_clause())
2862 ss
->place_orphan(*p
);
2866 // Count the local symbols in the regular symbol table and the dynamic
2867 // symbol table, and build the respective string pools.
2870 Layout::count_local_symbols(const Task
* task
,
2871 const Input_objects
* input_objects
)
2873 // First, figure out an upper bound on the number of symbols we'll
2874 // be inserting into each pool. This helps us create the pools with
2875 // the right size, to avoid unnecessary hashtable resizing.
2876 unsigned int symbol_count
= 0;
2877 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2878 p
!= input_objects
->relobj_end();
2880 symbol_count
+= (*p
)->local_symbol_count();
2882 // Go from "upper bound" to "estimate." We overcount for two
2883 // reasons: we double-count symbols that occur in more than one
2884 // object file, and we count symbols that are dropped from the
2885 // output. Add it all together and assume we overcount by 100%.
2888 // We assume all symbols will go into both the sympool and dynpool.
2889 this->sympool_
.reserve(symbol_count
);
2890 this->dynpool_
.reserve(symbol_count
);
2892 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2893 p
!= input_objects
->relobj_end();
2896 Task_lock_obj
<Object
> tlo(task
, *p
);
2897 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2901 // Create the symbol table sections. Here we also set the final
2902 // values of the symbols. At this point all the loadable sections are
2903 // fully laid out. SHNUM is the number of sections so far.
2906 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2907 Symbol_table
* symtab
,
2913 if (parameters
->target().get_size() == 32)
2915 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2918 else if (parameters
->target().get_size() == 64)
2920 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2927 off
= align_address(off
, align
);
2928 off_t startoff
= off
;
2930 // Save space for the dummy symbol at the start of the section. We
2931 // never bother to write this out--it will just be left as zero.
2933 unsigned int local_symbol_index
= 1;
2935 // Add STT_SECTION symbols for each Output section which needs one.
2936 for (Section_list::iterator p
= this->section_list_
.begin();
2937 p
!= this->section_list_
.end();
2940 if (!(*p
)->needs_symtab_index())
2941 (*p
)->set_symtab_index(-1U);
2944 (*p
)->set_symtab_index(local_symbol_index
);
2945 ++local_symbol_index
;
2950 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2951 p
!= input_objects
->relobj_end();
2954 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2956 off
+= (index
- local_symbol_index
) * symsize
;
2957 local_symbol_index
= index
;
2960 unsigned int local_symcount
= local_symbol_index
;
2961 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2964 size_t dyn_global_index
;
2966 if (this->dynsym_section_
== NULL
)
2969 dyn_global_index
= 0;
2974 dyn_global_index
= this->dynsym_section_
->info();
2975 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2976 dynoff
= this->dynsym_section_
->offset() + locsize
;
2977 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2978 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2979 == this->dynsym_section_
->data_size() - locsize
);
2982 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2983 &this->sympool_
, &local_symcount
);
2985 if (!parameters
->options().strip_all())
2987 this->sympool_
.set_string_offsets();
2989 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2990 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2994 this->symtab_section_
= osymtab
;
2996 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2999 osymtab
->add_output_section_data(pos
);
3001 // We generate a .symtab_shndx section if we have more than
3002 // SHN_LORESERVE sections. Technically it is possible that we
3003 // don't need one, because it is possible that there are no
3004 // symbols in any of sections with indexes larger than
3005 // SHN_LORESERVE. That is probably unusual, though, and it is
3006 // easier to always create one than to compute section indexes
3007 // twice (once here, once when writing out the symbols).
3008 if (shnum
>= elfcpp::SHN_LORESERVE
)
3010 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
3012 Output_section
* osymtab_xindex
=
3013 this->make_output_section(symtab_xindex_name
,
3014 elfcpp::SHT_SYMTAB_SHNDX
, 0,
3015 ORDER_INVALID
, false);
3017 size_t symcount
= (off
- startoff
) / symsize
;
3018 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
3020 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
3022 osymtab_xindex
->set_link_section(osymtab
);
3023 osymtab_xindex
->set_addralign(4);
3024 osymtab_xindex
->set_entsize(4);
3026 osymtab_xindex
->set_after_input_sections();
3028 // This tells the driver code to wait until the symbol table
3029 // has written out before writing out the postprocessing
3030 // sections, including the .symtab_shndx section.
3031 this->any_postprocessing_sections_
= true;
3034 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
3035 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
3040 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
3041 ostrtab
->add_output_section_data(pstr
);
3043 osymtab
->set_file_offset(startoff
);
3044 osymtab
->finalize_data_size();
3045 osymtab
->set_link_section(ostrtab
);
3046 osymtab
->set_info(local_symcount
);
3047 osymtab
->set_entsize(symsize
);
3053 // Create the .shstrtab section, which holds the names of the
3054 // sections. At the time this is called, we have created all the
3055 // output sections except .shstrtab itself.
3058 Layout::create_shstrtab()
3060 // FIXME: We don't need to create a .shstrtab section if we are
3061 // stripping everything.
3063 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
3065 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
3066 ORDER_INVALID
, false);
3068 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
3070 // We can't write out this section until we've set all the
3071 // section names, and we don't set the names of compressed
3072 // output sections until relocations are complete. FIXME: With
3073 // the current names we use, this is unnecessary.
3074 os
->set_after_input_sections();
3077 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
3078 os
->add_output_section_data(posd
);
3083 // Create the section headers. SIZE is 32 or 64. OFF is the file
3087 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
3089 Output_section_headers
* oshdrs
;
3090 oshdrs
= new Output_section_headers(this,
3091 &this->segment_list_
,
3092 &this->section_list_
,
3093 &this->unattached_section_list_
,
3096 off_t off
= align_address(*poff
, oshdrs
->addralign());
3097 oshdrs
->set_address_and_file_offset(0, off
);
3098 off
+= oshdrs
->data_size();
3100 this->section_headers_
= oshdrs
;
3103 // Count the allocated sections.
3106 Layout::allocated_output_section_count() const
3108 size_t section_count
= 0;
3109 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3110 p
!= this->segment_list_
.end();
3112 section_count
+= (*p
)->output_section_count();
3113 return section_count
;
3116 // Create the dynamic symbol table.
3119 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
3120 Symbol_table
* symtab
,
3121 Output_section
** pdynstr
,
3122 unsigned int* plocal_dynamic_count
,
3123 std::vector
<Symbol
*>* pdynamic_symbols
,
3124 Versions
* pversions
)
3126 // Count all the symbols in the dynamic symbol table, and set the
3127 // dynamic symbol indexes.
3129 // Skip symbol 0, which is always all zeroes.
3130 unsigned int index
= 1;
3132 // Add STT_SECTION symbols for each Output section which needs one.
3133 for (Section_list::iterator p
= this->section_list_
.begin();
3134 p
!= this->section_list_
.end();
3137 if (!(*p
)->needs_dynsym_index())
3138 (*p
)->set_dynsym_index(-1U);
3141 (*p
)->set_dynsym_index(index
);
3146 // Count the local symbols that need to go in the dynamic symbol table,
3147 // and set the dynamic symbol indexes.
3148 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3149 p
!= input_objects
->relobj_end();
3152 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3156 unsigned int local_symcount
= index
;
3157 *plocal_dynamic_count
= local_symcount
;
3159 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3160 &this->dynpool_
, pversions
);
3164 const int size
= parameters
->target().get_size();
3167 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3170 else if (size
== 64)
3172 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3178 // Create the dynamic symbol table section.
3180 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3184 ORDER_DYNAMIC_LINKER
,
3187 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3190 dynsym
->add_output_section_data(odata
);
3192 dynsym
->set_info(local_symcount
);
3193 dynsym
->set_entsize(symsize
);
3194 dynsym
->set_addralign(align
);
3196 this->dynsym_section_
= dynsym
;
3198 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3199 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3200 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3202 // If there are more than SHN_LORESERVE allocated sections, we
3203 // create a .dynsym_shndx section. It is possible that we don't
3204 // need one, because it is possible that there are no dynamic
3205 // symbols in any of the sections with indexes larger than
3206 // SHN_LORESERVE. This is probably unusual, though, and at this
3207 // time we don't know the actual section indexes so it is
3208 // inconvenient to check.
3209 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3211 Output_section
* dynsym_xindex
=
3212 this->choose_output_section(NULL
, ".dynsym_shndx",
3213 elfcpp::SHT_SYMTAB_SHNDX
,
3215 false, ORDER_DYNAMIC_LINKER
, false);
3217 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3219 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3221 dynsym_xindex
->set_link_section(dynsym
);
3222 dynsym_xindex
->set_addralign(4);
3223 dynsym_xindex
->set_entsize(4);
3225 dynsym_xindex
->set_after_input_sections();
3227 // This tells the driver code to wait until the symbol table has
3228 // written out before writing out the postprocessing sections,
3229 // including the .dynsym_shndx section.
3230 this->any_postprocessing_sections_
= true;
3233 // Create the dynamic string table section.
3235 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3239 ORDER_DYNAMIC_LINKER
,
3242 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3243 dynstr
->add_output_section_data(strdata
);
3245 dynsym
->set_link_section(dynstr
);
3246 this->dynamic_section_
->set_link_section(dynstr
);
3248 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3249 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3253 // Create the hash tables.
3255 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3256 || strcmp(parameters
->options().hash_style(), "both") == 0)
3258 unsigned char* phash
;
3259 unsigned int hashlen
;
3260 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3263 Output_section
* hashsec
=
3264 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
3265 elfcpp::SHF_ALLOC
, false,
3266 ORDER_DYNAMIC_LINKER
, false);
3268 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3272 hashsec
->add_output_section_data(hashdata
);
3274 hashsec
->set_link_section(dynsym
);
3275 hashsec
->set_entsize(4);
3277 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3280 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3281 || strcmp(parameters
->options().hash_style(), "both") == 0)
3283 unsigned char* phash
;
3284 unsigned int hashlen
;
3285 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3288 Output_section
* hashsec
=
3289 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
3290 elfcpp::SHF_ALLOC
, false,
3291 ORDER_DYNAMIC_LINKER
, false);
3293 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3297 hashsec
->add_output_section_data(hashdata
);
3299 hashsec
->set_link_section(dynsym
);
3301 // For a 64-bit target, the entries in .gnu.hash do not have a
3302 // uniform size, so we only set the entry size for a 32-bit
3304 if (parameters
->target().get_size() == 32)
3305 hashsec
->set_entsize(4);
3307 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3311 // Assign offsets to each local portion of the dynamic symbol table.
3314 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3316 Output_section
* dynsym
= this->dynsym_section_
;
3317 gold_assert(dynsym
!= NULL
);
3319 off_t off
= dynsym
->offset();
3321 // Skip the dummy symbol at the start of the section.
3322 off
+= dynsym
->entsize();
3324 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3325 p
!= input_objects
->relobj_end();
3328 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3329 off
+= count
* dynsym
->entsize();
3333 // Create the version sections.
3336 Layout::create_version_sections(const Versions
* versions
,
3337 const Symbol_table
* symtab
,
3338 unsigned int local_symcount
,
3339 const std::vector
<Symbol
*>& dynamic_symbols
,
3340 const Output_section
* dynstr
)
3342 if (!versions
->any_defs() && !versions
->any_needs())
3345 switch (parameters
->size_and_endianness())
3347 #ifdef HAVE_TARGET_32_LITTLE
3348 case Parameters::TARGET_32_LITTLE
:
3349 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3351 dynamic_symbols
, dynstr
);
3354 #ifdef HAVE_TARGET_32_BIG
3355 case Parameters::TARGET_32_BIG
:
3356 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3358 dynamic_symbols
, dynstr
);
3361 #ifdef HAVE_TARGET_64_LITTLE
3362 case Parameters::TARGET_64_LITTLE
:
3363 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3365 dynamic_symbols
, dynstr
);
3368 #ifdef HAVE_TARGET_64_BIG
3369 case Parameters::TARGET_64_BIG
:
3370 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3372 dynamic_symbols
, dynstr
);
3380 // Create the version sections, sized version.
3382 template<int size
, bool big_endian
>
3384 Layout::sized_create_version_sections(
3385 const Versions
* versions
,
3386 const Symbol_table
* symtab
,
3387 unsigned int local_symcount
,
3388 const std::vector
<Symbol
*>& dynamic_symbols
,
3389 const Output_section
* dynstr
)
3391 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3392 elfcpp::SHT_GNU_versym
,
3395 ORDER_DYNAMIC_LINKER
,
3398 unsigned char* vbuf
;
3400 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3405 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3408 vsec
->add_output_section_data(vdata
);
3409 vsec
->set_entsize(2);
3410 vsec
->set_link_section(this->dynsym_section_
);
3412 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3413 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3415 if (versions
->any_defs())
3417 Output_section
* vdsec
;
3418 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3419 elfcpp::SHT_GNU_verdef
,
3421 false, ORDER_DYNAMIC_LINKER
, false);
3423 unsigned char* vdbuf
;
3424 unsigned int vdsize
;
3425 unsigned int vdentries
;
3426 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3427 &vdsize
, &vdentries
);
3429 Output_section_data
* vddata
=
3430 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3432 vdsec
->add_output_section_data(vddata
);
3433 vdsec
->set_link_section(dynstr
);
3434 vdsec
->set_info(vdentries
);
3436 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3437 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3440 if (versions
->any_needs())
3442 Output_section
* vnsec
;
3443 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3444 elfcpp::SHT_GNU_verneed
,
3446 false, ORDER_DYNAMIC_LINKER
, false);
3448 unsigned char* vnbuf
;
3449 unsigned int vnsize
;
3450 unsigned int vnentries
;
3451 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3455 Output_section_data
* vndata
=
3456 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3458 vnsec
->add_output_section_data(vndata
);
3459 vnsec
->set_link_section(dynstr
);
3460 vnsec
->set_info(vnentries
);
3462 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3463 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3467 // Create the .interp section and PT_INTERP segment.
3470 Layout::create_interp(const Target
* target
)
3472 const char* interp
= parameters
->options().dynamic_linker();
3475 interp
= target
->dynamic_linker();
3476 gold_assert(interp
!= NULL
);
3479 size_t len
= strlen(interp
) + 1;
3481 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3483 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3484 elfcpp::SHT_PROGBITS
,
3486 false, ORDER_INTERP
,
3488 osec
->add_output_section_data(odata
);
3490 if (!this->script_options_
->saw_phdrs_clause())
3492 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3494 oseg
->add_output_section_to_nonload(osec
, elfcpp::PF_R
);
3498 // Add dynamic tags for the PLT and the dynamic relocs. This is
3499 // called by the target-specific code. This does nothing if not doing
3502 // USE_REL is true for REL relocs rather than RELA relocs.
3504 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3506 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3507 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3508 // some targets have multiple reloc sections in PLT_REL.
3510 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3511 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3513 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3517 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3518 const Output_data
* plt_rel
,
3519 const Output_data_reloc_generic
* dyn_rel
,
3520 bool add_debug
, bool dynrel_includes_plt
)
3522 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3526 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3527 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3529 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3531 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3532 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3533 odyn
->add_constant(elfcpp::DT_PLTREL
,
3534 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3537 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3539 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3541 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3542 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3545 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3547 const int size
= parameters
->target().get_size();
3552 rel_tag
= elfcpp::DT_RELENT
;
3554 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3555 else if (size
== 64)
3556 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3562 rel_tag
= elfcpp::DT_RELAENT
;
3564 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3565 else if (size
== 64)
3566 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3570 odyn
->add_constant(rel_tag
, rel_size
);
3572 if (parameters
->options().combreloc())
3574 size_t c
= dyn_rel
->relative_reloc_count();
3576 odyn
->add_constant((use_rel
3577 ? elfcpp::DT_RELCOUNT
3578 : elfcpp::DT_RELACOUNT
),
3583 if (add_debug
&& !parameters
->options().shared())
3585 // The value of the DT_DEBUG tag is filled in by the dynamic
3586 // linker at run time, and used by the debugger.
3587 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3591 // Finish the .dynamic section and PT_DYNAMIC segment.
3594 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3595 const Symbol_table
* symtab
)
3597 if (!this->script_options_
->saw_phdrs_clause())
3599 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3602 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
3603 elfcpp::PF_R
| elfcpp::PF_W
);
3606 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3608 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3609 p
!= input_objects
->dynobj_end();
3612 if (!(*p
)->is_needed()
3613 && (*p
)->input_file()->options().as_needed())
3615 // This dynamic object was linked with --as-needed, but it
3620 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3623 if (parameters
->options().shared())
3625 const char* soname
= parameters
->options().soname();
3627 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3630 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3631 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3632 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3634 sym
= symtab
->lookup(parameters
->options().fini());
3635 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3636 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3638 // Look for .init_array, .preinit_array and .fini_array by checking
3640 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3641 p
!= this->section_list_
.end();
3643 switch((*p
)->type())
3645 case elfcpp::SHT_FINI_ARRAY
:
3646 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3647 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3649 case elfcpp::SHT_INIT_ARRAY
:
3650 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3651 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3653 case elfcpp::SHT_PREINIT_ARRAY
:
3654 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3655 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3661 // Add a DT_RPATH entry if needed.
3662 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3665 std::string rpath_val
;
3666 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3670 if (rpath_val
.empty())
3671 rpath_val
= p
->name();
3674 // Eliminate duplicates.
3675 General_options::Dir_list::const_iterator q
;
3676 for (q
= rpath
.begin(); q
!= p
; ++q
)
3677 if (q
->name() == p
->name())
3682 rpath_val
+= p
->name();
3687 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3688 if (parameters
->options().enable_new_dtags())
3689 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3692 // Look for text segments that have dynamic relocations.
3693 bool have_textrel
= false;
3694 if (!this->script_options_
->saw_sections_clause())
3696 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3697 p
!= this->segment_list_
.end();
3700 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3701 && (*p
)->has_dynamic_reloc())
3703 have_textrel
= true;
3710 // We don't know the section -> segment mapping, so we are
3711 // conservative and just look for readonly sections with
3712 // relocations. If those sections wind up in writable segments,
3713 // then we have created an unnecessary DT_TEXTREL entry.
3714 for (Section_list::const_iterator p
= this->section_list_
.begin();
3715 p
!= this->section_list_
.end();
3718 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3719 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3720 && ((*p
)->has_dynamic_reloc()))
3722 have_textrel
= true;
3728 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3729 // post-link tools can easily modify these flags if desired.
3730 unsigned int flags
= 0;
3733 // Add a DT_TEXTREL for compatibility with older loaders.
3734 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3735 flags
|= elfcpp::DF_TEXTREL
;
3737 if (parameters
->options().text())
3738 gold_error(_("read-only segment has dynamic relocations"));
3739 else if (parameters
->options().warn_shared_textrel()
3740 && parameters
->options().shared())
3741 gold_warning(_("shared library text segment is not shareable"));
3743 if (parameters
->options().shared() && this->has_static_tls())
3744 flags
|= elfcpp::DF_STATIC_TLS
;
3745 if (parameters
->options().origin())
3746 flags
|= elfcpp::DF_ORIGIN
;
3747 if (parameters
->options().Bsymbolic())
3749 flags
|= elfcpp::DF_SYMBOLIC
;
3750 // Add DT_SYMBOLIC for compatibility with older loaders.
3751 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3753 if (parameters
->options().now())
3754 flags
|= elfcpp::DF_BIND_NOW
;
3755 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3758 if (parameters
->options().initfirst())
3759 flags
|= elfcpp::DF_1_INITFIRST
;
3760 if (parameters
->options().interpose())
3761 flags
|= elfcpp::DF_1_INTERPOSE
;
3762 if (parameters
->options().loadfltr())
3763 flags
|= elfcpp::DF_1_LOADFLTR
;
3764 if (parameters
->options().nodefaultlib())
3765 flags
|= elfcpp::DF_1_NODEFLIB
;
3766 if (parameters
->options().nodelete())
3767 flags
|= elfcpp::DF_1_NODELETE
;
3768 if (parameters
->options().nodlopen())
3769 flags
|= elfcpp::DF_1_NOOPEN
;
3770 if (parameters
->options().nodump())
3771 flags
|= elfcpp::DF_1_NODUMP
;
3772 if (!parameters
->options().shared())
3773 flags
&= ~(elfcpp::DF_1_INITFIRST
3774 | elfcpp::DF_1_NODELETE
3775 | elfcpp::DF_1_NOOPEN
);
3776 if (parameters
->options().origin())
3777 flags
|= elfcpp::DF_1_ORIGIN
;
3778 if (parameters
->options().now())
3779 flags
|= elfcpp::DF_1_NOW
;
3781 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3784 // Set the size of the _DYNAMIC symbol table to be the size of the
3788 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3790 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3791 odyn
->finalize_data_size();
3792 off_t data_size
= odyn
->data_size();
3793 const int size
= parameters
->target().get_size();
3795 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3796 else if (size
== 64)
3797 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3802 // The mapping of input section name prefixes to output section names.
3803 // In some cases one prefix is itself a prefix of another prefix; in
3804 // such a case the longer prefix must come first. These prefixes are
3805 // based on the GNU linker default ELF linker script.
3807 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3808 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3810 MAPPING_INIT(".text.", ".text"),
3811 MAPPING_INIT(".ctors.", ".ctors"),
3812 MAPPING_INIT(".dtors.", ".dtors"),
3813 MAPPING_INIT(".rodata.", ".rodata"),
3814 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3815 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3816 MAPPING_INIT(".data.", ".data"),
3817 MAPPING_INIT(".bss.", ".bss"),
3818 MAPPING_INIT(".tdata.", ".tdata"),
3819 MAPPING_INIT(".tbss.", ".tbss"),
3820 MAPPING_INIT(".init_array.", ".init_array"),
3821 MAPPING_INIT(".fini_array.", ".fini_array"),
3822 MAPPING_INIT(".sdata.", ".sdata"),
3823 MAPPING_INIT(".sbss.", ".sbss"),
3824 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3825 // differently depending on whether it is creating a shared library.
3826 MAPPING_INIT(".sdata2.", ".sdata"),
3827 MAPPING_INIT(".sbss2.", ".sbss"),
3828 MAPPING_INIT(".lrodata.", ".lrodata"),
3829 MAPPING_INIT(".ldata.", ".ldata"),
3830 MAPPING_INIT(".lbss.", ".lbss"),
3831 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3832 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3833 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3834 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3835 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3836 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3837 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3838 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3839 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3840 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3841 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3842 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3843 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3844 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3845 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3846 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3847 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3848 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3849 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3850 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3851 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3855 const int Layout::section_name_mapping_count
=
3856 (sizeof(Layout::section_name_mapping
)
3857 / sizeof(Layout::section_name_mapping
[0]));
3859 // Choose the output section name to use given an input section name.
3860 // Set *PLEN to the length of the name. *PLEN is initialized to the
3864 Layout::output_section_name(const char* name
, size_t* plen
)
3866 // gcc 4.3 generates the following sorts of section names when it
3867 // needs a section name specific to a function:
3873 // .data.rel.local.FN
3875 // .data.rel.ro.local.FN
3882 // The GNU linker maps all of those to the part before the .FN,
3883 // except that .data.rel.local.FN is mapped to .data, and
3884 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3885 // beginning with .data.rel.ro.local are grouped together.
3887 // For an anonymous namespace, the string FN can contain a '.'.
3889 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3890 // GNU linker maps to .rodata.
3892 // The .data.rel.ro sections are used with -z relro. The sections
3893 // are recognized by name. We use the same names that the GNU
3894 // linker does for these sections.
3896 // It is hard to handle this in a principled way, so we don't even
3897 // try. We use a table of mappings. If the input section name is
3898 // not found in the table, we simply use it as the output section
3901 const Section_name_mapping
* psnm
= section_name_mapping
;
3902 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3904 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3906 *plen
= psnm
->tolen
;
3911 // Compressed debug sections should be mapped to the corresponding
3912 // uncompressed section.
3913 if (is_compressed_debug_section(name
))
3915 size_t len
= strlen(name
);
3916 char* uncompressed_name
= new char[len
];
3917 uncompressed_name
[0] = '.';
3918 gold_assert(name
[0] == '.' && name
[1] == 'z');
3919 strncpy(&uncompressed_name
[1], &name
[2], len
- 2);
3920 uncompressed_name
[len
- 1] = '\0';
3922 return uncompressed_name
;
3928 // Check if a comdat group or .gnu.linkonce section with the given
3929 // NAME is selected for the link. If there is already a section,
3930 // *KEPT_SECTION is set to point to the existing section and the
3931 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3932 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3933 // *KEPT_SECTION is set to the internal copy and the function returns
3937 Layout::find_or_add_kept_section(const std::string
& name
,
3942 Kept_section
** kept_section
)
3944 // It's normal to see a couple of entries here, for the x86 thunk
3945 // sections. If we see more than a few, we're linking a C++
3946 // program, and we resize to get more space to minimize rehashing.
3947 if (this->signatures_
.size() > 4
3948 && !this->resized_signatures_
)
3950 reserve_unordered_map(&this->signatures_
,
3951 this->number_of_input_files_
* 64);
3952 this->resized_signatures_
= true;
3955 Kept_section candidate
;
3956 std::pair
<Signatures::iterator
, bool> ins
=
3957 this->signatures_
.insert(std::make_pair(name
, candidate
));
3959 if (kept_section
!= NULL
)
3960 *kept_section
= &ins
.first
->second
;
3963 // This is the first time we've seen this signature.
3964 ins
.first
->second
.set_object(object
);
3965 ins
.first
->second
.set_shndx(shndx
);
3967 ins
.first
->second
.set_is_comdat();
3969 ins
.first
->second
.set_is_group_name();
3973 // We have already seen this signature.
3975 if (ins
.first
->second
.is_group_name())
3977 // We've already seen a real section group with this signature.
3978 // If the kept group is from a plugin object, and we're in the
3979 // replacement phase, accept the new one as a replacement.
3980 if (ins
.first
->second
.object() == NULL
3981 && parameters
->options().plugins()->in_replacement_phase())
3983 ins
.first
->second
.set_object(object
);
3984 ins
.first
->second
.set_shndx(shndx
);
3989 else if (is_group_name
)
3991 // This is a real section group, and we've already seen a
3992 // linkonce section with this signature. Record that we've seen
3993 // a section group, and don't include this section group.
3994 ins
.first
->second
.set_is_group_name();
3999 // We've already seen a linkonce section and this is a linkonce
4000 // section. These don't block each other--this may be the same
4001 // symbol name with different section types.
4006 // Store the allocated sections into the section list.
4009 Layout::get_allocated_sections(Section_list
* section_list
) const
4011 for (Section_list::const_iterator p
= this->section_list_
.begin();
4012 p
!= this->section_list_
.end();
4014 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
4015 section_list
->push_back(*p
);
4018 // Create an output segment.
4021 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4023 gold_assert(!parameters
->options().relocatable());
4024 Output_segment
* oseg
= new Output_segment(type
, flags
);
4025 this->segment_list_
.push_back(oseg
);
4027 if (type
== elfcpp::PT_TLS
)
4028 this->tls_segment_
= oseg
;
4029 else if (type
== elfcpp::PT_GNU_RELRO
)
4030 this->relro_segment_
= oseg
;
4035 // Write out the Output_sections. Most won't have anything to write,
4036 // since most of the data will come from input sections which are
4037 // handled elsewhere. But some Output_sections do have Output_data.
4040 Layout::write_output_sections(Output_file
* of
) const
4042 for (Section_list::const_iterator p
= this->section_list_
.begin();
4043 p
!= this->section_list_
.end();
4046 if (!(*p
)->after_input_sections())
4051 // Write out data not associated with a section or the symbol table.
4054 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
4056 if (!parameters
->options().strip_all())
4058 const Output_section
* symtab_section
= this->symtab_section_
;
4059 for (Section_list::const_iterator p
= this->section_list_
.begin();
4060 p
!= this->section_list_
.end();
4063 if ((*p
)->needs_symtab_index())
4065 gold_assert(symtab_section
!= NULL
);
4066 unsigned int index
= (*p
)->symtab_index();
4067 gold_assert(index
> 0 && index
!= -1U);
4068 off_t off
= (symtab_section
->offset()
4069 + index
* symtab_section
->entsize());
4070 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
4075 const Output_section
* dynsym_section
= this->dynsym_section_
;
4076 for (Section_list::const_iterator p
= this->section_list_
.begin();
4077 p
!= this->section_list_
.end();
4080 if ((*p
)->needs_dynsym_index())
4082 gold_assert(dynsym_section
!= NULL
);
4083 unsigned int index
= (*p
)->dynsym_index();
4084 gold_assert(index
> 0 && index
!= -1U);
4085 off_t off
= (dynsym_section
->offset()
4086 + index
* dynsym_section
->entsize());
4087 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
4091 // Write out the Output_data which are not in an Output_section.
4092 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
4093 p
!= this->special_output_list_
.end();
4098 // Write out the Output_sections which can only be written after the
4099 // input sections are complete.
4102 Layout::write_sections_after_input_sections(Output_file
* of
)
4104 // Determine the final section offsets, and thus the final output
4105 // file size. Note we finalize the .shstrab last, to allow the
4106 // after_input_section sections to modify their section-names before
4108 if (this->any_postprocessing_sections_
)
4110 off_t off
= this->output_file_size_
;
4111 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
4113 // Now that we've finalized the names, we can finalize the shstrab.
4115 this->set_section_offsets(off
,
4116 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
4118 if (off
> this->output_file_size_
)
4121 this->output_file_size_
= off
;
4125 for (Section_list::const_iterator p
= this->section_list_
.begin();
4126 p
!= this->section_list_
.end();
4129 if ((*p
)->after_input_sections())
4133 this->section_headers_
->write(of
);
4136 // If the build ID requires computing a checksum, do so here, and
4137 // write it out. We compute a checksum over the entire file because
4138 // that is simplest.
4141 Layout::write_build_id(Output_file
* of
) const
4143 if (this->build_id_note_
== NULL
)
4146 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
4148 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
4149 this->build_id_note_
->data_size());
4151 const char* style
= parameters
->options().build_id();
4152 if (strcmp(style
, "sha1") == 0)
4155 sha1_init_ctx(&ctx
);
4156 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4157 sha1_finish_ctx(&ctx
, ov
);
4159 else if (strcmp(style
, "md5") == 0)
4163 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4164 md5_finish_ctx(&ctx
, ov
);
4169 of
->write_output_view(this->build_id_note_
->offset(),
4170 this->build_id_note_
->data_size(),
4173 of
->free_input_view(0, this->output_file_size_
, iv
);
4176 // Write out a binary file. This is called after the link is
4177 // complete. IN is the temporary output file we used to generate the
4178 // ELF code. We simply walk through the segments, read them from
4179 // their file offset in IN, and write them to their load address in
4180 // the output file. FIXME: with a bit more work, we could support
4181 // S-records and/or Intel hex format here.
4184 Layout::write_binary(Output_file
* in
) const
4186 gold_assert(parameters
->options().oformat_enum()
4187 == General_options::OBJECT_FORMAT_BINARY
);
4189 // Get the size of the binary file.
4190 uint64_t max_load_address
= 0;
4191 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4192 p
!= this->segment_list_
.end();
4195 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4197 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4198 if (max_paddr
> max_load_address
)
4199 max_load_address
= max_paddr
;
4203 Output_file
out(parameters
->options().output_file_name());
4204 out
.open(max_load_address
);
4206 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4207 p
!= this->segment_list_
.end();
4210 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4212 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4214 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4216 memcpy(vout
, vin
, (*p
)->filesz());
4217 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4218 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4225 // Print the output sections to the map file.
4228 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4230 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4231 p
!= this->segment_list_
.end();
4233 (*p
)->print_sections_to_mapfile(mapfile
);
4236 // Print statistical information to stderr. This is used for --stats.
4239 Layout::print_stats() const
4241 this->namepool_
.print_stats("section name pool");
4242 this->sympool_
.print_stats("output symbol name pool");
4243 this->dynpool_
.print_stats("dynamic name pool");
4245 for (Section_list::const_iterator p
= this->section_list_
.begin();
4246 p
!= this->section_list_
.end();
4248 (*p
)->print_merge_stats();
4251 // Write_sections_task methods.
4253 // We can always run this task.
4256 Write_sections_task::is_runnable()
4261 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4265 Write_sections_task::locks(Task_locker
* tl
)
4267 tl
->add(this, this->output_sections_blocker_
);
4268 tl
->add(this, this->final_blocker_
);
4271 // Run the task--write out the data.
4274 Write_sections_task::run(Workqueue
*)
4276 this->layout_
->write_output_sections(this->of_
);
4279 // Write_data_task methods.
4281 // We can always run this task.
4284 Write_data_task::is_runnable()
4289 // We need to unlock FINAL_BLOCKER when finished.
4292 Write_data_task::locks(Task_locker
* tl
)
4294 tl
->add(this, this->final_blocker_
);
4297 // Run the task--write out the data.
4300 Write_data_task::run(Workqueue
*)
4302 this->layout_
->write_data(this->symtab_
, this->of_
);
4305 // Write_symbols_task methods.
4307 // We can always run this task.
4310 Write_symbols_task::is_runnable()
4315 // We need to unlock FINAL_BLOCKER when finished.
4318 Write_symbols_task::locks(Task_locker
* tl
)
4320 tl
->add(this, this->final_blocker_
);
4323 // Run the task--write out the symbols.
4326 Write_symbols_task::run(Workqueue
*)
4328 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4329 this->layout_
->symtab_xindex(),
4330 this->layout_
->dynsym_xindex(), this->of_
);
4333 // Write_after_input_sections_task methods.
4335 // We can only run this task after the input sections have completed.
4338 Write_after_input_sections_task::is_runnable()
4340 if (this->input_sections_blocker_
->is_blocked())
4341 return this->input_sections_blocker_
;
4345 // We need to unlock FINAL_BLOCKER when finished.
4348 Write_after_input_sections_task::locks(Task_locker
* tl
)
4350 tl
->add(this, this->final_blocker_
);
4356 Write_after_input_sections_task::run(Workqueue
*)
4358 this->layout_
->write_sections_after_input_sections(this->of_
);
4361 // Close_task_runner methods.
4363 // Run the task--close the file.
4366 Close_task_runner::run(Workqueue
*, const Task
*)
4368 // If we need to compute a checksum for the BUILD if, we do so here.
4369 this->layout_
->write_build_id(this->of_
);
4371 // If we've been asked to create a binary file, we do so here.
4372 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4373 this->layout_
->write_binary(this->of_
);
4378 // Instantiate the templates we need. We could use the configure
4379 // script to restrict this to only the ones for implemented targets.
4381 #ifdef HAVE_TARGET_32_LITTLE
4384 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4386 const elfcpp::Shdr
<32, false>& shdr
,
4387 unsigned int, unsigned int, off_t
*);
4390 #ifdef HAVE_TARGET_32_BIG
4393 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4395 const elfcpp::Shdr
<32, true>& shdr
,
4396 unsigned int, unsigned int, off_t
*);
4399 #ifdef HAVE_TARGET_64_LITTLE
4402 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4404 const elfcpp::Shdr
<64, false>& shdr
,
4405 unsigned int, unsigned int, off_t
*);
4408 #ifdef HAVE_TARGET_64_BIG
4411 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4413 const elfcpp::Shdr
<64, true>& shdr
,
4414 unsigned int, unsigned int, off_t
*);
4417 #ifdef HAVE_TARGET_32_LITTLE
4420 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4421 unsigned int reloc_shndx
,
4422 const elfcpp::Shdr
<32, false>& shdr
,
4423 Output_section
* data_section
,
4424 Relocatable_relocs
* rr
);
4427 #ifdef HAVE_TARGET_32_BIG
4430 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4431 unsigned int reloc_shndx
,
4432 const elfcpp::Shdr
<32, true>& shdr
,
4433 Output_section
* data_section
,
4434 Relocatable_relocs
* rr
);
4437 #ifdef HAVE_TARGET_64_LITTLE
4440 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4441 unsigned int reloc_shndx
,
4442 const elfcpp::Shdr
<64, false>& shdr
,
4443 Output_section
* data_section
,
4444 Relocatable_relocs
* rr
);
4447 #ifdef HAVE_TARGET_64_BIG
4450 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4451 unsigned int reloc_shndx
,
4452 const elfcpp::Shdr
<64, true>& shdr
,
4453 Output_section
* data_section
,
4454 Relocatable_relocs
* rr
);
4457 #ifdef HAVE_TARGET_32_LITTLE
4460 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4461 Sized_relobj
<32, false>* object
,
4463 const char* group_section_name
,
4464 const char* signature
,
4465 const elfcpp::Shdr
<32, false>& shdr
,
4466 elfcpp::Elf_Word flags
,
4467 std::vector
<unsigned int>* shndxes
);
4470 #ifdef HAVE_TARGET_32_BIG
4473 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4474 Sized_relobj
<32, true>* object
,
4476 const char* group_section_name
,
4477 const char* signature
,
4478 const elfcpp::Shdr
<32, true>& shdr
,
4479 elfcpp::Elf_Word flags
,
4480 std::vector
<unsigned int>* shndxes
);
4483 #ifdef HAVE_TARGET_64_LITTLE
4486 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4487 Sized_relobj
<64, false>* object
,
4489 const char* group_section_name
,
4490 const char* signature
,
4491 const elfcpp::Shdr
<64, false>& shdr
,
4492 elfcpp::Elf_Word flags
,
4493 std::vector
<unsigned int>* shndxes
);
4496 #ifdef HAVE_TARGET_64_BIG
4499 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4500 Sized_relobj
<64, true>* object
,
4502 const char* group_section_name
,
4503 const char* signature
,
4504 const elfcpp::Shdr
<64, true>& shdr
,
4505 elfcpp::Elf_Word flags
,
4506 std::vector
<unsigned int>* shndxes
);
4509 #ifdef HAVE_TARGET_32_LITTLE
4512 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4513 const unsigned char* symbols
,
4515 const unsigned char* symbol_names
,
4516 off_t symbol_names_size
,
4518 const elfcpp::Shdr
<32, false>& shdr
,
4519 unsigned int reloc_shndx
,
4520 unsigned int reloc_type
,
4524 #ifdef HAVE_TARGET_32_BIG
4527 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4528 const unsigned char* symbols
,
4530 const unsigned char* symbol_names
,
4531 off_t symbol_names_size
,
4533 const elfcpp::Shdr
<32, true>& shdr
,
4534 unsigned int reloc_shndx
,
4535 unsigned int reloc_type
,
4539 #ifdef HAVE_TARGET_64_LITTLE
4542 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4543 const unsigned char* symbols
,
4545 const unsigned char* symbol_names
,
4546 off_t symbol_names_size
,
4548 const elfcpp::Shdr
<64, false>& shdr
,
4549 unsigned int reloc_shndx
,
4550 unsigned int reloc_type
,
4554 #ifdef HAVE_TARGET_64_BIG
4557 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4558 const unsigned char* symbols
,
4560 const unsigned char* symbol_names
,
4561 off_t symbol_names_size
,
4563 const elfcpp::Shdr
<64, true>& shdr
,
4564 unsigned int reloc_shndx
,
4565 unsigned int reloc_type
,
4569 } // End namespace gold.