2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info
*info
;
30 struct bfd_elf_version_tree
*verdefs
;
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd
*, Elf_Internal_Sym
*));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd
*, carsym
*));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd
*, struct bfd_link_info
*));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd
*, struct bfd_link_info
*));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd
*, struct bfd_link_info
*, const char *,
43 Elf_Internal_Sym
*, asection
**, bfd_vma
*,
44 struct elf_link_hash_entry
**, boolean
*, boolean
*,
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
48 const char *, Elf_Internal_Sym
*, asection
**, bfd_vma
*,
49 boolean
*, boolean
, boolean
));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry
*, PTR
));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd
*, struct bfd_link_info
*));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry
*, PTR
));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry
*, PTR
));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry
*, PTR
));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry
*, PTR
));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry
*, PTR
));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd
*, Elf_Internal_Shdr
*, PTR
, Elf_Internal_Rela
*));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info
*));
70 static void elf_link_output_relocs
71 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd
*, Elf_Internal_Shdr
*, unsigned int,
76 struct elf_link_hash_entry
**));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd
*, struct bfd_link_info
*, asection
**));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection
*));
86 /* Given an ELF BFD, add symbols to the global hash table as
90 elf_bfd_link_add_symbols (abfd
, info
)
92 struct bfd_link_info
*info
;
94 switch (bfd_get_format (abfd
))
97 return elf_link_add_object_symbols (abfd
, info
);
99 return elf_link_add_archive_symbols (abfd
, info
);
101 bfd_set_error (bfd_error_wrong_format
);
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
108 is_global_data_symbol_definition (abfd
, sym
)
109 bfd
* abfd ATTRIBUTE_UNUSED
;
110 Elf_Internal_Sym
* sym
;
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
114 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
121 /* If the section is undefined, then so is the symbol. */
122 if (sym
->st_shndx
== SHN_UNDEF
)
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym
->st_shndx
== SHN_COMMON
)
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
133 /* FIXME - this function is not coded yet:
135 return _bfd_is_global_symbol_definition (abfd, sym);
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
149 elf_link_is_defined_archive_symbol (abfd
, symdef
)
153 Elf_Internal_Shdr
* hdr
;
154 Elf_Internal_Shdr
* shndx_hdr
;
155 Elf_External_Sym
* esym
;
156 Elf_External_Sym
* esymend
;
157 Elf_External_Sym
* buf
= NULL
;
158 Elf_External_Sym_Shndx
* shndx_buf
= NULL
;
159 Elf_External_Sym_Shndx
* shndx
;
160 bfd_size_type symcount
;
161 bfd_size_type extsymcount
;
162 bfd_size_type extsymoff
;
163 boolean result
= false;
167 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
168 if (abfd
== (bfd
*) NULL
)
171 if (! bfd_check_format (abfd
, bfd_object
))
174 /* If we have already included the element containing this symbol in the
175 link then we do not need to include it again. Just claim that any symbol
176 it contains is not a definition, so that our caller will not decide to
177 (re)include this element. */
178 if (abfd
->archive_pass
)
181 /* Select the appropriate symbol table. */
182 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
184 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
185 shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
189 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
193 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
195 /* The sh_info field of the symtab header tells us where the
196 external symbols start. We don't care about the local symbols. */
197 if (elf_bad_symtab (abfd
))
199 extsymcount
= symcount
;
204 extsymcount
= symcount
- hdr
->sh_info
;
205 extsymoff
= hdr
->sh_info
;
208 amt
= extsymcount
* sizeof (Elf_External_Sym
);
209 buf
= (Elf_External_Sym
*) bfd_malloc (amt
);
210 if (buf
== NULL
&& extsymcount
!= 0)
213 /* Read in the symbol table.
214 FIXME: This ought to be cached somewhere. */
215 pos
= hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
);
216 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
217 || bfd_bread ((PTR
) buf
, amt
, abfd
) != amt
)
220 if (shndx_hdr
!= NULL
&& shndx_hdr
->sh_size
!= 0)
222 amt
= extsymcount
* sizeof (Elf_External_Sym_Shndx
);
223 shndx_buf
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
224 if (shndx_buf
== NULL
&& extsymcount
!= 0)
227 pos
= shndx_hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym_Shndx
);
228 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
229 || bfd_bread ((PTR
) shndx_buf
, amt
, abfd
) != amt
)
233 /* Scan the symbol table looking for SYMDEF. */
234 esymend
= buf
+ extsymcount
;
235 for (esym
= buf
, shndx
= shndx_buf
;
237 esym
++, shndx
= (shndx
!= NULL
? shndx
+ 1 : NULL
))
239 Elf_Internal_Sym sym
;
242 elf_swap_symbol_in (abfd
, esym
, shndx
, &sym
);
244 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
245 if (name
== (const char *) NULL
)
248 if (strcmp (name
, symdef
->name
) == 0)
250 result
= is_global_data_symbol_definition (abfd
, & sym
);
256 if (shndx_buf
!= NULL
)
264 /* Add symbols from an ELF archive file to the linker hash table. We
265 don't use _bfd_generic_link_add_archive_symbols because of a
266 problem which arises on UnixWare. The UnixWare libc.so is an
267 archive which includes an entry libc.so.1 which defines a bunch of
268 symbols. The libc.so archive also includes a number of other
269 object files, which also define symbols, some of which are the same
270 as those defined in libc.so.1. Correct linking requires that we
271 consider each object file in turn, and include it if it defines any
272 symbols we need. _bfd_generic_link_add_archive_symbols does not do
273 this; it looks through the list of undefined symbols, and includes
274 any object file which defines them. When this algorithm is used on
275 UnixWare, it winds up pulling in libc.so.1 early and defining a
276 bunch of symbols. This means that some of the other objects in the
277 archive are not included in the link, which is incorrect since they
278 precede libc.so.1 in the archive.
280 Fortunately, ELF archive handling is simpler than that done by
281 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
282 oddities. In ELF, if we find a symbol in the archive map, and the
283 symbol is currently undefined, we know that we must pull in that
286 Unfortunately, we do have to make multiple passes over the symbol
287 table until nothing further is resolved. */
290 elf_link_add_archive_symbols (abfd
, info
)
292 struct bfd_link_info
*info
;
295 boolean
*defined
= NULL
;
296 boolean
*included
= NULL
;
301 if (! bfd_has_map (abfd
))
303 /* An empty archive is a special case. */
304 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
306 bfd_set_error (bfd_error_no_armap
);
310 /* Keep track of all symbols we know to be already defined, and all
311 files we know to be already included. This is to speed up the
312 second and subsequent passes. */
313 c
= bfd_ardata (abfd
)->symdef_count
;
317 amt
*= sizeof (boolean
);
318 defined
= (boolean
*) bfd_malloc (amt
);
319 included
= (boolean
*) bfd_malloc (amt
);
320 if (defined
== (boolean
*) NULL
|| included
== (boolean
*) NULL
)
322 memset (defined
, 0, (size_t) amt
);
323 memset (included
, 0, (size_t) amt
);
325 symdefs
= bfd_ardata (abfd
)->symdefs
;
338 symdefend
= symdef
+ c
;
339 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
341 struct elf_link_hash_entry
*h
;
343 struct bfd_link_hash_entry
*undefs_tail
;
346 if (defined
[i
] || included
[i
])
348 if (symdef
->file_offset
== last
)
354 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
355 false, false, false);
361 /* If this is a default version (the name contains @@),
362 look up the symbol again without the version. The
363 effect is that references to the symbol without the
364 version will be matched by the default symbol in the
367 p
= strchr (symdef
->name
, ELF_VER_CHR
);
368 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
371 copy
= bfd_alloc (abfd
, (bfd_size_type
) (p
- symdef
->name
+ 1));
374 memcpy (copy
, symdef
->name
, (size_t) (p
- symdef
->name
));
375 copy
[p
- symdef
->name
] = '\0';
377 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
378 false, false, false);
380 bfd_release (abfd
, copy
);
386 if (h
->root
.type
== bfd_link_hash_common
)
388 /* We currently have a common symbol. The archive map contains
389 a reference to this symbol, so we may want to include it. We
390 only want to include it however, if this archive element
391 contains a definition of the symbol, not just another common
394 Unfortunately some archivers (including GNU ar) will put
395 declarations of common symbols into their archive maps, as
396 well as real definitions, so we cannot just go by the archive
397 map alone. Instead we must read in the element's symbol
398 table and check that to see what kind of symbol definition
400 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
403 else if (h
->root
.type
!= bfd_link_hash_undefined
)
405 if (h
->root
.type
!= bfd_link_hash_undefweak
)
410 /* We need to include this archive member. */
411 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
412 if (element
== (bfd
*) NULL
)
415 if (! bfd_check_format (element
, bfd_object
))
418 /* Doublecheck that we have not included this object
419 already--it should be impossible, but there may be
420 something wrong with the archive. */
421 if (element
->archive_pass
!= 0)
423 bfd_set_error (bfd_error_bad_value
);
426 element
->archive_pass
= 1;
428 undefs_tail
= info
->hash
->undefs_tail
;
430 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
433 if (! elf_link_add_object_symbols (element
, info
))
436 /* If there are any new undefined symbols, we need to make
437 another pass through the archive in order to see whether
438 they can be defined. FIXME: This isn't perfect, because
439 common symbols wind up on undefs_tail and because an
440 undefined symbol which is defined later on in this pass
441 does not require another pass. This isn't a bug, but it
442 does make the code less efficient than it could be. */
443 if (undefs_tail
!= info
->hash
->undefs_tail
)
446 /* Look backward to mark all symbols from this object file
447 which we have already seen in this pass. */
451 included
[mark
] = true;
456 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
458 /* We mark subsequent symbols from this object file as we go
459 on through the loop. */
460 last
= symdef
->file_offset
;
471 if (defined
!= (boolean
*) NULL
)
473 if (included
!= (boolean
*) NULL
)
478 /* This function is called when we want to define a new symbol. It
479 handles the various cases which arise when we find a definition in
480 a dynamic object, or when there is already a definition in a
481 dynamic object. The new symbol is described by NAME, SYM, PSEC,
482 and PVALUE. We set SYM_HASH to the hash table entry. We set
483 OVERRIDE if the old symbol is overriding a new definition. We set
484 TYPE_CHANGE_OK if it is OK for the type to change. We set
485 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
486 change, we mean that we shouldn't warn if the type or size does
487 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
491 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
492 override
, type_change_ok
, size_change_ok
, dt_needed
)
494 struct bfd_link_info
*info
;
496 Elf_Internal_Sym
*sym
;
499 struct elf_link_hash_entry
**sym_hash
;
501 boolean
*type_change_ok
;
502 boolean
*size_change_ok
;
506 struct elf_link_hash_entry
*h
;
509 boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
514 bind
= ELF_ST_BIND (sym
->st_info
);
516 if (! bfd_is_und_section (sec
))
517 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, false, false);
519 h
= ((struct elf_link_hash_entry
*)
520 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, false, false));
525 /* This code is for coping with dynamic objects, and is only useful
526 if we are doing an ELF link. */
527 if (info
->hash
->creator
!= abfd
->xvec
)
530 /* For merging, we only care about real symbols. */
532 while (h
->root
.type
== bfd_link_hash_indirect
533 || h
->root
.type
== bfd_link_hash_warning
)
534 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
536 /* If we just created the symbol, mark it as being an ELF symbol.
537 Other than that, there is nothing to do--there is no merge issue
538 with a newly defined symbol--so we just return. */
540 if (h
->root
.type
== bfd_link_hash_new
)
542 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
546 /* OLDBFD is a BFD associated with the existing symbol. */
548 switch (h
->root
.type
)
554 case bfd_link_hash_undefined
:
555 case bfd_link_hash_undefweak
:
556 oldbfd
= h
->root
.u
.undef
.abfd
;
559 case bfd_link_hash_defined
:
560 case bfd_link_hash_defweak
:
561 oldbfd
= h
->root
.u
.def
.section
->owner
;
564 case bfd_link_hash_common
:
565 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
569 /* In cases involving weak versioned symbols, we may wind up trying
570 to merge a symbol with itself. Catch that here, to avoid the
571 confusion that results if we try to override a symbol with
572 itself. The additional tests catch cases like
573 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
574 dynamic object, which we do want to handle here. */
576 && ((abfd
->flags
& DYNAMIC
) == 0
577 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
580 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
581 respectively, is from a dynamic object. */
583 if ((abfd
->flags
& DYNAMIC
) != 0)
589 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
594 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
595 indices used by MIPS ELF. */
596 switch (h
->root
.type
)
602 case bfd_link_hash_defined
:
603 case bfd_link_hash_defweak
:
604 hsec
= h
->root
.u
.def
.section
;
607 case bfd_link_hash_common
:
608 hsec
= h
->root
.u
.c
.p
->section
;
615 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
618 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
619 respectively, appear to be a definition rather than reference. */
621 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
626 if (h
->root
.type
== bfd_link_hash_undefined
627 || h
->root
.type
== bfd_link_hash_undefweak
628 || h
->root
.type
== bfd_link_hash_common
)
633 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
634 symbol, respectively, appears to be a common symbol in a dynamic
635 object. If a symbol appears in an uninitialized section, and is
636 not weak, and is not a function, then it may be a common symbol
637 which was resolved when the dynamic object was created. We want
638 to treat such symbols specially, because they raise special
639 considerations when setting the symbol size: if the symbol
640 appears as a common symbol in a regular object, and the size in
641 the regular object is larger, we must make sure that we use the
642 larger size. This problematic case can always be avoided in C,
643 but it must be handled correctly when using Fortran shared
646 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
647 likewise for OLDDYNCOMMON and OLDDEF.
649 Note that this test is just a heuristic, and that it is quite
650 possible to have an uninitialized symbol in a shared object which
651 is really a definition, rather than a common symbol. This could
652 lead to some minor confusion when the symbol really is a common
653 symbol in some regular object. However, I think it will be
658 && (sec
->flags
& SEC_ALLOC
) != 0
659 && (sec
->flags
& SEC_LOAD
) == 0
662 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
665 newdyncommon
= false;
669 && h
->root
.type
== bfd_link_hash_defined
670 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
671 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
672 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
674 && h
->type
!= STT_FUNC
)
677 olddyncommon
= false;
679 /* It's OK to change the type if either the existing symbol or the
680 new symbol is weak unless it comes from a DT_NEEDED entry of
681 a shared object, in which case, the DT_NEEDED entry may not be
682 required at the run time. */
684 if ((! dt_needed
&& h
->root
.type
== bfd_link_hash_defweak
)
685 || h
->root
.type
== bfd_link_hash_undefweak
687 *type_change_ok
= true;
689 /* It's OK to change the size if either the existing symbol or the
690 new symbol is weak, or if the old symbol is undefined. */
693 || h
->root
.type
== bfd_link_hash_undefined
)
694 *size_change_ok
= true;
696 /* If both the old and the new symbols look like common symbols in a
697 dynamic object, set the size of the symbol to the larger of the
702 && sym
->st_size
!= h
->size
)
704 /* Since we think we have two common symbols, issue a multiple
705 common warning if desired. Note that we only warn if the
706 size is different. If the size is the same, we simply let
707 the old symbol override the new one as normally happens with
708 symbols defined in dynamic objects. */
710 if (! ((*info
->callbacks
->multiple_common
)
711 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
712 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
715 if (sym
->st_size
> h
->size
)
716 h
->size
= sym
->st_size
;
718 *size_change_ok
= true;
721 /* If we are looking at a dynamic object, and we have found a
722 definition, we need to see if the symbol was already defined by
723 some other object. If so, we want to use the existing
724 definition, and we do not want to report a multiple symbol
725 definition error; we do this by clobbering *PSEC to be
728 We treat a common symbol as a definition if the symbol in the
729 shared library is a function, since common symbols always
730 represent variables; this can cause confusion in principle, but
731 any such confusion would seem to indicate an erroneous program or
732 shared library. We also permit a common symbol in a regular
733 object to override a weak symbol in a shared object.
735 We prefer a non-weak definition in a shared library to a weak
736 definition in the executable unless it comes from a DT_NEEDED
737 entry of a shared object, in which case, the DT_NEEDED entry
738 may not be required at the run time. */
743 || (h
->root
.type
== bfd_link_hash_common
745 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)))
746 && (h
->root
.type
!= bfd_link_hash_defweak
748 || bind
== STB_WEAK
))
752 newdyncommon
= false;
754 *psec
= sec
= bfd_und_section_ptr
;
755 *size_change_ok
= true;
757 /* If we get here when the old symbol is a common symbol, then
758 we are explicitly letting it override a weak symbol or
759 function in a dynamic object, and we don't want to warn about
760 a type change. If the old symbol is a defined symbol, a type
761 change warning may still be appropriate. */
763 if (h
->root
.type
== bfd_link_hash_common
)
764 *type_change_ok
= true;
767 /* Handle the special case of an old common symbol merging with a
768 new symbol which looks like a common symbol in a shared object.
769 We change *PSEC and *PVALUE to make the new symbol look like a
770 common symbol, and let _bfd_generic_link_add_one_symbol will do
774 && h
->root
.type
== bfd_link_hash_common
)
778 newdyncommon
= false;
779 *pvalue
= sym
->st_size
;
780 *psec
= sec
= bfd_com_section_ptr
;
781 *size_change_ok
= true;
784 /* If the old symbol is from a dynamic object, and the new symbol is
785 a definition which is not from a dynamic object, then the new
786 symbol overrides the old symbol. Symbols from regular files
787 always take precedence over symbols from dynamic objects, even if
788 they are defined after the dynamic object in the link.
790 As above, we again permit a common symbol in a regular object to
791 override a definition in a shared object if the shared object
792 symbol is a function or is weak.
794 As above, we permit a non-weak definition in a shared object to
795 override a weak definition in a regular object. */
799 || (bfd_is_com_section (sec
)
800 && (h
->root
.type
== bfd_link_hash_defweak
801 || h
->type
== STT_FUNC
)))
804 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
806 || h
->root
.type
== bfd_link_hash_defweak
))
808 /* Change the hash table entry to undefined, and let
809 _bfd_generic_link_add_one_symbol do the right thing with the
812 h
->root
.type
= bfd_link_hash_undefined
;
813 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
814 *size_change_ok
= true;
817 olddyncommon
= false;
819 /* We again permit a type change when a common symbol may be
820 overriding a function. */
822 if (bfd_is_com_section (sec
))
823 *type_change_ok
= true;
825 /* This union may have been set to be non-NULL when this symbol
826 was seen in a dynamic object. We must force the union to be
827 NULL, so that it is correct for a regular symbol. */
829 h
->verinfo
.vertree
= NULL
;
831 /* In this special case, if H is the target of an indirection,
832 we want the caller to frob with H rather than with the
833 indirect symbol. That will permit the caller to redefine the
834 target of the indirection, rather than the indirect symbol
835 itself. FIXME: This will break the -y option if we store a
836 symbol with a different name. */
840 /* Handle the special case of a new common symbol merging with an
841 old symbol that looks like it might be a common symbol defined in
842 a shared object. Note that we have already handled the case in
843 which a new common symbol should simply override the definition
844 in the shared library. */
847 && bfd_is_com_section (sec
)
850 /* It would be best if we could set the hash table entry to a
851 common symbol, but we don't know what to use for the section
853 if (! ((*info
->callbacks
->multiple_common
)
854 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
855 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
858 /* If the predumed common symbol in the dynamic object is
859 larger, pretend that the new symbol has its size. */
861 if (h
->size
> *pvalue
)
864 /* FIXME: We no longer know the alignment required by the symbol
865 in the dynamic object, so we just wind up using the one from
866 the regular object. */
869 olddyncommon
= false;
871 h
->root
.type
= bfd_link_hash_undefined
;
872 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
874 *size_change_ok
= true;
875 *type_change_ok
= true;
877 h
->verinfo
.vertree
= NULL
;
880 /* Handle the special case of a weak definition in a regular object
881 followed by a non-weak definition in a shared object. In this
882 case, we prefer the definition in the shared object unless it
883 comes from a DT_NEEDED entry of a shared object, in which case,
884 the DT_NEEDED entry may not be required at the run time. */
887 && h
->root
.type
== bfd_link_hash_defweak
892 /* To make this work we have to frob the flags so that the rest
893 of the code does not think we are using the regular
895 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
896 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
897 else if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
898 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
899 h
->elf_link_hash_flags
&= ~ (ELF_LINK_HASH_DEF_REGULAR
900 | ELF_LINK_HASH_DEF_DYNAMIC
);
902 /* If H is the target of an indirection, we want the caller to
903 use H rather than the indirect symbol. Otherwise if we are
904 defining a new indirect symbol we will wind up attaching it
905 to the entry we are overriding. */
909 /* Handle the special case of a non-weak definition in a shared
910 object followed by a weak definition in a regular object. In
911 this case we prefer to definition in the shared object. To make
912 this work we have to tell the caller to not treat the new symbol
916 && h
->root
.type
!= bfd_link_hash_defweak
925 /* This function is called to create an indirect symbol from the
926 default for the symbol with the default version if needed. The
927 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
928 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
929 indicates if it comes from a DT_NEEDED entry of a shared object. */
932 elf_add_default_symbol (abfd
, info
, h
, name
, sym
, sec
, value
,
933 dynsym
, override
, dt_needed
)
935 struct bfd_link_info
*info
;
936 struct elf_link_hash_entry
*h
;
938 Elf_Internal_Sym
*sym
;
945 boolean type_change_ok
;
946 boolean size_change_ok
;
948 struct elf_link_hash_entry
*hi
;
949 struct elf_backend_data
*bed
;
954 /* If this symbol has a version, and it is the default version, we
955 create an indirect symbol from the default name to the fully
956 decorated name. This will cause external references which do not
957 specify a version to be bound to this version of the symbol. */
958 p
= strchr (name
, ELF_VER_CHR
);
959 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
964 /* We are overridden by an old defition. We need to check if we
965 need to crreate the indirect symbol from the default name. */
966 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, true,
968 BFD_ASSERT (hi
!= NULL
);
971 while (hi
->root
.type
== bfd_link_hash_indirect
972 || hi
->root
.type
== bfd_link_hash_warning
)
974 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
980 bed
= get_elf_backend_data (abfd
);
981 collect
= bed
->collect
;
982 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
984 shortname
= bfd_hash_allocate (&info
->hash
->table
,
985 (size_t) (p
- name
+ 1));
986 if (shortname
== NULL
)
988 strncpy (shortname
, name
, (size_t) (p
- name
));
989 shortname
[p
- name
] = '\0';
991 /* We are going to create a new symbol. Merge it with any existing
992 symbol with this name. For the purposes of the merge, act as
993 though we were defining the symbol we just defined, although we
994 actually going to define an indirect symbol. */
995 type_change_ok
= false;
996 size_change_ok
= false;
997 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, sec
, value
,
998 &hi
, &override
, &type_change_ok
,
999 &size_change_ok
, dt_needed
))
1004 if (! (_bfd_generic_link_add_one_symbol
1005 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1006 (bfd_vma
) 0, name
, false, collect
,
1007 (struct bfd_link_hash_entry
**) &hi
)))
1012 /* In this case the symbol named SHORTNAME is overriding the
1013 indirect symbol we want to add. We were planning on making
1014 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1015 is the name without a version. NAME is the fully versioned
1016 name, and it is the default version.
1018 Overriding means that we already saw a definition for the
1019 symbol SHORTNAME in a regular object, and it is overriding
1020 the symbol defined in the dynamic object.
1022 When this happens, we actually want to change NAME, the
1023 symbol we just added, to refer to SHORTNAME. This will cause
1024 references to NAME in the shared object to become references
1025 to SHORTNAME in the regular object. This is what we expect
1026 when we override a function in a shared object: that the
1027 references in the shared object will be mapped to the
1028 definition in the regular object. */
1030 while (hi
->root
.type
== bfd_link_hash_indirect
1031 || hi
->root
.type
== bfd_link_hash_warning
)
1032 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1034 h
->root
.type
= bfd_link_hash_indirect
;
1035 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1036 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1038 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1039 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1040 if (hi
->elf_link_hash_flags
1041 & (ELF_LINK_HASH_REF_REGULAR
1042 | ELF_LINK_HASH_DEF_REGULAR
))
1044 if (! _bfd_elf_link_record_dynamic_symbol (info
, hi
))
1049 /* Now set HI to H, so that the following code will set the
1050 other fields correctly. */
1054 /* If there is a duplicate definition somewhere, then HI may not
1055 point to an indirect symbol. We will have reported an error to
1056 the user in that case. */
1058 if (hi
->root
.type
== bfd_link_hash_indirect
)
1060 struct elf_link_hash_entry
*ht
;
1062 /* If the symbol became indirect, then we assume that we have
1063 not seen a definition before. */
1064 BFD_ASSERT ((hi
->elf_link_hash_flags
1065 & (ELF_LINK_HASH_DEF_DYNAMIC
1066 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1068 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1069 (*bed
->elf_backend_copy_indirect_symbol
) (ht
, hi
);
1071 /* See if the new flags lead us to realize that the symbol must
1078 || ((hi
->elf_link_hash_flags
1079 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1084 if ((hi
->elf_link_hash_flags
1085 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1091 /* We also need to define an indirection from the nondefault version
1094 shortname
= bfd_hash_allocate (&info
->hash
->table
, strlen (name
));
1095 if (shortname
== NULL
)
1097 strncpy (shortname
, name
, (size_t) (p
- name
));
1098 strcpy (shortname
+ (p
- name
), p
+ 1);
1100 /* Once again, merge with any existing symbol. */
1101 type_change_ok
= false;
1102 size_change_ok
= false;
1103 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, sec
, value
,
1104 &hi
, &override
, &type_change_ok
,
1105 &size_change_ok
, dt_needed
))
1110 /* Here SHORTNAME is a versioned name, so we don't expect to see
1111 the type of override we do in the case above. */
1112 (*_bfd_error_handler
)
1113 (_("%s: warning: unexpected redefinition of `%s'"),
1114 bfd_archive_filename (abfd
), shortname
);
1118 if (! (_bfd_generic_link_add_one_symbol
1119 (info
, abfd
, shortname
, BSF_INDIRECT
,
1120 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1121 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1124 /* If there is a duplicate definition somewhere, then HI may not
1125 point to an indirect symbol. We will have reported an error
1126 to the user in that case. */
1128 if (hi
->root
.type
== bfd_link_hash_indirect
)
1130 /* If the symbol became indirect, then we assume that we have
1131 not seen a definition before. */
1132 BFD_ASSERT ((hi
->elf_link_hash_flags
1133 & (ELF_LINK_HASH_DEF_DYNAMIC
1134 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1136 (*bed
->elf_backend_copy_indirect_symbol
) (h
, hi
);
1138 /* See if the new flags lead us to realize that the symbol
1145 || ((hi
->elf_link_hash_flags
1146 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1151 if ((hi
->elf_link_hash_flags
1152 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1162 /* Add symbols from an ELF object file to the linker hash table. */
1165 elf_link_add_object_symbols (abfd
, info
)
1167 struct bfd_link_info
*info
;
1169 boolean (*add_symbol_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
1170 const Elf_Internal_Sym
*,
1171 const char **, flagword
*,
1172 asection
**, bfd_vma
*));
1173 boolean (*check_relocs
) PARAMS ((bfd
*, struct bfd_link_info
*,
1174 asection
*, const Elf_Internal_Rela
*));
1176 Elf_Internal_Shdr
*hdr
;
1177 Elf_Internal_Shdr
*shndx_hdr
;
1178 bfd_size_type symcount
;
1179 bfd_size_type extsymcount
;
1180 bfd_size_type extsymoff
;
1181 Elf_External_Sym
*buf
= NULL
;
1182 Elf_External_Sym_Shndx
*shndx_buf
= NULL
;
1183 Elf_External_Sym_Shndx
*shndx
;
1184 struct elf_link_hash_entry
**sym_hash
;
1186 Elf_External_Versym
*extversym
= NULL
;
1187 Elf_External_Versym
*ever
;
1188 Elf_External_Dyn
*dynbuf
= NULL
;
1189 struct elf_link_hash_entry
*weaks
;
1190 Elf_External_Sym
*esym
;
1191 Elf_External_Sym
*esymend
;
1192 struct elf_backend_data
*bed
;
1194 struct elf_link_hash_table
* hash_table
;
1198 hash_table
= elf_hash_table (info
);
1200 bed
= get_elf_backend_data (abfd
);
1201 add_symbol_hook
= bed
->elf_add_symbol_hook
;
1202 collect
= bed
->collect
;
1204 if ((abfd
->flags
& DYNAMIC
) == 0)
1210 /* You can't use -r against a dynamic object. Also, there's no
1211 hope of using a dynamic object which does not exactly match
1212 the format of the output file. */
1213 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
1215 bfd_set_error (bfd_error_invalid_operation
);
1220 /* As a GNU extension, any input sections which are named
1221 .gnu.warning.SYMBOL are treated as warning symbols for the given
1222 symbol. This differs from .gnu.warning sections, which generate
1223 warnings when they are included in an output file. */
1228 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1232 name
= bfd_get_section_name (abfd
, s
);
1233 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1238 name
+= sizeof ".gnu.warning." - 1;
1240 /* If this is a shared object, then look up the symbol
1241 in the hash table. If it is there, and it is already
1242 been defined, then we will not be using the entry
1243 from this shared object, so we don't need to warn.
1244 FIXME: If we see the definition in a regular object
1245 later on, we will warn, but we shouldn't. The only
1246 fix is to keep track of what warnings we are supposed
1247 to emit, and then handle them all at the end of the
1249 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
1251 struct elf_link_hash_entry
*h
;
1253 h
= elf_link_hash_lookup (hash_table
, name
,
1254 false, false, true);
1256 /* FIXME: What about bfd_link_hash_common? */
1258 && (h
->root
.type
== bfd_link_hash_defined
1259 || h
->root
.type
== bfd_link_hash_defweak
))
1261 /* We don't want to issue this warning. Clobber
1262 the section size so that the warning does not
1263 get copied into the output file. */
1269 sz
= bfd_section_size (abfd
, s
);
1270 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
1274 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
1279 if (! (_bfd_generic_link_add_one_symbol
1280 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
1281 false, collect
, (struct bfd_link_hash_entry
**) NULL
)))
1284 if (! info
->relocateable
)
1286 /* Clobber the section size so that the warning does
1287 not get copied into the output file. */
1294 /* If this is a dynamic object, we always link against the .dynsym
1295 symbol table, not the .symtab symbol table. The dynamic linker
1296 will only see the .dynsym symbol table, so there is no reason to
1297 look at .symtab for a dynamic object. */
1299 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
1301 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1302 shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
1306 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1312 /* Read in any version definitions. */
1314 if (! _bfd_elf_slurp_version_tables (abfd
))
1317 /* Read in the symbol versions, but don't bother to convert them
1318 to internal format. */
1319 if (elf_dynversym (abfd
) != 0)
1321 Elf_Internal_Shdr
*versymhdr
;
1323 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
1324 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
1325 if (extversym
== NULL
)
1327 amt
= versymhdr
->sh_size
;
1328 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
1329 || bfd_bread ((PTR
) extversym
, amt
, abfd
) != amt
)
1334 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
1336 /* The sh_info field of the symtab header tells us where the
1337 external symbols start. We don't care about the local symbols at
1339 if (elf_bad_symtab (abfd
))
1341 extsymcount
= symcount
;
1346 extsymcount
= symcount
- hdr
->sh_info
;
1347 extsymoff
= hdr
->sh_info
;
1350 amt
= extsymcount
* sizeof (Elf_External_Sym
);
1351 buf
= (Elf_External_Sym
*) bfd_malloc (amt
);
1352 if (buf
== NULL
&& extsymcount
!= 0)
1355 if (shndx_hdr
!= NULL
&& shndx_hdr
->sh_size
!= 0)
1357 amt
= extsymcount
* sizeof (Elf_External_Sym_Shndx
);
1358 shndx_buf
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
1359 if (shndx_buf
== NULL
&& extsymcount
!= 0)
1363 /* We store a pointer to the hash table entry for each external
1365 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
1366 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
1367 if (sym_hash
== NULL
)
1369 elf_sym_hashes (abfd
) = sym_hash
;
1375 /* If we are creating a shared library, create all the dynamic
1376 sections immediately. We need to attach them to something,
1377 so we attach them to this BFD, provided it is the right
1378 format. FIXME: If there are no input BFD's of the same
1379 format as the output, we can't make a shared library. */
1381 && is_elf_hash_table (info
)
1382 && ! hash_table
->dynamic_sections_created
1383 && abfd
->xvec
== info
->hash
->creator
)
1385 if (! elf_link_create_dynamic_sections (abfd
, info
))
1389 else if (! is_elf_hash_table (info
))
1396 bfd_size_type oldsize
;
1397 bfd_size_type strindex
;
1399 /* Find the name to use in a DT_NEEDED entry that refers to this
1400 object. If the object has a DT_SONAME entry, we use it.
1401 Otherwise, if the generic linker stuck something in
1402 elf_dt_name, we use that. Otherwise, we just use the file
1403 name. If the generic linker put a null string into
1404 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1405 there is a DT_SONAME entry. */
1407 name
= bfd_get_filename (abfd
);
1408 if (elf_dt_name (abfd
) != NULL
)
1410 name
= elf_dt_name (abfd
);
1413 if (elf_dt_soname (abfd
) != NULL
)
1419 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1422 Elf_External_Dyn
*extdyn
;
1423 Elf_External_Dyn
*extdynend
;
1425 unsigned long shlink
;
1429 dynbuf
= (Elf_External_Dyn
*) bfd_malloc (s
->_raw_size
);
1433 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
1434 (file_ptr
) 0, s
->_raw_size
))
1437 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1440 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1443 /* The shared libraries distributed with hpux11 have a bogus
1444 sh_link field for the ".dynamic" section. This code detects
1445 when SHLINK refers to a section that is not a string table
1446 and tries to find the string table for the ".dynsym" section
1448 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[shlink
];
1449 if (shdr
->sh_type
!= SHT_STRTAB
)
1451 asection
*ds
= bfd_get_section_by_name (abfd
, ".dynsym");
1452 int elfdsec
= _bfd_elf_section_from_bfd_section (abfd
, ds
);
1455 shlink
= elf_elfsections (abfd
)[elfdsec
]->sh_link
;
1460 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
1463 for (; extdyn
< extdynend
; extdyn
++)
1465 Elf_Internal_Dyn dyn
;
1467 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
1468 if (dyn
.d_tag
== DT_SONAME
)
1470 unsigned int tagv
= dyn
.d_un
.d_val
;
1471 name
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1475 if (dyn
.d_tag
== DT_NEEDED
)
1477 struct bfd_link_needed_list
*n
, **pn
;
1479 unsigned int tagv
= dyn
.d_un
.d_val
;
1481 amt
= sizeof (struct bfd_link_needed_list
);
1482 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1483 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1484 if (n
== NULL
|| fnm
== NULL
)
1486 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1493 for (pn
= & hash_table
->needed
;
1499 if (dyn
.d_tag
== DT_RUNPATH
)
1501 struct bfd_link_needed_list
*n
, **pn
;
1503 unsigned int tagv
= dyn
.d_un
.d_val
;
1505 /* When we see DT_RPATH before DT_RUNPATH, we have
1506 to clear runpath. Do _NOT_ bfd_release, as that
1507 frees all more recently bfd_alloc'd blocks as
1509 if (rpath
&& hash_table
->runpath
)
1510 hash_table
->runpath
= NULL
;
1512 amt
= sizeof (struct bfd_link_needed_list
);
1513 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1514 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1515 if (n
== NULL
|| fnm
== NULL
)
1517 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1524 for (pn
= & hash_table
->runpath
;
1532 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1533 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
1535 struct bfd_link_needed_list
*n
, **pn
;
1537 unsigned int tagv
= dyn
.d_un
.d_val
;
1539 amt
= sizeof (struct bfd_link_needed_list
);
1540 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1541 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1542 if (n
== NULL
|| fnm
== NULL
)
1544 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1551 for (pn
= & hash_table
->runpath
;
1564 /* We do not want to include any of the sections in a dynamic
1565 object in the output file. We hack by simply clobbering the
1566 list of sections in the BFD. This could be handled more
1567 cleanly by, say, a new section flag; the existing
1568 SEC_NEVER_LOAD flag is not the one we want, because that one
1569 still implies that the section takes up space in the output
1571 abfd
->sections
= NULL
;
1572 abfd
->section_count
= 0;
1574 /* If this is the first dynamic object found in the link, create
1575 the special sections required for dynamic linking. */
1576 if (! hash_table
->dynamic_sections_created
)
1577 if (! elf_link_create_dynamic_sections (abfd
, info
))
1582 /* Add a DT_NEEDED entry for this dynamic object. */
1583 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
1584 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, name
, false);
1585 if (strindex
== (bfd_size_type
) -1)
1588 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
1591 Elf_External_Dyn
*dyncon
, *dynconend
;
1593 /* The hash table size did not change, which means that
1594 the dynamic object name was already entered. If we
1595 have already included this dynamic object in the
1596 link, just ignore it. There is no reason to include
1597 a particular dynamic object more than once. */
1598 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
1599 BFD_ASSERT (sdyn
!= NULL
);
1601 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1602 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1604 for (; dyncon
< dynconend
; dyncon
++)
1606 Elf_Internal_Dyn dyn
;
1608 elf_swap_dyn_in (hash_table
->dynobj
, dyncon
, & dyn
);
1609 if (dyn
.d_tag
== DT_NEEDED
1610 && dyn
.d_un
.d_val
== strindex
)
1614 if (extversym
!= NULL
)
1616 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
1622 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
1626 /* Save the SONAME, if there is one, because sometimes the
1627 linker emulation code will need to know it. */
1629 name
= basename (bfd_get_filename (abfd
));
1630 elf_dt_name (abfd
) = name
;
1633 pos
= hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
);
1634 amt
= extsymcount
* sizeof (Elf_External_Sym
);
1635 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
1636 || bfd_bread ((PTR
) buf
, amt
, abfd
) != amt
)
1639 if (shndx_hdr
!= NULL
&& shndx_hdr
->sh_size
!= 0)
1641 amt
= extsymcount
* sizeof (Elf_External_Sym_Shndx
);
1642 pos
= shndx_hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym_Shndx
);
1643 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
1644 || bfd_bread ((PTR
) shndx_buf
, amt
, abfd
) != amt
)
1650 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
1651 esymend
= buf
+ extsymcount
;
1652 for (esym
= buf
, shndx
= shndx_buf
;
1654 esym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
),
1655 shndx
= (shndx
!= NULL
? shndx
+ 1 : NULL
))
1657 Elf_Internal_Sym sym
;
1663 struct elf_link_hash_entry
*h
;
1665 boolean size_change_ok
, type_change_ok
;
1666 boolean new_weakdef
;
1667 unsigned int old_alignment
;
1672 elf_swap_symbol_in (abfd
, esym
, shndx
, &sym
);
1674 flags
= BSF_NO_FLAGS
;
1676 value
= sym
.st_value
;
1679 bind
= ELF_ST_BIND (sym
.st_info
);
1680 if (bind
== STB_LOCAL
)
1682 /* This should be impossible, since ELF requires that all
1683 global symbols follow all local symbols, and that sh_info
1684 point to the first global symbol. Unfortunatealy, Irix 5
1688 else if (bind
== STB_GLOBAL
)
1690 if (sym
.st_shndx
!= SHN_UNDEF
1691 && sym
.st_shndx
!= SHN_COMMON
)
1694 else if (bind
== STB_WEAK
)
1698 /* Leave it up to the processor backend. */
1701 if (sym
.st_shndx
== SHN_UNDEF
)
1702 sec
= bfd_und_section_ptr
;
1703 else if (sym
.st_shndx
< SHN_LORESERVE
|| sym
.st_shndx
> SHN_HIRESERVE
)
1705 sec
= section_from_elf_index (abfd
, sym
.st_shndx
);
1707 sec
= bfd_abs_section_ptr
;
1708 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1711 else if (sym
.st_shndx
== SHN_ABS
)
1712 sec
= bfd_abs_section_ptr
;
1713 else if (sym
.st_shndx
== SHN_COMMON
)
1715 sec
= bfd_com_section_ptr
;
1716 /* What ELF calls the size we call the value. What ELF
1717 calls the value we call the alignment. */
1718 value
= sym
.st_size
;
1722 /* Leave it up to the processor backend. */
1725 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
1726 if (name
== (const char *) NULL
)
1729 if (add_symbol_hook
)
1731 if (! (*add_symbol_hook
) (abfd
, info
, &sym
, &name
, &flags
, &sec
,
1735 /* The hook function sets the name to NULL if this symbol
1736 should be skipped for some reason. */
1737 if (name
== (const char *) NULL
)
1741 /* Sanity check that all possibilities were handled. */
1742 if (sec
== (asection
*) NULL
)
1744 bfd_set_error (bfd_error_bad_value
);
1748 if (bfd_is_und_section (sec
)
1749 || bfd_is_com_section (sec
))
1754 size_change_ok
= false;
1755 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1757 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1759 Elf_Internal_Versym iver
;
1760 unsigned int vernum
= 0;
1764 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1765 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1767 /* If this is a hidden symbol, or if it is not version
1768 1, we append the version name to the symbol name.
1769 However, we do not modify a non-hidden absolute
1770 symbol, because it might be the version symbol
1771 itself. FIXME: What if it isn't? */
1772 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1773 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1776 unsigned int namelen
;
1777 bfd_size_type newlen
;
1780 if (sym
.st_shndx
!= SHN_UNDEF
)
1782 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1784 (*_bfd_error_handler
)
1785 (_("%s: %s: invalid version %u (max %d)"),
1786 bfd_archive_filename (abfd
), name
, vernum
,
1787 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1788 bfd_set_error (bfd_error_bad_value
);
1791 else if (vernum
> 1)
1793 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1799 /* We cannot simply test for the number of
1800 entries in the VERNEED section since the
1801 numbers for the needed versions do not start
1803 Elf_Internal_Verneed
*t
;
1806 for (t
= elf_tdata (abfd
)->verref
;
1810 Elf_Internal_Vernaux
*a
;
1812 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1814 if (a
->vna_other
== vernum
)
1816 verstr
= a
->vna_nodename
;
1825 (*_bfd_error_handler
)
1826 (_("%s: %s: invalid needed version %d"),
1827 bfd_archive_filename (abfd
), name
, vernum
);
1828 bfd_set_error (bfd_error_bad_value
);
1833 namelen
= strlen (name
);
1834 newlen
= namelen
+ strlen (verstr
) + 2;
1835 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
1838 newname
= (char *) bfd_alloc (abfd
, newlen
);
1839 if (newname
== NULL
)
1841 strcpy (newname
, name
);
1842 p
= newname
+ namelen
;
1844 /* If this is a defined non-hidden version symbol,
1845 we add another @ to the name. This indicates the
1846 default version of the symbol. */
1847 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1848 && sym
.st_shndx
!= SHN_UNDEF
)
1856 if (! elf_merge_symbol (abfd
, info
, name
, &sym
, &sec
, &value
,
1857 sym_hash
, &override
, &type_change_ok
,
1858 &size_change_ok
, dt_needed
))
1865 while (h
->root
.type
== bfd_link_hash_indirect
1866 || h
->root
.type
== bfd_link_hash_warning
)
1867 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1869 /* Remember the old alignment if this is a common symbol, so
1870 that we don't reduce the alignment later on. We can't
1871 check later, because _bfd_generic_link_add_one_symbol
1872 will set a default for the alignment which we want to
1874 if (h
->root
.type
== bfd_link_hash_common
)
1875 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1877 if (elf_tdata (abfd
)->verdef
!= NULL
1881 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1884 if (! (_bfd_generic_link_add_one_symbol
1885 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1886 false, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1890 while (h
->root
.type
== bfd_link_hash_indirect
1891 || h
->root
.type
== bfd_link_hash_warning
)
1892 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1895 new_weakdef
= false;
1898 && (flags
& BSF_WEAK
) != 0
1899 && ELF_ST_TYPE (sym
.st_info
) != STT_FUNC
1900 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1901 && h
->weakdef
== NULL
)
1903 /* Keep a list of all weak defined non function symbols from
1904 a dynamic object, using the weakdef field. Later in this
1905 function we will set the weakdef field to the correct
1906 value. We only put non-function symbols from dynamic
1907 objects on this list, because that happens to be the only
1908 time we need to know the normal symbol corresponding to a
1909 weak symbol, and the information is time consuming to
1910 figure out. If the weakdef field is not already NULL,
1911 then this symbol was already defined by some previous
1912 dynamic object, and we will be using that previous
1913 definition anyhow. */
1920 /* Set the alignment of a common symbol. */
1921 if (sym
.st_shndx
== SHN_COMMON
1922 && h
->root
.type
== bfd_link_hash_common
)
1926 align
= bfd_log2 (sym
.st_value
);
1927 if (align
> old_alignment
1928 /* Permit an alignment power of zero if an alignment of one
1929 is specified and no other alignments have been specified. */
1930 || (sym
.st_value
== 1 && old_alignment
== 0))
1931 h
->root
.u
.c
.p
->alignment_power
= align
;
1934 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1940 /* Remember the symbol size and type. */
1941 if (sym
.st_size
!= 0
1942 && (definition
|| h
->size
== 0))
1944 if (h
->size
!= 0 && h
->size
!= sym
.st_size
&& ! size_change_ok
)
1945 (*_bfd_error_handler
)
1946 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1947 name
, (unsigned long) h
->size
, (unsigned long) sym
.st_size
,
1948 bfd_archive_filename (abfd
));
1950 h
->size
= sym
.st_size
;
1953 /* If this is a common symbol, then we always want H->SIZE
1954 to be the size of the common symbol. The code just above
1955 won't fix the size if a common symbol becomes larger. We
1956 don't warn about a size change here, because that is
1957 covered by --warn-common. */
1958 if (h
->root
.type
== bfd_link_hash_common
)
1959 h
->size
= h
->root
.u
.c
.size
;
1961 if (ELF_ST_TYPE (sym
.st_info
) != STT_NOTYPE
1962 && (definition
|| h
->type
== STT_NOTYPE
))
1964 if (h
->type
!= STT_NOTYPE
1965 && h
->type
!= ELF_ST_TYPE (sym
.st_info
)
1966 && ! type_change_ok
)
1967 (*_bfd_error_handler
)
1968 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1969 name
, h
->type
, ELF_ST_TYPE (sym
.st_info
),
1970 bfd_archive_filename (abfd
));
1972 h
->type
= ELF_ST_TYPE (sym
.st_info
);
1975 /* If st_other has a processor-specific meaning, specific code
1976 might be needed here. */
1977 if (sym
.st_other
!= 0)
1979 /* Combine visibilities, using the most constraining one. */
1980 unsigned char hvis
= ELF_ST_VISIBILITY (h
->other
);
1981 unsigned char symvis
= ELF_ST_VISIBILITY (sym
.st_other
);
1983 if (symvis
&& (hvis
> symvis
|| hvis
== 0))
1984 h
->other
= sym
.st_other
;
1986 /* If neither has visibility, use the st_other of the
1987 definition. This is an arbitrary choice, since the
1988 other bits have no general meaning. */
1989 if (!symvis
&& !hvis
1990 && (definition
|| h
->other
== 0))
1991 h
->other
= sym
.st_other
;
1994 /* Set a flag in the hash table entry indicating the type of
1995 reference or definition we just found. Keep a count of
1996 the number of dynamic symbols we find. A dynamic symbol
1997 is one which is referenced or defined by both a regular
1998 object and a shared object. */
1999 old_flags
= h
->elf_link_hash_flags
;
2005 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
2006 if (bind
!= STB_WEAK
)
2007 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
2010 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
2012 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2013 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
2019 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
2021 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
2022 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
2023 | ELF_LINK_HASH_REF_REGULAR
)) != 0
2024 || (h
->weakdef
!= NULL
2026 && h
->weakdef
->dynindx
!= -1))
2030 h
->elf_link_hash_flags
|= new_flag
;
2032 /* Check to see if we need to add an indirect symbol for
2033 the default name. */
2034 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
2035 if (! elf_add_default_symbol (abfd
, info
, h
, name
, &sym
,
2036 &sec
, &value
, &dynsym
,
2037 override
, dt_needed
))
2040 if (dynsym
&& h
->dynindx
== -1)
2042 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2044 if (h
->weakdef
!= NULL
2046 && h
->weakdef
->dynindx
== -1)
2048 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2052 else if (dynsym
&& h
->dynindx
!= -1)
2053 /* If the symbol already has a dynamic index, but
2054 visibility says it should not be visible, turn it into
2056 switch (ELF_ST_VISIBILITY (h
->other
))
2060 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
2061 (*bed
->elf_backend_hide_symbol
) (info
, h
);
2062 _bfd_elf_strtab_delref (hash_table
->dynstr
,
2067 if (dt_needed
&& definition
2068 && (h
->elf_link_hash_flags
2069 & ELF_LINK_HASH_REF_REGULAR
) != 0)
2071 bfd_size_type oldsize
;
2072 bfd_size_type strindex
;
2074 if (! is_elf_hash_table (info
))
2077 /* The symbol from a DT_NEEDED object is referenced from
2078 the regular object to create a dynamic executable. We
2079 have to make sure there is a DT_NEEDED entry for it. */
2082 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2083 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
,
2084 elf_dt_soname (abfd
), false);
2085 if (strindex
== (bfd_size_type
) -1)
2088 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2091 Elf_External_Dyn
*dyncon
, *dynconend
;
2093 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
,
2095 BFD_ASSERT (sdyn
!= NULL
);
2097 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
2098 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
2100 for (; dyncon
< dynconend
; dyncon
++)
2102 Elf_Internal_Dyn dyn
;
2104 elf_swap_dyn_in (hash_table
->dynobj
,
2106 BFD_ASSERT (dyn
.d_tag
!= DT_NEEDED
||
2107 dyn
.d_un
.d_val
!= strindex
);
2111 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
2117 /* Now set the weakdefs field correctly for all the weak defined
2118 symbols we found. The only way to do this is to search all the
2119 symbols. Since we only need the information for non functions in
2120 dynamic objects, that's the only time we actually put anything on
2121 the list WEAKS. We need this information so that if a regular
2122 object refers to a symbol defined weakly in a dynamic object, the
2123 real symbol in the dynamic object is also put in the dynamic
2124 symbols; we also must arrange for both symbols to point to the
2125 same memory location. We could handle the general case of symbol
2126 aliasing, but a general symbol alias can only be generated in
2127 assembler code, handling it correctly would be very time
2128 consuming, and other ELF linkers don't handle general aliasing
2130 while (weaks
!= NULL
)
2132 struct elf_link_hash_entry
*hlook
;
2135 struct elf_link_hash_entry
**hpp
;
2136 struct elf_link_hash_entry
**hppend
;
2139 weaks
= hlook
->weakdef
;
2140 hlook
->weakdef
= NULL
;
2142 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
2143 || hlook
->root
.type
== bfd_link_hash_defweak
2144 || hlook
->root
.type
== bfd_link_hash_common
2145 || hlook
->root
.type
== bfd_link_hash_indirect
);
2146 slook
= hlook
->root
.u
.def
.section
;
2147 vlook
= hlook
->root
.u
.def
.value
;
2149 hpp
= elf_sym_hashes (abfd
);
2150 hppend
= hpp
+ extsymcount
;
2151 for (; hpp
< hppend
; hpp
++)
2153 struct elf_link_hash_entry
*h
;
2156 if (h
!= NULL
&& h
!= hlook
2157 && h
->root
.type
== bfd_link_hash_defined
2158 && h
->root
.u
.def
.section
== slook
2159 && h
->root
.u
.def
.value
== vlook
)
2163 /* If the weak definition is in the list of dynamic
2164 symbols, make sure the real definition is put there
2166 if (hlook
->dynindx
!= -1
2167 && h
->dynindx
== -1)
2169 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2173 /* If the real definition is in the list of dynamic
2174 symbols, make sure the weak definition is put there
2175 as well. If we don't do this, then the dynamic
2176 loader might not merge the entries for the real
2177 definition and the weak definition. */
2178 if (h
->dynindx
!= -1
2179 && hlook
->dynindx
== -1)
2181 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
2196 if (extversym
!= NULL
)
2202 /* If this object is the same format as the output object, and it is
2203 not a shared library, then let the backend look through the
2206 This is required to build global offset table entries and to
2207 arrange for dynamic relocs. It is not required for the
2208 particular common case of linking non PIC code, even when linking
2209 against shared libraries, but unfortunately there is no way of
2210 knowing whether an object file has been compiled PIC or not.
2211 Looking through the relocs is not particularly time consuming.
2212 The problem is that we must either (1) keep the relocs in memory,
2213 which causes the linker to require additional runtime memory or
2214 (2) read the relocs twice from the input file, which wastes time.
2215 This would be a good case for using mmap.
2217 I have no idea how to handle linking PIC code into a file of a
2218 different format. It probably can't be done. */
2219 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
2221 && abfd
->xvec
== info
->hash
->creator
2222 && check_relocs
!= NULL
)
2226 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2228 Elf_Internal_Rela
*internal_relocs
;
2231 if ((o
->flags
& SEC_RELOC
) == 0
2232 || o
->reloc_count
== 0
2233 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2234 && (o
->flags
& SEC_DEBUGGING
) != 0)
2235 || bfd_is_abs_section (o
->output_section
))
2238 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
2239 (abfd
, o
, (PTR
) NULL
,
2240 (Elf_Internal_Rela
*) NULL
,
2241 info
->keep_memory
));
2242 if (internal_relocs
== NULL
)
2245 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
2247 if (! info
->keep_memory
)
2248 free (internal_relocs
);
2255 /* If this is a non-traditional, non-relocateable link, try to
2256 optimize the handling of the .stab/.stabstr sections. */
2258 && ! info
->relocateable
2259 && ! info
->traditional_format
2260 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
2261 && is_elf_hash_table (info
)
2262 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
2264 asection
*stab
, *stabstr
;
2266 stab
= bfd_get_section_by_name (abfd
, ".stab");
2267 if (stab
!= NULL
&& !(stab
->flags
& SEC_MERGE
))
2269 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
2271 if (stabstr
!= NULL
)
2273 struct bfd_elf_section_data
*secdata
;
2275 secdata
= elf_section_data (stab
);
2276 if (! _bfd_link_section_stabs (abfd
,
2277 & hash_table
->stab_info
,
2279 &secdata
->sec_info
))
2281 if (secdata
->sec_info
)
2282 secdata
->sec_info_type
= ELF_INFO_TYPE_STABS
;
2287 if (! info
->relocateable
&& ! dynamic
2288 && is_elf_hash_table (info
))
2292 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2293 if (s
->flags
& SEC_MERGE
)
2295 struct bfd_elf_section_data
*secdata
;
2297 secdata
= elf_section_data (s
);
2298 if (! _bfd_merge_section (abfd
,
2299 & hash_table
->merge_info
,
2300 s
, &secdata
->sec_info
))
2302 else if (secdata
->sec_info
)
2303 secdata
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
2314 if (extversym
!= NULL
)
2319 /* Create some sections which will be filled in with dynamic linking
2320 information. ABFD is an input file which requires dynamic sections
2321 to be created. The dynamic sections take up virtual memory space
2322 when the final executable is run, so we need to create them before
2323 addresses are assigned to the output sections. We work out the
2324 actual contents and size of these sections later. */
2327 elf_link_create_dynamic_sections (abfd
, info
)
2329 struct bfd_link_info
*info
;
2332 register asection
*s
;
2333 struct elf_link_hash_entry
*h
;
2334 struct elf_backend_data
*bed
;
2336 if (! is_elf_hash_table (info
))
2339 if (elf_hash_table (info
)->dynamic_sections_created
)
2342 /* Make sure that all dynamic sections use the same input BFD. */
2343 if (elf_hash_table (info
)->dynobj
== NULL
)
2344 elf_hash_table (info
)->dynobj
= abfd
;
2346 abfd
= elf_hash_table (info
)->dynobj
;
2348 /* Note that we set the SEC_IN_MEMORY flag for all of these
2350 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
2351 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2353 /* A dynamically linked executable has a .interp section, but a
2354 shared library does not. */
2357 s
= bfd_make_section (abfd
, ".interp");
2359 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2363 if (! info
->traditional_format
2364 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
2366 s
= bfd_make_section (abfd
, ".eh_frame_hdr");
2368 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2369 || ! bfd_set_section_alignment (abfd
, s
, 2))
2373 /* Create sections to hold version informations. These are removed
2374 if they are not needed. */
2375 s
= bfd_make_section (abfd
, ".gnu.version_d");
2377 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2378 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2381 s
= bfd_make_section (abfd
, ".gnu.version");
2383 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2384 || ! bfd_set_section_alignment (abfd
, s
, 1))
2387 s
= bfd_make_section (abfd
, ".gnu.version_r");
2389 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2390 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2393 s
= bfd_make_section (abfd
, ".dynsym");
2395 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2396 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2399 s
= bfd_make_section (abfd
, ".dynstr");
2401 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2404 /* Create a strtab to hold the dynamic symbol names. */
2405 if (elf_hash_table (info
)->dynstr
== NULL
)
2407 elf_hash_table (info
)->dynstr
= _bfd_elf_strtab_init ();
2408 if (elf_hash_table (info
)->dynstr
== NULL
)
2412 s
= bfd_make_section (abfd
, ".dynamic");
2414 || ! bfd_set_section_flags (abfd
, s
, flags
)
2415 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2418 /* The special symbol _DYNAMIC is always set to the start of the
2419 .dynamic section. This call occurs before we have processed the
2420 symbols for any dynamic object, so we don't have to worry about
2421 overriding a dynamic definition. We could set _DYNAMIC in a
2422 linker script, but we only want to define it if we are, in fact,
2423 creating a .dynamic section. We don't want to define it if there
2424 is no .dynamic section, since on some ELF platforms the start up
2425 code examines it to decide how to initialize the process. */
2427 if (! (_bfd_generic_link_add_one_symbol
2428 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
2429 (const char *) NULL
, false, get_elf_backend_data (abfd
)->collect
,
2430 (struct bfd_link_hash_entry
**) &h
)))
2432 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2433 h
->type
= STT_OBJECT
;
2436 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2439 bed
= get_elf_backend_data (abfd
);
2441 s
= bfd_make_section (abfd
, ".hash");
2443 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2444 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2446 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
2448 /* Let the backend create the rest of the sections. This lets the
2449 backend set the right flags. The backend will normally create
2450 the .got and .plt sections. */
2451 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
2454 elf_hash_table (info
)->dynamic_sections_created
= true;
2459 /* Add an entry to the .dynamic table. */
2462 elf_add_dynamic_entry (info
, tag
, val
)
2463 struct bfd_link_info
*info
;
2467 Elf_Internal_Dyn dyn
;
2470 bfd_size_type newsize
;
2471 bfd_byte
*newcontents
;
2473 if (! is_elf_hash_table (info
))
2476 dynobj
= elf_hash_table (info
)->dynobj
;
2478 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
2479 BFD_ASSERT (s
!= NULL
);
2481 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
2482 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
2483 if (newcontents
== NULL
)
2487 dyn
.d_un
.d_val
= val
;
2488 elf_swap_dyn_out (dynobj
, &dyn
,
2489 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
2491 s
->_raw_size
= newsize
;
2492 s
->contents
= newcontents
;
2497 /* Record a new local dynamic symbol. */
2500 elf_link_record_local_dynamic_symbol (info
, input_bfd
, input_indx
)
2501 struct bfd_link_info
*info
;
2505 struct elf_link_local_dynamic_entry
*entry
;
2506 struct elf_link_hash_table
*eht
;
2507 struct elf_strtab_hash
*dynstr
;
2508 Elf_External_Sym esym
;
2509 Elf_External_Sym_Shndx eshndx
;
2510 Elf_External_Sym_Shndx
*shndx
;
2511 unsigned long dynstr_index
;
2516 if (! is_elf_hash_table (info
))
2519 /* See if the entry exists already. */
2520 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
2521 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
2524 entry
= (struct elf_link_local_dynamic_entry
*)
2525 bfd_alloc (input_bfd
, (bfd_size_type
) sizeof (*entry
));
2529 /* Go find the symbol, so that we can find it's name. */
2530 amt
= sizeof (Elf_External_Sym
);
2531 pos
= elf_tdata (input_bfd
)->symtab_hdr
.sh_offset
+ input_indx
* amt
;
2532 if (bfd_seek (input_bfd
, pos
, SEEK_SET
) != 0
2533 || bfd_bread ((PTR
) &esym
, amt
, input_bfd
) != amt
)
2536 if (elf_tdata (input_bfd
)->symtab_shndx_hdr
.sh_size
!= 0)
2538 amt
= sizeof (Elf_External_Sym_Shndx
);
2539 pos
= elf_tdata (input_bfd
)->symtab_shndx_hdr
.sh_offset
;
2540 pos
+= input_indx
* amt
;
2542 if (bfd_seek (input_bfd
, pos
, SEEK_SET
) != 0
2543 || bfd_bread ((PTR
) shndx
, amt
, input_bfd
) != amt
)
2546 elf_swap_symbol_in (input_bfd
, &esym
, shndx
, &entry
->isym
);
2548 name
= (bfd_elf_string_from_elf_section
2549 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
2550 entry
->isym
.st_name
));
2552 dynstr
= elf_hash_table (info
)->dynstr
;
2555 /* Create a strtab to hold the dynamic symbol names. */
2556 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
2561 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, false);
2562 if (dynstr_index
== (unsigned long) -1)
2564 entry
->isym
.st_name
= dynstr_index
;
2566 eht
= elf_hash_table (info
);
2568 entry
->next
= eht
->dynlocal
;
2569 eht
->dynlocal
= entry
;
2570 entry
->input_bfd
= input_bfd
;
2571 entry
->input_indx
= input_indx
;
2574 /* Whatever binding the symbol had before, it's now local. */
2576 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
2578 /* The dynindx will be set at the end of size_dynamic_sections. */
2583 /* Read and swap the relocs from the section indicated by SHDR. This
2584 may be either a REL or a RELA section. The relocations are
2585 translated into RELA relocations and stored in INTERNAL_RELOCS,
2586 which should have already been allocated to contain enough space.
2587 The EXTERNAL_RELOCS are a buffer where the external form of the
2588 relocations should be stored.
2590 Returns false if something goes wrong. */
2593 elf_link_read_relocs_from_section (abfd
, shdr
, external_relocs
,
2596 Elf_Internal_Shdr
*shdr
;
2597 PTR external_relocs
;
2598 Elf_Internal_Rela
*internal_relocs
;
2600 struct elf_backend_data
*bed
;
2603 /* If there aren't any relocations, that's OK. */
2607 /* Position ourselves at the start of the section. */
2608 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2611 /* Read the relocations. */
2612 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2615 bed
= get_elf_backend_data (abfd
);
2617 /* Convert the external relocations to the internal format. */
2618 if (shdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2620 Elf_External_Rel
*erel
;
2621 Elf_External_Rel
*erelend
;
2622 Elf_Internal_Rela
*irela
;
2623 Elf_Internal_Rel
*irel
;
2625 erel
= (Elf_External_Rel
*) external_relocs
;
2626 erelend
= erel
+ NUM_SHDR_ENTRIES (shdr
);
2627 irela
= internal_relocs
;
2628 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
2629 irel
= bfd_alloc (abfd
, amt
);
2630 for (; erel
< erelend
; erel
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2634 if (bed
->s
->swap_reloc_in
)
2635 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
2637 elf_swap_reloc_in (abfd
, erel
, irel
);
2639 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; ++i
)
2641 irela
[i
].r_offset
= irel
[i
].r_offset
;
2642 irela
[i
].r_info
= irel
[i
].r_info
;
2643 irela
[i
].r_addend
= 0;
2649 Elf_External_Rela
*erela
;
2650 Elf_External_Rela
*erelaend
;
2651 Elf_Internal_Rela
*irela
;
2653 BFD_ASSERT (shdr
->sh_entsize
== sizeof (Elf_External_Rela
));
2655 erela
= (Elf_External_Rela
*) external_relocs
;
2656 erelaend
= erela
+ NUM_SHDR_ENTRIES (shdr
);
2657 irela
= internal_relocs
;
2658 for (; erela
< erelaend
; erela
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2660 if (bed
->s
->swap_reloca_in
)
2661 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
2663 elf_swap_reloca_in (abfd
, erela
, irela
);
2670 /* Read and swap the relocs for a section O. They may have been
2671 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2672 not NULL, they are used as buffers to read into. They are known to
2673 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2674 the return value is allocated using either malloc or bfd_alloc,
2675 according to the KEEP_MEMORY argument. If O has two relocation
2676 sections (both REL and RELA relocations), then the REL_HDR
2677 relocations will appear first in INTERNAL_RELOCS, followed by the
2678 REL_HDR2 relocations. */
2681 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2685 PTR external_relocs
;
2686 Elf_Internal_Rela
*internal_relocs
;
2687 boolean keep_memory
;
2689 Elf_Internal_Shdr
*rel_hdr
;
2691 Elf_Internal_Rela
*alloc2
= NULL
;
2692 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2694 if (elf_section_data (o
)->relocs
!= NULL
)
2695 return elf_section_data (o
)->relocs
;
2697 if (o
->reloc_count
== 0)
2700 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2702 if (internal_relocs
== NULL
)
2706 size
= o
->reloc_count
;
2707 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2709 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2711 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2712 if (internal_relocs
== NULL
)
2716 if (external_relocs
== NULL
)
2718 bfd_size_type size
= rel_hdr
->sh_size
;
2720 if (elf_section_data (o
)->rel_hdr2
)
2721 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2722 alloc1
= (PTR
) bfd_malloc (size
);
2725 external_relocs
= alloc1
;
2728 if (!elf_link_read_relocs_from_section (abfd
, rel_hdr
,
2732 if (!elf_link_read_relocs_from_section
2734 elf_section_data (o
)->rel_hdr2
,
2735 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2736 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2737 * bed
->s
->int_rels_per_ext_rel
)))
2740 /* Cache the results for next time, if we can. */
2742 elf_section_data (o
)->relocs
= internal_relocs
;
2747 /* Don't free alloc2, since if it was allocated we are passing it
2748 back (under the name of internal_relocs). */
2750 return internal_relocs
;
2760 /* Record an assignment to a symbol made by a linker script. We need
2761 this in case some dynamic object refers to this symbol. */
2764 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2765 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2766 struct bfd_link_info
*info
;
2770 struct elf_link_hash_entry
*h
;
2772 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2775 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, true, false);
2779 if (h
->root
.type
== bfd_link_hash_new
)
2780 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2782 /* If this symbol is being provided by the linker script, and it is
2783 currently defined by a dynamic object, but not by a regular
2784 object, then mark it as undefined so that the generic linker will
2785 force the correct value. */
2787 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2788 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2789 h
->root
.type
= bfd_link_hash_undefined
;
2791 /* If this symbol is not being provided by the linker script, and it is
2792 currently defined by a dynamic object, but not by a regular object,
2793 then clear out any version information because the symbol will not be
2794 associated with the dynamic object any more. */
2796 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2797 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2798 h
->verinfo
.verdef
= NULL
;
2800 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2802 /* When possible, keep the original type of the symbol. */
2803 if (h
->type
== STT_NOTYPE
)
2804 h
->type
= STT_OBJECT
;
2806 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2807 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2809 && h
->dynindx
== -1)
2811 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2814 /* If this is a weak defined symbol, and we know a corresponding
2815 real symbol from the same dynamic object, make sure the real
2816 symbol is also made into a dynamic symbol. */
2817 if (h
->weakdef
!= NULL
2818 && h
->weakdef
->dynindx
== -1)
2820 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2828 /* This structure is used to pass information to
2829 elf_link_assign_sym_version. */
2831 struct elf_assign_sym_version_info
2835 /* General link information. */
2836 struct bfd_link_info
*info
;
2838 struct bfd_elf_version_tree
*verdefs
;
2839 /* Whether we had a failure. */
2843 /* This structure is used to pass information to
2844 elf_link_find_version_dependencies. */
2846 struct elf_find_verdep_info
2850 /* General link information. */
2851 struct bfd_link_info
*info
;
2852 /* The number of dependencies. */
2854 /* Whether we had a failure. */
2858 /* Array used to determine the number of hash table buckets to use
2859 based on the number of symbols there are. If there are fewer than
2860 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2861 fewer than 37 we use 17 buckets, and so forth. We never use more
2862 than 32771 buckets. */
2864 static const size_t elf_buckets
[] =
2866 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2870 /* Compute bucket count for hashing table. We do not use a static set
2871 of possible tables sizes anymore. Instead we determine for all
2872 possible reasonable sizes of the table the outcome (i.e., the
2873 number of collisions etc) and choose the best solution. The
2874 weighting functions are not too simple to allow the table to grow
2875 without bounds. Instead one of the weighting factors is the size.
2876 Therefore the result is always a good payoff between few collisions
2877 (= short chain lengths) and table size. */
2879 compute_bucket_count (info
)
2880 struct bfd_link_info
*info
;
2882 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2883 size_t best_size
= 0;
2884 unsigned long int *hashcodes
;
2885 unsigned long int *hashcodesp
;
2886 unsigned long int i
;
2889 /* Compute the hash values for all exported symbols. At the same
2890 time store the values in an array so that we could use them for
2893 amt
*= sizeof (unsigned long int);
2894 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
2895 if (hashcodes
== NULL
)
2897 hashcodesp
= hashcodes
;
2899 /* Put all hash values in HASHCODES. */
2900 elf_link_hash_traverse (elf_hash_table (info
),
2901 elf_collect_hash_codes
, &hashcodesp
);
2903 /* We have a problem here. The following code to optimize the table
2904 size requires an integer type with more the 32 bits. If
2905 BFD_HOST_U_64_BIT is set we know about such a type. */
2906 #ifdef BFD_HOST_U_64_BIT
2907 if (info
->optimize
== true)
2909 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2912 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2913 unsigned long int *counts
;
2915 /* Possible optimization parameters: if we have NSYMS symbols we say
2916 that the hashing table must at least have NSYMS/4 and at most
2918 minsize
= nsyms
/ 4;
2921 best_size
= maxsize
= nsyms
* 2;
2923 /* Create array where we count the collisions in. We must use bfd_malloc
2924 since the size could be large. */
2926 amt
*= sizeof (unsigned long int);
2927 counts
= (unsigned long int *) bfd_malloc (amt
);
2934 /* Compute the "optimal" size for the hash table. The criteria is a
2935 minimal chain length. The minor criteria is (of course) the size
2937 for (i
= minsize
; i
< maxsize
; ++i
)
2939 /* Walk through the array of hashcodes and count the collisions. */
2940 BFD_HOST_U_64_BIT max
;
2941 unsigned long int j
;
2942 unsigned long int fact
;
2944 memset (counts
, '\0', i
* sizeof (unsigned long int));
2946 /* Determine how often each hash bucket is used. */
2947 for (j
= 0; j
< nsyms
; ++j
)
2948 ++counts
[hashcodes
[j
] % i
];
2950 /* For the weight function we need some information about the
2951 pagesize on the target. This is information need not be 100%
2952 accurate. Since this information is not available (so far) we
2953 define it here to a reasonable default value. If it is crucial
2954 to have a better value some day simply define this value. */
2955 # ifndef BFD_TARGET_PAGESIZE
2956 # define BFD_TARGET_PAGESIZE (4096)
2959 /* We in any case need 2 + NSYMS entries for the size values and
2961 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2964 /* Variant 1: optimize for short chains. We add the squares
2965 of all the chain lengths (which favous many small chain
2966 over a few long chains). */
2967 for (j
= 0; j
< i
; ++j
)
2968 max
+= counts
[j
] * counts
[j
];
2970 /* This adds penalties for the overall size of the table. */
2971 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2974 /* Variant 2: Optimize a lot more for small table. Here we
2975 also add squares of the size but we also add penalties for
2976 empty slots (the +1 term). */
2977 for (j
= 0; j
< i
; ++j
)
2978 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2980 /* The overall size of the table is considered, but not as
2981 strong as in variant 1, where it is squared. */
2982 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2986 /* Compare with current best results. */
2987 if (max
< best_chlen
)
2997 #endif /* defined (BFD_HOST_U_64_BIT) */
2999 /* This is the fallback solution if no 64bit type is available or if we
3000 are not supposed to spend much time on optimizations. We select the
3001 bucket count using a fixed set of numbers. */
3002 for (i
= 0; elf_buckets
[i
] != 0; i
++)
3004 best_size
= elf_buckets
[i
];
3005 if (dynsymcount
< elf_buckets
[i
+ 1])
3010 /* Free the arrays we needed. */
3016 /* Set up the sizes and contents of the ELF dynamic sections. This is
3017 called by the ELF linker emulation before_allocation routine. We
3018 must set the sizes of the sections before the linker sets the
3019 addresses of the various sections. */
3022 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
3024 auxiliary_filters
, info
, sinterpptr
,
3029 const char *filter_shlib
;
3030 const char * const *auxiliary_filters
;
3031 struct bfd_link_info
*info
;
3032 asection
**sinterpptr
;
3033 struct bfd_elf_version_tree
*verdefs
;
3035 bfd_size_type soname_indx
;
3037 struct elf_backend_data
*bed
;
3038 struct elf_assign_sym_version_info asvinfo
;
3042 soname_indx
= (bfd_size_type
) -1;
3044 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
3047 if (! is_elf_hash_table (info
))
3050 /* Any syms created from now on start with -1 in
3051 got.refcount/offset and plt.refcount/offset. */
3052 elf_hash_table (info
)->init_refcount
= -1;
3054 /* The backend may have to create some sections regardless of whether
3055 we're dynamic or not. */
3056 bed
= get_elf_backend_data (output_bfd
);
3057 if (bed
->elf_backend_always_size_sections
3058 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
3061 dynobj
= elf_hash_table (info
)->dynobj
;
3063 /* If there were no dynamic objects in the link, there is nothing to
3068 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
3071 if (elf_hash_table (info
)->dynamic_sections_created
)
3073 struct elf_info_failed eif
;
3074 struct elf_link_hash_entry
*h
;
3077 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
3078 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
3082 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3084 if (soname_indx
== (bfd_size_type
) -1
3085 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SONAME
,
3092 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMBOLIC
,
3095 info
->flags
|= DF_SYMBOLIC
;
3102 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
3104 if (info
->new_dtags
)
3105 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
3106 if (indx
== (bfd_size_type
) -1
3107 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RPATH
, indx
)
3109 && ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RUNPATH
,
3114 if (filter_shlib
!= NULL
)
3118 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3119 filter_shlib
, true);
3120 if (indx
== (bfd_size_type
) -1
3121 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FILTER
, indx
))
3125 if (auxiliary_filters
!= NULL
)
3127 const char * const *p
;
3129 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
3133 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3135 if (indx
== (bfd_size_type
) -1
3136 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_AUXILIARY
,
3143 eif
.verdefs
= verdefs
;
3146 /* If we are supposed to export all symbols into the dynamic symbol
3147 table (this is not the normal case), then do so. */
3148 if (info
->export_dynamic
)
3150 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
3156 /* Attach all the symbols to their version information. */
3157 asvinfo
.output_bfd
= output_bfd
;
3158 asvinfo
.info
= info
;
3159 asvinfo
.verdefs
= verdefs
;
3160 asvinfo
.failed
= false;
3162 elf_link_hash_traverse (elf_hash_table (info
),
3163 elf_link_assign_sym_version
,
3168 /* Find all symbols which were defined in a dynamic object and make
3169 the backend pick a reasonable value for them. */
3170 elf_link_hash_traverse (elf_hash_table (info
),
3171 elf_adjust_dynamic_symbol
,
3176 /* Add some entries to the .dynamic section. We fill in some of the
3177 values later, in elf_bfd_final_link, but we must add the entries
3178 now so that we know the final size of the .dynamic section. */
3180 /* If there are initialization and/or finalization functions to
3181 call then add the corresponding DT_INIT/DT_FINI entries. */
3182 h
= (info
->init_function
3183 ? elf_link_hash_lookup (elf_hash_table (info
),
3184 info
->init_function
, false,
3188 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3189 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3191 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT
, (bfd_vma
) 0))
3194 h
= (info
->fini_function
3195 ? elf_link_hash_lookup (elf_hash_table (info
),
3196 info
->fini_function
, false,
3200 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3201 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3203 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI
, (bfd_vma
) 0))
3207 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
3208 /* If .dynstr is excluded from the link, we don't want any of
3209 these tags. Strictly, we should be checking each section
3210 individually; This quick check covers for the case where
3211 someone does a /DISCARD/ : { *(*) }. */
3212 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
3214 bfd_size_type strsize
;
3216 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3217 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_HASH
, (bfd_vma
) 0)
3218 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRTAB
, (bfd_vma
) 0)
3219 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMTAB
, (bfd_vma
) 0)
3220 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRSZ
, strsize
)
3221 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMENT
,
3222 (bfd_vma
) sizeof (Elf_External_Sym
)))
3227 /* The backend must work out the sizes of all the other dynamic
3229 if (bed
->elf_backend_size_dynamic_sections
3230 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
3233 if (elf_hash_table (info
)->dynamic_sections_created
)
3235 bfd_size_type dynsymcount
;
3237 size_t bucketcount
= 0;
3238 size_t hash_entry_size
;
3239 unsigned int dtagcount
;
3241 /* Set up the version definition section. */
3242 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3243 BFD_ASSERT (s
!= NULL
);
3245 /* We may have created additional version definitions if we are
3246 just linking a regular application. */
3247 verdefs
= asvinfo
.verdefs
;
3249 if (verdefs
== NULL
)
3250 _bfd_strip_section_from_output (info
, s
);
3255 struct bfd_elf_version_tree
*t
;
3257 Elf_Internal_Verdef def
;
3258 Elf_Internal_Verdaux defaux
;
3263 /* Make space for the base version. */
3264 size
+= sizeof (Elf_External_Verdef
);
3265 size
+= sizeof (Elf_External_Verdaux
);
3268 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3270 struct bfd_elf_version_deps
*n
;
3272 size
+= sizeof (Elf_External_Verdef
);
3273 size
+= sizeof (Elf_External_Verdaux
);
3276 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3277 size
+= sizeof (Elf_External_Verdaux
);
3280 s
->_raw_size
= size
;
3281 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3282 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3285 /* Fill in the version definition section. */
3289 def
.vd_version
= VER_DEF_CURRENT
;
3290 def
.vd_flags
= VER_FLG_BASE
;
3293 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3294 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3295 + sizeof (Elf_External_Verdaux
));
3297 if (soname_indx
!= (bfd_size_type
) -1)
3299 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3301 def
.vd_hash
= bfd_elf_hash (soname
);
3302 defaux
.vda_name
= soname_indx
;
3309 name
= basename (output_bfd
->filename
);
3310 def
.vd_hash
= bfd_elf_hash (name
);
3311 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3313 if (indx
== (bfd_size_type
) -1)
3315 defaux
.vda_name
= indx
;
3317 defaux
.vda_next
= 0;
3319 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3320 (Elf_External_Verdef
*) p
);
3321 p
+= sizeof (Elf_External_Verdef
);
3322 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3323 (Elf_External_Verdaux
*) p
);
3324 p
+= sizeof (Elf_External_Verdaux
);
3326 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3329 struct bfd_elf_version_deps
*n
;
3330 struct elf_link_hash_entry
*h
;
3333 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3336 /* Add a symbol representing this version. */
3338 if (! (_bfd_generic_link_add_one_symbol
3339 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
3340 (bfd_vma
) 0, (const char *) NULL
, false,
3341 get_elf_backend_data (dynobj
)->collect
,
3342 (struct bfd_link_hash_entry
**) &h
)))
3344 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
3345 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3346 h
->type
= STT_OBJECT
;
3347 h
->verinfo
.vertree
= t
;
3349 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
3352 def
.vd_version
= VER_DEF_CURRENT
;
3354 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
3355 def
.vd_flags
|= VER_FLG_WEAK
;
3356 def
.vd_ndx
= t
->vernum
+ 1;
3357 def
.vd_cnt
= cdeps
+ 1;
3358 def
.vd_hash
= bfd_elf_hash (t
->name
);
3359 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3360 if (t
->next
!= NULL
)
3361 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3362 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
3366 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3367 (Elf_External_Verdef
*) p
);
3368 p
+= sizeof (Elf_External_Verdef
);
3370 defaux
.vda_name
= h
->dynstr_index
;
3371 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3373 if (t
->deps
== NULL
)
3374 defaux
.vda_next
= 0;
3376 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3377 t
->name_indx
= defaux
.vda_name
;
3379 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3380 (Elf_External_Verdaux
*) p
);
3381 p
+= sizeof (Elf_External_Verdaux
);
3383 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3385 if (n
->version_needed
== NULL
)
3387 /* This can happen if there was an error in the
3389 defaux
.vda_name
= 0;
3393 defaux
.vda_name
= n
->version_needed
->name_indx
;
3394 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3397 if (n
->next
== NULL
)
3398 defaux
.vda_next
= 0;
3400 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3402 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3403 (Elf_External_Verdaux
*) p
);
3404 p
+= sizeof (Elf_External_Verdaux
);
3408 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEF
, (bfd_vma
) 0)
3409 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEFNUM
,
3413 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
3416 if (info
->new_dtags
&& info
->flags
)
3418 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS
, info
->flags
))
3425 info
->flags_1
&= ~ (DF_1_INITFIRST
3428 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS_1
,
3433 /* Work out the size of the version reference section. */
3435 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3436 BFD_ASSERT (s
!= NULL
);
3438 struct elf_find_verdep_info sinfo
;
3440 sinfo
.output_bfd
= output_bfd
;
3442 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
3443 if (sinfo
.vers
== 0)
3445 sinfo
.failed
= false;
3447 elf_link_hash_traverse (elf_hash_table (info
),
3448 elf_link_find_version_dependencies
,
3451 if (elf_tdata (output_bfd
)->verref
== NULL
)
3452 _bfd_strip_section_from_output (info
, s
);
3455 Elf_Internal_Verneed
*t
;
3460 /* Build the version definition section. */
3463 for (t
= elf_tdata (output_bfd
)->verref
;
3467 Elf_Internal_Vernaux
*a
;
3469 size
+= sizeof (Elf_External_Verneed
);
3471 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3472 size
+= sizeof (Elf_External_Vernaux
);
3475 s
->_raw_size
= size
;
3476 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3477 if (s
->contents
== NULL
)
3481 for (t
= elf_tdata (output_bfd
)->verref
;
3486 Elf_Internal_Vernaux
*a
;
3490 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3493 t
->vn_version
= VER_NEED_CURRENT
;
3495 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3496 elf_dt_name (t
->vn_bfd
) != NULL
3497 ? elf_dt_name (t
->vn_bfd
)
3498 : basename (t
->vn_bfd
->filename
),
3500 if (indx
== (bfd_size_type
) -1)
3503 t
->vn_aux
= sizeof (Elf_External_Verneed
);
3504 if (t
->vn_nextref
== NULL
)
3507 t
->vn_next
= (sizeof (Elf_External_Verneed
)
3508 + caux
* sizeof (Elf_External_Vernaux
));
3510 _bfd_elf_swap_verneed_out (output_bfd
, t
,
3511 (Elf_External_Verneed
*) p
);
3512 p
+= sizeof (Elf_External_Verneed
);
3514 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3516 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
3517 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3518 a
->vna_nodename
, false);
3519 if (indx
== (bfd_size_type
) -1)
3522 if (a
->vna_nextptr
== NULL
)
3525 a
->vna_next
= sizeof (Elf_External_Vernaux
);
3527 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
3528 (Elf_External_Vernaux
*) p
);
3529 p
+= sizeof (Elf_External_Vernaux
);
3533 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEED
,
3535 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEEDNUM
,
3539 elf_tdata (output_bfd
)->cverrefs
= crefs
;
3543 /* Assign dynsym indicies. In a shared library we generate a
3544 section symbol for each output section, which come first.
3545 Next come all of the back-end allocated local dynamic syms,
3546 followed by the rest of the global symbols. */
3548 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3550 /* Work out the size of the symbol version section. */
3551 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3552 BFD_ASSERT (s
!= NULL
);
3553 if (dynsymcount
== 0
3554 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
3556 _bfd_strip_section_from_output (info
, s
);
3557 /* The DYNSYMCOUNT might have changed if we were going to
3558 output a dynamic symbol table entry for S. */
3559 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3563 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
3564 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3565 if (s
->contents
== NULL
)
3568 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERSYM
, (bfd_vma
) 0))
3572 /* Set the size of the .dynsym and .hash sections. We counted
3573 the number of dynamic symbols in elf_link_add_object_symbols.
3574 We will build the contents of .dynsym and .hash when we build
3575 the final symbol table, because until then we do not know the
3576 correct value to give the symbols. We built the .dynstr
3577 section as we went along in elf_link_add_object_symbols. */
3578 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
3579 BFD_ASSERT (s
!= NULL
);
3580 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
3581 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3582 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3585 if (dynsymcount
!= 0)
3587 Elf_Internal_Sym isym
;
3589 /* The first entry in .dynsym is a dummy symbol. */
3596 elf_swap_symbol_out (output_bfd
, &isym
, (PTR
) s
->contents
, (PTR
) 0);
3599 /* Compute the size of the hashing table. As a side effect this
3600 computes the hash values for all the names we export. */
3601 bucketcount
= compute_bucket_count (info
);
3603 s
= bfd_get_section_by_name (dynobj
, ".hash");
3604 BFD_ASSERT (s
!= NULL
);
3605 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
3606 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
3607 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3608 if (s
->contents
== NULL
)
3610 memset (s
->contents
, 0, (size_t) s
->_raw_size
);
3612 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) bucketcount
,
3614 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) dynsymcount
,
3615 s
->contents
+ hash_entry_size
);
3617 elf_hash_table (info
)->bucketcount
= bucketcount
;
3619 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
3620 BFD_ASSERT (s
!= NULL
);
3622 elf_finalize_dynstr (output_bfd
, info
);
3624 s
->_raw_size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3626 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
3627 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NULL
, (bfd_vma
) 0))
3634 /* This function is used to adjust offsets into .dynstr for
3635 dynamic symbols. This is called via elf_link_hash_traverse. */
3637 static boolean elf_adjust_dynstr_offsets
3638 PARAMS ((struct elf_link_hash_entry
*, PTR
));
3641 elf_adjust_dynstr_offsets (h
, data
)
3642 struct elf_link_hash_entry
*h
;
3645 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3647 if (h
->dynindx
!= -1)
3648 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3652 /* Assign string offsets in .dynstr, update all structures referencing
3656 elf_finalize_dynstr (output_bfd
, info
)
3658 struct bfd_link_info
*info
;
3660 struct elf_link_local_dynamic_entry
*entry
;
3661 struct elf_strtab_hash
*dynstr
= elf_hash_table (info
)->dynstr
;
3662 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
3665 Elf_External_Dyn
*dyncon
, *dynconend
;
3667 _bfd_elf_strtab_finalize (dynstr
);
3668 size
= _bfd_elf_strtab_size (dynstr
);
3670 /* Update all .dynamic entries referencing .dynstr strings. */
3671 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3672 BFD_ASSERT (sdyn
!= NULL
);
3674 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
3675 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
3677 for (; dyncon
< dynconend
; dyncon
++)
3679 Elf_Internal_Dyn dyn
;
3681 elf_swap_dyn_in (dynobj
, dyncon
, & dyn
);
3685 dyn
.d_un
.d_val
= size
;
3686 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3694 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3695 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3702 /* Now update local dynamic symbols. */
3703 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
3704 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3705 entry
->isym
.st_name
);
3707 /* And the rest of dynamic symbols. */
3708 elf_link_hash_traverse (elf_hash_table (info
),
3709 elf_adjust_dynstr_offsets
, dynstr
);
3711 /* Adjust version definitions. */
3712 if (elf_tdata (output_bfd
)->cverdefs
)
3717 Elf_Internal_Verdef def
;
3718 Elf_Internal_Verdaux defaux
;
3720 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3721 p
= (bfd_byte
*) s
->contents
;
3724 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3726 p
+= sizeof (Elf_External_Verdef
);
3727 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3729 _bfd_elf_swap_verdaux_in (output_bfd
,
3730 (Elf_External_Verdaux
*) p
, &defaux
);
3731 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3733 _bfd_elf_swap_verdaux_out (output_bfd
,
3734 &defaux
, (Elf_External_Verdaux
*) p
);
3735 p
+= sizeof (Elf_External_Verdaux
);
3738 while (def
.vd_next
);
3741 /* Adjust version references. */
3742 if (elf_tdata (output_bfd
)->verref
)
3747 Elf_Internal_Verneed need
;
3748 Elf_Internal_Vernaux needaux
;
3750 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3751 p
= (bfd_byte
*) s
->contents
;
3754 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3756 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3757 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3758 (Elf_External_Verneed
*) p
);
3759 p
+= sizeof (Elf_External_Verneed
);
3760 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3762 _bfd_elf_swap_vernaux_in (output_bfd
,
3763 (Elf_External_Vernaux
*) p
, &needaux
);
3764 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3766 _bfd_elf_swap_vernaux_out (output_bfd
,
3768 (Elf_External_Vernaux
*) p
);
3769 p
+= sizeof (Elf_External_Vernaux
);
3772 while (need
.vn_next
);
3778 /* Fix up the flags for a symbol. This handles various cases which
3779 can only be fixed after all the input files are seen. This is
3780 currently called by both adjust_dynamic_symbol and
3781 assign_sym_version, which is unnecessary but perhaps more robust in
3782 the face of future changes. */
3785 elf_fix_symbol_flags (h
, eif
)
3786 struct elf_link_hash_entry
*h
;
3787 struct elf_info_failed
*eif
;
3789 /* If this symbol was mentioned in a non-ELF file, try to set
3790 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3791 permit a non-ELF file to correctly refer to a symbol defined in
3792 an ELF dynamic object. */
3793 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
3795 while (h
->root
.type
== bfd_link_hash_indirect
)
3796 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3798 if (h
->root
.type
!= bfd_link_hash_defined
3799 && h
->root
.type
!= bfd_link_hash_defweak
)
3800 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3801 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3804 if (h
->root
.u
.def
.section
->owner
!= NULL
3805 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3806 == bfd_target_elf_flavour
))
3807 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3808 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3810 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3813 if (h
->dynindx
== -1
3814 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3815 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
3817 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3826 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3827 was first seen in a non-ELF file. Fortunately, if the symbol
3828 was first seen in an ELF file, we're probably OK unless the
3829 symbol was defined in a non-ELF file. Catch that case here.
3830 FIXME: We're still in trouble if the symbol was first seen in
3831 a dynamic object, and then later in a non-ELF regular object. */
3832 if ((h
->root
.type
== bfd_link_hash_defined
3833 || h
->root
.type
== bfd_link_hash_defweak
)
3834 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3835 && (h
->root
.u
.def
.section
->owner
!= NULL
3836 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3837 != bfd_target_elf_flavour
)
3838 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3839 && (h
->elf_link_hash_flags
3840 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3841 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3844 /* If this is a final link, and the symbol was defined as a common
3845 symbol in a regular object file, and there was no definition in
3846 any dynamic object, then the linker will have allocated space for
3847 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3848 flag will not have been set. */
3849 if (h
->root
.type
== bfd_link_hash_defined
3850 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3851 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3852 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3853 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3854 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3856 /* If -Bsymbolic was used (which means to bind references to global
3857 symbols to the definition within the shared object), and this
3858 symbol was defined in a regular object, then it actually doesn't
3859 need a PLT entry, and we can accomplish that by forcing it local.
3860 Likewise, if the symbol has hidden or internal visibility.
3861 FIXME: It might be that we also do not need a PLT for other
3862 non-hidden visibilities, but we would have to tell that to the
3863 backend specifically; we can't just clear PLT-related data here. */
3864 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3865 && eif
->info
->shared
3866 && is_elf_hash_table (eif
->info
)
3867 && (eif
->info
->symbolic
3868 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3869 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3870 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3872 struct elf_backend_data
*bed
;
3874 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3875 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3876 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3878 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3879 _bfd_elf_strtab_delref (elf_hash_table (eif
->info
)->dynstr
,
3882 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
);
3885 /* If this is a weak defined symbol in a dynamic object, and we know
3886 the real definition in the dynamic object, copy interesting flags
3887 over to the real definition. */
3888 if (h
->weakdef
!= NULL
)
3890 struct elf_link_hash_entry
*weakdef
;
3892 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3893 || h
->root
.type
== bfd_link_hash_defweak
);
3894 weakdef
= h
->weakdef
;
3895 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3896 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3897 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3899 /* If the real definition is defined by a regular object file,
3900 don't do anything special. See the longer description in
3901 elf_adjust_dynamic_symbol, below. */
3902 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3906 struct elf_backend_data
*bed
;
3908 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3909 (*bed
->elf_backend_copy_indirect_symbol
) (weakdef
, h
);
3916 /* Make the backend pick a good value for a dynamic symbol. This is
3917 called via elf_link_hash_traverse, and also calls itself
3921 elf_adjust_dynamic_symbol (h
, data
)
3922 struct elf_link_hash_entry
*h
;
3925 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3927 struct elf_backend_data
*bed
;
3929 /* Ignore indirect symbols. These are added by the versioning code. */
3930 if (h
->root
.type
== bfd_link_hash_indirect
)
3933 if (! is_elf_hash_table (eif
->info
))
3936 /* Fix the symbol flags. */
3937 if (! elf_fix_symbol_flags (h
, eif
))
3940 /* If this symbol does not require a PLT entry, and it is not
3941 defined by a dynamic object, or is not referenced by a regular
3942 object, ignore it. We do have to handle a weak defined symbol,
3943 even if no regular object refers to it, if we decided to add it
3944 to the dynamic symbol table. FIXME: Do we normally need to worry
3945 about symbols which are defined by one dynamic object and
3946 referenced by another one? */
3947 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3948 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3949 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3950 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3951 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3953 h
->plt
.offset
= (bfd_vma
) -1;
3957 /* If we've already adjusted this symbol, don't do it again. This
3958 can happen via a recursive call. */
3959 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3962 /* Don't look at this symbol again. Note that we must set this
3963 after checking the above conditions, because we may look at a
3964 symbol once, decide not to do anything, and then get called
3965 recursively later after REF_REGULAR is set below. */
3966 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3968 /* If this is a weak definition, and we know a real definition, and
3969 the real symbol is not itself defined by a regular object file,
3970 then get a good value for the real definition. We handle the
3971 real symbol first, for the convenience of the backend routine.
3973 Note that there is a confusing case here. If the real definition
3974 is defined by a regular object file, we don't get the real symbol
3975 from the dynamic object, but we do get the weak symbol. If the
3976 processor backend uses a COPY reloc, then if some routine in the
3977 dynamic object changes the real symbol, we will not see that
3978 change in the corresponding weak symbol. This is the way other
3979 ELF linkers work as well, and seems to be a result of the shared
3982 I will clarify this issue. Most SVR4 shared libraries define the
3983 variable _timezone and define timezone as a weak synonym. The
3984 tzset call changes _timezone. If you write
3985 extern int timezone;
3987 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3988 you might expect that, since timezone is a synonym for _timezone,
3989 the same number will print both times. However, if the processor
3990 backend uses a COPY reloc, then actually timezone will be copied
3991 into your process image, and, since you define _timezone
3992 yourself, _timezone will not. Thus timezone and _timezone will
3993 wind up at different memory locations. The tzset call will set
3994 _timezone, leaving timezone unchanged. */
3996 if (h
->weakdef
!= NULL
)
3998 /* If we get to this point, we know there is an implicit
3999 reference by a regular object file via the weak symbol H.
4000 FIXME: Is this really true? What if the traversal finds
4001 H->WEAKDEF before it finds H? */
4002 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
4004 if (! elf_adjust_dynamic_symbol (h
->weakdef
, (PTR
) eif
))
4008 /* If a symbol has no type and no size and does not require a PLT
4009 entry, then we are probably about to do the wrong thing here: we
4010 are probably going to create a COPY reloc for an empty object.
4011 This case can arise when a shared object is built with assembly
4012 code, and the assembly code fails to set the symbol type. */
4014 && h
->type
== STT_NOTYPE
4015 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
4016 (*_bfd_error_handler
)
4017 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4018 h
->root
.root
.string
);
4020 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
4021 bed
= get_elf_backend_data (dynobj
);
4022 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
4031 /* This routine is used to export all defined symbols into the dynamic
4032 symbol table. It is called via elf_link_hash_traverse. */
4035 elf_export_symbol (h
, data
)
4036 struct elf_link_hash_entry
*h
;
4039 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
4041 /* Ignore indirect symbols. These are added by the versioning code. */
4042 if (h
->root
.type
== bfd_link_hash_indirect
)
4045 if (h
->dynindx
== -1
4046 && (h
->elf_link_hash_flags
4047 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
4049 struct bfd_elf_version_tree
*t
;
4050 struct bfd_elf_version_expr
*d
;
4052 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
4054 if (t
->globals
!= NULL
)
4056 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4058 if ((*d
->match
) (d
, h
->root
.root
.string
))
4063 if (t
->locals
!= NULL
)
4065 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4067 if ((*d
->match
) (d
, h
->root
.root
.string
))
4076 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
4087 /* Look through the symbols which are defined in other shared
4088 libraries and referenced here. Update the list of version
4089 dependencies. This will be put into the .gnu.version_r section.
4090 This function is called via elf_link_hash_traverse. */
4093 elf_link_find_version_dependencies (h
, data
)
4094 struct elf_link_hash_entry
*h
;
4097 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
4098 Elf_Internal_Verneed
*t
;
4099 Elf_Internal_Vernaux
*a
;
4102 /* We only care about symbols defined in shared objects with version
4104 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
4105 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
4107 || h
->verinfo
.verdef
== NULL
)
4110 /* See if we already know about this version. */
4111 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
4113 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
4116 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4117 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
4123 /* This is a new version. Add it to tree we are building. */
4128 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4131 rinfo
->failed
= true;
4135 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
4136 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
4137 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
4141 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4143 /* Note that we are copying a string pointer here, and testing it
4144 above. If bfd_elf_string_from_elf_section is ever changed to
4145 discard the string data when low in memory, this will have to be
4147 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
4149 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
4150 a
->vna_nextptr
= t
->vn_auxptr
;
4152 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
4155 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
4162 /* Figure out appropriate versions for all the symbols. We may not
4163 have the version number script until we have read all of the input
4164 files, so until that point we don't know which symbols should be
4165 local. This function is called via elf_link_hash_traverse. */
4168 elf_link_assign_sym_version (h
, data
)
4169 struct elf_link_hash_entry
*h
;
4172 struct elf_assign_sym_version_info
*sinfo
;
4173 struct bfd_link_info
*info
;
4174 struct elf_backend_data
*bed
;
4175 struct elf_info_failed eif
;
4179 sinfo
= (struct elf_assign_sym_version_info
*) data
;
4182 /* Fix the symbol flags. */
4185 if (! elf_fix_symbol_flags (h
, &eif
))
4188 sinfo
->failed
= true;
4192 /* We only need version numbers for symbols defined in regular
4194 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4197 bed
= get_elf_backend_data (sinfo
->output_bfd
);
4198 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4199 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4201 struct bfd_elf_version_tree
*t
;
4206 /* There are two consecutive ELF_VER_CHR characters if this is
4207 not a hidden symbol. */
4209 if (*p
== ELF_VER_CHR
)
4215 /* If there is no version string, we can just return out. */
4219 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4223 /* Look for the version. If we find it, it is no longer weak. */
4224 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4226 if (strcmp (t
->name
, p
) == 0)
4230 struct bfd_elf_version_expr
*d
;
4232 len
= p
- h
->root
.root
.string
;
4233 alc
= bfd_alloc (sinfo
->output_bfd
, (bfd_size_type
) len
);
4236 strncpy (alc
, h
->root
.root
.string
, len
- 1);
4237 alc
[len
- 1] = '\0';
4238 if (alc
[len
- 2] == ELF_VER_CHR
)
4239 alc
[len
- 2] = '\0';
4241 h
->verinfo
.vertree
= t
;
4245 if (t
->globals
!= NULL
)
4247 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4248 if ((*d
->match
) (d
, alc
))
4252 /* See if there is anything to force this symbol to
4254 if (d
== NULL
&& t
->locals
!= NULL
)
4256 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4258 if ((*d
->match
) (d
, alc
))
4260 if (h
->dynindx
!= -1
4262 && ! info
->export_dynamic
)
4264 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4265 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4266 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4275 bfd_release (sinfo
->output_bfd
, alc
);
4280 /* If we are building an application, we need to create a
4281 version node for this version. */
4282 if (t
== NULL
&& ! info
->shared
)
4284 struct bfd_elf_version_tree
**pp
;
4287 /* If we aren't going to export this symbol, we don't need
4288 to worry about it. */
4289 if (h
->dynindx
== -1)
4293 t
= ((struct bfd_elf_version_tree
*)
4294 bfd_alloc (sinfo
->output_bfd
, amt
));
4297 sinfo
->failed
= true;
4306 t
->name_indx
= (unsigned int) -1;
4310 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
4312 t
->vernum
= version_index
;
4316 h
->verinfo
.vertree
= t
;
4320 /* We could not find the version for a symbol when
4321 generating a shared archive. Return an error. */
4322 (*_bfd_error_handler
)
4323 (_("%s: undefined versioned symbol name %s"),
4324 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
4325 bfd_set_error (bfd_error_bad_value
);
4326 sinfo
->failed
= true;
4331 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4334 /* If we don't have a version for this symbol, see if we can find
4336 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
4338 struct bfd_elf_version_tree
*t
;
4339 struct bfd_elf_version_tree
*deflt
;
4340 struct bfd_elf_version_expr
*d
;
4342 /* See if can find what version this symbol is in. If the
4343 symbol is supposed to be local, then don't actually register
4346 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4348 if (t
->globals
!= NULL
)
4350 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4352 if ((*d
->match
) (d
, h
->root
.root
.string
))
4354 h
->verinfo
.vertree
= t
;
4363 if (t
->locals
!= NULL
)
4365 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4367 if (d
->pattern
[0] == '*' && d
->pattern
[1] == '\0')
4369 else if ((*d
->match
) (d
, h
->root
.root
.string
))
4371 h
->verinfo
.vertree
= t
;
4372 if (h
->dynindx
!= -1
4374 && ! info
->export_dynamic
)
4376 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4377 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4378 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4390 if (deflt
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4392 h
->verinfo
.vertree
= deflt
;
4393 if (h
->dynindx
!= -1
4395 && ! info
->export_dynamic
)
4397 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4398 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4399 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4408 /* Final phase of ELF linker. */
4410 /* A structure we use to avoid passing large numbers of arguments. */
4412 struct elf_final_link_info
4414 /* General link information. */
4415 struct bfd_link_info
*info
;
4418 /* Symbol string table. */
4419 struct bfd_strtab_hash
*symstrtab
;
4420 /* .dynsym section. */
4421 asection
*dynsym_sec
;
4422 /* .hash section. */
4424 /* symbol version section (.gnu.version). */
4425 asection
*symver_sec
;
4426 /* Buffer large enough to hold contents of any section. */
4428 /* Buffer large enough to hold external relocs of any section. */
4429 PTR external_relocs
;
4430 /* Buffer large enough to hold internal relocs of any section. */
4431 Elf_Internal_Rela
*internal_relocs
;
4432 /* Buffer large enough to hold external local symbols of any input
4434 Elf_External_Sym
*external_syms
;
4435 /* And a buffer for symbol section indices. */
4436 Elf_External_Sym_Shndx
*locsym_shndx
;
4437 /* Buffer large enough to hold internal local symbols of any input
4439 Elf_Internal_Sym
*internal_syms
;
4440 /* Array large enough to hold a symbol index for each local symbol
4441 of any input BFD. */
4443 /* Array large enough to hold a section pointer for each local
4444 symbol of any input BFD. */
4445 asection
**sections
;
4446 /* Buffer to hold swapped out symbols. */
4447 Elf_External_Sym
*symbuf
;
4448 /* And one for symbol section indices. */
4449 Elf_External_Sym_Shndx
*symshndxbuf
;
4450 /* Number of swapped out symbols in buffer. */
4451 size_t symbuf_count
;
4452 /* Number of symbols which fit in symbuf. */
4456 static boolean elf_link_output_sym
4457 PARAMS ((struct elf_final_link_info
*, const char *,
4458 Elf_Internal_Sym
*, asection
*));
4459 static boolean elf_link_flush_output_syms
4460 PARAMS ((struct elf_final_link_info
*));
4461 static boolean elf_link_output_extsym
4462 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4463 static boolean elf_link_sec_merge_syms
4464 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4465 static boolean elf_link_input_bfd
4466 PARAMS ((struct elf_final_link_info
*, bfd
*));
4467 static boolean elf_reloc_link_order
4468 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
4469 struct bfd_link_order
*));
4471 /* This struct is used to pass information to elf_link_output_extsym. */
4473 struct elf_outext_info
4477 struct elf_final_link_info
*finfo
;
4480 /* Compute the size of, and allocate space for, REL_HDR which is the
4481 section header for a section containing relocations for O. */
4484 elf_link_size_reloc_section (abfd
, rel_hdr
, o
)
4486 Elf_Internal_Shdr
*rel_hdr
;
4489 bfd_size_type reloc_count
;
4490 bfd_size_type num_rel_hashes
;
4492 /* Figure out how many relocations there will be. */
4493 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
4494 reloc_count
= elf_section_data (o
)->rel_count
;
4496 reloc_count
= elf_section_data (o
)->rel_count2
;
4498 num_rel_hashes
= o
->reloc_count
;
4499 if (num_rel_hashes
< reloc_count
)
4500 num_rel_hashes
= reloc_count
;
4502 /* That allows us to calculate the size of the section. */
4503 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
4505 /* The contents field must last into write_object_contents, so we
4506 allocate it with bfd_alloc rather than malloc. Also since we
4507 cannot be sure that the contents will actually be filled in,
4508 we zero the allocated space. */
4509 rel_hdr
->contents
= (PTR
) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
4510 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
4513 /* We only allocate one set of hash entries, so we only do it the
4514 first time we are called. */
4515 if (elf_section_data (o
)->rel_hashes
== NULL
4518 struct elf_link_hash_entry
**p
;
4520 p
= ((struct elf_link_hash_entry
**)
4521 bfd_zmalloc (num_rel_hashes
4522 * sizeof (struct elf_link_hash_entry
*)));
4526 elf_section_data (o
)->rel_hashes
= p
;
4532 /* When performing a relocateable link, the input relocations are
4533 preserved. But, if they reference global symbols, the indices
4534 referenced must be updated. Update all the relocations in
4535 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4538 elf_link_adjust_relocs (abfd
, rel_hdr
, count
, rel_hash
)
4540 Elf_Internal_Shdr
*rel_hdr
;
4542 struct elf_link_hash_entry
**rel_hash
;
4545 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4546 Elf_Internal_Rel
*irel
;
4547 Elf_Internal_Rela
*irela
;
4548 bfd_size_type amt
= sizeof (Elf_Internal_Rel
) * bed
->s
->int_rels_per_ext_rel
;
4550 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
4553 (*_bfd_error_handler
) (_("Error: out of memory"));
4557 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
4558 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
4561 (*_bfd_error_handler
) (_("Error: out of memory"));
4565 for (i
= 0; i
< count
; i
++, rel_hash
++)
4567 if (*rel_hash
== NULL
)
4570 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4572 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4574 Elf_External_Rel
*erel
;
4577 erel
= (Elf_External_Rel
*) rel_hdr
->contents
+ i
;
4578 if (bed
->s
->swap_reloc_in
)
4579 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
4581 elf_swap_reloc_in (abfd
, erel
, irel
);
4583 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4584 irel
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4585 ELF_R_TYPE (irel
[j
].r_info
));
4587 if (bed
->s
->swap_reloc_out
)
4588 (*bed
->s
->swap_reloc_out
) (abfd
, irel
, (bfd_byte
*) erel
);
4590 elf_swap_reloc_out (abfd
, irel
, erel
);
4594 Elf_External_Rela
*erela
;
4597 BFD_ASSERT (rel_hdr
->sh_entsize
4598 == sizeof (Elf_External_Rela
));
4600 erela
= (Elf_External_Rela
*) rel_hdr
->contents
+ i
;
4601 if (bed
->s
->swap_reloca_in
)
4602 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
4604 elf_swap_reloca_in (abfd
, erela
, irela
);
4606 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4607 irela
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4608 ELF_R_TYPE (irela
[j
].r_info
));
4610 if (bed
->s
->swap_reloca_out
)
4611 (*bed
->s
->swap_reloca_out
) (abfd
, irela
, (bfd_byte
*) erela
);
4613 elf_swap_reloca_out (abfd
, irela
, erela
);
4621 struct elf_link_sort_rela
{
4623 enum elf_reloc_type_class type
;
4625 Elf_Internal_Rel rel
;
4626 Elf_Internal_Rela rela
;
4631 elf_link_sort_cmp1 (A
, B
)
4635 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4636 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4637 int relativea
, relativeb
;
4639 relativea
= a
->type
== reloc_class_relative
;
4640 relativeb
= b
->type
== reloc_class_relative
;
4642 if (relativea
< relativeb
)
4644 if (relativea
> relativeb
)
4646 if (ELF_R_SYM (a
->u
.rel
.r_info
) < ELF_R_SYM (b
->u
.rel
.r_info
))
4648 if (ELF_R_SYM (a
->u
.rel
.r_info
) > ELF_R_SYM (b
->u
.rel
.r_info
))
4650 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4652 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4658 elf_link_sort_cmp2 (A
, B
)
4662 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4663 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4666 if (a
->offset
< b
->offset
)
4668 if (a
->offset
> b
->offset
)
4670 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
4671 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
4676 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4678 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4684 elf_link_sort_relocs (abfd
, info
, psec
)
4686 struct bfd_link_info
*info
;
4689 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4690 asection
*reldyn
, *o
;
4691 boolean rel
= false;
4692 bfd_size_type count
, size
;
4694 struct elf_link_sort_rela
*rela
;
4695 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4697 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
4698 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4700 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
4701 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4704 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rel
);
4707 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rela
);
4710 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4711 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4712 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4713 && o
->output_section
== reldyn
)
4714 size
+= o
->_raw_size
;
4716 if (size
!= reldyn
->_raw_size
)
4719 rela
= (struct elf_link_sort_rela
*) bfd_zmalloc (sizeof (*rela
) * count
);
4722 (*info
->callbacks
->warning
)
4723 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0,
4728 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4729 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4730 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4731 && o
->output_section
== reldyn
)
4735 Elf_External_Rel
*erel
, *erelend
;
4736 struct elf_link_sort_rela
*s
;
4738 erel
= (Elf_External_Rel
*) o
->contents
;
4739 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4740 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4741 for (; erel
< erelend
; erel
++, s
++)
4743 if (bed
->s
->swap_reloc_in
)
4744 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, &s
->u
.rel
);
4746 elf_swap_reloc_in (abfd
, erel
, &s
->u
.rel
);
4748 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4753 Elf_External_Rela
*erela
, *erelaend
;
4754 struct elf_link_sort_rela
*s
;
4756 erela
= (Elf_External_Rela
*) o
->contents
;
4757 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4758 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4759 for (; erela
< erelaend
; erela
++, s
++)
4761 if (bed
->s
->swap_reloca_in
)
4762 (*bed
->s
->swap_reloca_in
) (dynobj
, (bfd_byte
*) erela
,
4765 elf_swap_reloca_in (dynobj
, erela
, &s
->u
.rela
);
4767 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4772 qsort (rela
, (size_t) count
, sizeof (*rela
), elf_link_sort_cmp1
);
4773 for (ret
= 0; ret
< count
&& rela
[ret
].type
== reloc_class_relative
; ret
++)
4775 for (i
= ret
, j
= ret
; i
< count
; i
++)
4777 if (ELF_R_SYM (rela
[i
].u
.rel
.r_info
) != ELF_R_SYM (rela
[j
].u
.rel
.r_info
))
4779 rela
[i
].offset
= rela
[j
].u
.rel
.r_offset
;
4781 qsort (rela
+ ret
, (size_t) count
- ret
, sizeof (*rela
), elf_link_sort_cmp2
);
4783 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4784 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4785 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4786 && o
->output_section
== reldyn
)
4790 Elf_External_Rel
*erel
, *erelend
;
4791 struct elf_link_sort_rela
*s
;
4793 erel
= (Elf_External_Rel
*) o
->contents
;
4794 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4795 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4796 for (; erel
< erelend
; erel
++, s
++)
4798 if (bed
->s
->swap_reloc_out
)
4799 (*bed
->s
->swap_reloc_out
) (abfd
, &s
->u
.rel
,
4802 elf_swap_reloc_out (abfd
, &s
->u
.rel
, erel
);
4807 Elf_External_Rela
*erela
, *erelaend
;
4808 struct elf_link_sort_rela
*s
;
4810 erela
= (Elf_External_Rela
*) o
->contents
;
4811 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4812 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4813 for (; erela
< erelaend
; erela
++, s
++)
4815 if (bed
->s
->swap_reloca_out
)
4816 (*bed
->s
->swap_reloca_out
) (dynobj
, &s
->u
.rela
,
4817 (bfd_byte
*) erela
);
4819 elf_swap_reloca_out (dynobj
, &s
->u
.rela
, erela
);
4829 /* Do the final step of an ELF link. */
4832 elf_bfd_final_link (abfd
, info
)
4834 struct bfd_link_info
*info
;
4837 boolean emit_relocs
;
4839 struct elf_final_link_info finfo
;
4840 register asection
*o
;
4841 register struct bfd_link_order
*p
;
4843 bfd_size_type max_contents_size
;
4844 bfd_size_type max_external_reloc_size
;
4845 bfd_size_type max_internal_reloc_count
;
4846 bfd_size_type max_sym_count
;
4847 bfd_size_type max_sym_shndx_count
;
4849 Elf_Internal_Sym elfsym
;
4851 Elf_Internal_Shdr
*symtab_hdr
;
4852 Elf_Internal_Shdr
*symstrtab_hdr
;
4853 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4854 struct elf_outext_info eoinfo
;
4856 size_t relativecount
= 0;
4857 asection
*reldyn
= 0;
4860 if (! is_elf_hash_table (info
))
4864 abfd
->flags
|= DYNAMIC
;
4866 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
4867 dynobj
= elf_hash_table (info
)->dynobj
;
4869 emit_relocs
= (info
->relocateable
4870 || info
->emitrelocations
4871 || bed
->elf_backend_emit_relocs
);
4874 finfo
.output_bfd
= abfd
;
4875 finfo
.symstrtab
= elf_stringtab_init ();
4876 if (finfo
.symstrtab
== NULL
)
4881 finfo
.dynsym_sec
= NULL
;
4882 finfo
.hash_sec
= NULL
;
4883 finfo
.symver_sec
= NULL
;
4887 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
4888 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
4889 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
4890 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
4891 /* Note that it is OK if symver_sec is NULL. */
4894 finfo
.contents
= NULL
;
4895 finfo
.external_relocs
= NULL
;
4896 finfo
.internal_relocs
= NULL
;
4897 finfo
.external_syms
= NULL
;
4898 finfo
.locsym_shndx
= NULL
;
4899 finfo
.internal_syms
= NULL
;
4900 finfo
.indices
= NULL
;
4901 finfo
.sections
= NULL
;
4902 finfo
.symbuf
= NULL
;
4903 finfo
.symshndxbuf
= NULL
;
4904 finfo
.symbuf_count
= 0;
4906 /* Count up the number of relocations we will output for each output
4907 section, so that we know the sizes of the reloc sections. We
4908 also figure out some maximum sizes. */
4909 max_contents_size
= 0;
4910 max_external_reloc_size
= 0;
4911 max_internal_reloc_count
= 0;
4913 max_sym_shndx_count
= 0;
4915 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4919 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4921 if (p
->type
== bfd_section_reloc_link_order
4922 || p
->type
== bfd_symbol_reloc_link_order
)
4924 else if (p
->type
== bfd_indirect_link_order
)
4928 sec
= p
->u
.indirect
.section
;
4930 /* Mark all sections which are to be included in the
4931 link. This will normally be every section. We need
4932 to do this so that we can identify any sections which
4933 the linker has decided to not include. */
4934 sec
->linker_mark
= true;
4936 if (sec
->flags
& SEC_MERGE
)
4939 if (info
->relocateable
|| info
->emitrelocations
)
4940 o
->reloc_count
+= sec
->reloc_count
;
4941 else if (bed
->elf_backend_count_relocs
)
4943 Elf_Internal_Rela
* relocs
;
4945 relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4946 (abfd
, sec
, (PTR
) NULL
,
4947 (Elf_Internal_Rela
*) NULL
, info
->keep_memory
));
4949 o
->reloc_count
+= (*bed
->elf_backend_count_relocs
)
4952 if (!info
->keep_memory
)
4956 if (sec
->_raw_size
> max_contents_size
)
4957 max_contents_size
= sec
->_raw_size
;
4958 if (sec
->_cooked_size
> max_contents_size
)
4959 max_contents_size
= sec
->_cooked_size
;
4961 /* We are interested in just local symbols, not all
4963 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
4964 && (sec
->owner
->flags
& DYNAMIC
) == 0)
4968 if (elf_bad_symtab (sec
->owner
))
4969 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
4970 / sizeof (Elf_External_Sym
));
4972 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
4974 if (sym_count
> max_sym_count
)
4975 max_sym_count
= sym_count
;
4977 if (sym_count
> max_sym_shndx_count
4978 && elf_symtab_shndx (sec
->owner
) != 0)
4979 max_sym_shndx_count
= sym_count
;
4981 if ((sec
->flags
& SEC_RELOC
) != 0)
4985 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
4986 if (ext_size
> max_external_reloc_size
)
4987 max_external_reloc_size
= ext_size
;
4988 if (sec
->reloc_count
> max_internal_reloc_count
)
4989 max_internal_reloc_count
= sec
->reloc_count
;
4995 if (o
->reloc_count
> 0)
4996 o
->flags
|= SEC_RELOC
;
4999 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5000 set it (this is probably a bug) and if it is set
5001 assign_section_numbers will create a reloc section. */
5002 o
->flags
&=~ SEC_RELOC
;
5005 /* If the SEC_ALLOC flag is not set, force the section VMA to
5006 zero. This is done in elf_fake_sections as well, but forcing
5007 the VMA to 0 here will ensure that relocs against these
5008 sections are handled correctly. */
5009 if ((o
->flags
& SEC_ALLOC
) == 0
5010 && ! o
->user_set_vma
)
5014 if (! info
->relocateable
&& merged
)
5015 elf_link_hash_traverse (elf_hash_table (info
),
5016 elf_link_sec_merge_syms
, (PTR
) abfd
);
5018 /* Figure out the file positions for everything but the symbol table
5019 and the relocs. We set symcount to force assign_section_numbers
5020 to create a symbol table. */
5021 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
5022 BFD_ASSERT (! abfd
->output_has_begun
);
5023 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
5026 /* Figure out how many relocations we will have in each section.
5027 Just using RELOC_COUNT isn't good enough since that doesn't
5028 maintain a separate value for REL vs. RELA relocations. */
5030 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5031 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5033 asection
*output_section
;
5035 if (! o
->linker_mark
)
5037 /* This section was omitted from the link. */
5041 output_section
= o
->output_section
;
5043 if (output_section
!= NULL
5044 && (o
->flags
& SEC_RELOC
) != 0)
5046 struct bfd_elf_section_data
*esdi
5047 = elf_section_data (o
);
5048 struct bfd_elf_section_data
*esdo
5049 = elf_section_data (output_section
);
5050 unsigned int *rel_count
;
5051 unsigned int *rel_count2
;
5053 /* We must be careful to add the relocation froms the
5054 input section to the right output count. */
5055 if (esdi
->rel_hdr
.sh_entsize
== esdo
->rel_hdr
.sh_entsize
)
5057 rel_count
= &esdo
->rel_count
;
5058 rel_count2
= &esdo
->rel_count2
;
5062 rel_count
= &esdo
->rel_count2
;
5063 rel_count2
= &esdo
->rel_count
;
5066 *rel_count
+= NUM_SHDR_ENTRIES (& esdi
->rel_hdr
);
5068 *rel_count2
+= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
5069 output_section
->flags
|= SEC_RELOC
;
5073 /* That created the reloc sections. Set their sizes, and assign
5074 them file positions, and allocate some buffers. */
5075 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5077 if ((o
->flags
& SEC_RELOC
) != 0)
5079 if (!elf_link_size_reloc_section (abfd
,
5080 &elf_section_data (o
)->rel_hdr
,
5084 if (elf_section_data (o
)->rel_hdr2
5085 && !elf_link_size_reloc_section (abfd
,
5086 elf_section_data (o
)->rel_hdr2
,
5091 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5092 to count upwards while actually outputting the relocations. */
5093 elf_section_data (o
)->rel_count
= 0;
5094 elf_section_data (o
)->rel_count2
= 0;
5097 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5099 /* We have now assigned file positions for all the sections except
5100 .symtab and .strtab. We start the .symtab section at the current
5101 file position, and write directly to it. We build the .strtab
5102 section in memory. */
5103 bfd_get_symcount (abfd
) = 0;
5104 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5105 /* sh_name is set in prep_headers. */
5106 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5107 symtab_hdr
->sh_flags
= 0;
5108 symtab_hdr
->sh_addr
= 0;
5109 symtab_hdr
->sh_size
= 0;
5110 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
5111 /* sh_link is set in assign_section_numbers. */
5112 /* sh_info is set below. */
5113 /* sh_offset is set just below. */
5114 symtab_hdr
->sh_addralign
= bed
->s
->file_align
;
5116 off
= elf_tdata (abfd
)->next_file_pos
;
5117 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, true);
5119 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5120 incorrect. We do not yet know the size of the .symtab section.
5121 We correct next_file_pos below, after we do know the size. */
5123 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5124 continuously seeking to the right position in the file. */
5125 if (! info
->keep_memory
|| max_sym_count
< 20)
5126 finfo
.symbuf_size
= 20;
5128 finfo
.symbuf_size
= max_sym_count
;
5129 amt
= finfo
.symbuf_size
;
5130 amt
*= sizeof (Elf_External_Sym
);
5131 finfo
.symbuf
= (Elf_External_Sym
*) bfd_malloc (amt
);
5132 if (finfo
.symbuf
== NULL
)
5134 if (elf_numsections (abfd
) > SHN_LORESERVE
)
5136 amt
= finfo
.symbuf_size
;
5137 amt
*= sizeof (Elf_External_Sym_Shndx
);
5138 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
5139 if (finfo
.symshndxbuf
== NULL
)
5143 /* Start writing out the symbol table. The first symbol is always a
5145 if (info
->strip
!= strip_all
5148 elfsym
.st_value
= 0;
5151 elfsym
.st_other
= 0;
5152 elfsym
.st_shndx
= SHN_UNDEF
;
5153 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5154 &elfsym
, bfd_und_section_ptr
))
5159 /* Some standard ELF linkers do this, but we don't because it causes
5160 bootstrap comparison failures. */
5161 /* Output a file symbol for the output file as the second symbol.
5162 We output this even if we are discarding local symbols, although
5163 I'm not sure if this is correct. */
5164 elfsym
.st_value
= 0;
5166 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5167 elfsym
.st_other
= 0;
5168 elfsym
.st_shndx
= SHN_ABS
;
5169 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
5170 &elfsym
, bfd_abs_section_ptr
))
5174 /* Output a symbol for each section. We output these even if we are
5175 discarding local symbols, since they are used for relocs. These
5176 symbols have no names. We store the index of each one in the
5177 index field of the section, so that we can find it again when
5178 outputting relocs. */
5179 if (info
->strip
!= strip_all
5183 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5184 elfsym
.st_other
= 0;
5185 for (i
= 1; i
< elf_numsections (abfd
); i
++)
5187 o
= section_from_elf_index (abfd
, i
);
5189 o
->target_index
= bfd_get_symcount (abfd
);
5190 elfsym
.st_shndx
= i
;
5191 if (info
->relocateable
|| o
== NULL
)
5192 elfsym
.st_value
= 0;
5194 elfsym
.st_value
= o
->vma
;
5195 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5198 if (i
== SHN_LORESERVE
)
5199 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5203 /* Allocate some memory to hold information read in from the input
5205 if (max_contents_size
!= 0)
5207 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
5208 if (finfo
.contents
== NULL
)
5212 if (max_external_reloc_size
!= 0)
5214 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
5215 if (finfo
.external_relocs
== NULL
)
5219 if (max_internal_reloc_count
!= 0)
5221 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5222 amt
*= sizeof (Elf_Internal_Rela
);
5223 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
5224 if (finfo
.internal_relocs
== NULL
)
5228 if (max_sym_count
!= 0)
5230 amt
= max_sym_count
* sizeof (Elf_External_Sym
);
5231 finfo
.external_syms
= (Elf_External_Sym
*) bfd_malloc (amt
);
5232 if (finfo
.external_syms
== NULL
)
5235 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
5236 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
5237 if (finfo
.internal_syms
== NULL
)
5240 amt
= max_sym_count
* sizeof (long);
5241 finfo
.indices
= (long *) bfd_malloc (amt
);
5242 if (finfo
.indices
== NULL
)
5245 amt
= max_sym_count
* sizeof (asection
*);
5246 finfo
.sections
= (asection
**) bfd_malloc (amt
);
5247 if (finfo
.sections
== NULL
)
5251 if (max_sym_shndx_count
!= 0)
5253 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
5254 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
5255 if (finfo
.locsym_shndx
== NULL
)
5259 /* Since ELF permits relocations to be against local symbols, we
5260 must have the local symbols available when we do the relocations.
5261 Since we would rather only read the local symbols once, and we
5262 would rather not keep them in memory, we handle all the
5263 relocations for a single input file at the same time.
5265 Unfortunately, there is no way to know the total number of local
5266 symbols until we have seen all of them, and the local symbol
5267 indices precede the global symbol indices. This means that when
5268 we are generating relocateable output, and we see a reloc against
5269 a global symbol, we can not know the symbol index until we have
5270 finished examining all the local symbols to see which ones we are
5271 going to output. To deal with this, we keep the relocations in
5272 memory, and don't output them until the end of the link. This is
5273 an unfortunate waste of memory, but I don't see a good way around
5274 it. Fortunately, it only happens when performing a relocateable
5275 link, which is not the common case. FIXME: If keep_memory is set
5276 we could write the relocs out and then read them again; I don't
5277 know how bad the memory loss will be. */
5279 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5280 sub
->output_has_begun
= false;
5281 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5283 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
5285 if (p
->type
== bfd_indirect_link_order
5286 && (bfd_get_flavour (p
->u
.indirect
.section
->owner
)
5287 == bfd_target_elf_flavour
))
5289 sub
= p
->u
.indirect
.section
->owner
;
5290 if (! sub
->output_has_begun
)
5292 if (! elf_link_input_bfd (&finfo
, sub
))
5294 sub
->output_has_begun
= true;
5297 else if (p
->type
== bfd_section_reloc_link_order
5298 || p
->type
== bfd_symbol_reloc_link_order
)
5300 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
5305 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
5311 /* That wrote out all the local symbols. Finish up the symbol table
5312 with the global symbols. Even if we want to strip everything we
5313 can, we still need to deal with those global symbols that got
5314 converted to local in a version script. */
5318 /* Output any global symbols that got converted to local in a
5319 version script. We do this in a separate step since ELF
5320 requires all local symbols to appear prior to any global
5321 symbols. FIXME: We should only do this if some global
5322 symbols were, in fact, converted to become local. FIXME:
5323 Will this work correctly with the Irix 5 linker? */
5324 eoinfo
.failed
= false;
5325 eoinfo
.finfo
= &finfo
;
5326 eoinfo
.localsyms
= true;
5327 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5333 /* The sh_info field records the index of the first non local symbol. */
5334 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
5337 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
5339 Elf_Internal_Sym sym
;
5340 Elf_External_Sym
*dynsym
=
5341 (Elf_External_Sym
*) finfo
.dynsym_sec
->contents
;
5342 long last_local
= 0;
5344 /* Write out the section symbols for the output sections. */
5351 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5354 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5357 Elf_External_Sym
*dest
;
5359 indx
= elf_section_data (s
)->this_idx
;
5360 BFD_ASSERT (indx
> 0);
5361 sym
.st_shndx
= indx
;
5362 sym
.st_value
= s
->vma
;
5363 dest
= dynsym
+ elf_section_data (s
)->dynindx
;
5364 elf_swap_symbol_out (abfd
, &sym
, (PTR
) dest
, (PTR
) 0);
5367 last_local
= bfd_count_sections (abfd
);
5370 /* Write out the local dynsyms. */
5371 if (elf_hash_table (info
)->dynlocal
)
5373 struct elf_link_local_dynamic_entry
*e
;
5374 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
5377 Elf_External_Sym
*dest
;
5379 sym
.st_size
= e
->isym
.st_size
;
5380 sym
.st_other
= e
->isym
.st_other
;
5382 /* Copy the internal symbol as is.
5383 Note that we saved a word of storage and overwrote
5384 the original st_name with the dynstr_index. */
5387 if (e
->isym
.st_shndx
< SHN_LORESERVE
5388 || e
->isym
.st_shndx
> SHN_HIRESERVE
)
5390 s
= bfd_section_from_elf_index (e
->input_bfd
,
5394 elf_section_data (s
->output_section
)->this_idx
;
5395 sym
.st_value
= (s
->output_section
->vma
5397 + e
->isym
.st_value
);
5400 if (last_local
< e
->dynindx
)
5401 last_local
= e
->dynindx
;
5403 dest
= dynsym
+ e
->dynindx
;
5404 elf_swap_symbol_out (abfd
, &sym
, (PTR
) dest
, (PTR
) 0);
5408 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
5412 /* We get the global symbols from the hash table. */
5413 eoinfo
.failed
= false;
5414 eoinfo
.localsyms
= false;
5415 eoinfo
.finfo
= &finfo
;
5416 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5421 /* If backend needs to output some symbols not present in the hash
5422 table, do it now. */
5423 if (bed
->elf_backend_output_arch_syms
)
5425 typedef boolean (*out_sym_func
) PARAMS ((PTR
, const char *,
5429 if (! ((*bed
->elf_backend_output_arch_syms
)
5430 (abfd
, info
, (PTR
) &finfo
, (out_sym_func
) elf_link_output_sym
)))
5434 /* Flush all symbols to the file. */
5435 if (! elf_link_flush_output_syms (&finfo
))
5438 /* Now we know the size of the symtab section. */
5439 off
+= symtab_hdr
->sh_size
;
5441 /* Finish up and write out the symbol string table (.strtab)
5443 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5444 /* sh_name was set in prep_headers. */
5445 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5446 symstrtab_hdr
->sh_flags
= 0;
5447 symstrtab_hdr
->sh_addr
= 0;
5448 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
5449 symstrtab_hdr
->sh_entsize
= 0;
5450 symstrtab_hdr
->sh_link
= 0;
5451 symstrtab_hdr
->sh_info
= 0;
5452 /* sh_offset is set just below. */
5453 symstrtab_hdr
->sh_addralign
= 1;
5455 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, true);
5456 elf_tdata (abfd
)->next_file_pos
= off
;
5458 if (bfd_get_symcount (abfd
) > 0)
5460 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
5461 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
5465 /* Adjust the relocs to have the correct symbol indices. */
5466 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5468 if ((o
->flags
& SEC_RELOC
) == 0)
5471 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
5472 elf_section_data (o
)->rel_count
,
5473 elf_section_data (o
)->rel_hashes
);
5474 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
5475 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
5476 elf_section_data (o
)->rel_count2
,
5477 (elf_section_data (o
)->rel_hashes
5478 + elf_section_data (o
)->rel_count
));
5480 /* Set the reloc_count field to 0 to prevent write_relocs from
5481 trying to swap the relocs out itself. */
5485 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
5486 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
5488 /* If we are linking against a dynamic object, or generating a
5489 shared library, finish up the dynamic linking information. */
5492 Elf_External_Dyn
*dyncon
, *dynconend
;
5494 /* Fix up .dynamic entries. */
5495 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
5496 BFD_ASSERT (o
!= NULL
);
5498 dyncon
= (Elf_External_Dyn
*) o
->contents
;
5499 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
5500 for (; dyncon
< dynconend
; dyncon
++)
5502 Elf_Internal_Dyn dyn
;
5506 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
5513 if (relativecount
> 0 && dyncon
+ 1 < dynconend
)
5515 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
5517 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
5518 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
5521 if (dyn
.d_tag
!= DT_NULL
)
5523 dyn
.d_un
.d_val
= relativecount
;
5524 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5530 name
= info
->init_function
;
5533 name
= info
->fini_function
;
5536 struct elf_link_hash_entry
*h
;
5538 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
5539 false, false, true);
5541 && (h
->root
.type
== bfd_link_hash_defined
5542 || h
->root
.type
== bfd_link_hash_defweak
))
5544 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
5545 o
= h
->root
.u
.def
.section
;
5546 if (o
->output_section
!= NULL
)
5547 dyn
.d_un
.d_val
+= (o
->output_section
->vma
5548 + o
->output_offset
);
5551 /* The symbol is imported from another shared
5552 library and does not apply to this one. */
5556 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5571 name
= ".gnu.version_d";
5574 name
= ".gnu.version_r";
5577 name
= ".gnu.version";
5579 o
= bfd_get_section_by_name (abfd
, name
);
5580 BFD_ASSERT (o
!= NULL
);
5581 dyn
.d_un
.d_ptr
= o
->vma
;
5582 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5589 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
5594 for (i
= 1; i
< elf_numsections (abfd
); i
++)
5596 Elf_Internal_Shdr
*hdr
;
5598 hdr
= elf_elfsections (abfd
)[i
];
5599 if (hdr
->sh_type
== type
5600 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
5602 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
5603 dyn
.d_un
.d_val
+= hdr
->sh_size
;
5606 if (dyn
.d_un
.d_val
== 0
5607 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
5608 dyn
.d_un
.d_val
= hdr
->sh_addr
;
5612 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5618 /* If we have created any dynamic sections, then output them. */
5621 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
5624 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
5626 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
5627 || o
->_raw_size
== 0
5628 || o
->output_section
== bfd_abs_section_ptr
)
5630 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
5632 /* At this point, we are only interested in sections
5633 created by elf_link_create_dynamic_sections. */
5636 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
5638 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
5640 if (! bfd_set_section_contents (abfd
, o
->output_section
,
5642 (file_ptr
) o
->output_offset
,
5648 /* The contents of the .dynstr section are actually in a
5650 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
5651 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
5652 || ! _bfd_elf_strtab_emit (abfd
,
5653 elf_hash_table (info
)->dynstr
))
5659 /* If we have optimized stabs strings, output them. */
5660 if (elf_hash_table (info
)->stab_info
!= NULL
)
5662 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
5666 if (info
->eh_frame_hdr
)
5668 o
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
5671 && (elf_section_data (o
)->sec_info_type
5672 == ELF_INFO_TYPE_EH_FRAME_HDR
))
5674 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, o
))
5679 if (finfo
.symstrtab
!= NULL
)
5680 _bfd_stringtab_free (finfo
.symstrtab
);
5681 if (finfo
.contents
!= NULL
)
5682 free (finfo
.contents
);
5683 if (finfo
.external_relocs
!= NULL
)
5684 free (finfo
.external_relocs
);
5685 if (finfo
.internal_relocs
!= NULL
)
5686 free (finfo
.internal_relocs
);
5687 if (finfo
.external_syms
!= NULL
)
5688 free (finfo
.external_syms
);
5689 if (finfo
.locsym_shndx
!= NULL
)
5690 free (finfo
.locsym_shndx
);
5691 if (finfo
.internal_syms
!= NULL
)
5692 free (finfo
.internal_syms
);
5693 if (finfo
.indices
!= NULL
)
5694 free (finfo
.indices
);
5695 if (finfo
.sections
!= NULL
)
5696 free (finfo
.sections
);
5697 if (finfo
.symbuf
!= NULL
)
5698 free (finfo
.symbuf
);
5699 if (finfo
.symshndxbuf
!= NULL
)
5700 free (finfo
.symbuf
);
5701 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5703 if ((o
->flags
& SEC_RELOC
) != 0
5704 && elf_section_data (o
)->rel_hashes
!= NULL
)
5705 free (elf_section_data (o
)->rel_hashes
);
5708 elf_tdata (abfd
)->linker
= true;
5713 if (finfo
.symstrtab
!= NULL
)
5714 _bfd_stringtab_free (finfo
.symstrtab
);
5715 if (finfo
.contents
!= NULL
)
5716 free (finfo
.contents
);
5717 if (finfo
.external_relocs
!= NULL
)
5718 free (finfo
.external_relocs
);
5719 if (finfo
.internal_relocs
!= NULL
)
5720 free (finfo
.internal_relocs
);
5721 if (finfo
.external_syms
!= NULL
)
5722 free (finfo
.external_syms
);
5723 if (finfo
.locsym_shndx
!= NULL
)
5724 free (finfo
.locsym_shndx
);
5725 if (finfo
.internal_syms
!= NULL
)
5726 free (finfo
.internal_syms
);
5727 if (finfo
.indices
!= NULL
)
5728 free (finfo
.indices
);
5729 if (finfo
.sections
!= NULL
)
5730 free (finfo
.sections
);
5731 if (finfo
.symbuf
!= NULL
)
5732 free (finfo
.symbuf
);
5733 if (finfo
.symshndxbuf
!= NULL
)
5734 free (finfo
.symbuf
);
5735 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5737 if ((o
->flags
& SEC_RELOC
) != 0
5738 && elf_section_data (o
)->rel_hashes
!= NULL
)
5739 free (elf_section_data (o
)->rel_hashes
);
5745 /* Add a symbol to the output symbol table. */
5748 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
5749 struct elf_final_link_info
*finfo
;
5751 Elf_Internal_Sym
*elfsym
;
5752 asection
*input_sec
;
5754 Elf_External_Sym
*dest
;
5755 Elf_External_Sym_Shndx
*destshndx
;
5757 boolean (*output_symbol_hook
) PARAMS ((bfd
*,
5758 struct bfd_link_info
*info
,
5763 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
5764 elf_backend_link_output_symbol_hook
;
5765 if (output_symbol_hook
!= NULL
)
5767 if (! ((*output_symbol_hook
)
5768 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
5772 if (name
== (const char *) NULL
|| *name
== '\0')
5773 elfsym
->st_name
= 0;
5774 else if (input_sec
->flags
& SEC_EXCLUDE
)
5775 elfsym
->st_name
= 0;
5778 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5780 if (elfsym
->st_name
== (unsigned long) -1)
5784 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5786 if (! elf_link_flush_output_syms (finfo
))
5790 dest
= finfo
->symbuf
+ finfo
->symbuf_count
;
5791 destshndx
= finfo
->symshndxbuf
;
5792 if (destshndx
!= NULL
)
5793 destshndx
+= finfo
->symbuf_count
;
5794 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
, (PTR
) dest
, (PTR
) destshndx
);
5795 ++finfo
->symbuf_count
;
5797 ++ bfd_get_symcount (finfo
->output_bfd
);
5802 /* Flush the output symbols to the file. */
5805 elf_link_flush_output_syms (finfo
)
5806 struct elf_final_link_info
*finfo
;
5808 if (finfo
->symbuf_count
> 0)
5810 Elf_Internal_Shdr
*hdr
;
5814 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5815 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
5816 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5817 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5818 || bfd_bwrite ((PTR
) finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
5821 hdr
->sh_size
+= amt
;
5823 if (finfo
->symshndxbuf
!= NULL
)
5825 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_shndx_hdr
;
5826 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
5827 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym_Shndx
);
5828 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5829 || (bfd_bwrite ((PTR
) finfo
->symshndxbuf
, amt
, finfo
->output_bfd
)
5833 hdr
->sh_size
+= amt
;
5836 finfo
->symbuf_count
= 0;
5842 /* Adjust all external symbols pointing into SEC_MERGE sections
5843 to reflect the object merging within the sections. */
5846 elf_link_sec_merge_syms (h
, data
)
5847 struct elf_link_hash_entry
*h
;
5852 if ((h
->root
.type
== bfd_link_hash_defined
5853 || h
->root
.type
== bfd_link_hash_defweak
)
5854 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
5855 && elf_section_data (sec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
)
5857 bfd
*output_bfd
= (bfd
*) data
;
5859 h
->root
.u
.def
.value
=
5860 _bfd_merged_section_offset (output_bfd
,
5861 &h
->root
.u
.def
.section
,
5862 elf_section_data (sec
)->sec_info
,
5863 h
->root
.u
.def
.value
, (bfd_vma
) 0);
5869 /* Add an external symbol to the symbol table. This is called from
5870 the hash table traversal routine. When generating a shared object,
5871 we go through the symbol table twice. The first time we output
5872 anything that might have been forced to local scope in a version
5873 script. The second time we output the symbols that are still
5877 elf_link_output_extsym (h
, data
)
5878 struct elf_link_hash_entry
*h
;
5881 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
5882 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
5884 Elf_Internal_Sym sym
;
5885 asection
*input_sec
;
5887 /* Decide whether to output this symbol in this pass. */
5888 if (eoinfo
->localsyms
)
5890 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5895 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5899 /* If we are not creating a shared library, and this symbol is
5900 referenced by a shared library but is not defined anywhere, then
5901 warn that it is undefined. If we do not do this, the runtime
5902 linker will complain that the symbol is undefined when the
5903 program is run. We don't have to worry about symbols that are
5904 referenced by regular files, because we will already have issued
5905 warnings for them. */
5906 if (! finfo
->info
->relocateable
5907 && ! finfo
->info
->allow_shlib_undefined
5908 && ! finfo
->info
->shared
5909 && h
->root
.type
== bfd_link_hash_undefined
5910 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
5911 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5913 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
5914 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
5915 (asection
*) NULL
, (bfd_vma
) 0, true)))
5917 eoinfo
->failed
= true;
5922 /* We don't want to output symbols that have never been mentioned by
5923 a regular file, or that we have been told to strip. However, if
5924 h->indx is set to -2, the symbol is used by a reloc and we must
5928 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
5929 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
5930 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
5931 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5933 else if (finfo
->info
->strip
== strip_all
5934 || (finfo
->info
->strip
== strip_some
5935 && bfd_hash_lookup (finfo
->info
->keep_hash
,
5936 h
->root
.root
.string
,
5937 false, false) == NULL
))
5942 /* If we're stripping it, and it's not a dynamic symbol, there's
5943 nothing else to do unless it is a forced local symbol. */
5946 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5950 sym
.st_size
= h
->size
;
5951 sym
.st_other
= h
->other
;
5952 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5953 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
5954 else if (h
->root
.type
== bfd_link_hash_undefweak
5955 || h
->root
.type
== bfd_link_hash_defweak
)
5956 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
5958 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
5960 switch (h
->root
.type
)
5963 case bfd_link_hash_new
:
5967 case bfd_link_hash_undefined
:
5968 input_sec
= bfd_und_section_ptr
;
5969 sym
.st_shndx
= SHN_UNDEF
;
5972 case bfd_link_hash_undefweak
:
5973 input_sec
= bfd_und_section_ptr
;
5974 sym
.st_shndx
= SHN_UNDEF
;
5977 case bfd_link_hash_defined
:
5978 case bfd_link_hash_defweak
:
5980 input_sec
= h
->root
.u
.def
.section
;
5981 if (input_sec
->output_section
!= NULL
)
5984 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
5985 input_sec
->output_section
);
5986 if (sym
.st_shndx
== SHN_BAD
)
5988 (*_bfd_error_handler
)
5989 (_("%s: could not find output section %s for input section %s"),
5990 bfd_get_filename (finfo
->output_bfd
),
5991 input_sec
->output_section
->name
,
5993 eoinfo
->failed
= true;
5997 /* ELF symbols in relocateable files are section relative,
5998 but in nonrelocateable files they are virtual
6000 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
6001 if (! finfo
->info
->relocateable
)
6002 sym
.st_value
+= input_sec
->output_section
->vma
;
6006 BFD_ASSERT (input_sec
->owner
== NULL
6007 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
6008 sym
.st_shndx
= SHN_UNDEF
;
6009 input_sec
= bfd_und_section_ptr
;
6014 case bfd_link_hash_common
:
6015 input_sec
= h
->root
.u
.c
.p
->section
;
6016 sym
.st_shndx
= SHN_COMMON
;
6017 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
6020 case bfd_link_hash_indirect
:
6021 /* These symbols are created by symbol versioning. They point
6022 to the decorated version of the name. For example, if the
6023 symbol foo@@GNU_1.2 is the default, which should be used when
6024 foo is used with no version, then we add an indirect symbol
6025 foo which points to foo@@GNU_1.2. We ignore these symbols,
6026 since the indirected symbol is already in the hash table. */
6029 case bfd_link_hash_warning
:
6030 /* We can't represent these symbols in ELF, although a warning
6031 symbol may have come from a .gnu.warning.SYMBOL section. We
6032 just put the target symbol in the hash table. If the target
6033 symbol does not really exist, don't do anything. */
6034 if (h
->root
.u
.i
.link
->type
== bfd_link_hash_new
)
6036 return (elf_link_output_extsym
6037 ((struct elf_link_hash_entry
*) h
->root
.u
.i
.link
, data
));
6040 /* Give the processor backend a chance to tweak the symbol value,
6041 and also to finish up anything that needs to be done for this
6043 if ((h
->dynindx
!= -1
6044 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6045 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6047 struct elf_backend_data
*bed
;
6049 bed
= get_elf_backend_data (finfo
->output_bfd
);
6050 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
6051 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
6053 eoinfo
->failed
= true;
6058 /* If we are marking the symbol as undefined, and there are no
6059 non-weak references to this symbol from a regular object, then
6060 mark the symbol as weak undefined; if there are non-weak
6061 references, mark the symbol as strong. We can't do this earlier,
6062 because it might not be marked as undefined until the
6063 finish_dynamic_symbol routine gets through with it. */
6064 if (sym
.st_shndx
== SHN_UNDEF
6065 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
6066 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
6067 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
6071 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
6072 bindtype
= STB_GLOBAL
;
6074 bindtype
= STB_WEAK
;
6075 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
6078 /* If a symbol is not defined locally, we clear the visibility
6080 if (! finfo
->info
->relocateable
6081 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6082 sym
.st_other
^= ELF_ST_VISIBILITY (sym
.st_other
);
6084 /* If this symbol should be put in the .dynsym section, then put it
6085 there now. We have already know the symbol index. We also fill
6086 in the entry in the .hash section. */
6087 if (h
->dynindx
!= -1
6088 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6092 size_t hash_entry_size
;
6093 bfd_byte
*bucketpos
;
6095 Elf_External_Sym
*esym
;
6097 sym
.st_name
= h
->dynstr_index
;
6098 esym
= (Elf_External_Sym
*) finfo
->dynsym_sec
->contents
+ h
->dynindx
;
6099 elf_swap_symbol_out (finfo
->output_bfd
, &sym
, (PTR
) esym
, (PTR
) 0);
6101 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
6102 bucket
= h
->elf_hash_value
% bucketcount
;
6104 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
6105 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
6106 + (bucket
+ 2) * hash_entry_size
);
6107 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
6108 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, (bfd_vma
) h
->dynindx
,
6110 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
6111 ((bfd_byte
*) finfo
->hash_sec
->contents
6112 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
6114 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
6116 Elf_Internal_Versym iversym
;
6117 Elf_External_Versym
*eversym
;
6119 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6121 if (h
->verinfo
.verdef
== NULL
)
6122 iversym
.vs_vers
= 0;
6124 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
6128 if (h
->verinfo
.vertree
== NULL
)
6129 iversym
.vs_vers
= 1;
6131 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
6134 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
6135 iversym
.vs_vers
|= VERSYM_HIDDEN
;
6137 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
6138 eversym
+= h
->dynindx
;
6139 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
6143 /* If we're stripping it, then it was just a dynamic symbol, and
6144 there's nothing else to do. */
6148 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
6150 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
6152 eoinfo
->failed
= true;
6159 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6160 originated from the section given by INPUT_REL_HDR) to the
6164 elf_link_output_relocs (output_bfd
, input_section
, input_rel_hdr
,
6167 asection
*input_section
;
6168 Elf_Internal_Shdr
*input_rel_hdr
;
6169 Elf_Internal_Rela
*internal_relocs
;
6171 Elf_Internal_Rela
*irela
;
6172 Elf_Internal_Rela
*irelaend
;
6173 Elf_Internal_Shdr
*output_rel_hdr
;
6174 asection
*output_section
;
6175 unsigned int *rel_countp
= NULL
;
6176 struct elf_backend_data
*bed
;
6179 output_section
= input_section
->output_section
;
6180 output_rel_hdr
= NULL
;
6182 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
6183 == input_rel_hdr
->sh_entsize
)
6185 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6186 rel_countp
= &elf_section_data (output_section
)->rel_count
;
6188 else if (elf_section_data (output_section
)->rel_hdr2
6189 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
6190 == input_rel_hdr
->sh_entsize
))
6192 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
6193 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
6196 BFD_ASSERT (output_rel_hdr
!= NULL
);
6198 bed
= get_elf_backend_data (output_bfd
);
6199 irela
= internal_relocs
;
6200 irelaend
= irela
+ NUM_SHDR_ENTRIES (input_rel_hdr
)
6201 * bed
->s
->int_rels_per_ext_rel
;
6203 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
6205 Elf_External_Rel
*erel
;
6206 Elf_Internal_Rel
*irel
;
6208 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
6209 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
6212 (*_bfd_error_handler
) (_("Error: out of memory"));
6216 erel
= ((Elf_External_Rel
*) output_rel_hdr
->contents
+ *rel_countp
);
6217 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erel
++)
6221 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6223 irel
[i
].r_offset
= irela
[i
].r_offset
;
6224 irel
[i
].r_info
= irela
[i
].r_info
;
6225 BFD_ASSERT (irela
[i
].r_addend
== 0);
6228 if (bed
->s
->swap_reloc_out
)
6229 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (PTR
) erel
);
6231 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6238 Elf_External_Rela
*erela
;
6240 BFD_ASSERT (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
));
6242 erela
= ((Elf_External_Rela
*) output_rel_hdr
->contents
+ *rel_countp
);
6243 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erela
++)
6244 if (bed
->s
->swap_reloca_out
)
6245 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (PTR
) erela
);
6247 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6250 /* Bump the counter, so that we know where to add the next set of
6252 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
6255 /* Link an input file into the linker output file. This function
6256 handles all the sections and relocations of the input file at once.
6257 This is so that we only have to read the local symbols once, and
6258 don't have to keep them in memory. */
6261 elf_link_input_bfd (finfo
, input_bfd
)
6262 struct elf_final_link_info
*finfo
;
6265 boolean (*relocate_section
) PARAMS ((bfd
*, struct bfd_link_info
*,
6266 bfd
*, asection
*, bfd_byte
*,
6267 Elf_Internal_Rela
*,
6268 Elf_Internal_Sym
*, asection
**));
6270 Elf_Internal_Shdr
*symtab_hdr
;
6271 Elf_Internal_Shdr
*shndx_hdr
;
6274 Elf_External_Sym
*external_syms
;
6275 Elf_External_Sym
*esym
;
6276 Elf_External_Sym
*esymend
;
6277 Elf_External_Sym_Shndx
*shndx_buf
;
6278 Elf_External_Sym_Shndx
*shndx
;
6279 Elf_Internal_Sym
*isym
;
6281 asection
**ppsection
;
6283 struct elf_backend_data
*bed
;
6284 boolean emit_relocs
;
6285 struct elf_link_hash_entry
**sym_hashes
;
6287 output_bfd
= finfo
->output_bfd
;
6288 bed
= get_elf_backend_data (output_bfd
);
6289 relocate_section
= bed
->elf_backend_relocate_section
;
6291 /* If this is a dynamic object, we don't want to do anything here:
6292 we don't want the local symbols, and we don't want the section
6294 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6297 emit_relocs
= (finfo
->info
->relocateable
6298 || finfo
->info
->emitrelocations
6299 || bed
->elf_backend_emit_relocs
);
6301 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6302 if (elf_bad_symtab (input_bfd
))
6304 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6309 locsymcount
= symtab_hdr
->sh_info
;
6310 extsymoff
= symtab_hdr
->sh_info
;
6313 /* Read the local symbols. */
6314 if (symtab_hdr
->contents
!= NULL
)
6315 external_syms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
6316 else if (locsymcount
== 0)
6317 external_syms
= NULL
;
6320 bfd_size_type amt
= locsymcount
* sizeof (Elf_External_Sym
);
6321 external_syms
= finfo
->external_syms
;
6322 if (bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
6323 || bfd_bread (external_syms
, amt
, input_bfd
) != amt
)
6327 shndx_hdr
= &elf_tdata (input_bfd
)->symtab_shndx_hdr
;
6329 if (shndx_hdr
->sh_size
!= 0 && locsymcount
!= 0)
6331 bfd_size_type amt
= locsymcount
* sizeof (Elf_External_Sym_Shndx
);
6332 shndx_buf
= finfo
->locsym_shndx
;
6333 if (bfd_seek (input_bfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0
6334 || bfd_bread (shndx_buf
, amt
, input_bfd
) != amt
)
6338 /* Swap in the local symbols and write out the ones which we know
6339 are going into the output file. */
6340 for (esym
= external_syms
, esymend
= esym
+ locsymcount
,
6341 isym
= finfo
->internal_syms
, pindex
= finfo
->indices
,
6342 ppsection
= finfo
->sections
, shndx
= shndx_buf
;
6344 esym
++, isym
++, pindex
++, ppsection
++,
6345 shndx
= (shndx
!= NULL
? shndx
+ 1 : NULL
))
6349 Elf_Internal_Sym osym
;
6351 elf_swap_symbol_in (input_bfd
, esym
, shndx
, isym
);
6354 if (elf_bad_symtab (input_bfd
))
6356 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6363 if (isym
->st_shndx
== SHN_UNDEF
)
6364 isec
= bfd_und_section_ptr
;
6365 else if (isym
->st_shndx
< SHN_LORESERVE
6366 || isym
->st_shndx
> SHN_HIRESERVE
)
6368 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
6370 && elf_section_data (isec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
6371 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6373 _bfd_merged_section_offset (output_bfd
, &isec
,
6374 elf_section_data (isec
)->sec_info
,
6375 isym
->st_value
, (bfd_vma
) 0);
6377 else if (isym
->st_shndx
== SHN_ABS
)
6378 isec
= bfd_abs_section_ptr
;
6379 else if (isym
->st_shndx
== SHN_COMMON
)
6380 isec
= bfd_com_section_ptr
;
6389 /* Don't output the first, undefined, symbol. */
6390 if (esym
== external_syms
)
6393 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6395 /* We never output section symbols. Instead, we use the
6396 section symbol of the corresponding section in the output
6401 /* If we are stripping all symbols, we don't want to output this
6403 if (finfo
->info
->strip
== strip_all
)
6406 /* If we are discarding all local symbols, we don't want to
6407 output this one. If we are generating a relocateable output
6408 file, then some of the local symbols may be required by
6409 relocs; we output them below as we discover that they are
6411 if (finfo
->info
->discard
== discard_all
)
6414 /* If this symbol is defined in a section which we are
6415 discarding, we don't need to keep it, but note that
6416 linker_mark is only reliable for sections that have contents.
6417 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6418 as well as linker_mark. */
6419 if ((isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
6421 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6422 || (! finfo
->info
->relocateable
6423 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6426 /* Get the name of the symbol. */
6427 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6432 /* See if we are discarding symbols with this name. */
6433 if ((finfo
->info
->strip
== strip_some
6434 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, false, false)
6436 || (((finfo
->info
->discard
== discard_sec_merge
6437 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocateable
)
6438 || finfo
->info
->discard
== discard_l
)
6439 && bfd_is_local_label_name (input_bfd
, name
)))
6442 /* If we get here, we are going to output this symbol. */
6446 /* Adjust the section index for the output file. */
6447 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6448 isec
->output_section
);
6449 if (osym
.st_shndx
== SHN_BAD
)
6452 *pindex
= bfd_get_symcount (output_bfd
);
6454 /* ELF symbols in relocateable files are section relative, but
6455 in executable files they are virtual addresses. Note that
6456 this code assumes that all ELF sections have an associated
6457 BFD section with a reasonable value for output_offset; below
6458 we assume that they also have a reasonable value for
6459 output_section. Any special sections must be set up to meet
6460 these requirements. */
6461 osym
.st_value
+= isec
->output_offset
;
6462 if (! finfo
->info
->relocateable
)
6463 osym
.st_value
+= isec
->output_section
->vma
;
6465 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
6469 /* Relocate the contents of each section. */
6470 sym_hashes
= elf_sym_hashes (input_bfd
);
6471 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6475 if (! o
->linker_mark
)
6477 /* This section was omitted from the link. */
6481 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6482 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6485 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6487 /* Section was created by elf_link_create_dynamic_sections
6492 /* Get the contents of the section. They have been cached by a
6493 relaxation routine. Note that o is a section in an input
6494 file, so the contents field will not have been set by any of
6495 the routines which work on output files. */
6496 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6497 contents
= elf_section_data (o
)->this_hdr
.contents
;
6500 contents
= finfo
->contents
;
6501 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
6502 (file_ptr
) 0, o
->_raw_size
))
6506 if ((o
->flags
& SEC_RELOC
) != 0)
6508 Elf_Internal_Rela
*internal_relocs
;
6510 /* Get the swapped relocs. */
6511 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
6512 (input_bfd
, o
, finfo
->external_relocs
,
6513 finfo
->internal_relocs
, false));
6514 if (internal_relocs
== NULL
6515 && o
->reloc_count
> 0)
6518 /* Run through the relocs looking for any against symbols
6519 from discarded sections and section symbols from
6520 removed link-once sections. Complain about relocs
6521 against discarded sections. Zero relocs against removed
6522 link-once sections. We should really complain if
6523 anything in the final link tries to use it, but
6524 DWARF-based exception handling might have an entry in
6525 .eh_frame to describe a routine in the linkonce section,
6526 and it turns out to be hard to remove the .eh_frame
6527 entry too. FIXME. */
6528 if (!finfo
->info
->relocateable
6529 && !elf_section_ignore_discarded_relocs (o
))
6531 Elf_Internal_Rela
*rel
, *relend
;
6533 rel
= internal_relocs
;
6534 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6535 for ( ; rel
< relend
; rel
++)
6537 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6539 if (r_symndx
>= locsymcount
6540 || (elf_bad_symtab (input_bfd
)
6541 && finfo
->sections
[r_symndx
] == NULL
))
6543 struct elf_link_hash_entry
*h
;
6545 h
= sym_hashes
[r_symndx
- extsymoff
];
6546 while (h
->root
.type
== bfd_link_hash_indirect
6547 || h
->root
.type
== bfd_link_hash_warning
)
6548 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6550 /* Complain if the definition comes from a
6551 discarded section. */
6552 if ((h
->root
.type
== bfd_link_hash_defined
6553 || h
->root
.type
== bfd_link_hash_defweak
)
6554 && ! bfd_is_abs_section (h
->root
.u
.def
.section
)
6555 && bfd_is_abs_section (h
->root
.u
.def
.section
6557 && (elf_section_data (h
->root
.u
.def
.section
)
6558 ->sec_info_type
!= ELF_INFO_TYPE_MERGE
))
6560 #if BFD_VERSION_DATE < 20031005
6561 if ((o
->flags
& SEC_DEBUGGING
) != 0)
6563 #if BFD_VERSION_DATE > 20021005
6564 (*finfo
->info
->callbacks
->warning
)
6566 _("warning: relocation against removed section; zeroing"),
6567 NULL
, input_bfd
, o
, rel
->r_offset
);
6569 BFD_ASSERT (r_symndx
!= 0);
6570 memset (rel
, 0, sizeof (*rel
));
6575 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6576 (finfo
->info
, h
->root
.root
.string
,
6577 input_bfd
, o
, rel
->r_offset
,
6585 asection
*sec
= finfo
->sections
[r_symndx
];
6588 && ! bfd_is_abs_section (sec
)
6589 && bfd_is_abs_section (sec
->output_section
)
6590 && (elf_section_data (sec
)->sec_info_type
6591 != ELF_INFO_TYPE_MERGE
))
6593 #if BFD_VERSION_DATE < 20031005
6594 if ((o
->flags
& SEC_DEBUGGING
) != 0
6595 || (sec
->flags
& SEC_LINK_ONCE
) != 0)
6597 #if BFD_VERSION_DATE > 20021005
6598 (*finfo
->info
->callbacks
->warning
)
6600 _("warning: relocation against removed section"),
6601 NULL
, input_bfd
, o
, rel
->r_offset
);
6603 BFD_ASSERT (r_symndx
!= 0);
6605 = ELF_R_INFO (0, ELF_R_TYPE (rel
->r_info
));
6613 = _("local symbols in discarded section %s");
6615 = strlen (sec
->name
) + strlen (msg
) - 1;
6616 char *buf
= (char *) bfd_malloc (amt
);
6619 sprintf (buf
, msg
, sec
->name
);
6621 buf
= (char *) sec
->name
;
6622 ok
= (*finfo
->info
->callbacks
6623 ->undefined_symbol
) (finfo
->info
, buf
,
6627 if (buf
!= sec
->name
)
6637 /* Relocate the section by invoking a back end routine.
6639 The back end routine is responsible for adjusting the
6640 section contents as necessary, and (if using Rela relocs
6641 and generating a relocateable output file) adjusting the
6642 reloc addend as necessary.
6644 The back end routine does not have to worry about setting
6645 the reloc address or the reloc symbol index.
6647 The back end routine is given a pointer to the swapped in
6648 internal symbols, and can access the hash table entries
6649 for the external symbols via elf_sym_hashes (input_bfd).
6651 When generating relocateable output, the back end routine
6652 must handle STB_LOCAL/STT_SECTION symbols specially. The
6653 output symbol is going to be a section symbol
6654 corresponding to the output section, which will require
6655 the addend to be adjusted. */
6657 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
6658 input_bfd
, o
, contents
,
6660 finfo
->internal_syms
,
6666 Elf_Internal_Rela
*irela
;
6667 Elf_Internal_Rela
*irelaend
;
6668 struct elf_link_hash_entry
**rel_hash
;
6669 Elf_Internal_Shdr
*input_rel_hdr
;
6670 unsigned int next_erel
;
6671 void (*reloc_emitter
) PARAMS ((bfd
*, asection
*,
6672 Elf_Internal_Shdr
*,
6673 Elf_Internal_Rela
*));
6675 /* Adjust the reloc addresses and symbol indices. */
6677 irela
= internal_relocs
;
6678 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6679 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
6680 + elf_section_data (o
->output_section
)->rel_count
6681 + elf_section_data (o
->output_section
)->rel_count2
);
6682 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
6684 unsigned long r_symndx
;
6687 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
6693 irela
->r_offset
+= o
->output_offset
;
6695 /* Relocs in an executable have to be virtual addresses. */
6696 if (finfo
->info
->emitrelocations
)
6697 irela
->r_offset
+= o
->output_section
->vma
;
6699 r_symndx
= ELF_R_SYM (irela
->r_info
);
6704 if (r_symndx
>= locsymcount
6705 || (elf_bad_symtab (input_bfd
)
6706 && finfo
->sections
[r_symndx
] == NULL
))
6708 struct elf_link_hash_entry
*rh
;
6711 /* This is a reloc against a global symbol. We
6712 have not yet output all the local symbols, so
6713 we do not know the symbol index of any global
6714 symbol. We set the rel_hash entry for this
6715 reloc to point to the global hash table entry
6716 for this symbol. The symbol index is then
6717 set at the end of elf_bfd_final_link. */
6718 indx
= r_symndx
- extsymoff
;
6719 rh
= elf_sym_hashes (input_bfd
)[indx
];
6720 while (rh
->root
.type
== bfd_link_hash_indirect
6721 || rh
->root
.type
== bfd_link_hash_warning
)
6722 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
6724 /* Setting the index to -2 tells
6725 elf_link_output_extsym that this symbol is
6727 BFD_ASSERT (rh
->indx
< 0);
6735 /* This is a reloc against a local symbol. */
6738 isym
= finfo
->internal_syms
+ r_symndx
;
6739 sec
= finfo
->sections
[r_symndx
];
6740 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6742 /* I suppose the backend ought to fill in the
6743 section of any STT_SECTION symbol against a
6744 processor specific section. If we have
6745 discarded a section, the output_section will
6746 be the absolute section. */
6748 && (bfd_is_abs_section (sec
)
6749 || (sec
->output_section
!= NULL
6750 && bfd_is_abs_section (sec
->output_section
))))
6752 else if (sec
== NULL
|| sec
->owner
== NULL
)
6754 bfd_set_error (bfd_error_bad_value
);
6759 r_symndx
= sec
->output_section
->target_index
;
6760 BFD_ASSERT (r_symndx
!= 0);
6765 if (finfo
->indices
[r_symndx
] == -1)
6767 unsigned long shlink
;
6771 if (finfo
->info
->strip
== strip_all
)
6773 /* You can't do ld -r -s. */
6774 bfd_set_error (bfd_error_invalid_operation
);
6778 /* This symbol was skipped earlier, but
6779 since it is needed by a reloc, we
6780 must output it now. */
6781 shlink
= symtab_hdr
->sh_link
;
6782 name
= (bfd_elf_string_from_elf_section
6783 (input_bfd
, shlink
, isym
->st_name
));
6787 osec
= sec
->output_section
;
6789 _bfd_elf_section_from_bfd_section (output_bfd
,
6791 if (isym
->st_shndx
== SHN_BAD
)
6794 isym
->st_value
+= sec
->output_offset
;
6795 if (! finfo
->info
->relocateable
)
6796 isym
->st_value
+= osec
->vma
;
6798 finfo
->indices
[r_symndx
]
6799 = bfd_get_symcount (output_bfd
);
6801 if (! elf_link_output_sym (finfo
, name
, isym
, sec
))
6805 r_symndx
= finfo
->indices
[r_symndx
];
6808 irela
->r_info
= ELF_R_INFO (r_symndx
,
6809 ELF_R_TYPE (irela
->r_info
));
6812 /* Swap out the relocs. */
6813 if (bed
->elf_backend_emit_relocs
6814 && !(finfo
->info
->relocateable
6815 || finfo
->info
->emitrelocations
))
6816 reloc_emitter
= bed
->elf_backend_emit_relocs
;
6818 reloc_emitter
= elf_link_output_relocs
;
6820 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6821 (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6823 input_rel_hdr
= elf_section_data (o
)->rel_hdr2
;
6826 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
6827 * bed
->s
->int_rels_per_ext_rel
);
6828 reloc_emitter (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6834 /* Write out the modified section contents. */
6835 if (bed
->elf_backend_write_section
6836 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
6838 /* Section written out. */
6840 else switch (elf_section_data (o
)->sec_info_type
)
6842 case ELF_INFO_TYPE_STABS
:
6843 if (! (_bfd_write_section_stabs
6845 &elf_hash_table (finfo
->info
)->stab_info
,
6846 o
, &elf_section_data (o
)->sec_info
, contents
)))
6849 case ELF_INFO_TYPE_MERGE
:
6850 if (! (_bfd_write_merged_section
6851 (output_bfd
, o
, elf_section_data (o
)->sec_info
)))
6854 case ELF_INFO_TYPE_EH_FRAME
:
6859 = bfd_get_section_by_name (elf_hash_table (finfo
->info
)->dynobj
,
6861 if (! (_bfd_elf_write_section_eh_frame (output_bfd
, o
, ehdrsec
,
6868 bfd_size_type sec_size
;
6870 sec_size
= (o
->_cooked_size
!= 0 ? o
->_cooked_size
: o
->_raw_size
);
6871 if (! (o
->flags
& SEC_EXCLUDE
)
6872 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
6874 (file_ptr
) o
->output_offset
,
6885 /* Generate a reloc when linking an ELF file. This is a reloc
6886 requested by the linker, and does come from any input file. This
6887 is used to build constructor and destructor tables when linking
6891 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
6893 struct bfd_link_info
*info
;
6894 asection
*output_section
;
6895 struct bfd_link_order
*link_order
;
6897 reloc_howto_type
*howto
;
6901 struct elf_link_hash_entry
**rel_hash_ptr
;
6902 Elf_Internal_Shdr
*rel_hdr
;
6903 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
6905 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
6908 bfd_set_error (bfd_error_bad_value
);
6912 addend
= link_order
->u
.reloc
.p
->addend
;
6914 /* Figure out the symbol index. */
6915 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
6916 + elf_section_data (output_section
)->rel_count
6917 + elf_section_data (output_section
)->rel_count2
);
6918 if (link_order
->type
== bfd_section_reloc_link_order
)
6920 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
6921 BFD_ASSERT (indx
!= 0);
6922 *rel_hash_ptr
= NULL
;
6926 struct elf_link_hash_entry
*h
;
6928 /* Treat a reloc against a defined symbol as though it were
6929 actually against the section. */
6930 h
= ((struct elf_link_hash_entry
*)
6931 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
6932 link_order
->u
.reloc
.p
->u
.name
,
6933 false, false, true));
6935 && (h
->root
.type
== bfd_link_hash_defined
6936 || h
->root
.type
== bfd_link_hash_defweak
))
6940 section
= h
->root
.u
.def
.section
;
6941 indx
= section
->output_section
->target_index
;
6942 *rel_hash_ptr
= NULL
;
6943 /* It seems that we ought to add the symbol value to the
6944 addend here, but in practice it has already been added
6945 because it was passed to constructor_callback. */
6946 addend
+= section
->output_section
->vma
+ section
->output_offset
;
6950 /* Setting the index to -2 tells elf_link_output_extsym that
6951 this symbol is used by a reloc. */
6958 if (! ((*info
->callbacks
->unattached_reloc
)
6959 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
6960 (asection
*) NULL
, (bfd_vma
) 0)))
6966 /* If this is an inplace reloc, we must write the addend into the
6968 if (howto
->partial_inplace
&& addend
!= 0)
6971 bfd_reloc_status_type rstat
;
6974 const char *sym_name
;
6976 size
= bfd_get_reloc_size (howto
);
6977 buf
= (bfd_byte
*) bfd_zmalloc (size
);
6978 if (buf
== (bfd_byte
*) NULL
)
6980 rstat
= _bfd_relocate_contents (howto
, output_bfd
, (bfd_vma
) addend
, buf
);
6987 case bfd_reloc_outofrange
:
6990 case bfd_reloc_overflow
:
6991 if (link_order
->type
== bfd_section_reloc_link_order
)
6992 sym_name
= bfd_section_name (output_bfd
,
6993 link_order
->u
.reloc
.p
->u
.section
);
6995 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
6996 if (! ((*info
->callbacks
->reloc_overflow
)
6997 (info
, sym_name
, howto
->name
, addend
,
6998 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
7005 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
7006 (file_ptr
) link_order
->offset
, size
);
7012 /* The address of a reloc is relative to the section in a
7013 relocateable file, and is a virtual address in an executable
7015 offset
= link_order
->offset
;
7016 if (! info
->relocateable
)
7017 offset
+= output_section
->vma
;
7019 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
7021 if (rel_hdr
->sh_type
== SHT_REL
)
7024 Elf_Internal_Rel
*irel
;
7025 Elf_External_Rel
*erel
;
7028 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
7029 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (size
);
7033 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7034 irel
[i
].r_offset
= offset
;
7035 irel
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
7037 erel
= ((Elf_External_Rel
*) rel_hdr
->contents
7038 + elf_section_data (output_section
)->rel_count
);
7040 if (bed
->s
->swap_reloc_out
)
7041 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (bfd_byte
*) erel
);
7043 elf_swap_reloc_out (output_bfd
, irel
, erel
);
7050 Elf_Internal_Rela
*irela
;
7051 Elf_External_Rela
*erela
;
7054 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
7055 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (size
);
7059 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7060 irela
[i
].r_offset
= offset
;
7061 irela
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
7062 irela
[0].r_addend
= addend
;
7064 erela
= ((Elf_External_Rela
*) rel_hdr
->contents
7065 + elf_section_data (output_section
)->rel_count
);
7067 if (bed
->s
->swap_reloca_out
)
7068 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (bfd_byte
*) erela
);
7070 elf_swap_reloca_out (output_bfd
, irela
, erela
);
7073 ++elf_section_data (output_section
)->rel_count
;
7078 /* Allocate a pointer to live in a linker created section. */
7081 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
7083 struct bfd_link_info
*info
;
7084 elf_linker_section_t
*lsect
;
7085 struct elf_link_hash_entry
*h
;
7086 const Elf_Internal_Rela
*rel
;
7088 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
7089 elf_linker_section_pointers_t
*linker_section_ptr
;
7090 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7093 BFD_ASSERT (lsect
!= NULL
);
7095 /* Is this a global symbol? */
7098 /* Has this symbol already been allocated? If so, our work is done. */
7099 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
7104 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
7105 /* Make sure this symbol is output as a dynamic symbol. */
7106 if (h
->dynindx
== -1)
7108 if (! elf_link_record_dynamic_symbol (info
, h
))
7112 if (lsect
->rel_section
)
7113 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
7117 /* Allocation of a pointer to a local symbol. */
7118 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
7120 /* Allocate a table to hold the local symbols if first time. */
7123 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7124 register unsigned int i
;
7127 amt
*= sizeof (elf_linker_section_pointers_t
*);
7128 ptr
= (elf_linker_section_pointers_t
**) bfd_alloc (abfd
, amt
);
7133 elf_local_ptr_offsets (abfd
) = ptr
;
7134 for (i
= 0; i
< num_symbols
; i
++)
7135 ptr
[i
] = (elf_linker_section_pointers_t
*) 0;
7138 /* Has this symbol already been allocated? If so, our work is done. */
7139 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
7144 ptr_linker_section_ptr
= &ptr
[r_symndx
];
7148 /* If we are generating a shared object, we need to
7149 output a R_<xxx>_RELATIVE reloc so that the
7150 dynamic linker can adjust this GOT entry. */
7151 BFD_ASSERT (lsect
->rel_section
!= NULL
);
7152 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
7156 /* Allocate space for a pointer in the linker section, and allocate
7157 a new pointer record from internal memory. */
7158 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
7159 amt
= sizeof (elf_linker_section_pointers_t
);
7160 linker_section_ptr
= (elf_linker_section_pointers_t
*) bfd_alloc (abfd
, amt
);
7162 if (!linker_section_ptr
)
7165 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
7166 linker_section_ptr
->addend
= rel
->r_addend
;
7167 linker_section_ptr
->which
= lsect
->which
;
7168 linker_section_ptr
->written_address_p
= false;
7169 *ptr_linker_section_ptr
= linker_section_ptr
;
7172 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
7174 linker_section_ptr
->offset
= (lsect
->section
->_raw_size
7175 - lsect
->hole_size
+ (ARCH_SIZE
/ 8));
7176 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
7177 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
7178 if (lsect
->sym_hash
)
7180 /* Bump up symbol value if needed. */
7181 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
7183 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
7184 lsect
->sym_hash
->root
.root
.string
,
7185 (long) ARCH_SIZE
/ 8,
7186 (long) lsect
->sym_hash
->root
.u
.def
.value
);
7192 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
7194 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
7198 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7199 lsect
->name
, (long) linker_section_ptr
->offset
,
7200 (long) lsect
->section
->_raw_size
);
7207 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7210 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7213 /* Fill in the address for a pointer generated in a linker section. */
7216 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
,
7217 relocation
, rel
, relative_reloc
)
7220 struct bfd_link_info
*info
;
7221 elf_linker_section_t
*lsect
;
7222 struct elf_link_hash_entry
*h
;
7224 const Elf_Internal_Rela
*rel
;
7227 elf_linker_section_pointers_t
*linker_section_ptr
;
7229 BFD_ASSERT (lsect
!= NULL
);
7233 /* Handle global symbol. */
7234 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7235 (h
->linker_section_pointer
,
7239 BFD_ASSERT (linker_section_ptr
!= NULL
);
7241 if (! elf_hash_table (info
)->dynamic_sections_created
7244 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
7246 /* This is actually a static link, or it is a
7247 -Bsymbolic link and the symbol is defined
7248 locally. We must initialize this entry in the
7251 When doing a dynamic link, we create a .rela.<xxx>
7252 relocation entry to initialize the value. This
7253 is done in the finish_dynamic_symbol routine. */
7254 if (!linker_section_ptr
->written_address_p
)
7256 linker_section_ptr
->written_address_p
= true;
7257 bfd_put_ptr (output_bfd
,
7258 relocation
+ linker_section_ptr
->addend
,
7259 (lsect
->section
->contents
7260 + linker_section_ptr
->offset
));
7266 /* Handle local symbol. */
7267 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7268 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
7269 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
7270 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7271 (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
7275 BFD_ASSERT (linker_section_ptr
!= NULL
);
7277 /* Write out pointer if it hasn't been rewritten out before. */
7278 if (!linker_section_ptr
->written_address_p
)
7280 linker_section_ptr
->written_address_p
= true;
7281 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
7282 lsect
->section
->contents
+ linker_section_ptr
->offset
);
7286 asection
*srel
= lsect
->rel_section
;
7287 Elf_Internal_Rela
*outrel
;
7288 Elf_External_Rela
*erel
;
7289 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7293 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
7294 outrel
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
7297 (*_bfd_error_handler
) (_("Error: out of memory"));
7301 /* We need to generate a relative reloc for the dynamic
7305 srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
7307 lsect
->rel_section
= srel
;
7310 BFD_ASSERT (srel
!= NULL
);
7312 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7313 outrel
[i
].r_offset
= (lsect
->section
->output_section
->vma
7314 + lsect
->section
->output_offset
7315 + linker_section_ptr
->offset
);
7316 outrel
[0].r_info
= ELF_R_INFO (0, relative_reloc
);
7317 outrel
[0].r_addend
= 0;
7318 erel
= (Elf_External_Rela
*) lsect
->section
->contents
;
7319 erel
+= elf_section_data (lsect
->section
)->rel_count
;
7320 elf_swap_reloca_out (output_bfd
, outrel
, erel
);
7321 ++elf_section_data (lsect
->section
)->rel_count
;
7328 relocation
= (lsect
->section
->output_offset
7329 + linker_section_ptr
->offset
7330 - lsect
->hole_offset
7331 - lsect
->sym_offset
);
7335 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7336 lsect
->name
, (long) relocation
, (long) relocation
);
7339 /* Subtract out the addend, because it will get added back in by the normal
7341 return relocation
- linker_section_ptr
->addend
;
7344 /* Garbage collect unused sections. */
7346 static boolean elf_gc_mark
7347 PARAMS ((struct bfd_link_info
*info
, asection
*sec
,
7348 asection
* (*gc_mark_hook
)
7349 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7350 struct elf_link_hash_entry
*, Elf_Internal_Sym
*))));
7352 static boolean elf_gc_sweep
7353 PARAMS ((struct bfd_link_info
*info
,
7354 boolean (*gc_sweep_hook
)
7355 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
7356 const Elf_Internal_Rela
*relocs
))));
7358 static boolean elf_gc_sweep_symbol
7359 PARAMS ((struct elf_link_hash_entry
*h
, PTR idxptr
));
7361 static boolean elf_gc_allocate_got_offsets
7362 PARAMS ((struct elf_link_hash_entry
*h
, PTR offarg
));
7364 static boolean elf_gc_propagate_vtable_entries_used
7365 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
7367 static boolean elf_gc_smash_unused_vtentry_relocs
7368 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
7370 /* The mark phase of garbage collection. For a given section, mark
7371 it and any sections in this section's group, and all the sections
7372 which define symbols to which it refers. */
7375 elf_gc_mark (info
, sec
, gc_mark_hook
)
7376 struct bfd_link_info
*info
;
7378 asection
* (*gc_mark_hook
)
7379 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7380 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
7383 asection
*group_sec
;
7387 /* Mark all the sections in the group. */
7388 group_sec
= elf_section_data (sec
)->next_in_group
;
7389 if (group_sec
&& !group_sec
->gc_mark
)
7390 if (!elf_gc_mark (info
, group_sec
, gc_mark_hook
))
7393 /* Look through the section relocs. */
7395 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
7397 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7398 Elf_Internal_Shdr
*symtab_hdr
;
7399 Elf_Internal_Shdr
*shndx_hdr
;
7400 struct elf_link_hash_entry
**sym_hashes
;
7403 Elf_External_Sym
*locsyms
, *freesyms
= NULL
;
7404 Elf_External_Sym_Shndx
*locsym_shndx
;
7405 bfd
*input_bfd
= sec
->owner
;
7406 struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
7408 /* GCFIXME: how to arrange so that relocs and symbols are not
7409 reread continually? */
7411 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
7412 sym_hashes
= elf_sym_hashes (input_bfd
);
7414 /* Read the local symbols. */
7415 if (elf_bad_symtab (input_bfd
))
7417 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7421 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
7423 if (symtab_hdr
->contents
)
7424 locsyms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
7425 else if (nlocsyms
== 0)
7429 bfd_size_type amt
= nlocsyms
* sizeof (Elf_External_Sym
);
7430 locsyms
= freesyms
= bfd_malloc (amt
);
7431 if (freesyms
== NULL
7432 || bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
7433 || bfd_bread (locsyms
, amt
, input_bfd
) != amt
)
7440 shndx_hdr
= &elf_tdata (input_bfd
)->symtab_shndx_hdr
;
7441 locsym_shndx
= NULL
;
7442 if (shndx_hdr
->sh_size
!= 0 && nlocsyms
!= 0)
7444 bfd_size_type amt
= nlocsyms
* sizeof (Elf_External_Sym_Shndx
);
7445 locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
7446 if (bfd_seek (input_bfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0
7447 || bfd_bread (locsym_shndx
, amt
, input_bfd
) != amt
)
7451 /* Read the relocations. */
7452 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7453 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
7454 info
->keep_memory
));
7455 if (relstart
== NULL
)
7460 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7462 for (rel
= relstart
; rel
< relend
; rel
++)
7464 unsigned long r_symndx
;
7466 struct elf_link_hash_entry
*h
;
7469 r_symndx
= ELF_R_SYM (rel
->r_info
);
7473 if (elf_bad_symtab (sec
->owner
))
7475 elf_swap_symbol_in (input_bfd
,
7477 locsym_shndx
+ (locsym_shndx
? r_symndx
: 0),
7479 if (ELF_ST_BIND (s
.st_info
) == STB_LOCAL
)
7480 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
7483 h
= sym_hashes
[r_symndx
- extsymoff
];
7484 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
7487 else if (r_symndx
>= nlocsyms
)
7489 h
= sym_hashes
[r_symndx
- extsymoff
];
7490 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
7494 elf_swap_symbol_in (input_bfd
,
7496 locsym_shndx
+ (locsym_shndx
? r_symndx
: 0),
7498 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
7501 if (rsec
&& !rsec
->gc_mark
)
7502 if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
7510 if (!info
->keep_memory
)
7520 /* The sweep phase of garbage collection. Remove all garbage sections. */
7523 elf_gc_sweep (info
, gc_sweep_hook
)
7524 struct bfd_link_info
*info
;
7525 boolean (*gc_sweep_hook
)
7526 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
7527 const Elf_Internal_Rela
*relocs
));
7531 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7535 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7538 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7540 /* Keep special sections. Keep .debug sections. */
7541 if ((o
->flags
& SEC_LINKER_CREATED
)
7542 || (o
->flags
& SEC_DEBUGGING
))
7548 /* Skip sweeping sections already excluded. */
7549 if (o
->flags
& SEC_EXCLUDE
)
7552 /* Since this is early in the link process, it is simple
7553 to remove a section from the output. */
7554 o
->flags
|= SEC_EXCLUDE
;
7556 /* But we also have to update some of the relocation
7557 info we collected before. */
7559 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
7561 Elf_Internal_Rela
*internal_relocs
;
7564 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
7565 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
7566 if (internal_relocs
== NULL
)
7569 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
7571 if (!info
->keep_memory
)
7572 free (internal_relocs
);
7580 /* Remove the symbols that were in the swept sections from the dynamic
7581 symbol table. GCFIXME: Anyone know how to get them out of the
7582 static symbol table as well? */
7586 elf_link_hash_traverse (elf_hash_table (info
),
7587 elf_gc_sweep_symbol
,
7590 elf_hash_table (info
)->dynsymcount
= i
;
7596 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7599 elf_gc_sweep_symbol (h
, idxptr
)
7600 struct elf_link_hash_entry
*h
;
7603 int *idx
= (int *) idxptr
;
7605 if (h
->dynindx
!= -1
7606 && ((h
->root
.type
!= bfd_link_hash_defined
7607 && h
->root
.type
!= bfd_link_hash_defweak
)
7608 || h
->root
.u
.def
.section
->gc_mark
))
7609 h
->dynindx
= (*idx
)++;
7614 /* Propogate collected vtable information. This is called through
7615 elf_link_hash_traverse. */
7618 elf_gc_propagate_vtable_entries_used (h
, okp
)
7619 struct elf_link_hash_entry
*h
;
7622 /* Those that are not vtables. */
7623 if (h
->vtable_parent
== NULL
)
7626 /* Those vtables that do not have parents, we cannot merge. */
7627 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
7630 /* If we've already been done, exit. */
7631 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
7634 /* Make sure the parent's table is up to date. */
7635 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
7637 if (h
->vtable_entries_used
== NULL
)
7639 /* None of this table's entries were referenced. Re-use the
7641 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
7642 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
7649 /* Or the parent's entries into ours. */
7650 cu
= h
->vtable_entries_used
;
7652 pu
= h
->vtable_parent
->vtable_entries_used
;
7655 asection
*sec
= h
->root
.u
.def
.section
;
7656 struct elf_backend_data
*bed
= get_elf_backend_data (sec
->owner
);
7657 int file_align
= bed
->s
->file_align
;
7659 n
= h
->vtable_parent
->vtable_entries_size
/ file_align
;
7674 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
7675 struct elf_link_hash_entry
*h
;
7679 bfd_vma hstart
, hend
;
7680 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
7681 struct elf_backend_data
*bed
;
7684 /* Take care of both those symbols that do not describe vtables as
7685 well as those that are not loaded. */
7686 if (h
->vtable_parent
== NULL
)
7689 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
7690 || h
->root
.type
== bfd_link_hash_defweak
);
7692 sec
= h
->root
.u
.def
.section
;
7693 hstart
= h
->root
.u
.def
.value
;
7694 hend
= hstart
+ h
->size
;
7696 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7697 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true));
7699 return *(boolean
*) okp
= false;
7700 bed
= get_elf_backend_data (sec
->owner
);
7701 file_align
= bed
->s
->file_align
;
7703 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7705 for (rel
= relstart
; rel
< relend
; ++rel
)
7706 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
7708 /* If the entry is in use, do nothing. */
7709 if (h
->vtable_entries_used
7710 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
7712 bfd_vma entry
= (rel
->r_offset
- hstart
) / file_align
;
7713 if (h
->vtable_entries_used
[entry
])
7716 /* Otherwise, kill it. */
7717 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
7723 /* Do mark and sweep of unused sections. */
7726 elf_gc_sections (abfd
, info
)
7728 struct bfd_link_info
*info
;
7732 asection
* (*gc_mark_hook
)
7733 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7734 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
7736 if (!get_elf_backend_data (abfd
)->can_gc_sections
7737 || info
->relocateable
|| info
->emitrelocations
7738 || elf_hash_table (info
)->dynamic_sections_created
)
7741 /* Apply transitive closure to the vtable entry usage info. */
7742 elf_link_hash_traverse (elf_hash_table (info
),
7743 elf_gc_propagate_vtable_entries_used
,
7748 /* Kill the vtable relocations that were not used. */
7749 elf_link_hash_traverse (elf_hash_table (info
),
7750 elf_gc_smash_unused_vtentry_relocs
,
7755 /* Grovel through relocs to find out who stays ... */
7757 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
7758 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7762 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7765 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7767 if (o
->flags
& SEC_KEEP
)
7768 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
7773 /* ... and mark SEC_EXCLUDE for those that go. */
7774 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
7780 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7783 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
7786 struct elf_link_hash_entry
*h
;
7789 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
7790 struct elf_link_hash_entry
**search
, *child
;
7791 bfd_size_type extsymcount
;
7793 /* The sh_info field of the symtab header tells us where the
7794 external symbols start. We don't care about the local symbols at
7796 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
7797 if (!elf_bad_symtab (abfd
))
7798 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7800 sym_hashes
= elf_sym_hashes (abfd
);
7801 sym_hashes_end
= sym_hashes
+ extsymcount
;
7803 /* Hunt down the child symbol, which is in this section at the same
7804 offset as the relocation. */
7805 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
7807 if ((child
= *search
) != NULL
7808 && (child
->root
.type
== bfd_link_hash_defined
7809 || child
->root
.type
== bfd_link_hash_defweak
)
7810 && child
->root
.u
.def
.section
== sec
7811 && child
->root
.u
.def
.value
== offset
)
7815 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
7816 bfd_archive_filename (abfd
), sec
->name
,
7817 (unsigned long) offset
);
7818 bfd_set_error (bfd_error_invalid_operation
);
7824 /* This *should* only be the absolute section. It could potentially
7825 be that someone has defined a non-global vtable though, which
7826 would be bad. It isn't worth paging in the local symbols to be
7827 sure though; that case should simply be handled by the assembler. */
7829 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
7832 child
->vtable_parent
= h
;
7837 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7840 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
7841 bfd
*abfd ATTRIBUTE_UNUSED
;
7842 asection
*sec ATTRIBUTE_UNUSED
;
7843 struct elf_link_hash_entry
*h
;
7846 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7847 int file_align
= bed
->s
->file_align
;
7849 if (addend
>= h
->vtable_entries_size
)
7852 boolean
*ptr
= h
->vtable_entries_used
;
7854 /* While the symbol is undefined, we have to be prepared to handle
7856 if (h
->root
.type
== bfd_link_hash_undefined
)
7863 /* Oops! We've got a reference past the defined end of
7864 the table. This is probably a bug -- shall we warn? */
7869 /* Allocate one extra entry for use as a "done" flag for the
7870 consolidation pass. */
7871 bytes
= (size
/ file_align
+ 1) * sizeof (boolean
);
7875 ptr
= bfd_realloc (ptr
- 1, (bfd_size_type
) bytes
);
7881 oldbytes
= ((h
->vtable_entries_size
/ file_align
+ 1)
7882 * sizeof (boolean
));
7883 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
7887 ptr
= bfd_zmalloc ((bfd_size_type
) bytes
);
7892 /* And arrange for that done flag to be at index -1. */
7893 h
->vtable_entries_used
= ptr
+ 1;
7894 h
->vtable_entries_size
= size
;
7897 h
->vtable_entries_used
[addend
/ file_align
] = true;
7902 /* And an accompanying bit to work out final got entry offsets once
7903 we're done. Should be called from final_link. */
7906 elf_gc_common_finalize_got_offsets (abfd
, info
)
7908 struct bfd_link_info
*info
;
7911 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7914 /* The GOT offset is relative to the .got section, but the GOT header is
7915 put into the .got.plt section, if the backend uses it. */
7916 if (bed
->want_got_plt
)
7919 gotoff
= bed
->got_header_size
;
7921 /* Do the local .got entries first. */
7922 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
7924 bfd_signed_vma
*local_got
;
7925 bfd_size_type j
, locsymcount
;
7926 Elf_Internal_Shdr
*symtab_hdr
;
7928 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
7931 local_got
= elf_local_got_refcounts (i
);
7935 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
7936 if (elf_bad_symtab (i
))
7937 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7939 locsymcount
= symtab_hdr
->sh_info
;
7941 for (j
= 0; j
< locsymcount
; ++j
)
7943 if (local_got
[j
] > 0)
7945 local_got
[j
] = gotoff
;
7946 gotoff
+= ARCH_SIZE
/ 8;
7949 local_got
[j
] = (bfd_vma
) -1;
7953 /* Then the global .got entries. .plt refcounts are handled by
7954 adjust_dynamic_symbol */
7955 elf_link_hash_traverse (elf_hash_table (info
),
7956 elf_gc_allocate_got_offsets
,
7961 /* We need a special top-level link routine to convert got reference counts
7962 to real got offsets. */
7965 elf_gc_allocate_got_offsets (h
, offarg
)
7966 struct elf_link_hash_entry
*h
;
7969 bfd_vma
*off
= (bfd_vma
*) offarg
;
7971 if (h
->got
.refcount
> 0)
7973 h
->got
.offset
= off
[0];
7974 off
[0] += ARCH_SIZE
/ 8;
7977 h
->got
.offset
= (bfd_vma
) -1;
7982 /* Many folk need no more in the way of final link than this, once
7983 got entry reference counting is enabled. */
7986 elf_gc_common_final_link (abfd
, info
)
7988 struct bfd_link_info
*info
;
7990 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
7993 /* Invoke the regular ELF backend linker to do all the work. */
7994 return elf_bfd_final_link (abfd
, info
);
7997 /* This function will be called though elf_link_hash_traverse to store
7998 all hash value of the exported symbols in an array. */
8001 elf_collect_hash_codes (h
, data
)
8002 struct elf_link_hash_entry
*h
;
8005 unsigned long **valuep
= (unsigned long **) data
;
8011 /* Ignore indirect symbols. These are added by the versioning code. */
8012 if (h
->dynindx
== -1)
8015 name
= h
->root
.root
.string
;
8016 p
= strchr (name
, ELF_VER_CHR
);
8019 alc
= bfd_malloc ((bfd_size_type
) (p
- name
+ 1));
8020 memcpy (alc
, name
, (size_t) (p
- name
));
8021 alc
[p
- name
] = '\0';
8025 /* Compute the hash value. */
8026 ha
= bfd_elf_hash (name
);
8028 /* Store the found hash value in the array given as the argument. */
8031 /* And store it in the struct so that we can put it in the hash table
8033 h
->elf_hash_value
= ha
;
8042 elf_reloc_symbol_deleted_p (offset
, cookie
)
8046 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
8048 if (rcookie
->bad_symtab
)
8049 rcookie
->rel
= rcookie
->rels
;
8051 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
8053 unsigned long r_symndx
= ELF_R_SYM (rcookie
->rel
->r_info
);
8054 Elf_Internal_Sym isym
;
8056 if (! rcookie
->bad_symtab
)
8057 if (rcookie
->rel
->r_offset
> offset
)
8059 if (rcookie
->rel
->r_offset
!= offset
)
8062 if (rcookie
->locsyms
&& r_symndx
< rcookie
->locsymcount
)
8064 Elf_External_Sym
*lsym
;
8065 Elf_External_Sym_Shndx
*lshndx
;
8067 lsym
= (Elf_External_Sym
*) rcookie
->locsyms
+ r_symndx
;
8068 lshndx
= (Elf_External_Sym_Shndx
*) rcookie
->locsym_shndx
;
8071 elf_swap_symbol_in (rcookie
->abfd
, lsym
, lshndx
, &isym
);
8074 if (r_symndx
>= rcookie
->locsymcount
8075 || (rcookie
->locsyms
8076 && ELF_ST_BIND (isym
.st_info
) != STB_LOCAL
))
8078 struct elf_link_hash_entry
*h
;
8080 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
8082 while (h
->root
.type
== bfd_link_hash_indirect
8083 || h
->root
.type
== bfd_link_hash_warning
)
8084 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8086 if ((h
->root
.type
== bfd_link_hash_defined
8087 || h
->root
.type
== bfd_link_hash_defweak
)
8088 && ! bfd_is_abs_section (h
->root
.u
.def
.section
)
8089 && bfd_is_abs_section (h
->root
.u
.def
.section
8095 else if (rcookie
->locsyms
)
8097 /* It's not a relocation against a global symbol,
8098 but it could be a relocation against a local
8099 symbol for a discarded section. */
8102 /* Need to: get the symbol; get the section. */
8103 if (isym
.st_shndx
< SHN_LORESERVE
|| isym
.st_shndx
> SHN_HIRESERVE
)
8105 isec
= section_from_elf_index (rcookie
->abfd
, isym
.st_shndx
);
8107 && ! bfd_is_abs_section (isec
)
8108 && bfd_is_abs_section (isec
->output_section
))
8117 /* Discard unneeded references to discarded sections.
8118 Returns true if any section's size was changed. */
8119 /* This function assumes that the relocations are in sorted order,
8120 which is true for all known assemblers. */
8123 elf_bfd_discard_info (output_bfd
, info
)
8125 struct bfd_link_info
*info
;
8127 struct elf_reloc_cookie cookie
;
8128 asection
*stab
, *eh
, *ehdr
;
8129 Elf_Internal_Shdr
*symtab_hdr
;
8130 Elf_Internal_Shdr
*shndx_hdr
;
8131 Elf_External_Sym
*freesyms
;
8132 struct elf_backend_data
*bed
;
8134 boolean ret
= false;
8135 boolean strip
= info
->strip
== strip_all
|| info
->strip
== strip_debugger
;
8137 if (info
->relocateable
8138 || info
->traditional_format
8139 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
8140 || ! is_elf_hash_table (info
))
8144 if (elf_hash_table (info
)->dynobj
!= NULL
)
8145 ehdr
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
8148 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
8150 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
8153 bed
= get_elf_backend_data (abfd
);
8155 if ((abfd
->flags
& DYNAMIC
) != 0)
8161 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
8162 if (eh
&& eh
->_raw_size
== 0)
8166 stab
= strip
? NULL
: bfd_get_section_by_name (abfd
, ".stab");
8167 if ((! stab
|| elf_section_data(stab
)->sec_info_type
!= ELF_INFO_TYPE_STABS
)
8169 && (strip
|| ! bed
->elf_backend_discard_info
))
8172 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8173 shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
8176 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
8177 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
8178 if (cookie
.bad_symtab
)
8180 cookie
.locsymcount
=
8181 symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
8182 cookie
.extsymoff
= 0;
8186 cookie
.locsymcount
= symtab_hdr
->sh_info
;
8187 cookie
.extsymoff
= symtab_hdr
->sh_info
;
8191 if (symtab_hdr
->contents
)
8192 cookie
.locsyms
= (void *) symtab_hdr
->contents
;
8193 else if (cookie
.locsymcount
== 0)
8194 cookie
.locsyms
= NULL
;
8197 bfd_size_type amt
= cookie
.locsymcount
* sizeof (Elf_External_Sym
);
8198 cookie
.locsyms
= bfd_malloc (amt
);
8199 if (cookie
.locsyms
== NULL
)
8201 freesyms
= cookie
.locsyms
;
8202 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
8203 || bfd_bread (cookie
.locsyms
, amt
, abfd
) != amt
)
8206 free (cookie
.locsyms
);
8211 cookie
.locsym_shndx
= NULL
;
8212 if (shndx_hdr
->sh_size
!= 0 && cookie
.locsymcount
!= 0)
8215 amt
= cookie
.locsymcount
* sizeof (Elf_External_Sym_Shndx
);
8216 cookie
.locsym_shndx
= bfd_malloc (amt
);
8217 if (cookie
.locsym_shndx
== NULL
)
8218 goto error_ret_free_loc
;
8219 if (bfd_seek (abfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0
8220 || bfd_bread (cookie
.locsym_shndx
, amt
, abfd
) != amt
)
8222 free (cookie
.locsym_shndx
);
8223 goto error_ret_free_loc
;
8229 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8230 (abfd
, stab
, (PTR
) NULL
,
8231 (Elf_Internal_Rela
*) NULL
,
8232 info
->keep_memory
));
8235 cookie
.rel
= cookie
.rels
;
8237 cookie
.rels
+ stab
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8238 if (_bfd_discard_section_stabs (abfd
, stab
,
8239 elf_section_data (stab
)->sec_info
,
8240 elf_reloc_symbol_deleted_p
,
8243 if (! info
->keep_memory
)
8252 cookie
.relend
= NULL
;
8253 if (eh
->reloc_count
)
8254 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8255 (abfd
, eh
, (PTR
) NULL
,
8256 (Elf_Internal_Rela
*) NULL
,
8257 info
->keep_memory
));
8260 cookie
.rel
= cookie
.rels
;
8262 cookie
.rels
+ eh
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8264 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
, ehdr
,
8265 elf_reloc_symbol_deleted_p
,
8268 if (! info
->keep_memory
)
8272 if (bed
->elf_backend_discard_info
)
8274 if (bed
->elf_backend_discard_info (abfd
, &cookie
, info
))
8278 if (cookie
.locsym_shndx
!= NULL
)
8279 free (cookie
.locsym_shndx
);
8281 if (freesyms
!= NULL
)
8286 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
,
8293 elf_section_ignore_discarded_relocs (sec
)
8296 switch (elf_section_data (sec
)->sec_info_type
)
8298 case ELF_INFO_TYPE_STABS
:
8299 case ELF_INFO_TYPE_EH_FRAME
:
8304 if ((get_elf_backend_data (sec
->owner
)->elf_backend_ignore_discarded_relocs
8306 && (*get_elf_backend_data (sec
->owner
)
8307 ->elf_backend_ignore_discarded_relocs
) (sec
))