2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info
*info
;
30 struct bfd_elf_version_tree
*verdefs
;
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd
*, Elf_Internal_Sym
*));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd
*, carsym
*));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd
*, struct bfd_link_info
*));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd
*, struct bfd_link_info
*));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd
*, struct bfd_link_info
*, const char *,
43 Elf_Internal_Sym
*, asection
**, bfd_vma
*,
44 struct elf_link_hash_entry
**, boolean
*, boolean
*,
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
48 const char *, Elf_Internal_Sym
*, asection
**, bfd_vma
*,
49 boolean
*, boolean
, boolean
));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry
*, PTR
));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd
*, struct bfd_link_info
*));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry
*, PTR
));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry
*, PTR
));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry
*, PTR
));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry
*, PTR
));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry
*, PTR
));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd
*, Elf_Internal_Shdr
*, PTR
, Elf_Internal_Rela
*));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info
*));
70 static void elf_link_output_relocs
71 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd
*, Elf_Internal_Shdr
*, unsigned int,
76 struct elf_link_hash_entry
**));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd
*, struct bfd_link_info
*, asection
**));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection
*));
86 /* Given an ELF BFD, add symbols to the global hash table as
90 elf_bfd_link_add_symbols (abfd
, info
)
92 struct bfd_link_info
*info
;
94 switch (bfd_get_format (abfd
))
97 return elf_link_add_object_symbols (abfd
, info
);
99 return elf_link_add_archive_symbols (abfd
, info
);
101 bfd_set_error (bfd_error_wrong_format
);
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
108 is_global_data_symbol_definition (abfd
, sym
)
109 bfd
* abfd ATTRIBUTE_UNUSED
;
110 Elf_Internal_Sym
* sym
;
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
114 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
121 /* If the section is undefined, then so is the symbol. */
122 if (sym
->st_shndx
== SHN_UNDEF
)
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym
->st_shndx
== SHN_COMMON
)
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
133 /* FIXME - this function is not coded yet:
135 return _bfd_is_global_symbol_definition (abfd, sym);
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
149 elf_link_is_defined_archive_symbol (abfd
, symdef
)
153 Elf_Internal_Shdr
* hdr
;
154 Elf_External_Sym
* esym
;
155 Elf_External_Sym
* esymend
;
156 Elf_External_Sym
* buf
= NULL
;
157 bfd_size_type symcount
;
158 bfd_size_type extsymcount
;
159 bfd_size_type extsymoff
;
160 boolean result
= false;
164 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
165 if (abfd
== (bfd
*) NULL
)
168 if (! bfd_check_format (abfd
, bfd_object
))
171 /* If we have already included the element containing this symbol in the
172 link then we do not need to include it again. Just claim that any symbol
173 it contains is not a definition, so that our caller will not decide to
174 (re)include this element. */
175 if (abfd
->archive_pass
)
178 /* Select the appropriate symbol table. */
179 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
180 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
182 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
184 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
186 /* The sh_info field of the symtab header tells us where the
187 external symbols start. We don't care about the local symbols. */
188 if (elf_bad_symtab (abfd
))
190 extsymcount
= symcount
;
195 extsymcount
= symcount
- hdr
->sh_info
;
196 extsymoff
= hdr
->sh_info
;
199 amt
= extsymcount
* sizeof (Elf_External_Sym
);
200 buf
= (Elf_External_Sym
*) bfd_malloc (amt
);
201 if (buf
== NULL
&& extsymcount
!= 0)
204 /* Read in the symbol table.
205 FIXME: This ought to be cached somewhere. */
206 pos
= hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
);
207 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
208 || bfd_bread ((PTR
) buf
, amt
, abfd
) != amt
)
214 /* Scan the symbol table looking for SYMDEF. */
215 esymend
= buf
+ extsymcount
;
220 Elf_Internal_Sym sym
;
223 elf_swap_symbol_in (abfd
, esym
, & sym
);
225 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
226 if (name
== (const char *) NULL
)
229 if (strcmp (name
, symdef
->name
) == 0)
231 result
= is_global_data_symbol_definition (abfd
, & sym
);
241 /* Add symbols from an ELF archive file to the linker hash table. We
242 don't use _bfd_generic_link_add_archive_symbols because of a
243 problem which arises on UnixWare. The UnixWare libc.so is an
244 archive which includes an entry libc.so.1 which defines a bunch of
245 symbols. The libc.so archive also includes a number of other
246 object files, which also define symbols, some of which are the same
247 as those defined in libc.so.1. Correct linking requires that we
248 consider each object file in turn, and include it if it defines any
249 symbols we need. _bfd_generic_link_add_archive_symbols does not do
250 this; it looks through the list of undefined symbols, and includes
251 any object file which defines them. When this algorithm is used on
252 UnixWare, it winds up pulling in libc.so.1 early and defining a
253 bunch of symbols. This means that some of the other objects in the
254 archive are not included in the link, which is incorrect since they
255 precede libc.so.1 in the archive.
257 Fortunately, ELF archive handling is simpler than that done by
258 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
259 oddities. In ELF, if we find a symbol in the archive map, and the
260 symbol is currently undefined, we know that we must pull in that
263 Unfortunately, we do have to make multiple passes over the symbol
264 table until nothing further is resolved. */
267 elf_link_add_archive_symbols (abfd
, info
)
269 struct bfd_link_info
*info
;
272 boolean
*defined
= NULL
;
273 boolean
*included
= NULL
;
278 if (! bfd_has_map (abfd
))
280 /* An empty archive is a special case. */
281 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
283 bfd_set_error (bfd_error_no_armap
);
287 /* Keep track of all symbols we know to be already defined, and all
288 files we know to be already included. This is to speed up the
289 second and subsequent passes. */
290 c
= bfd_ardata (abfd
)->symdef_count
;
294 amt
*= sizeof (boolean
);
295 defined
= (boolean
*) bfd_malloc (amt
);
296 included
= (boolean
*) bfd_malloc (amt
);
297 if (defined
== (boolean
*) NULL
|| included
== (boolean
*) NULL
)
299 memset (defined
, 0, (size_t) amt
);
300 memset (included
, 0, (size_t) amt
);
302 symdefs
= bfd_ardata (abfd
)->symdefs
;
315 symdefend
= symdef
+ c
;
316 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
318 struct elf_link_hash_entry
*h
;
320 struct bfd_link_hash_entry
*undefs_tail
;
323 if (defined
[i
] || included
[i
])
325 if (symdef
->file_offset
== last
)
331 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
332 false, false, false);
338 /* If this is a default version (the name contains @@),
339 look up the symbol again without the version. The
340 effect is that references to the symbol without the
341 version will be matched by the default symbol in the
344 p
= strchr (symdef
->name
, ELF_VER_CHR
);
345 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
348 copy
= bfd_alloc (abfd
, (bfd_size_type
) (p
- symdef
->name
+ 1));
351 memcpy (copy
, symdef
->name
, (size_t) (p
- symdef
->name
));
352 copy
[p
- symdef
->name
] = '\0';
354 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
355 false, false, false);
357 bfd_release (abfd
, copy
);
363 if (h
->root
.type
== bfd_link_hash_common
)
365 /* We currently have a common symbol. The archive map contains
366 a reference to this symbol, so we may want to include it. We
367 only want to include it however, if this archive element
368 contains a definition of the symbol, not just another common
371 Unfortunately some archivers (including GNU ar) will put
372 declarations of common symbols into their archive maps, as
373 well as real definitions, so we cannot just go by the archive
374 map alone. Instead we must read in the element's symbol
375 table and check that to see what kind of symbol definition
377 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
380 else if (h
->root
.type
!= bfd_link_hash_undefined
)
382 if (h
->root
.type
!= bfd_link_hash_undefweak
)
387 /* We need to include this archive member. */
388 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
389 if (element
== (bfd
*) NULL
)
392 if (! bfd_check_format (element
, bfd_object
))
395 /* Doublecheck that we have not included this object
396 already--it should be impossible, but there may be
397 something wrong with the archive. */
398 if (element
->archive_pass
!= 0)
400 bfd_set_error (bfd_error_bad_value
);
403 element
->archive_pass
= 1;
405 undefs_tail
= info
->hash
->undefs_tail
;
407 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
410 if (! elf_link_add_object_symbols (element
, info
))
413 /* If there are any new undefined symbols, we need to make
414 another pass through the archive in order to see whether
415 they can be defined. FIXME: This isn't perfect, because
416 common symbols wind up on undefs_tail and because an
417 undefined symbol which is defined later on in this pass
418 does not require another pass. This isn't a bug, but it
419 does make the code less efficient than it could be. */
420 if (undefs_tail
!= info
->hash
->undefs_tail
)
423 /* Look backward to mark all symbols from this object file
424 which we have already seen in this pass. */
428 included
[mark
] = true;
433 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
435 /* We mark subsequent symbols from this object file as we go
436 on through the loop. */
437 last
= symdef
->file_offset
;
448 if (defined
!= (boolean
*) NULL
)
450 if (included
!= (boolean
*) NULL
)
455 /* This function is called when we want to define a new symbol. It
456 handles the various cases which arise when we find a definition in
457 a dynamic object, or when there is already a definition in a
458 dynamic object. The new symbol is described by NAME, SYM, PSEC,
459 and PVALUE. We set SYM_HASH to the hash table entry. We set
460 OVERRIDE if the old symbol is overriding a new definition. We set
461 TYPE_CHANGE_OK if it is OK for the type to change. We set
462 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
463 change, we mean that we shouldn't warn if the type or size does
464 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
468 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
469 override
, type_change_ok
, size_change_ok
, dt_needed
)
471 struct bfd_link_info
*info
;
473 Elf_Internal_Sym
*sym
;
476 struct elf_link_hash_entry
**sym_hash
;
478 boolean
*type_change_ok
;
479 boolean
*size_change_ok
;
483 struct elf_link_hash_entry
*h
;
486 boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
491 bind
= ELF_ST_BIND (sym
->st_info
);
493 if (! bfd_is_und_section (sec
))
494 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, false, false);
496 h
= ((struct elf_link_hash_entry
*)
497 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, false, false));
502 /* This code is for coping with dynamic objects, and is only useful
503 if we are doing an ELF link. */
504 if (info
->hash
->creator
!= abfd
->xvec
)
507 /* For merging, we only care about real symbols. */
509 while (h
->root
.type
== bfd_link_hash_indirect
510 || h
->root
.type
== bfd_link_hash_warning
)
511 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
513 /* If we just created the symbol, mark it as being an ELF symbol.
514 Other than that, there is nothing to do--there is no merge issue
515 with a newly defined symbol--so we just return. */
517 if (h
->root
.type
== bfd_link_hash_new
)
519 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
523 /* OLDBFD is a BFD associated with the existing symbol. */
525 switch (h
->root
.type
)
531 case bfd_link_hash_undefined
:
532 case bfd_link_hash_undefweak
:
533 oldbfd
= h
->root
.u
.undef
.abfd
;
536 case bfd_link_hash_defined
:
537 case bfd_link_hash_defweak
:
538 oldbfd
= h
->root
.u
.def
.section
->owner
;
541 case bfd_link_hash_common
:
542 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
546 /* In cases involving weak versioned symbols, we may wind up trying
547 to merge a symbol with itself. Catch that here, to avoid the
548 confusion that results if we try to override a symbol with
549 itself. The additional tests catch cases like
550 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
551 dynamic object, which we do want to handle here. */
553 && ((abfd
->flags
& DYNAMIC
) == 0
554 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
557 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
558 respectively, is from a dynamic object. */
560 if ((abfd
->flags
& DYNAMIC
) != 0)
566 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
571 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
572 indices used by MIPS ELF. */
573 switch (h
->root
.type
)
579 case bfd_link_hash_defined
:
580 case bfd_link_hash_defweak
:
581 hsec
= h
->root
.u
.def
.section
;
584 case bfd_link_hash_common
:
585 hsec
= h
->root
.u
.c
.p
->section
;
592 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
595 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
596 respectively, appear to be a definition rather than reference. */
598 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
603 if (h
->root
.type
== bfd_link_hash_undefined
604 || h
->root
.type
== bfd_link_hash_undefweak
605 || h
->root
.type
== bfd_link_hash_common
)
610 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
611 symbol, respectively, appears to be a common symbol in a dynamic
612 object. If a symbol appears in an uninitialized section, and is
613 not weak, and is not a function, then it may be a common symbol
614 which was resolved when the dynamic object was created. We want
615 to treat such symbols specially, because they raise special
616 considerations when setting the symbol size: if the symbol
617 appears as a common symbol in a regular object, and the size in
618 the regular object is larger, we must make sure that we use the
619 larger size. This problematic case can always be avoided in C,
620 but it must be handled correctly when using Fortran shared
623 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
624 likewise for OLDDYNCOMMON and OLDDEF.
626 Note that this test is just a heuristic, and that it is quite
627 possible to have an uninitialized symbol in a shared object which
628 is really a definition, rather than a common symbol. This could
629 lead to some minor confusion when the symbol really is a common
630 symbol in some regular object. However, I think it will be
635 && (sec
->flags
& SEC_ALLOC
) != 0
636 && (sec
->flags
& SEC_LOAD
) == 0
639 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
642 newdyncommon
= false;
646 && h
->root
.type
== bfd_link_hash_defined
647 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
648 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
649 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
651 && h
->type
!= STT_FUNC
)
654 olddyncommon
= false;
656 /* It's OK to change the type if either the existing symbol or the
657 new symbol is weak unless it comes from a DT_NEEDED entry of
658 a shared object, in which case, the DT_NEEDED entry may not be
659 required at the run time. */
661 if ((! dt_needed
&& h
->root
.type
== bfd_link_hash_defweak
)
662 || h
->root
.type
== bfd_link_hash_undefweak
664 *type_change_ok
= true;
666 /* It's OK to change the size if either the existing symbol or the
667 new symbol is weak, or if the old symbol is undefined. */
670 || h
->root
.type
== bfd_link_hash_undefined
)
671 *size_change_ok
= true;
673 /* If both the old and the new symbols look like common symbols in a
674 dynamic object, set the size of the symbol to the larger of the
679 && sym
->st_size
!= h
->size
)
681 /* Since we think we have two common symbols, issue a multiple
682 common warning if desired. Note that we only warn if the
683 size is different. If the size is the same, we simply let
684 the old symbol override the new one as normally happens with
685 symbols defined in dynamic objects. */
687 if (! ((*info
->callbacks
->multiple_common
)
688 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
689 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
692 if (sym
->st_size
> h
->size
)
693 h
->size
= sym
->st_size
;
695 *size_change_ok
= true;
698 /* If we are looking at a dynamic object, and we have found a
699 definition, we need to see if the symbol was already defined by
700 some other object. If so, we want to use the existing
701 definition, and we do not want to report a multiple symbol
702 definition error; we do this by clobbering *PSEC to be
705 We treat a common symbol as a definition if the symbol in the
706 shared library is a function, since common symbols always
707 represent variables; this can cause confusion in principle, but
708 any such confusion would seem to indicate an erroneous program or
709 shared library. We also permit a common symbol in a regular
710 object to override a weak symbol in a shared object.
712 We prefer a non-weak definition in a shared library to a weak
713 definition in the executable unless it comes from a DT_NEEDED
714 entry of a shared object, in which case, the DT_NEEDED entry
715 may not be required at the run time. */
720 || (h
->root
.type
== bfd_link_hash_common
722 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)))
723 && (h
->root
.type
!= bfd_link_hash_defweak
725 || bind
== STB_WEAK
))
729 newdyncommon
= false;
731 *psec
= sec
= bfd_und_section_ptr
;
732 *size_change_ok
= true;
734 /* If we get here when the old symbol is a common symbol, then
735 we are explicitly letting it override a weak symbol or
736 function in a dynamic object, and we don't want to warn about
737 a type change. If the old symbol is a defined symbol, a type
738 change warning may still be appropriate. */
740 if (h
->root
.type
== bfd_link_hash_common
)
741 *type_change_ok
= true;
744 /* Handle the special case of an old common symbol merging with a
745 new symbol which looks like a common symbol in a shared object.
746 We change *PSEC and *PVALUE to make the new symbol look like a
747 common symbol, and let _bfd_generic_link_add_one_symbol will do
751 && h
->root
.type
== bfd_link_hash_common
)
755 newdyncommon
= false;
756 *pvalue
= sym
->st_size
;
757 *psec
= sec
= bfd_com_section_ptr
;
758 *size_change_ok
= true;
761 /* If the old symbol is from a dynamic object, and the new symbol is
762 a definition which is not from a dynamic object, then the new
763 symbol overrides the old symbol. Symbols from regular files
764 always take precedence over symbols from dynamic objects, even if
765 they are defined after the dynamic object in the link.
767 As above, we again permit a common symbol in a regular object to
768 override a definition in a shared object if the shared object
769 symbol is a function or is weak.
771 As above, we permit a non-weak definition in a shared object to
772 override a weak definition in a regular object. */
776 || (bfd_is_com_section (sec
)
777 && (h
->root
.type
== bfd_link_hash_defweak
778 || h
->type
== STT_FUNC
)))
781 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
783 || h
->root
.type
== bfd_link_hash_defweak
))
785 /* Change the hash table entry to undefined, and let
786 _bfd_generic_link_add_one_symbol do the right thing with the
789 h
->root
.type
= bfd_link_hash_undefined
;
790 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
791 *size_change_ok
= true;
794 olddyncommon
= false;
796 /* We again permit a type change when a common symbol may be
797 overriding a function. */
799 if (bfd_is_com_section (sec
))
800 *type_change_ok
= true;
802 /* This union may have been set to be non-NULL when this symbol
803 was seen in a dynamic object. We must force the union to be
804 NULL, so that it is correct for a regular symbol. */
806 h
->verinfo
.vertree
= NULL
;
808 /* In this special case, if H is the target of an indirection,
809 we want the caller to frob with H rather than with the
810 indirect symbol. That will permit the caller to redefine the
811 target of the indirection, rather than the indirect symbol
812 itself. FIXME: This will break the -y option if we store a
813 symbol with a different name. */
817 /* Handle the special case of a new common symbol merging with an
818 old symbol that looks like it might be a common symbol defined in
819 a shared object. Note that we have already handled the case in
820 which a new common symbol should simply override the definition
821 in the shared library. */
824 && bfd_is_com_section (sec
)
827 /* It would be best if we could set the hash table entry to a
828 common symbol, but we don't know what to use for the section
830 if (! ((*info
->callbacks
->multiple_common
)
831 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
832 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
835 /* If the predumed common symbol in the dynamic object is
836 larger, pretend that the new symbol has its size. */
838 if (h
->size
> *pvalue
)
841 /* FIXME: We no longer know the alignment required by the symbol
842 in the dynamic object, so we just wind up using the one from
843 the regular object. */
846 olddyncommon
= false;
848 h
->root
.type
= bfd_link_hash_undefined
;
849 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
851 *size_change_ok
= true;
852 *type_change_ok
= true;
854 h
->verinfo
.vertree
= NULL
;
857 /* Handle the special case of a weak definition in a regular object
858 followed by a non-weak definition in a shared object. In this
859 case, we prefer the definition in the shared object unless it
860 comes from a DT_NEEDED entry of a shared object, in which case,
861 the DT_NEEDED entry may not be required at the run time. */
864 && h
->root
.type
== bfd_link_hash_defweak
869 /* To make this work we have to frob the flags so that the rest
870 of the code does not think we are using the regular
872 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
873 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
874 else if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
875 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
876 h
->elf_link_hash_flags
&= ~ (ELF_LINK_HASH_DEF_REGULAR
877 | ELF_LINK_HASH_DEF_DYNAMIC
);
879 /* If H is the target of an indirection, we want the caller to
880 use H rather than the indirect symbol. Otherwise if we are
881 defining a new indirect symbol we will wind up attaching it
882 to the entry we are overriding. */
886 /* Handle the special case of a non-weak definition in a shared
887 object followed by a weak definition in a regular object. In
888 this case we prefer to definition in the shared object. To make
889 this work we have to tell the caller to not treat the new symbol
893 && h
->root
.type
!= bfd_link_hash_defweak
902 /* This function is called to create an indirect symbol from the
903 default for the symbol with the default version if needed. The
904 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
905 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
906 indicates if it comes from a DT_NEEDED entry of a shared object. */
909 elf_add_default_symbol (abfd
, info
, h
, name
, sym
, sec
, value
,
910 dynsym
, override
, dt_needed
)
912 struct bfd_link_info
*info
;
913 struct elf_link_hash_entry
*h
;
915 Elf_Internal_Sym
*sym
;
922 boolean type_change_ok
;
923 boolean size_change_ok
;
925 struct elf_link_hash_entry
*hi
;
926 struct elf_backend_data
*bed
;
931 /* If this symbol has a version, and it is the default version, we
932 create an indirect symbol from the default name to the fully
933 decorated name. This will cause external references which do not
934 specify a version to be bound to this version of the symbol. */
935 p
= strchr (name
, ELF_VER_CHR
);
936 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
941 /* We are overridden by an old defition. We need to check if we
942 need to crreate the indirect symbol from the default name. */
943 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, true,
945 BFD_ASSERT (hi
!= NULL
);
948 while (hi
->root
.type
== bfd_link_hash_indirect
949 || hi
->root
.type
== bfd_link_hash_warning
)
951 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
957 bed
= get_elf_backend_data (abfd
);
958 collect
= bed
->collect
;
959 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
961 shortname
= bfd_hash_allocate (&info
->hash
->table
,
962 (size_t) (p
- name
+ 1));
963 if (shortname
== NULL
)
965 strncpy (shortname
, name
, (size_t) (p
- name
));
966 shortname
[p
- name
] = '\0';
968 /* We are going to create a new symbol. Merge it with any existing
969 symbol with this name. For the purposes of the merge, act as
970 though we were defining the symbol we just defined, although we
971 actually going to define an indirect symbol. */
972 type_change_ok
= false;
973 size_change_ok
= false;
974 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, sec
, value
,
975 &hi
, &override
, &type_change_ok
,
976 &size_change_ok
, dt_needed
))
981 if (! (_bfd_generic_link_add_one_symbol
982 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
983 (bfd_vma
) 0, name
, false, collect
,
984 (struct bfd_link_hash_entry
**) &hi
)))
989 /* In this case the symbol named SHORTNAME is overriding the
990 indirect symbol we want to add. We were planning on making
991 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
992 is the name without a version. NAME is the fully versioned
993 name, and it is the default version.
995 Overriding means that we already saw a definition for the
996 symbol SHORTNAME in a regular object, and it is overriding
997 the symbol defined in the dynamic object.
999 When this happens, we actually want to change NAME, the
1000 symbol we just added, to refer to SHORTNAME. This will cause
1001 references to NAME in the shared object to become references
1002 to SHORTNAME in the regular object. This is what we expect
1003 when we override a function in a shared object: that the
1004 references in the shared object will be mapped to the
1005 definition in the regular object. */
1007 while (hi
->root
.type
== bfd_link_hash_indirect
1008 || hi
->root
.type
== bfd_link_hash_warning
)
1009 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1011 h
->root
.type
= bfd_link_hash_indirect
;
1012 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1013 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1015 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1016 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1017 if (hi
->elf_link_hash_flags
1018 & (ELF_LINK_HASH_REF_REGULAR
1019 | ELF_LINK_HASH_DEF_REGULAR
))
1021 if (! _bfd_elf_link_record_dynamic_symbol (info
, hi
))
1026 /* Now set HI to H, so that the following code will set the
1027 other fields correctly. */
1031 /* If there is a duplicate definition somewhere, then HI may not
1032 point to an indirect symbol. We will have reported an error to
1033 the user in that case. */
1035 if (hi
->root
.type
== bfd_link_hash_indirect
)
1037 struct elf_link_hash_entry
*ht
;
1039 /* If the symbol became indirect, then we assume that we have
1040 not seen a definition before. */
1041 BFD_ASSERT ((hi
->elf_link_hash_flags
1042 & (ELF_LINK_HASH_DEF_DYNAMIC
1043 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1045 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1046 (*bed
->elf_backend_copy_indirect_symbol
) (ht
, hi
);
1048 /* See if the new flags lead us to realize that the symbol must
1055 || ((hi
->elf_link_hash_flags
1056 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1061 if ((hi
->elf_link_hash_flags
1062 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1068 /* We also need to define an indirection from the nondefault version
1071 shortname
= bfd_hash_allocate (&info
->hash
->table
, strlen (name
));
1072 if (shortname
== NULL
)
1074 strncpy (shortname
, name
, (size_t) (p
- name
));
1075 strcpy (shortname
+ (p
- name
), p
+ 1);
1077 /* Once again, merge with any existing symbol. */
1078 type_change_ok
= false;
1079 size_change_ok
= false;
1080 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, sec
, value
,
1081 &hi
, &override
, &type_change_ok
,
1082 &size_change_ok
, dt_needed
))
1087 /* Here SHORTNAME is a versioned name, so we don't expect to see
1088 the type of override we do in the case above. */
1089 (*_bfd_error_handler
)
1090 (_("%s: warning: unexpected redefinition of `%s'"),
1091 bfd_archive_filename (abfd
), shortname
);
1095 if (! (_bfd_generic_link_add_one_symbol
1096 (info
, abfd
, shortname
, BSF_INDIRECT
,
1097 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1098 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1101 /* If there is a duplicate definition somewhere, then HI may not
1102 point to an indirect symbol. We will have reported an error
1103 to the user in that case. */
1105 if (hi
->root
.type
== bfd_link_hash_indirect
)
1107 /* If the symbol became indirect, then we assume that we have
1108 not seen a definition before. */
1109 BFD_ASSERT ((hi
->elf_link_hash_flags
1110 & (ELF_LINK_HASH_DEF_DYNAMIC
1111 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1113 (*bed
->elf_backend_copy_indirect_symbol
) (h
, hi
);
1115 /* See if the new flags lead us to realize that the symbol
1122 || ((hi
->elf_link_hash_flags
1123 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1128 if ((hi
->elf_link_hash_flags
1129 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1139 /* Add symbols from an ELF object file to the linker hash table. */
1142 elf_link_add_object_symbols (abfd
, info
)
1144 struct bfd_link_info
*info
;
1146 boolean (*add_symbol_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
1147 const Elf_Internal_Sym
*,
1148 const char **, flagword
*,
1149 asection
**, bfd_vma
*));
1150 boolean (*check_relocs
) PARAMS ((bfd
*, struct bfd_link_info
*,
1151 asection
*, const Elf_Internal_Rela
*));
1153 Elf_Internal_Shdr
*hdr
;
1154 bfd_size_type symcount
;
1155 bfd_size_type extsymcount
;
1156 bfd_size_type extsymoff
;
1157 Elf_External_Sym
*buf
= NULL
;
1158 struct elf_link_hash_entry
**sym_hash
;
1160 Elf_External_Versym
*extversym
= NULL
;
1161 Elf_External_Versym
*ever
;
1162 Elf_External_Dyn
*dynbuf
= NULL
;
1163 struct elf_link_hash_entry
*weaks
;
1164 Elf_External_Sym
*esym
;
1165 Elf_External_Sym
*esymend
;
1166 struct elf_backend_data
*bed
;
1168 struct elf_link_hash_table
* hash_table
;
1172 hash_table
= elf_hash_table (info
);
1174 bed
= get_elf_backend_data (abfd
);
1175 add_symbol_hook
= bed
->elf_add_symbol_hook
;
1176 collect
= bed
->collect
;
1178 if ((abfd
->flags
& DYNAMIC
) == 0)
1184 /* You can't use -r against a dynamic object. Also, there's no
1185 hope of using a dynamic object which does not exactly match
1186 the format of the output file. */
1187 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
1189 bfd_set_error (bfd_error_invalid_operation
);
1194 /* As a GNU extension, any input sections which are named
1195 .gnu.warning.SYMBOL are treated as warning symbols for the given
1196 symbol. This differs from .gnu.warning sections, which generate
1197 warnings when they are included in an output file. */
1202 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1206 name
= bfd_get_section_name (abfd
, s
);
1207 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1212 name
+= sizeof ".gnu.warning." - 1;
1214 /* If this is a shared object, then look up the symbol
1215 in the hash table. If it is there, and it is already
1216 been defined, then we will not be using the entry
1217 from this shared object, so we don't need to warn.
1218 FIXME: If we see the definition in a regular object
1219 later on, we will warn, but we shouldn't. The only
1220 fix is to keep track of what warnings we are supposed
1221 to emit, and then handle them all at the end of the
1223 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
1225 struct elf_link_hash_entry
*h
;
1227 h
= elf_link_hash_lookup (hash_table
, name
,
1228 false, false, true);
1230 /* FIXME: What about bfd_link_hash_common? */
1232 && (h
->root
.type
== bfd_link_hash_defined
1233 || h
->root
.type
== bfd_link_hash_defweak
))
1235 /* We don't want to issue this warning. Clobber
1236 the section size so that the warning does not
1237 get copied into the output file. */
1243 sz
= bfd_section_size (abfd
, s
);
1244 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
1248 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
1253 if (! (_bfd_generic_link_add_one_symbol
1254 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
1255 false, collect
, (struct bfd_link_hash_entry
**) NULL
)))
1258 if (! info
->relocateable
)
1260 /* Clobber the section size so that the warning does
1261 not get copied into the output file. */
1268 /* If this is a dynamic object, we always link against the .dynsym
1269 symbol table, not the .symtab symbol table. The dynamic linker
1270 will only see the .dynsym symbol table, so there is no reason to
1271 look at .symtab for a dynamic object. */
1273 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
1274 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1276 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1280 /* Read in any version definitions. */
1282 if (! _bfd_elf_slurp_version_tables (abfd
))
1285 /* Read in the symbol versions, but don't bother to convert them
1286 to internal format. */
1287 if (elf_dynversym (abfd
) != 0)
1289 Elf_Internal_Shdr
*versymhdr
;
1291 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
1292 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
1293 if (extversym
== NULL
)
1295 amt
= versymhdr
->sh_size
;
1296 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
1297 || bfd_bread ((PTR
) extversym
, amt
, abfd
) != amt
)
1302 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
1304 /* The sh_info field of the symtab header tells us where the
1305 external symbols start. We don't care about the local symbols at
1307 if (elf_bad_symtab (abfd
))
1309 extsymcount
= symcount
;
1314 extsymcount
= symcount
- hdr
->sh_info
;
1315 extsymoff
= hdr
->sh_info
;
1318 amt
= extsymcount
* sizeof (Elf_External_Sym
);
1319 buf
= (Elf_External_Sym
*) bfd_malloc (amt
);
1320 if (buf
== NULL
&& extsymcount
!= 0)
1323 /* We store a pointer to the hash table entry for each external
1325 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
1326 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
1327 if (sym_hash
== NULL
)
1329 elf_sym_hashes (abfd
) = sym_hash
;
1335 /* If we are creating a shared library, create all the dynamic
1336 sections immediately. We need to attach them to something,
1337 so we attach them to this BFD, provided it is the right
1338 format. FIXME: If there are no input BFD's of the same
1339 format as the output, we can't make a shared library. */
1341 && is_elf_hash_table (info
)
1342 && ! hash_table
->dynamic_sections_created
1343 && abfd
->xvec
== info
->hash
->creator
)
1345 if (! elf_link_create_dynamic_sections (abfd
, info
))
1349 else if (! is_elf_hash_table (info
))
1356 bfd_size_type oldsize
;
1357 bfd_size_type strindex
;
1359 /* Find the name to use in a DT_NEEDED entry that refers to this
1360 object. If the object has a DT_SONAME entry, we use it.
1361 Otherwise, if the generic linker stuck something in
1362 elf_dt_name, we use that. Otherwise, we just use the file
1363 name. If the generic linker put a null string into
1364 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1365 there is a DT_SONAME entry. */
1367 name
= bfd_get_filename (abfd
);
1368 if (elf_dt_name (abfd
) != NULL
)
1370 name
= elf_dt_name (abfd
);
1373 if (elf_dt_soname (abfd
) != NULL
)
1379 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1382 Elf_External_Dyn
*extdyn
;
1383 Elf_External_Dyn
*extdynend
;
1385 unsigned long shlink
;
1389 dynbuf
= (Elf_External_Dyn
*) bfd_malloc (s
->_raw_size
);
1393 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
1394 (file_ptr
) 0, s
->_raw_size
))
1397 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1400 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1403 /* The shared libraries distributed with hpux11 have a bogus
1404 sh_link field for the ".dynamic" section. This code detects
1405 when SHLINK refers to a section that is not a string table
1406 and tries to find the string table for the ".dynsym" section
1408 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[shlink
];
1409 if (shdr
->sh_type
!= SHT_STRTAB
)
1411 asection
*ds
= bfd_get_section_by_name (abfd
, ".dynsym");
1412 int elfdsec
= _bfd_elf_section_from_bfd_section (abfd
, ds
);
1415 shlink
= elf_elfsections (abfd
)[elfdsec
]->sh_link
;
1420 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
1423 for (; extdyn
< extdynend
; extdyn
++)
1425 Elf_Internal_Dyn dyn
;
1427 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
1428 if (dyn
.d_tag
== DT_SONAME
)
1430 unsigned int tagv
= dyn
.d_un
.d_val
;
1431 name
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1435 if (dyn
.d_tag
== DT_NEEDED
)
1437 struct bfd_link_needed_list
*n
, **pn
;
1439 unsigned int tagv
= dyn
.d_un
.d_val
;
1441 amt
= sizeof (struct bfd_link_needed_list
);
1442 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1443 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1444 if (n
== NULL
|| fnm
== NULL
)
1446 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1453 for (pn
= & hash_table
->needed
;
1459 if (dyn
.d_tag
== DT_RUNPATH
)
1461 struct bfd_link_needed_list
*n
, **pn
;
1463 unsigned int tagv
= dyn
.d_un
.d_val
;
1465 /* When we see DT_RPATH before DT_RUNPATH, we have
1466 to clear runpath. Do _NOT_ bfd_release, as that
1467 frees all more recently bfd_alloc'd blocks as
1469 if (rpath
&& hash_table
->runpath
)
1470 hash_table
->runpath
= NULL
;
1472 amt
= sizeof (struct bfd_link_needed_list
);
1473 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1474 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1475 if (n
== NULL
|| fnm
== NULL
)
1477 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1484 for (pn
= & hash_table
->runpath
;
1492 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1493 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
1495 struct bfd_link_needed_list
*n
, **pn
;
1497 unsigned int tagv
= dyn
.d_un
.d_val
;
1499 amt
= sizeof (struct bfd_link_needed_list
);
1500 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1501 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1502 if (n
== NULL
|| fnm
== NULL
)
1504 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1511 for (pn
= & hash_table
->runpath
;
1524 /* We do not want to include any of the sections in a dynamic
1525 object in the output file. We hack by simply clobbering the
1526 list of sections in the BFD. This could be handled more
1527 cleanly by, say, a new section flag; the existing
1528 SEC_NEVER_LOAD flag is not the one we want, because that one
1529 still implies that the section takes up space in the output
1531 abfd
->sections
= NULL
;
1532 abfd
->section_count
= 0;
1534 /* If this is the first dynamic object found in the link, create
1535 the special sections required for dynamic linking. */
1536 if (! hash_table
->dynamic_sections_created
)
1537 if (! elf_link_create_dynamic_sections (abfd
, info
))
1542 /* Add a DT_NEEDED entry for this dynamic object. */
1543 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
1544 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, name
, false);
1545 if (strindex
== (bfd_size_type
) -1)
1548 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
1551 Elf_External_Dyn
*dyncon
, *dynconend
;
1553 /* The hash table size did not change, which means that
1554 the dynamic object name was already entered. If we
1555 have already included this dynamic object in the
1556 link, just ignore it. There is no reason to include
1557 a particular dynamic object more than once. */
1558 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
1559 BFD_ASSERT (sdyn
!= NULL
);
1561 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1562 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1564 for (; dyncon
< dynconend
; dyncon
++)
1566 Elf_Internal_Dyn dyn
;
1568 elf_swap_dyn_in (hash_table
->dynobj
, dyncon
, & dyn
);
1569 if (dyn
.d_tag
== DT_NEEDED
1570 && dyn
.d_un
.d_val
== strindex
)
1574 if (extversym
!= NULL
)
1576 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
1582 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
1586 /* Save the SONAME, if there is one, because sometimes the
1587 linker emulation code will need to know it. */
1589 name
= basename (bfd_get_filename (abfd
));
1590 elf_dt_name (abfd
) = name
;
1593 pos
= hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
);
1594 amt
= extsymcount
* sizeof (Elf_External_Sym
);
1595 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
1596 || bfd_bread ((PTR
) buf
, amt
, abfd
) != amt
)
1601 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
1602 esymend
= buf
+ extsymcount
;
1605 esym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
1607 Elf_Internal_Sym sym
;
1613 struct elf_link_hash_entry
*h
;
1615 boolean size_change_ok
, type_change_ok
;
1616 boolean new_weakdef
;
1617 unsigned int old_alignment
;
1622 elf_swap_symbol_in (abfd
, esym
, &sym
);
1624 flags
= BSF_NO_FLAGS
;
1626 value
= sym
.st_value
;
1629 bind
= ELF_ST_BIND (sym
.st_info
);
1630 if (bind
== STB_LOCAL
)
1632 /* This should be impossible, since ELF requires that all
1633 global symbols follow all local symbols, and that sh_info
1634 point to the first global symbol. Unfortunatealy, Irix 5
1638 else if (bind
== STB_GLOBAL
)
1640 if (sym
.st_shndx
!= SHN_UNDEF
1641 && sym
.st_shndx
!= SHN_COMMON
)
1644 else if (bind
== STB_WEAK
)
1648 /* Leave it up to the processor backend. */
1651 if (sym
.st_shndx
== SHN_UNDEF
)
1652 sec
= bfd_und_section_ptr
;
1653 else if (sym
.st_shndx
> 0 && sym
.st_shndx
< SHN_LORESERVE
)
1655 sec
= section_from_elf_index (abfd
, sym
.st_shndx
);
1657 sec
= bfd_abs_section_ptr
;
1658 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1661 else if (sym
.st_shndx
== SHN_ABS
)
1662 sec
= bfd_abs_section_ptr
;
1663 else if (sym
.st_shndx
== SHN_COMMON
)
1665 sec
= bfd_com_section_ptr
;
1666 /* What ELF calls the size we call the value. What ELF
1667 calls the value we call the alignment. */
1668 value
= sym
.st_size
;
1672 /* Leave it up to the processor backend. */
1675 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
1676 if (name
== (const char *) NULL
)
1679 if (add_symbol_hook
)
1681 if (! (*add_symbol_hook
) (abfd
, info
, &sym
, &name
, &flags
, &sec
,
1685 /* The hook function sets the name to NULL if this symbol
1686 should be skipped for some reason. */
1687 if (name
== (const char *) NULL
)
1691 /* Sanity check that all possibilities were handled. */
1692 if (sec
== (asection
*) NULL
)
1694 bfd_set_error (bfd_error_bad_value
);
1698 if (bfd_is_und_section (sec
)
1699 || bfd_is_com_section (sec
))
1704 size_change_ok
= false;
1705 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1707 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1709 Elf_Internal_Versym iver
;
1710 unsigned int vernum
= 0;
1714 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1715 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1717 /* If this is a hidden symbol, or if it is not version
1718 1, we append the version name to the symbol name.
1719 However, we do not modify a non-hidden absolute
1720 symbol, because it might be the version symbol
1721 itself. FIXME: What if it isn't? */
1722 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1723 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1726 unsigned int namelen
;
1727 bfd_size_type newlen
;
1730 if (sym
.st_shndx
!= SHN_UNDEF
)
1732 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1734 (*_bfd_error_handler
)
1735 (_("%s: %s: invalid version %u (max %d)"),
1736 bfd_archive_filename (abfd
), name
, vernum
,
1737 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1738 bfd_set_error (bfd_error_bad_value
);
1741 else if (vernum
> 1)
1743 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1749 /* We cannot simply test for the number of
1750 entries in the VERNEED section since the
1751 numbers for the needed versions do not start
1753 Elf_Internal_Verneed
*t
;
1756 for (t
= elf_tdata (abfd
)->verref
;
1760 Elf_Internal_Vernaux
*a
;
1762 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1764 if (a
->vna_other
== vernum
)
1766 verstr
= a
->vna_nodename
;
1775 (*_bfd_error_handler
)
1776 (_("%s: %s: invalid needed version %d"),
1777 bfd_archive_filename (abfd
), name
, vernum
);
1778 bfd_set_error (bfd_error_bad_value
);
1783 namelen
= strlen (name
);
1784 newlen
= namelen
+ strlen (verstr
) + 2;
1785 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
1788 newname
= (char *) bfd_alloc (abfd
, newlen
);
1789 if (newname
== NULL
)
1791 strcpy (newname
, name
);
1792 p
= newname
+ namelen
;
1794 /* If this is a defined non-hidden version symbol,
1795 we add another @ to the name. This indicates the
1796 default version of the symbol. */
1797 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1798 && sym
.st_shndx
!= SHN_UNDEF
)
1806 if (! elf_merge_symbol (abfd
, info
, name
, &sym
, &sec
, &value
,
1807 sym_hash
, &override
, &type_change_ok
,
1808 &size_change_ok
, dt_needed
))
1815 while (h
->root
.type
== bfd_link_hash_indirect
1816 || h
->root
.type
== bfd_link_hash_warning
)
1817 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1819 /* Remember the old alignment if this is a common symbol, so
1820 that we don't reduce the alignment later on. We can't
1821 check later, because _bfd_generic_link_add_one_symbol
1822 will set a default for the alignment which we want to
1824 if (h
->root
.type
== bfd_link_hash_common
)
1825 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1827 if (elf_tdata (abfd
)->verdef
!= NULL
1831 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1834 if (! (_bfd_generic_link_add_one_symbol
1835 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1836 false, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1840 while (h
->root
.type
== bfd_link_hash_indirect
1841 || h
->root
.type
== bfd_link_hash_warning
)
1842 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1845 new_weakdef
= false;
1848 && (flags
& BSF_WEAK
) != 0
1849 && ELF_ST_TYPE (sym
.st_info
) != STT_FUNC
1850 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1851 && h
->weakdef
== NULL
)
1853 /* Keep a list of all weak defined non function symbols from
1854 a dynamic object, using the weakdef field. Later in this
1855 function we will set the weakdef field to the correct
1856 value. We only put non-function symbols from dynamic
1857 objects on this list, because that happens to be the only
1858 time we need to know the normal symbol corresponding to a
1859 weak symbol, and the information is time consuming to
1860 figure out. If the weakdef field is not already NULL,
1861 then this symbol was already defined by some previous
1862 dynamic object, and we will be using that previous
1863 definition anyhow. */
1870 /* Set the alignment of a common symbol. */
1871 if (sym
.st_shndx
== SHN_COMMON
1872 && h
->root
.type
== bfd_link_hash_common
)
1876 align
= bfd_log2 (sym
.st_value
);
1877 if (align
> old_alignment
1878 /* Permit an alignment power of zero if an alignment of one
1879 is specified and no other alignments have been specified. */
1880 || (sym
.st_value
== 1 && old_alignment
== 0))
1881 h
->root
.u
.c
.p
->alignment_power
= align
;
1884 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1890 /* Remember the symbol size and type. */
1891 if (sym
.st_size
!= 0
1892 && (definition
|| h
->size
== 0))
1894 if (h
->size
!= 0 && h
->size
!= sym
.st_size
&& ! size_change_ok
)
1895 (*_bfd_error_handler
)
1896 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1897 name
, (unsigned long) h
->size
, (unsigned long) sym
.st_size
,
1898 bfd_archive_filename (abfd
));
1900 h
->size
= sym
.st_size
;
1903 /* If this is a common symbol, then we always want H->SIZE
1904 to be the size of the common symbol. The code just above
1905 won't fix the size if a common symbol becomes larger. We
1906 don't warn about a size change here, because that is
1907 covered by --warn-common. */
1908 if (h
->root
.type
== bfd_link_hash_common
)
1909 h
->size
= h
->root
.u
.c
.size
;
1911 if (ELF_ST_TYPE (sym
.st_info
) != STT_NOTYPE
1912 && (definition
|| h
->type
== STT_NOTYPE
))
1914 if (h
->type
!= STT_NOTYPE
1915 && h
->type
!= ELF_ST_TYPE (sym
.st_info
)
1916 && ! type_change_ok
)
1917 (*_bfd_error_handler
)
1918 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1919 name
, h
->type
, ELF_ST_TYPE (sym
.st_info
),
1920 bfd_archive_filename (abfd
));
1922 h
->type
= ELF_ST_TYPE (sym
.st_info
);
1925 /* If st_other has a processor-specific meaning, specific code
1926 might be needed here. */
1927 if (sym
.st_other
!= 0)
1929 /* Combine visibilities, using the most constraining one. */
1930 unsigned char hvis
= ELF_ST_VISIBILITY (h
->other
);
1931 unsigned char symvis
= ELF_ST_VISIBILITY (sym
.st_other
);
1933 if (symvis
&& (hvis
> symvis
|| hvis
== 0))
1934 h
->other
= sym
.st_other
;
1936 /* If neither has visibility, use the st_other of the
1937 definition. This is an arbitrary choice, since the
1938 other bits have no general meaning. */
1939 if (!symvis
&& !hvis
1940 && (definition
|| h
->other
== 0))
1941 h
->other
= sym
.st_other
;
1944 /* Set a flag in the hash table entry indicating the type of
1945 reference or definition we just found. Keep a count of
1946 the number of dynamic symbols we find. A dynamic symbol
1947 is one which is referenced or defined by both a regular
1948 object and a shared object. */
1949 old_flags
= h
->elf_link_hash_flags
;
1955 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
1956 if (bind
!= STB_WEAK
)
1957 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
1960 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
1962 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
1963 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
1969 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
1971 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
1972 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
1973 | ELF_LINK_HASH_REF_REGULAR
)) != 0
1974 || (h
->weakdef
!= NULL
1976 && h
->weakdef
->dynindx
!= -1))
1980 h
->elf_link_hash_flags
|= new_flag
;
1982 /* Check to see if we need to add an indirect symbol for
1983 the default name. */
1984 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
1985 if (! elf_add_default_symbol (abfd
, info
, h
, name
, &sym
,
1986 &sec
, &value
, &dynsym
,
1987 override
, dt_needed
))
1990 if (dynsym
&& h
->dynindx
== -1)
1992 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1994 if (h
->weakdef
!= NULL
1996 && h
->weakdef
->dynindx
== -1)
1998 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2002 else if (dynsym
&& h
->dynindx
!= -1)
2003 /* If the symbol already has a dynamic index, but
2004 visibility says it should not be visible, turn it into
2006 switch (ELF_ST_VISIBILITY (h
->other
))
2010 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
2011 (*bed
->elf_backend_hide_symbol
) (info
, h
);
2012 _bfd_elf_strtab_delref (hash_table
->dynstr
,
2017 if (dt_needed
&& definition
2018 && (h
->elf_link_hash_flags
2019 & ELF_LINK_HASH_REF_REGULAR
) != 0)
2021 bfd_size_type oldsize
;
2022 bfd_size_type strindex
;
2024 if (! is_elf_hash_table (info
))
2027 /* The symbol from a DT_NEEDED object is referenced from
2028 the regular object to create a dynamic executable. We
2029 have to make sure there is a DT_NEEDED entry for it. */
2032 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2033 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
,
2034 elf_dt_soname (abfd
), false);
2035 if (strindex
== (bfd_size_type
) -1)
2038 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2041 Elf_External_Dyn
*dyncon
, *dynconend
;
2043 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
,
2045 BFD_ASSERT (sdyn
!= NULL
);
2047 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
2048 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
2050 for (; dyncon
< dynconend
; dyncon
++)
2052 Elf_Internal_Dyn dyn
;
2054 elf_swap_dyn_in (hash_table
->dynobj
,
2056 BFD_ASSERT (dyn
.d_tag
!= DT_NEEDED
||
2057 dyn
.d_un
.d_val
!= strindex
);
2061 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
2067 /* Now set the weakdefs field correctly for all the weak defined
2068 symbols we found. The only way to do this is to search all the
2069 symbols. Since we only need the information for non functions in
2070 dynamic objects, that's the only time we actually put anything on
2071 the list WEAKS. We need this information so that if a regular
2072 object refers to a symbol defined weakly in a dynamic object, the
2073 real symbol in the dynamic object is also put in the dynamic
2074 symbols; we also must arrange for both symbols to point to the
2075 same memory location. We could handle the general case of symbol
2076 aliasing, but a general symbol alias can only be generated in
2077 assembler code, handling it correctly would be very time
2078 consuming, and other ELF linkers don't handle general aliasing
2080 while (weaks
!= NULL
)
2082 struct elf_link_hash_entry
*hlook
;
2085 struct elf_link_hash_entry
**hpp
;
2086 struct elf_link_hash_entry
**hppend
;
2089 weaks
= hlook
->weakdef
;
2090 hlook
->weakdef
= NULL
;
2092 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
2093 || hlook
->root
.type
== bfd_link_hash_defweak
2094 || hlook
->root
.type
== bfd_link_hash_common
2095 || hlook
->root
.type
== bfd_link_hash_indirect
);
2096 slook
= hlook
->root
.u
.def
.section
;
2097 vlook
= hlook
->root
.u
.def
.value
;
2099 hpp
= elf_sym_hashes (abfd
);
2100 hppend
= hpp
+ extsymcount
;
2101 for (; hpp
< hppend
; hpp
++)
2103 struct elf_link_hash_entry
*h
;
2106 if (h
!= NULL
&& h
!= hlook
2107 && h
->root
.type
== bfd_link_hash_defined
2108 && h
->root
.u
.def
.section
== slook
2109 && h
->root
.u
.def
.value
== vlook
)
2113 /* If the weak definition is in the list of dynamic
2114 symbols, make sure the real definition is put there
2116 if (hlook
->dynindx
!= -1
2117 && h
->dynindx
== -1)
2119 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2123 /* If the real definition is in the list of dynamic
2124 symbols, make sure the weak definition is put there
2125 as well. If we don't do this, then the dynamic
2126 loader might not merge the entries for the real
2127 definition and the weak definition. */
2128 if (h
->dynindx
!= -1
2129 && hlook
->dynindx
== -1)
2131 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
2146 if (extversym
!= NULL
)
2152 /* If this object is the same format as the output object, and it is
2153 not a shared library, then let the backend look through the
2156 This is required to build global offset table entries and to
2157 arrange for dynamic relocs. It is not required for the
2158 particular common case of linking non PIC code, even when linking
2159 against shared libraries, but unfortunately there is no way of
2160 knowing whether an object file has been compiled PIC or not.
2161 Looking through the relocs is not particularly time consuming.
2162 The problem is that we must either (1) keep the relocs in memory,
2163 which causes the linker to require additional runtime memory or
2164 (2) read the relocs twice from the input file, which wastes time.
2165 This would be a good case for using mmap.
2167 I have no idea how to handle linking PIC code into a file of a
2168 different format. It probably can't be done. */
2169 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
2171 && abfd
->xvec
== info
->hash
->creator
2172 && check_relocs
!= NULL
)
2176 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2178 Elf_Internal_Rela
*internal_relocs
;
2181 if ((o
->flags
& SEC_RELOC
) == 0
2182 || o
->reloc_count
== 0
2183 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2184 && (o
->flags
& SEC_DEBUGGING
) != 0)
2185 || bfd_is_abs_section (o
->output_section
))
2188 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
2189 (abfd
, o
, (PTR
) NULL
,
2190 (Elf_Internal_Rela
*) NULL
,
2191 info
->keep_memory
));
2192 if (internal_relocs
== NULL
)
2195 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
2197 if (! info
->keep_memory
)
2198 free (internal_relocs
);
2205 /* If this is a non-traditional, non-relocateable link, try to
2206 optimize the handling of the .stab/.stabstr sections. */
2208 && ! info
->relocateable
2209 && ! info
->traditional_format
2210 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
2211 && is_elf_hash_table (info
)
2212 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
2214 asection
*stab
, *stabstr
;
2216 stab
= bfd_get_section_by_name (abfd
, ".stab");
2217 if (stab
!= NULL
&& !(stab
->flags
& SEC_MERGE
))
2219 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
2221 if (stabstr
!= NULL
)
2223 struct bfd_elf_section_data
*secdata
;
2225 secdata
= elf_section_data (stab
);
2226 if (! _bfd_link_section_stabs (abfd
,
2227 & hash_table
->stab_info
,
2229 &secdata
->sec_info
))
2231 if (secdata
->sec_info
)
2232 secdata
->sec_info_type
= ELF_INFO_TYPE_STABS
;
2237 if (! info
->relocateable
&& ! dynamic
2238 && is_elf_hash_table (info
))
2242 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2243 if (s
->flags
& SEC_MERGE
)
2245 struct bfd_elf_section_data
*secdata
;
2247 secdata
= elf_section_data (s
);
2248 if (! _bfd_merge_section (abfd
,
2249 & hash_table
->merge_info
,
2250 s
, &secdata
->sec_info
))
2252 else if (secdata
->sec_info
)
2253 secdata
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
2264 if (extversym
!= NULL
)
2269 /* Create some sections which will be filled in with dynamic linking
2270 information. ABFD is an input file which requires dynamic sections
2271 to be created. The dynamic sections take up virtual memory space
2272 when the final executable is run, so we need to create them before
2273 addresses are assigned to the output sections. We work out the
2274 actual contents and size of these sections later. */
2277 elf_link_create_dynamic_sections (abfd
, info
)
2279 struct bfd_link_info
*info
;
2282 register asection
*s
;
2283 struct elf_link_hash_entry
*h
;
2284 struct elf_backend_data
*bed
;
2286 if (! is_elf_hash_table (info
))
2289 if (elf_hash_table (info
)->dynamic_sections_created
)
2292 /* Make sure that all dynamic sections use the same input BFD. */
2293 if (elf_hash_table (info
)->dynobj
== NULL
)
2294 elf_hash_table (info
)->dynobj
= abfd
;
2296 abfd
= elf_hash_table (info
)->dynobj
;
2298 /* Note that we set the SEC_IN_MEMORY flag for all of these
2300 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
2301 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2303 /* A dynamically linked executable has a .interp section, but a
2304 shared library does not. */
2307 s
= bfd_make_section (abfd
, ".interp");
2309 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2313 if (! info
->traditional_format
2314 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
2316 s
= bfd_make_section (abfd
, ".eh_frame_hdr");
2318 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2319 || ! bfd_set_section_alignment (abfd
, s
, 2))
2323 /* Create sections to hold version informations. These are removed
2324 if they are not needed. */
2325 s
= bfd_make_section (abfd
, ".gnu.version_d");
2327 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2328 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2331 s
= bfd_make_section (abfd
, ".gnu.version");
2333 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2334 || ! bfd_set_section_alignment (abfd
, s
, 1))
2337 s
= bfd_make_section (abfd
, ".gnu.version_r");
2339 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2340 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2343 s
= bfd_make_section (abfd
, ".dynsym");
2345 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2346 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2349 s
= bfd_make_section (abfd
, ".dynstr");
2351 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2354 /* Create a strtab to hold the dynamic symbol names. */
2355 if (elf_hash_table (info
)->dynstr
== NULL
)
2357 elf_hash_table (info
)->dynstr
= _bfd_elf_strtab_init ();
2358 if (elf_hash_table (info
)->dynstr
== NULL
)
2362 s
= bfd_make_section (abfd
, ".dynamic");
2364 || ! bfd_set_section_flags (abfd
, s
, flags
)
2365 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2368 /* The special symbol _DYNAMIC is always set to the start of the
2369 .dynamic section. This call occurs before we have processed the
2370 symbols for any dynamic object, so we don't have to worry about
2371 overriding a dynamic definition. We could set _DYNAMIC in a
2372 linker script, but we only want to define it if we are, in fact,
2373 creating a .dynamic section. We don't want to define it if there
2374 is no .dynamic section, since on some ELF platforms the start up
2375 code examines it to decide how to initialize the process. */
2377 if (! (_bfd_generic_link_add_one_symbol
2378 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
2379 (const char *) NULL
, false, get_elf_backend_data (abfd
)->collect
,
2380 (struct bfd_link_hash_entry
**) &h
)))
2382 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2383 h
->type
= STT_OBJECT
;
2386 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2389 bed
= get_elf_backend_data (abfd
);
2391 s
= bfd_make_section (abfd
, ".hash");
2393 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2394 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2396 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
2398 /* Let the backend create the rest of the sections. This lets the
2399 backend set the right flags. The backend will normally create
2400 the .got and .plt sections. */
2401 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
2404 elf_hash_table (info
)->dynamic_sections_created
= true;
2409 /* Add an entry to the .dynamic table. */
2412 elf_add_dynamic_entry (info
, tag
, val
)
2413 struct bfd_link_info
*info
;
2417 Elf_Internal_Dyn dyn
;
2420 bfd_size_type newsize
;
2421 bfd_byte
*newcontents
;
2423 if (! is_elf_hash_table (info
))
2426 dynobj
= elf_hash_table (info
)->dynobj
;
2428 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
2429 BFD_ASSERT (s
!= NULL
);
2431 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
2432 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
2433 if (newcontents
== NULL
)
2437 dyn
.d_un
.d_val
= val
;
2438 elf_swap_dyn_out (dynobj
, &dyn
,
2439 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
2441 s
->_raw_size
= newsize
;
2442 s
->contents
= newcontents
;
2447 /* Record a new local dynamic symbol. */
2450 elf_link_record_local_dynamic_symbol (info
, input_bfd
, input_indx
)
2451 struct bfd_link_info
*info
;
2455 struct elf_link_local_dynamic_entry
*entry
;
2456 struct elf_link_hash_table
*eht
;
2457 struct elf_strtab_hash
*dynstr
;
2458 Elf_External_Sym esym
;
2459 unsigned long dynstr_index
;
2464 if (! is_elf_hash_table (info
))
2467 /* See if the entry exists already. */
2468 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
2469 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
2472 entry
= (struct elf_link_local_dynamic_entry
*)
2473 bfd_alloc (input_bfd
, (bfd_size_type
) sizeof (*entry
));
2477 /* Go find the symbol, so that we can find it's name. */
2478 amt
= sizeof (Elf_External_Sym
);
2479 pos
= elf_tdata (input_bfd
)->symtab_hdr
.sh_offset
+ input_indx
* amt
;
2480 if (bfd_seek (input_bfd
, pos
, SEEK_SET
) != 0
2481 || bfd_bread (&esym
, amt
, input_bfd
) != amt
)
2483 elf_swap_symbol_in (input_bfd
, &esym
, &entry
->isym
);
2485 name
= (bfd_elf_string_from_elf_section
2486 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
2487 entry
->isym
.st_name
));
2489 dynstr
= elf_hash_table (info
)->dynstr
;
2492 /* Create a strtab to hold the dynamic symbol names. */
2493 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
2498 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, false);
2499 if (dynstr_index
== (unsigned long) -1)
2501 entry
->isym
.st_name
= dynstr_index
;
2503 eht
= elf_hash_table (info
);
2505 entry
->next
= eht
->dynlocal
;
2506 eht
->dynlocal
= entry
;
2507 entry
->input_bfd
= input_bfd
;
2508 entry
->input_indx
= input_indx
;
2511 /* Whatever binding the symbol had before, it's now local. */
2513 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
2515 /* The dynindx will be set at the end of size_dynamic_sections. */
2520 /* Read and swap the relocs from the section indicated by SHDR. This
2521 may be either a REL or a RELA section. The relocations are
2522 translated into RELA relocations and stored in INTERNAL_RELOCS,
2523 which should have already been allocated to contain enough space.
2524 The EXTERNAL_RELOCS are a buffer where the external form of the
2525 relocations should be stored.
2527 Returns false if something goes wrong. */
2530 elf_link_read_relocs_from_section (abfd
, shdr
, external_relocs
,
2533 Elf_Internal_Shdr
*shdr
;
2534 PTR external_relocs
;
2535 Elf_Internal_Rela
*internal_relocs
;
2537 struct elf_backend_data
*bed
;
2540 /* If there aren't any relocations, that's OK. */
2544 /* Position ourselves at the start of the section. */
2545 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2548 /* Read the relocations. */
2549 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2552 bed
= get_elf_backend_data (abfd
);
2554 /* Convert the external relocations to the internal format. */
2555 if (shdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2557 Elf_External_Rel
*erel
;
2558 Elf_External_Rel
*erelend
;
2559 Elf_Internal_Rela
*irela
;
2560 Elf_Internal_Rel
*irel
;
2562 erel
= (Elf_External_Rel
*) external_relocs
;
2563 erelend
= erel
+ NUM_SHDR_ENTRIES (shdr
);
2564 irela
= internal_relocs
;
2565 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
2566 irel
= bfd_alloc (abfd
, amt
);
2567 for (; erel
< erelend
; erel
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2571 if (bed
->s
->swap_reloc_in
)
2572 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
2574 elf_swap_reloc_in (abfd
, erel
, irel
);
2576 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; ++i
)
2578 irela
[i
].r_offset
= irel
[i
].r_offset
;
2579 irela
[i
].r_info
= irel
[i
].r_info
;
2580 irela
[i
].r_addend
= 0;
2586 Elf_External_Rela
*erela
;
2587 Elf_External_Rela
*erelaend
;
2588 Elf_Internal_Rela
*irela
;
2590 BFD_ASSERT (shdr
->sh_entsize
== sizeof (Elf_External_Rela
));
2592 erela
= (Elf_External_Rela
*) external_relocs
;
2593 erelaend
= erela
+ NUM_SHDR_ENTRIES (shdr
);
2594 irela
= internal_relocs
;
2595 for (; erela
< erelaend
; erela
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2597 if (bed
->s
->swap_reloca_in
)
2598 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
2600 elf_swap_reloca_in (abfd
, erela
, irela
);
2607 /* Read and swap the relocs for a section O. They may have been
2608 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2609 not NULL, they are used as buffers to read into. They are known to
2610 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2611 the return value is allocated using either malloc or bfd_alloc,
2612 according to the KEEP_MEMORY argument. If O has two relocation
2613 sections (both REL and RELA relocations), then the REL_HDR
2614 relocations will appear first in INTERNAL_RELOCS, followed by the
2615 REL_HDR2 relocations. */
2618 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2622 PTR external_relocs
;
2623 Elf_Internal_Rela
*internal_relocs
;
2624 boolean keep_memory
;
2626 Elf_Internal_Shdr
*rel_hdr
;
2628 Elf_Internal_Rela
*alloc2
= NULL
;
2629 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2631 if (elf_section_data (o
)->relocs
!= NULL
)
2632 return elf_section_data (o
)->relocs
;
2634 if (o
->reloc_count
== 0)
2637 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2639 if (internal_relocs
== NULL
)
2643 size
= o
->reloc_count
;
2644 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2646 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2648 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2649 if (internal_relocs
== NULL
)
2653 if (external_relocs
== NULL
)
2655 bfd_size_type size
= rel_hdr
->sh_size
;
2657 if (elf_section_data (o
)->rel_hdr2
)
2658 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2659 alloc1
= (PTR
) bfd_malloc (size
);
2662 external_relocs
= alloc1
;
2665 if (!elf_link_read_relocs_from_section (abfd
, rel_hdr
,
2669 if (!elf_link_read_relocs_from_section
2671 elf_section_data (o
)->rel_hdr2
,
2672 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2673 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2674 * bed
->s
->int_rels_per_ext_rel
)))
2677 /* Cache the results for next time, if we can. */
2679 elf_section_data (o
)->relocs
= internal_relocs
;
2684 /* Don't free alloc2, since if it was allocated we are passing it
2685 back (under the name of internal_relocs). */
2687 return internal_relocs
;
2697 /* Record an assignment to a symbol made by a linker script. We need
2698 this in case some dynamic object refers to this symbol. */
2701 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2702 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2703 struct bfd_link_info
*info
;
2707 struct elf_link_hash_entry
*h
;
2709 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2712 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, true, false);
2716 if (h
->root
.type
== bfd_link_hash_new
)
2717 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2719 /* If this symbol is being provided by the linker script, and it is
2720 currently defined by a dynamic object, but not by a regular
2721 object, then mark it as undefined so that the generic linker will
2722 force the correct value. */
2724 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2725 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2726 h
->root
.type
= bfd_link_hash_undefined
;
2728 /* If this symbol is not being provided by the linker script, and it is
2729 currently defined by a dynamic object, but not by a regular object,
2730 then clear out any version information because the symbol will not be
2731 associated with the dynamic object any more. */
2733 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2734 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2735 h
->verinfo
.verdef
= NULL
;
2737 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2739 /* When possible, keep the original type of the symbol. */
2740 if (h
->type
== STT_NOTYPE
)
2741 h
->type
= STT_OBJECT
;
2743 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2744 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2746 && h
->dynindx
== -1)
2748 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2751 /* If this is a weak defined symbol, and we know a corresponding
2752 real symbol from the same dynamic object, make sure the real
2753 symbol is also made into a dynamic symbol. */
2754 if (h
->weakdef
!= NULL
2755 && h
->weakdef
->dynindx
== -1)
2757 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2765 /* This structure is used to pass information to
2766 elf_link_assign_sym_version. */
2768 struct elf_assign_sym_version_info
2772 /* General link information. */
2773 struct bfd_link_info
*info
;
2775 struct bfd_elf_version_tree
*verdefs
;
2776 /* Whether we had a failure. */
2780 /* This structure is used to pass information to
2781 elf_link_find_version_dependencies. */
2783 struct elf_find_verdep_info
2787 /* General link information. */
2788 struct bfd_link_info
*info
;
2789 /* The number of dependencies. */
2791 /* Whether we had a failure. */
2795 /* Array used to determine the number of hash table buckets to use
2796 based on the number of symbols there are. If there are fewer than
2797 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2798 fewer than 37 we use 17 buckets, and so forth. We never use more
2799 than 32771 buckets. */
2801 static const size_t elf_buckets
[] =
2803 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2807 /* Compute bucket count for hashing table. We do not use a static set
2808 of possible tables sizes anymore. Instead we determine for all
2809 possible reasonable sizes of the table the outcome (i.e., the
2810 number of collisions etc) and choose the best solution. The
2811 weighting functions are not too simple to allow the table to grow
2812 without bounds. Instead one of the weighting factors is the size.
2813 Therefore the result is always a good payoff between few collisions
2814 (= short chain lengths) and table size. */
2816 compute_bucket_count (info
)
2817 struct bfd_link_info
*info
;
2819 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2820 size_t best_size
= 0;
2821 unsigned long int *hashcodes
;
2822 unsigned long int *hashcodesp
;
2823 unsigned long int i
;
2826 /* Compute the hash values for all exported symbols. At the same
2827 time store the values in an array so that we could use them for
2830 amt
*= sizeof (unsigned long int);
2831 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
2832 if (hashcodes
== NULL
)
2834 hashcodesp
= hashcodes
;
2836 /* Put all hash values in HASHCODES. */
2837 elf_link_hash_traverse (elf_hash_table (info
),
2838 elf_collect_hash_codes
, &hashcodesp
);
2840 /* We have a problem here. The following code to optimize the table
2841 size requires an integer type with more the 32 bits. If
2842 BFD_HOST_U_64_BIT is set we know about such a type. */
2843 #ifdef BFD_HOST_U_64_BIT
2844 if (info
->optimize
== true)
2846 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2849 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2850 unsigned long int *counts
;
2852 /* Possible optimization parameters: if we have NSYMS symbols we say
2853 that the hashing table must at least have NSYMS/4 and at most
2855 minsize
= nsyms
/ 4;
2858 best_size
= maxsize
= nsyms
* 2;
2860 /* Create array where we count the collisions in. We must use bfd_malloc
2861 since the size could be large. */
2863 amt
*= sizeof (unsigned long int);
2864 counts
= (unsigned long int *) bfd_malloc (amt
);
2871 /* Compute the "optimal" size for the hash table. The criteria is a
2872 minimal chain length. The minor criteria is (of course) the size
2874 for (i
= minsize
; i
< maxsize
; ++i
)
2876 /* Walk through the array of hashcodes and count the collisions. */
2877 BFD_HOST_U_64_BIT max
;
2878 unsigned long int j
;
2879 unsigned long int fact
;
2881 memset (counts
, '\0', i
* sizeof (unsigned long int));
2883 /* Determine how often each hash bucket is used. */
2884 for (j
= 0; j
< nsyms
; ++j
)
2885 ++counts
[hashcodes
[j
] % i
];
2887 /* For the weight function we need some information about the
2888 pagesize on the target. This is information need not be 100%
2889 accurate. Since this information is not available (so far) we
2890 define it here to a reasonable default value. If it is crucial
2891 to have a better value some day simply define this value. */
2892 # ifndef BFD_TARGET_PAGESIZE
2893 # define BFD_TARGET_PAGESIZE (4096)
2896 /* We in any case need 2 + NSYMS entries for the size values and
2898 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2901 /* Variant 1: optimize for short chains. We add the squares
2902 of all the chain lengths (which favous many small chain
2903 over a few long chains). */
2904 for (j
= 0; j
< i
; ++j
)
2905 max
+= counts
[j
] * counts
[j
];
2907 /* This adds penalties for the overall size of the table. */
2908 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2911 /* Variant 2: Optimize a lot more for small table. Here we
2912 also add squares of the size but we also add penalties for
2913 empty slots (the +1 term). */
2914 for (j
= 0; j
< i
; ++j
)
2915 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2917 /* The overall size of the table is considered, but not as
2918 strong as in variant 1, where it is squared. */
2919 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2923 /* Compare with current best results. */
2924 if (max
< best_chlen
)
2934 #endif /* defined (BFD_HOST_U_64_BIT) */
2936 /* This is the fallback solution if no 64bit type is available or if we
2937 are not supposed to spend much time on optimizations. We select the
2938 bucket count using a fixed set of numbers. */
2939 for (i
= 0; elf_buckets
[i
] != 0; i
++)
2941 best_size
= elf_buckets
[i
];
2942 if (dynsymcount
< elf_buckets
[i
+ 1])
2947 /* Free the arrays we needed. */
2953 /* Set up the sizes and contents of the ELF dynamic sections. This is
2954 called by the ELF linker emulation before_allocation routine. We
2955 must set the sizes of the sections before the linker sets the
2956 addresses of the various sections. */
2959 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
2961 auxiliary_filters
, info
, sinterpptr
,
2966 const char *filter_shlib
;
2967 const char * const *auxiliary_filters
;
2968 struct bfd_link_info
*info
;
2969 asection
**sinterpptr
;
2970 struct bfd_elf_version_tree
*verdefs
;
2972 bfd_size_type soname_indx
;
2974 struct elf_backend_data
*bed
;
2975 struct elf_assign_sym_version_info asvinfo
;
2979 soname_indx
= (bfd_size_type
) -1;
2981 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2984 if (! is_elf_hash_table (info
))
2987 /* Any syms created from now on start with -1 in
2988 got.refcount/offset and plt.refcount/offset. */
2989 elf_hash_table (info
)->init_refcount
= -1;
2991 /* The backend may have to create some sections regardless of whether
2992 we're dynamic or not. */
2993 bed
= get_elf_backend_data (output_bfd
);
2994 if (bed
->elf_backend_always_size_sections
2995 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
2998 dynobj
= elf_hash_table (info
)->dynobj
;
3000 /* If there were no dynamic objects in the link, there is nothing to
3005 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
3008 if (elf_hash_table (info
)->dynamic_sections_created
)
3010 struct elf_info_failed eif
;
3011 struct elf_link_hash_entry
*h
;
3014 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
3015 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
3019 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3021 if (soname_indx
== (bfd_size_type
) -1
3022 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SONAME
,
3029 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMBOLIC
,
3032 info
->flags
|= DF_SYMBOLIC
;
3039 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
3041 if (info
->new_dtags
)
3042 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
3043 if (indx
== (bfd_size_type
) -1
3044 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RPATH
, indx
)
3046 && ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RUNPATH
,
3051 if (filter_shlib
!= NULL
)
3055 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3056 filter_shlib
, true);
3057 if (indx
== (bfd_size_type
) -1
3058 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FILTER
, indx
))
3062 if (auxiliary_filters
!= NULL
)
3064 const char * const *p
;
3066 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
3070 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3072 if (indx
== (bfd_size_type
) -1
3073 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_AUXILIARY
,
3080 eif
.verdefs
= verdefs
;
3083 /* If we are supposed to export all symbols into the dynamic symbol
3084 table (this is not the normal case), then do so. */
3085 if (info
->export_dynamic
)
3087 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
3093 /* Attach all the symbols to their version information. */
3094 asvinfo
.output_bfd
= output_bfd
;
3095 asvinfo
.info
= info
;
3096 asvinfo
.verdefs
= verdefs
;
3097 asvinfo
.failed
= false;
3099 elf_link_hash_traverse (elf_hash_table (info
),
3100 elf_link_assign_sym_version
,
3105 /* Find all symbols which were defined in a dynamic object and make
3106 the backend pick a reasonable value for them. */
3107 elf_link_hash_traverse (elf_hash_table (info
),
3108 elf_adjust_dynamic_symbol
,
3113 /* Add some entries to the .dynamic section. We fill in some of the
3114 values later, in elf_bfd_final_link, but we must add the entries
3115 now so that we know the final size of the .dynamic section. */
3117 /* If there are initialization and/or finalization functions to
3118 call then add the corresponding DT_INIT/DT_FINI entries. */
3119 h
= (info
->init_function
3120 ? elf_link_hash_lookup (elf_hash_table (info
),
3121 info
->init_function
, false,
3125 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3126 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3128 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT
, (bfd_vma
) 0))
3131 h
= (info
->fini_function
3132 ? elf_link_hash_lookup (elf_hash_table (info
),
3133 info
->fini_function
, false,
3137 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3138 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3140 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI
, (bfd_vma
) 0))
3144 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
3145 /* If .dynstr is excluded from the link, we don't want any of
3146 these tags. Strictly, we should be checking each section
3147 individually; This quick check covers for the case where
3148 someone does a /DISCARD/ : { *(*) }. */
3149 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
3151 bfd_size_type strsize
;
3153 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3154 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_HASH
, (bfd_vma
) 0)
3155 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRTAB
, (bfd_vma
) 0)
3156 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMTAB
, (bfd_vma
) 0)
3157 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRSZ
, strsize
)
3158 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMENT
,
3159 (bfd_vma
) sizeof (Elf_External_Sym
)))
3164 /* The backend must work out the sizes of all the other dynamic
3166 if (bed
->elf_backend_size_dynamic_sections
3167 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
3170 if (elf_hash_table (info
)->dynamic_sections_created
)
3172 bfd_size_type dynsymcount
;
3174 size_t bucketcount
= 0;
3175 size_t hash_entry_size
;
3176 unsigned int dtagcount
;
3178 /* Set up the version definition section. */
3179 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3180 BFD_ASSERT (s
!= NULL
);
3182 /* We may have created additional version definitions if we are
3183 just linking a regular application. */
3184 verdefs
= asvinfo
.verdefs
;
3186 if (verdefs
== NULL
)
3187 _bfd_strip_section_from_output (info
, s
);
3192 struct bfd_elf_version_tree
*t
;
3194 Elf_Internal_Verdef def
;
3195 Elf_Internal_Verdaux defaux
;
3200 /* Make space for the base version. */
3201 size
+= sizeof (Elf_External_Verdef
);
3202 size
+= sizeof (Elf_External_Verdaux
);
3205 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3207 struct bfd_elf_version_deps
*n
;
3209 size
+= sizeof (Elf_External_Verdef
);
3210 size
+= sizeof (Elf_External_Verdaux
);
3213 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3214 size
+= sizeof (Elf_External_Verdaux
);
3217 s
->_raw_size
= size
;
3218 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3219 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3222 /* Fill in the version definition section. */
3226 def
.vd_version
= VER_DEF_CURRENT
;
3227 def
.vd_flags
= VER_FLG_BASE
;
3230 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3231 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3232 + sizeof (Elf_External_Verdaux
));
3234 if (soname_indx
!= (bfd_size_type
) -1)
3236 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3238 def
.vd_hash
= bfd_elf_hash (soname
);
3239 defaux
.vda_name
= soname_indx
;
3246 name
= basename (output_bfd
->filename
);
3247 def
.vd_hash
= bfd_elf_hash (name
);
3248 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3250 if (indx
== (bfd_size_type
) -1)
3252 defaux
.vda_name
= indx
;
3254 defaux
.vda_next
= 0;
3256 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3257 (Elf_External_Verdef
*) p
);
3258 p
+= sizeof (Elf_External_Verdef
);
3259 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3260 (Elf_External_Verdaux
*) p
);
3261 p
+= sizeof (Elf_External_Verdaux
);
3263 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3266 struct bfd_elf_version_deps
*n
;
3267 struct elf_link_hash_entry
*h
;
3270 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3273 /* Add a symbol representing this version. */
3275 if (! (_bfd_generic_link_add_one_symbol
3276 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
3277 (bfd_vma
) 0, (const char *) NULL
, false,
3278 get_elf_backend_data (dynobj
)->collect
,
3279 (struct bfd_link_hash_entry
**) &h
)))
3281 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
3282 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3283 h
->type
= STT_OBJECT
;
3284 h
->verinfo
.vertree
= t
;
3286 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
3289 def
.vd_version
= VER_DEF_CURRENT
;
3291 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
3292 def
.vd_flags
|= VER_FLG_WEAK
;
3293 def
.vd_ndx
= t
->vernum
+ 1;
3294 def
.vd_cnt
= cdeps
+ 1;
3295 def
.vd_hash
= bfd_elf_hash (t
->name
);
3296 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3297 if (t
->next
!= NULL
)
3298 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3299 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
3303 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3304 (Elf_External_Verdef
*) p
);
3305 p
+= sizeof (Elf_External_Verdef
);
3307 defaux
.vda_name
= h
->dynstr_index
;
3308 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3310 if (t
->deps
== NULL
)
3311 defaux
.vda_next
= 0;
3313 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3314 t
->name_indx
= defaux
.vda_name
;
3316 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3317 (Elf_External_Verdaux
*) p
);
3318 p
+= sizeof (Elf_External_Verdaux
);
3320 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3322 if (n
->version_needed
== NULL
)
3324 /* This can happen if there was an error in the
3326 defaux
.vda_name
= 0;
3330 defaux
.vda_name
= n
->version_needed
->name_indx
;
3331 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3334 if (n
->next
== NULL
)
3335 defaux
.vda_next
= 0;
3337 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3339 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3340 (Elf_External_Verdaux
*) p
);
3341 p
+= sizeof (Elf_External_Verdaux
);
3345 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEF
, (bfd_vma
) 0)
3346 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEFNUM
,
3350 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
3353 if (info
->new_dtags
&& info
->flags
)
3355 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS
, info
->flags
))
3362 info
->flags_1
&= ~ (DF_1_INITFIRST
3365 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS_1
,
3370 /* Work out the size of the version reference section. */
3372 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3373 BFD_ASSERT (s
!= NULL
);
3375 struct elf_find_verdep_info sinfo
;
3377 sinfo
.output_bfd
= output_bfd
;
3379 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
3380 if (sinfo
.vers
== 0)
3382 sinfo
.failed
= false;
3384 elf_link_hash_traverse (elf_hash_table (info
),
3385 elf_link_find_version_dependencies
,
3388 if (elf_tdata (output_bfd
)->verref
== NULL
)
3389 _bfd_strip_section_from_output (info
, s
);
3392 Elf_Internal_Verneed
*t
;
3397 /* Build the version definition section. */
3400 for (t
= elf_tdata (output_bfd
)->verref
;
3404 Elf_Internal_Vernaux
*a
;
3406 size
+= sizeof (Elf_External_Verneed
);
3408 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3409 size
+= sizeof (Elf_External_Vernaux
);
3412 s
->_raw_size
= size
;
3413 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3414 if (s
->contents
== NULL
)
3418 for (t
= elf_tdata (output_bfd
)->verref
;
3423 Elf_Internal_Vernaux
*a
;
3427 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3430 t
->vn_version
= VER_NEED_CURRENT
;
3432 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3433 elf_dt_name (t
->vn_bfd
) != NULL
3434 ? elf_dt_name (t
->vn_bfd
)
3435 : basename (t
->vn_bfd
->filename
),
3437 if (indx
== (bfd_size_type
) -1)
3440 t
->vn_aux
= sizeof (Elf_External_Verneed
);
3441 if (t
->vn_nextref
== NULL
)
3444 t
->vn_next
= (sizeof (Elf_External_Verneed
)
3445 + caux
* sizeof (Elf_External_Vernaux
));
3447 _bfd_elf_swap_verneed_out (output_bfd
, t
,
3448 (Elf_External_Verneed
*) p
);
3449 p
+= sizeof (Elf_External_Verneed
);
3451 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3453 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
3454 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3455 a
->vna_nodename
, false);
3456 if (indx
== (bfd_size_type
) -1)
3459 if (a
->vna_nextptr
== NULL
)
3462 a
->vna_next
= sizeof (Elf_External_Vernaux
);
3464 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
3465 (Elf_External_Vernaux
*) p
);
3466 p
+= sizeof (Elf_External_Vernaux
);
3470 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEED
,
3472 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEEDNUM
,
3476 elf_tdata (output_bfd
)->cverrefs
= crefs
;
3480 /* Assign dynsym indicies. In a shared library we generate a
3481 section symbol for each output section, which come first.
3482 Next come all of the back-end allocated local dynamic syms,
3483 followed by the rest of the global symbols. */
3485 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3487 /* Work out the size of the symbol version section. */
3488 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3489 BFD_ASSERT (s
!= NULL
);
3490 if (dynsymcount
== 0
3491 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
3493 _bfd_strip_section_from_output (info
, s
);
3494 /* The DYNSYMCOUNT might have changed if we were going to
3495 output a dynamic symbol table entry for S. */
3496 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3500 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
3501 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3502 if (s
->contents
== NULL
)
3505 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERSYM
, (bfd_vma
) 0))
3509 /* Set the size of the .dynsym and .hash sections. We counted
3510 the number of dynamic symbols in elf_link_add_object_symbols.
3511 We will build the contents of .dynsym and .hash when we build
3512 the final symbol table, because until then we do not know the
3513 correct value to give the symbols. We built the .dynstr
3514 section as we went along in elf_link_add_object_symbols. */
3515 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
3516 BFD_ASSERT (s
!= NULL
);
3517 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
3518 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3519 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3522 if (dynsymcount
!= 0)
3524 Elf_Internal_Sym isym
;
3526 /* The first entry in .dynsym is a dummy symbol. */
3533 elf_swap_symbol_out (output_bfd
, &isym
,
3534 (PTR
) (Elf_External_Sym
*) s
->contents
);
3537 /* Compute the size of the hashing table. As a side effect this
3538 computes the hash values for all the names we export. */
3539 bucketcount
= compute_bucket_count (info
);
3541 s
= bfd_get_section_by_name (dynobj
, ".hash");
3542 BFD_ASSERT (s
!= NULL
);
3543 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
3544 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
3545 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3546 if (s
->contents
== NULL
)
3548 memset (s
->contents
, 0, (size_t) s
->_raw_size
);
3550 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) bucketcount
,
3552 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) dynsymcount
,
3553 s
->contents
+ hash_entry_size
);
3555 elf_hash_table (info
)->bucketcount
= bucketcount
;
3557 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
3558 BFD_ASSERT (s
!= NULL
);
3560 elf_finalize_dynstr (output_bfd
, info
);
3562 s
->_raw_size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3564 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
3565 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NULL
, (bfd_vma
) 0))
3572 /* This function is used to adjust offsets into .dynstr for
3573 dynamic symbols. This is called via elf_link_hash_traverse. */
3575 static boolean elf_adjust_dynstr_offsets
3576 PARAMS ((struct elf_link_hash_entry
*, PTR
));
3579 elf_adjust_dynstr_offsets (h
, data
)
3580 struct elf_link_hash_entry
*h
;
3583 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3585 if (h
->dynindx
!= -1)
3586 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3590 /* Assign string offsets in .dynstr, update all structures referencing
3594 elf_finalize_dynstr (output_bfd
, info
)
3596 struct bfd_link_info
*info
;
3598 struct elf_link_local_dynamic_entry
*entry
;
3599 struct elf_strtab_hash
*dynstr
= elf_hash_table (info
)->dynstr
;
3600 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
3603 Elf_External_Dyn
*dyncon
, *dynconend
;
3605 _bfd_elf_strtab_finalize (dynstr
);
3606 size
= _bfd_elf_strtab_size (dynstr
);
3608 /* Update all .dynamic entries referencing .dynstr strings. */
3609 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3610 BFD_ASSERT (sdyn
!= NULL
);
3612 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
3613 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
3615 for (; dyncon
< dynconend
; dyncon
++)
3617 Elf_Internal_Dyn dyn
;
3619 elf_swap_dyn_in (dynobj
, dyncon
, & dyn
);
3623 dyn
.d_un
.d_val
= size
;
3624 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3632 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3633 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3640 /* Now update local dynamic symbols. */
3641 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
3642 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3643 entry
->isym
.st_name
);
3645 /* And the rest of dynamic symbols. */
3646 elf_link_hash_traverse (elf_hash_table (info
),
3647 elf_adjust_dynstr_offsets
, dynstr
);
3649 /* Adjust version definitions. */
3650 if (elf_tdata (output_bfd
)->cverdefs
)
3655 Elf_Internal_Verdef def
;
3656 Elf_Internal_Verdaux defaux
;
3658 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3659 p
= (bfd_byte
*) s
->contents
;
3662 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3664 p
+= sizeof (Elf_External_Verdef
);
3665 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3667 _bfd_elf_swap_verdaux_in (output_bfd
,
3668 (Elf_External_Verdaux
*) p
, &defaux
);
3669 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3671 _bfd_elf_swap_verdaux_out (output_bfd
,
3672 &defaux
, (Elf_External_Verdaux
*) p
);
3673 p
+= sizeof (Elf_External_Verdaux
);
3676 while (def
.vd_next
);
3679 /* Adjust version references. */
3680 if (elf_tdata (output_bfd
)->verref
)
3685 Elf_Internal_Verneed need
;
3686 Elf_Internal_Vernaux needaux
;
3688 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3689 p
= (bfd_byte
*) s
->contents
;
3692 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3694 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3695 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3696 (Elf_External_Verneed
*) p
);
3697 p
+= sizeof (Elf_External_Verneed
);
3698 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3700 _bfd_elf_swap_vernaux_in (output_bfd
,
3701 (Elf_External_Vernaux
*) p
, &needaux
);
3702 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3704 _bfd_elf_swap_vernaux_out (output_bfd
,
3706 (Elf_External_Vernaux
*) p
);
3707 p
+= sizeof (Elf_External_Vernaux
);
3710 while (need
.vn_next
);
3716 /* Fix up the flags for a symbol. This handles various cases which
3717 can only be fixed after all the input files are seen. This is
3718 currently called by both adjust_dynamic_symbol and
3719 assign_sym_version, which is unnecessary but perhaps more robust in
3720 the face of future changes. */
3723 elf_fix_symbol_flags (h
, eif
)
3724 struct elf_link_hash_entry
*h
;
3725 struct elf_info_failed
*eif
;
3727 /* If this symbol was mentioned in a non-ELF file, try to set
3728 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3729 permit a non-ELF file to correctly refer to a symbol defined in
3730 an ELF dynamic object. */
3731 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
3733 while (h
->root
.type
== bfd_link_hash_indirect
)
3734 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3736 if (h
->root
.type
!= bfd_link_hash_defined
3737 && h
->root
.type
!= bfd_link_hash_defweak
)
3738 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3739 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3742 if (h
->root
.u
.def
.section
->owner
!= NULL
3743 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3744 == bfd_target_elf_flavour
))
3745 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3746 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3748 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3751 if (h
->dynindx
== -1
3752 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3753 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
3755 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3764 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3765 was first seen in a non-ELF file. Fortunately, if the symbol
3766 was first seen in an ELF file, we're probably OK unless the
3767 symbol was defined in a non-ELF file. Catch that case here.
3768 FIXME: We're still in trouble if the symbol was first seen in
3769 a dynamic object, and then later in a non-ELF regular object. */
3770 if ((h
->root
.type
== bfd_link_hash_defined
3771 || h
->root
.type
== bfd_link_hash_defweak
)
3772 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3773 && (h
->root
.u
.def
.section
->owner
!= NULL
3774 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3775 != bfd_target_elf_flavour
)
3776 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3777 && (h
->elf_link_hash_flags
3778 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3779 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3782 /* If this is a final link, and the symbol was defined as a common
3783 symbol in a regular object file, and there was no definition in
3784 any dynamic object, then the linker will have allocated space for
3785 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3786 flag will not have been set. */
3787 if (h
->root
.type
== bfd_link_hash_defined
3788 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3789 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3790 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3791 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3792 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3794 /* If -Bsymbolic was used (which means to bind references to global
3795 symbols to the definition within the shared object), and this
3796 symbol was defined in a regular object, then it actually doesn't
3797 need a PLT entry, and we can accomplish that by forcing it local.
3798 Likewise, if the symbol has hidden or internal visibility.
3799 FIXME: It might be that we also do not need a PLT for other
3800 non-hidden visibilities, but we would have to tell that to the
3801 backend specifically; we can't just clear PLT-related data here. */
3802 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3803 && eif
->info
->shared
3804 && is_elf_hash_table (eif
->info
)
3805 && (eif
->info
->symbolic
3806 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3807 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3808 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3810 struct elf_backend_data
*bed
;
3812 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3813 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3814 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3816 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3817 _bfd_elf_strtab_delref (elf_hash_table (eif
->info
)->dynstr
,
3820 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
);
3823 /* If this is a weak defined symbol in a dynamic object, and we know
3824 the real definition in the dynamic object, copy interesting flags
3825 over to the real definition. */
3826 if (h
->weakdef
!= NULL
)
3828 struct elf_link_hash_entry
*weakdef
;
3830 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3831 || h
->root
.type
== bfd_link_hash_defweak
);
3832 weakdef
= h
->weakdef
;
3833 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3834 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3835 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3837 /* If the real definition is defined by a regular object file,
3838 don't do anything special. See the longer description in
3839 elf_adjust_dynamic_symbol, below. */
3840 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3844 struct elf_backend_data
*bed
;
3846 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3847 (*bed
->elf_backend_copy_indirect_symbol
) (weakdef
, h
);
3854 /* Make the backend pick a good value for a dynamic symbol. This is
3855 called via elf_link_hash_traverse, and also calls itself
3859 elf_adjust_dynamic_symbol (h
, data
)
3860 struct elf_link_hash_entry
*h
;
3863 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3865 struct elf_backend_data
*bed
;
3867 /* Ignore indirect symbols. These are added by the versioning code. */
3868 if (h
->root
.type
== bfd_link_hash_indirect
)
3871 if (! is_elf_hash_table (eif
->info
))
3874 /* Fix the symbol flags. */
3875 if (! elf_fix_symbol_flags (h
, eif
))
3878 /* If this symbol does not require a PLT entry, and it is not
3879 defined by a dynamic object, or is not referenced by a regular
3880 object, ignore it. We do have to handle a weak defined symbol,
3881 even if no regular object refers to it, if we decided to add it
3882 to the dynamic symbol table. FIXME: Do we normally need to worry
3883 about symbols which are defined by one dynamic object and
3884 referenced by another one? */
3885 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3886 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3887 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3888 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3889 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3891 h
->plt
.offset
= (bfd_vma
) -1;
3895 /* If we've already adjusted this symbol, don't do it again. This
3896 can happen via a recursive call. */
3897 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3900 /* Don't look at this symbol again. Note that we must set this
3901 after checking the above conditions, because we may look at a
3902 symbol once, decide not to do anything, and then get called
3903 recursively later after REF_REGULAR is set below. */
3904 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3906 /* If this is a weak definition, and we know a real definition, and
3907 the real symbol is not itself defined by a regular object file,
3908 then get a good value for the real definition. We handle the
3909 real symbol first, for the convenience of the backend routine.
3911 Note that there is a confusing case here. If the real definition
3912 is defined by a regular object file, we don't get the real symbol
3913 from the dynamic object, but we do get the weak symbol. If the
3914 processor backend uses a COPY reloc, then if some routine in the
3915 dynamic object changes the real symbol, we will not see that
3916 change in the corresponding weak symbol. This is the way other
3917 ELF linkers work as well, and seems to be a result of the shared
3920 I will clarify this issue. Most SVR4 shared libraries define the
3921 variable _timezone and define timezone as a weak synonym. The
3922 tzset call changes _timezone. If you write
3923 extern int timezone;
3925 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3926 you might expect that, since timezone is a synonym for _timezone,
3927 the same number will print both times. However, if the processor
3928 backend uses a COPY reloc, then actually timezone will be copied
3929 into your process image, and, since you define _timezone
3930 yourself, _timezone will not. Thus timezone and _timezone will
3931 wind up at different memory locations. The tzset call will set
3932 _timezone, leaving timezone unchanged. */
3934 if (h
->weakdef
!= NULL
)
3936 /* If we get to this point, we know there is an implicit
3937 reference by a regular object file via the weak symbol H.
3938 FIXME: Is this really true? What if the traversal finds
3939 H->WEAKDEF before it finds H? */
3940 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
3942 if (! elf_adjust_dynamic_symbol (h
->weakdef
, (PTR
) eif
))
3946 /* If a symbol has no type and no size and does not require a PLT
3947 entry, then we are probably about to do the wrong thing here: we
3948 are probably going to create a COPY reloc for an empty object.
3949 This case can arise when a shared object is built with assembly
3950 code, and the assembly code fails to set the symbol type. */
3952 && h
->type
== STT_NOTYPE
3953 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
3954 (*_bfd_error_handler
)
3955 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3956 h
->root
.root
.string
);
3958 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
3959 bed
= get_elf_backend_data (dynobj
);
3960 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
3969 /* This routine is used to export all defined symbols into the dynamic
3970 symbol table. It is called via elf_link_hash_traverse. */
3973 elf_export_symbol (h
, data
)
3974 struct elf_link_hash_entry
*h
;
3977 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3979 /* Ignore indirect symbols. These are added by the versioning code. */
3980 if (h
->root
.type
== bfd_link_hash_indirect
)
3983 if (h
->dynindx
== -1
3984 && (h
->elf_link_hash_flags
3985 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
3987 struct bfd_elf_version_tree
*t
;
3988 struct bfd_elf_version_expr
*d
;
3990 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
3992 if (t
->globals
!= NULL
)
3994 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3996 if ((*d
->match
) (d
, h
->root
.root
.string
))
4001 if (t
->locals
!= NULL
)
4003 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4005 if ((*d
->match
) (d
, h
->root
.root
.string
))
4014 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
4025 /* Look through the symbols which are defined in other shared
4026 libraries and referenced here. Update the list of version
4027 dependencies. This will be put into the .gnu.version_r section.
4028 This function is called via elf_link_hash_traverse. */
4031 elf_link_find_version_dependencies (h
, data
)
4032 struct elf_link_hash_entry
*h
;
4035 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
4036 Elf_Internal_Verneed
*t
;
4037 Elf_Internal_Vernaux
*a
;
4040 /* We only care about symbols defined in shared objects with version
4042 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
4043 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
4045 || h
->verinfo
.verdef
== NULL
)
4048 /* See if we already know about this version. */
4049 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
4051 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
4054 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4055 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
4061 /* This is a new version. Add it to tree we are building. */
4066 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4069 rinfo
->failed
= true;
4073 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
4074 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
4075 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
4079 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4081 /* Note that we are copying a string pointer here, and testing it
4082 above. If bfd_elf_string_from_elf_section is ever changed to
4083 discard the string data when low in memory, this will have to be
4085 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
4087 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
4088 a
->vna_nextptr
= t
->vn_auxptr
;
4090 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
4093 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
4100 /* Figure out appropriate versions for all the symbols. We may not
4101 have the version number script until we have read all of the input
4102 files, so until that point we don't know which symbols should be
4103 local. This function is called via elf_link_hash_traverse. */
4106 elf_link_assign_sym_version (h
, data
)
4107 struct elf_link_hash_entry
*h
;
4110 struct elf_assign_sym_version_info
*sinfo
;
4111 struct bfd_link_info
*info
;
4112 struct elf_backend_data
*bed
;
4113 struct elf_info_failed eif
;
4117 sinfo
= (struct elf_assign_sym_version_info
*) data
;
4120 /* Fix the symbol flags. */
4123 if (! elf_fix_symbol_flags (h
, &eif
))
4126 sinfo
->failed
= true;
4130 /* We only need version numbers for symbols defined in regular
4132 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4135 bed
= get_elf_backend_data (sinfo
->output_bfd
);
4136 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4137 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4139 struct bfd_elf_version_tree
*t
;
4144 /* There are two consecutive ELF_VER_CHR characters if this is
4145 not a hidden symbol. */
4147 if (*p
== ELF_VER_CHR
)
4153 /* If there is no version string, we can just return out. */
4157 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4161 /* Look for the version. If we find it, it is no longer weak. */
4162 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4164 if (strcmp (t
->name
, p
) == 0)
4168 struct bfd_elf_version_expr
*d
;
4170 len
= p
- h
->root
.root
.string
;
4171 alc
= bfd_alloc (sinfo
->output_bfd
, (bfd_size_type
) len
);
4174 strncpy (alc
, h
->root
.root
.string
, len
- 1);
4175 alc
[len
- 1] = '\0';
4176 if (alc
[len
- 2] == ELF_VER_CHR
)
4177 alc
[len
- 2] = '\0';
4179 h
->verinfo
.vertree
= t
;
4183 if (t
->globals
!= NULL
)
4185 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4186 if ((*d
->match
) (d
, alc
))
4190 /* See if there is anything to force this symbol to
4192 if (d
== NULL
&& t
->locals
!= NULL
)
4194 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4196 if ((*d
->match
) (d
, alc
))
4198 if (h
->dynindx
!= -1
4200 && ! info
->export_dynamic
)
4202 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4203 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4204 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4213 bfd_release (sinfo
->output_bfd
, alc
);
4218 /* If we are building an application, we need to create a
4219 version node for this version. */
4220 if (t
== NULL
&& ! info
->shared
)
4222 struct bfd_elf_version_tree
**pp
;
4225 /* If we aren't going to export this symbol, we don't need
4226 to worry about it. */
4227 if (h
->dynindx
== -1)
4231 t
= ((struct bfd_elf_version_tree
*)
4232 bfd_alloc (sinfo
->output_bfd
, amt
));
4235 sinfo
->failed
= true;
4244 t
->name_indx
= (unsigned int) -1;
4248 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
4250 t
->vernum
= version_index
;
4254 h
->verinfo
.vertree
= t
;
4258 /* We could not find the version for a symbol when
4259 generating a shared archive. Return an error. */
4260 (*_bfd_error_handler
)
4261 (_("%s: undefined versioned symbol name %s"),
4262 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
4263 bfd_set_error (bfd_error_bad_value
);
4264 sinfo
->failed
= true;
4269 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4272 /* If we don't have a version for this symbol, see if we can find
4274 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
4276 struct bfd_elf_version_tree
*t
;
4277 struct bfd_elf_version_tree
*deflt
;
4278 struct bfd_elf_version_expr
*d
;
4280 /* See if can find what version this symbol is in. If the
4281 symbol is supposed to be local, then don't actually register
4284 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4286 if (t
->globals
!= NULL
)
4288 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4290 if ((*d
->match
) (d
, h
->root
.root
.string
))
4292 h
->verinfo
.vertree
= t
;
4301 if (t
->locals
!= NULL
)
4303 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4305 if (d
->pattern
[0] == '*' && d
->pattern
[1] == '\0')
4307 else if ((*d
->match
) (d
, h
->root
.root
.string
))
4309 h
->verinfo
.vertree
= t
;
4310 if (h
->dynindx
!= -1
4312 && ! info
->export_dynamic
)
4314 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4315 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4316 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4328 if (deflt
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4330 h
->verinfo
.vertree
= deflt
;
4331 if (h
->dynindx
!= -1
4333 && ! info
->export_dynamic
)
4335 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4336 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4337 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4346 /* Final phase of ELF linker. */
4348 /* A structure we use to avoid passing large numbers of arguments. */
4350 struct elf_final_link_info
4352 /* General link information. */
4353 struct bfd_link_info
*info
;
4356 /* Symbol string table. */
4357 struct bfd_strtab_hash
*symstrtab
;
4358 /* .dynsym section. */
4359 asection
*dynsym_sec
;
4360 /* .hash section. */
4362 /* symbol version section (.gnu.version). */
4363 asection
*symver_sec
;
4364 /* Buffer large enough to hold contents of any section. */
4366 /* Buffer large enough to hold external relocs of any section. */
4367 PTR external_relocs
;
4368 /* Buffer large enough to hold internal relocs of any section. */
4369 Elf_Internal_Rela
*internal_relocs
;
4370 /* Buffer large enough to hold external local symbols of any input
4372 Elf_External_Sym
*external_syms
;
4373 /* Buffer large enough to hold internal local symbols of any input
4375 Elf_Internal_Sym
*internal_syms
;
4376 /* Array large enough to hold a symbol index for each local symbol
4377 of any input BFD. */
4379 /* Array large enough to hold a section pointer for each local
4380 symbol of any input BFD. */
4381 asection
**sections
;
4382 /* Buffer to hold swapped out symbols. */
4383 Elf_External_Sym
*symbuf
;
4384 /* Number of swapped out symbols in buffer. */
4385 size_t symbuf_count
;
4386 /* Number of symbols which fit in symbuf. */
4390 static boolean elf_link_output_sym
4391 PARAMS ((struct elf_final_link_info
*, const char *,
4392 Elf_Internal_Sym
*, asection
*));
4393 static boolean elf_link_flush_output_syms
4394 PARAMS ((struct elf_final_link_info
*));
4395 static boolean elf_link_output_extsym
4396 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4397 static boolean elf_link_sec_merge_syms
4398 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4399 static boolean elf_link_input_bfd
4400 PARAMS ((struct elf_final_link_info
*, bfd
*));
4401 static boolean elf_reloc_link_order
4402 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
4403 struct bfd_link_order
*));
4405 /* This struct is used to pass information to elf_link_output_extsym. */
4407 struct elf_outext_info
4411 struct elf_final_link_info
*finfo
;
4414 /* Compute the size of, and allocate space for, REL_HDR which is the
4415 section header for a section containing relocations for O. */
4418 elf_link_size_reloc_section (abfd
, rel_hdr
, o
)
4420 Elf_Internal_Shdr
*rel_hdr
;
4423 bfd_size_type reloc_count
;
4424 bfd_size_type num_rel_hashes
;
4426 /* Figure out how many relocations there will be. */
4427 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
4428 reloc_count
= elf_section_data (o
)->rel_count
;
4430 reloc_count
= elf_section_data (o
)->rel_count2
;
4432 num_rel_hashes
= o
->reloc_count
;
4433 if (num_rel_hashes
< reloc_count
)
4434 num_rel_hashes
= reloc_count
;
4436 /* That allows us to calculate the size of the section. */
4437 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
4439 /* The contents field must last into write_object_contents, so we
4440 allocate it with bfd_alloc rather than malloc. Also since we
4441 cannot be sure that the contents will actually be filled in,
4442 we zero the allocated space. */
4443 rel_hdr
->contents
= (PTR
) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
4444 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
4447 /* We only allocate one set of hash entries, so we only do it the
4448 first time we are called. */
4449 if (elf_section_data (o
)->rel_hashes
== NULL
4452 struct elf_link_hash_entry
**p
;
4454 p
= ((struct elf_link_hash_entry
**)
4455 bfd_zmalloc (num_rel_hashes
4456 * sizeof (struct elf_link_hash_entry
*)));
4460 elf_section_data (o
)->rel_hashes
= p
;
4466 /* When performing a relocateable link, the input relocations are
4467 preserved. But, if they reference global symbols, the indices
4468 referenced must be updated. Update all the relocations in
4469 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4472 elf_link_adjust_relocs (abfd
, rel_hdr
, count
, rel_hash
)
4474 Elf_Internal_Shdr
*rel_hdr
;
4476 struct elf_link_hash_entry
**rel_hash
;
4479 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4480 Elf_Internal_Rel
*irel
;
4481 Elf_Internal_Rela
*irela
;
4482 bfd_size_type amt
= sizeof (Elf_Internal_Rel
) * bed
->s
->int_rels_per_ext_rel
;
4484 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
4487 (*_bfd_error_handler
) (_("Error: out of memory"));
4491 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
4492 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
4495 (*_bfd_error_handler
) (_("Error: out of memory"));
4499 for (i
= 0; i
< count
; i
++, rel_hash
++)
4501 if (*rel_hash
== NULL
)
4504 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4506 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4508 Elf_External_Rel
*erel
;
4511 erel
= (Elf_External_Rel
*) rel_hdr
->contents
+ i
;
4512 if (bed
->s
->swap_reloc_in
)
4513 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
4515 elf_swap_reloc_in (abfd
, erel
, irel
);
4517 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4518 irel
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4519 ELF_R_TYPE (irel
[j
].r_info
));
4521 if (bed
->s
->swap_reloc_out
)
4522 (*bed
->s
->swap_reloc_out
) (abfd
, irel
, (bfd_byte
*) erel
);
4524 elf_swap_reloc_out (abfd
, irel
, erel
);
4528 Elf_External_Rela
*erela
;
4531 BFD_ASSERT (rel_hdr
->sh_entsize
4532 == sizeof (Elf_External_Rela
));
4534 erela
= (Elf_External_Rela
*) rel_hdr
->contents
+ i
;
4535 if (bed
->s
->swap_reloca_in
)
4536 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
4538 elf_swap_reloca_in (abfd
, erela
, irela
);
4540 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4541 irela
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4542 ELF_R_TYPE (irela
[j
].r_info
));
4544 if (bed
->s
->swap_reloca_out
)
4545 (*bed
->s
->swap_reloca_out
) (abfd
, irela
, (bfd_byte
*) erela
);
4547 elf_swap_reloca_out (abfd
, irela
, erela
);
4555 struct elf_link_sort_rela
{
4557 enum elf_reloc_type_class type
;
4559 Elf_Internal_Rel rel
;
4560 Elf_Internal_Rela rela
;
4565 elf_link_sort_cmp1 (A
, B
)
4569 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4570 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4571 int relativea
, relativeb
;
4573 relativea
= a
->type
== reloc_class_relative
;
4574 relativeb
= b
->type
== reloc_class_relative
;
4576 if (relativea
< relativeb
)
4578 if (relativea
> relativeb
)
4580 if (ELF_R_SYM (a
->u
.rel
.r_info
) < ELF_R_SYM (b
->u
.rel
.r_info
))
4582 if (ELF_R_SYM (a
->u
.rel
.r_info
) > ELF_R_SYM (b
->u
.rel
.r_info
))
4584 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4586 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4592 elf_link_sort_cmp2 (A
, B
)
4596 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4597 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4600 if (a
->offset
< b
->offset
)
4602 if (a
->offset
> b
->offset
)
4604 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
4605 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
4610 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4612 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4618 elf_link_sort_relocs (abfd
, info
, psec
)
4620 struct bfd_link_info
*info
;
4623 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4624 asection
*reldyn
, *o
;
4625 boolean rel
= false;
4626 bfd_size_type count
, size
;
4628 struct elf_link_sort_rela
*rela
;
4629 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4631 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
4632 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4634 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
4635 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4638 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rel
);
4641 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rela
);
4644 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4645 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4646 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4647 && o
->output_section
== reldyn
)
4648 size
+= o
->_raw_size
;
4650 if (size
!= reldyn
->_raw_size
)
4653 rela
= (struct elf_link_sort_rela
*) bfd_zmalloc (sizeof (*rela
) * count
);
4656 (*info
->callbacks
->warning
)
4657 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0,
4662 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4663 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4664 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4665 && o
->output_section
== reldyn
)
4669 Elf_External_Rel
*erel
, *erelend
;
4670 struct elf_link_sort_rela
*s
;
4672 erel
= (Elf_External_Rel
*) o
->contents
;
4673 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4674 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4675 for (; erel
< erelend
; erel
++, s
++)
4677 if (bed
->s
->swap_reloc_in
)
4678 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, &s
->u
.rel
);
4680 elf_swap_reloc_in (abfd
, erel
, &s
->u
.rel
);
4682 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4687 Elf_External_Rela
*erela
, *erelaend
;
4688 struct elf_link_sort_rela
*s
;
4690 erela
= (Elf_External_Rela
*) o
->contents
;
4691 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4692 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4693 for (; erela
< erelaend
; erela
++, s
++)
4695 if (bed
->s
->swap_reloca_in
)
4696 (*bed
->s
->swap_reloca_in
) (dynobj
, (bfd_byte
*) erela
,
4699 elf_swap_reloca_in (dynobj
, erela
, &s
->u
.rela
);
4701 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4706 qsort (rela
, (size_t) count
, sizeof (*rela
), elf_link_sort_cmp1
);
4707 for (ret
= 0; ret
< count
&& rela
[ret
].type
== reloc_class_relative
; ret
++)
4709 for (i
= ret
, j
= ret
; i
< count
; i
++)
4711 if (ELF_R_SYM (rela
[i
].u
.rel
.r_info
) != ELF_R_SYM (rela
[j
].u
.rel
.r_info
))
4713 rela
[i
].offset
= rela
[j
].u
.rel
.r_offset
;
4715 qsort (rela
+ ret
, (size_t) count
- ret
, sizeof (*rela
), elf_link_sort_cmp2
);
4717 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4718 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4719 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4720 && o
->output_section
== reldyn
)
4724 Elf_External_Rel
*erel
, *erelend
;
4725 struct elf_link_sort_rela
*s
;
4727 erel
= (Elf_External_Rel
*) o
->contents
;
4728 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4729 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4730 for (; erel
< erelend
; erel
++, s
++)
4732 if (bed
->s
->swap_reloc_out
)
4733 (*bed
->s
->swap_reloc_out
) (abfd
, &s
->u
.rel
,
4736 elf_swap_reloc_out (abfd
, &s
->u
.rel
, erel
);
4741 Elf_External_Rela
*erela
, *erelaend
;
4742 struct elf_link_sort_rela
*s
;
4744 erela
= (Elf_External_Rela
*) o
->contents
;
4745 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4746 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4747 for (; erela
< erelaend
; erela
++, s
++)
4749 if (bed
->s
->swap_reloca_out
)
4750 (*bed
->s
->swap_reloca_out
) (dynobj
, &s
->u
.rela
,
4751 (bfd_byte
*) erela
);
4753 elf_swap_reloca_out (dynobj
, &s
->u
.rela
, erela
);
4763 /* Do the final step of an ELF link. */
4766 elf_bfd_final_link (abfd
, info
)
4768 struct bfd_link_info
*info
;
4771 boolean emit_relocs
;
4773 struct elf_final_link_info finfo
;
4774 register asection
*o
;
4775 register struct bfd_link_order
*p
;
4777 bfd_size_type max_contents_size
;
4778 bfd_size_type max_external_reloc_size
;
4779 bfd_size_type max_internal_reloc_count
;
4780 bfd_size_type max_sym_count
;
4782 Elf_Internal_Sym elfsym
;
4784 Elf_Internal_Shdr
*symtab_hdr
;
4785 Elf_Internal_Shdr
*symstrtab_hdr
;
4786 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4787 struct elf_outext_info eoinfo
;
4789 size_t relativecount
= 0;
4790 asection
*reldyn
= 0;
4793 if (! is_elf_hash_table (info
))
4797 abfd
->flags
|= DYNAMIC
;
4799 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
4800 dynobj
= elf_hash_table (info
)->dynobj
;
4802 emit_relocs
= (info
->relocateable
4803 || info
->emitrelocations
4804 || bed
->elf_backend_emit_relocs
);
4807 finfo
.output_bfd
= abfd
;
4808 finfo
.symstrtab
= elf_stringtab_init ();
4809 if (finfo
.symstrtab
== NULL
)
4814 finfo
.dynsym_sec
= NULL
;
4815 finfo
.hash_sec
= NULL
;
4816 finfo
.symver_sec
= NULL
;
4820 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
4821 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
4822 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
4823 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
4824 /* Note that it is OK if symver_sec is NULL. */
4827 finfo
.contents
= NULL
;
4828 finfo
.external_relocs
= NULL
;
4829 finfo
.internal_relocs
= NULL
;
4830 finfo
.external_syms
= NULL
;
4831 finfo
.internal_syms
= NULL
;
4832 finfo
.indices
= NULL
;
4833 finfo
.sections
= NULL
;
4834 finfo
.symbuf
= NULL
;
4835 finfo
.symbuf_count
= 0;
4837 /* Count up the number of relocations we will output for each output
4838 section, so that we know the sizes of the reloc sections. We
4839 also figure out some maximum sizes. */
4840 max_contents_size
= 0;
4841 max_external_reloc_size
= 0;
4842 max_internal_reloc_count
= 0;
4845 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4849 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4851 if (p
->type
== bfd_section_reloc_link_order
4852 || p
->type
== bfd_symbol_reloc_link_order
)
4854 else if (p
->type
== bfd_indirect_link_order
)
4858 sec
= p
->u
.indirect
.section
;
4860 /* Mark all sections which are to be included in the
4861 link. This will normally be every section. We need
4862 to do this so that we can identify any sections which
4863 the linker has decided to not include. */
4864 sec
->linker_mark
= true;
4866 if (sec
->flags
& SEC_MERGE
)
4869 if (info
->relocateable
|| info
->emitrelocations
)
4870 o
->reloc_count
+= sec
->reloc_count
;
4871 else if (bed
->elf_backend_count_relocs
)
4873 Elf_Internal_Rela
* relocs
;
4875 relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4876 (abfd
, sec
, (PTR
) NULL
,
4877 (Elf_Internal_Rela
*) NULL
, info
->keep_memory
));
4879 o
->reloc_count
+= (*bed
->elf_backend_count_relocs
)
4882 if (!info
->keep_memory
)
4886 if (sec
->_raw_size
> max_contents_size
)
4887 max_contents_size
= sec
->_raw_size
;
4888 if (sec
->_cooked_size
> max_contents_size
)
4889 max_contents_size
= sec
->_cooked_size
;
4891 /* We are interested in just local symbols, not all
4893 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
4894 && (sec
->owner
->flags
& DYNAMIC
) == 0)
4898 if (elf_bad_symtab (sec
->owner
))
4899 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
4900 / sizeof (Elf_External_Sym
));
4902 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
4904 if (sym_count
> max_sym_count
)
4905 max_sym_count
= sym_count
;
4907 if ((sec
->flags
& SEC_RELOC
) != 0)
4911 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
4912 if (ext_size
> max_external_reloc_size
)
4913 max_external_reloc_size
= ext_size
;
4914 if (sec
->reloc_count
> max_internal_reloc_count
)
4915 max_internal_reloc_count
= sec
->reloc_count
;
4921 if (o
->reloc_count
> 0)
4922 o
->flags
|= SEC_RELOC
;
4925 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4926 set it (this is probably a bug) and if it is set
4927 assign_section_numbers will create a reloc section. */
4928 o
->flags
&=~ SEC_RELOC
;
4931 /* If the SEC_ALLOC flag is not set, force the section VMA to
4932 zero. This is done in elf_fake_sections as well, but forcing
4933 the VMA to 0 here will ensure that relocs against these
4934 sections are handled correctly. */
4935 if ((o
->flags
& SEC_ALLOC
) == 0
4936 && ! o
->user_set_vma
)
4940 if (! info
->relocateable
&& merged
)
4941 elf_link_hash_traverse (elf_hash_table (info
),
4942 elf_link_sec_merge_syms
, (PTR
) abfd
);
4944 /* Figure out the file positions for everything but the symbol table
4945 and the relocs. We set symcount to force assign_section_numbers
4946 to create a symbol table. */
4947 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
4948 BFD_ASSERT (! abfd
->output_has_begun
);
4949 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
4952 /* Figure out how many relocations we will have in each section.
4953 Just using RELOC_COUNT isn't good enough since that doesn't
4954 maintain a separate value for REL vs. RELA relocations. */
4956 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
4957 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
4959 asection
*output_section
;
4961 if (! o
->linker_mark
)
4963 /* This section was omitted from the link. */
4967 output_section
= o
->output_section
;
4969 if (output_section
!= NULL
4970 && (o
->flags
& SEC_RELOC
) != 0)
4972 struct bfd_elf_section_data
*esdi
4973 = elf_section_data (o
);
4974 struct bfd_elf_section_data
*esdo
4975 = elf_section_data (output_section
);
4976 unsigned int *rel_count
;
4977 unsigned int *rel_count2
;
4979 /* We must be careful to add the relocation froms the
4980 input section to the right output count. */
4981 if (esdi
->rel_hdr
.sh_entsize
== esdo
->rel_hdr
.sh_entsize
)
4983 rel_count
= &esdo
->rel_count
;
4984 rel_count2
= &esdo
->rel_count2
;
4988 rel_count
= &esdo
->rel_count2
;
4989 rel_count2
= &esdo
->rel_count
;
4992 *rel_count
+= NUM_SHDR_ENTRIES (& esdi
->rel_hdr
);
4994 *rel_count2
+= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
4995 output_section
->flags
|= SEC_RELOC
;
4999 /* That created the reloc sections. Set their sizes, and assign
5000 them file positions, and allocate some buffers. */
5001 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5003 if ((o
->flags
& SEC_RELOC
) != 0)
5005 if (!elf_link_size_reloc_section (abfd
,
5006 &elf_section_data (o
)->rel_hdr
,
5010 if (elf_section_data (o
)->rel_hdr2
5011 && !elf_link_size_reloc_section (abfd
,
5012 elf_section_data (o
)->rel_hdr2
,
5017 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5018 to count upwards while actually outputting the relocations. */
5019 elf_section_data (o
)->rel_count
= 0;
5020 elf_section_data (o
)->rel_count2
= 0;
5023 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5025 /* We have now assigned file positions for all the sections except
5026 .symtab and .strtab. We start the .symtab section at the current
5027 file position, and write directly to it. We build the .strtab
5028 section in memory. */
5029 bfd_get_symcount (abfd
) = 0;
5030 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5031 /* sh_name is set in prep_headers. */
5032 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5033 symtab_hdr
->sh_flags
= 0;
5034 symtab_hdr
->sh_addr
= 0;
5035 symtab_hdr
->sh_size
= 0;
5036 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
5037 /* sh_link is set in assign_section_numbers. */
5038 /* sh_info is set below. */
5039 /* sh_offset is set just below. */
5040 symtab_hdr
->sh_addralign
= bed
->s
->file_align
;
5042 off
= elf_tdata (abfd
)->next_file_pos
;
5043 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, true);
5045 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5046 incorrect. We do not yet know the size of the .symtab section.
5047 We correct next_file_pos below, after we do know the size. */
5049 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5050 continuously seeking to the right position in the file. */
5051 if (! info
->keep_memory
|| max_sym_count
< 20)
5052 finfo
.symbuf_size
= 20;
5054 finfo
.symbuf_size
= max_sym_count
;
5055 amt
= finfo
.symbuf_size
;
5056 amt
*= sizeof (Elf_External_Sym
);
5057 finfo
.symbuf
= (Elf_External_Sym
*) bfd_malloc (amt
);
5058 if (finfo
.symbuf
== NULL
)
5061 /* Start writing out the symbol table. The first symbol is always a
5063 if (info
->strip
!= strip_all
5066 elfsym
.st_value
= 0;
5069 elfsym
.st_other
= 0;
5070 elfsym
.st_shndx
= SHN_UNDEF
;
5071 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5072 &elfsym
, bfd_und_section_ptr
))
5077 /* Some standard ELF linkers do this, but we don't because it causes
5078 bootstrap comparison failures. */
5079 /* Output a file symbol for the output file as the second symbol.
5080 We output this even if we are discarding local symbols, although
5081 I'm not sure if this is correct. */
5082 elfsym
.st_value
= 0;
5084 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5085 elfsym
.st_other
= 0;
5086 elfsym
.st_shndx
= SHN_ABS
;
5087 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
5088 &elfsym
, bfd_abs_section_ptr
))
5092 /* Output a symbol for each section. We output these even if we are
5093 discarding local symbols, since they are used for relocs. These
5094 symbols have no names. We store the index of each one in the
5095 index field of the section, so that we can find it again when
5096 outputting relocs. */
5097 if (info
->strip
!= strip_all
5101 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5102 elfsym
.st_other
= 0;
5103 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
5105 o
= section_from_elf_index (abfd
, i
);
5107 o
->target_index
= bfd_get_symcount (abfd
);
5108 elfsym
.st_shndx
= i
;
5109 if (info
->relocateable
|| o
== NULL
)
5110 elfsym
.st_value
= 0;
5112 elfsym
.st_value
= o
->vma
;
5113 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5119 /* Allocate some memory to hold information read in from the input
5121 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
5122 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
5123 finfo
.internal_relocs
= ((Elf_Internal_Rela
*)
5124 bfd_malloc (max_internal_reloc_count
5125 * sizeof (Elf_Internal_Rela
)
5126 * bed
->s
->int_rels_per_ext_rel
));
5127 finfo
.external_syms
= ((Elf_External_Sym
*)
5128 bfd_malloc (max_sym_count
5129 * sizeof (Elf_External_Sym
)));
5130 finfo
.internal_syms
= ((Elf_Internal_Sym
*)
5131 bfd_malloc (max_sym_count
5132 * sizeof (Elf_Internal_Sym
)));
5133 finfo
.indices
= (long *) bfd_malloc (max_sym_count
* sizeof (long));
5134 finfo
.sections
= ((asection
**)
5135 bfd_malloc (max_sym_count
* sizeof (asection
*)));
5136 if ((finfo
.contents
== NULL
&& max_contents_size
!= 0)
5137 || (finfo
.external_relocs
== NULL
&& max_external_reloc_size
!= 0)
5138 || (finfo
.internal_relocs
== NULL
&& max_internal_reloc_count
!= 0)
5139 || (finfo
.external_syms
== NULL
&& max_sym_count
!= 0)
5140 || (finfo
.internal_syms
== NULL
&& max_sym_count
!= 0)
5141 || (finfo
.indices
== NULL
&& max_sym_count
!= 0)
5142 || (finfo
.sections
== NULL
&& max_sym_count
!= 0))
5145 /* Since ELF permits relocations to be against local symbols, we
5146 must have the local symbols available when we do the relocations.
5147 Since we would rather only read the local symbols once, and we
5148 would rather not keep them in memory, we handle all the
5149 relocations for a single input file at the same time.
5151 Unfortunately, there is no way to know the total number of local
5152 symbols until we have seen all of them, and the local symbol
5153 indices precede the global symbol indices. This means that when
5154 we are generating relocateable output, and we see a reloc against
5155 a global symbol, we can not know the symbol index until we have
5156 finished examining all the local symbols to see which ones we are
5157 going to output. To deal with this, we keep the relocations in
5158 memory, and don't output them until the end of the link. This is
5159 an unfortunate waste of memory, but I don't see a good way around
5160 it. Fortunately, it only happens when performing a relocateable
5161 link, which is not the common case. FIXME: If keep_memory is set
5162 we could write the relocs out and then read them again; I don't
5163 know how bad the memory loss will be. */
5165 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5166 sub
->output_has_begun
= false;
5167 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5169 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
5171 if (p
->type
== bfd_indirect_link_order
5172 && (bfd_get_flavour (p
->u
.indirect
.section
->owner
)
5173 == bfd_target_elf_flavour
))
5175 sub
= p
->u
.indirect
.section
->owner
;
5176 if (! sub
->output_has_begun
)
5178 if (! elf_link_input_bfd (&finfo
, sub
))
5180 sub
->output_has_begun
= true;
5183 else if (p
->type
== bfd_section_reloc_link_order
5184 || p
->type
== bfd_symbol_reloc_link_order
)
5186 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
5191 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
5197 /* That wrote out all the local symbols. Finish up the symbol table
5198 with the global symbols. Even if we want to strip everything we
5199 can, we still need to deal with those global symbols that got
5200 converted to local in a version script. */
5204 /* Output any global symbols that got converted to local in a
5205 version script. We do this in a separate step since ELF
5206 requires all local symbols to appear prior to any global
5207 symbols. FIXME: We should only do this if some global
5208 symbols were, in fact, converted to become local. FIXME:
5209 Will this work correctly with the Irix 5 linker? */
5210 eoinfo
.failed
= false;
5211 eoinfo
.finfo
= &finfo
;
5212 eoinfo
.localsyms
= true;
5213 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5219 /* The sh_info field records the index of the first non local symbol. */
5220 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
5223 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
5225 Elf_Internal_Sym sym
;
5226 Elf_External_Sym
*dynsym
=
5227 (Elf_External_Sym
*) finfo
.dynsym_sec
->contents
;
5228 long last_local
= 0;
5230 /* Write out the section symbols for the output sections. */
5237 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5240 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5243 indx
= elf_section_data (s
)->this_idx
;
5244 BFD_ASSERT (indx
> 0);
5245 sym
.st_shndx
= indx
;
5246 sym
.st_value
= s
->vma
;
5248 elf_swap_symbol_out (abfd
, &sym
,
5249 dynsym
+ elf_section_data (s
)->dynindx
);
5252 last_local
= bfd_count_sections (abfd
);
5255 /* Write out the local dynsyms. */
5256 if (elf_hash_table (info
)->dynlocal
)
5258 struct elf_link_local_dynamic_entry
*e
;
5259 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
5263 sym
.st_size
= e
->isym
.st_size
;
5264 sym
.st_other
= e
->isym
.st_other
;
5266 /* Copy the internal symbol as is.
5267 Note that we saved a word of storage and overwrote
5268 the original st_name with the dynstr_index. */
5271 if (e
->isym
.st_shndx
> 0 && e
->isym
.st_shndx
< SHN_LORESERVE
)
5273 s
= bfd_section_from_elf_index (e
->input_bfd
,
5277 elf_section_data (s
->output_section
)->this_idx
;
5278 sym
.st_value
= (s
->output_section
->vma
5280 + e
->isym
.st_value
);
5283 if (last_local
< e
->dynindx
)
5284 last_local
= e
->dynindx
;
5286 elf_swap_symbol_out (abfd
, &sym
, dynsym
+ e
->dynindx
);
5290 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
5294 /* We get the global symbols from the hash table. */
5295 eoinfo
.failed
= false;
5296 eoinfo
.localsyms
= false;
5297 eoinfo
.finfo
= &finfo
;
5298 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5303 /* If backend needs to output some symbols not present in the hash
5304 table, do it now. */
5305 if (bed
->elf_backend_output_arch_syms
)
5307 typedef boolean (*out_sym_func
) PARAMS ((PTR
, const char *,
5311 if (! ((*bed
->elf_backend_output_arch_syms
)
5312 (abfd
, info
, (PTR
) &finfo
, (out_sym_func
) elf_link_output_sym
)))
5316 /* Flush all symbols to the file. */
5317 if (! elf_link_flush_output_syms (&finfo
))
5320 /* Now we know the size of the symtab section. */
5321 off
+= symtab_hdr
->sh_size
;
5323 /* Finish up and write out the symbol string table (.strtab)
5325 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5326 /* sh_name was set in prep_headers. */
5327 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5328 symstrtab_hdr
->sh_flags
= 0;
5329 symstrtab_hdr
->sh_addr
= 0;
5330 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
5331 symstrtab_hdr
->sh_entsize
= 0;
5332 symstrtab_hdr
->sh_link
= 0;
5333 symstrtab_hdr
->sh_info
= 0;
5334 /* sh_offset is set just below. */
5335 symstrtab_hdr
->sh_addralign
= 1;
5337 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, true);
5338 elf_tdata (abfd
)->next_file_pos
= off
;
5340 if (bfd_get_symcount (abfd
) > 0)
5342 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
5343 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
5347 /* Adjust the relocs to have the correct symbol indices. */
5348 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5350 if ((o
->flags
& SEC_RELOC
) == 0)
5353 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
5354 elf_section_data (o
)->rel_count
,
5355 elf_section_data (o
)->rel_hashes
);
5356 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
5357 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
5358 elf_section_data (o
)->rel_count2
,
5359 (elf_section_data (o
)->rel_hashes
5360 + elf_section_data (o
)->rel_count
));
5362 /* Set the reloc_count field to 0 to prevent write_relocs from
5363 trying to swap the relocs out itself. */
5367 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
5368 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
5370 /* If we are linking against a dynamic object, or generating a
5371 shared library, finish up the dynamic linking information. */
5374 Elf_External_Dyn
*dyncon
, *dynconend
;
5376 /* Fix up .dynamic entries. */
5377 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
5378 BFD_ASSERT (o
!= NULL
);
5380 dyncon
= (Elf_External_Dyn
*) o
->contents
;
5381 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
5382 for (; dyncon
< dynconend
; dyncon
++)
5384 Elf_Internal_Dyn dyn
;
5388 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
5395 if (relativecount
> 0 && dyncon
+ 1 < dynconend
)
5397 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
5399 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
5400 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
5403 if (dyn
.d_tag
!= DT_NULL
)
5405 dyn
.d_un
.d_val
= relativecount
;
5406 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5412 name
= info
->init_function
;
5415 name
= info
->fini_function
;
5418 struct elf_link_hash_entry
*h
;
5420 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
5421 false, false, true);
5423 && (h
->root
.type
== bfd_link_hash_defined
5424 || h
->root
.type
== bfd_link_hash_defweak
))
5426 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
5427 o
= h
->root
.u
.def
.section
;
5428 if (o
->output_section
!= NULL
)
5429 dyn
.d_un
.d_val
+= (o
->output_section
->vma
5430 + o
->output_offset
);
5433 /* The symbol is imported from another shared
5434 library and does not apply to this one. */
5438 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5453 name
= ".gnu.version_d";
5456 name
= ".gnu.version_r";
5459 name
= ".gnu.version";
5461 o
= bfd_get_section_by_name (abfd
, name
);
5462 BFD_ASSERT (o
!= NULL
);
5463 dyn
.d_un
.d_ptr
= o
->vma
;
5464 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5471 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
5476 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
5478 Elf_Internal_Shdr
*hdr
;
5480 hdr
= elf_elfsections (abfd
)[i
];
5481 if (hdr
->sh_type
== type
5482 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
5484 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
5485 dyn
.d_un
.d_val
+= hdr
->sh_size
;
5488 if (dyn
.d_un
.d_val
== 0
5489 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
5490 dyn
.d_un
.d_val
= hdr
->sh_addr
;
5494 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5500 /* If we have created any dynamic sections, then output them. */
5503 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
5506 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
5508 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
5509 || o
->_raw_size
== 0
5510 || o
->output_section
== bfd_abs_section_ptr
)
5512 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
5514 /* At this point, we are only interested in sections
5515 created by elf_link_create_dynamic_sections. */
5518 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
5520 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
5522 if (! bfd_set_section_contents (abfd
, o
->output_section
,
5524 (file_ptr
) o
->output_offset
,
5530 /* The contents of the .dynstr section are actually in a
5532 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
5533 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
5534 || ! _bfd_elf_strtab_emit (abfd
,
5535 elf_hash_table (info
)->dynstr
))
5541 /* If we have optimized stabs strings, output them. */
5542 if (elf_hash_table (info
)->stab_info
!= NULL
)
5544 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
5548 if (info
->eh_frame_hdr
)
5550 o
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
5553 && (elf_section_data (o
)->sec_info_type
5554 == ELF_INFO_TYPE_EH_FRAME_HDR
))
5556 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, o
))
5561 if (finfo
.symstrtab
!= NULL
)
5562 _bfd_stringtab_free (finfo
.symstrtab
);
5563 if (finfo
.contents
!= NULL
)
5564 free (finfo
.contents
);
5565 if (finfo
.external_relocs
!= NULL
)
5566 free (finfo
.external_relocs
);
5567 if (finfo
.internal_relocs
!= NULL
)
5568 free (finfo
.internal_relocs
);
5569 if (finfo
.external_syms
!= NULL
)
5570 free (finfo
.external_syms
);
5571 if (finfo
.internal_syms
!= NULL
)
5572 free (finfo
.internal_syms
);
5573 if (finfo
.indices
!= NULL
)
5574 free (finfo
.indices
);
5575 if (finfo
.sections
!= NULL
)
5576 free (finfo
.sections
);
5577 if (finfo
.symbuf
!= NULL
)
5578 free (finfo
.symbuf
);
5579 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5581 if ((o
->flags
& SEC_RELOC
) != 0
5582 && elf_section_data (o
)->rel_hashes
!= NULL
)
5583 free (elf_section_data (o
)->rel_hashes
);
5586 elf_tdata (abfd
)->linker
= true;
5591 if (finfo
.symstrtab
!= NULL
)
5592 _bfd_stringtab_free (finfo
.symstrtab
);
5593 if (finfo
.contents
!= NULL
)
5594 free (finfo
.contents
);
5595 if (finfo
.external_relocs
!= NULL
)
5596 free (finfo
.external_relocs
);
5597 if (finfo
.internal_relocs
!= NULL
)
5598 free (finfo
.internal_relocs
);
5599 if (finfo
.external_syms
!= NULL
)
5600 free (finfo
.external_syms
);
5601 if (finfo
.internal_syms
!= NULL
)
5602 free (finfo
.internal_syms
);
5603 if (finfo
.indices
!= NULL
)
5604 free (finfo
.indices
);
5605 if (finfo
.sections
!= NULL
)
5606 free (finfo
.sections
);
5607 if (finfo
.symbuf
!= NULL
)
5608 free (finfo
.symbuf
);
5609 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5611 if ((o
->flags
& SEC_RELOC
) != 0
5612 && elf_section_data (o
)->rel_hashes
!= NULL
)
5613 free (elf_section_data (o
)->rel_hashes
);
5619 /* Add a symbol to the output symbol table. */
5622 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
5623 struct elf_final_link_info
*finfo
;
5625 Elf_Internal_Sym
*elfsym
;
5626 asection
*input_sec
;
5628 boolean (*output_symbol_hook
) PARAMS ((bfd
*,
5629 struct bfd_link_info
*info
,
5634 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
5635 elf_backend_link_output_symbol_hook
;
5636 if (output_symbol_hook
!= NULL
)
5638 if (! ((*output_symbol_hook
)
5639 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
5643 if (name
== (const char *) NULL
|| *name
== '\0')
5644 elfsym
->st_name
= 0;
5645 else if (input_sec
->flags
& SEC_EXCLUDE
)
5646 elfsym
->st_name
= 0;
5649 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5651 if (elfsym
->st_name
== (unsigned long) -1)
5655 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5657 if (! elf_link_flush_output_syms (finfo
))
5661 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
,
5662 (PTR
) (finfo
->symbuf
+ finfo
->symbuf_count
));
5663 ++finfo
->symbuf_count
;
5665 ++ bfd_get_symcount (finfo
->output_bfd
);
5670 /* Flush the output symbols to the file. */
5673 elf_link_flush_output_syms (finfo
)
5674 struct elf_final_link_info
*finfo
;
5676 if (finfo
->symbuf_count
> 0)
5678 Elf_Internal_Shdr
*symtab
;
5682 symtab
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5683 pos
= symtab
->sh_offset
+ symtab
->sh_size
;
5684 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5685 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5686 || bfd_bwrite ((PTR
) finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
5689 symtab
->sh_size
+= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5691 finfo
->symbuf_count
= 0;
5697 /* Adjust all external symbols pointing into SEC_MERGE sections
5698 to reflect the object merging within the sections. */
5701 elf_link_sec_merge_syms (h
, data
)
5702 struct elf_link_hash_entry
*h
;
5707 if ((h
->root
.type
== bfd_link_hash_defined
5708 || h
->root
.type
== bfd_link_hash_defweak
)
5709 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
5710 && elf_section_data (sec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
)
5712 bfd
*output_bfd
= (bfd
*) data
;
5714 h
->root
.u
.def
.value
=
5715 _bfd_merged_section_offset (output_bfd
,
5716 &h
->root
.u
.def
.section
,
5717 elf_section_data (sec
)->sec_info
,
5718 h
->root
.u
.def
.value
, (bfd_vma
) 0);
5724 /* Add an external symbol to the symbol table. This is called from
5725 the hash table traversal routine. When generating a shared object,
5726 we go through the symbol table twice. The first time we output
5727 anything that might have been forced to local scope in a version
5728 script. The second time we output the symbols that are still
5732 elf_link_output_extsym (h
, data
)
5733 struct elf_link_hash_entry
*h
;
5736 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
5737 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
5739 Elf_Internal_Sym sym
;
5740 asection
*input_sec
;
5742 /* Decide whether to output this symbol in this pass. */
5743 if (eoinfo
->localsyms
)
5745 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5750 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5754 /* If we are not creating a shared library, and this symbol is
5755 referenced by a shared library but is not defined anywhere, then
5756 warn that it is undefined. If we do not do this, the runtime
5757 linker will complain that the symbol is undefined when the
5758 program is run. We don't have to worry about symbols that are
5759 referenced by regular files, because we will already have issued
5760 warnings for them. */
5761 if (! finfo
->info
->relocateable
5762 && ! finfo
->info
->allow_shlib_undefined
5763 && ! finfo
->info
->shared
5764 && h
->root
.type
== bfd_link_hash_undefined
5765 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
5766 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5768 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
5769 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
5770 (asection
*) NULL
, (bfd_vma
) 0, true)))
5772 eoinfo
->failed
= true;
5777 /* We don't want to output symbols that have never been mentioned by
5778 a regular file, or that we have been told to strip. However, if
5779 h->indx is set to -2, the symbol is used by a reloc and we must
5783 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
5784 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
5785 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
5786 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5788 else if (finfo
->info
->strip
== strip_all
5789 || (finfo
->info
->strip
== strip_some
5790 && bfd_hash_lookup (finfo
->info
->keep_hash
,
5791 h
->root
.root
.string
,
5792 false, false) == NULL
))
5797 /* If we're stripping it, and it's not a dynamic symbol, there's
5798 nothing else to do unless it is a forced local symbol. */
5801 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5805 sym
.st_size
= h
->size
;
5806 sym
.st_other
= h
->other
;
5807 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5808 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
5809 else if (h
->root
.type
== bfd_link_hash_undefweak
5810 || h
->root
.type
== bfd_link_hash_defweak
)
5811 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
5813 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
5815 switch (h
->root
.type
)
5818 case bfd_link_hash_new
:
5822 case bfd_link_hash_undefined
:
5823 input_sec
= bfd_und_section_ptr
;
5824 sym
.st_shndx
= SHN_UNDEF
;
5827 case bfd_link_hash_undefweak
:
5828 input_sec
= bfd_und_section_ptr
;
5829 sym
.st_shndx
= SHN_UNDEF
;
5832 case bfd_link_hash_defined
:
5833 case bfd_link_hash_defweak
:
5835 input_sec
= h
->root
.u
.def
.section
;
5836 if (input_sec
->output_section
!= NULL
)
5839 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
5840 input_sec
->output_section
);
5841 if (sym
.st_shndx
== (unsigned short) -1)
5843 (*_bfd_error_handler
)
5844 (_("%s: could not find output section %s for input section %s"),
5845 bfd_get_filename (finfo
->output_bfd
),
5846 input_sec
->output_section
->name
,
5848 eoinfo
->failed
= true;
5852 /* ELF symbols in relocateable files are section relative,
5853 but in nonrelocateable files they are virtual
5855 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
5856 if (! finfo
->info
->relocateable
)
5857 sym
.st_value
+= input_sec
->output_section
->vma
;
5861 BFD_ASSERT (input_sec
->owner
== NULL
5862 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
5863 sym
.st_shndx
= SHN_UNDEF
;
5864 input_sec
= bfd_und_section_ptr
;
5869 case bfd_link_hash_common
:
5870 input_sec
= h
->root
.u
.c
.p
->section
;
5871 sym
.st_shndx
= SHN_COMMON
;
5872 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
5875 case bfd_link_hash_indirect
:
5876 /* These symbols are created by symbol versioning. They point
5877 to the decorated version of the name. For example, if the
5878 symbol foo@@GNU_1.2 is the default, which should be used when
5879 foo is used with no version, then we add an indirect symbol
5880 foo which points to foo@@GNU_1.2. We ignore these symbols,
5881 since the indirected symbol is already in the hash table. */
5884 case bfd_link_hash_warning
:
5885 /* We can't represent these symbols in ELF, although a warning
5886 symbol may have come from a .gnu.warning.SYMBOL section. We
5887 just put the target symbol in the hash table. If the target
5888 symbol does not really exist, don't do anything. */
5889 if (h
->root
.u
.i
.link
->type
== bfd_link_hash_new
)
5891 return (elf_link_output_extsym
5892 ((struct elf_link_hash_entry
*) h
->root
.u
.i
.link
, data
));
5895 /* Give the processor backend a chance to tweak the symbol value,
5896 and also to finish up anything that needs to be done for this
5898 if ((h
->dynindx
!= -1
5899 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5900 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
5902 struct elf_backend_data
*bed
;
5904 bed
= get_elf_backend_data (finfo
->output_bfd
);
5905 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
5906 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
5908 eoinfo
->failed
= true;
5913 /* If we are marking the symbol as undefined, and there are no
5914 non-weak references to this symbol from a regular object, then
5915 mark the symbol as weak undefined; if there are non-weak
5916 references, mark the symbol as strong. We can't do this earlier,
5917 because it might not be marked as undefined until the
5918 finish_dynamic_symbol routine gets through with it. */
5919 if (sym
.st_shndx
== SHN_UNDEF
5920 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
5921 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
5922 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
5926 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
5927 bindtype
= STB_GLOBAL
;
5929 bindtype
= STB_WEAK
;
5930 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
5933 /* If a symbol is not defined locally, we clear the visibility
5935 if (! finfo
->info
->relocateable
5936 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5937 sym
.st_other
^= ELF_ST_VISIBILITY (sym
.st_other
);
5939 /* If this symbol should be put in the .dynsym section, then put it
5940 there now. We have already know the symbol index. We also fill
5941 in the entry in the .hash section. */
5942 if (h
->dynindx
!= -1
5943 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
5947 size_t hash_entry_size
;
5948 bfd_byte
*bucketpos
;
5950 Elf_External_Sym
*esym
;
5952 sym
.st_name
= h
->dynstr_index
;
5953 esym
= (Elf_External_Sym
*) finfo
->dynsym_sec
->contents
+ h
->dynindx
;
5954 elf_swap_symbol_out (finfo
->output_bfd
, &sym
, (PTR
) esym
);
5956 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
5957 bucket
= h
->elf_hash_value
% bucketcount
;
5959 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
5960 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
5961 + (bucket
+ 2) * hash_entry_size
);
5962 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
5963 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, (bfd_vma
) h
->dynindx
,
5965 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
5966 ((bfd_byte
*) finfo
->hash_sec
->contents
5967 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
5969 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
5971 Elf_Internal_Versym iversym
;
5972 Elf_External_Versym
*eversym
;
5974 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5976 if (h
->verinfo
.verdef
== NULL
)
5977 iversym
.vs_vers
= 0;
5979 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
5983 if (h
->verinfo
.vertree
== NULL
)
5984 iversym
.vs_vers
= 1;
5986 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
5989 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
5990 iversym
.vs_vers
|= VERSYM_HIDDEN
;
5992 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
5993 eversym
+= h
->dynindx
;
5994 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
5998 /* If we're stripping it, then it was just a dynamic symbol, and
5999 there's nothing else to do. */
6003 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
6005 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
6007 eoinfo
->failed
= true;
6014 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6015 originated from the section given by INPUT_REL_HDR) to the
6019 elf_link_output_relocs (output_bfd
, input_section
, input_rel_hdr
,
6022 asection
*input_section
;
6023 Elf_Internal_Shdr
*input_rel_hdr
;
6024 Elf_Internal_Rela
*internal_relocs
;
6026 Elf_Internal_Rela
*irela
;
6027 Elf_Internal_Rela
*irelaend
;
6028 Elf_Internal_Shdr
*output_rel_hdr
;
6029 asection
*output_section
;
6030 unsigned int *rel_countp
= NULL
;
6031 struct elf_backend_data
*bed
;
6034 output_section
= input_section
->output_section
;
6035 output_rel_hdr
= NULL
;
6037 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
6038 == input_rel_hdr
->sh_entsize
)
6040 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6041 rel_countp
= &elf_section_data (output_section
)->rel_count
;
6043 else if (elf_section_data (output_section
)->rel_hdr2
6044 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
6045 == input_rel_hdr
->sh_entsize
))
6047 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
6048 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
6051 BFD_ASSERT (output_rel_hdr
!= NULL
);
6053 bed
= get_elf_backend_data (output_bfd
);
6054 irela
= internal_relocs
;
6055 irelaend
= irela
+ NUM_SHDR_ENTRIES (input_rel_hdr
)
6056 * bed
->s
->int_rels_per_ext_rel
;
6058 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
6060 Elf_External_Rel
*erel
;
6061 Elf_Internal_Rel
*irel
;
6063 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
6064 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
6067 (*_bfd_error_handler
) (_("Error: out of memory"));
6071 erel
= ((Elf_External_Rel
*) output_rel_hdr
->contents
+ *rel_countp
);
6072 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erel
++)
6076 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6078 irel
[i
].r_offset
= irela
[i
].r_offset
;
6079 irel
[i
].r_info
= irela
[i
].r_info
;
6080 BFD_ASSERT (irela
[i
].r_addend
== 0);
6083 if (bed
->s
->swap_reloc_out
)
6084 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (PTR
) erel
);
6086 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6093 Elf_External_Rela
*erela
;
6095 BFD_ASSERT (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
));
6097 erela
= ((Elf_External_Rela
*) output_rel_hdr
->contents
+ *rel_countp
);
6098 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erela
++)
6099 if (bed
->s
->swap_reloca_out
)
6100 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (PTR
) erela
);
6102 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6105 /* Bump the counter, so that we know where to add the next set of
6107 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
6110 /* Link an input file into the linker output file. This function
6111 handles all the sections and relocations of the input file at once.
6112 This is so that we only have to read the local symbols once, and
6113 don't have to keep them in memory. */
6116 elf_link_input_bfd (finfo
, input_bfd
)
6117 struct elf_final_link_info
*finfo
;
6120 boolean (*relocate_section
) PARAMS ((bfd
*, struct bfd_link_info
*,
6121 bfd
*, asection
*, bfd_byte
*,
6122 Elf_Internal_Rela
*,
6123 Elf_Internal_Sym
*, asection
**));
6125 Elf_Internal_Shdr
*symtab_hdr
;
6128 Elf_External_Sym
*external_syms
;
6129 Elf_External_Sym
*esym
;
6130 Elf_External_Sym
*esymend
;
6131 Elf_Internal_Sym
*isym
;
6133 asection
**ppsection
;
6135 struct elf_backend_data
*bed
;
6136 boolean emit_relocs
;
6137 struct elf_link_hash_entry
**sym_hashes
;
6139 output_bfd
= finfo
->output_bfd
;
6140 bed
= get_elf_backend_data (output_bfd
);
6141 relocate_section
= bed
->elf_backend_relocate_section
;
6143 /* If this is a dynamic object, we don't want to do anything here:
6144 we don't want the local symbols, and we don't want the section
6146 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6149 emit_relocs
= (finfo
->info
->relocateable
6150 || finfo
->info
->emitrelocations
6151 || bed
->elf_backend_emit_relocs
);
6153 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6154 if (elf_bad_symtab (input_bfd
))
6156 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6161 locsymcount
= symtab_hdr
->sh_info
;
6162 extsymoff
= symtab_hdr
->sh_info
;
6165 /* Read the local symbols. */
6166 if (symtab_hdr
->contents
!= NULL
)
6167 external_syms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
6168 else if (locsymcount
== 0)
6169 external_syms
= NULL
;
6172 bfd_size_type amt
= locsymcount
* sizeof (Elf_External_Sym
);
6173 external_syms
= finfo
->external_syms
;
6174 if (bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
6175 || bfd_bread (external_syms
, amt
, input_bfd
) != amt
)
6179 /* Swap in the local symbols and write out the ones which we know
6180 are going into the output file. */
6181 esym
= external_syms
;
6182 esymend
= esym
+ locsymcount
;
6183 isym
= finfo
->internal_syms
;
6184 pindex
= finfo
->indices
;
6185 ppsection
= finfo
->sections
;
6186 for (; esym
< esymend
; esym
++, isym
++, pindex
++, ppsection
++)
6190 Elf_Internal_Sym osym
;
6192 elf_swap_symbol_in (input_bfd
, esym
, isym
);
6195 if (elf_bad_symtab (input_bfd
))
6197 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6204 if (isym
->st_shndx
== SHN_UNDEF
)
6205 isec
= bfd_und_section_ptr
;
6206 else if (isym
->st_shndx
> 0 && isym
->st_shndx
< SHN_LORESERVE
)
6208 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
6210 && elf_section_data (isec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
6211 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6213 _bfd_merged_section_offset (output_bfd
, &isec
,
6214 elf_section_data (isec
)->sec_info
,
6215 isym
->st_value
, (bfd_vma
) 0);
6217 else if (isym
->st_shndx
== SHN_ABS
)
6218 isec
= bfd_abs_section_ptr
;
6219 else if (isym
->st_shndx
== SHN_COMMON
)
6220 isec
= bfd_com_section_ptr
;
6229 /* Don't output the first, undefined, symbol. */
6230 if (esym
== external_syms
)
6233 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6235 /* We never output section symbols. Instead, we use the
6236 section symbol of the corresponding section in the output
6241 /* If we are stripping all symbols, we don't want to output this
6243 if (finfo
->info
->strip
== strip_all
)
6246 /* If we are discarding all local symbols, we don't want to
6247 output this one. If we are generating a relocateable output
6248 file, then some of the local symbols may be required by
6249 relocs; we output them below as we discover that they are
6251 if (finfo
->info
->discard
== discard_all
)
6254 /* If this symbol is defined in a section which we are
6255 discarding, we don't need to keep it, but note that
6256 linker_mark is only reliable for sections that have contents.
6257 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6258 as well as linker_mark. */
6259 if (isym
->st_shndx
> 0
6260 && isym
->st_shndx
< SHN_LORESERVE
6262 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6263 || (! finfo
->info
->relocateable
6264 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6267 /* Get the name of the symbol. */
6268 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6273 /* See if we are discarding symbols with this name. */
6274 if ((finfo
->info
->strip
== strip_some
6275 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, false, false)
6277 || (((finfo
->info
->discard
== discard_sec_merge
6278 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocateable
)
6279 || finfo
->info
->discard
== discard_l
)
6280 && bfd_is_local_label_name (input_bfd
, name
)))
6283 /* If we get here, we are going to output this symbol. */
6287 /* Adjust the section index for the output file. */
6288 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6289 isec
->output_section
);
6290 if (osym
.st_shndx
== (unsigned short) -1)
6293 *pindex
= bfd_get_symcount (output_bfd
);
6295 /* ELF symbols in relocateable files are section relative, but
6296 in executable files they are virtual addresses. Note that
6297 this code assumes that all ELF sections have an associated
6298 BFD section with a reasonable value for output_offset; below
6299 we assume that they also have a reasonable value for
6300 output_section. Any special sections must be set up to meet
6301 these requirements. */
6302 osym
.st_value
+= isec
->output_offset
;
6303 if (! finfo
->info
->relocateable
)
6304 osym
.st_value
+= isec
->output_section
->vma
;
6306 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
6310 /* Relocate the contents of each section. */
6311 sym_hashes
= elf_sym_hashes (input_bfd
);
6312 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6316 if (! o
->linker_mark
)
6318 /* This section was omitted from the link. */
6322 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6323 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6326 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6328 /* Section was created by elf_link_create_dynamic_sections
6333 /* Get the contents of the section. They have been cached by a
6334 relaxation routine. Note that o is a section in an input
6335 file, so the contents field will not have been set by any of
6336 the routines which work on output files. */
6337 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6338 contents
= elf_section_data (o
)->this_hdr
.contents
;
6341 contents
= finfo
->contents
;
6342 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
6343 (file_ptr
) 0, o
->_raw_size
))
6347 if ((o
->flags
& SEC_RELOC
) != 0)
6349 Elf_Internal_Rela
*internal_relocs
;
6351 /* Get the swapped relocs. */
6352 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
6353 (input_bfd
, o
, finfo
->external_relocs
,
6354 finfo
->internal_relocs
, false));
6355 if (internal_relocs
== NULL
6356 && o
->reloc_count
> 0)
6359 /* Run through the relocs looking for any against symbols
6360 from discarded sections and section symbols from
6361 removed link-once sections. Complain about relocs
6362 against discarded sections. Zero relocs against removed
6363 link-once sections. We should really complain if
6364 anything in the final link tries to use it, but
6365 DWARF-based exception handling might have an entry in
6366 .eh_frame to describe a routine in the linkonce section,
6367 and it turns out to be hard to remove the .eh_frame
6368 entry too. FIXME. */
6369 if (!finfo
->info
->relocateable
6370 && !elf_section_ignore_discarded_relocs (o
))
6372 Elf_Internal_Rela
*rel
, *relend
;
6374 rel
= internal_relocs
;
6375 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6376 for ( ; rel
< relend
; rel
++)
6378 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6380 if (r_symndx
>= locsymcount
6381 || (elf_bad_symtab (input_bfd
)
6382 && finfo
->sections
[r_symndx
] == NULL
))
6384 struct elf_link_hash_entry
*h
;
6386 h
= sym_hashes
[r_symndx
- extsymoff
];
6387 while (h
->root
.type
== bfd_link_hash_indirect
6388 || h
->root
.type
== bfd_link_hash_warning
)
6389 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6391 /* Complain if the definition comes from a
6392 discarded section. */
6393 if ((h
->root
.type
== bfd_link_hash_defined
6394 || h
->root
.type
== bfd_link_hash_defweak
)
6395 && ! bfd_is_abs_section (h
->root
.u
.def
.section
)
6396 && bfd_is_abs_section (h
->root
.u
.def
.section
6398 && (elf_section_data (h
->root
.u
.def
.section
)
6399 ->sec_info_type
!= ELF_INFO_TYPE_MERGE
))
6401 #if BFD_VERSION_DATE < 20031005
6402 if ((o
->flags
& SEC_DEBUGGING
) != 0)
6404 #if BFD_VERSION_DATE > 20021005
6405 (*finfo
->info
->callbacks
->warning
)
6407 _("warning: relocation against removed section; zeroing"),
6408 NULL
, input_bfd
, o
, rel
->r_offset
);
6410 BFD_ASSERT (r_symndx
!= 0);
6411 memset (rel
, 0, sizeof (*rel
));
6416 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6417 (finfo
->info
, h
->root
.root
.string
,
6418 input_bfd
, o
, rel
->r_offset
,
6426 asection
*sec
= finfo
->sections
[r_symndx
];
6429 && ! bfd_is_abs_section (sec
)
6430 && bfd_is_abs_section (sec
->output_section
)
6431 && (elf_section_data (sec
)->sec_info_type
6432 != ELF_INFO_TYPE_MERGE
))
6434 #if BFD_VERSION_DATE < 20031005
6435 if ((o
->flags
& SEC_DEBUGGING
) != 0
6436 || (sec
->flags
& SEC_LINK_ONCE
) != 0)
6438 #if BFD_VERSION_DATE > 20021005
6439 (*finfo
->info
->callbacks
->warning
)
6441 _("warning: relocation against removed section"),
6442 NULL
, input_bfd
, o
, rel
->r_offset
);
6444 BFD_ASSERT (r_symndx
!= 0);
6446 = ELF_R_INFO (0, ELF_R_TYPE (rel
->r_info
));
6454 = _("local symbols in discarded section %s");
6456 = strlen (sec
->name
) + strlen (msg
) - 1;
6457 char *buf
= (char *) bfd_malloc (amt
);
6460 sprintf (buf
, msg
, sec
->name
);
6462 buf
= (char *) sec
->name
;
6463 ok
= (*finfo
->info
->callbacks
6464 ->undefined_symbol
) (finfo
->info
, buf
,
6468 if (buf
!= sec
->name
)
6478 /* Relocate the section by invoking a back end routine.
6480 The back end routine is responsible for adjusting the
6481 section contents as necessary, and (if using Rela relocs
6482 and generating a relocateable output file) adjusting the
6483 reloc addend as necessary.
6485 The back end routine does not have to worry about setting
6486 the reloc address or the reloc symbol index.
6488 The back end routine is given a pointer to the swapped in
6489 internal symbols, and can access the hash table entries
6490 for the external symbols via elf_sym_hashes (input_bfd).
6492 When generating relocateable output, the back end routine
6493 must handle STB_LOCAL/STT_SECTION symbols specially. The
6494 output symbol is going to be a section symbol
6495 corresponding to the output section, which will require
6496 the addend to be adjusted. */
6498 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
6499 input_bfd
, o
, contents
,
6501 finfo
->internal_syms
,
6507 Elf_Internal_Rela
*irela
;
6508 Elf_Internal_Rela
*irelaend
;
6509 struct elf_link_hash_entry
**rel_hash
;
6510 Elf_Internal_Shdr
*input_rel_hdr
;
6511 unsigned int next_erel
;
6512 void (*reloc_emitter
) PARAMS ((bfd
*, asection
*,
6513 Elf_Internal_Shdr
*,
6514 Elf_Internal_Rela
*));
6516 /* Adjust the reloc addresses and symbol indices. */
6518 irela
= internal_relocs
;
6519 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6520 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
6521 + elf_section_data (o
->output_section
)->rel_count
6522 + elf_section_data (o
->output_section
)->rel_count2
);
6523 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
6525 unsigned long r_symndx
;
6528 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
6534 irela
->r_offset
+= o
->output_offset
;
6536 /* Relocs in an executable have to be virtual addresses. */
6537 if (finfo
->info
->emitrelocations
)
6538 irela
->r_offset
+= o
->output_section
->vma
;
6540 r_symndx
= ELF_R_SYM (irela
->r_info
);
6545 if (r_symndx
>= locsymcount
6546 || (elf_bad_symtab (input_bfd
)
6547 && finfo
->sections
[r_symndx
] == NULL
))
6549 struct elf_link_hash_entry
*rh
;
6552 /* This is a reloc against a global symbol. We
6553 have not yet output all the local symbols, so
6554 we do not know the symbol index of any global
6555 symbol. We set the rel_hash entry for this
6556 reloc to point to the global hash table entry
6557 for this symbol. The symbol index is then
6558 set at the end of elf_bfd_final_link. */
6559 indx
= r_symndx
- extsymoff
;
6560 rh
= elf_sym_hashes (input_bfd
)[indx
];
6561 while (rh
->root
.type
== bfd_link_hash_indirect
6562 || rh
->root
.type
== bfd_link_hash_warning
)
6563 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
6565 /* Setting the index to -2 tells
6566 elf_link_output_extsym that this symbol is
6568 BFD_ASSERT (rh
->indx
< 0);
6576 /* This is a reloc against a local symbol. */
6579 isym
= finfo
->internal_syms
+ r_symndx
;
6580 sec
= finfo
->sections
[r_symndx
];
6581 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6583 /* I suppose the backend ought to fill in the
6584 section of any STT_SECTION symbol against a
6585 processor specific section. If we have
6586 discarded a section, the output_section will
6587 be the absolute section. */
6589 && (bfd_is_abs_section (sec
)
6590 || (sec
->output_section
!= NULL
6591 && bfd_is_abs_section (sec
->output_section
))))
6593 else if (sec
== NULL
|| sec
->owner
== NULL
)
6595 bfd_set_error (bfd_error_bad_value
);
6600 r_symndx
= sec
->output_section
->target_index
;
6601 BFD_ASSERT (r_symndx
!= 0);
6606 if (finfo
->indices
[r_symndx
] == -1)
6608 unsigned long shlink
;
6612 if (finfo
->info
->strip
== strip_all
)
6614 /* You can't do ld -r -s. */
6615 bfd_set_error (bfd_error_invalid_operation
);
6619 /* This symbol was skipped earlier, but
6620 since it is needed by a reloc, we
6621 must output it now. */
6622 shlink
= symtab_hdr
->sh_link
;
6623 name
= (bfd_elf_string_from_elf_section
6624 (input_bfd
, shlink
, isym
->st_name
));
6628 osec
= sec
->output_section
;
6630 _bfd_elf_section_from_bfd_section (output_bfd
,
6632 if (isym
->st_shndx
== (unsigned short) -1)
6635 isym
->st_value
+= sec
->output_offset
;
6636 if (! finfo
->info
->relocateable
)
6637 isym
->st_value
+= osec
->vma
;
6639 finfo
->indices
[r_symndx
]
6640 = bfd_get_symcount (output_bfd
);
6642 if (! elf_link_output_sym (finfo
, name
, isym
, sec
))
6646 r_symndx
= finfo
->indices
[r_symndx
];
6649 irela
->r_info
= ELF_R_INFO (r_symndx
,
6650 ELF_R_TYPE (irela
->r_info
));
6653 /* Swap out the relocs. */
6654 if (bed
->elf_backend_emit_relocs
6655 && !(finfo
->info
->relocateable
6656 || finfo
->info
->emitrelocations
))
6657 reloc_emitter
= bed
->elf_backend_emit_relocs
;
6659 reloc_emitter
= elf_link_output_relocs
;
6661 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6662 (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6664 input_rel_hdr
= elf_section_data (o
)->rel_hdr2
;
6667 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
6668 * bed
->s
->int_rels_per_ext_rel
);
6669 reloc_emitter (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6675 /* Write out the modified section contents. */
6676 if (bed
->elf_backend_write_section
6677 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
6679 /* Section written out. */
6681 else switch (elf_section_data (o
)->sec_info_type
)
6683 case ELF_INFO_TYPE_STABS
:
6684 if (! (_bfd_write_section_stabs
6686 &elf_hash_table (finfo
->info
)->stab_info
,
6687 o
, &elf_section_data (o
)->sec_info
, contents
)))
6690 case ELF_INFO_TYPE_MERGE
:
6691 if (! (_bfd_write_merged_section
6692 (output_bfd
, o
, elf_section_data (o
)->sec_info
)))
6695 case ELF_INFO_TYPE_EH_FRAME
:
6700 = bfd_get_section_by_name (elf_hash_table (finfo
->info
)->dynobj
,
6702 if (! (_bfd_elf_write_section_eh_frame (output_bfd
, o
, ehdrsec
,
6709 bfd_size_type sec_size
;
6711 sec_size
= (o
->_cooked_size
!= 0 ? o
->_cooked_size
: o
->_raw_size
);
6712 if (! (o
->flags
& SEC_EXCLUDE
)
6713 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
6715 (file_ptr
) o
->output_offset
,
6726 /* Generate a reloc when linking an ELF file. This is a reloc
6727 requested by the linker, and does come from any input file. This
6728 is used to build constructor and destructor tables when linking
6732 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
6734 struct bfd_link_info
*info
;
6735 asection
*output_section
;
6736 struct bfd_link_order
*link_order
;
6738 reloc_howto_type
*howto
;
6742 struct elf_link_hash_entry
**rel_hash_ptr
;
6743 Elf_Internal_Shdr
*rel_hdr
;
6744 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
6746 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
6749 bfd_set_error (bfd_error_bad_value
);
6753 addend
= link_order
->u
.reloc
.p
->addend
;
6755 /* Figure out the symbol index. */
6756 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
6757 + elf_section_data (output_section
)->rel_count
6758 + elf_section_data (output_section
)->rel_count2
);
6759 if (link_order
->type
== bfd_section_reloc_link_order
)
6761 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
6762 BFD_ASSERT (indx
!= 0);
6763 *rel_hash_ptr
= NULL
;
6767 struct elf_link_hash_entry
*h
;
6769 /* Treat a reloc against a defined symbol as though it were
6770 actually against the section. */
6771 h
= ((struct elf_link_hash_entry
*)
6772 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
6773 link_order
->u
.reloc
.p
->u
.name
,
6774 false, false, true));
6776 && (h
->root
.type
== bfd_link_hash_defined
6777 || h
->root
.type
== bfd_link_hash_defweak
))
6781 section
= h
->root
.u
.def
.section
;
6782 indx
= section
->output_section
->target_index
;
6783 *rel_hash_ptr
= NULL
;
6784 /* It seems that we ought to add the symbol value to the
6785 addend here, but in practice it has already been added
6786 because it was passed to constructor_callback. */
6787 addend
+= section
->output_section
->vma
+ section
->output_offset
;
6791 /* Setting the index to -2 tells elf_link_output_extsym that
6792 this symbol is used by a reloc. */
6799 if (! ((*info
->callbacks
->unattached_reloc
)
6800 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
6801 (asection
*) NULL
, (bfd_vma
) 0)))
6807 /* If this is an inplace reloc, we must write the addend into the
6809 if (howto
->partial_inplace
&& addend
!= 0)
6812 bfd_reloc_status_type rstat
;
6815 const char *sym_name
;
6817 size
= bfd_get_reloc_size (howto
);
6818 buf
= (bfd_byte
*) bfd_zmalloc (size
);
6819 if (buf
== (bfd_byte
*) NULL
)
6821 rstat
= _bfd_relocate_contents (howto
, output_bfd
, (bfd_vma
) addend
, buf
);
6828 case bfd_reloc_outofrange
:
6831 case bfd_reloc_overflow
:
6832 if (link_order
->type
== bfd_section_reloc_link_order
)
6833 sym_name
= bfd_section_name (output_bfd
,
6834 link_order
->u
.reloc
.p
->u
.section
);
6836 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
6837 if (! ((*info
->callbacks
->reloc_overflow
)
6838 (info
, sym_name
, howto
->name
, addend
,
6839 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
6846 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
6847 (file_ptr
) link_order
->offset
, size
);
6853 /* The address of a reloc is relative to the section in a
6854 relocateable file, and is a virtual address in an executable
6856 offset
= link_order
->offset
;
6857 if (! info
->relocateable
)
6858 offset
+= output_section
->vma
;
6860 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6862 if (rel_hdr
->sh_type
== SHT_REL
)
6865 Elf_Internal_Rel
*irel
;
6866 Elf_External_Rel
*erel
;
6869 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
6870 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (size
);
6874 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6875 irel
[i
].r_offset
= offset
;
6876 irel
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
6878 erel
= ((Elf_External_Rel
*) rel_hdr
->contents
6879 + elf_section_data (output_section
)->rel_count
);
6881 if (bed
->s
->swap_reloc_out
)
6882 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (bfd_byte
*) erel
);
6884 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6891 Elf_Internal_Rela
*irela
;
6892 Elf_External_Rela
*erela
;
6895 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
6896 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (size
);
6900 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6901 irela
[i
].r_offset
= offset
;
6902 irela
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
6903 irela
[0].r_addend
= addend
;
6905 erela
= ((Elf_External_Rela
*) rel_hdr
->contents
6906 + elf_section_data (output_section
)->rel_count
);
6908 if (bed
->s
->swap_reloca_out
)
6909 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (bfd_byte
*) erela
);
6911 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6914 ++elf_section_data (output_section
)->rel_count
;
6919 /* Allocate a pointer to live in a linker created section. */
6922 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
6924 struct bfd_link_info
*info
;
6925 elf_linker_section_t
*lsect
;
6926 struct elf_link_hash_entry
*h
;
6927 const Elf_Internal_Rela
*rel
;
6929 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
6930 elf_linker_section_pointers_t
*linker_section_ptr
;
6931 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6934 BFD_ASSERT (lsect
!= NULL
);
6936 /* Is this a global symbol? */
6939 /* Has this symbol already been allocated? If so, our work is done. */
6940 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
6945 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
6946 /* Make sure this symbol is output as a dynamic symbol. */
6947 if (h
->dynindx
== -1)
6949 if (! elf_link_record_dynamic_symbol (info
, h
))
6953 if (lsect
->rel_section
)
6954 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
6958 /* Allocation of a pointer to a local symbol. */
6959 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
6961 /* Allocate a table to hold the local symbols if first time. */
6964 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
6965 register unsigned int i
;
6968 amt
*= sizeof (elf_linker_section_pointers_t
*);
6969 ptr
= (elf_linker_section_pointers_t
**) bfd_alloc (abfd
, amt
);
6974 elf_local_ptr_offsets (abfd
) = ptr
;
6975 for (i
= 0; i
< num_symbols
; i
++)
6976 ptr
[i
] = (elf_linker_section_pointers_t
*) 0;
6979 /* Has this symbol already been allocated? If so, our work is done. */
6980 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
6985 ptr_linker_section_ptr
= &ptr
[r_symndx
];
6989 /* If we are generating a shared object, we need to
6990 output a R_<xxx>_RELATIVE reloc so that the
6991 dynamic linker can adjust this GOT entry. */
6992 BFD_ASSERT (lsect
->rel_section
!= NULL
);
6993 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
6997 /* Allocate space for a pointer in the linker section, and allocate
6998 a new pointer record from internal memory. */
6999 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
7000 amt
= sizeof (elf_linker_section_pointers_t
);
7001 linker_section_ptr
= (elf_linker_section_pointers_t
*) bfd_alloc (abfd
, amt
);
7003 if (!linker_section_ptr
)
7006 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
7007 linker_section_ptr
->addend
= rel
->r_addend
;
7008 linker_section_ptr
->which
= lsect
->which
;
7009 linker_section_ptr
->written_address_p
= false;
7010 *ptr_linker_section_ptr
= linker_section_ptr
;
7013 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
7015 linker_section_ptr
->offset
= (lsect
->section
->_raw_size
7016 - lsect
->hole_size
+ (ARCH_SIZE
/ 8));
7017 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
7018 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
7019 if (lsect
->sym_hash
)
7021 /* Bump up symbol value if needed. */
7022 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
7024 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
7025 lsect
->sym_hash
->root
.root
.string
,
7026 (long) ARCH_SIZE
/ 8,
7027 (long) lsect
->sym_hash
->root
.u
.def
.value
);
7033 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
7035 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
7039 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7040 lsect
->name
, (long) linker_section_ptr
->offset
,
7041 (long) lsect
->section
->_raw_size
);
7048 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7051 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7054 /* Fill in the address for a pointer generated in a linker section. */
7057 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
,
7058 relocation
, rel
, relative_reloc
)
7061 struct bfd_link_info
*info
;
7062 elf_linker_section_t
*lsect
;
7063 struct elf_link_hash_entry
*h
;
7065 const Elf_Internal_Rela
*rel
;
7068 elf_linker_section_pointers_t
*linker_section_ptr
;
7070 BFD_ASSERT (lsect
!= NULL
);
7074 /* Handle global symbol. */
7075 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7076 (h
->linker_section_pointer
,
7080 BFD_ASSERT (linker_section_ptr
!= NULL
);
7082 if (! elf_hash_table (info
)->dynamic_sections_created
7085 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
7087 /* This is actually a static link, or it is a
7088 -Bsymbolic link and the symbol is defined
7089 locally. We must initialize this entry in the
7092 When doing a dynamic link, we create a .rela.<xxx>
7093 relocation entry to initialize the value. This
7094 is done in the finish_dynamic_symbol routine. */
7095 if (!linker_section_ptr
->written_address_p
)
7097 linker_section_ptr
->written_address_p
= true;
7098 bfd_put_ptr (output_bfd
,
7099 relocation
+ linker_section_ptr
->addend
,
7100 (lsect
->section
->contents
7101 + linker_section_ptr
->offset
));
7107 /* Handle local symbol. */
7108 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7109 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
7110 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
7111 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7112 (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
7116 BFD_ASSERT (linker_section_ptr
!= NULL
);
7118 /* Write out pointer if it hasn't been rewritten out before. */
7119 if (!linker_section_ptr
->written_address_p
)
7121 linker_section_ptr
->written_address_p
= true;
7122 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
7123 lsect
->section
->contents
+ linker_section_ptr
->offset
);
7127 asection
*srel
= lsect
->rel_section
;
7128 Elf_Internal_Rela
*outrel
;
7129 Elf_External_Rela
*erel
;
7130 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7134 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
7135 outrel
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
7138 (*_bfd_error_handler
) (_("Error: out of memory"));
7142 /* We need to generate a relative reloc for the dynamic
7146 srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
7148 lsect
->rel_section
= srel
;
7151 BFD_ASSERT (srel
!= NULL
);
7153 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7154 outrel
[i
].r_offset
= (lsect
->section
->output_section
->vma
7155 + lsect
->section
->output_offset
7156 + linker_section_ptr
->offset
);
7157 outrel
[0].r_info
= ELF_R_INFO (0, relative_reloc
);
7158 outrel
[0].r_addend
= 0;
7159 erel
= (Elf_External_Rela
*) lsect
->section
->contents
;
7160 erel
+= elf_section_data (lsect
->section
)->rel_count
;
7161 elf_swap_reloca_out (output_bfd
, outrel
, erel
);
7162 ++elf_section_data (lsect
->section
)->rel_count
;
7169 relocation
= (lsect
->section
->output_offset
7170 + linker_section_ptr
->offset
7171 - lsect
->hole_offset
7172 - lsect
->sym_offset
);
7176 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7177 lsect
->name
, (long) relocation
, (long) relocation
);
7180 /* Subtract out the addend, because it will get added back in by the normal
7182 return relocation
- linker_section_ptr
->addend
;
7185 /* Garbage collect unused sections. */
7187 static boolean elf_gc_mark
7188 PARAMS ((struct bfd_link_info
*info
, asection
*sec
,
7189 asection
* (*gc_mark_hook
)
7190 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7191 struct elf_link_hash_entry
*, Elf_Internal_Sym
*))));
7193 static boolean elf_gc_sweep
7194 PARAMS ((struct bfd_link_info
*info
,
7195 boolean (*gc_sweep_hook
)
7196 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
7197 const Elf_Internal_Rela
*relocs
))));
7199 static boolean elf_gc_sweep_symbol
7200 PARAMS ((struct elf_link_hash_entry
*h
, PTR idxptr
));
7202 static boolean elf_gc_allocate_got_offsets
7203 PARAMS ((struct elf_link_hash_entry
*h
, PTR offarg
));
7205 static boolean elf_gc_propagate_vtable_entries_used
7206 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
7208 static boolean elf_gc_smash_unused_vtentry_relocs
7209 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
7211 /* The mark phase of garbage collection. For a given section, mark
7212 it and any sections in this section's group, and all the sections
7213 which define symbols to which it refers. */
7216 elf_gc_mark (info
, sec
, gc_mark_hook
)
7217 struct bfd_link_info
*info
;
7219 asection
* (*gc_mark_hook
)
7220 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7221 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
7224 asection
*group_sec
;
7228 /* Mark all the sections in the group. */
7229 group_sec
= elf_section_data (sec
)->next_in_group
;
7230 if (group_sec
&& !group_sec
->gc_mark
)
7231 if (!elf_gc_mark (info
, group_sec
, gc_mark_hook
))
7234 /* Look through the section relocs. */
7236 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
7238 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7239 Elf_Internal_Shdr
*symtab_hdr
;
7240 struct elf_link_hash_entry
**sym_hashes
;
7243 Elf_External_Sym
*locsyms
, *freesyms
= NULL
;
7244 bfd
*input_bfd
= sec
->owner
;
7245 struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
7247 /* GCFIXME: how to arrange so that relocs and symbols are not
7248 reread continually? */
7250 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
7251 sym_hashes
= elf_sym_hashes (input_bfd
);
7253 /* Read the local symbols. */
7254 if (elf_bad_symtab (input_bfd
))
7256 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7260 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
7261 if (symtab_hdr
->contents
)
7262 locsyms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
7263 else if (nlocsyms
== 0)
7267 bfd_size_type amt
= nlocsyms
* sizeof (Elf_External_Sym
);
7268 locsyms
= freesyms
= bfd_malloc (amt
);
7269 if (freesyms
== NULL
7270 || bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
7271 || bfd_bread (locsyms
, amt
, input_bfd
) != amt
)
7278 /* Read the relocations. */
7279 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7280 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
7281 info
->keep_memory
));
7282 if (relstart
== NULL
)
7287 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7289 for (rel
= relstart
; rel
< relend
; rel
++)
7291 unsigned long r_symndx
;
7293 struct elf_link_hash_entry
*h
;
7296 r_symndx
= ELF_R_SYM (rel
->r_info
);
7300 if (elf_bad_symtab (sec
->owner
))
7302 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
7303 if (ELF_ST_BIND (s
.st_info
) == STB_LOCAL
)
7304 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
7307 h
= sym_hashes
[r_symndx
- extsymoff
];
7308 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
7311 else if (r_symndx
>= nlocsyms
)
7313 h
= sym_hashes
[r_symndx
- extsymoff
];
7314 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
7318 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
7319 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
7322 if (rsec
&& !rsec
->gc_mark
)
7323 if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
7331 if (!info
->keep_memory
)
7341 /* The sweep phase of garbage collection. Remove all garbage sections. */
7344 elf_gc_sweep (info
, gc_sweep_hook
)
7345 struct bfd_link_info
*info
;
7346 boolean (*gc_sweep_hook
)
7347 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
7348 const Elf_Internal_Rela
*relocs
));
7352 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7356 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7359 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7361 /* Keep special sections. Keep .debug sections. */
7362 if ((o
->flags
& SEC_LINKER_CREATED
)
7363 || (o
->flags
& SEC_DEBUGGING
))
7369 /* Skip sweeping sections already excluded. */
7370 if (o
->flags
& SEC_EXCLUDE
)
7373 /* Since this is early in the link process, it is simple
7374 to remove a section from the output. */
7375 o
->flags
|= SEC_EXCLUDE
;
7377 /* But we also have to update some of the relocation
7378 info we collected before. */
7380 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
7382 Elf_Internal_Rela
*internal_relocs
;
7385 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
7386 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
7387 if (internal_relocs
== NULL
)
7390 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
7392 if (!info
->keep_memory
)
7393 free (internal_relocs
);
7401 /* Remove the symbols that were in the swept sections from the dynamic
7402 symbol table. GCFIXME: Anyone know how to get them out of the
7403 static symbol table as well? */
7407 elf_link_hash_traverse (elf_hash_table (info
),
7408 elf_gc_sweep_symbol
,
7411 elf_hash_table (info
)->dynsymcount
= i
;
7417 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7420 elf_gc_sweep_symbol (h
, idxptr
)
7421 struct elf_link_hash_entry
*h
;
7424 int *idx
= (int *) idxptr
;
7426 if (h
->dynindx
!= -1
7427 && ((h
->root
.type
!= bfd_link_hash_defined
7428 && h
->root
.type
!= bfd_link_hash_defweak
)
7429 || h
->root
.u
.def
.section
->gc_mark
))
7430 h
->dynindx
= (*idx
)++;
7435 /* Propogate collected vtable information. This is called through
7436 elf_link_hash_traverse. */
7439 elf_gc_propagate_vtable_entries_used (h
, okp
)
7440 struct elf_link_hash_entry
*h
;
7443 /* Those that are not vtables. */
7444 if (h
->vtable_parent
== NULL
)
7447 /* Those vtables that do not have parents, we cannot merge. */
7448 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
7451 /* If we've already been done, exit. */
7452 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
7455 /* Make sure the parent's table is up to date. */
7456 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
7458 if (h
->vtable_entries_used
== NULL
)
7460 /* None of this table's entries were referenced. Re-use the
7462 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
7463 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
7470 /* Or the parent's entries into ours. */
7471 cu
= h
->vtable_entries_used
;
7473 pu
= h
->vtable_parent
->vtable_entries_used
;
7476 asection
*sec
= h
->root
.u
.def
.section
;
7477 struct elf_backend_data
*bed
= get_elf_backend_data (sec
->owner
);
7478 int file_align
= bed
->s
->file_align
;
7480 n
= h
->vtable_parent
->vtable_entries_size
/ file_align
;
7495 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
7496 struct elf_link_hash_entry
*h
;
7500 bfd_vma hstart
, hend
;
7501 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
7502 struct elf_backend_data
*bed
;
7505 /* Take care of both those symbols that do not describe vtables as
7506 well as those that are not loaded. */
7507 if (h
->vtable_parent
== NULL
)
7510 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
7511 || h
->root
.type
== bfd_link_hash_defweak
);
7513 sec
= h
->root
.u
.def
.section
;
7514 hstart
= h
->root
.u
.def
.value
;
7515 hend
= hstart
+ h
->size
;
7517 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7518 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true));
7520 return *(boolean
*) okp
= false;
7521 bed
= get_elf_backend_data (sec
->owner
);
7522 file_align
= bed
->s
->file_align
;
7524 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7526 for (rel
= relstart
; rel
< relend
; ++rel
)
7527 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
7529 /* If the entry is in use, do nothing. */
7530 if (h
->vtable_entries_used
7531 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
7533 bfd_vma entry
= (rel
->r_offset
- hstart
) / file_align
;
7534 if (h
->vtable_entries_used
[entry
])
7537 /* Otherwise, kill it. */
7538 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
7544 /* Do mark and sweep of unused sections. */
7547 elf_gc_sections (abfd
, info
)
7549 struct bfd_link_info
*info
;
7553 asection
* (*gc_mark_hook
)
7554 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7555 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
7557 if (!get_elf_backend_data (abfd
)->can_gc_sections
7558 || info
->relocateable
|| info
->emitrelocations
7559 || elf_hash_table (info
)->dynamic_sections_created
)
7562 /* Apply transitive closure to the vtable entry usage info. */
7563 elf_link_hash_traverse (elf_hash_table (info
),
7564 elf_gc_propagate_vtable_entries_used
,
7569 /* Kill the vtable relocations that were not used. */
7570 elf_link_hash_traverse (elf_hash_table (info
),
7571 elf_gc_smash_unused_vtentry_relocs
,
7576 /* Grovel through relocs to find out who stays ... */
7578 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
7579 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7583 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7586 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7588 if (o
->flags
& SEC_KEEP
)
7589 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
7594 /* ... and mark SEC_EXCLUDE for those that go. */
7595 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
7601 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7604 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
7607 struct elf_link_hash_entry
*h
;
7610 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
7611 struct elf_link_hash_entry
**search
, *child
;
7612 bfd_size_type extsymcount
;
7614 /* The sh_info field of the symtab header tells us where the
7615 external symbols start. We don't care about the local symbols at
7617 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
7618 if (!elf_bad_symtab (abfd
))
7619 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7621 sym_hashes
= elf_sym_hashes (abfd
);
7622 sym_hashes_end
= sym_hashes
+ extsymcount
;
7624 /* Hunt down the child symbol, which is in this section at the same
7625 offset as the relocation. */
7626 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
7628 if ((child
= *search
) != NULL
7629 && (child
->root
.type
== bfd_link_hash_defined
7630 || child
->root
.type
== bfd_link_hash_defweak
)
7631 && child
->root
.u
.def
.section
== sec
7632 && child
->root
.u
.def
.value
== offset
)
7636 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
7637 bfd_archive_filename (abfd
), sec
->name
,
7638 (unsigned long) offset
);
7639 bfd_set_error (bfd_error_invalid_operation
);
7645 /* This *should* only be the absolute section. It could potentially
7646 be that someone has defined a non-global vtable though, which
7647 would be bad. It isn't worth paging in the local symbols to be
7648 sure though; that case should simply be handled by the assembler. */
7650 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
7653 child
->vtable_parent
= h
;
7658 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7661 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
7662 bfd
*abfd ATTRIBUTE_UNUSED
;
7663 asection
*sec ATTRIBUTE_UNUSED
;
7664 struct elf_link_hash_entry
*h
;
7667 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7668 int file_align
= bed
->s
->file_align
;
7670 if (addend
>= h
->vtable_entries_size
)
7673 boolean
*ptr
= h
->vtable_entries_used
;
7675 /* While the symbol is undefined, we have to be prepared to handle
7677 if (h
->root
.type
== bfd_link_hash_undefined
)
7684 /* Oops! We've got a reference past the defined end of
7685 the table. This is probably a bug -- shall we warn? */
7690 /* Allocate one extra entry for use as a "done" flag for the
7691 consolidation pass. */
7692 bytes
= (size
/ file_align
+ 1) * sizeof (boolean
);
7696 ptr
= bfd_realloc (ptr
- 1, (bfd_size_type
) bytes
);
7702 oldbytes
= ((h
->vtable_entries_size
/ file_align
+ 1)
7703 * sizeof (boolean
));
7704 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
7708 ptr
= bfd_zmalloc ((bfd_size_type
) bytes
);
7713 /* And arrange for that done flag to be at index -1. */
7714 h
->vtable_entries_used
= ptr
+ 1;
7715 h
->vtable_entries_size
= size
;
7718 h
->vtable_entries_used
[addend
/ file_align
] = true;
7723 /* And an accompanying bit to work out final got entry offsets once
7724 we're done. Should be called from final_link. */
7727 elf_gc_common_finalize_got_offsets (abfd
, info
)
7729 struct bfd_link_info
*info
;
7732 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7735 /* The GOT offset is relative to the .got section, but the GOT header is
7736 put into the .got.plt section, if the backend uses it. */
7737 if (bed
->want_got_plt
)
7740 gotoff
= bed
->got_header_size
;
7742 /* Do the local .got entries first. */
7743 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
7745 bfd_signed_vma
*local_got
;
7746 bfd_size_type j
, locsymcount
;
7747 Elf_Internal_Shdr
*symtab_hdr
;
7749 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
7752 local_got
= elf_local_got_refcounts (i
);
7756 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
7757 if (elf_bad_symtab (i
))
7758 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7760 locsymcount
= symtab_hdr
->sh_info
;
7762 for (j
= 0; j
< locsymcount
; ++j
)
7764 if (local_got
[j
] > 0)
7766 local_got
[j
] = gotoff
;
7767 gotoff
+= ARCH_SIZE
/ 8;
7770 local_got
[j
] = (bfd_vma
) -1;
7774 /* Then the global .got entries. .plt refcounts are handled by
7775 adjust_dynamic_symbol */
7776 elf_link_hash_traverse (elf_hash_table (info
),
7777 elf_gc_allocate_got_offsets
,
7782 /* We need a special top-level link routine to convert got reference counts
7783 to real got offsets. */
7786 elf_gc_allocate_got_offsets (h
, offarg
)
7787 struct elf_link_hash_entry
*h
;
7790 bfd_vma
*off
= (bfd_vma
*) offarg
;
7792 if (h
->got
.refcount
> 0)
7794 h
->got
.offset
= off
[0];
7795 off
[0] += ARCH_SIZE
/ 8;
7798 h
->got
.offset
= (bfd_vma
) -1;
7803 /* Many folk need no more in the way of final link than this, once
7804 got entry reference counting is enabled. */
7807 elf_gc_common_final_link (abfd
, info
)
7809 struct bfd_link_info
*info
;
7811 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
7814 /* Invoke the regular ELF backend linker to do all the work. */
7815 return elf_bfd_final_link (abfd
, info
);
7818 /* This function will be called though elf_link_hash_traverse to store
7819 all hash value of the exported symbols in an array. */
7822 elf_collect_hash_codes (h
, data
)
7823 struct elf_link_hash_entry
*h
;
7826 unsigned long **valuep
= (unsigned long **) data
;
7832 /* Ignore indirect symbols. These are added by the versioning code. */
7833 if (h
->dynindx
== -1)
7836 name
= h
->root
.root
.string
;
7837 p
= strchr (name
, ELF_VER_CHR
);
7840 alc
= bfd_malloc ((bfd_size_type
) (p
- name
+ 1));
7841 memcpy (alc
, name
, (size_t) (p
- name
));
7842 alc
[p
- name
] = '\0';
7846 /* Compute the hash value. */
7847 ha
= bfd_elf_hash (name
);
7849 /* Store the found hash value in the array given as the argument. */
7852 /* And store it in the struct so that we can put it in the hash table
7854 h
->elf_hash_value
= ha
;
7863 elf_reloc_symbol_deleted_p (offset
, cookie
)
7867 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*)cookie
;
7869 if (rcookie
->bad_symtab
)
7870 rcookie
->rel
= rcookie
->rels
;
7872 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
7874 unsigned long r_symndx
= ELF_R_SYM (rcookie
->rel
->r_info
);
7875 Elf_Internal_Sym isym
;
7877 if (! rcookie
->bad_symtab
)
7878 if (rcookie
->rel
->r_offset
> offset
)
7880 if (rcookie
->rel
->r_offset
!= offset
)
7883 if (rcookie
->locsyms
&& r_symndx
< rcookie
->locsymcount
)
7884 elf_swap_symbol_in (rcookie
->abfd
,
7885 (Elf_External_Sym
*) rcookie
->locsyms
+ r_symndx
,
7888 if (r_symndx
>= rcookie
->locsymcount
7889 || (rcookie
->locsyms
7890 && ELF_ST_BIND (isym
.st_info
) != STB_LOCAL
))
7892 struct elf_link_hash_entry
*h
;
7894 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
7896 while (h
->root
.type
== bfd_link_hash_indirect
7897 || h
->root
.type
== bfd_link_hash_warning
)
7898 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7900 if ((h
->root
.type
== bfd_link_hash_defined
7901 || h
->root
.type
== bfd_link_hash_defweak
)
7902 && ! bfd_is_abs_section (h
->root
.u
.def
.section
)
7903 && bfd_is_abs_section (h
->root
.u
.def
.section
7909 else if (rcookie
->locsyms
)
7911 /* It's not a relocation against a global symbol,
7912 but it could be a relocation against a local
7913 symbol for a discarded section. */
7916 /* Need to: get the symbol; get the section. */
7917 if (isym
.st_shndx
> 0 && isym
.st_shndx
< SHN_LORESERVE
)
7919 isec
= section_from_elf_index (rcookie
->abfd
, isym
.st_shndx
);
7921 && ! bfd_is_abs_section (isec
)
7922 && bfd_is_abs_section (isec
->output_section
))
7931 /* Discard unneeded references to discarded sections.
7932 Returns true if any section's size was changed. */
7933 /* This function assumes that the relocations are in sorted order,
7934 which is true for all known assemblers. */
7937 elf_bfd_discard_info (output_bfd
, info
)
7939 struct bfd_link_info
*info
;
7941 struct elf_reloc_cookie cookie
;
7942 asection
*stab
, *eh
, *ehdr
;
7943 Elf_Internal_Shdr
*symtab_hdr
;
7944 Elf_External_Sym
*freesyms
;
7945 struct elf_backend_data
*bed
;
7947 boolean ret
= false;
7948 boolean strip
= info
->strip
== strip_all
|| info
->strip
== strip_debugger
;
7950 if (info
->relocateable
7951 || info
->traditional_format
7952 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
7953 || ! is_elf_hash_table (info
))
7957 if (elf_hash_table (info
)->dynobj
!= NULL
)
7958 ehdr
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
7961 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
7963 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
7966 bed
= get_elf_backend_data (abfd
);
7968 if ((abfd
->flags
& DYNAMIC
) != 0)
7974 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
7975 if (eh
&& eh
->_raw_size
== 0)
7979 stab
= strip
? NULL
: bfd_get_section_by_name (abfd
, ".stab");
7980 if ((! stab
|| elf_section_data(stab
)->sec_info_type
!= ELF_INFO_TYPE_STABS
)
7982 && (strip
|| ! bed
->elf_backend_discard_info
))
7985 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7988 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
7989 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
7990 if (cookie
.bad_symtab
)
7992 cookie
.locsymcount
=
7993 symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7994 cookie
.extsymoff
= 0;
7998 cookie
.locsymcount
= symtab_hdr
->sh_info
;
7999 cookie
.extsymoff
= symtab_hdr
->sh_info
;
8003 if (symtab_hdr
->contents
)
8004 cookie
.locsyms
= (void *) symtab_hdr
->contents
;
8005 else if (cookie
.locsymcount
== 0)
8006 cookie
.locsyms
= NULL
;
8009 bfd_size_type amt
= cookie
.locsymcount
* sizeof (Elf_External_Sym
);
8010 cookie
.locsyms
= bfd_malloc (amt
);
8011 if (cookie
.locsyms
== NULL
8012 || bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
8013 || bfd_bread (cookie
.locsyms
, amt
, abfd
) != amt
)
8015 /* Something is very wrong - but we can still do our job for
8016 global symbols, so don't give up. */
8018 free (cookie
.locsyms
);
8019 cookie
.locsyms
= NULL
;
8023 freesyms
= cookie
.locsyms
;
8029 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8030 (abfd
, stab
, (PTR
) NULL
,
8031 (Elf_Internal_Rela
*) NULL
,
8032 info
->keep_memory
));
8035 cookie
.rel
= cookie
.rels
;
8037 cookie
.rels
+ stab
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8038 if (_bfd_discard_section_stabs (abfd
, stab
,
8039 elf_section_data (stab
)->sec_info
,
8040 elf_reloc_symbol_deleted_p
,
8043 if (! info
->keep_memory
)
8052 cookie
.relend
= NULL
;
8053 if (eh
->reloc_count
)
8054 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8055 (abfd
, eh
, (PTR
) NULL
,
8056 (Elf_Internal_Rela
*) NULL
,
8057 info
->keep_memory
));
8060 cookie
.rel
= cookie
.rels
;
8062 cookie
.rels
+ eh
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8064 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
, ehdr
,
8065 elf_reloc_symbol_deleted_p
,
8068 if (! info
->keep_memory
)
8072 if (bed
->elf_backend_discard_info
)
8074 if (bed
->elf_backend_discard_info (abfd
, &cookie
, info
))
8083 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
,
8090 elf_section_ignore_discarded_relocs (sec
)
8093 switch (elf_section_data (sec
)->sec_info_type
)
8095 case ELF_INFO_TYPE_STABS
:
8096 case ELF_INFO_TYPE_EH_FRAME
:
8101 if ((get_elf_backend_data (sec
->owner
)->elf_backend_ignore_discarded_relocs
8103 && (*get_elf_backend_data (sec
->owner
)
8104 ->elf_backend_ignore_discarded_relocs
) (sec
))