1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
8 This file is part of BFD, the Binary File Descriptor library.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 #include "libiberty.h"
30 #include "coff/internal.h"
35 #ifndef COFF_IMAGE_WITH_PE
36 static bfd_boolean sh_align_load_span
37 PARAMS ((bfd
*, asection
*, bfd_byte
*,
38 bfd_boolean (*) (bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
),
39 PTR
, bfd_vma
**, bfd_vma
*, bfd_vma
, bfd_vma
, bfd_boolean
*));
41 #define _bfd_sh_align_load_span sh_align_load_span
47 /* Internal functions. */
48 static bfd_reloc_status_type sh_reloc
49 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
50 static long get_symbol_value
PARAMS ((asymbol
*));
51 static bfd_boolean sh_relax_section
52 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
53 static bfd_boolean sh_relax_delete_bytes
54 PARAMS ((bfd
*, asection
*, bfd_vma
, int));
55 #ifndef COFF_IMAGE_WITH_PE
56 static const struct sh_opcode
*sh_insn_info
PARAMS ((unsigned int));
58 static bfd_boolean sh_align_loads
59 PARAMS ((bfd
*, asection
*, struct internal_reloc
*, bfd_byte
*,
61 static bfd_boolean sh_swap_insns
62 PARAMS ((bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
));
63 static bfd_boolean sh_relocate_section
64 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
65 struct internal_reloc
*, struct internal_syment
*, asection
**));
66 static bfd_byte
*sh_coff_get_relocated_section_contents
67 PARAMS ((bfd
*, struct bfd_link_info
*, struct bfd_link_order
*,
68 bfd_byte
*, bfd_boolean
, asymbol
**));
69 static reloc_howto_type
* sh_coff_reloc_type_lookup
PARAMS ((bfd
*, bfd_reloc_code_real_type
));
72 /* Can't build import tables with 2**4 alignment. */
73 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
75 /* Default section alignment to 2**4. */
76 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
79 #ifdef COFF_IMAGE_WITH_PE
80 /* Align PE executables. */
81 #define COFF_PAGE_SIZE 0x1000
84 /* Generate long file names. */
85 #define COFF_LONG_FILENAMES
88 static bfd_boolean in_reloc_p
PARAMS ((bfd
*, reloc_howto_type
*));
89 /* Return TRUE if this relocation should
90 appear in the output .reloc section. */
91 static bfd_boolean
in_reloc_p (abfd
, howto
)
92 bfd
* abfd ATTRIBUTE_UNUSED
;
93 reloc_howto_type
* howto
;
95 return ! howto
->pc_relative
&& howto
->type
!= R_SH_IMAGEBASE
;
99 /* The supported relocations. There are a lot of relocations defined
100 in coff/internal.h which we do not expect to ever see. */
101 static reloc_howto_type sh_coff_howtos
[] =
107 HOWTO (R_SH_IMM32CE
, /* type */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
111 FALSE
, /* pc_relative */
113 complain_overflow_bitfield
, /* complain_on_overflow */
114 sh_reloc
, /* special_function */
115 "r_imm32ce", /* name */
116 TRUE
, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE
), /* pcrel_offset */
123 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
124 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
125 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
126 EMPTY_HOWTO (6), /* R_SH_IMM24 */
127 EMPTY_HOWTO (7), /* R_SH_LOW16 */
129 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
131 HOWTO (R_SH_PCDISP8BY2
, /* type */
133 1, /* size (0 = byte, 1 = short, 2 = long) */
135 TRUE
, /* pc_relative */
137 complain_overflow_signed
, /* complain_on_overflow */
138 sh_reloc
, /* special_function */
139 "r_pcdisp8by2", /* name */
140 TRUE
, /* partial_inplace */
143 TRUE
), /* pcrel_offset */
145 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
147 HOWTO (R_SH_PCDISP
, /* type */
149 1, /* size (0 = byte, 1 = short, 2 = long) */
151 TRUE
, /* pc_relative */
153 complain_overflow_signed
, /* complain_on_overflow */
154 sh_reloc
, /* special_function */
155 "r_pcdisp12by2", /* name */
156 TRUE
, /* partial_inplace */
157 0xfff, /* src_mask */
158 0xfff, /* dst_mask */
159 TRUE
), /* pcrel_offset */
163 HOWTO (R_SH_IMM32
, /* type */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
167 FALSE
, /* pc_relative */
169 complain_overflow_bitfield
, /* complain_on_overflow */
170 sh_reloc
, /* special_function */
171 "r_imm32", /* name */
172 TRUE
, /* partial_inplace */
173 0xffffffff, /* src_mask */
174 0xffffffff, /* dst_mask */
175 FALSE
), /* pcrel_offset */
179 HOWTO (R_SH_IMAGEBASE
, /* type */
181 2, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
, /* complain_on_overflow */
186 sh_reloc
, /* special_function */
188 TRUE
, /* partial_inplace */
189 0xffffffff, /* src_mask */
190 0xffffffff, /* dst_mask */
191 FALSE
), /* pcrel_offset */
193 EMPTY_HOWTO (16), /* R_SH_IMM8 */
195 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
196 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
197 EMPTY_HOWTO (19), /* R_SH_IMM4 */
198 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
199 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
201 HOWTO (R_SH_PCRELIMM8BY2
, /* type */
203 1, /* size (0 = byte, 1 = short, 2 = long) */
205 TRUE
, /* pc_relative */
207 complain_overflow_unsigned
, /* complain_on_overflow */
208 sh_reloc
, /* special_function */
209 "r_pcrelimm8by2", /* name */
210 TRUE
, /* partial_inplace */
213 TRUE
), /* pcrel_offset */
215 HOWTO (R_SH_PCRELIMM8BY4
, /* type */
217 1, /* size (0 = byte, 1 = short, 2 = long) */
219 TRUE
, /* pc_relative */
221 complain_overflow_unsigned
, /* complain_on_overflow */
222 sh_reloc
, /* special_function */
223 "r_pcrelimm8by4", /* name */
224 TRUE
, /* partial_inplace */
227 TRUE
), /* pcrel_offset */
229 HOWTO (R_SH_IMM16
, /* type */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
233 FALSE
, /* pc_relative */
235 complain_overflow_bitfield
, /* complain_on_overflow */
236 sh_reloc
, /* special_function */
237 "r_imm16", /* name */
238 TRUE
, /* partial_inplace */
239 0xffff, /* src_mask */
240 0xffff, /* dst_mask */
241 FALSE
), /* pcrel_offset */
243 HOWTO (R_SH_SWITCH16
, /* type */
245 1, /* size (0 = byte, 1 = short, 2 = long) */
247 FALSE
, /* pc_relative */
249 complain_overflow_bitfield
, /* complain_on_overflow */
250 sh_reloc
, /* special_function */
251 "r_switch16", /* name */
252 TRUE
, /* partial_inplace */
253 0xffff, /* src_mask */
254 0xffff, /* dst_mask */
255 FALSE
), /* pcrel_offset */
257 HOWTO (R_SH_SWITCH32
, /* type */
259 2, /* size (0 = byte, 1 = short, 2 = long) */
261 FALSE
, /* pc_relative */
263 complain_overflow_bitfield
, /* complain_on_overflow */
264 sh_reloc
, /* special_function */
265 "r_switch32", /* name */
266 TRUE
, /* partial_inplace */
267 0xffffffff, /* src_mask */
268 0xffffffff, /* dst_mask */
269 FALSE
), /* pcrel_offset */
271 HOWTO (R_SH_USES
, /* type */
273 1, /* size (0 = byte, 1 = short, 2 = long) */
275 FALSE
, /* pc_relative */
277 complain_overflow_bitfield
, /* complain_on_overflow */
278 sh_reloc
, /* special_function */
280 TRUE
, /* partial_inplace */
281 0xffff, /* src_mask */
282 0xffff, /* dst_mask */
283 FALSE
), /* pcrel_offset */
285 HOWTO (R_SH_COUNT
, /* type */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
289 FALSE
, /* pc_relative */
291 complain_overflow_bitfield
, /* complain_on_overflow */
292 sh_reloc
, /* special_function */
293 "r_count", /* name */
294 TRUE
, /* partial_inplace */
295 0xffffffff, /* src_mask */
296 0xffffffff, /* dst_mask */
297 FALSE
), /* pcrel_offset */
299 HOWTO (R_SH_ALIGN
, /* type */
301 2, /* size (0 = byte, 1 = short, 2 = long) */
303 FALSE
, /* pc_relative */
305 complain_overflow_bitfield
, /* complain_on_overflow */
306 sh_reloc
, /* special_function */
307 "r_align", /* name */
308 TRUE
, /* partial_inplace */
309 0xffffffff, /* src_mask */
310 0xffffffff, /* dst_mask */
311 FALSE
), /* pcrel_offset */
313 HOWTO (R_SH_CODE
, /* type */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
317 FALSE
, /* pc_relative */
319 complain_overflow_bitfield
, /* complain_on_overflow */
320 sh_reloc
, /* special_function */
322 TRUE
, /* partial_inplace */
323 0xffffffff, /* src_mask */
324 0xffffffff, /* dst_mask */
325 FALSE
), /* pcrel_offset */
327 HOWTO (R_SH_DATA
, /* type */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
331 FALSE
, /* pc_relative */
333 complain_overflow_bitfield
, /* complain_on_overflow */
334 sh_reloc
, /* special_function */
336 TRUE
, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE
), /* pcrel_offset */
341 HOWTO (R_SH_LABEL
, /* type */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
345 FALSE
, /* pc_relative */
347 complain_overflow_bitfield
, /* complain_on_overflow */
348 sh_reloc
, /* special_function */
349 "r_label", /* name */
350 TRUE
, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE
), /* pcrel_offset */
355 HOWTO (R_SH_SWITCH8
, /* type */
357 0, /* size (0 = byte, 1 = short, 2 = long) */
359 FALSE
, /* pc_relative */
361 complain_overflow_bitfield
, /* complain_on_overflow */
362 sh_reloc
, /* special_function */
363 "r_switch8", /* name */
364 TRUE
, /* partial_inplace */
367 FALSE
) /* pcrel_offset */
370 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
372 /* Check for a bad magic number. */
373 #define BADMAG(x) SHBADMAG(x)
375 /* Customize coffcode.h (this is not currently used). */
378 /* FIXME: This should not be set here. */
379 #define __A_MAGIC_SET__
382 /* Swap the r_offset field in and out. */
383 #define SWAP_IN_RELOC_OFFSET H_GET_32
384 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
386 /* Swap out extra information in the reloc structure. */
387 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
390 dst->r_stuff[0] = 'S'; \
391 dst->r_stuff[1] = 'C'; \
396 /* Get the value of a symbol, when performing a relocation. */
399 get_symbol_value (symbol
)
404 if (bfd_is_com_section (symbol
->section
))
407 relocation
= (symbol
->value
+
408 symbol
->section
->output_section
->vma
+
409 symbol
->section
->output_offset
);
415 /* Convert an rtype to howto for the COFF backend linker.
416 Copied from coff-i386. */
417 #define coff_rtype_to_howto coff_sh_rtype_to_howto
418 static reloc_howto_type
* coff_sh_rtype_to_howto
PARAMS ((bfd
*, asection
*, struct internal_reloc
*, struct coff_link_hash_entry
*, struct internal_syment
*, bfd_vma
*));
420 static reloc_howto_type
*
421 coff_sh_rtype_to_howto (abfd
, sec
, rel
, h
, sym
, addendp
)
422 bfd
* abfd ATTRIBUTE_UNUSED
;
424 struct internal_reloc
* rel
;
425 struct coff_link_hash_entry
* h
;
426 struct internal_syment
* sym
;
429 reloc_howto_type
* howto
;
431 howto
= sh_coff_howtos
+ rel
->r_type
;
435 if (howto
->pc_relative
)
436 *addendp
+= sec
->vma
;
438 if (sym
!= NULL
&& sym
->n_scnum
== 0 && sym
->n_value
!= 0)
440 /* This is a common symbol. The section contents include the
441 size (sym->n_value) as an addend. The relocate_section
442 function will be adding in the final value of the symbol. We
443 need to subtract out the current size in order to get the
445 BFD_ASSERT (h
!= NULL
);
448 if (howto
->pc_relative
)
452 /* If the symbol is defined, then the generic code is going to
453 add back the symbol value in order to cancel out an
454 adjustment it made to the addend. However, we set the addend
455 to 0 at the start of this function. We need to adjust here,
456 to avoid the adjustment the generic code will make. FIXME:
457 This is getting a bit hackish. */
458 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
459 *addendp
-= sym
->n_value
;
462 if (rel
->r_type
== R_SH_IMAGEBASE
)
463 *addendp
-= pe_data (sec
->output_section
->owner
)->pe_opthdr
.ImageBase
;
468 #endif /* COFF_WITH_PE */
470 /* This structure is used to map BFD reloc codes to SH PE relocs. */
471 struct shcoff_reloc_map
473 bfd_reloc_code_real_type bfd_reloc_val
;
474 unsigned char shcoff_reloc_val
;
478 /* An array mapping BFD reloc codes to SH PE relocs. */
479 static const struct shcoff_reloc_map sh_reloc_map
[] =
481 { BFD_RELOC_32
, R_SH_IMM32CE
},
482 { BFD_RELOC_RVA
, R_SH_IMAGEBASE
},
483 { BFD_RELOC_CTOR
, R_SH_IMM32CE
},
486 /* An array mapping BFD reloc codes to SH PE relocs. */
487 static const struct shcoff_reloc_map sh_reloc_map
[] =
489 { BFD_RELOC_32
, R_SH_IMM32
},
490 { BFD_RELOC_CTOR
, R_SH_IMM32
},
494 /* Given a BFD reloc code, return the howto structure for the
495 corresponding SH PE reloc. */
496 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
498 static reloc_howto_type
*
499 sh_coff_reloc_type_lookup (abfd
, code
)
500 bfd
* abfd ATTRIBUTE_UNUSED
;
501 bfd_reloc_code_real_type code
;
505 for (i
= ARRAY_SIZE (sh_reloc_map
); i
--;)
506 if (sh_reloc_map
[i
].bfd_reloc_val
== code
)
507 return &sh_coff_howtos
[(int) sh_reloc_map
[i
].shcoff_reloc_val
];
509 fprintf (stderr
, "SH Error: unknown reloc type %d\n", code
);
513 /* This macro is used in coffcode.h to get the howto corresponding to
514 an internal reloc. */
516 #define RTYPE2HOWTO(relent, internal) \
518 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
519 ? &sh_coff_howtos[(internal)->r_type] \
520 : (reloc_howto_type *) NULL))
522 /* This is the same as the macro in coffcode.h, except that it copies
523 r_offset into reloc_entry->addend for some relocs. */
524 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
526 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
527 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
528 coffsym = (obj_symbols (abfd) \
529 + (cache_ptr->sym_ptr_ptr - symbols)); \
531 coffsym = coff_symbol_from (abfd, ptr); \
532 if (coffsym != (coff_symbol_type *) NULL \
533 && coffsym->native->u.syment.n_scnum == 0) \
534 cache_ptr->addend = 0; \
535 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
536 && ptr->section != (asection *) NULL) \
537 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
539 cache_ptr->addend = 0; \
540 if ((reloc).r_type == R_SH_SWITCH8 \
541 || (reloc).r_type == R_SH_SWITCH16 \
542 || (reloc).r_type == R_SH_SWITCH32 \
543 || (reloc).r_type == R_SH_USES \
544 || (reloc).r_type == R_SH_COUNT \
545 || (reloc).r_type == R_SH_ALIGN) \
546 cache_ptr->addend = (reloc).r_offset; \
549 /* This is the howto function for the SH relocations. */
551 static bfd_reloc_status_type
552 sh_reloc (abfd
, reloc_entry
, symbol_in
, data
, input_section
, output_bfd
,
555 arelent
*reloc_entry
;
558 asection
*input_section
;
560 char **error_message ATTRIBUTE_UNUSED
;
564 unsigned short r_type
;
565 bfd_vma addr
= reloc_entry
->address
;
566 bfd_byte
*hit_data
= addr
+ (bfd_byte
*) data
;
568 r_type
= reloc_entry
->howto
->type
;
570 if (output_bfd
!= NULL
)
572 /* Partial linking--do nothing. */
573 reloc_entry
->address
+= input_section
->output_offset
;
577 /* Almost all relocs have to do with relaxing. If any work must be
578 done for them, it has been done in sh_relax_section. */
579 if (r_type
!= R_SH_IMM32
581 && r_type
!= R_SH_IMM32CE
582 && r_type
!= R_SH_IMAGEBASE
584 && (r_type
!= R_SH_PCDISP
585 || (symbol_in
->flags
& BSF_LOCAL
) != 0))
588 if (symbol_in
!= NULL
589 && bfd_is_und_section (symbol_in
->section
))
590 return bfd_reloc_undefined
;
592 sym_value
= get_symbol_value (symbol_in
);
600 insn
= bfd_get_32 (abfd
, hit_data
);
601 insn
+= sym_value
+ reloc_entry
->addend
;
602 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
606 insn
= bfd_get_32 (abfd
, hit_data
);
607 insn
+= sym_value
+ reloc_entry
->addend
;
608 insn
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
609 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
613 insn
= bfd_get_16 (abfd
, hit_data
);
614 sym_value
+= reloc_entry
->addend
;
615 sym_value
-= (input_section
->output_section
->vma
616 + input_section
->output_offset
619 sym_value
+= (insn
& 0xfff) << 1;
622 insn
= (insn
& 0xf000) | (sym_value
& 0xfff);
623 bfd_put_16 (abfd
, (bfd_vma
) insn
, hit_data
);
624 if (sym_value
< (bfd_vma
) -0x1000 || sym_value
>= 0x1000)
625 return bfd_reloc_overflow
;
635 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
637 /* We can do relaxing. */
638 #define coff_bfd_relax_section sh_relax_section
640 /* We use the special COFF backend linker. */
641 #define coff_relocate_section sh_relocate_section
643 /* When relaxing, we need to use special code to get the relocated
645 #define coff_bfd_get_relocated_section_contents \
646 sh_coff_get_relocated_section_contents
648 #include "coffcode.h"
650 /* This function handles relaxing on the SH.
652 Function calls on the SH look like this:
661 The compiler and assembler will cooperate to create R_SH_USES
662 relocs on the jsr instructions. The r_offset field of the
663 R_SH_USES reloc is the PC relative offset to the instruction which
664 loads the register (the r_offset field is computed as though it
665 were a jump instruction, so the offset value is actually from four
666 bytes past the instruction). The linker can use this reloc to
667 determine just which function is being called, and thus decide
668 whether it is possible to replace the jsr with a bsr.
670 If multiple function calls are all based on a single register load
671 (i.e., the same function is called multiple times), the compiler
672 guarantees that each function call will have an R_SH_USES reloc.
673 Therefore, if the linker is able to convert each R_SH_USES reloc
674 which refers to that address, it can safely eliminate the register
677 When the assembler creates an R_SH_USES reloc, it examines it to
678 determine which address is being loaded (L1 in the above example).
679 It then counts the number of references to that address, and
680 creates an R_SH_COUNT reloc at that address. The r_offset field of
681 the R_SH_COUNT reloc will be the number of references. If the
682 linker is able to eliminate a register load, it can use the
683 R_SH_COUNT reloc to see whether it can also eliminate the function
686 SH relaxing also handles another, unrelated, matter. On the SH, if
687 a load or store instruction is not aligned on a four byte boundary,
688 the memory cycle interferes with the 32 bit instruction fetch,
689 causing a one cycle bubble in the pipeline. Therefore, we try to
690 align load and store instructions on four byte boundaries if we
691 can, by swapping them with one of the adjacent instructions. */
694 sh_relax_section (abfd
, sec
, link_info
, again
)
697 struct bfd_link_info
*link_info
;
700 struct internal_reloc
*internal_relocs
;
701 struct internal_reloc
*free_relocs
= NULL
;
702 bfd_boolean have_code
;
703 struct internal_reloc
*irel
, *irelend
;
704 bfd_byte
*contents
= NULL
;
705 bfd_byte
*free_contents
= NULL
;
709 if (link_info
->relocatable
710 || (sec
->flags
& SEC_RELOC
) == 0
711 || sec
->reloc_count
== 0)
714 /* If this is the first time we have been called for this section,
715 initialize the cooked size. */
716 if (sec
->_cooked_size
== 0)
717 sec
->_cooked_size
= sec
->_raw_size
;
719 internal_relocs
= (_bfd_coff_read_internal_relocs
720 (abfd
, sec
, link_info
->keep_memory
,
721 (bfd_byte
*) NULL
, FALSE
,
722 (struct internal_reloc
*) NULL
));
723 if (internal_relocs
== NULL
)
725 if (! link_info
->keep_memory
)
726 free_relocs
= internal_relocs
;
730 irelend
= internal_relocs
+ sec
->reloc_count
;
731 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
733 bfd_vma laddr
, paddr
, symval
;
735 struct internal_reloc
*irelfn
, *irelscan
, *irelcount
;
736 struct internal_syment sym
;
739 if (irel
->r_type
== R_SH_CODE
)
742 if (irel
->r_type
!= R_SH_USES
)
745 /* Get the section contents. */
746 if (contents
== NULL
)
748 if (coff_section_data (abfd
, sec
) != NULL
749 && coff_section_data (abfd
, sec
)->contents
!= NULL
)
750 contents
= coff_section_data (abfd
, sec
)->contents
;
753 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
754 if (contents
== NULL
)
756 free_contents
= contents
;
758 if (! bfd_get_section_contents (abfd
, sec
, contents
,
759 (file_ptr
) 0, sec
->_raw_size
))
764 /* The r_offset field of the R_SH_USES reloc will point us to
765 the register load. The 4 is because the r_offset field is
766 computed as though it were a jump offset, which are based
767 from 4 bytes after the jump instruction. */
768 laddr
= irel
->r_vaddr
- sec
->vma
+ 4;
769 /* Careful to sign extend the 32-bit offset. */
770 laddr
+= ((irel
->r_offset
& 0xffffffff) ^ 0x80000000) - 0x80000000;
771 if (laddr
>= sec
->_raw_size
)
773 (*_bfd_error_handler
) ("%s: 0x%lx: warning: bad R_SH_USES offset",
774 bfd_archive_filename (abfd
),
775 (unsigned long) irel
->r_vaddr
);
778 insn
= bfd_get_16 (abfd
, contents
+ laddr
);
780 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
781 if ((insn
& 0xf000) != 0xd000)
783 ((*_bfd_error_handler
)
784 ("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
785 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
, insn
));
789 /* Get the address from which the register is being loaded. The
790 displacement in the mov.l instruction is quadrupled. It is a
791 displacement from four bytes after the movl instruction, but,
792 before adding in the PC address, two least significant bits
793 of the PC are cleared. We assume that the section is aligned
794 on a four byte boundary. */
797 paddr
+= (laddr
+ 4) &~ (bfd_vma
) 3;
798 if (paddr
>= sec
->_raw_size
)
800 ((*_bfd_error_handler
)
801 ("%s: 0x%lx: warning: bad R_SH_USES load offset",
802 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
));
806 /* Get the reloc for the address from which the register is
807 being loaded. This reloc will tell us which function is
808 actually being called. */
810 for (irelfn
= internal_relocs
; irelfn
< irelend
; irelfn
++)
811 if (irelfn
->r_vaddr
== paddr
813 && (irelfn
->r_type
== R_SH_IMM32
814 || irelfn
->r_type
== R_SH_IMM32CE
815 || irelfn
->r_type
== R_SH_IMAGEBASE
))
818 && irelfn
->r_type
== R_SH_IMM32
)
821 if (irelfn
>= irelend
)
823 ((*_bfd_error_handler
)
824 ("%s: 0x%lx: warning: could not find expected reloc",
825 bfd_archive_filename (abfd
), (unsigned long) paddr
));
829 /* Get the value of the symbol referred to by the reloc. */
830 if (! _bfd_coff_get_external_symbols (abfd
))
832 bfd_coff_swap_sym_in (abfd
,
833 ((bfd_byte
*) obj_coff_external_syms (abfd
)
835 * bfd_coff_symesz (abfd
))),
837 if (sym
.n_scnum
!= 0 && sym
.n_scnum
!= sec
->target_index
)
839 ((*_bfd_error_handler
)
840 ("%s: 0x%lx: warning: symbol in unexpected section",
841 bfd_archive_filename (abfd
), (unsigned long) paddr
));
845 if (sym
.n_sclass
!= C_EXT
)
847 symval
= (sym
.n_value
849 + sec
->output_section
->vma
850 + sec
->output_offset
);
854 struct coff_link_hash_entry
*h
;
856 h
= obj_coff_sym_hashes (abfd
)[irelfn
->r_symndx
];
857 BFD_ASSERT (h
!= NULL
);
858 if (h
->root
.type
!= bfd_link_hash_defined
859 && h
->root
.type
!= bfd_link_hash_defweak
)
861 /* This appears to be a reference to an undefined
862 symbol. Just ignore it--it will be caught by the
863 regular reloc processing. */
867 symval
= (h
->root
.u
.def
.value
868 + h
->root
.u
.def
.section
->output_section
->vma
869 + h
->root
.u
.def
.section
->output_offset
);
872 symval
+= bfd_get_32 (abfd
, contents
+ paddr
- sec
->vma
);
874 /* See if this function call can be shortened. */
878 + sec
->output_section
->vma
881 if (foff
< -0x1000 || foff
>= 0x1000)
883 /* After all that work, we can't shorten this function call. */
887 /* Shorten the function call. */
889 /* For simplicity of coding, we are going to modify the section
890 contents, the section relocs, and the BFD symbol table. We
891 must tell the rest of the code not to free up this
892 information. It would be possible to instead create a table
893 of changes which have to be made, as is done in coff-mips.c;
894 that would be more work, but would require less memory when
895 the linker is run. */
897 if (coff_section_data (abfd
, sec
) == NULL
)
899 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
900 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
901 if (sec
->used_by_bfd
== NULL
)
905 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
906 coff_section_data (abfd
, sec
)->keep_relocs
= TRUE
;
909 coff_section_data (abfd
, sec
)->contents
= contents
;
910 coff_section_data (abfd
, sec
)->keep_contents
= TRUE
;
911 free_contents
= NULL
;
913 obj_coff_keep_syms (abfd
) = TRUE
;
915 /* Replace the jsr with a bsr. */
917 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
918 replace the jsr with a bsr. */
919 irel
->r_type
= R_SH_PCDISP
;
920 irel
->r_symndx
= irelfn
->r_symndx
;
921 if (sym
.n_sclass
!= C_EXT
)
923 /* If this needs to be changed because of future relaxing,
924 it will be handled here like other internal PCDISP
927 (bfd_vma
) 0xb000 | ((foff
>> 1) & 0xfff),
928 contents
+ irel
->r_vaddr
- sec
->vma
);
932 /* We can't fully resolve this yet, because the external
933 symbol value may be changed by future relaxing. We let
934 the final link phase handle it. */
935 bfd_put_16 (abfd
, (bfd_vma
) 0xb000,
936 contents
+ irel
->r_vaddr
- sec
->vma
);
939 /* See if there is another R_SH_USES reloc referring to the same
941 for (irelscan
= internal_relocs
; irelscan
< irelend
; irelscan
++)
942 if (irelscan
->r_type
== R_SH_USES
943 && laddr
== irelscan
->r_vaddr
- sec
->vma
+ 4 + irelscan
->r_offset
)
945 if (irelscan
< irelend
)
947 /* Some other function call depends upon this register load,
948 and we have not yet converted that function call.
949 Indeed, we may never be able to convert it. There is
950 nothing else we can do at this point. */
954 /* Look for a R_SH_COUNT reloc on the location where the
955 function address is stored. Do this before deleting any
956 bytes, to avoid confusion about the address. */
957 for (irelcount
= internal_relocs
; irelcount
< irelend
; irelcount
++)
958 if (irelcount
->r_vaddr
== paddr
959 && irelcount
->r_type
== R_SH_COUNT
)
962 /* Delete the register load. */
963 if (! sh_relax_delete_bytes (abfd
, sec
, laddr
, 2))
966 /* That will change things, so, just in case it permits some
967 other function call to come within range, we should relax
968 again. Note that this is not required, and it may be slow. */
971 /* Now check whether we got a COUNT reloc. */
972 if (irelcount
>= irelend
)
974 ((*_bfd_error_handler
)
975 ("%s: 0x%lx: warning: could not find expected COUNT reloc",
976 bfd_archive_filename (abfd
), (unsigned long) paddr
));
980 /* The number of uses is stored in the r_offset field. We've
982 if (irelcount
->r_offset
== 0)
984 ((*_bfd_error_handler
) ("%s: 0x%lx: warning: bad count",
985 bfd_archive_filename (abfd
),
986 (unsigned long) paddr
));
990 --irelcount
->r_offset
;
992 /* If there are no more uses, we can delete the address. Reload
993 the address from irelfn, in case it was changed by the
994 previous call to sh_relax_delete_bytes. */
995 if (irelcount
->r_offset
== 0)
997 if (! sh_relax_delete_bytes (abfd
, sec
,
998 irelfn
->r_vaddr
- sec
->vma
, 4))
1002 /* We've done all we can with that function call. */
1005 /* Look for load and store instructions that we can align on four
1009 bfd_boolean swapped
;
1011 /* Get the section contents. */
1012 if (contents
== NULL
)
1014 if (coff_section_data (abfd
, sec
) != NULL
1015 && coff_section_data (abfd
, sec
)->contents
!= NULL
)
1016 contents
= coff_section_data (abfd
, sec
)->contents
;
1019 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
1020 if (contents
== NULL
)
1022 free_contents
= contents
;
1024 if (! bfd_get_section_contents (abfd
, sec
, contents
,
1025 (file_ptr
) 0, sec
->_raw_size
))
1030 if (! sh_align_loads (abfd
, sec
, internal_relocs
, contents
, &swapped
))
1035 if (coff_section_data (abfd
, sec
) == NULL
)
1037 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
1038 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
1039 if (sec
->used_by_bfd
== NULL
)
1043 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
1044 coff_section_data (abfd
, sec
)->keep_relocs
= TRUE
;
1047 coff_section_data (abfd
, sec
)->contents
= contents
;
1048 coff_section_data (abfd
, sec
)->keep_contents
= TRUE
;
1049 free_contents
= NULL
;
1051 obj_coff_keep_syms (abfd
) = TRUE
;
1055 if (free_relocs
!= NULL
)
1061 if (free_contents
!= NULL
)
1063 if (! link_info
->keep_memory
)
1064 free (free_contents
);
1067 /* Cache the section contents for coff_link_input_bfd. */
1068 if (coff_section_data (abfd
, sec
) == NULL
)
1070 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
1071 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
1072 if (sec
->used_by_bfd
== NULL
)
1074 coff_section_data (abfd
, sec
)->relocs
= NULL
;
1076 coff_section_data (abfd
, sec
)->contents
= contents
;
1083 if (free_relocs
!= NULL
)
1085 if (free_contents
!= NULL
)
1086 free (free_contents
);
1090 /* Delete some bytes from a section while relaxing. */
1093 sh_relax_delete_bytes (abfd
, sec
, addr
, count
)
1100 struct internal_reloc
*irel
, *irelend
;
1101 struct internal_reloc
*irelalign
;
1103 bfd_byte
*esym
, *esymend
;
1104 bfd_size_type symesz
;
1105 struct coff_link_hash_entry
**sym_hash
;
1108 contents
= coff_section_data (abfd
, sec
)->contents
;
1110 /* The deletion must stop at the next ALIGN reloc for an aligment
1111 power larger than the number of bytes we are deleting. */
1114 toaddr
= sec
->_cooked_size
;
1116 irel
= coff_section_data (abfd
, sec
)->relocs
;
1117 irelend
= irel
+ sec
->reloc_count
;
1118 for (; irel
< irelend
; irel
++)
1120 if (irel
->r_type
== R_SH_ALIGN
1121 && irel
->r_vaddr
- sec
->vma
> addr
1122 && count
< (1 << irel
->r_offset
))
1125 toaddr
= irel
->r_vaddr
- sec
->vma
;
1130 /* Actually delete the bytes. */
1131 memmove (contents
+ addr
, contents
+ addr
+ count
,
1132 (size_t) (toaddr
- addr
- count
));
1133 if (irelalign
== NULL
)
1134 sec
->_cooked_size
-= count
;
1139 #define NOP_OPCODE (0x0009)
1141 BFD_ASSERT ((count
& 1) == 0);
1142 for (i
= 0; i
< count
; i
+= 2)
1143 bfd_put_16 (abfd
, (bfd_vma
) NOP_OPCODE
, contents
+ toaddr
- count
+ i
);
1146 /* Adjust all the relocs. */
1147 for (irel
= coff_section_data (abfd
, sec
)->relocs
; irel
< irelend
; irel
++)
1149 bfd_vma nraddr
, stop
;
1152 struct internal_syment sym
;
1153 int off
, adjust
, oinsn
;
1154 bfd_signed_vma voff
= 0;
1155 bfd_boolean overflow
;
1157 /* Get the new reloc address. */
1158 nraddr
= irel
->r_vaddr
- sec
->vma
;
1159 if ((irel
->r_vaddr
- sec
->vma
> addr
1160 && irel
->r_vaddr
- sec
->vma
< toaddr
)
1161 || (irel
->r_type
== R_SH_ALIGN
1162 && irel
->r_vaddr
- sec
->vma
== toaddr
))
1165 /* See if this reloc was for the bytes we have deleted, in which
1166 case we no longer care about it. Don't delete relocs which
1167 represent addresses, though. */
1168 if (irel
->r_vaddr
- sec
->vma
>= addr
1169 && irel
->r_vaddr
- sec
->vma
< addr
+ count
1170 && irel
->r_type
!= R_SH_ALIGN
1171 && irel
->r_type
!= R_SH_CODE
1172 && irel
->r_type
!= R_SH_DATA
1173 && irel
->r_type
!= R_SH_LABEL
)
1174 irel
->r_type
= R_SH_UNUSED
;
1176 /* If this is a PC relative reloc, see if the range it covers
1177 includes the bytes we have deleted. */
1178 switch (irel
->r_type
)
1183 case R_SH_PCDISP8BY2
:
1185 case R_SH_PCRELIMM8BY2
:
1186 case R_SH_PCRELIMM8BY4
:
1187 start
= irel
->r_vaddr
- sec
->vma
;
1188 insn
= bfd_get_16 (abfd
, contents
+ nraddr
);
1192 switch (irel
->r_type
)
1195 start
= stop
= addr
;
1201 case R_SH_IMAGEBASE
:
1203 /* If this reloc is against a symbol defined in this
1204 section, and the symbol will not be adjusted below, we
1205 must check the addend to see it will put the value in
1206 range to be adjusted, and hence must be changed. */
1207 bfd_coff_swap_sym_in (abfd
,
1208 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1210 * bfd_coff_symesz (abfd
))),
1212 if (sym
.n_sclass
!= C_EXT
1213 && sym
.n_scnum
== sec
->target_index
1214 && ((bfd_vma
) sym
.n_value
<= addr
1215 || (bfd_vma
) sym
.n_value
>= toaddr
))
1219 val
= bfd_get_32 (abfd
, contents
+ nraddr
);
1221 if (val
> addr
&& val
< toaddr
)
1222 bfd_put_32 (abfd
, val
- count
, contents
+ nraddr
);
1224 start
= stop
= addr
;
1227 case R_SH_PCDISP8BY2
:
1231 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1235 bfd_coff_swap_sym_in (abfd
,
1236 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1238 * bfd_coff_symesz (abfd
))),
1240 if (sym
.n_sclass
== C_EXT
)
1241 start
= stop
= addr
;
1247 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1251 case R_SH_PCRELIMM8BY2
:
1253 stop
= start
+ 4 + off
* 2;
1256 case R_SH_PCRELIMM8BY4
:
1258 stop
= (start
&~ (bfd_vma
) 3) + 4 + off
* 4;
1264 /* These relocs types represent
1266 The r_offset field holds the difference between the reloc
1267 address and L1. That is the start of the reloc, and
1268 adding in the contents gives us the top. We must adjust
1269 both the r_offset field and the section contents. */
1271 start
= irel
->r_vaddr
- sec
->vma
;
1272 stop
= (bfd_vma
) ((bfd_signed_vma
) start
- (long) irel
->r_offset
);
1276 && (stop
<= addr
|| stop
>= toaddr
))
1277 irel
->r_offset
+= count
;
1278 else if (stop
> addr
1280 && (start
<= addr
|| start
>= toaddr
))
1281 irel
->r_offset
-= count
;
1285 if (irel
->r_type
== R_SH_SWITCH16
)
1286 voff
= bfd_get_signed_16 (abfd
, contents
+ nraddr
);
1287 else if (irel
->r_type
== R_SH_SWITCH8
)
1288 voff
= bfd_get_8 (abfd
, contents
+ nraddr
);
1290 voff
= bfd_get_signed_32 (abfd
, contents
+ nraddr
);
1291 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ voff
);
1296 start
= irel
->r_vaddr
- sec
->vma
;
1297 stop
= (bfd_vma
) ((bfd_signed_vma
) start
1298 + (long) irel
->r_offset
1305 && (stop
<= addr
|| stop
>= toaddr
))
1307 else if (stop
> addr
1309 && (start
<= addr
|| start
>= toaddr
))
1318 switch (irel
->r_type
)
1324 case R_SH_PCDISP8BY2
:
1325 case R_SH_PCRELIMM8BY2
:
1327 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1329 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1334 if ((oinsn
& 0xf000) != (insn
& 0xf000))
1336 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1339 case R_SH_PCRELIMM8BY4
:
1340 BFD_ASSERT (adjust
== count
|| count
>= 4);
1345 if ((irel
->r_vaddr
& 3) == 0)
1348 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1350 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1355 if (voff
< 0 || voff
>= 0xff)
1357 bfd_put_8 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1362 if (voff
< - 0x8000 || voff
>= 0x8000)
1364 bfd_put_signed_16 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1369 bfd_put_signed_32 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1373 irel
->r_offset
+= adjust
;
1379 ((*_bfd_error_handler
)
1380 ("%s: 0x%lx: fatal: reloc overflow while relaxing",
1381 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
));
1382 bfd_set_error (bfd_error_bad_value
);
1387 irel
->r_vaddr
= nraddr
+ sec
->vma
;
1390 /* Look through all the other sections. If there contain any IMM32
1391 relocs against internal symbols which we are not going to adjust
1392 below, we may need to adjust the addends. */
1393 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1395 struct internal_reloc
*internal_relocs
;
1396 struct internal_reloc
*irelscan
, *irelscanend
;
1397 bfd_byte
*ocontents
;
1400 || (o
->flags
& SEC_RELOC
) == 0
1401 || o
->reloc_count
== 0)
1404 /* We always cache the relocs. Perhaps, if info->keep_memory is
1405 FALSE, we should free them, if we are permitted to, when we
1406 leave sh_coff_relax_section. */
1407 internal_relocs
= (_bfd_coff_read_internal_relocs
1408 (abfd
, o
, TRUE
, (bfd_byte
*) NULL
, FALSE
,
1409 (struct internal_reloc
*) NULL
));
1410 if (internal_relocs
== NULL
)
1414 irelscanend
= internal_relocs
+ o
->reloc_count
;
1415 for (irelscan
= internal_relocs
; irelscan
< irelscanend
; irelscan
++)
1417 struct internal_syment sym
;
1420 if (irelscan
->r_type
!= R_SH_IMM32
1421 && irelscan
->r_type
!= R_SH_IMAGEBASE
1422 && irelscan
->r_type
!= R_SH_IMM32CE
)
1424 if (irelscan
->r_type
!= R_SH_IMM32
)
1428 bfd_coff_swap_sym_in (abfd
,
1429 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1430 + (irelscan
->r_symndx
1431 * bfd_coff_symesz (abfd
))),
1433 if (sym
.n_sclass
!= C_EXT
1434 && sym
.n_scnum
== sec
->target_index
1435 && ((bfd_vma
) sym
.n_value
<= addr
1436 || (bfd_vma
) sym
.n_value
>= toaddr
))
1440 if (ocontents
== NULL
)
1442 if (coff_section_data (abfd
, o
)->contents
!= NULL
)
1443 ocontents
= coff_section_data (abfd
, o
)->contents
;
1446 /* We always cache the section contents.
1447 Perhaps, if info->keep_memory is FALSE, we
1448 should free them, if we are permitted to,
1449 when we leave sh_coff_relax_section. */
1450 ocontents
= (bfd_byte
*) bfd_malloc (o
->_raw_size
);
1451 if (ocontents
== NULL
)
1453 if (! bfd_get_section_contents (abfd
, o
, ocontents
,
1457 coff_section_data (abfd
, o
)->contents
= ocontents
;
1461 val
= bfd_get_32 (abfd
, ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1463 if (val
> addr
&& val
< toaddr
)
1464 bfd_put_32 (abfd
, val
- count
,
1465 ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1467 coff_section_data (abfd
, o
)->keep_contents
= TRUE
;
1472 /* Adjusting the internal symbols will not work if something has
1473 already retrieved the generic symbols. It would be possible to
1474 make this work by adjusting the generic symbols at the same time.
1475 However, this case should not arise in normal usage. */
1476 if (obj_symbols (abfd
) != NULL
1477 || obj_raw_syments (abfd
) != NULL
)
1479 ((*_bfd_error_handler
)
1480 ("%s: fatal: generic symbols retrieved before relaxing",
1481 bfd_archive_filename (abfd
)));
1482 bfd_set_error (bfd_error_invalid_operation
);
1486 /* Adjust all the symbols. */
1487 sym_hash
= obj_coff_sym_hashes (abfd
);
1488 symesz
= bfd_coff_symesz (abfd
);
1489 esym
= (bfd_byte
*) obj_coff_external_syms (abfd
);
1490 esymend
= esym
+ obj_raw_syment_count (abfd
) * symesz
;
1491 while (esym
< esymend
)
1493 struct internal_syment isym
;
1495 bfd_coff_swap_sym_in (abfd
, (PTR
) esym
, (PTR
) &isym
);
1497 if (isym
.n_scnum
== sec
->target_index
1498 && (bfd_vma
) isym
.n_value
> addr
1499 && (bfd_vma
) isym
.n_value
< toaddr
)
1501 isym
.n_value
-= count
;
1503 bfd_coff_swap_sym_out (abfd
, (PTR
) &isym
, (PTR
) esym
);
1505 if (*sym_hash
!= NULL
)
1507 BFD_ASSERT ((*sym_hash
)->root
.type
== bfd_link_hash_defined
1508 || (*sym_hash
)->root
.type
== bfd_link_hash_defweak
);
1509 BFD_ASSERT ((*sym_hash
)->root
.u
.def
.value
>= addr
1510 && (*sym_hash
)->root
.u
.def
.value
< toaddr
);
1511 (*sym_hash
)->root
.u
.def
.value
-= count
;
1515 esym
+= (isym
.n_numaux
+ 1) * symesz
;
1516 sym_hash
+= isym
.n_numaux
+ 1;
1519 /* See if we can move the ALIGN reloc forward. We have adjusted
1520 r_vaddr for it already. */
1521 if (irelalign
!= NULL
)
1523 bfd_vma alignto
, alignaddr
;
1525 alignto
= BFD_ALIGN (toaddr
, 1 << irelalign
->r_offset
);
1526 alignaddr
= BFD_ALIGN (irelalign
->r_vaddr
- sec
->vma
,
1527 1 << irelalign
->r_offset
);
1528 if (alignto
!= alignaddr
)
1530 /* Tail recursion. */
1531 return sh_relax_delete_bytes (abfd
, sec
, alignaddr
,
1532 (int) (alignto
- alignaddr
));
1539 /* This is yet another version of the SH opcode table, used to rapidly
1540 get information about a particular instruction. */
1542 /* The opcode map is represented by an array of these structures. The
1543 array is indexed by the high order four bits in the instruction. */
1545 struct sh_major_opcode
1547 /* A pointer to the instruction list. This is an array which
1548 contains all the instructions with this major opcode. */
1549 const struct sh_minor_opcode
*minor_opcodes
;
1550 /* The number of elements in minor_opcodes. */
1551 unsigned short count
;
1554 /* This structure holds information for a set of SH opcodes. The
1555 instruction code is anded with the mask value, and the resulting
1556 value is used to search the order opcode list. */
1558 struct sh_minor_opcode
1560 /* The sorted opcode list. */
1561 const struct sh_opcode
*opcodes
;
1562 /* The number of elements in opcodes. */
1563 unsigned short count
;
1564 /* The mask value to use when searching the opcode list. */
1565 unsigned short mask
;
1568 /* This structure holds information for an SH instruction. An array
1569 of these structures is sorted in order by opcode. */
1573 /* The code for this instruction, after it has been anded with the
1574 mask value in the sh_major_opcode structure. */
1575 unsigned short opcode
;
1576 /* Flags for this instruction. */
1577 unsigned long flags
;
1580 /* Flag which appear in the sh_opcode structure. */
1582 /* This instruction loads a value from memory. */
1585 /* This instruction stores a value to memory. */
1588 /* This instruction is a branch. */
1589 #define BRANCH (0x4)
1591 /* This instruction has a delay slot. */
1594 /* This instruction uses the value in the register in the field at
1595 mask 0x0f00 of the instruction. */
1596 #define USES1 (0x10)
1597 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1599 /* This instruction uses the value in the register in the field at
1600 mask 0x00f0 of the instruction. */
1601 #define USES2 (0x20)
1602 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1604 /* This instruction uses the value in register 0. */
1605 #define USESR0 (0x40)
1607 /* This instruction sets the value in the register in the field at
1608 mask 0x0f00 of the instruction. */
1609 #define SETS1 (0x80)
1610 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1612 /* This instruction sets the value in the register in the field at
1613 mask 0x00f0 of the instruction. */
1614 #define SETS2 (0x100)
1615 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1617 /* This instruction sets register 0. */
1618 #define SETSR0 (0x200)
1620 /* This instruction sets a special register. */
1621 #define SETSSP (0x400)
1623 /* This instruction uses a special register. */
1624 #define USESSP (0x800)
1626 /* This instruction uses the floating point register in the field at
1627 mask 0x0f00 of the instruction. */
1628 #define USESF1 (0x1000)
1629 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1631 /* This instruction uses the floating point register in the field at
1632 mask 0x00f0 of the instruction. */
1633 #define USESF2 (0x2000)
1634 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1636 /* This instruction uses floating point register 0. */
1637 #define USESF0 (0x4000)
1639 /* This instruction sets the floating point register in the field at
1640 mask 0x0f00 of the instruction. */
1641 #define SETSF1 (0x8000)
1642 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1644 #define USESAS (0x10000)
1645 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1646 #define USESR8 (0x20000)
1647 #define SETSAS (0x40000)
1648 #define SETSAS_REG(x) USESAS_REG (x)
1650 #define MAP(a) a, sizeof a / sizeof a[0]
1652 #ifndef COFF_IMAGE_WITH_PE
1653 static bfd_boolean sh_insn_uses_reg
1654 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1655 static bfd_boolean sh_insn_sets_reg
1656 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1657 static bfd_boolean sh_insn_uses_or_sets_reg
1658 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1659 static bfd_boolean sh_insn_uses_freg
1660 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1661 static bfd_boolean sh_insn_sets_freg
1662 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1663 static bfd_boolean sh_insn_uses_or_sets_freg
1664 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1665 static bfd_boolean sh_insns_conflict
1666 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int,
1667 const struct sh_opcode
*));
1668 static bfd_boolean sh_load_use
1669 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int,
1670 const struct sh_opcode
*));
1672 /* The opcode maps. */
1674 static const struct sh_opcode sh_opcode00
[] =
1676 { 0x0008, SETSSP
}, /* clrt */
1677 { 0x0009, 0 }, /* nop */
1678 { 0x000b, BRANCH
| DELAY
| USESSP
}, /* rts */
1679 { 0x0018, SETSSP
}, /* sett */
1680 { 0x0019, SETSSP
}, /* div0u */
1681 { 0x001b, 0 }, /* sleep */
1682 { 0x0028, SETSSP
}, /* clrmac */
1683 { 0x002b, BRANCH
| DELAY
| SETSSP
}, /* rte */
1684 { 0x0038, USESSP
| SETSSP
}, /* ldtlb */
1685 { 0x0048, SETSSP
}, /* clrs */
1686 { 0x0058, SETSSP
} /* sets */
1689 static const struct sh_opcode sh_opcode01
[] =
1691 { 0x0003, BRANCH
| DELAY
| USES1
| SETSSP
}, /* bsrf rn */
1692 { 0x000a, SETS1
| USESSP
}, /* sts mach,rn */
1693 { 0x001a, SETS1
| USESSP
}, /* sts macl,rn */
1694 { 0x0023, BRANCH
| DELAY
| USES1
}, /* braf rn */
1695 { 0x0029, SETS1
| USESSP
}, /* movt rn */
1696 { 0x002a, SETS1
| USESSP
}, /* sts pr,rn */
1697 { 0x005a, SETS1
| USESSP
}, /* sts fpul,rn */
1698 { 0x006a, SETS1
| USESSP
}, /* sts fpscr,rn / sts dsr,rn */
1699 { 0x0083, LOAD
| USES1
}, /* pref @rn */
1700 { 0x007a, SETS1
| USESSP
}, /* sts a0,rn */
1701 { 0x008a, SETS1
| USESSP
}, /* sts x0,rn */
1702 { 0x009a, SETS1
| USESSP
}, /* sts x1,rn */
1703 { 0x00aa, SETS1
| USESSP
}, /* sts y0,rn */
1704 { 0x00ba, SETS1
| USESSP
} /* sts y1,rn */
1707 /* These sixteen instructions can be handled with one table entry below. */
1709 { 0x0002, SETS1
| USESSP
}, /* stc sr,rn */
1710 { 0x0012, SETS1
| USESSP
}, /* stc gbr,rn */
1711 { 0x0022, SETS1
| USESSP
}, /* stc vbr,rn */
1712 { 0x0032, SETS1
| USESSP
}, /* stc ssr,rn */
1713 { 0x0042, SETS1
| USESSP
}, /* stc spc,rn */
1714 { 0x0052, SETS1
| USESSP
}, /* stc mod,rn */
1715 { 0x0062, SETS1
| USESSP
}, /* stc rs,rn */
1716 { 0x0072, SETS1
| USESSP
}, /* stc re,rn */
1717 { 0x0082, SETS1
| USESSP
}, /* stc r0_bank,rn */
1718 { 0x0092, SETS1
| USESSP
}, /* stc r1_bank,rn */
1719 { 0x00a2, SETS1
| USESSP
}, /* stc r2_bank,rn */
1720 { 0x00b2, SETS1
| USESSP
}, /* stc r3_bank,rn */
1721 { 0x00c2, SETS1
| USESSP
}, /* stc r4_bank,rn */
1722 { 0x00d2, SETS1
| USESSP
}, /* stc r5_bank,rn */
1723 { 0x00e2, SETS1
| USESSP
}, /* stc r6_bank,rn */
1724 { 0x00f2, SETS1
| USESSP
} /* stc r7_bank,rn */
1727 static const struct sh_opcode sh_opcode02
[] =
1729 { 0x0002, SETS1
| USESSP
}, /* stc <special_reg>,rn */
1730 { 0x0004, STORE
| USES1
| USES2
| USESR0
}, /* mov.b rm,@(r0,rn) */
1731 { 0x0005, STORE
| USES1
| USES2
| USESR0
}, /* mov.w rm,@(r0,rn) */
1732 { 0x0006, STORE
| USES1
| USES2
| USESR0
}, /* mov.l rm,@(r0,rn) */
1733 { 0x0007, SETSSP
| USES1
| USES2
}, /* mul.l rm,rn */
1734 { 0x000c, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.b @(r0,rm),rn */
1735 { 0x000d, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.w @(r0,rm),rn */
1736 { 0x000e, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.l @(r0,rm),rn */
1737 { 0x000f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.l @rm+,@rn+ */
1740 static const struct sh_minor_opcode sh_opcode0
[] =
1742 { MAP (sh_opcode00
), 0xffff },
1743 { MAP (sh_opcode01
), 0xf0ff },
1744 { MAP (sh_opcode02
), 0xf00f }
1747 static const struct sh_opcode sh_opcode10
[] =
1749 { 0x1000, STORE
| USES1
| USES2
} /* mov.l rm,@(disp,rn) */
1752 static const struct sh_minor_opcode sh_opcode1
[] =
1754 { MAP (sh_opcode10
), 0xf000 }
1757 static const struct sh_opcode sh_opcode20
[] =
1759 { 0x2000, STORE
| USES1
| USES2
}, /* mov.b rm,@rn */
1760 { 0x2001, STORE
| USES1
| USES2
}, /* mov.w rm,@rn */
1761 { 0x2002, STORE
| USES1
| USES2
}, /* mov.l rm,@rn */
1762 { 0x2004, STORE
| SETS1
| USES1
| USES2
}, /* mov.b rm,@-rn */
1763 { 0x2005, STORE
| SETS1
| USES1
| USES2
}, /* mov.w rm,@-rn */
1764 { 0x2006, STORE
| SETS1
| USES1
| USES2
}, /* mov.l rm,@-rn */
1765 { 0x2007, SETSSP
| USES1
| USES2
| USESSP
}, /* div0s */
1766 { 0x2008, SETSSP
| USES1
| USES2
}, /* tst rm,rn */
1767 { 0x2009, SETS1
| USES1
| USES2
}, /* and rm,rn */
1768 { 0x200a, SETS1
| USES1
| USES2
}, /* xor rm,rn */
1769 { 0x200b, SETS1
| USES1
| USES2
}, /* or rm,rn */
1770 { 0x200c, SETSSP
| USES1
| USES2
}, /* cmp/str rm,rn */
1771 { 0x200d, SETS1
| USES1
| USES2
}, /* xtrct rm,rn */
1772 { 0x200e, SETSSP
| USES1
| USES2
}, /* mulu.w rm,rn */
1773 { 0x200f, SETSSP
| USES1
| USES2
} /* muls.w rm,rn */
1776 static const struct sh_minor_opcode sh_opcode2
[] =
1778 { MAP (sh_opcode20
), 0xf00f }
1781 static const struct sh_opcode sh_opcode30
[] =
1783 { 0x3000, SETSSP
| USES1
| USES2
}, /* cmp/eq rm,rn */
1784 { 0x3002, SETSSP
| USES1
| USES2
}, /* cmp/hs rm,rn */
1785 { 0x3003, SETSSP
| USES1
| USES2
}, /* cmp/ge rm,rn */
1786 { 0x3004, SETSSP
| USESSP
| USES1
| USES2
}, /* div1 rm,rn */
1787 { 0x3005, SETSSP
| USES1
| USES2
}, /* dmulu.l rm,rn */
1788 { 0x3006, SETSSP
| USES1
| USES2
}, /* cmp/hi rm,rn */
1789 { 0x3007, SETSSP
| USES1
| USES2
}, /* cmp/gt rm,rn */
1790 { 0x3008, SETS1
| USES1
| USES2
}, /* sub rm,rn */
1791 { 0x300a, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* subc rm,rn */
1792 { 0x300b, SETS1
| SETSSP
| USES1
| USES2
}, /* subv rm,rn */
1793 { 0x300c, SETS1
| USES1
| USES2
}, /* add rm,rn */
1794 { 0x300d, SETSSP
| USES1
| USES2
}, /* dmuls.l rm,rn */
1795 { 0x300e, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* addc rm,rn */
1796 { 0x300f, SETS1
| SETSSP
| USES1
| USES2
} /* addv rm,rn */
1799 static const struct sh_minor_opcode sh_opcode3
[] =
1801 { MAP (sh_opcode30
), 0xf00f }
1804 static const struct sh_opcode sh_opcode40
[] =
1806 { 0x4000, SETS1
| SETSSP
| USES1
}, /* shll rn */
1807 { 0x4001, SETS1
| SETSSP
| USES1
}, /* shlr rn */
1808 { 0x4002, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l mach,@-rn */
1809 { 0x4004, SETS1
| SETSSP
| USES1
}, /* rotl rn */
1810 { 0x4005, SETS1
| SETSSP
| USES1
}, /* rotr rn */
1811 { 0x4006, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,mach */
1812 { 0x4008, SETS1
| USES1
}, /* shll2 rn */
1813 { 0x4009, SETS1
| USES1
}, /* shlr2 rn */
1814 { 0x400a, SETSSP
| USES1
}, /* lds rm,mach */
1815 { 0x400b, BRANCH
| DELAY
| USES1
}, /* jsr @rn */
1816 { 0x4010, SETS1
| SETSSP
| USES1
}, /* dt rn */
1817 { 0x4011, SETSSP
| USES1
}, /* cmp/pz rn */
1818 { 0x4012, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l macl,@-rn */
1819 { 0x4014, SETSSP
| USES1
}, /* setrc rm */
1820 { 0x4015, SETSSP
| USES1
}, /* cmp/pl rn */
1821 { 0x4016, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,macl */
1822 { 0x4018, SETS1
| USES1
}, /* shll8 rn */
1823 { 0x4019, SETS1
| USES1
}, /* shlr8 rn */
1824 { 0x401a, SETSSP
| USES1
}, /* lds rm,macl */
1825 { 0x401b, LOAD
| SETSSP
| USES1
}, /* tas.b @rn */
1826 { 0x4020, SETS1
| SETSSP
| USES1
}, /* shal rn */
1827 { 0x4021, SETS1
| SETSSP
| USES1
}, /* shar rn */
1828 { 0x4022, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l pr,@-rn */
1829 { 0x4024, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcl rn */
1830 { 0x4025, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcr rn */
1831 { 0x4026, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,pr */
1832 { 0x4028, SETS1
| USES1
}, /* shll16 rn */
1833 { 0x4029, SETS1
| USES1
}, /* shlr16 rn */
1834 { 0x402a, SETSSP
| USES1
}, /* lds rm,pr */
1835 { 0x402b, BRANCH
| DELAY
| USES1
}, /* jmp @rn */
1836 { 0x4052, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpul,@-rn */
1837 { 0x4056, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpul */
1838 { 0x405a, SETSSP
| USES1
}, /* lds.l rm,fpul */
1839 { 0x4062, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpscr / dsr,@-rn */
1840 { 0x4066, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpscr / dsr */
1841 { 0x406a, SETSSP
| USES1
}, /* lds rm,fpscr / lds rm,dsr */
1842 { 0x4072, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l a0,@-rn */
1843 { 0x4076, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,a0 */
1844 { 0x407a, SETSSP
| USES1
}, /* lds.l rm,a0 */
1845 { 0x4082, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x0,@-rn */
1846 { 0x4086, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x0 */
1847 { 0x408a, SETSSP
| USES1
}, /* lds.l rm,x0 */
1848 { 0x4092, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x1,@-rn */
1849 { 0x4096, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x1 */
1850 { 0x409a, SETSSP
| USES1
}, /* lds.l rm,x1 */
1851 { 0x40a2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y0,@-rn */
1852 { 0x40a6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y0 */
1853 { 0x40aa, SETSSP
| USES1
}, /* lds.l rm,y0 */
1854 { 0x40b2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y1,@-rn */
1855 { 0x40b6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y1 */
1856 { 0x40ba, SETSSP
| USES1
} /* lds.l rm,y1 */
1857 #if 0 /* These groups sixteen insns can be
1858 handled with one table entry each below. */
1859 { 0x4003, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l sr,@-rn */
1860 { 0x4013, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l gbr,@-rn */
1861 { 0x4023, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l vbr,@-rn */
1862 { 0x4033, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l ssr,@-rn */
1863 { 0x4043, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l spc,@-rn */
1864 { 0x4053, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l mod,@-rn */
1865 { 0x4063, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l rs,@-rn */
1866 { 0x4073, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l re,@-rn */
1867 { 0x4083, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l r0_bank,@-rn */
1869 { 0x40f3, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l r7_bank,@-rn */
1871 { 0x4007, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,sr */
1872 { 0x4017, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,gbr */
1873 { 0x4027, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,vbr */
1874 { 0x4037, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,ssr */
1875 { 0x4047, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,spc */
1876 { 0x4057, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,mod */
1877 { 0x4067, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,rs */
1878 { 0x4077, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,re */
1879 { 0x4087, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,r0_bank */
1881 { 0x40f7, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,r7_bank */
1883 { 0x400e, SETSSP
| USES1
}, /* ldc rm,sr */
1884 { 0x401e, SETSSP
| USES1
}, /* ldc rm,gbr */
1885 { 0x402e, SETSSP
| USES1
}, /* ldc rm,vbr */
1886 { 0x403e, SETSSP
| USES1
}, /* ldc rm,ssr */
1887 { 0x404e, SETSSP
| USES1
}, /* ldc rm,spc */
1888 { 0x405e, SETSSP
| USES1
}, /* ldc rm,mod */
1889 { 0x406e, SETSSP
| USES1
}, /* ldc rm,rs */
1890 { 0x407e, SETSSP
| USES1
} /* ldc rm,re */
1891 { 0x408e, SETSSP
| USES1
} /* ldc rm,r0_bank */
1893 { 0x40fe, SETSSP
| USES1
} /* ldc rm,r7_bank */
1897 static const struct sh_opcode sh_opcode41
[] =
1899 { 0x4003, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l <special_reg>,@-rn */
1900 { 0x4007, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,<special_reg> */
1901 { 0x400c, SETS1
| USES1
| USES2
}, /* shad rm,rn */
1902 { 0x400d, SETS1
| USES1
| USES2
}, /* shld rm,rn */
1903 { 0x400e, SETSSP
| USES1
}, /* ldc rm,<special_reg> */
1904 { 0x400f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.w @rm+,@rn+ */
1907 static const struct sh_minor_opcode sh_opcode4
[] =
1909 { MAP (sh_opcode40
), 0xf0ff },
1910 { MAP (sh_opcode41
), 0xf00f }
1913 static const struct sh_opcode sh_opcode50
[] =
1915 { 0x5000, LOAD
| SETS1
| USES2
} /* mov.l @(disp,rm),rn */
1918 static const struct sh_minor_opcode sh_opcode5
[] =
1920 { MAP (sh_opcode50
), 0xf000 }
1923 static const struct sh_opcode sh_opcode60
[] =
1925 { 0x6000, LOAD
| SETS1
| USES2
}, /* mov.b @rm,rn */
1926 { 0x6001, LOAD
| SETS1
| USES2
}, /* mov.w @rm,rn */
1927 { 0x6002, LOAD
| SETS1
| USES2
}, /* mov.l @rm,rn */
1928 { 0x6003, SETS1
| USES2
}, /* mov rm,rn */
1929 { 0x6004, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.b @rm+,rn */
1930 { 0x6005, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.w @rm+,rn */
1931 { 0x6006, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.l @rm+,rn */
1932 { 0x6007, SETS1
| USES2
}, /* not rm,rn */
1933 { 0x6008, SETS1
| USES2
}, /* swap.b rm,rn */
1934 { 0x6009, SETS1
| USES2
}, /* swap.w rm,rn */
1935 { 0x600a, SETS1
| SETSSP
| USES2
| USESSP
}, /* negc rm,rn */
1936 { 0x600b, SETS1
| USES2
}, /* neg rm,rn */
1937 { 0x600c, SETS1
| USES2
}, /* extu.b rm,rn */
1938 { 0x600d, SETS1
| USES2
}, /* extu.w rm,rn */
1939 { 0x600e, SETS1
| USES2
}, /* exts.b rm,rn */
1940 { 0x600f, SETS1
| USES2
} /* exts.w rm,rn */
1943 static const struct sh_minor_opcode sh_opcode6
[] =
1945 { MAP (sh_opcode60
), 0xf00f }
1948 static const struct sh_opcode sh_opcode70
[] =
1950 { 0x7000, SETS1
| USES1
} /* add #imm,rn */
1953 static const struct sh_minor_opcode sh_opcode7
[] =
1955 { MAP (sh_opcode70
), 0xf000 }
1958 static const struct sh_opcode sh_opcode80
[] =
1960 { 0x8000, STORE
| USES2
| USESR0
}, /* mov.b r0,@(disp,rn) */
1961 { 0x8100, STORE
| USES2
| USESR0
}, /* mov.w r0,@(disp,rn) */
1962 { 0x8200, SETSSP
}, /* setrc #imm */
1963 { 0x8400, LOAD
| SETSR0
| USES2
}, /* mov.b @(disp,rm),r0 */
1964 { 0x8500, LOAD
| SETSR0
| USES2
}, /* mov.w @(disp,rn),r0 */
1965 { 0x8800, SETSSP
| USESR0
}, /* cmp/eq #imm,r0 */
1966 { 0x8900, BRANCH
| USESSP
}, /* bt label */
1967 { 0x8b00, BRANCH
| USESSP
}, /* bf label */
1968 { 0x8c00, SETSSP
}, /* ldrs @(disp,pc) */
1969 { 0x8d00, BRANCH
| DELAY
| USESSP
}, /* bt/s label */
1970 { 0x8e00, SETSSP
}, /* ldre @(disp,pc) */
1971 { 0x8f00, BRANCH
| DELAY
| USESSP
} /* bf/s label */
1974 static const struct sh_minor_opcode sh_opcode8
[] =
1976 { MAP (sh_opcode80
), 0xff00 }
1979 static const struct sh_opcode sh_opcode90
[] =
1981 { 0x9000, LOAD
| SETS1
} /* mov.w @(disp,pc),rn */
1984 static const struct sh_minor_opcode sh_opcode9
[] =
1986 { MAP (sh_opcode90
), 0xf000 }
1989 static const struct sh_opcode sh_opcodea0
[] =
1991 { 0xa000, BRANCH
| DELAY
} /* bra label */
1994 static const struct sh_minor_opcode sh_opcodea
[] =
1996 { MAP (sh_opcodea0
), 0xf000 }
1999 static const struct sh_opcode sh_opcodeb0
[] =
2001 { 0xb000, BRANCH
| DELAY
} /* bsr label */
2004 static const struct sh_minor_opcode sh_opcodeb
[] =
2006 { MAP (sh_opcodeb0
), 0xf000 }
2009 static const struct sh_opcode sh_opcodec0
[] =
2011 { 0xc000, STORE
| USESR0
| USESSP
}, /* mov.b r0,@(disp,gbr) */
2012 { 0xc100, STORE
| USESR0
| USESSP
}, /* mov.w r0,@(disp,gbr) */
2013 { 0xc200, STORE
| USESR0
| USESSP
}, /* mov.l r0,@(disp,gbr) */
2014 { 0xc300, BRANCH
| USESSP
}, /* trapa #imm */
2015 { 0xc400, LOAD
| SETSR0
| USESSP
}, /* mov.b @(disp,gbr),r0 */
2016 { 0xc500, LOAD
| SETSR0
| USESSP
}, /* mov.w @(disp,gbr),r0 */
2017 { 0xc600, LOAD
| SETSR0
| USESSP
}, /* mov.l @(disp,gbr),r0 */
2018 { 0xc700, SETSR0
}, /* mova @(disp,pc),r0 */
2019 { 0xc800, SETSSP
| USESR0
}, /* tst #imm,r0 */
2020 { 0xc900, SETSR0
| USESR0
}, /* and #imm,r0 */
2021 { 0xca00, SETSR0
| USESR0
}, /* xor #imm,r0 */
2022 { 0xcb00, SETSR0
| USESR0
}, /* or #imm,r0 */
2023 { 0xcc00, LOAD
| SETSSP
| USESR0
| USESSP
}, /* tst.b #imm,@(r0,gbr) */
2024 { 0xcd00, LOAD
| STORE
| USESR0
| USESSP
}, /* and.b #imm,@(r0,gbr) */
2025 { 0xce00, LOAD
| STORE
| USESR0
| USESSP
}, /* xor.b #imm,@(r0,gbr) */
2026 { 0xcf00, LOAD
| STORE
| USESR0
| USESSP
} /* or.b #imm,@(r0,gbr) */
2029 static const struct sh_minor_opcode sh_opcodec
[] =
2031 { MAP (sh_opcodec0
), 0xff00 }
2034 static const struct sh_opcode sh_opcoded0
[] =
2036 { 0xd000, LOAD
| SETS1
} /* mov.l @(disp,pc),rn */
2039 static const struct sh_minor_opcode sh_opcoded
[] =
2041 { MAP (sh_opcoded0
), 0xf000 }
2044 static const struct sh_opcode sh_opcodee0
[] =
2046 { 0xe000, SETS1
} /* mov #imm,rn */
2049 static const struct sh_minor_opcode sh_opcodee
[] =
2051 { MAP (sh_opcodee0
), 0xf000 }
2054 static const struct sh_opcode sh_opcodef0
[] =
2056 { 0xf000, SETSF1
| USESF1
| USESF2
}, /* fadd fm,fn */
2057 { 0xf001, SETSF1
| USESF1
| USESF2
}, /* fsub fm,fn */
2058 { 0xf002, SETSF1
| USESF1
| USESF2
}, /* fmul fm,fn */
2059 { 0xf003, SETSF1
| USESF1
| USESF2
}, /* fdiv fm,fn */
2060 { 0xf004, SETSSP
| USESF1
| USESF2
}, /* fcmp/eq fm,fn */
2061 { 0xf005, SETSSP
| USESF1
| USESF2
}, /* fcmp/gt fm,fn */
2062 { 0xf006, LOAD
| SETSF1
| USES2
| USESR0
}, /* fmov.s @(r0,rm),fn */
2063 { 0xf007, STORE
| USES1
| USESF2
| USESR0
}, /* fmov.s fm,@(r0,rn) */
2064 { 0xf008, LOAD
| SETSF1
| USES2
}, /* fmov.s @rm,fn */
2065 { 0xf009, LOAD
| SETS2
| SETSF1
| USES2
}, /* fmov.s @rm+,fn */
2066 { 0xf00a, STORE
| USES1
| USESF2
}, /* fmov.s fm,@rn */
2067 { 0xf00b, STORE
| SETS1
| USES1
| USESF2
}, /* fmov.s fm,@-rn */
2068 { 0xf00c, SETSF1
| USESF2
}, /* fmov fm,fn */
2069 { 0xf00e, SETSF1
| USESF1
| USESF2
| USESF0
} /* fmac f0,fm,fn */
2072 static const struct sh_opcode sh_opcodef1
[] =
2074 { 0xf00d, SETSF1
| USESSP
}, /* fsts fpul,fn */
2075 { 0xf01d, SETSSP
| USESF1
}, /* flds fn,fpul */
2076 { 0xf02d, SETSF1
| USESSP
}, /* float fpul,fn */
2077 { 0xf03d, SETSSP
| USESF1
}, /* ftrc fn,fpul */
2078 { 0xf04d, SETSF1
| USESF1
}, /* fneg fn */
2079 { 0xf05d, SETSF1
| USESF1
}, /* fabs fn */
2080 { 0xf06d, SETSF1
| USESF1
}, /* fsqrt fn */
2081 { 0xf07d, SETSSP
| USESF1
}, /* ftst/nan fn */
2082 { 0xf08d, SETSF1
}, /* fldi0 fn */
2083 { 0xf09d, SETSF1
} /* fldi1 fn */
2086 static const struct sh_minor_opcode sh_opcodef
[] =
2088 { MAP (sh_opcodef0
), 0xf00f },
2089 { MAP (sh_opcodef1
), 0xf0ff }
2092 static struct sh_major_opcode sh_opcodes
[] =
2094 { MAP (sh_opcode0
) },
2095 { MAP (sh_opcode1
) },
2096 { MAP (sh_opcode2
) },
2097 { MAP (sh_opcode3
) },
2098 { MAP (sh_opcode4
) },
2099 { MAP (sh_opcode5
) },
2100 { MAP (sh_opcode6
) },
2101 { MAP (sh_opcode7
) },
2102 { MAP (sh_opcode8
) },
2103 { MAP (sh_opcode9
) },
2104 { MAP (sh_opcodea
) },
2105 { MAP (sh_opcodeb
) },
2106 { MAP (sh_opcodec
) },
2107 { MAP (sh_opcoded
) },
2108 { MAP (sh_opcodee
) },
2109 { MAP (sh_opcodef
) }
2112 /* The double data transfer / parallel processing insns are not
2113 described here. This will cause sh_align_load_span to leave them alone. */
2115 static const struct sh_opcode sh_dsp_opcodef0
[] =
2117 { 0xf400, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @-as,ds */
2118 { 0xf401, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@-as */
2119 { 0xf404, USESAS
| LOAD
| SETSSP
}, /* movs.x @as,ds */
2120 { 0xf405, USESAS
| STORE
| USESSP
}, /* movs.x ds,@as */
2121 { 0xf408, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @as+,ds */
2122 { 0xf409, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@as+ */
2123 { 0xf40c, USESAS
| SETSAS
| LOAD
| SETSSP
| USESR8
}, /* movs.x @as+r8,ds */
2124 { 0xf40d, USESAS
| SETSAS
| STORE
| USESSP
| USESR8
} /* movs.x ds,@as+r8 */
2127 static const struct sh_minor_opcode sh_dsp_opcodef
[] =
2129 { MAP (sh_dsp_opcodef0
), 0xfc0d }
2132 /* Given an instruction, return a pointer to the corresponding
2133 sh_opcode structure. Return NULL if the instruction is not
2136 static const struct sh_opcode
*
2140 const struct sh_major_opcode
*maj
;
2141 const struct sh_minor_opcode
*min
, *minend
;
2143 maj
= &sh_opcodes
[(insn
& 0xf000) >> 12];
2144 min
= maj
->minor_opcodes
;
2145 minend
= min
+ maj
->count
;
2146 for (; min
< minend
; min
++)
2149 const struct sh_opcode
*op
, *opend
;
2151 l
= insn
& min
->mask
;
2153 opend
= op
+ min
->count
;
2155 /* Since the opcodes tables are sorted, we could use a binary
2156 search here if the count were above some cutoff value. */
2157 for (; op
< opend
; op
++)
2158 if (op
->opcode
== l
)
2165 /* See whether an instruction uses or sets a general purpose register */
2168 sh_insn_uses_or_sets_reg (insn
, op
, reg
)
2170 const struct sh_opcode
*op
;
2173 if (sh_insn_uses_reg (insn
, op
, reg
))
2176 return sh_insn_sets_reg (insn
, op
, reg
);
2179 /* See whether an instruction uses a general purpose register. */
2182 sh_insn_uses_reg (insn
, op
, reg
)
2184 const struct sh_opcode
*op
;
2191 if ((f
& USES1
) != 0
2192 && USES1_REG (insn
) == reg
)
2194 if ((f
& USES2
) != 0
2195 && USES2_REG (insn
) == reg
)
2197 if ((f
& USESR0
) != 0
2200 if ((f
& USESAS
) && reg
== USESAS_REG (insn
))
2202 if ((f
& USESR8
) && reg
== 8)
2208 /* See whether an instruction sets a general purpose register. */
2211 sh_insn_sets_reg (insn
, op
, reg
)
2213 const struct sh_opcode
*op
;
2220 if ((f
& SETS1
) != 0
2221 && SETS1_REG (insn
) == reg
)
2223 if ((f
& SETS2
) != 0
2224 && SETS2_REG (insn
) == reg
)
2226 if ((f
& SETSR0
) != 0
2229 if ((f
& SETSAS
) && reg
== SETSAS_REG (insn
))
2235 /* See whether an instruction uses or sets a floating point register */
2238 sh_insn_uses_or_sets_freg (insn
, op
, reg
)
2240 const struct sh_opcode
*op
;
2243 if (sh_insn_uses_freg (insn
, op
, reg
))
2246 return sh_insn_sets_freg (insn
, op
, reg
);
2249 /* See whether an instruction uses a floating point register. */
2252 sh_insn_uses_freg (insn
, op
, freg
)
2254 const struct sh_opcode
*op
;
2261 /* We can't tell if this is a double-precision insn, so just play safe
2262 and assume that it might be. So not only have we test FREG against
2263 itself, but also even FREG against FREG+1 - if the using insn uses
2264 just the low part of a double precision value - but also an odd
2265 FREG against FREG-1 - if the setting insn sets just the low part
2266 of a double precision value.
2267 So what this all boils down to is that we have to ignore the lowest
2268 bit of the register number. */
2270 if ((f
& USESF1
) != 0
2271 && (USESF1_REG (insn
) & 0xe) == (freg
& 0xe))
2273 if ((f
& USESF2
) != 0
2274 && (USESF2_REG (insn
) & 0xe) == (freg
& 0xe))
2276 if ((f
& USESF0
) != 0
2283 /* See whether an instruction sets a floating point register. */
2286 sh_insn_sets_freg (insn
, op
, freg
)
2288 const struct sh_opcode
*op
;
2295 /* We can't tell if this is a double-precision insn, so just play safe
2296 and assume that it might be. So not only have we test FREG against
2297 itself, but also even FREG against FREG+1 - if the using insn uses
2298 just the low part of a double precision value - but also an odd
2299 FREG against FREG-1 - if the setting insn sets just the low part
2300 of a double precision value.
2301 So what this all boils down to is that we have to ignore the lowest
2302 bit of the register number. */
2304 if ((f
& SETSF1
) != 0
2305 && (SETSF1_REG (insn
) & 0xe) == (freg
& 0xe))
2311 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2312 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2313 This should return TRUE if there is a conflict, or FALSE if the
2314 instructions can be swapped safely. */
2317 sh_insns_conflict (i1
, op1
, i2
, op2
)
2319 const struct sh_opcode
*op1
;
2321 const struct sh_opcode
*op2
;
2323 unsigned int f1
, f2
;
2328 /* Load of fpscr conflicts with floating point operations.
2329 FIXME: shouldn't test raw opcodes here. */
2330 if (((i1
& 0xf0ff) == 0x4066 && (i2
& 0xf000) == 0xf000)
2331 || ((i2
& 0xf0ff) == 0x4066 && (i1
& 0xf000) == 0xf000))
2334 if ((f1
& (BRANCH
| DELAY
)) != 0
2335 || (f2
& (BRANCH
| DELAY
)) != 0)
2338 if (((f1
| f2
) & SETSSP
)
2339 && (f1
& (SETSSP
| USESSP
))
2340 && (f2
& (SETSSP
| USESSP
)))
2343 if ((f1
& SETS1
) != 0
2344 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS1_REG (i1
)))
2346 if ((f1
& SETS2
) != 0
2347 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS2_REG (i1
)))
2349 if ((f1
& SETSR0
) != 0
2350 && sh_insn_uses_or_sets_reg (i2
, op2
, 0))
2353 && sh_insn_uses_or_sets_reg (i2
, op2
, SETSAS_REG (i1
)))
2355 if ((f1
& SETSF1
) != 0
2356 && sh_insn_uses_or_sets_freg (i2
, op2
, SETSF1_REG (i1
)))
2359 if ((f2
& SETS1
) != 0
2360 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS1_REG (i2
)))
2362 if ((f2
& SETS2
) != 0
2363 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS2_REG (i2
)))
2365 if ((f2
& SETSR0
) != 0
2366 && sh_insn_uses_or_sets_reg (i1
, op1
, 0))
2369 && sh_insn_uses_or_sets_reg (i1
, op1
, SETSAS_REG (i2
)))
2371 if ((f2
& SETSF1
) != 0
2372 && sh_insn_uses_or_sets_freg (i1
, op1
, SETSF1_REG (i2
)))
2375 /* The instructions do not conflict. */
2379 /* I1 is a load instruction, and I2 is some other instruction. Return
2380 TRUE if I1 loads a register which I2 uses. */
2383 sh_load_use (i1
, op1
, i2
, op2
)
2385 const struct sh_opcode
*op1
;
2387 const struct sh_opcode
*op2
;
2393 if ((f1
& LOAD
) == 0)
2396 /* If both SETS1 and SETSSP are set, that means a load to a special
2397 register using postincrement addressing mode, which we don't care
2399 if ((f1
& SETS1
) != 0
2400 && (f1
& SETSSP
) == 0
2401 && sh_insn_uses_reg (i2
, op2
, (i1
& 0x0f00) >> 8))
2404 if ((f1
& SETSR0
) != 0
2405 && sh_insn_uses_reg (i2
, op2
, 0))
2408 if ((f1
& SETSF1
) != 0
2409 && sh_insn_uses_freg (i2
, op2
, (i1
& 0x0f00) >> 8))
2415 /* Try to align loads and stores within a span of memory. This is
2416 called by both the ELF and the COFF sh targets. ABFD and SEC are
2417 the BFD and section we are examining. CONTENTS is the contents of
2418 the section. SWAP is the routine to call to swap two instructions.
2419 RELOCS is a pointer to the internal relocation information, to be
2420 passed to SWAP. PLABEL is a pointer to the current label in a
2421 sorted list of labels; LABEL_END is the end of the list. START and
2422 STOP are the range of memory to examine. If a swap is made,
2423 *PSWAPPED is set to TRUE. */
2429 _bfd_sh_align_load_span (abfd
, sec
, contents
, swap
, relocs
,
2430 plabel
, label_end
, start
, stop
, pswapped
)
2434 bfd_boolean (*swap
) PARAMS ((bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
));
2440 bfd_boolean
*pswapped
;
2442 int dsp
= (abfd
->arch_info
->mach
== bfd_mach_sh_dsp
2443 || abfd
->arch_info
->mach
== bfd_mach_sh3_dsp
);
2446 /* The SH4 has a Harvard architecture, hence aligning loads is not
2447 desirable. In fact, it is counter-productive, since it interferes
2448 with the schedules generated by the compiler. */
2449 if (abfd
->arch_info
->mach
== bfd_mach_sh4
)
2452 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2456 sh_opcodes
[0xf].minor_opcodes
= sh_dsp_opcodef
;
2457 sh_opcodes
[0xf].count
= sizeof sh_dsp_opcodef
/ sizeof sh_dsp_opcodef
;
2460 /* Instructions should be aligned on 2 byte boundaries. */
2461 if ((start
& 1) == 1)
2464 /* Now look through the unaligned addresses. */
2468 for (; i
< stop
; i
+= 4)
2471 const struct sh_opcode
*op
;
2472 unsigned int prev_insn
= 0;
2473 const struct sh_opcode
*prev_op
= NULL
;
2475 insn
= bfd_get_16 (abfd
, contents
+ i
);
2476 op
= sh_insn_info (insn
);
2478 || (op
->flags
& (LOAD
| STORE
)) == 0)
2481 /* This is a load or store which is not on a four byte boundary. */
2483 while (*plabel
< label_end
&& **plabel
< i
)
2488 prev_insn
= bfd_get_16 (abfd
, contents
+ i
- 2);
2489 /* If INSN is the field b of a parallel processing insn, it is not
2490 a load / store after all. Note that the test here might mistake
2491 the field_b of a pcopy insn for the starting code of a parallel
2492 processing insn; this might miss a swapping opportunity, but at
2493 least we're on the safe side. */
2494 if (dsp
&& (prev_insn
& 0xfc00) == 0xf800)
2497 /* Check if prev_insn is actually the field b of a parallel
2498 processing insn. Again, this can give a spurious match
2500 if (dsp
&& i
- 2 > start
)
2502 unsigned pprev_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2504 if ((pprev_insn
& 0xfc00) == 0xf800)
2507 prev_op
= sh_insn_info (prev_insn
);
2510 prev_op
= sh_insn_info (prev_insn
);
2512 /* If the load/store instruction is in a delay slot, we
2515 || (prev_op
->flags
& DELAY
) != 0)
2519 && (*plabel
>= label_end
|| **plabel
!= i
)
2521 && (prev_op
->flags
& (LOAD
| STORE
)) == 0
2522 && ! sh_insns_conflict (prev_insn
, prev_op
, insn
, op
))
2526 /* The load/store instruction does not have a label, and
2527 there is a previous instruction; PREV_INSN is not
2528 itself a load/store instruction, and PREV_INSN and
2529 INSN do not conflict. */
2535 unsigned int prev2_insn
;
2536 const struct sh_opcode
*prev2_op
;
2538 prev2_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2539 prev2_op
= sh_insn_info (prev2_insn
);
2541 /* If the instruction before PREV_INSN has a delay
2542 slot--that is, PREV_INSN is in a delay slot--we
2544 if (prev2_op
== NULL
2545 || (prev2_op
->flags
& DELAY
) != 0)
2548 /* If the instruction before PREV_INSN is a load,
2549 and it sets a register which INSN uses, then
2550 putting INSN immediately after PREV_INSN will
2551 cause a pipeline bubble, so there is no point to
2554 && (prev2_op
->flags
& LOAD
) != 0
2555 && sh_load_use (prev2_insn
, prev2_op
, insn
, op
))
2561 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
- 2))
2568 while (*plabel
< label_end
&& **plabel
< i
+ 2)
2572 && (*plabel
>= label_end
|| **plabel
!= i
+ 2))
2574 unsigned int next_insn
;
2575 const struct sh_opcode
*next_op
;
2577 /* There is an instruction after the load/store
2578 instruction, and it does not have a label. */
2579 next_insn
= bfd_get_16 (abfd
, contents
+ i
+ 2);
2580 next_op
= sh_insn_info (next_insn
);
2582 && (next_op
->flags
& (LOAD
| STORE
)) == 0
2583 && ! sh_insns_conflict (insn
, op
, next_insn
, next_op
))
2587 /* NEXT_INSN is not itself a load/store instruction,
2588 and it does not conflict with INSN. */
2592 /* If PREV_INSN is a load, and it sets a register
2593 which NEXT_INSN uses, then putting NEXT_INSN
2594 immediately after PREV_INSN will cause a pipeline
2595 bubble, so there is no reason to make this swap. */
2597 && (prev_op
->flags
& LOAD
) != 0
2598 && sh_load_use (prev_insn
, prev_op
, next_insn
, next_op
))
2601 /* If INSN is a load, and it sets a register which
2602 the insn after NEXT_INSN uses, then doing the
2603 swap will cause a pipeline bubble, so there is no
2604 reason to make the swap. However, if the insn
2605 after NEXT_INSN is itself a load or store
2606 instruction, then it is misaligned, so
2607 optimistically hope that it will be swapped
2608 itself, and just live with the pipeline bubble if
2612 && (op
->flags
& LOAD
) != 0)
2614 unsigned int next2_insn
;
2615 const struct sh_opcode
*next2_op
;
2617 next2_insn
= bfd_get_16 (abfd
, contents
+ i
+ 4);
2618 next2_op
= sh_insn_info (next2_insn
);
2619 if ((next2_op
->flags
& (LOAD
| STORE
)) == 0
2620 && sh_load_use (insn
, op
, next2_insn
, next2_op
))
2626 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
))
2637 #endif /* not COFF_IMAGE_WITH_PE */
2639 /* Look for loads and stores which we can align to four byte
2640 boundaries. See the longer comment above sh_relax_section for why
2641 this is desirable. This sets *PSWAPPED if some instruction was
2645 sh_align_loads (abfd
, sec
, internal_relocs
, contents
, pswapped
)
2648 struct internal_reloc
*internal_relocs
;
2650 bfd_boolean
*pswapped
;
2652 struct internal_reloc
*irel
, *irelend
;
2653 bfd_vma
*labels
= NULL
;
2654 bfd_vma
*label
, *label_end
;
2659 irelend
= internal_relocs
+ sec
->reloc_count
;
2661 /* Get all the addresses with labels on them. */
2662 amt
= (bfd_size_type
) sec
->reloc_count
* sizeof (bfd_vma
);
2663 labels
= (bfd_vma
*) bfd_malloc (amt
);
2667 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2669 if (irel
->r_type
== R_SH_LABEL
)
2671 *label_end
= irel
->r_vaddr
- sec
->vma
;
2676 /* Note that the assembler currently always outputs relocs in
2677 address order. If that ever changes, this code will need to sort
2678 the label values and the relocs. */
2682 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2684 bfd_vma start
, stop
;
2686 if (irel
->r_type
!= R_SH_CODE
)
2689 start
= irel
->r_vaddr
- sec
->vma
;
2691 for (irel
++; irel
< irelend
; irel
++)
2692 if (irel
->r_type
== R_SH_DATA
)
2695 stop
= irel
->r_vaddr
- sec
->vma
;
2697 stop
= sec
->_cooked_size
;
2699 if (! _bfd_sh_align_load_span (abfd
, sec
, contents
, sh_swap_insns
,
2700 (PTR
) internal_relocs
, &label
,
2701 label_end
, start
, stop
, pswapped
))
2715 /* Swap two SH instructions. */
2718 sh_swap_insns (abfd
, sec
, relocs
, contents
, addr
)
2725 struct internal_reloc
*internal_relocs
= (struct internal_reloc
*) relocs
;
2726 unsigned short i1
, i2
;
2727 struct internal_reloc
*irel
, *irelend
;
2729 /* Swap the instructions themselves. */
2730 i1
= bfd_get_16 (abfd
, contents
+ addr
);
2731 i2
= bfd_get_16 (abfd
, contents
+ addr
+ 2);
2732 bfd_put_16 (abfd
, (bfd_vma
) i2
, contents
+ addr
);
2733 bfd_put_16 (abfd
, (bfd_vma
) i1
, contents
+ addr
+ 2);
2735 /* Adjust all reloc addresses. */
2736 irelend
= internal_relocs
+ sec
->reloc_count
;
2737 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2741 /* There are a few special types of relocs that we don't want to
2742 adjust. These relocs do not apply to the instruction itself,
2743 but are only associated with the address. */
2744 type
= irel
->r_type
;
2745 if (type
== R_SH_ALIGN
2746 || type
== R_SH_CODE
2747 || type
== R_SH_DATA
2748 || type
== R_SH_LABEL
)
2751 /* If an R_SH_USES reloc points to one of the addresses being
2752 swapped, we must adjust it. It would be incorrect to do this
2753 for a jump, though, since we want to execute both
2754 instructions after the jump. (We have avoided swapping
2755 around a label, so the jump will not wind up executing an
2756 instruction it shouldn't). */
2757 if (type
== R_SH_USES
)
2761 off
= irel
->r_vaddr
- sec
->vma
+ 4 + irel
->r_offset
;
2763 irel
->r_offset
+= 2;
2764 else if (off
== addr
+ 2)
2765 irel
->r_offset
-= 2;
2768 if (irel
->r_vaddr
- sec
->vma
== addr
)
2773 else if (irel
->r_vaddr
- sec
->vma
== addr
+ 2)
2784 unsigned short insn
, oinsn
;
2785 bfd_boolean overflow
;
2787 loc
= contents
+ irel
->r_vaddr
- sec
->vma
;
2794 case R_SH_PCDISP8BY2
:
2795 case R_SH_PCRELIMM8BY2
:
2796 insn
= bfd_get_16 (abfd
, loc
);
2799 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2801 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2805 insn
= bfd_get_16 (abfd
, loc
);
2808 if ((oinsn
& 0xf000) != (insn
& 0xf000))
2810 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2813 case R_SH_PCRELIMM8BY4
:
2814 /* This reloc ignores the least significant 3 bits of
2815 the program counter before adding in the offset.
2816 This means that if ADDR is at an even address, the
2817 swap will not affect the offset. If ADDR is an at an
2818 odd address, then the instruction will be crossing a
2819 four byte boundary, and must be adjusted. */
2820 if ((addr
& 3) != 0)
2822 insn
= bfd_get_16 (abfd
, loc
);
2825 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2827 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2835 ((*_bfd_error_handler
)
2836 ("%s: 0x%lx: fatal: reloc overflow while relaxing",
2837 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
));
2838 bfd_set_error (bfd_error_bad_value
);
2847 /* This is a modification of _bfd_coff_generic_relocate_section, which
2848 will handle SH relaxing. */
2851 sh_relocate_section (output_bfd
, info
, input_bfd
, input_section
, contents
,
2852 relocs
, syms
, sections
)
2853 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2854 struct bfd_link_info
*info
;
2856 asection
*input_section
;
2858 struct internal_reloc
*relocs
;
2859 struct internal_syment
*syms
;
2860 asection
**sections
;
2862 struct internal_reloc
*rel
;
2863 struct internal_reloc
*relend
;
2866 relend
= rel
+ input_section
->reloc_count
;
2867 for (; rel
< relend
; rel
++)
2870 struct coff_link_hash_entry
*h
;
2871 struct internal_syment
*sym
;
2874 reloc_howto_type
*howto
;
2875 bfd_reloc_status_type rstat
;
2877 /* Almost all relocs have to do with relaxing. If any work must
2878 be done for them, it has been done in sh_relax_section. */
2879 if (rel
->r_type
!= R_SH_IMM32
2881 && rel
->r_type
!= R_SH_IMM32CE
2882 && rel
->r_type
!= R_SH_IMAGEBASE
2884 && rel
->r_type
!= R_SH_PCDISP
)
2887 symndx
= rel
->r_symndx
;
2897 || (unsigned long) symndx
>= obj_raw_syment_count (input_bfd
))
2899 (*_bfd_error_handler
)
2900 ("%s: illegal symbol index %ld in relocs",
2901 bfd_archive_filename (input_bfd
), symndx
);
2902 bfd_set_error (bfd_error_bad_value
);
2905 h
= obj_coff_sym_hashes (input_bfd
)[symndx
];
2906 sym
= syms
+ symndx
;
2909 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
2910 addend
= - sym
->n_value
;
2914 if (rel
->r_type
== R_SH_PCDISP
)
2917 if (rel
->r_type
>= SH_COFF_HOWTO_COUNT
)
2920 howto
= &sh_coff_howtos
[rel
->r_type
];
2924 bfd_set_error (bfd_error_bad_value
);
2929 if (rel
->r_type
== R_SH_IMAGEBASE
)
2930 addend
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
2939 /* There is nothing to do for an internal PCDISP reloc. */
2940 if (rel
->r_type
== R_SH_PCDISP
)
2945 sec
= bfd_abs_section_ptr
;
2950 sec
= sections
[symndx
];
2951 val
= (sec
->output_section
->vma
2952 + sec
->output_offset
2959 if (h
->root
.type
== bfd_link_hash_defined
2960 || h
->root
.type
== bfd_link_hash_defweak
)
2964 sec
= h
->root
.u
.def
.section
;
2965 val
= (h
->root
.u
.def
.value
2966 + sec
->output_section
->vma
2967 + sec
->output_offset
);
2969 else if (! info
->relocatable
)
2971 if (! ((*info
->callbacks
->undefined_symbol
)
2972 (info
, h
->root
.root
.string
, input_bfd
, input_section
,
2973 rel
->r_vaddr
- input_section
->vma
, TRUE
)))
2978 rstat
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2980 rel
->r_vaddr
- input_section
->vma
,
2989 case bfd_reloc_overflow
:
2992 char buf
[SYMNMLEN
+ 1];
2997 name
= h
->root
.root
.string
;
2998 else if (sym
->_n
._n_n
._n_zeroes
== 0
2999 && sym
->_n
._n_n
._n_offset
!= 0)
3000 name
= obj_coff_strings (input_bfd
) + sym
->_n
._n_n
._n_offset
;
3003 strncpy (buf
, sym
->_n
._n_name
, SYMNMLEN
);
3004 buf
[SYMNMLEN
] = '\0';
3008 if (! ((*info
->callbacks
->reloc_overflow
)
3009 (info
, name
, howto
->name
, (bfd_vma
) 0, input_bfd
,
3010 input_section
, rel
->r_vaddr
- input_section
->vma
)))
3019 /* This is a version of bfd_generic_get_relocated_section_contents
3020 which uses sh_relocate_section. */
3023 sh_coff_get_relocated_section_contents (output_bfd
, link_info
, link_order
,
3024 data
, relocatable
, symbols
)
3026 struct bfd_link_info
*link_info
;
3027 struct bfd_link_order
*link_order
;
3029 bfd_boolean relocatable
;
3032 asection
*input_section
= link_order
->u
.indirect
.section
;
3033 bfd
*input_bfd
= input_section
->owner
;
3034 asection
**sections
= NULL
;
3035 struct internal_reloc
*internal_relocs
= NULL
;
3036 struct internal_syment
*internal_syms
= NULL
;
3038 /* We only need to handle the case of relaxing, or of having a
3039 particular set of section contents, specially. */
3041 || coff_section_data (input_bfd
, input_section
) == NULL
3042 || coff_section_data (input_bfd
, input_section
)->contents
== NULL
)
3043 return bfd_generic_get_relocated_section_contents (output_bfd
, link_info
,
3048 memcpy (data
, coff_section_data (input_bfd
, input_section
)->contents
,
3049 (size_t) input_section
->_raw_size
);
3051 if ((input_section
->flags
& SEC_RELOC
) != 0
3052 && input_section
->reloc_count
> 0)
3054 bfd_size_type symesz
= bfd_coff_symesz (input_bfd
);
3055 bfd_byte
*esym
, *esymend
;
3056 struct internal_syment
*isymp
;
3060 if (! _bfd_coff_get_external_symbols (input_bfd
))
3063 internal_relocs
= (_bfd_coff_read_internal_relocs
3064 (input_bfd
, input_section
, FALSE
, (bfd_byte
*) NULL
,
3065 FALSE
, (struct internal_reloc
*) NULL
));
3066 if (internal_relocs
== NULL
)
3069 amt
= obj_raw_syment_count (input_bfd
);
3070 amt
*= sizeof (struct internal_syment
);
3071 internal_syms
= (struct internal_syment
*) bfd_malloc (amt
);
3072 if (internal_syms
== NULL
)
3075 amt
= obj_raw_syment_count (input_bfd
);
3076 amt
*= sizeof (asection
*);
3077 sections
= (asection
**) bfd_malloc (amt
);
3078 if (sections
== NULL
)
3081 isymp
= internal_syms
;
3083 esym
= (bfd_byte
*) obj_coff_external_syms (input_bfd
);
3084 esymend
= esym
+ obj_raw_syment_count (input_bfd
) * symesz
;
3085 while (esym
< esymend
)
3087 bfd_coff_swap_sym_in (input_bfd
, (PTR
) esym
, (PTR
) isymp
);
3089 if (isymp
->n_scnum
!= 0)
3090 *secpp
= coff_section_from_bfd_index (input_bfd
, isymp
->n_scnum
);
3093 if (isymp
->n_value
== 0)
3094 *secpp
= bfd_und_section_ptr
;
3096 *secpp
= bfd_com_section_ptr
;
3099 esym
+= (isymp
->n_numaux
+ 1) * symesz
;
3100 secpp
+= isymp
->n_numaux
+ 1;
3101 isymp
+= isymp
->n_numaux
+ 1;
3104 if (! sh_relocate_section (output_bfd
, link_info
, input_bfd
,
3105 input_section
, data
, internal_relocs
,
3106 internal_syms
, sections
))
3111 free (internal_syms
);
3112 internal_syms
= NULL
;
3113 free (internal_relocs
);
3114 internal_relocs
= NULL
;
3120 if (internal_relocs
!= NULL
)
3121 free (internal_relocs
);
3122 if (internal_syms
!= NULL
)
3123 free (internal_syms
);
3124 if (sections
!= NULL
)
3129 /* The target vectors. */
3131 #ifndef TARGET_SHL_SYM
3132 CREATE_BIG_COFF_TARGET_VEC (shcoff_vec
, "coff-sh", BFD_IS_RELAXABLE
, 0, '_', NULL
, COFF_SWAP_TABLE
)
3135 #ifdef TARGET_SHL_SYM
3136 #define TARGET_SYM TARGET_SHL_SYM
3138 #define TARGET_SYM shlcoff_vec
3141 #ifndef TARGET_SHL_NAME
3142 #define TARGET_SHL_NAME "coff-shl"
3146 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3147 SEC_CODE
| SEC_DATA
, '_', NULL
, COFF_SWAP_TABLE
);
3149 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3150 0, '_', NULL
, COFF_SWAP_TABLE
)
3153 #ifndef TARGET_SHL_SYM
3154 static const bfd_target
* coff_small_object_p
PARAMS ((bfd
*));
3155 static bfd_boolean coff_small_new_section_hook
PARAMS ((bfd
*, asection
*));
3156 /* Some people want versions of the SH COFF target which do not align
3157 to 16 byte boundaries. We implement that by adding a couple of new
3158 target vectors. These are just like the ones above, but they
3159 change the default section alignment. To generate them in the
3160 assembler, use -small. To use them in the linker, use -b
3161 coff-sh{l}-small and -oformat coff-sh{l}-small.
3163 Yes, this is a horrible hack. A general solution for setting
3164 section alignment in COFF is rather complex. ELF handles this
3167 /* Only recognize the small versions if the target was not defaulted.
3168 Otherwise we won't recognize the non default endianness. */
3170 static const bfd_target
*
3171 coff_small_object_p (abfd
)
3174 if (abfd
->target_defaulted
)
3176 bfd_set_error (bfd_error_wrong_format
);
3179 return coff_object_p (abfd
);
3182 /* Set the section alignment for the small versions. */
3185 coff_small_new_section_hook (abfd
, section
)
3189 if (! coff_new_section_hook (abfd
, section
))
3192 /* We must align to at least a four byte boundary, because longword
3193 accesses must be on a four byte boundary. */
3194 if (section
->alignment_power
== COFF_DEFAULT_SECTION_ALIGNMENT_POWER
)
3195 section
->alignment_power
= 2;
3200 /* This is copied from bfd_coff_std_swap_table so that we can change
3201 the default section alignment power. */
3203 static const bfd_coff_backend_data bfd_coff_small_swap_table
=
3205 coff_swap_aux_in
, coff_swap_sym_in
, coff_swap_lineno_in
,
3206 coff_swap_aux_out
, coff_swap_sym_out
,
3207 coff_swap_lineno_out
, coff_swap_reloc_out
,
3208 coff_swap_filehdr_out
, coff_swap_aouthdr_out
,
3209 coff_swap_scnhdr_out
,
3210 FILHSZ
, AOUTSZ
, SCNHSZ
, SYMESZ
, AUXESZ
, RELSZ
, LINESZ
, FILNMLEN
,
3211 #ifdef COFF_LONG_FILENAMES
3216 #ifdef COFF_LONG_SECTION_NAMES
3222 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3227 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3232 coff_swap_filehdr_in
, coff_swap_aouthdr_in
, coff_swap_scnhdr_in
,
3233 coff_swap_reloc_in
, coff_bad_format_hook
, coff_set_arch_mach_hook
,
3234 coff_mkobject_hook
, styp_to_sec_flags
, coff_set_alignment_hook
,
3235 coff_slurp_symbol_table
, symname_in_debug_hook
, coff_pointerize_aux_hook
,
3236 coff_print_aux
, coff_reloc16_extra_cases
, coff_reloc16_estimate
,
3237 coff_classify_symbol
, coff_compute_section_file_positions
,
3238 coff_start_final_link
, coff_relocate_section
, coff_rtype_to_howto
,
3239 coff_adjust_symndx
, coff_link_add_one_symbol
,
3240 coff_link_output_has_begun
, coff_final_link_postscript
3243 #define coff_small_close_and_cleanup \
3244 coff_close_and_cleanup
3245 #define coff_small_bfd_free_cached_info \
3246 coff_bfd_free_cached_info
3247 #define coff_small_get_section_contents \
3248 coff_get_section_contents
3249 #define coff_small_get_section_contents_in_window \
3250 coff_get_section_contents_in_window
3252 extern const bfd_target shlcoff_small_vec
;
3254 const bfd_target shcoff_small_vec
=
3256 "coff-sh-small", /* name */
3257 bfd_target_coff_flavour
,
3258 BFD_ENDIAN_BIG
, /* data byte order is big */
3259 BFD_ENDIAN_BIG
, /* header byte order is big */
3261 (HAS_RELOC
| EXEC_P
| /* object flags */
3262 HAS_LINENO
| HAS_DEBUG
|
3263 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3265 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3266 '_', /* leading symbol underscore */
3267 '/', /* ar_pad_char */
3268 15, /* ar_max_namelen */
3269 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3270 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3271 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* data */
3272 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3273 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3274 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* hdrs */
3276 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3277 bfd_generic_archive_p
, _bfd_dummy_target
},
3278 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3280 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3281 _bfd_write_archive_contents
, bfd_false
},
3283 BFD_JUMP_TABLE_GENERIC (coff_small
),
3284 BFD_JUMP_TABLE_COPY (coff
),
3285 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3286 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3287 BFD_JUMP_TABLE_SYMBOLS (coff
),
3288 BFD_JUMP_TABLE_RELOCS (coff
),
3289 BFD_JUMP_TABLE_WRITE (coff
),
3290 BFD_JUMP_TABLE_LINK (coff
),
3291 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3293 & shlcoff_small_vec
,
3295 (PTR
) &bfd_coff_small_swap_table
3298 const bfd_target shlcoff_small_vec
=
3300 "coff-shl-small", /* name */
3301 bfd_target_coff_flavour
,
3302 BFD_ENDIAN_LITTLE
, /* data byte order is little */
3303 BFD_ENDIAN_LITTLE
, /* header byte order is little endian too*/
3305 (HAS_RELOC
| EXEC_P
| /* object flags */
3306 HAS_LINENO
| HAS_DEBUG
|
3307 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3309 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3310 '_', /* leading symbol underscore */
3311 '/', /* ar_pad_char */
3312 15, /* ar_max_namelen */
3313 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3314 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3315 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* data */
3316 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3317 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3318 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* hdrs */
3320 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3321 bfd_generic_archive_p
, _bfd_dummy_target
},
3322 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3324 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3325 _bfd_write_archive_contents
, bfd_false
},
3327 BFD_JUMP_TABLE_GENERIC (coff_small
),
3328 BFD_JUMP_TABLE_COPY (coff
),
3329 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3330 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3331 BFD_JUMP_TABLE_SYMBOLS (coff
),
3332 BFD_JUMP_TABLE_RELOCS (coff
),
3333 BFD_JUMP_TABLE_WRITE (coff
),
3334 BFD_JUMP_TABLE_LINK (coff
),
3335 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3339 (PTR
) &bfd_coff_small_swap_table