2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info
*info
;
30 struct bfd_elf_version_tree
*verdefs
;
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd
*, Elf_Internal_Sym
*));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd
*, carsym
*));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd
*, struct bfd_link_info
*));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd
*, struct bfd_link_info
*));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd
*, struct bfd_link_info
*, const char *,
43 Elf_Internal_Sym
*, asection
**, bfd_vma
*,
44 struct elf_link_hash_entry
**, boolean
*, boolean
*,
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
48 const char *, Elf_Internal_Sym
*, asection
**, bfd_vma
*,
49 boolean
*, boolean
, boolean
));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry
*, PTR
));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd
*, struct bfd_link_info
*));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry
*, PTR
));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry
*, PTR
));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry
*, PTR
));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry
*, PTR
));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd
*, Elf_Internal_Shdr
*, PTR
, Elf_Internal_Rela
*));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info
*));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd
*, Elf_Internal_Shdr
*, unsigned int,
74 struct elf_link_hash_entry
**));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd
*, struct bfd_link_info
*, asection
**));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection
*));
84 /* Given an ELF BFD, add symbols to the global hash table as
88 elf_bfd_link_add_symbols (abfd
, info
)
90 struct bfd_link_info
*info
;
92 switch (bfd_get_format (abfd
))
95 return elf_link_add_object_symbols (abfd
, info
);
97 return elf_link_add_archive_symbols (abfd
, info
);
99 bfd_set_error (bfd_error_wrong_format
);
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
106 is_global_data_symbol_definition (abfd
, sym
)
107 bfd
* abfd ATTRIBUTE_UNUSED
;
108 Elf_Internal_Sym
* sym
;
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
112 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
119 /* If the section is undefined, then so is the symbol. */
120 if (sym
->st_shndx
== SHN_UNDEF
)
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym
->st_shndx
== SHN_COMMON
)
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
131 /* FIXME - this function is not coded yet:
133 return _bfd_is_global_symbol_definition (abfd, sym);
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
147 elf_link_is_defined_archive_symbol (abfd
, symdef
)
151 Elf_Internal_Shdr
* hdr
;
152 bfd_size_type symcount
;
153 bfd_size_type extsymcount
;
154 bfd_size_type extsymoff
;
155 Elf_Internal_Sym
*isymbuf
;
156 Elf_Internal_Sym
*isym
;
157 Elf_Internal_Sym
*isymend
;
160 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
161 if (abfd
== (bfd
*) NULL
)
164 if (! bfd_check_format (abfd
, bfd_object
))
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd
->archive_pass
)
174 /* Select the appropriate symbol table. */
175 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
176 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
178 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
180 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd
))
186 extsymcount
= symcount
;
191 extsymcount
= symcount
- hdr
->sh_info
;
192 extsymoff
= hdr
->sh_info
;
195 if (extsymcount
== 0)
198 /* Read in the symbol table. */
199 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
204 /* Scan the symbol table looking for SYMDEF. */
206 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
210 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
212 if (name
== (const char *) NULL
)
215 if (strcmp (name
, symdef
->name
) == 0)
217 result
= is_global_data_symbol_definition (abfd
, isym
);
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
253 elf_link_add_archive_symbols (abfd
, info
)
255 struct bfd_link_info
*info
;
258 boolean
*defined
= NULL
;
259 boolean
*included
= NULL
;
264 if (! bfd_has_map (abfd
))
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
269 bfd_set_error (bfd_error_no_armap
);
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c
= bfd_ardata (abfd
)->symdef_count
;
280 amt
*= sizeof (boolean
);
281 defined
= (boolean
*) bfd_zmalloc (amt
);
282 included
= (boolean
*) bfd_zmalloc (amt
);
283 if (defined
== (boolean
*) NULL
|| included
== (boolean
*) NULL
)
286 symdefs
= bfd_ardata (abfd
)->symdefs
;
299 symdefend
= symdef
+ c
;
300 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
302 struct elf_link_hash_entry
*h
;
304 struct bfd_link_hash_entry
*undefs_tail
;
307 if (defined
[i
] || included
[i
])
309 if (symdef
->file_offset
== last
)
315 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
316 false, false, false);
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
329 p
= strchr (symdef
->name
, ELF_VER_CHR
);
330 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
333 /* First check with only one `@'. */
334 len
= strlen (symdef
->name
);
335 copy
= bfd_alloc (abfd
, (bfd_size_type
) len
);
338 first
= p
- symdef
->name
+ 1;
339 memcpy (copy
, symdef
->name
, first
);
340 memcpy (copy
+ first
, symdef
->name
+ first
+ 1, len
- first
);
342 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
343 false, false, false);
347 /* We also need to check references to the symbol
348 without the version. */
350 copy
[first
- 1] = '\0';
351 h
= elf_link_hash_lookup (elf_hash_table (info
),
352 copy
, false, false, false);
355 bfd_release (abfd
, copy
);
361 if (h
->root
.type
== bfd_link_hash_common
)
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
375 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
378 else if (h
->root
.type
!= bfd_link_hash_undefined
)
380 if (h
->root
.type
!= bfd_link_hash_undefweak
)
385 /* We need to include this archive member. */
386 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
387 if (element
== (bfd
*) NULL
)
390 if (! bfd_check_format (element
, bfd_object
))
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element
->archive_pass
!= 0)
398 bfd_set_error (bfd_error_bad_value
);
401 element
->archive_pass
= 1;
403 undefs_tail
= info
->hash
->undefs_tail
;
405 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
408 if (! elf_link_add_object_symbols (element
, info
))
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail
!= info
->hash
->undefs_tail
)
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
426 included
[mark
] = true;
431 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last
= symdef
->file_offset
;
446 if (defined
!= (boolean
*) NULL
)
448 if (included
!= (boolean
*) NULL
)
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
466 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
467 override
, type_change_ok
, size_change_ok
, dt_needed
)
469 struct bfd_link_info
*info
;
471 Elf_Internal_Sym
*sym
;
474 struct elf_link_hash_entry
**sym_hash
;
476 boolean
*type_change_ok
;
477 boolean
*size_change_ok
;
481 struct elf_link_hash_entry
*h
;
484 boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
489 bind
= ELF_ST_BIND (sym
->st_info
);
491 if (! bfd_is_und_section (sec
))
492 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, false, false);
494 h
= ((struct elf_link_hash_entry
*)
495 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, false, false));
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info
->hash
->creator
!= abfd
->xvec
)
505 /* For merging, we only care about real symbols. */
507 while (h
->root
.type
== bfd_link_hash_indirect
508 || h
->root
.type
== bfd_link_hash_warning
)
509 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
515 if (h
->root
.type
== bfd_link_hash_new
)
517 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
521 /* OLDBFD is a BFD associated with the existing symbol. */
523 switch (h
->root
.type
)
529 case bfd_link_hash_undefined
:
530 case bfd_link_hash_undefweak
:
531 oldbfd
= h
->root
.u
.undef
.abfd
;
534 case bfd_link_hash_defined
:
535 case bfd_link_hash_defweak
:
536 oldbfd
= h
->root
.u
.def
.section
->owner
;
539 case bfd_link_hash_common
:
540 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
551 && ((abfd
->flags
& DYNAMIC
) == 0
552 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
558 if ((abfd
->flags
& DYNAMIC
) != 0)
564 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h
->root
.type
)
577 case bfd_link_hash_defined
:
578 case bfd_link_hash_defweak
:
579 hsec
= h
->root
.u
.def
.section
;
582 case bfd_link_hash_common
:
583 hsec
= h
->root
.u
.c
.p
->section
;
590 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
596 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
601 if (h
->root
.type
== bfd_link_hash_undefined
602 || h
->root
.type
== bfd_link_hash_undefweak
603 || h
->root
.type
== bfd_link_hash_common
)
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
633 && (sec
->flags
& SEC_ALLOC
) != 0
634 && (sec
->flags
& SEC_LOAD
) == 0
637 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
640 newdyncommon
= false;
644 && h
->root
.type
== bfd_link_hash_defined
645 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
646 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
647 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
649 && h
->type
!= STT_FUNC
)
652 olddyncommon
= false;
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
659 if ((! dt_needed
&& h
->root
.type
== bfd_link_hash_defweak
)
660 || h
->root
.type
== bfd_link_hash_undefweak
662 *type_change_ok
= true;
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
668 || h
->root
.type
== bfd_link_hash_undefined
)
669 *size_change_ok
= true;
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
677 && sym
->st_size
!= h
->size
)
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
685 if (! ((*info
->callbacks
->multiple_common
)
686 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
687 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
690 if (sym
->st_size
> h
->size
)
691 h
->size
= sym
->st_size
;
693 *size_change_ok
= true;
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
718 || (h
->root
.type
== bfd_link_hash_common
720 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)))
721 && (h
->root
.type
!= bfd_link_hash_defweak
723 || bind
== STB_WEAK
))
727 newdyncommon
= false;
729 *psec
= sec
= bfd_und_section_ptr
;
730 *size_change_ok
= true;
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
738 if (h
->root
.type
== bfd_link_hash_common
)
739 *type_change_ok
= true;
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
749 && h
->root
.type
== bfd_link_hash_common
)
753 newdyncommon
= false;
754 *pvalue
= sym
->st_size
;
755 *psec
= sec
= bfd_com_section_ptr
;
756 *size_change_ok
= true;
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
774 || (bfd_is_com_section (sec
)
775 && (h
->root
.type
== bfd_link_hash_defweak
776 || h
->type
== STT_FUNC
)))
779 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
781 || h
->root
.type
== bfd_link_hash_defweak
))
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
787 h
->root
.type
= bfd_link_hash_undefined
;
788 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
789 *size_change_ok
= true;
792 olddyncommon
= false;
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
797 if (bfd_is_com_section (sec
))
798 *type_change_ok
= true;
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
804 h
->verinfo
.vertree
= NULL
;
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
822 && bfd_is_com_section (sec
)
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
828 if (! ((*info
->callbacks
->multiple_common
)
829 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
830 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
836 if (h
->size
> *pvalue
)
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
844 olddyncommon
= false;
846 h
->root
.type
= bfd_link_hash_undefined
;
847 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
849 *size_change_ok
= true;
850 *type_change_ok
= true;
852 h
->verinfo
.vertree
= NULL
;
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
862 && h
->root
.type
== bfd_link_hash_defweak
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
870 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
871 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
872 else if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
873 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
874 h
->elf_link_hash_flags
&= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC
);
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
891 && h
->root
.type
!= bfd_link_hash_defweak
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
907 elf_add_default_symbol (abfd
, info
, h
, name
, sym
, psec
, value
,
908 dynsym
, override
, dt_needed
)
910 struct bfd_link_info
*info
;
911 struct elf_link_hash_entry
*h
;
913 Elf_Internal_Sym
*sym
;
920 boolean type_change_ok
;
921 boolean size_change_ok
;
923 struct elf_link_hash_entry
*hi
;
924 struct bfd_link_hash_entry
*bh
;
925 struct elf_backend_data
*bed
;
929 size_t len
, shortlen
;
932 /* If this symbol has a version, and it is the default version, we
933 create an indirect symbol from the default name to the fully
934 decorated name. This will cause external references which do not
935 specify a version to be bound to this version of the symbol. */
936 p
= strchr (name
, ELF_VER_CHR
);
937 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
942 /* We are overridden by an old defition. We need to check if we
943 need to create the indirect symbol from the default name. */
944 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, true,
946 BFD_ASSERT (hi
!= NULL
);
949 while (hi
->root
.type
== bfd_link_hash_indirect
950 || hi
->root
.type
== bfd_link_hash_warning
)
952 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
958 bed
= get_elf_backend_data (abfd
);
959 collect
= bed
->collect
;
960 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
963 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
964 if (shortname
== NULL
)
966 memcpy (shortname
, name
, shortlen
);
967 shortname
[shortlen
] = '\0';
969 /* We are going to create a new symbol. Merge it with any existing
970 symbol with this name. For the purposes of the merge, act as
971 though we were defining the symbol we just defined, although we
972 actually going to define an indirect symbol. */
973 type_change_ok
= false;
974 size_change_ok
= false;
976 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
977 &hi
, &override
, &type_change_ok
,
978 &size_change_ok
, dt_needed
))
984 if (! (_bfd_generic_link_add_one_symbol
985 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
986 (bfd_vma
) 0, name
, false, collect
, &bh
)))
988 hi
= (struct elf_link_hash_entry
*) bh
;
992 /* In this case the symbol named SHORTNAME is overriding the
993 indirect symbol we want to add. We were planning on making
994 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
995 is the name without a version. NAME is the fully versioned
996 name, and it is the default version.
998 Overriding means that we already saw a definition for the
999 symbol SHORTNAME in a regular object, and it is overriding
1000 the symbol defined in the dynamic object.
1002 When this happens, we actually want to change NAME, the
1003 symbol we just added, to refer to SHORTNAME. This will cause
1004 references to NAME in the shared object to become references
1005 to SHORTNAME in the regular object. This is what we expect
1006 when we override a function in a shared object: that the
1007 references in the shared object will be mapped to the
1008 definition in the regular object. */
1010 while (hi
->root
.type
== bfd_link_hash_indirect
1011 || hi
->root
.type
== bfd_link_hash_warning
)
1012 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1014 h
->root
.type
= bfd_link_hash_indirect
;
1015 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1016 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1018 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1019 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1020 if (hi
->elf_link_hash_flags
1021 & (ELF_LINK_HASH_REF_REGULAR
1022 | ELF_LINK_HASH_DEF_REGULAR
))
1024 if (! _bfd_elf_link_record_dynamic_symbol (info
, hi
))
1029 /* Now set HI to H, so that the following code will set the
1030 other fields correctly. */
1034 /* If there is a duplicate definition somewhere, then HI may not
1035 point to an indirect symbol. We will have reported an error to
1036 the user in that case. */
1038 if (hi
->root
.type
== bfd_link_hash_indirect
)
1040 struct elf_link_hash_entry
*ht
;
1042 /* If the symbol became indirect, then we assume that we have
1043 not seen a definition before. */
1044 BFD_ASSERT ((hi
->elf_link_hash_flags
1045 & (ELF_LINK_HASH_DEF_DYNAMIC
1046 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1048 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1049 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, ht
, hi
);
1051 /* See if the new flags lead us to realize that the symbol must
1058 || ((hi
->elf_link_hash_flags
1059 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1064 if ((hi
->elf_link_hash_flags
1065 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1071 /* We also need to define an indirection from the nondefault version
1074 len
= strlen (name
);
1075 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1076 if (shortname
== NULL
)
1078 memcpy (shortname
, name
, shortlen
);
1079 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1081 /* Once again, merge with any existing symbol. */
1082 type_change_ok
= false;
1083 size_change_ok
= false;
1085 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1086 &hi
, &override
, &type_change_ok
,
1087 &size_change_ok
, dt_needed
))
1092 /* Here SHORTNAME is a versioned name, so we don't expect to see
1093 the type of override we do in the case above unless it is
1094 overridden by a versioned definiton. */
1095 if (hi
->root
.type
!= bfd_link_hash_defined
1096 && hi
->root
.type
!= bfd_link_hash_defweak
)
1097 (*_bfd_error_handler
)
1098 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1099 bfd_archive_filename (abfd
), shortname
);
1104 if (! (_bfd_generic_link_add_one_symbol
1105 (info
, abfd
, shortname
, BSF_INDIRECT
,
1106 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false, collect
, &bh
)))
1108 hi
= (struct elf_link_hash_entry
*) bh
;
1110 /* If there is a duplicate definition somewhere, then HI may not
1111 point to an indirect symbol. We will have reported an error
1112 to the user in that case. */
1114 if (hi
->root
.type
== bfd_link_hash_indirect
)
1116 /* If the symbol became indirect, then we assume that we have
1117 not seen a definition before. */
1118 BFD_ASSERT ((hi
->elf_link_hash_flags
1119 & (ELF_LINK_HASH_DEF_DYNAMIC
1120 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1122 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, h
, hi
);
1124 /* See if the new flags lead us to realize that the symbol
1131 || ((hi
->elf_link_hash_flags
1132 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1137 if ((hi
->elf_link_hash_flags
1138 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1148 /* Add symbols from an ELF object file to the linker hash table. */
1151 elf_link_add_object_symbols (abfd
, info
)
1153 struct bfd_link_info
*info
;
1155 boolean (*add_symbol_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
1156 const Elf_Internal_Sym
*,
1157 const char **, flagword
*,
1158 asection
**, bfd_vma
*));
1159 boolean (*check_relocs
) PARAMS ((bfd
*, struct bfd_link_info
*,
1160 asection
*, const Elf_Internal_Rela
*));
1162 Elf_Internal_Shdr
*hdr
;
1163 bfd_size_type symcount
;
1164 bfd_size_type extsymcount
;
1165 bfd_size_type extsymoff
;
1166 struct elf_link_hash_entry
**sym_hash
;
1168 Elf_External_Versym
*extversym
= NULL
;
1169 Elf_External_Versym
*ever
;
1170 struct elf_link_hash_entry
*weaks
;
1171 Elf_Internal_Sym
*isymbuf
= NULL
;
1172 Elf_Internal_Sym
*isym
;
1173 Elf_Internal_Sym
*isymend
;
1174 struct elf_backend_data
*bed
;
1176 struct elf_link_hash_table
* hash_table
;
1179 hash_table
= elf_hash_table (info
);
1181 bed
= get_elf_backend_data (abfd
);
1182 add_symbol_hook
= bed
->elf_add_symbol_hook
;
1183 collect
= bed
->collect
;
1185 if ((abfd
->flags
& DYNAMIC
) == 0)
1191 /* You can't use -r against a dynamic object. Also, there's no
1192 hope of using a dynamic object which does not exactly match
1193 the format of the output file. */
1194 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
1196 bfd_set_error (bfd_error_invalid_operation
);
1201 /* As a GNU extension, any input sections which are named
1202 .gnu.warning.SYMBOL are treated as warning symbols for the given
1203 symbol. This differs from .gnu.warning sections, which generate
1204 warnings when they are included in an output file. */
1209 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1213 name
= bfd_get_section_name (abfd
, s
);
1214 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1219 name
+= sizeof ".gnu.warning." - 1;
1221 /* If this is a shared object, then look up the symbol
1222 in the hash table. If it is there, and it is already
1223 been defined, then we will not be using the entry
1224 from this shared object, so we don't need to warn.
1225 FIXME: If we see the definition in a regular object
1226 later on, we will warn, but we shouldn't. The only
1227 fix is to keep track of what warnings we are supposed
1228 to emit, and then handle them all at the end of the
1230 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
1232 struct elf_link_hash_entry
*h
;
1234 h
= elf_link_hash_lookup (hash_table
, name
,
1235 false, false, true);
1237 /* FIXME: What about bfd_link_hash_common? */
1239 && (h
->root
.type
== bfd_link_hash_defined
1240 || h
->root
.type
== bfd_link_hash_defweak
))
1242 /* We don't want to issue this warning. Clobber
1243 the section size so that the warning does not
1244 get copied into the output file. */
1250 sz
= bfd_section_size (abfd
, s
);
1251 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
1255 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
1260 if (! (_bfd_generic_link_add_one_symbol
1261 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
1262 false, collect
, (struct bfd_link_hash_entry
**) NULL
)))
1265 if (! info
->relocateable
)
1267 /* Clobber the section size so that the warning does
1268 not get copied into the output file. */
1278 /* If we are creating a shared library, create all the dynamic
1279 sections immediately. We need to attach them to something,
1280 so we attach them to this BFD, provided it is the right
1281 format. FIXME: If there are no input BFD's of the same
1282 format as the output, we can't make a shared library. */
1284 && is_elf_hash_table (info
)
1285 && ! hash_table
->dynamic_sections_created
1286 && abfd
->xvec
== info
->hash
->creator
)
1288 if (! elf_link_create_dynamic_sections (abfd
, info
))
1292 else if (! is_elf_hash_table (info
))
1299 bfd_size_type oldsize
;
1300 bfd_size_type strindex
;
1302 /* Find the name to use in a DT_NEEDED entry that refers to this
1303 object. If the object has a DT_SONAME entry, we use it.
1304 Otherwise, if the generic linker stuck something in
1305 elf_dt_name, we use that. Otherwise, we just use the file
1306 name. If the generic linker put a null string into
1307 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1308 there is a DT_SONAME entry. */
1310 name
= bfd_get_filename (abfd
);
1311 if (elf_dt_name (abfd
) != NULL
)
1313 name
= elf_dt_name (abfd
);
1316 if (elf_dt_soname (abfd
) != NULL
)
1322 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1325 Elf_External_Dyn
*dynbuf
= NULL
;
1326 Elf_External_Dyn
*extdyn
;
1327 Elf_External_Dyn
*extdynend
;
1329 unsigned long shlink
;
1333 dynbuf
= (Elf_External_Dyn
*) bfd_malloc (s
->_raw_size
);
1337 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
1338 (file_ptr
) 0, s
->_raw_size
))
1339 goto error_free_dyn
;
1341 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1343 goto error_free_dyn
;
1344 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1347 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
1350 for (; extdyn
< extdynend
; extdyn
++)
1352 Elf_Internal_Dyn dyn
;
1354 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
1355 if (dyn
.d_tag
== DT_SONAME
)
1357 unsigned int tagv
= dyn
.d_un
.d_val
;
1358 name
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1360 goto error_free_dyn
;
1362 if (dyn
.d_tag
== DT_NEEDED
)
1364 struct bfd_link_needed_list
*n
, **pn
;
1366 unsigned int tagv
= dyn
.d_un
.d_val
;
1368 amt
= sizeof (struct bfd_link_needed_list
);
1369 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1370 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1371 if (n
== NULL
|| fnm
== NULL
)
1372 goto error_free_dyn
;
1373 amt
= strlen (fnm
) + 1;
1374 anm
= bfd_alloc (abfd
, amt
);
1376 goto error_free_dyn
;
1377 memcpy (anm
, fnm
, (size_t) amt
);
1381 for (pn
= & hash_table
->needed
;
1387 if (dyn
.d_tag
== DT_RUNPATH
)
1389 struct bfd_link_needed_list
*n
, **pn
;
1391 unsigned int tagv
= dyn
.d_un
.d_val
;
1393 /* When we see DT_RPATH before DT_RUNPATH, we have
1394 to clear runpath. Do _NOT_ bfd_release, as that
1395 frees all more recently bfd_alloc'd blocks as
1397 if (rpath
&& hash_table
->runpath
)
1398 hash_table
->runpath
= NULL
;
1400 amt
= sizeof (struct bfd_link_needed_list
);
1401 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1402 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1403 if (n
== NULL
|| fnm
== NULL
)
1404 goto error_free_dyn
;
1405 amt
= strlen (fnm
) + 1;
1406 anm
= bfd_alloc (abfd
, amt
);
1408 goto error_free_dyn
;
1409 memcpy (anm
, fnm
, (size_t) amt
);
1413 for (pn
= & hash_table
->runpath
;
1421 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1422 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
1424 struct bfd_link_needed_list
*n
, **pn
;
1426 unsigned int tagv
= dyn
.d_un
.d_val
;
1428 amt
= sizeof (struct bfd_link_needed_list
);
1429 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1430 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1431 if (n
== NULL
|| fnm
== NULL
)
1432 goto error_free_dyn
;
1433 amt
= strlen (fnm
) + 1;
1434 anm
= bfd_alloc (abfd
, amt
);
1441 memcpy (anm
, fnm
, (size_t) amt
);
1445 for (pn
= & hash_table
->runpath
;
1457 /* We do not want to include any of the sections in a dynamic
1458 object in the output file. We hack by simply clobbering the
1459 list of sections in the BFD. This could be handled more
1460 cleanly by, say, a new section flag; the existing
1461 SEC_NEVER_LOAD flag is not the one we want, because that one
1462 still implies that the section takes up space in the output
1464 bfd_section_list_clear (abfd
);
1466 /* If this is the first dynamic object found in the link, create
1467 the special sections required for dynamic linking. */
1468 if (! hash_table
->dynamic_sections_created
)
1469 if (! elf_link_create_dynamic_sections (abfd
, info
))
1474 /* Add a DT_NEEDED entry for this dynamic object. */
1475 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
1476 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, name
, false);
1477 if (strindex
== (bfd_size_type
) -1)
1480 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
1483 Elf_External_Dyn
*dyncon
, *dynconend
;
1485 /* The hash table size did not change, which means that
1486 the dynamic object name was already entered. If we
1487 have already included this dynamic object in the
1488 link, just ignore it. There is no reason to include
1489 a particular dynamic object more than once. */
1490 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
1491 BFD_ASSERT (sdyn
!= NULL
);
1493 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1494 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1496 for (; dyncon
< dynconend
; dyncon
++)
1498 Elf_Internal_Dyn dyn
;
1500 elf_swap_dyn_in (hash_table
->dynobj
, dyncon
, & dyn
);
1501 if (dyn
.d_tag
== DT_NEEDED
1502 && dyn
.d_un
.d_val
== strindex
)
1504 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
1510 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
1514 /* Save the SONAME, if there is one, because sometimes the
1515 linker emulation code will need to know it. */
1517 name
= basename (bfd_get_filename (abfd
));
1518 elf_dt_name (abfd
) = name
;
1521 /* If this is a dynamic object, we always link against the .dynsym
1522 symbol table, not the .symtab symbol table. The dynamic linker
1523 will only see the .dynsym symbol table, so there is no reason to
1524 look at .symtab for a dynamic object. */
1526 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
1527 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1529 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1531 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
1533 /* The sh_info field of the symtab header tells us where the
1534 external symbols start. We don't care about the local symbols at
1536 if (elf_bad_symtab (abfd
))
1538 extsymcount
= symcount
;
1543 extsymcount
= symcount
- hdr
->sh_info
;
1544 extsymoff
= hdr
->sh_info
;
1548 if (extsymcount
!= 0)
1550 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
1552 if (isymbuf
== NULL
)
1555 /* We store a pointer to the hash table entry for each external
1557 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
1558 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
1559 if (sym_hash
== NULL
)
1560 goto error_free_sym
;
1561 elf_sym_hashes (abfd
) = sym_hash
;
1566 /* Read in any version definitions. */
1567 if (! _bfd_elf_slurp_version_tables (abfd
))
1568 goto error_free_sym
;
1570 /* Read in the symbol versions, but don't bother to convert them
1571 to internal format. */
1572 if (elf_dynversym (abfd
) != 0)
1574 Elf_Internal_Shdr
*versymhdr
;
1576 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
1577 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
1578 if (extversym
== NULL
)
1579 goto error_free_sym
;
1580 amt
= versymhdr
->sh_size
;
1581 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
1582 || bfd_bread ((PTR
) extversym
, amt
, abfd
) != amt
)
1583 goto error_free_vers
;
1589 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
1590 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
1592 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
1599 struct elf_link_hash_entry
*h
;
1601 boolean size_change_ok
, type_change_ok
;
1602 boolean new_weakdef
;
1603 unsigned int old_alignment
;
1608 flags
= BSF_NO_FLAGS
;
1610 value
= isym
->st_value
;
1613 bind
= ELF_ST_BIND (isym
->st_info
);
1614 if (bind
== STB_LOCAL
)
1616 /* This should be impossible, since ELF requires that all
1617 global symbols follow all local symbols, and that sh_info
1618 point to the first global symbol. Unfortunatealy, Irix 5
1622 else if (bind
== STB_GLOBAL
)
1624 if (isym
->st_shndx
!= SHN_UNDEF
1625 && isym
->st_shndx
!= SHN_COMMON
)
1628 else if (bind
== STB_WEAK
)
1632 /* Leave it up to the processor backend. */
1635 if (isym
->st_shndx
== SHN_UNDEF
)
1636 sec
= bfd_und_section_ptr
;
1637 else if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
1639 sec
= section_from_elf_index (abfd
, isym
->st_shndx
);
1641 sec
= bfd_abs_section_ptr
;
1642 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1645 else if (isym
->st_shndx
== SHN_ABS
)
1646 sec
= bfd_abs_section_ptr
;
1647 else if (isym
->st_shndx
== SHN_COMMON
)
1649 sec
= bfd_com_section_ptr
;
1650 /* What ELF calls the size we call the value. What ELF
1651 calls the value we call the alignment. */
1652 value
= isym
->st_size
;
1656 /* Leave it up to the processor backend. */
1659 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
1661 if (name
== (const char *) NULL
)
1662 goto error_free_vers
;
1664 if (isym
->st_shndx
== SHN_COMMON
1665 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
)
1667 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
1671 tcomm
= bfd_make_section (abfd
, ".tcommon");
1673 || !bfd_set_section_flags (abfd
, tcomm
, (SEC_ALLOC
1675 | SEC_LINKER_CREATED
1676 | SEC_THREAD_LOCAL
)))
1677 goto error_free_vers
;
1681 else if (add_symbol_hook
)
1683 if (! (*add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
, &sec
,
1685 goto error_free_vers
;
1687 /* The hook function sets the name to NULL if this symbol
1688 should be skipped for some reason. */
1689 if (name
== (const char *) NULL
)
1693 /* Sanity check that all possibilities were handled. */
1694 if (sec
== (asection
*) NULL
)
1696 bfd_set_error (bfd_error_bad_value
);
1697 goto error_free_vers
;
1700 if (bfd_is_und_section (sec
)
1701 || bfd_is_com_section (sec
))
1706 size_change_ok
= false;
1707 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1709 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1711 Elf_Internal_Versym iver
;
1712 unsigned int vernum
= 0;
1716 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1717 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1719 /* If this is a hidden symbol, or if it is not version
1720 1, we append the version name to the symbol name.
1721 However, we do not modify a non-hidden absolute
1722 symbol, because it might be the version symbol
1723 itself. FIXME: What if it isn't? */
1724 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1725 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1728 size_t namelen
, verlen
, newlen
;
1731 if (isym
->st_shndx
!= SHN_UNDEF
)
1733 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1735 (*_bfd_error_handler
)
1736 (_("%s: %s: invalid version %u (max %d)"),
1737 bfd_archive_filename (abfd
), name
, vernum
,
1738 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1739 bfd_set_error (bfd_error_bad_value
);
1740 goto error_free_vers
;
1742 else if (vernum
> 1)
1744 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1750 /* We cannot simply test for the number of
1751 entries in the VERNEED section since the
1752 numbers for the needed versions do not start
1754 Elf_Internal_Verneed
*t
;
1757 for (t
= elf_tdata (abfd
)->verref
;
1761 Elf_Internal_Vernaux
*a
;
1763 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1765 if (a
->vna_other
== vernum
)
1767 verstr
= a
->vna_nodename
;
1776 (*_bfd_error_handler
)
1777 (_("%s: %s: invalid needed version %d"),
1778 bfd_archive_filename (abfd
), name
, vernum
);
1779 bfd_set_error (bfd_error_bad_value
);
1780 goto error_free_vers
;
1784 namelen
= strlen (name
);
1785 verlen
= strlen (verstr
);
1786 newlen
= namelen
+ verlen
+ 2;
1787 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1788 && isym
->st_shndx
!= SHN_UNDEF
)
1791 newname
= (char *) bfd_alloc (abfd
, (bfd_size_type
) newlen
);
1792 if (newname
== NULL
)
1793 goto error_free_vers
;
1794 memcpy (newname
, name
, namelen
);
1795 p
= newname
+ namelen
;
1797 /* If this is a defined non-hidden version symbol,
1798 we add another @ to the name. This indicates the
1799 default version of the symbol. */
1800 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1801 && isym
->st_shndx
!= SHN_UNDEF
)
1803 memcpy (p
, verstr
, verlen
+ 1);
1809 if (! elf_merge_symbol (abfd
, info
, name
, isym
, &sec
, &value
,
1810 sym_hash
, &override
, &type_change_ok
,
1811 &size_change_ok
, dt_needed
))
1812 goto error_free_vers
;
1818 while (h
->root
.type
== bfd_link_hash_indirect
1819 || h
->root
.type
== bfd_link_hash_warning
)
1820 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1822 /* Remember the old alignment if this is a common symbol, so
1823 that we don't reduce the alignment later on. We can't
1824 check later, because _bfd_generic_link_add_one_symbol
1825 will set a default for the alignment which we want to
1827 if (h
->root
.type
== bfd_link_hash_common
)
1828 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1830 if (elf_tdata (abfd
)->verdef
!= NULL
1834 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1837 if (! (_bfd_generic_link_add_one_symbol
1838 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1839 false, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1840 goto error_free_vers
;
1843 while (h
->root
.type
== bfd_link_hash_indirect
1844 || h
->root
.type
== bfd_link_hash_warning
)
1845 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1848 new_weakdef
= false;
1851 && (flags
& BSF_WEAK
) != 0
1852 && ELF_ST_TYPE (isym
->st_info
) != STT_FUNC
1853 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1854 && h
->weakdef
== NULL
)
1856 /* Keep a list of all weak defined non function symbols from
1857 a dynamic object, using the weakdef field. Later in this
1858 function we will set the weakdef field to the correct
1859 value. We only put non-function symbols from dynamic
1860 objects on this list, because that happens to be the only
1861 time we need to know the normal symbol corresponding to a
1862 weak symbol, and the information is time consuming to
1863 figure out. If the weakdef field is not already NULL,
1864 then this symbol was already defined by some previous
1865 dynamic object, and we will be using that previous
1866 definition anyhow. */
1873 /* Set the alignment of a common symbol. */
1874 if (isym
->st_shndx
== SHN_COMMON
1875 && h
->root
.type
== bfd_link_hash_common
)
1879 align
= bfd_log2 (isym
->st_value
);
1880 if (align
> old_alignment
1881 /* Permit an alignment power of zero if an alignment of one
1882 is specified and no other alignments have been specified. */
1883 || (isym
->st_value
== 1 && old_alignment
== 0))
1884 h
->root
.u
.c
.p
->alignment_power
= align
;
1887 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1893 /* Remember the symbol size and type. */
1894 if (isym
->st_size
!= 0
1895 && (definition
|| h
->size
== 0))
1897 if (h
->size
!= 0 && h
->size
!= isym
->st_size
&& ! size_change_ok
)
1898 (*_bfd_error_handler
)
1899 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1900 name
, (unsigned long) h
->size
,
1901 (unsigned long) isym
->st_size
, bfd_archive_filename (abfd
));
1903 h
->size
= isym
->st_size
;
1906 /* If this is a common symbol, then we always want H->SIZE
1907 to be the size of the common symbol. The code just above
1908 won't fix the size if a common symbol becomes larger. We
1909 don't warn about a size change here, because that is
1910 covered by --warn-common. */
1911 if (h
->root
.type
== bfd_link_hash_common
)
1912 h
->size
= h
->root
.u
.c
.size
;
1914 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
1915 && (definition
|| h
->type
== STT_NOTYPE
))
1917 if (h
->type
!= STT_NOTYPE
1918 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
1919 && ! type_change_ok
)
1920 (*_bfd_error_handler
)
1921 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1922 name
, h
->type
, ELF_ST_TYPE (isym
->st_info
),
1923 bfd_archive_filename (abfd
));
1925 h
->type
= ELF_ST_TYPE (isym
->st_info
);
1928 /* If st_other has a processor-specific meaning, specific code
1929 might be needed here. */
1930 if (isym
->st_other
!= 0)
1932 /* Combine visibilities, using the most constraining one. */
1933 unsigned char hvis
= ELF_ST_VISIBILITY (h
->other
);
1934 unsigned char symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
1936 if (symvis
&& (hvis
> symvis
|| hvis
== 0))
1937 h
->other
= isym
->st_other
;
1939 /* If neither has visibility, use the st_other of the
1940 definition. This is an arbitrary choice, since the
1941 other bits have no general meaning. */
1942 if (!symvis
&& !hvis
1943 && (definition
|| h
->other
== 0))
1944 h
->other
= isym
->st_other
;
1947 /* Set a flag in the hash table entry indicating the type of
1948 reference or definition we just found. Keep a count of
1949 the number of dynamic symbols we find. A dynamic symbol
1950 is one which is referenced or defined by both a regular
1951 object and a shared object. */
1952 old_flags
= h
->elf_link_hash_flags
;
1958 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
1959 if (bind
!= STB_WEAK
)
1960 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
1963 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
1965 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
1966 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
1972 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
1974 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
1975 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
1976 | ELF_LINK_HASH_REF_REGULAR
)) != 0
1977 || (h
->weakdef
!= NULL
1979 && h
->weakdef
->dynindx
!= -1))
1983 h
->elf_link_hash_flags
|= new_flag
;
1985 /* Check to see if we need to add an indirect symbol for
1986 the default name. */
1987 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
1988 if (! elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
1989 &sec
, &value
, &dynsym
,
1990 override
, dt_needed
))
1991 goto error_free_vers
;
1993 if (dynsym
&& h
->dynindx
== -1)
1995 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1996 goto error_free_vers
;
1997 if (h
->weakdef
!= NULL
1999 && h
->weakdef
->dynindx
== -1)
2001 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2002 goto error_free_vers
;
2005 else if (dynsym
&& h
->dynindx
!= -1)
2006 /* If the symbol already has a dynamic index, but
2007 visibility says it should not be visible, turn it into
2009 switch (ELF_ST_VISIBILITY (h
->other
))
2013 (*bed
->elf_backend_hide_symbol
) (info
, h
, true);
2017 if (dt_needed
&& definition
2018 && (h
->elf_link_hash_flags
2019 & ELF_LINK_HASH_REF_REGULAR
) != 0)
2021 bfd_size_type oldsize
;
2022 bfd_size_type strindex
;
2024 if (! is_elf_hash_table (info
))
2025 goto error_free_vers
;
2027 /* The symbol from a DT_NEEDED object is referenced from
2028 the regular object to create a dynamic executable. We
2029 have to make sure there is a DT_NEEDED entry for it. */
2032 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2033 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
,
2034 elf_dt_soname (abfd
), false);
2035 if (strindex
== (bfd_size_type
) -1)
2036 goto error_free_vers
;
2038 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2041 Elf_External_Dyn
*dyncon
, *dynconend
;
2043 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
,
2045 BFD_ASSERT (sdyn
!= NULL
);
2047 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
2048 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
2050 for (; dyncon
< dynconend
; dyncon
++)
2052 Elf_Internal_Dyn dyn
;
2054 elf_swap_dyn_in (hash_table
->dynobj
,
2056 BFD_ASSERT (dyn
.d_tag
!= DT_NEEDED
||
2057 dyn
.d_un
.d_val
!= strindex
);
2061 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
2062 goto error_free_vers
;
2067 if (extversym
!= NULL
)
2073 if (isymbuf
!= NULL
)
2077 /* Now set the weakdefs field correctly for all the weak defined
2078 symbols we found. The only way to do this is to search all the
2079 symbols. Since we only need the information for non functions in
2080 dynamic objects, that's the only time we actually put anything on
2081 the list WEAKS. We need this information so that if a regular
2082 object refers to a symbol defined weakly in a dynamic object, the
2083 real symbol in the dynamic object is also put in the dynamic
2084 symbols; we also must arrange for both symbols to point to the
2085 same memory location. We could handle the general case of symbol
2086 aliasing, but a general symbol alias can only be generated in
2087 assembler code, handling it correctly would be very time
2088 consuming, and other ELF linkers don't handle general aliasing
2090 while (weaks
!= NULL
)
2092 struct elf_link_hash_entry
*hlook
;
2095 struct elf_link_hash_entry
**hpp
;
2096 struct elf_link_hash_entry
**hppend
;
2099 weaks
= hlook
->weakdef
;
2100 hlook
->weakdef
= NULL
;
2102 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
2103 || hlook
->root
.type
== bfd_link_hash_defweak
2104 || hlook
->root
.type
== bfd_link_hash_common
2105 || hlook
->root
.type
== bfd_link_hash_indirect
);
2106 slook
= hlook
->root
.u
.def
.section
;
2107 vlook
= hlook
->root
.u
.def
.value
;
2109 hpp
= elf_sym_hashes (abfd
);
2110 hppend
= hpp
+ extsymcount
;
2111 for (; hpp
< hppend
; hpp
++)
2113 struct elf_link_hash_entry
*h
;
2116 if (h
!= NULL
&& h
!= hlook
2117 && h
->root
.type
== bfd_link_hash_defined
2118 && h
->root
.u
.def
.section
== slook
2119 && h
->root
.u
.def
.value
== vlook
)
2123 /* If the weak definition is in the list of dynamic
2124 symbols, make sure the real definition is put there
2126 if (hlook
->dynindx
!= -1
2127 && h
->dynindx
== -1)
2129 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2133 /* If the real definition is in the list of dynamic
2134 symbols, make sure the weak definition is put there
2135 as well. If we don't do this, then the dynamic
2136 loader might not merge the entries for the real
2137 definition and the weak definition. */
2138 if (h
->dynindx
!= -1
2139 && hlook
->dynindx
== -1)
2141 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
2149 /* If this object is the same format as the output object, and it is
2150 not a shared library, then let the backend look through the
2153 This is required to build global offset table entries and to
2154 arrange for dynamic relocs. It is not required for the
2155 particular common case of linking non PIC code, even when linking
2156 against shared libraries, but unfortunately there is no way of
2157 knowing whether an object file has been compiled PIC or not.
2158 Looking through the relocs is not particularly time consuming.
2159 The problem is that we must either (1) keep the relocs in memory,
2160 which causes the linker to require additional runtime memory or
2161 (2) read the relocs twice from the input file, which wastes time.
2162 This would be a good case for using mmap.
2164 I have no idea how to handle linking PIC code into a file of a
2165 different format. It probably can't be done. */
2166 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
2168 && abfd
->xvec
== info
->hash
->creator
2169 && check_relocs
!= NULL
)
2173 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2175 Elf_Internal_Rela
*internal_relocs
;
2178 if ((o
->flags
& SEC_RELOC
) == 0
2179 || o
->reloc_count
== 0
2180 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2181 && (o
->flags
& SEC_DEBUGGING
) != 0)
2182 || bfd_is_abs_section (o
->output_section
))
2185 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
2186 (abfd
, o
, (PTR
) NULL
,
2187 (Elf_Internal_Rela
*) NULL
,
2188 info
->keep_memory
));
2189 if (internal_relocs
== NULL
)
2192 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
2194 if (elf_section_data (o
)->relocs
!= internal_relocs
)
2195 free (internal_relocs
);
2202 /* If this is a non-traditional, non-relocateable link, try to
2203 optimize the handling of the .stab/.stabstr sections. */
2205 && ! info
->relocateable
2206 && ! info
->traditional_format
2207 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
2208 && is_elf_hash_table (info
)
2209 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
2211 asection
*stab
, *stabstr
;
2213 stab
= bfd_get_section_by_name (abfd
, ".stab");
2215 && (stab
->flags
& SEC_MERGE
) == 0
2216 && !bfd_is_abs_section (stab
->output_section
))
2218 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
2220 if (stabstr
!= NULL
)
2222 struct bfd_elf_section_data
*secdata
;
2224 secdata
= elf_section_data (stab
);
2225 if (! _bfd_link_section_stabs (abfd
,
2226 & hash_table
->stab_info
,
2228 &secdata
->sec_info
))
2230 if (secdata
->sec_info
)
2231 secdata
->sec_info_type
= ELF_INFO_TYPE_STABS
;
2236 if (! info
->relocateable
&& ! dynamic
2237 && is_elf_hash_table (info
))
2241 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2242 if ((s
->flags
& SEC_MERGE
) != 0
2243 && !bfd_is_abs_section (s
->output_section
))
2245 struct bfd_elf_section_data
*secdata
;
2247 secdata
= elf_section_data (s
);
2248 if (! _bfd_merge_section (abfd
,
2249 & hash_table
->merge_info
,
2250 s
, &secdata
->sec_info
))
2252 else if (secdata
->sec_info
)
2253 secdata
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
2257 if (is_elf_hash_table (info
))
2259 /* Add this bfd to the loaded list. */
2260 struct elf_link_loaded_list
*n
;
2262 n
= ((struct elf_link_loaded_list
*)
2263 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
)));
2267 n
->next
= hash_table
->loaded
;
2268 hash_table
->loaded
= n
;
2274 if (extversym
!= NULL
)
2277 if (isymbuf
!= NULL
)
2283 /* Create some sections which will be filled in with dynamic linking
2284 information. ABFD is an input file which requires dynamic sections
2285 to be created. The dynamic sections take up virtual memory space
2286 when the final executable is run, so we need to create them before
2287 addresses are assigned to the output sections. We work out the
2288 actual contents and size of these sections later. */
2291 elf_link_create_dynamic_sections (abfd
, info
)
2293 struct bfd_link_info
*info
;
2296 register asection
*s
;
2297 struct elf_link_hash_entry
*h
;
2298 struct bfd_link_hash_entry
*bh
;
2299 struct elf_backend_data
*bed
;
2301 if (! is_elf_hash_table (info
))
2304 if (elf_hash_table (info
)->dynamic_sections_created
)
2307 /* Make sure that all dynamic sections use the same input BFD. */
2308 if (elf_hash_table (info
)->dynobj
== NULL
)
2309 elf_hash_table (info
)->dynobj
= abfd
;
2311 abfd
= elf_hash_table (info
)->dynobj
;
2313 /* Note that we set the SEC_IN_MEMORY flag for all of these
2315 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
2316 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2318 /* A dynamically linked executable has a .interp section, but a
2319 shared library does not. */
2322 s
= bfd_make_section (abfd
, ".interp");
2324 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2328 if (! info
->traditional_format
2329 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
2331 s
= bfd_make_section (abfd
, ".eh_frame_hdr");
2333 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2334 || ! bfd_set_section_alignment (abfd
, s
, 2))
2338 /* Create sections to hold version informations. These are removed
2339 if they are not needed. */
2340 s
= bfd_make_section (abfd
, ".gnu.version_d");
2342 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2343 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2346 s
= bfd_make_section (abfd
, ".gnu.version");
2348 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2349 || ! bfd_set_section_alignment (abfd
, s
, 1))
2352 s
= bfd_make_section (abfd
, ".gnu.version_r");
2354 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2355 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2358 s
= bfd_make_section (abfd
, ".dynsym");
2360 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2361 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2364 s
= bfd_make_section (abfd
, ".dynstr");
2366 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2369 /* Create a strtab to hold the dynamic symbol names. */
2370 if (elf_hash_table (info
)->dynstr
== NULL
)
2372 elf_hash_table (info
)->dynstr
= _bfd_elf_strtab_init ();
2373 if (elf_hash_table (info
)->dynstr
== NULL
)
2377 s
= bfd_make_section (abfd
, ".dynamic");
2379 || ! bfd_set_section_flags (abfd
, s
, flags
)
2380 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2383 /* The special symbol _DYNAMIC is always set to the start of the
2384 .dynamic section. This call occurs before we have processed the
2385 symbols for any dynamic object, so we don't have to worry about
2386 overriding a dynamic definition. We could set _DYNAMIC in a
2387 linker script, but we only want to define it if we are, in fact,
2388 creating a .dynamic section. We don't want to define it if there
2389 is no .dynamic section, since on some ELF platforms the start up
2390 code examines it to decide how to initialize the process. */
2392 if (! (_bfd_generic_link_add_one_symbol
2393 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
2394 (const char *) 0, false, get_elf_backend_data (abfd
)->collect
, &bh
)))
2396 h
= (struct elf_link_hash_entry
*) bh
;
2397 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2398 h
->type
= STT_OBJECT
;
2401 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2404 bed
= get_elf_backend_data (abfd
);
2406 s
= bfd_make_section (abfd
, ".hash");
2408 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2409 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2411 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
2413 /* Let the backend create the rest of the sections. This lets the
2414 backend set the right flags. The backend will normally create
2415 the .got and .plt sections. */
2416 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
2419 elf_hash_table (info
)->dynamic_sections_created
= true;
2424 /* Add an entry to the .dynamic table. */
2427 elf_add_dynamic_entry (info
, tag
, val
)
2428 struct bfd_link_info
*info
;
2432 Elf_Internal_Dyn dyn
;
2435 bfd_size_type newsize
;
2436 bfd_byte
*newcontents
;
2438 if (! is_elf_hash_table (info
))
2441 dynobj
= elf_hash_table (info
)->dynobj
;
2443 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
2444 BFD_ASSERT (s
!= NULL
);
2446 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
2447 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
2448 if (newcontents
== NULL
)
2452 dyn
.d_un
.d_val
= val
;
2453 elf_swap_dyn_out (dynobj
, &dyn
,
2454 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
2456 s
->_raw_size
= newsize
;
2457 s
->contents
= newcontents
;
2462 /* Read and swap the relocs from the section indicated by SHDR. This
2463 may be either a REL or a RELA section. The relocations are
2464 translated into RELA relocations and stored in INTERNAL_RELOCS,
2465 which should have already been allocated to contain enough space.
2466 The EXTERNAL_RELOCS are a buffer where the external form of the
2467 relocations should be stored.
2469 Returns false if something goes wrong. */
2472 elf_link_read_relocs_from_section (abfd
, shdr
, external_relocs
,
2475 Elf_Internal_Shdr
*shdr
;
2476 PTR external_relocs
;
2477 Elf_Internal_Rela
*internal_relocs
;
2479 struct elf_backend_data
*bed
;
2482 /* If there aren't any relocations, that's OK. */
2486 /* Position ourselves at the start of the section. */
2487 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2490 /* Read the relocations. */
2491 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2494 bed
= get_elf_backend_data (abfd
);
2496 /* Convert the external relocations to the internal format. */
2497 if (shdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2499 Elf_External_Rel
*erel
;
2500 Elf_External_Rel
*erelend
;
2501 Elf_Internal_Rela
*irela
;
2502 Elf_Internal_Rel
*irel
;
2504 erel
= (Elf_External_Rel
*) external_relocs
;
2505 erelend
= erel
+ NUM_SHDR_ENTRIES (shdr
);
2506 irela
= internal_relocs
;
2507 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
2508 irel
= bfd_alloc (abfd
, amt
);
2509 for (; erel
< erelend
; erel
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2513 if (bed
->s
->swap_reloc_in
)
2514 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
2516 elf_swap_reloc_in (abfd
, erel
, irel
);
2518 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; ++i
)
2520 irela
[i
].r_offset
= irel
[i
].r_offset
;
2521 irela
[i
].r_info
= irel
[i
].r_info
;
2522 irela
[i
].r_addend
= 0;
2528 Elf_External_Rela
*erela
;
2529 Elf_External_Rela
*erelaend
;
2530 Elf_Internal_Rela
*irela
;
2532 BFD_ASSERT (shdr
->sh_entsize
== sizeof (Elf_External_Rela
));
2534 erela
= (Elf_External_Rela
*) external_relocs
;
2535 erelaend
= erela
+ NUM_SHDR_ENTRIES (shdr
);
2536 irela
= internal_relocs
;
2537 for (; erela
< erelaend
; erela
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2539 if (bed
->s
->swap_reloca_in
)
2540 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
2542 elf_swap_reloca_in (abfd
, erela
, irela
);
2549 /* Read and swap the relocs for a section O. They may have been
2550 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2551 not NULL, they are used as buffers to read into. They are known to
2552 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2553 the return value is allocated using either malloc or bfd_alloc,
2554 according to the KEEP_MEMORY argument. If O has two relocation
2555 sections (both REL and RELA relocations), then the REL_HDR
2556 relocations will appear first in INTERNAL_RELOCS, followed by the
2557 REL_HDR2 relocations. */
2560 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2564 PTR external_relocs
;
2565 Elf_Internal_Rela
*internal_relocs
;
2566 boolean keep_memory
;
2568 Elf_Internal_Shdr
*rel_hdr
;
2570 Elf_Internal_Rela
*alloc2
= NULL
;
2571 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2573 if (elf_section_data (o
)->relocs
!= NULL
)
2574 return elf_section_data (o
)->relocs
;
2576 if (o
->reloc_count
== 0)
2579 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2581 if (internal_relocs
== NULL
)
2585 size
= o
->reloc_count
;
2586 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2588 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2590 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2591 if (internal_relocs
== NULL
)
2595 if (external_relocs
== NULL
)
2597 bfd_size_type size
= rel_hdr
->sh_size
;
2599 if (elf_section_data (o
)->rel_hdr2
)
2600 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2601 alloc1
= (PTR
) bfd_malloc (size
);
2604 external_relocs
= alloc1
;
2607 if (!elf_link_read_relocs_from_section (abfd
, rel_hdr
,
2611 if (!elf_link_read_relocs_from_section
2613 elf_section_data (o
)->rel_hdr2
,
2614 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2615 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2616 * bed
->s
->int_rels_per_ext_rel
)))
2619 /* Cache the results for next time, if we can. */
2621 elf_section_data (o
)->relocs
= internal_relocs
;
2626 /* Don't free alloc2, since if it was allocated we are passing it
2627 back (under the name of internal_relocs). */
2629 return internal_relocs
;
2639 /* Record an assignment to a symbol made by a linker script. We need
2640 this in case some dynamic object refers to this symbol. */
2643 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2644 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2645 struct bfd_link_info
*info
;
2649 struct elf_link_hash_entry
*h
;
2651 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2654 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, true, false);
2658 if (h
->root
.type
== bfd_link_hash_new
)
2659 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2661 /* If this symbol is being provided by the linker script, and it is
2662 currently defined by a dynamic object, but not by a regular
2663 object, then mark it as undefined so that the generic linker will
2664 force the correct value. */
2666 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2667 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2668 h
->root
.type
= bfd_link_hash_undefined
;
2670 /* If this symbol is not being provided by the linker script, and it is
2671 currently defined by a dynamic object, but not by a regular object,
2672 then clear out any version information because the symbol will not be
2673 associated with the dynamic object any more. */
2675 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2676 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2677 h
->verinfo
.verdef
= NULL
;
2679 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2681 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2682 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2684 && h
->dynindx
== -1)
2686 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2689 /* If this is a weak defined symbol, and we know a corresponding
2690 real symbol from the same dynamic object, make sure the real
2691 symbol is also made into a dynamic symbol. */
2692 if (h
->weakdef
!= NULL
2693 && h
->weakdef
->dynindx
== -1)
2695 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2703 /* This structure is used to pass information to
2704 elf_link_assign_sym_version. */
2706 struct elf_assign_sym_version_info
2710 /* General link information. */
2711 struct bfd_link_info
*info
;
2713 struct bfd_elf_version_tree
*verdefs
;
2714 /* Whether we had a failure. */
2718 /* This structure is used to pass information to
2719 elf_link_find_version_dependencies. */
2721 struct elf_find_verdep_info
2725 /* General link information. */
2726 struct bfd_link_info
*info
;
2727 /* The number of dependencies. */
2729 /* Whether we had a failure. */
2733 /* Array used to determine the number of hash table buckets to use
2734 based on the number of symbols there are. If there are fewer than
2735 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2736 fewer than 37 we use 17 buckets, and so forth. We never use more
2737 than 32771 buckets. */
2739 static const size_t elf_buckets
[] =
2741 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2745 /* Compute bucket count for hashing table. We do not use a static set
2746 of possible tables sizes anymore. Instead we determine for all
2747 possible reasonable sizes of the table the outcome (i.e., the
2748 number of collisions etc) and choose the best solution. The
2749 weighting functions are not too simple to allow the table to grow
2750 without bounds. Instead one of the weighting factors is the size.
2751 Therefore the result is always a good payoff between few collisions
2752 (= short chain lengths) and table size. */
2754 compute_bucket_count (info
)
2755 struct bfd_link_info
*info
;
2757 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2758 size_t best_size
= 0;
2759 unsigned long int *hashcodes
;
2760 unsigned long int *hashcodesp
;
2761 unsigned long int i
;
2764 /* Compute the hash values for all exported symbols. At the same
2765 time store the values in an array so that we could use them for
2768 amt
*= sizeof (unsigned long int);
2769 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
2770 if (hashcodes
== NULL
)
2772 hashcodesp
= hashcodes
;
2774 /* Put all hash values in HASHCODES. */
2775 elf_link_hash_traverse (elf_hash_table (info
),
2776 elf_collect_hash_codes
, &hashcodesp
);
2778 /* We have a problem here. The following code to optimize the table
2779 size requires an integer type with more the 32 bits. If
2780 BFD_HOST_U_64_BIT is set we know about such a type. */
2781 #ifdef BFD_HOST_U_64_BIT
2784 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2787 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2788 unsigned long int *counts
;
2790 /* Possible optimization parameters: if we have NSYMS symbols we say
2791 that the hashing table must at least have NSYMS/4 and at most
2793 minsize
= nsyms
/ 4;
2796 best_size
= maxsize
= nsyms
* 2;
2798 /* Create array where we count the collisions in. We must use bfd_malloc
2799 since the size could be large. */
2801 amt
*= sizeof (unsigned long int);
2802 counts
= (unsigned long int *) bfd_malloc (amt
);
2809 /* Compute the "optimal" size for the hash table. The criteria is a
2810 minimal chain length. The minor criteria is (of course) the size
2812 for (i
= minsize
; i
< maxsize
; ++i
)
2814 /* Walk through the array of hashcodes and count the collisions. */
2815 BFD_HOST_U_64_BIT max
;
2816 unsigned long int j
;
2817 unsigned long int fact
;
2819 memset (counts
, '\0', i
* sizeof (unsigned long int));
2821 /* Determine how often each hash bucket is used. */
2822 for (j
= 0; j
< nsyms
; ++j
)
2823 ++counts
[hashcodes
[j
] % i
];
2825 /* For the weight function we need some information about the
2826 pagesize on the target. This is information need not be 100%
2827 accurate. Since this information is not available (so far) we
2828 define it here to a reasonable default value. If it is crucial
2829 to have a better value some day simply define this value. */
2830 # ifndef BFD_TARGET_PAGESIZE
2831 # define BFD_TARGET_PAGESIZE (4096)
2834 /* We in any case need 2 + NSYMS entries for the size values and
2836 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2839 /* Variant 1: optimize for short chains. We add the squares
2840 of all the chain lengths (which favous many small chain
2841 over a few long chains). */
2842 for (j
= 0; j
< i
; ++j
)
2843 max
+= counts
[j
] * counts
[j
];
2845 /* This adds penalties for the overall size of the table. */
2846 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2849 /* Variant 2: Optimize a lot more for small table. Here we
2850 also add squares of the size but we also add penalties for
2851 empty slots (the +1 term). */
2852 for (j
= 0; j
< i
; ++j
)
2853 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2855 /* The overall size of the table is considered, but not as
2856 strong as in variant 1, where it is squared. */
2857 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2861 /* Compare with current best results. */
2862 if (max
< best_chlen
)
2872 #endif /* defined (BFD_HOST_U_64_BIT) */
2874 /* This is the fallback solution if no 64bit type is available or if we
2875 are not supposed to spend much time on optimizations. We select the
2876 bucket count using a fixed set of numbers. */
2877 for (i
= 0; elf_buckets
[i
] != 0; i
++)
2879 best_size
= elf_buckets
[i
];
2880 if (dynsymcount
< elf_buckets
[i
+ 1])
2885 /* Free the arrays we needed. */
2891 /* Set up the sizes and contents of the ELF dynamic sections. This is
2892 called by the ELF linker emulation before_allocation routine. We
2893 must set the sizes of the sections before the linker sets the
2894 addresses of the various sections. */
2897 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
2899 auxiliary_filters
, info
, sinterpptr
,
2904 const char *filter_shlib
;
2905 const char * const *auxiliary_filters
;
2906 struct bfd_link_info
*info
;
2907 asection
**sinterpptr
;
2908 struct bfd_elf_version_tree
*verdefs
;
2910 bfd_size_type soname_indx
;
2912 struct elf_backend_data
*bed
;
2913 struct elf_assign_sym_version_info asvinfo
;
2917 soname_indx
= (bfd_size_type
) -1;
2919 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2922 if (! is_elf_hash_table (info
))
2925 /* Any syms created from now on start with -1 in
2926 got.refcount/offset and plt.refcount/offset. */
2927 elf_hash_table (info
)->init_refcount
= -1;
2929 /* The backend may have to create some sections regardless of whether
2930 we're dynamic or not. */
2931 bed
= get_elf_backend_data (output_bfd
);
2932 if (bed
->elf_backend_always_size_sections
2933 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
2936 dynobj
= elf_hash_table (info
)->dynobj
;
2938 /* If there were no dynamic objects in the link, there is nothing to
2943 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
2946 if (elf_hash_table (info
)->dynamic_sections_created
)
2948 struct elf_info_failed eif
;
2949 struct elf_link_hash_entry
*h
;
2951 struct bfd_elf_version_tree
*t
;
2952 struct bfd_elf_version_expr
*d
;
2953 boolean all_defined
;
2955 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
2956 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
2960 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
2962 if (soname_indx
== (bfd_size_type
) -1
2963 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SONAME
,
2970 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMBOLIC
,
2973 info
->flags
|= DF_SYMBOLIC
;
2980 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
2982 if (info
->new_dtags
)
2983 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
2984 if (indx
== (bfd_size_type
) -1
2985 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RPATH
, indx
)
2987 && ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RUNPATH
,
2992 if (filter_shlib
!= NULL
)
2996 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
2997 filter_shlib
, true);
2998 if (indx
== (bfd_size_type
) -1
2999 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FILTER
, indx
))
3003 if (auxiliary_filters
!= NULL
)
3005 const char * const *p
;
3007 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
3011 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3013 if (indx
== (bfd_size_type
) -1
3014 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_AUXILIARY
,
3021 eif
.verdefs
= verdefs
;
3024 /* If we are supposed to export all symbols into the dynamic symbol
3025 table (this is not the normal case), then do so. */
3026 if (info
->export_dynamic
)
3028 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
3034 /* Make all global versions with definiton. */
3035 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3036 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3037 if (!d
->symver
&& strchr (d
->pattern
, '*') == NULL
)
3039 const char *verstr
, *name
;
3040 size_t namelen
, verlen
, newlen
;
3042 struct elf_link_hash_entry
*newh
;
3045 namelen
= strlen (name
);
3047 verlen
= strlen (verstr
);
3048 newlen
= namelen
+ verlen
+ 3;
3050 newname
= (char *) bfd_malloc ((bfd_size_type
) newlen
);
3051 if (newname
== NULL
)
3053 memcpy (newname
, name
, namelen
);
3055 /* Check the hidden versioned definition. */
3056 p
= newname
+ namelen
;
3058 memcpy (p
, verstr
, verlen
+ 1);
3059 newh
= elf_link_hash_lookup (elf_hash_table (info
),
3060 newname
, false, false,
3063 || (newh
->root
.type
!= bfd_link_hash_defined
3064 && newh
->root
.type
!= bfd_link_hash_defweak
))
3066 /* Check the default versioned definition. */
3068 memcpy (p
, verstr
, verlen
+ 1);
3069 newh
= elf_link_hash_lookup (elf_hash_table (info
),
3070 newname
, false, false,
3075 /* Mark this version if there is a definition and it is
3076 not defined in a shared object. */
3078 && ((newh
->elf_link_hash_flags
3079 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)
3080 && (newh
->root
.type
== bfd_link_hash_defined
3081 || newh
->root
.type
== bfd_link_hash_defweak
))
3085 /* Attach all the symbols to their version information. */
3086 asvinfo
.output_bfd
= output_bfd
;
3087 asvinfo
.info
= info
;
3088 asvinfo
.verdefs
= verdefs
;
3089 asvinfo
.failed
= false;
3091 elf_link_hash_traverse (elf_hash_table (info
),
3092 elf_link_assign_sym_version
,
3097 if (!info
->allow_undefined_version
)
3099 /* Check if all global versions have a definiton. */
3101 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3102 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3103 if (!d
->symver
&& !d
->script
3104 && strchr (d
->pattern
, '*') == NULL
)
3106 (*_bfd_error_handler
)
3107 (_("%s: undefined version: %s"),
3108 d
->pattern
, t
->name
);
3109 all_defined
= false;
3114 bfd_set_error (bfd_error_bad_value
);
3119 /* Find all symbols which were defined in a dynamic object and make
3120 the backend pick a reasonable value for them. */
3121 elf_link_hash_traverse (elf_hash_table (info
),
3122 elf_adjust_dynamic_symbol
,
3127 /* Add some entries to the .dynamic section. We fill in some of the
3128 values later, in elf_bfd_final_link, but we must add the entries
3129 now so that we know the final size of the .dynamic section. */
3131 /* If there are initialization and/or finalization functions to
3132 call then add the corresponding DT_INIT/DT_FINI entries. */
3133 h
= (info
->init_function
3134 ? elf_link_hash_lookup (elf_hash_table (info
),
3135 info
->init_function
, false,
3139 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3140 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3142 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT
, (bfd_vma
) 0))
3145 h
= (info
->fini_function
3146 ? elf_link_hash_lookup (elf_hash_table (info
),
3147 info
->fini_function
, false,
3151 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3152 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3154 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI
, (bfd_vma
) 0))
3158 if (bfd_get_section_by_name (output_bfd
, ".preinit_array") != NULL
)
3160 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3166 for (sub
= info
->input_bfds
; sub
!= NULL
;
3167 sub
= sub
->link_next
)
3168 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
3169 if (elf_section_data (o
)->this_hdr
.sh_type
3170 == SHT_PREINIT_ARRAY
)
3172 (*_bfd_error_handler
)
3173 (_("%s: .preinit_array section is not allowed in DSO"),
3174 bfd_archive_filename (sub
));
3178 bfd_set_error (bfd_error_nonrepresentable_section
);
3182 if (!elf_add_dynamic_entry (info
, (bfd_vma
) DT_PREINIT_ARRAY
,
3184 || !elf_add_dynamic_entry (info
, (bfd_vma
) DT_PREINIT_ARRAYSZ
,
3188 if (bfd_get_section_by_name (output_bfd
, ".init_array") != NULL
)
3190 if (!elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT_ARRAY
,
3192 || !elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT_ARRAYSZ
,
3196 if (bfd_get_section_by_name (output_bfd
, ".fini_array") != NULL
)
3198 if (!elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI_ARRAY
,
3200 || !elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI_ARRAYSZ
,
3205 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
3206 /* If .dynstr is excluded from the link, we don't want any of
3207 these tags. Strictly, we should be checking each section
3208 individually; This quick check covers for the case where
3209 someone does a /DISCARD/ : { *(*) }. */
3210 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
3212 bfd_size_type strsize
;
3214 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3215 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_HASH
, (bfd_vma
) 0)
3216 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRTAB
, (bfd_vma
) 0)
3217 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMTAB
, (bfd_vma
) 0)
3218 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRSZ
, strsize
)
3219 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMENT
,
3220 (bfd_vma
) sizeof (Elf_External_Sym
)))
3225 /* The backend must work out the sizes of all the other dynamic
3227 if (bed
->elf_backend_size_dynamic_sections
3228 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
3231 if (elf_hash_table (info
)->dynamic_sections_created
)
3233 bfd_size_type dynsymcount
;
3235 size_t bucketcount
= 0;
3236 size_t hash_entry_size
;
3237 unsigned int dtagcount
;
3239 /* Set up the version definition section. */
3240 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3241 BFD_ASSERT (s
!= NULL
);
3243 /* We may have created additional version definitions if we are
3244 just linking a regular application. */
3245 verdefs
= asvinfo
.verdefs
;
3247 /* Skip anonymous version tag. */
3248 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
3249 verdefs
= verdefs
->next
;
3251 if (verdefs
== NULL
)
3252 _bfd_strip_section_from_output (info
, s
);
3257 struct bfd_elf_version_tree
*t
;
3259 Elf_Internal_Verdef def
;
3260 Elf_Internal_Verdaux defaux
;
3265 /* Make space for the base version. */
3266 size
+= sizeof (Elf_External_Verdef
);
3267 size
+= sizeof (Elf_External_Verdaux
);
3270 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3272 struct bfd_elf_version_deps
*n
;
3274 size
+= sizeof (Elf_External_Verdef
);
3275 size
+= sizeof (Elf_External_Verdaux
);
3278 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3279 size
+= sizeof (Elf_External_Verdaux
);
3282 s
->_raw_size
= size
;
3283 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3284 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3287 /* Fill in the version definition section. */
3291 def
.vd_version
= VER_DEF_CURRENT
;
3292 def
.vd_flags
= VER_FLG_BASE
;
3295 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3296 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3297 + sizeof (Elf_External_Verdaux
));
3299 if (soname_indx
!= (bfd_size_type
) -1)
3301 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3303 def
.vd_hash
= bfd_elf_hash (soname
);
3304 defaux
.vda_name
= soname_indx
;
3311 name
= basename (output_bfd
->filename
);
3312 def
.vd_hash
= bfd_elf_hash (name
);
3313 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3315 if (indx
== (bfd_size_type
) -1)
3317 defaux
.vda_name
= indx
;
3319 defaux
.vda_next
= 0;
3321 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3322 (Elf_External_Verdef
*) p
);
3323 p
+= sizeof (Elf_External_Verdef
);
3324 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3325 (Elf_External_Verdaux
*) p
);
3326 p
+= sizeof (Elf_External_Verdaux
);
3328 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3331 struct bfd_elf_version_deps
*n
;
3332 struct elf_link_hash_entry
*h
;
3333 struct bfd_link_hash_entry
*bh
;
3336 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3339 /* Add a symbol representing this version. */
3341 if (! (_bfd_generic_link_add_one_symbol
3342 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
3343 (bfd_vma
) 0, (const char *) NULL
, false,
3344 get_elf_backend_data (dynobj
)->collect
, &bh
)))
3346 h
= (struct elf_link_hash_entry
*) bh
;
3347 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
3348 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3349 h
->type
= STT_OBJECT
;
3350 h
->verinfo
.vertree
= t
;
3352 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
3355 def
.vd_version
= VER_DEF_CURRENT
;
3357 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
3358 def
.vd_flags
|= VER_FLG_WEAK
;
3359 def
.vd_ndx
= t
->vernum
+ 1;
3360 def
.vd_cnt
= cdeps
+ 1;
3361 def
.vd_hash
= bfd_elf_hash (t
->name
);
3362 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3363 if (t
->next
!= NULL
)
3364 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3365 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
3369 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3370 (Elf_External_Verdef
*) p
);
3371 p
+= sizeof (Elf_External_Verdef
);
3373 defaux
.vda_name
= h
->dynstr_index
;
3374 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3376 if (t
->deps
== NULL
)
3377 defaux
.vda_next
= 0;
3379 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3380 t
->name_indx
= defaux
.vda_name
;
3382 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3383 (Elf_External_Verdaux
*) p
);
3384 p
+= sizeof (Elf_External_Verdaux
);
3386 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3388 if (n
->version_needed
== NULL
)
3390 /* This can happen if there was an error in the
3392 defaux
.vda_name
= 0;
3396 defaux
.vda_name
= n
->version_needed
->name_indx
;
3397 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3400 if (n
->next
== NULL
)
3401 defaux
.vda_next
= 0;
3403 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3405 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3406 (Elf_External_Verdaux
*) p
);
3407 p
+= sizeof (Elf_External_Verdaux
);
3411 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEF
, (bfd_vma
) 0)
3412 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEFNUM
,
3416 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
3419 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
3421 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS
, info
->flags
))
3428 info
->flags_1
&= ~ (DF_1_INITFIRST
3431 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS_1
,
3436 /* Work out the size of the version reference section. */
3438 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3439 BFD_ASSERT (s
!= NULL
);
3441 struct elf_find_verdep_info sinfo
;
3443 sinfo
.output_bfd
= output_bfd
;
3445 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
3446 if (sinfo
.vers
== 0)
3448 sinfo
.failed
= false;
3450 elf_link_hash_traverse (elf_hash_table (info
),
3451 elf_link_find_version_dependencies
,
3454 if (elf_tdata (output_bfd
)->verref
== NULL
)
3455 _bfd_strip_section_from_output (info
, s
);
3458 Elf_Internal_Verneed
*t
;
3463 /* Build the version definition section. */
3466 for (t
= elf_tdata (output_bfd
)->verref
;
3470 Elf_Internal_Vernaux
*a
;
3472 size
+= sizeof (Elf_External_Verneed
);
3474 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3475 size
+= sizeof (Elf_External_Vernaux
);
3478 s
->_raw_size
= size
;
3479 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3480 if (s
->contents
== NULL
)
3484 for (t
= elf_tdata (output_bfd
)->verref
;
3489 Elf_Internal_Vernaux
*a
;
3493 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3496 t
->vn_version
= VER_NEED_CURRENT
;
3498 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3499 elf_dt_name (t
->vn_bfd
) != NULL
3500 ? elf_dt_name (t
->vn_bfd
)
3501 : basename (t
->vn_bfd
->filename
),
3503 if (indx
== (bfd_size_type
) -1)
3506 t
->vn_aux
= sizeof (Elf_External_Verneed
);
3507 if (t
->vn_nextref
== NULL
)
3510 t
->vn_next
= (sizeof (Elf_External_Verneed
)
3511 + caux
* sizeof (Elf_External_Vernaux
));
3513 _bfd_elf_swap_verneed_out (output_bfd
, t
,
3514 (Elf_External_Verneed
*) p
);
3515 p
+= sizeof (Elf_External_Verneed
);
3517 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3519 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
3520 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3521 a
->vna_nodename
, false);
3522 if (indx
== (bfd_size_type
) -1)
3525 if (a
->vna_nextptr
== NULL
)
3528 a
->vna_next
= sizeof (Elf_External_Vernaux
);
3530 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
3531 (Elf_External_Vernaux
*) p
);
3532 p
+= sizeof (Elf_External_Vernaux
);
3536 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEED
,
3538 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEEDNUM
,
3542 elf_tdata (output_bfd
)->cverrefs
= crefs
;
3546 /* Assign dynsym indicies. In a shared library we generate a
3547 section symbol for each output section, which come first.
3548 Next come all of the back-end allocated local dynamic syms,
3549 followed by the rest of the global symbols. */
3551 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3553 /* Work out the size of the symbol version section. */
3554 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3555 BFD_ASSERT (s
!= NULL
);
3556 if (dynsymcount
== 0
3557 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
3559 _bfd_strip_section_from_output (info
, s
);
3560 /* The DYNSYMCOUNT might have changed if we were going to
3561 output a dynamic symbol table entry for S. */
3562 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3566 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
3567 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3568 if (s
->contents
== NULL
)
3571 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERSYM
, (bfd_vma
) 0))
3575 /* Set the size of the .dynsym and .hash sections. We counted
3576 the number of dynamic symbols in elf_link_add_object_symbols.
3577 We will build the contents of .dynsym and .hash when we build
3578 the final symbol table, because until then we do not know the
3579 correct value to give the symbols. We built the .dynstr
3580 section as we went along in elf_link_add_object_symbols. */
3581 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
3582 BFD_ASSERT (s
!= NULL
);
3583 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
3584 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3585 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3588 if (dynsymcount
!= 0)
3590 Elf_Internal_Sym isym
;
3592 /* The first entry in .dynsym is a dummy symbol. */
3599 elf_swap_symbol_out (output_bfd
, &isym
, (PTR
) s
->contents
, (PTR
) 0);
3602 /* Compute the size of the hashing table. As a side effect this
3603 computes the hash values for all the names we export. */
3604 bucketcount
= compute_bucket_count (info
);
3606 s
= bfd_get_section_by_name (dynobj
, ".hash");
3607 BFD_ASSERT (s
!= NULL
);
3608 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
3609 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
3610 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3611 if (s
->contents
== NULL
)
3614 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) bucketcount
,
3616 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) dynsymcount
,
3617 s
->contents
+ hash_entry_size
);
3619 elf_hash_table (info
)->bucketcount
= bucketcount
;
3621 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
3622 BFD_ASSERT (s
!= NULL
);
3624 elf_finalize_dynstr (output_bfd
, info
);
3626 s
->_raw_size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3628 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
3629 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NULL
, (bfd_vma
) 0))
3636 /* This function is used to adjust offsets into .dynstr for
3637 dynamic symbols. This is called via elf_link_hash_traverse. */
3639 static boolean elf_adjust_dynstr_offsets
3640 PARAMS ((struct elf_link_hash_entry
*, PTR
));
3643 elf_adjust_dynstr_offsets (h
, data
)
3644 struct elf_link_hash_entry
*h
;
3647 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3649 if (h
->root
.type
== bfd_link_hash_warning
)
3650 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3652 if (h
->dynindx
!= -1)
3653 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3657 /* Assign string offsets in .dynstr, update all structures referencing
3661 elf_finalize_dynstr (output_bfd
, info
)
3663 struct bfd_link_info
*info
;
3665 struct elf_link_local_dynamic_entry
*entry
;
3666 struct elf_strtab_hash
*dynstr
= elf_hash_table (info
)->dynstr
;
3667 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
3670 Elf_External_Dyn
*dyncon
, *dynconend
;
3672 _bfd_elf_strtab_finalize (dynstr
);
3673 size
= _bfd_elf_strtab_size (dynstr
);
3675 /* Update all .dynamic entries referencing .dynstr strings. */
3676 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3677 BFD_ASSERT (sdyn
!= NULL
);
3679 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
3680 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
3682 for (; dyncon
< dynconend
; dyncon
++)
3684 Elf_Internal_Dyn dyn
;
3686 elf_swap_dyn_in (dynobj
, dyncon
, & dyn
);
3690 dyn
.d_un
.d_val
= size
;
3691 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3699 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3700 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3707 /* Now update local dynamic symbols. */
3708 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
3709 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3710 entry
->isym
.st_name
);
3712 /* And the rest of dynamic symbols. */
3713 elf_link_hash_traverse (elf_hash_table (info
),
3714 elf_adjust_dynstr_offsets
, dynstr
);
3716 /* Adjust version definitions. */
3717 if (elf_tdata (output_bfd
)->cverdefs
)
3722 Elf_Internal_Verdef def
;
3723 Elf_Internal_Verdaux defaux
;
3725 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3726 p
= (bfd_byte
*) s
->contents
;
3729 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3731 p
+= sizeof (Elf_External_Verdef
);
3732 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3734 _bfd_elf_swap_verdaux_in (output_bfd
,
3735 (Elf_External_Verdaux
*) p
, &defaux
);
3736 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3738 _bfd_elf_swap_verdaux_out (output_bfd
,
3739 &defaux
, (Elf_External_Verdaux
*) p
);
3740 p
+= sizeof (Elf_External_Verdaux
);
3743 while (def
.vd_next
);
3746 /* Adjust version references. */
3747 if (elf_tdata (output_bfd
)->verref
)
3752 Elf_Internal_Verneed need
;
3753 Elf_Internal_Vernaux needaux
;
3755 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3756 p
= (bfd_byte
*) s
->contents
;
3759 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3761 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3762 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3763 (Elf_External_Verneed
*) p
);
3764 p
+= sizeof (Elf_External_Verneed
);
3765 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3767 _bfd_elf_swap_vernaux_in (output_bfd
,
3768 (Elf_External_Vernaux
*) p
, &needaux
);
3769 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3771 _bfd_elf_swap_vernaux_out (output_bfd
,
3773 (Elf_External_Vernaux
*) p
);
3774 p
+= sizeof (Elf_External_Vernaux
);
3777 while (need
.vn_next
);
3783 /* Fix up the flags for a symbol. This handles various cases which
3784 can only be fixed after all the input files are seen. This is
3785 currently called by both adjust_dynamic_symbol and
3786 assign_sym_version, which is unnecessary but perhaps more robust in
3787 the face of future changes. */
3790 elf_fix_symbol_flags (h
, eif
)
3791 struct elf_link_hash_entry
*h
;
3792 struct elf_info_failed
*eif
;
3794 /* If this symbol was mentioned in a non-ELF file, try to set
3795 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3796 permit a non-ELF file to correctly refer to a symbol defined in
3797 an ELF dynamic object. */
3798 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
3800 while (h
->root
.type
== bfd_link_hash_indirect
)
3801 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3803 if (h
->root
.type
!= bfd_link_hash_defined
3804 && h
->root
.type
!= bfd_link_hash_defweak
)
3805 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3806 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3809 if (h
->root
.u
.def
.section
->owner
!= NULL
3810 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3811 == bfd_target_elf_flavour
))
3812 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3813 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3815 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3818 if (h
->dynindx
== -1
3819 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3820 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
3822 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3831 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3832 was first seen in a non-ELF file. Fortunately, if the symbol
3833 was first seen in an ELF file, we're probably OK unless the
3834 symbol was defined in a non-ELF file. Catch that case here.
3835 FIXME: We're still in trouble if the symbol was first seen in
3836 a dynamic object, and then later in a non-ELF regular object. */
3837 if ((h
->root
.type
== bfd_link_hash_defined
3838 || h
->root
.type
== bfd_link_hash_defweak
)
3839 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3840 && (h
->root
.u
.def
.section
->owner
!= NULL
3841 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3842 != bfd_target_elf_flavour
)
3843 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3844 && (h
->elf_link_hash_flags
3845 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3846 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3849 /* If this is a final link, and the symbol was defined as a common
3850 symbol in a regular object file, and there was no definition in
3851 any dynamic object, then the linker will have allocated space for
3852 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3853 flag will not have been set. */
3854 if (h
->root
.type
== bfd_link_hash_defined
3855 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3856 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3857 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3858 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3859 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3861 /* If -Bsymbolic was used (which means to bind references to global
3862 symbols to the definition within the shared object), and this
3863 symbol was defined in a regular object, then it actually doesn't
3864 need a PLT entry, and we can accomplish that by forcing it local.
3865 Likewise, if the symbol has hidden or internal visibility.
3866 FIXME: It might be that we also do not need a PLT for other
3867 non-hidden visibilities, but we would have to tell that to the
3868 backend specifically; we can't just clear PLT-related data here. */
3869 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3870 && eif
->info
->shared
3871 && is_elf_hash_table (eif
->info
)
3872 && (eif
->info
->symbolic
3873 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3874 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3875 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3877 struct elf_backend_data
*bed
;
3878 boolean force_local
;
3880 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3882 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3883 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
3884 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
3887 /* If this is a weak defined symbol in a dynamic object, and we know
3888 the real definition in the dynamic object, copy interesting flags
3889 over to the real definition. */
3890 if (h
->weakdef
!= NULL
)
3892 struct elf_link_hash_entry
*weakdef
;
3894 weakdef
= h
->weakdef
;
3895 if (h
->root
.type
== bfd_link_hash_indirect
)
3896 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3898 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3899 || h
->root
.type
== bfd_link_hash_defweak
);
3900 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3901 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3902 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3904 /* If the real definition is defined by a regular object file,
3905 don't do anything special. See the longer description in
3906 elf_adjust_dynamic_symbol, below. */
3907 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3911 struct elf_backend_data
*bed
;
3913 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3914 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, weakdef
, h
);
3921 /* Make the backend pick a good value for a dynamic symbol. This is
3922 called via elf_link_hash_traverse, and also calls itself
3926 elf_adjust_dynamic_symbol (h
, data
)
3927 struct elf_link_hash_entry
*h
;
3930 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3932 struct elf_backend_data
*bed
;
3934 if (h
->root
.type
== bfd_link_hash_warning
)
3936 h
->plt
.offset
= (bfd_vma
) -1;
3937 h
->got
.offset
= (bfd_vma
) -1;
3939 /* When warning symbols are created, they **replace** the "real"
3940 entry in the hash table, thus we never get to see the real
3941 symbol in a hash traversal. So look at it now. */
3942 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3945 /* Ignore indirect symbols. These are added by the versioning code. */
3946 if (h
->root
.type
== bfd_link_hash_indirect
)
3949 if (! is_elf_hash_table (eif
->info
))
3952 /* Fix the symbol flags. */
3953 if (! elf_fix_symbol_flags (h
, eif
))
3956 /* If this symbol does not require a PLT entry, and it is not
3957 defined by a dynamic object, or is not referenced by a regular
3958 object, ignore it. We do have to handle a weak defined symbol,
3959 even if no regular object refers to it, if we decided to add it
3960 to the dynamic symbol table. FIXME: Do we normally need to worry
3961 about symbols which are defined by one dynamic object and
3962 referenced by another one? */
3963 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3964 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3965 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3966 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3967 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3969 h
->plt
.offset
= (bfd_vma
) -1;
3973 /* If we've already adjusted this symbol, don't do it again. This
3974 can happen via a recursive call. */
3975 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3978 /* Don't look at this symbol again. Note that we must set this
3979 after checking the above conditions, because we may look at a
3980 symbol once, decide not to do anything, and then get called
3981 recursively later after REF_REGULAR is set below. */
3982 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3984 /* If this is a weak definition, and we know a real definition, and
3985 the real symbol is not itself defined by a regular object file,
3986 then get a good value for the real definition. We handle the
3987 real symbol first, for the convenience of the backend routine.
3989 Note that there is a confusing case here. If the real definition
3990 is defined by a regular object file, we don't get the real symbol
3991 from the dynamic object, but we do get the weak symbol. If the
3992 processor backend uses a COPY reloc, then if some routine in the
3993 dynamic object changes the real symbol, we will not see that
3994 change in the corresponding weak symbol. This is the way other
3995 ELF linkers work as well, and seems to be a result of the shared
3998 I will clarify this issue. Most SVR4 shared libraries define the
3999 variable _timezone and define timezone as a weak synonym. The
4000 tzset call changes _timezone. If you write
4001 extern int timezone;
4003 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4004 you might expect that, since timezone is a synonym for _timezone,
4005 the same number will print both times. However, if the processor
4006 backend uses a COPY reloc, then actually timezone will be copied
4007 into your process image, and, since you define _timezone
4008 yourself, _timezone will not. Thus timezone and _timezone will
4009 wind up at different memory locations. The tzset call will set
4010 _timezone, leaving timezone unchanged. */
4012 if (h
->weakdef
!= NULL
)
4014 /* If we get to this point, we know there is an implicit
4015 reference by a regular object file via the weak symbol H.
4016 FIXME: Is this really true? What if the traversal finds
4017 H->WEAKDEF before it finds H? */
4018 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
4020 if (! elf_adjust_dynamic_symbol (h
->weakdef
, (PTR
) eif
))
4024 /* If a symbol has no type and no size and does not require a PLT
4025 entry, then we are probably about to do the wrong thing here: we
4026 are probably going to create a COPY reloc for an empty object.
4027 This case can arise when a shared object is built with assembly
4028 code, and the assembly code fails to set the symbol type. */
4030 && h
->type
== STT_NOTYPE
4031 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
4032 (*_bfd_error_handler
)
4033 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4034 h
->root
.root
.string
);
4036 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
4037 bed
= get_elf_backend_data (dynobj
);
4038 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
4047 /* This routine is used to export all defined symbols into the dynamic
4048 symbol table. It is called via elf_link_hash_traverse. */
4051 elf_export_symbol (h
, data
)
4052 struct elf_link_hash_entry
*h
;
4055 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
4057 /* Ignore indirect symbols. These are added by the versioning code. */
4058 if (h
->root
.type
== bfd_link_hash_indirect
)
4061 if (h
->root
.type
== bfd_link_hash_warning
)
4062 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4064 if (h
->dynindx
== -1
4065 && (h
->elf_link_hash_flags
4066 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
4068 struct bfd_elf_version_tree
*t
;
4069 struct bfd_elf_version_expr
*d
;
4071 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
4073 if (t
->globals
!= NULL
)
4075 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4077 if ((*d
->match
) (d
, h
->root
.root
.string
))
4082 if (t
->locals
!= NULL
)
4084 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4086 if ((*d
->match
) (d
, h
->root
.root
.string
))
4095 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
4106 /* Look through the symbols which are defined in other shared
4107 libraries and referenced here. Update the list of version
4108 dependencies. This will be put into the .gnu.version_r section.
4109 This function is called via elf_link_hash_traverse. */
4112 elf_link_find_version_dependencies (h
, data
)
4113 struct elf_link_hash_entry
*h
;
4116 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
4117 Elf_Internal_Verneed
*t
;
4118 Elf_Internal_Vernaux
*a
;
4121 if (h
->root
.type
== bfd_link_hash_warning
)
4122 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4124 /* We only care about symbols defined in shared objects with version
4126 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
4127 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
4129 || h
->verinfo
.verdef
== NULL
)
4132 /* See if we already know about this version. */
4133 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
4135 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
4138 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4139 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
4145 /* This is a new version. Add it to tree we are building. */
4150 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4153 rinfo
->failed
= true;
4157 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
4158 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
4159 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
4163 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4165 /* Note that we are copying a string pointer here, and testing it
4166 above. If bfd_elf_string_from_elf_section is ever changed to
4167 discard the string data when low in memory, this will have to be
4169 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
4171 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
4172 a
->vna_nextptr
= t
->vn_auxptr
;
4174 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
4177 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
4184 /* Figure out appropriate versions for all the symbols. We may not
4185 have the version number script until we have read all of the input
4186 files, so until that point we don't know which symbols should be
4187 local. This function is called via elf_link_hash_traverse. */
4190 elf_link_assign_sym_version (h
, data
)
4191 struct elf_link_hash_entry
*h
;
4194 struct elf_assign_sym_version_info
*sinfo
;
4195 struct bfd_link_info
*info
;
4196 struct elf_backend_data
*bed
;
4197 struct elf_info_failed eif
;
4201 sinfo
= (struct elf_assign_sym_version_info
*) data
;
4204 if (h
->root
.type
== bfd_link_hash_warning
)
4205 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4207 /* Fix the symbol flags. */
4210 if (! elf_fix_symbol_flags (h
, &eif
))
4213 sinfo
->failed
= true;
4217 /* We only need version numbers for symbols defined in regular
4219 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4222 bed
= get_elf_backend_data (sinfo
->output_bfd
);
4223 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4224 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4226 struct bfd_elf_version_tree
*t
;
4231 /* There are two consecutive ELF_VER_CHR characters if this is
4232 not a hidden symbol. */
4234 if (*p
== ELF_VER_CHR
)
4240 /* If there is no version string, we can just return out. */
4244 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4248 /* Look for the version. If we find it, it is no longer weak. */
4249 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4251 if (strcmp (t
->name
, p
) == 0)
4255 struct bfd_elf_version_expr
*d
;
4257 len
= p
- h
->root
.root
.string
;
4258 alc
= bfd_malloc ((bfd_size_type
) len
);
4261 memcpy (alc
, h
->root
.root
.string
, len
- 1);
4262 alc
[len
- 1] = '\0';
4263 if (alc
[len
- 2] == ELF_VER_CHR
)
4264 alc
[len
- 2] = '\0';
4266 h
->verinfo
.vertree
= t
;
4270 if (t
->globals
!= NULL
)
4272 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4273 if ((*d
->match
) (d
, alc
))
4277 /* See if there is anything to force this symbol to
4279 if (d
== NULL
&& t
->locals
!= NULL
)
4281 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4283 if ((*d
->match
) (d
, alc
))
4285 if (h
->dynindx
!= -1
4287 && ! info
->export_dynamic
)
4289 (*bed
->elf_backend_hide_symbol
) (info
, h
, true);
4302 /* If we are building an application, we need to create a
4303 version node for this version. */
4304 if (t
== NULL
&& ! info
->shared
)
4306 struct bfd_elf_version_tree
**pp
;
4309 /* If we aren't going to export this symbol, we don't need
4310 to worry about it. */
4311 if (h
->dynindx
== -1)
4315 t
= ((struct bfd_elf_version_tree
*)
4316 bfd_alloc (sinfo
->output_bfd
, amt
));
4319 sinfo
->failed
= true;
4328 t
->name_indx
= (unsigned int) -1;
4332 /* Don't count anonymous version tag. */
4333 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
4335 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
4337 t
->vernum
= version_index
;
4341 h
->verinfo
.vertree
= t
;
4345 /* We could not find the version for a symbol when
4346 generating a shared archive. Return an error. */
4347 (*_bfd_error_handler
)
4348 (_("%s: undefined versioned symbol name %s"),
4349 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
4350 bfd_set_error (bfd_error_bad_value
);
4351 sinfo
->failed
= true;
4356 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4359 /* If we don't have a version for this symbol, see if we can find
4361 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
4363 struct bfd_elf_version_tree
*t
;
4364 struct bfd_elf_version_tree
*local_ver
;
4365 struct bfd_elf_version_expr
*d
;
4367 /* See if can find what version this symbol is in. If the
4368 symbol is supposed to be local, then don't actually register
4371 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4373 if (t
->globals
!= NULL
)
4378 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4380 if ((*d
->match
) (d
, h
->root
.root
.string
))
4386 /* There is a version without definition. Make
4387 the symbol the default definition for this
4389 h
->verinfo
.vertree
= t
;
4400 /* There is no undefined version for this symbol. Hide the
4402 (*bed
->elf_backend_hide_symbol
) (info
, h
, true);
4405 if (t
->locals
!= NULL
)
4407 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4409 /* If the match is "*", keep looking for a more
4410 explicit, perhaps even global, match. */
4411 if (d
->pattern
[0] == '*' && d
->pattern
[1] == '\0')
4413 else if ((*d
->match
) (d
, h
->root
.root
.string
))
4425 if (local_ver
!= NULL
)
4427 h
->verinfo
.vertree
= local_ver
;
4428 if (h
->dynindx
!= -1
4430 && ! info
->export_dynamic
)
4432 (*bed
->elf_backend_hide_symbol
) (info
, h
, true);
4440 /* Final phase of ELF linker. */
4442 /* A structure we use to avoid passing large numbers of arguments. */
4444 struct elf_final_link_info
4446 /* General link information. */
4447 struct bfd_link_info
*info
;
4450 /* Symbol string table. */
4451 struct bfd_strtab_hash
*symstrtab
;
4452 /* .dynsym section. */
4453 asection
*dynsym_sec
;
4454 /* .hash section. */
4456 /* symbol version section (.gnu.version). */
4457 asection
*symver_sec
;
4458 /* first SHF_TLS section (if any). */
4459 asection
*first_tls_sec
;
4460 /* Buffer large enough to hold contents of any section. */
4462 /* Buffer large enough to hold external relocs of any section. */
4463 PTR external_relocs
;
4464 /* Buffer large enough to hold internal relocs of any section. */
4465 Elf_Internal_Rela
*internal_relocs
;
4466 /* Buffer large enough to hold external local symbols of any input
4468 Elf_External_Sym
*external_syms
;
4469 /* And a buffer for symbol section indices. */
4470 Elf_External_Sym_Shndx
*locsym_shndx
;
4471 /* Buffer large enough to hold internal local symbols of any input
4473 Elf_Internal_Sym
*internal_syms
;
4474 /* Array large enough to hold a symbol index for each local symbol
4475 of any input BFD. */
4477 /* Array large enough to hold a section pointer for each local
4478 symbol of any input BFD. */
4479 asection
**sections
;
4480 /* Buffer to hold swapped out symbols. */
4481 Elf_External_Sym
*symbuf
;
4482 /* And one for symbol section indices. */
4483 Elf_External_Sym_Shndx
*symshndxbuf
;
4484 /* Number of swapped out symbols in buffer. */
4485 size_t symbuf_count
;
4486 /* Number of symbols which fit in symbuf. */
4490 static boolean elf_link_output_sym
4491 PARAMS ((struct elf_final_link_info
*, const char *,
4492 Elf_Internal_Sym
*, asection
*));
4493 static boolean elf_link_flush_output_syms
4494 PARAMS ((struct elf_final_link_info
*));
4495 static boolean elf_link_output_extsym
4496 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4497 static boolean elf_link_sec_merge_syms
4498 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4499 static boolean elf_link_check_versioned_symbol
4500 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
4501 static boolean elf_link_input_bfd
4502 PARAMS ((struct elf_final_link_info
*, bfd
*));
4503 static boolean elf_reloc_link_order
4504 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
4505 struct bfd_link_order
*));
4507 /* This struct is used to pass information to elf_link_output_extsym. */
4509 struct elf_outext_info
4513 struct elf_final_link_info
*finfo
;
4516 /* Compute the size of, and allocate space for, REL_HDR which is the
4517 section header for a section containing relocations for O. */
4520 elf_link_size_reloc_section (abfd
, rel_hdr
, o
)
4522 Elf_Internal_Shdr
*rel_hdr
;
4525 bfd_size_type reloc_count
;
4526 bfd_size_type num_rel_hashes
;
4528 /* Figure out how many relocations there will be. */
4529 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
4530 reloc_count
= elf_section_data (o
)->rel_count
;
4532 reloc_count
= elf_section_data (o
)->rel_count2
;
4534 num_rel_hashes
= o
->reloc_count
;
4535 if (num_rel_hashes
< reloc_count
)
4536 num_rel_hashes
= reloc_count
;
4538 /* That allows us to calculate the size of the section. */
4539 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
4541 /* The contents field must last into write_object_contents, so we
4542 allocate it with bfd_alloc rather than malloc. Also since we
4543 cannot be sure that the contents will actually be filled in,
4544 we zero the allocated space. */
4545 rel_hdr
->contents
= (PTR
) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
4546 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
4549 /* We only allocate one set of hash entries, so we only do it the
4550 first time we are called. */
4551 if (elf_section_data (o
)->rel_hashes
== NULL
4554 struct elf_link_hash_entry
**p
;
4556 p
= ((struct elf_link_hash_entry
**)
4557 bfd_zmalloc (num_rel_hashes
4558 * sizeof (struct elf_link_hash_entry
*)));
4562 elf_section_data (o
)->rel_hashes
= p
;
4568 /* When performing a relocateable link, the input relocations are
4569 preserved. But, if they reference global symbols, the indices
4570 referenced must be updated. Update all the relocations in
4571 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4574 elf_link_adjust_relocs (abfd
, rel_hdr
, count
, rel_hash
)
4576 Elf_Internal_Shdr
*rel_hdr
;
4578 struct elf_link_hash_entry
**rel_hash
;
4581 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4582 Elf_Internal_Rel
*irel
;
4583 Elf_Internal_Rela
*irela
;
4584 bfd_size_type amt
= sizeof (Elf_Internal_Rel
) * bed
->s
->int_rels_per_ext_rel
;
4586 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
4589 (*_bfd_error_handler
) (_("Error: out of memory"));
4593 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
4594 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
4597 (*_bfd_error_handler
) (_("Error: out of memory"));
4601 for (i
= 0; i
< count
; i
++, rel_hash
++)
4603 if (*rel_hash
== NULL
)
4606 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4608 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4610 Elf_External_Rel
*erel
;
4613 erel
= (Elf_External_Rel
*) rel_hdr
->contents
+ i
;
4614 if (bed
->s
->swap_reloc_in
)
4615 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
4617 elf_swap_reloc_in (abfd
, erel
, irel
);
4619 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4620 irel
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4621 ELF_R_TYPE (irel
[j
].r_info
));
4623 if (bed
->s
->swap_reloc_out
)
4624 (*bed
->s
->swap_reloc_out
) (abfd
, irel
, (bfd_byte
*) erel
);
4626 elf_swap_reloc_out (abfd
, irel
, erel
);
4630 Elf_External_Rela
*erela
;
4633 BFD_ASSERT (rel_hdr
->sh_entsize
4634 == sizeof (Elf_External_Rela
));
4636 erela
= (Elf_External_Rela
*) rel_hdr
->contents
+ i
;
4637 if (bed
->s
->swap_reloca_in
)
4638 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
4640 elf_swap_reloca_in (abfd
, erela
, irela
);
4642 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4643 irela
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4644 ELF_R_TYPE (irela
[j
].r_info
));
4646 if (bed
->s
->swap_reloca_out
)
4647 (*bed
->s
->swap_reloca_out
) (abfd
, irela
, (bfd_byte
*) erela
);
4649 elf_swap_reloca_out (abfd
, irela
, erela
);
4657 struct elf_link_sort_rela
4660 enum elf_reloc_type_class type
;
4663 Elf_Internal_Rel rel
;
4664 Elf_Internal_Rela rela
;
4669 elf_link_sort_cmp1 (A
, B
)
4673 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4674 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4675 int relativea
, relativeb
;
4677 relativea
= a
->type
== reloc_class_relative
;
4678 relativeb
= b
->type
== reloc_class_relative
;
4680 if (relativea
< relativeb
)
4682 if (relativea
> relativeb
)
4684 if (ELF_R_SYM (a
->u
.rel
.r_info
) < ELF_R_SYM (b
->u
.rel
.r_info
))
4686 if (ELF_R_SYM (a
->u
.rel
.r_info
) > ELF_R_SYM (b
->u
.rel
.r_info
))
4688 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4690 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4696 elf_link_sort_cmp2 (A
, B
)
4700 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4701 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4704 if (a
->offset
< b
->offset
)
4706 if (a
->offset
> b
->offset
)
4708 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
4709 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
4714 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4716 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4722 elf_link_sort_relocs (abfd
, info
, psec
)
4724 struct bfd_link_info
*info
;
4727 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4728 asection
*reldyn
, *o
;
4729 boolean rel
= false;
4730 bfd_size_type count
, size
;
4732 struct elf_link_sort_rela
*rela
;
4733 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4735 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
4736 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4738 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
4739 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4742 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rel
);
4745 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rela
);
4748 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4749 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4750 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4751 && o
->output_section
== reldyn
)
4752 size
+= o
->_raw_size
;
4754 if (size
!= reldyn
->_raw_size
)
4757 rela
= (struct elf_link_sort_rela
*) bfd_zmalloc (sizeof (*rela
) * count
);
4760 (*info
->callbacks
->warning
)
4761 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0,
4766 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4767 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4768 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4769 && o
->output_section
== reldyn
)
4773 Elf_External_Rel
*erel
, *erelend
;
4774 struct elf_link_sort_rela
*s
;
4776 erel
= (Elf_External_Rel
*) o
->contents
;
4777 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4778 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4779 for (; erel
< erelend
; erel
++, s
++)
4781 if (bed
->s
->swap_reloc_in
)
4782 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, &s
->u
.rel
);
4784 elf_swap_reloc_in (abfd
, erel
, &s
->u
.rel
);
4786 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4791 Elf_External_Rela
*erela
, *erelaend
;
4792 struct elf_link_sort_rela
*s
;
4794 erela
= (Elf_External_Rela
*) o
->contents
;
4795 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4796 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4797 for (; erela
< erelaend
; erela
++, s
++)
4799 if (bed
->s
->swap_reloca_in
)
4800 (*bed
->s
->swap_reloca_in
) (dynobj
, (bfd_byte
*) erela
,
4803 elf_swap_reloca_in (dynobj
, erela
, &s
->u
.rela
);
4805 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4810 qsort (rela
, (size_t) count
, sizeof (*rela
), elf_link_sort_cmp1
);
4811 for (ret
= 0; ret
< count
&& rela
[ret
].type
== reloc_class_relative
; ret
++)
4813 for (i
= ret
, j
= ret
; i
< count
; i
++)
4815 if (ELF_R_SYM (rela
[i
].u
.rel
.r_info
) != ELF_R_SYM (rela
[j
].u
.rel
.r_info
))
4817 rela
[i
].offset
= rela
[j
].u
.rel
.r_offset
;
4819 qsort (rela
+ ret
, (size_t) count
- ret
, sizeof (*rela
), elf_link_sort_cmp2
);
4821 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4822 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4823 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4824 && o
->output_section
== reldyn
)
4828 Elf_External_Rel
*erel
, *erelend
;
4829 struct elf_link_sort_rela
*s
;
4831 erel
= (Elf_External_Rel
*) o
->contents
;
4832 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4833 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4834 for (; erel
< erelend
; erel
++, s
++)
4836 if (bed
->s
->swap_reloc_out
)
4837 (*bed
->s
->swap_reloc_out
) (abfd
, &s
->u
.rel
,
4840 elf_swap_reloc_out (abfd
, &s
->u
.rel
, erel
);
4845 Elf_External_Rela
*erela
, *erelaend
;
4846 struct elf_link_sort_rela
*s
;
4848 erela
= (Elf_External_Rela
*) o
->contents
;
4849 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4850 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4851 for (; erela
< erelaend
; erela
++, s
++)
4853 if (bed
->s
->swap_reloca_out
)
4854 (*bed
->s
->swap_reloca_out
) (dynobj
, &s
->u
.rela
,
4855 (bfd_byte
*) erela
);
4857 elf_swap_reloca_out (dynobj
, &s
->u
.rela
, erela
);
4867 /* Do the final step of an ELF link. */
4870 elf_bfd_final_link (abfd
, info
)
4872 struct bfd_link_info
*info
;
4875 boolean emit_relocs
;
4877 struct elf_final_link_info finfo
;
4878 register asection
*o
;
4879 register struct bfd_link_order
*p
;
4881 bfd_size_type max_contents_size
;
4882 bfd_size_type max_external_reloc_size
;
4883 bfd_size_type max_internal_reloc_count
;
4884 bfd_size_type max_sym_count
;
4885 bfd_size_type max_sym_shndx_count
;
4887 Elf_Internal_Sym elfsym
;
4889 Elf_Internal_Shdr
*symtab_hdr
;
4890 Elf_Internal_Shdr
*symstrtab_hdr
;
4891 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4892 struct elf_outext_info eoinfo
;
4894 size_t relativecount
= 0;
4895 asection
*reldyn
= 0;
4898 if (! is_elf_hash_table (info
))
4902 abfd
->flags
|= DYNAMIC
;
4904 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
4905 dynobj
= elf_hash_table (info
)->dynobj
;
4907 emit_relocs
= (info
->relocateable
4908 || info
->emitrelocations
4909 || bed
->elf_backend_emit_relocs
);
4912 finfo
.output_bfd
= abfd
;
4913 finfo
.symstrtab
= elf_stringtab_init ();
4914 if (finfo
.symstrtab
== NULL
)
4919 finfo
.dynsym_sec
= NULL
;
4920 finfo
.hash_sec
= NULL
;
4921 finfo
.symver_sec
= NULL
;
4925 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
4926 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
4927 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
4928 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
4929 /* Note that it is OK if symver_sec is NULL. */
4932 finfo
.contents
= NULL
;
4933 finfo
.external_relocs
= NULL
;
4934 finfo
.internal_relocs
= NULL
;
4935 finfo
.external_syms
= NULL
;
4936 finfo
.locsym_shndx
= NULL
;
4937 finfo
.internal_syms
= NULL
;
4938 finfo
.indices
= NULL
;
4939 finfo
.sections
= NULL
;
4940 finfo
.symbuf
= NULL
;
4941 finfo
.symshndxbuf
= NULL
;
4942 finfo
.symbuf_count
= 0;
4943 finfo
.first_tls_sec
= NULL
;
4944 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4945 if ((o
->flags
& SEC_THREAD_LOCAL
) != 0
4946 && (o
->flags
& SEC_LOAD
) != 0)
4948 finfo
.first_tls_sec
= o
;
4952 /* Count up the number of relocations we will output for each output
4953 section, so that we know the sizes of the reloc sections. We
4954 also figure out some maximum sizes. */
4955 max_contents_size
= 0;
4956 max_external_reloc_size
= 0;
4957 max_internal_reloc_count
= 0;
4959 max_sym_shndx_count
= 0;
4961 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4965 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4967 if (p
->type
== bfd_section_reloc_link_order
4968 || p
->type
== bfd_symbol_reloc_link_order
)
4970 else if (p
->type
== bfd_indirect_link_order
)
4974 sec
= p
->u
.indirect
.section
;
4976 /* Mark all sections which are to be included in the
4977 link. This will normally be every section. We need
4978 to do this so that we can identify any sections which
4979 the linker has decided to not include. */
4980 sec
->linker_mark
= true;
4982 if (sec
->flags
& SEC_MERGE
)
4985 if (info
->relocateable
|| info
->emitrelocations
)
4986 o
->reloc_count
+= sec
->reloc_count
;
4987 else if (bed
->elf_backend_count_relocs
)
4989 Elf_Internal_Rela
* relocs
;
4991 relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4992 (abfd
, sec
, (PTR
) NULL
,
4993 (Elf_Internal_Rela
*) NULL
, info
->keep_memory
));
4996 += (*bed
->elf_backend_count_relocs
) (sec
, relocs
);
4998 if (elf_section_data (o
)->relocs
!= relocs
)
5002 if (sec
->_raw_size
> max_contents_size
)
5003 max_contents_size
= sec
->_raw_size
;
5004 if (sec
->_cooked_size
> max_contents_size
)
5005 max_contents_size
= sec
->_cooked_size
;
5007 /* We are interested in just local symbols, not all
5009 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
5010 && (sec
->owner
->flags
& DYNAMIC
) == 0)
5014 if (elf_bad_symtab (sec
->owner
))
5015 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
5016 / sizeof (Elf_External_Sym
));
5018 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
5020 if (sym_count
> max_sym_count
)
5021 max_sym_count
= sym_count
;
5023 if (sym_count
> max_sym_shndx_count
5024 && elf_symtab_shndx (sec
->owner
) != 0)
5025 max_sym_shndx_count
= sym_count
;
5027 if ((sec
->flags
& SEC_RELOC
) != 0)
5031 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
5032 if (ext_size
> max_external_reloc_size
)
5033 max_external_reloc_size
= ext_size
;
5034 if (sec
->reloc_count
> max_internal_reloc_count
)
5035 max_internal_reloc_count
= sec
->reloc_count
;
5041 if (o
->reloc_count
> 0)
5042 o
->flags
|= SEC_RELOC
;
5045 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5046 set it (this is probably a bug) and if it is set
5047 assign_section_numbers will create a reloc section. */
5048 o
->flags
&=~ SEC_RELOC
;
5051 /* If the SEC_ALLOC flag is not set, force the section VMA to
5052 zero. This is done in elf_fake_sections as well, but forcing
5053 the VMA to 0 here will ensure that relocs against these
5054 sections are handled correctly. */
5055 if ((o
->flags
& SEC_ALLOC
) == 0
5056 && ! o
->user_set_vma
)
5060 if (! info
->relocateable
&& merged
)
5061 elf_link_hash_traverse (elf_hash_table (info
),
5062 elf_link_sec_merge_syms
, (PTR
) abfd
);
5064 /* Figure out the file positions for everything but the symbol table
5065 and the relocs. We set symcount to force assign_section_numbers
5066 to create a symbol table. */
5067 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
5068 BFD_ASSERT (! abfd
->output_has_begun
);
5069 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
5072 /* Figure out how many relocations we will have in each section.
5073 Just using RELOC_COUNT isn't good enough since that doesn't
5074 maintain a separate value for REL vs. RELA relocations. */
5076 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5077 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5079 asection
*output_section
;
5081 if (! o
->linker_mark
)
5083 /* This section was omitted from the link. */
5087 output_section
= o
->output_section
;
5089 if (output_section
!= NULL
5090 && (o
->flags
& SEC_RELOC
) != 0)
5092 struct bfd_elf_section_data
*esdi
5093 = elf_section_data (o
);
5094 struct bfd_elf_section_data
*esdo
5095 = elf_section_data (output_section
);
5096 unsigned int *rel_count
;
5097 unsigned int *rel_count2
;
5098 bfd_size_type entsize
;
5099 bfd_size_type entsize2
;
5101 /* We must be careful to add the relocations from the
5102 input section to the right output count. */
5103 entsize
= esdi
->rel_hdr
.sh_entsize
;
5104 entsize2
= esdi
->rel_hdr2
? esdi
->rel_hdr2
->sh_entsize
: 0;
5105 BFD_ASSERT ((entsize
== sizeof (Elf_External_Rel
)
5106 || entsize
== sizeof (Elf_External_Rela
))
5107 && entsize2
!= entsize
5109 || entsize2
== sizeof (Elf_External_Rel
)
5110 || entsize2
== sizeof (Elf_External_Rela
)));
5111 if (entsize
== esdo
->rel_hdr
.sh_entsize
)
5113 rel_count
= &esdo
->rel_count
;
5114 rel_count2
= &esdo
->rel_count2
;
5118 rel_count
= &esdo
->rel_count2
;
5119 rel_count2
= &esdo
->rel_count
;
5122 *rel_count
+= NUM_SHDR_ENTRIES (& esdi
->rel_hdr
);
5124 *rel_count2
+= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
5125 output_section
->flags
|= SEC_RELOC
;
5129 /* That created the reloc sections. Set their sizes, and assign
5130 them file positions, and allocate some buffers. */
5131 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5133 if ((o
->flags
& SEC_RELOC
) != 0)
5135 if (!elf_link_size_reloc_section (abfd
,
5136 &elf_section_data (o
)->rel_hdr
,
5140 if (elf_section_data (o
)->rel_hdr2
5141 && !elf_link_size_reloc_section (abfd
,
5142 elf_section_data (o
)->rel_hdr2
,
5147 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5148 to count upwards while actually outputting the relocations. */
5149 elf_section_data (o
)->rel_count
= 0;
5150 elf_section_data (o
)->rel_count2
= 0;
5153 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5155 /* We have now assigned file positions for all the sections except
5156 .symtab and .strtab. We start the .symtab section at the current
5157 file position, and write directly to it. We build the .strtab
5158 section in memory. */
5159 bfd_get_symcount (abfd
) = 0;
5160 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5161 /* sh_name is set in prep_headers. */
5162 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5163 symtab_hdr
->sh_flags
= 0;
5164 symtab_hdr
->sh_addr
= 0;
5165 symtab_hdr
->sh_size
= 0;
5166 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
5167 /* sh_link is set in assign_section_numbers. */
5168 /* sh_info is set below. */
5169 /* sh_offset is set just below. */
5170 symtab_hdr
->sh_addralign
= bed
->s
->file_align
;
5172 off
= elf_tdata (abfd
)->next_file_pos
;
5173 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, true);
5175 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5176 incorrect. We do not yet know the size of the .symtab section.
5177 We correct next_file_pos below, after we do know the size. */
5179 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5180 continuously seeking to the right position in the file. */
5181 if (! info
->keep_memory
|| max_sym_count
< 20)
5182 finfo
.symbuf_size
= 20;
5184 finfo
.symbuf_size
= max_sym_count
;
5185 amt
= finfo
.symbuf_size
;
5186 amt
*= sizeof (Elf_External_Sym
);
5187 finfo
.symbuf
= (Elf_External_Sym
*) bfd_malloc (amt
);
5188 if (finfo
.symbuf
== NULL
)
5190 if (elf_numsections (abfd
) > SHN_LORESERVE
)
5192 amt
= finfo
.symbuf_size
;
5193 amt
*= sizeof (Elf_External_Sym_Shndx
);
5194 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
5195 if (finfo
.symshndxbuf
== NULL
)
5199 /* Start writing out the symbol table. The first symbol is always a
5201 if (info
->strip
!= strip_all
5204 elfsym
.st_value
= 0;
5207 elfsym
.st_other
= 0;
5208 elfsym
.st_shndx
= SHN_UNDEF
;
5209 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5210 &elfsym
, bfd_und_section_ptr
))
5215 /* Some standard ELF linkers do this, but we don't because it causes
5216 bootstrap comparison failures. */
5217 /* Output a file symbol for the output file as the second symbol.
5218 We output this even if we are discarding local symbols, although
5219 I'm not sure if this is correct. */
5220 elfsym
.st_value
= 0;
5222 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5223 elfsym
.st_other
= 0;
5224 elfsym
.st_shndx
= SHN_ABS
;
5225 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
5226 &elfsym
, bfd_abs_section_ptr
))
5230 /* Output a symbol for each section. We output these even if we are
5231 discarding local symbols, since they are used for relocs. These
5232 symbols have no names. We store the index of each one in the
5233 index field of the section, so that we can find it again when
5234 outputting relocs. */
5235 if (info
->strip
!= strip_all
5239 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5240 elfsym
.st_other
= 0;
5241 for (i
= 1; i
< elf_numsections (abfd
); i
++)
5243 o
= section_from_elf_index (abfd
, i
);
5245 o
->target_index
= bfd_get_symcount (abfd
);
5246 elfsym
.st_shndx
= i
;
5247 if (info
->relocateable
|| o
== NULL
)
5248 elfsym
.st_value
= 0;
5250 elfsym
.st_value
= o
->vma
;
5251 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5254 if (i
== SHN_LORESERVE
)
5255 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5259 /* Allocate some memory to hold information read in from the input
5261 if (max_contents_size
!= 0)
5263 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
5264 if (finfo
.contents
== NULL
)
5268 if (max_external_reloc_size
!= 0)
5270 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
5271 if (finfo
.external_relocs
== NULL
)
5275 if (max_internal_reloc_count
!= 0)
5277 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5278 amt
*= sizeof (Elf_Internal_Rela
);
5279 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
5280 if (finfo
.internal_relocs
== NULL
)
5284 if (max_sym_count
!= 0)
5286 amt
= max_sym_count
* sizeof (Elf_External_Sym
);
5287 finfo
.external_syms
= (Elf_External_Sym
*) bfd_malloc (amt
);
5288 if (finfo
.external_syms
== NULL
)
5291 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
5292 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
5293 if (finfo
.internal_syms
== NULL
)
5296 amt
= max_sym_count
* sizeof (long);
5297 finfo
.indices
= (long *) bfd_malloc (amt
);
5298 if (finfo
.indices
== NULL
)
5301 amt
= max_sym_count
* sizeof (asection
*);
5302 finfo
.sections
= (asection
**) bfd_malloc (amt
);
5303 if (finfo
.sections
== NULL
)
5307 if (max_sym_shndx_count
!= 0)
5309 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
5310 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
5311 if (finfo
.locsym_shndx
== NULL
)
5315 if (finfo
.first_tls_sec
)
5317 unsigned int align
= 0;
5318 bfd_vma base
= finfo
.first_tls_sec
->vma
, end
= 0;
5321 for (sec
= finfo
.first_tls_sec
;
5322 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
5325 bfd_vma size
= sec
->_raw_size
;
5327 if (bfd_get_section_alignment (abfd
, sec
) > align
)
5328 align
= bfd_get_section_alignment (abfd
, sec
);
5329 if (sec
->_raw_size
== 0 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
5331 struct bfd_link_order
*o
;
5334 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
5335 if (size
< o
->offset
+ o
->size
)
5336 size
= o
->offset
+ o
->size
;
5338 end
= sec
->vma
+ size
;
5340 elf_hash_table (info
)->tls_segment
5341 = bfd_zalloc (abfd
, sizeof (struct elf_link_tls_segment
));
5342 if (elf_hash_table (info
)->tls_segment
== NULL
)
5344 elf_hash_table (info
)->tls_segment
->start
= base
;
5345 elf_hash_table (info
)->tls_segment
->size
= end
- base
;
5346 elf_hash_table (info
)->tls_segment
->align
= align
;
5349 /* Since ELF permits relocations to be against local symbols, we
5350 must have the local symbols available when we do the relocations.
5351 Since we would rather only read the local symbols once, and we
5352 would rather not keep them in memory, we handle all the
5353 relocations for a single input file at the same time.
5355 Unfortunately, there is no way to know the total number of local
5356 symbols until we have seen all of them, and the local symbol
5357 indices precede the global symbol indices. This means that when
5358 we are generating relocateable output, and we see a reloc against
5359 a global symbol, we can not know the symbol index until we have
5360 finished examining all the local symbols to see which ones we are
5361 going to output. To deal with this, we keep the relocations in
5362 memory, and don't output them until the end of the link. This is
5363 an unfortunate waste of memory, but I don't see a good way around
5364 it. Fortunately, it only happens when performing a relocateable
5365 link, which is not the common case. FIXME: If keep_memory is set
5366 we could write the relocs out and then read them again; I don't
5367 know how bad the memory loss will be. */
5369 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5370 sub
->output_has_begun
= false;
5371 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5373 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
5375 if (p
->type
== bfd_indirect_link_order
5376 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
5377 == bfd_target_elf_flavour
)
5378 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
5380 if (! sub
->output_has_begun
)
5382 if (! elf_link_input_bfd (&finfo
, sub
))
5384 sub
->output_has_begun
= true;
5387 else if (p
->type
== bfd_section_reloc_link_order
5388 || p
->type
== bfd_symbol_reloc_link_order
)
5390 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
5395 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
5401 /* Output any global symbols that got converted to local in a
5402 version script or due to symbol visibility. We do this in a
5403 separate step since ELF requires all local symbols to appear
5404 prior to any global symbols. FIXME: We should only do this if
5405 some global symbols were, in fact, converted to become local.
5406 FIXME: Will this work correctly with the Irix 5 linker? */
5407 eoinfo
.failed
= false;
5408 eoinfo
.finfo
= &finfo
;
5409 eoinfo
.localsyms
= true;
5410 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5415 /* That wrote out all the local symbols. Finish up the symbol table
5416 with the global symbols. Even if we want to strip everything we
5417 can, we still need to deal with those global symbols that got
5418 converted to local in a version script. */
5420 /* The sh_info field records the index of the first non local symbol. */
5421 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
5424 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
5426 Elf_Internal_Sym sym
;
5427 Elf_External_Sym
*dynsym
=
5428 (Elf_External_Sym
*) finfo
.dynsym_sec
->contents
;
5429 long last_local
= 0;
5431 /* Write out the section symbols for the output sections. */
5438 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5441 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5444 Elf_External_Sym
*dest
;
5446 indx
= elf_section_data (s
)->this_idx
;
5447 BFD_ASSERT (indx
> 0);
5448 sym
.st_shndx
= indx
;
5449 sym
.st_value
= s
->vma
;
5450 dest
= dynsym
+ elf_section_data (s
)->dynindx
;
5451 elf_swap_symbol_out (abfd
, &sym
, (PTR
) dest
, (PTR
) 0);
5454 last_local
= bfd_count_sections (abfd
);
5457 /* Write out the local dynsyms. */
5458 if (elf_hash_table (info
)->dynlocal
)
5460 struct elf_link_local_dynamic_entry
*e
;
5461 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
5464 Elf_External_Sym
*dest
;
5466 sym
.st_size
= e
->isym
.st_size
;
5467 sym
.st_other
= e
->isym
.st_other
;
5469 /* Copy the internal symbol as is.
5470 Note that we saved a word of storage and overwrote
5471 the original st_name with the dynstr_index. */
5474 if (e
->isym
.st_shndx
!= SHN_UNDEF
5475 && (e
->isym
.st_shndx
< SHN_LORESERVE
5476 || e
->isym
.st_shndx
> SHN_HIRESERVE
))
5478 s
= bfd_section_from_elf_index (e
->input_bfd
,
5482 elf_section_data (s
->output_section
)->this_idx
;
5483 sym
.st_value
= (s
->output_section
->vma
5485 + e
->isym
.st_value
);
5488 if (last_local
< e
->dynindx
)
5489 last_local
= e
->dynindx
;
5491 dest
= dynsym
+ e
->dynindx
;
5492 elf_swap_symbol_out (abfd
, &sym
, (PTR
) dest
, (PTR
) 0);
5496 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
5500 /* We get the global symbols from the hash table. */
5501 eoinfo
.failed
= false;
5502 eoinfo
.localsyms
= false;
5503 eoinfo
.finfo
= &finfo
;
5504 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5509 /* If backend needs to output some symbols not present in the hash
5510 table, do it now. */
5511 if (bed
->elf_backend_output_arch_syms
)
5513 typedef boolean (*out_sym_func
) PARAMS ((PTR
, const char *,
5517 if (! ((*bed
->elf_backend_output_arch_syms
)
5518 (abfd
, info
, (PTR
) &finfo
, (out_sym_func
) elf_link_output_sym
)))
5522 /* Flush all symbols to the file. */
5523 if (! elf_link_flush_output_syms (&finfo
))
5526 /* Now we know the size of the symtab section. */
5527 off
+= symtab_hdr
->sh_size
;
5529 /* Finish up and write out the symbol string table (.strtab)
5531 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5532 /* sh_name was set in prep_headers. */
5533 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5534 symstrtab_hdr
->sh_flags
= 0;
5535 symstrtab_hdr
->sh_addr
= 0;
5536 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
5537 symstrtab_hdr
->sh_entsize
= 0;
5538 symstrtab_hdr
->sh_link
= 0;
5539 symstrtab_hdr
->sh_info
= 0;
5540 /* sh_offset is set just below. */
5541 symstrtab_hdr
->sh_addralign
= 1;
5543 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, true);
5544 elf_tdata (abfd
)->next_file_pos
= off
;
5546 if (bfd_get_symcount (abfd
) > 0)
5548 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
5549 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
5553 /* Adjust the relocs to have the correct symbol indices. */
5554 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5556 if ((o
->flags
& SEC_RELOC
) == 0)
5559 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
5560 elf_section_data (o
)->rel_count
,
5561 elf_section_data (o
)->rel_hashes
);
5562 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
5563 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
5564 elf_section_data (o
)->rel_count2
,
5565 (elf_section_data (o
)->rel_hashes
5566 + elf_section_data (o
)->rel_count
));
5568 /* Set the reloc_count field to 0 to prevent write_relocs from
5569 trying to swap the relocs out itself. */
5573 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
5574 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
5576 /* If we are linking against a dynamic object, or generating a
5577 shared library, finish up the dynamic linking information. */
5580 Elf_External_Dyn
*dyncon
, *dynconend
;
5582 /* Fix up .dynamic entries. */
5583 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
5584 BFD_ASSERT (o
!= NULL
);
5586 dyncon
= (Elf_External_Dyn
*) o
->contents
;
5587 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
5588 for (; dyncon
< dynconend
; dyncon
++)
5590 Elf_Internal_Dyn dyn
;
5594 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
5601 if (relativecount
> 0 && dyncon
+ 1 < dynconend
)
5603 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
5605 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
5606 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
5609 if (dyn
.d_tag
!= DT_NULL
)
5611 dyn
.d_un
.d_val
= relativecount
;
5612 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5618 name
= info
->init_function
;
5621 name
= info
->fini_function
;
5624 struct elf_link_hash_entry
*h
;
5626 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
5627 false, false, true);
5629 && (h
->root
.type
== bfd_link_hash_defined
5630 || h
->root
.type
== bfd_link_hash_defweak
))
5632 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
5633 o
= h
->root
.u
.def
.section
;
5634 if (o
->output_section
!= NULL
)
5635 dyn
.d_un
.d_val
+= (o
->output_section
->vma
5636 + o
->output_offset
);
5639 /* The symbol is imported from another shared
5640 library and does not apply to this one. */
5644 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5649 case DT_PREINIT_ARRAYSZ
:
5650 name
= ".preinit_array";
5652 case DT_INIT_ARRAYSZ
:
5653 name
= ".init_array";
5655 case DT_FINI_ARRAYSZ
:
5656 name
= ".fini_array";
5658 o
= bfd_get_section_by_name (abfd
, name
);
5661 (*_bfd_error_handler
)
5662 (_("%s: could not find output section %s"),
5663 bfd_get_filename (abfd
), name
);
5666 if (o
->_raw_size
== 0)
5667 (*_bfd_error_handler
)
5668 (_("warning: %s section has zero size"), name
);
5669 dyn
.d_un
.d_val
= o
->_raw_size
;
5670 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5673 case DT_PREINIT_ARRAY
:
5674 name
= ".preinit_array";
5677 name
= ".init_array";
5680 name
= ".fini_array";
5693 name
= ".gnu.version_d";
5696 name
= ".gnu.version_r";
5699 name
= ".gnu.version";
5701 o
= bfd_get_section_by_name (abfd
, name
);
5704 (*_bfd_error_handler
)
5705 (_("%s: could not find output section %s"),
5706 bfd_get_filename (abfd
), name
);
5709 dyn
.d_un
.d_ptr
= o
->vma
;
5710 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5717 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
5722 for (i
= 1; i
< elf_numsections (abfd
); i
++)
5724 Elf_Internal_Shdr
*hdr
;
5726 hdr
= elf_elfsections (abfd
)[i
];
5727 if (hdr
->sh_type
== type
5728 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
5730 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
5731 dyn
.d_un
.d_val
+= hdr
->sh_size
;
5734 if (dyn
.d_un
.d_val
== 0
5735 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
5736 dyn
.d_un
.d_val
= hdr
->sh_addr
;
5740 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5746 /* If we have created any dynamic sections, then output them. */
5749 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
5752 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
5754 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
5755 || o
->_raw_size
== 0
5756 || o
->output_section
== bfd_abs_section_ptr
)
5758 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
5760 /* At this point, we are only interested in sections
5761 created by elf_link_create_dynamic_sections. */
5764 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
5766 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
5768 if (! bfd_set_section_contents (abfd
, o
->output_section
,
5770 (file_ptr
) o
->output_offset
,
5776 /* The contents of the .dynstr section are actually in a
5778 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
5779 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
5780 || ! _bfd_elf_strtab_emit (abfd
,
5781 elf_hash_table (info
)->dynstr
))
5787 if (info
->relocateable
)
5789 boolean failed
= false;
5791 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
5796 /* If we have optimized stabs strings, output them. */
5797 if (elf_hash_table (info
)->stab_info
!= NULL
)
5799 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
5803 if (info
->eh_frame_hdr
&& elf_hash_table (info
)->dynobj
)
5805 o
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
5808 && (elf_section_data (o
)->sec_info_type
5809 == ELF_INFO_TYPE_EH_FRAME_HDR
))
5811 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, o
))
5816 if (finfo
.symstrtab
!= NULL
)
5817 _bfd_stringtab_free (finfo
.symstrtab
);
5818 if (finfo
.contents
!= NULL
)
5819 free (finfo
.contents
);
5820 if (finfo
.external_relocs
!= NULL
)
5821 free (finfo
.external_relocs
);
5822 if (finfo
.internal_relocs
!= NULL
)
5823 free (finfo
.internal_relocs
);
5824 if (finfo
.external_syms
!= NULL
)
5825 free (finfo
.external_syms
);
5826 if (finfo
.locsym_shndx
!= NULL
)
5827 free (finfo
.locsym_shndx
);
5828 if (finfo
.internal_syms
!= NULL
)
5829 free (finfo
.internal_syms
);
5830 if (finfo
.indices
!= NULL
)
5831 free (finfo
.indices
);
5832 if (finfo
.sections
!= NULL
)
5833 free (finfo
.sections
);
5834 if (finfo
.symbuf
!= NULL
)
5835 free (finfo
.symbuf
);
5836 if (finfo
.symshndxbuf
!= NULL
)
5837 free (finfo
.symbuf
);
5838 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5840 if ((o
->flags
& SEC_RELOC
) != 0
5841 && elf_section_data (o
)->rel_hashes
!= NULL
)
5842 free (elf_section_data (o
)->rel_hashes
);
5845 elf_tdata (abfd
)->linker
= true;
5850 if (finfo
.symstrtab
!= NULL
)
5851 _bfd_stringtab_free (finfo
.symstrtab
);
5852 if (finfo
.contents
!= NULL
)
5853 free (finfo
.contents
);
5854 if (finfo
.external_relocs
!= NULL
)
5855 free (finfo
.external_relocs
);
5856 if (finfo
.internal_relocs
!= NULL
)
5857 free (finfo
.internal_relocs
);
5858 if (finfo
.external_syms
!= NULL
)
5859 free (finfo
.external_syms
);
5860 if (finfo
.locsym_shndx
!= NULL
)
5861 free (finfo
.locsym_shndx
);
5862 if (finfo
.internal_syms
!= NULL
)
5863 free (finfo
.internal_syms
);
5864 if (finfo
.indices
!= NULL
)
5865 free (finfo
.indices
);
5866 if (finfo
.sections
!= NULL
)
5867 free (finfo
.sections
);
5868 if (finfo
.symbuf
!= NULL
)
5869 free (finfo
.symbuf
);
5870 if (finfo
.symshndxbuf
!= NULL
)
5871 free (finfo
.symbuf
);
5872 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5874 if ((o
->flags
& SEC_RELOC
) != 0
5875 && elf_section_data (o
)->rel_hashes
!= NULL
)
5876 free (elf_section_data (o
)->rel_hashes
);
5882 /* Add a symbol to the output symbol table. */
5885 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
5886 struct elf_final_link_info
*finfo
;
5888 Elf_Internal_Sym
*elfsym
;
5889 asection
*input_sec
;
5891 Elf_External_Sym
*dest
;
5892 Elf_External_Sym_Shndx
*destshndx
;
5894 boolean (*output_symbol_hook
) PARAMS ((bfd
*,
5895 struct bfd_link_info
*info
,
5900 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
5901 elf_backend_link_output_symbol_hook
;
5902 if (output_symbol_hook
!= NULL
)
5904 if (! ((*output_symbol_hook
)
5905 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
5909 if (name
== (const char *) NULL
|| *name
== '\0')
5910 elfsym
->st_name
= 0;
5911 else if (input_sec
->flags
& SEC_EXCLUDE
)
5912 elfsym
->st_name
= 0;
5915 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5917 if (elfsym
->st_name
== (unsigned long) -1)
5921 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5923 if (! elf_link_flush_output_syms (finfo
))
5927 dest
= finfo
->symbuf
+ finfo
->symbuf_count
;
5928 destshndx
= finfo
->symshndxbuf
;
5929 if (destshndx
!= NULL
)
5930 destshndx
+= finfo
->symbuf_count
;
5931 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
, (PTR
) dest
, (PTR
) destshndx
);
5932 ++finfo
->symbuf_count
;
5934 ++ bfd_get_symcount (finfo
->output_bfd
);
5939 /* Flush the output symbols to the file. */
5942 elf_link_flush_output_syms (finfo
)
5943 struct elf_final_link_info
*finfo
;
5945 if (finfo
->symbuf_count
> 0)
5947 Elf_Internal_Shdr
*hdr
;
5951 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5952 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
5953 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5954 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5955 || bfd_bwrite ((PTR
) finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
5958 hdr
->sh_size
+= amt
;
5960 if (finfo
->symshndxbuf
!= NULL
)
5962 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_shndx_hdr
;
5963 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
5964 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym_Shndx
);
5965 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5966 || (bfd_bwrite ((PTR
) finfo
->symshndxbuf
, amt
, finfo
->output_bfd
)
5970 hdr
->sh_size
+= amt
;
5973 finfo
->symbuf_count
= 0;
5979 /* Adjust all external symbols pointing into SEC_MERGE sections
5980 to reflect the object merging within the sections. */
5983 elf_link_sec_merge_syms (h
, data
)
5984 struct elf_link_hash_entry
*h
;
5989 if (h
->root
.type
== bfd_link_hash_warning
)
5990 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5992 if ((h
->root
.type
== bfd_link_hash_defined
5993 || h
->root
.type
== bfd_link_hash_defweak
)
5994 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
5995 && elf_section_data (sec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
)
5997 bfd
*output_bfd
= (bfd
*) data
;
5999 h
->root
.u
.def
.value
=
6000 _bfd_merged_section_offset (output_bfd
,
6001 &h
->root
.u
.def
.section
,
6002 elf_section_data (sec
)->sec_info
,
6003 h
->root
.u
.def
.value
, (bfd_vma
) 0);
6009 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6010 allowing an unsatisfied unversioned symbol in the DSO to match a
6011 versioned symbol that would normally require an explicit version. */
6014 elf_link_check_versioned_symbol (info
, h
)
6015 struct bfd_link_info
*info
;
6016 struct elf_link_hash_entry
*h
;
6018 bfd
*undef_bfd
= h
->root
.u
.undef
.abfd
;
6019 struct elf_link_loaded_list
*loaded
;
6021 if ((undef_bfd
->flags
& DYNAMIC
) == 0
6022 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
6023 || elf_dt_soname (h
->root
.u
.undef
.abfd
) == NULL
)
6026 for (loaded
= elf_hash_table (info
)->loaded
;
6028 loaded
= loaded
->next
)
6031 Elf_Internal_Shdr
*hdr
;
6032 bfd_size_type symcount
;
6033 bfd_size_type extsymcount
;
6034 bfd_size_type extsymoff
;
6035 Elf_Internal_Shdr
*versymhdr
;
6036 Elf_Internal_Sym
*isym
;
6037 Elf_Internal_Sym
*isymend
;
6038 Elf_Internal_Sym
*isymbuf
;
6039 Elf_External_Versym
*ever
;
6040 Elf_External_Versym
*extversym
;
6042 input
= loaded
->abfd
;
6044 /* We check each DSO for a possible hidden versioned definition. */
6045 if (input
== undef_bfd
6046 || (input
->flags
& DYNAMIC
) == 0
6047 || elf_dynversym (input
) == 0)
6050 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
6052 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6053 if (elf_bad_symtab (input
))
6055 extsymcount
= symcount
;
6060 extsymcount
= symcount
- hdr
->sh_info
;
6061 extsymoff
= hdr
->sh_info
;
6064 if (extsymcount
== 0)
6067 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
6069 if (isymbuf
== NULL
)
6072 /* Read in any version definitions. */
6073 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
6074 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
6075 if (extversym
== NULL
)
6078 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
6079 || (bfd_bread ((PTR
) extversym
, versymhdr
->sh_size
, input
)
6080 != versymhdr
->sh_size
))
6088 ever
= extversym
+ extsymoff
;
6089 isymend
= isymbuf
+ extsymcount
;
6090 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
6093 Elf_Internal_Versym iver
;
6095 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
6096 || isym
->st_shndx
== SHN_UNDEF
)
6099 name
= bfd_elf_string_from_elf_section (input
,
6102 if (strcmp (name
, h
->root
.root
.string
) != 0)
6105 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
6107 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
6109 /* If we have a non-hidden versioned sym, then it should
6110 have provided a definition for the undefined sym. */
6114 if ((iver
.vs_vers
& VERSYM_VERSION
) == 2)
6116 /* This is the oldest (default) sym. We can use it. */
6130 /* Add an external symbol to the symbol table. This is called from
6131 the hash table traversal routine. When generating a shared object,
6132 we go through the symbol table twice. The first time we output
6133 anything that might have been forced to local scope in a version
6134 script. The second time we output the symbols that are still
6138 elf_link_output_extsym (h
, data
)
6139 struct elf_link_hash_entry
*h
;
6142 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
6143 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
6145 Elf_Internal_Sym sym
;
6146 asection
*input_sec
;
6148 if (h
->root
.type
== bfd_link_hash_warning
)
6150 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6151 if (h
->root
.type
== bfd_link_hash_new
)
6155 /* Decide whether to output this symbol in this pass. */
6156 if (eoinfo
->localsyms
)
6158 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6163 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6167 /* If we are not creating a shared library, and this symbol is
6168 referenced by a shared library but is not defined anywhere, then
6169 warn that it is undefined. If we do not do this, the runtime
6170 linker will complain that the symbol is undefined when the
6171 program is run. We don't have to worry about symbols that are
6172 referenced by regular files, because we will already have issued
6173 warnings for them. */
6174 if (! finfo
->info
->relocateable
6175 && ! finfo
->info
->allow_shlib_undefined
6176 && ! finfo
->info
->shared
6177 && h
->root
.type
== bfd_link_hash_undefined
6178 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
6179 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
6180 && ! elf_link_check_versioned_symbol (finfo
->info
, h
))
6182 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6183 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
6184 (asection
*) NULL
, (bfd_vma
) 0, true)))
6186 eoinfo
->failed
= true;
6191 /* We don't want to output symbols that have never been mentioned by
6192 a regular file, or that we have been told to strip. However, if
6193 h->indx is set to -2, the symbol is used by a reloc and we must
6197 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
6198 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
6199 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
6200 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
6202 else if (finfo
->info
->strip
== strip_all
6203 || (finfo
->info
->strip
== strip_some
6204 && bfd_hash_lookup (finfo
->info
->keep_hash
,
6205 h
->root
.root
.string
,
6206 false, false) == NULL
))
6211 /* If we're stripping it, and it's not a dynamic symbol, there's
6212 nothing else to do unless it is a forced local symbol. */
6215 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6219 sym
.st_size
= h
->size
;
6220 sym
.st_other
= h
->other
;
6221 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6222 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
6223 else if (h
->root
.type
== bfd_link_hash_undefweak
6224 || h
->root
.type
== bfd_link_hash_defweak
)
6225 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
6227 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
6229 switch (h
->root
.type
)
6232 case bfd_link_hash_new
:
6233 case bfd_link_hash_warning
:
6237 case bfd_link_hash_undefined
:
6238 case bfd_link_hash_undefweak
:
6239 input_sec
= bfd_und_section_ptr
;
6240 sym
.st_shndx
= SHN_UNDEF
;
6243 case bfd_link_hash_defined
:
6244 case bfd_link_hash_defweak
:
6246 input_sec
= h
->root
.u
.def
.section
;
6247 if (input_sec
->output_section
!= NULL
)
6250 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
6251 input_sec
->output_section
);
6252 if (sym
.st_shndx
== SHN_BAD
)
6254 (*_bfd_error_handler
)
6255 (_("%s: could not find output section %s for input section %s"),
6256 bfd_get_filename (finfo
->output_bfd
),
6257 input_sec
->output_section
->name
,
6259 eoinfo
->failed
= true;
6263 /* ELF symbols in relocateable files are section relative,
6264 but in nonrelocateable files they are virtual
6266 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
6267 if (! finfo
->info
->relocateable
)
6269 sym
.st_value
+= input_sec
->output_section
->vma
;
6270 if (h
->type
== STT_TLS
)
6272 /* STT_TLS symbols are relative to PT_TLS segment
6274 BFD_ASSERT (finfo
->first_tls_sec
!= NULL
);
6275 sym
.st_value
-= finfo
->first_tls_sec
->vma
;
6281 BFD_ASSERT (input_sec
->owner
== NULL
6282 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
6283 sym
.st_shndx
= SHN_UNDEF
;
6284 input_sec
= bfd_und_section_ptr
;
6289 case bfd_link_hash_common
:
6290 input_sec
= h
->root
.u
.c
.p
->section
;
6291 sym
.st_shndx
= SHN_COMMON
;
6292 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
6295 case bfd_link_hash_indirect
:
6296 /* These symbols are created by symbol versioning. They point
6297 to the decorated version of the name. For example, if the
6298 symbol foo@@GNU_1.2 is the default, which should be used when
6299 foo is used with no version, then we add an indirect symbol
6300 foo which points to foo@@GNU_1.2. We ignore these symbols,
6301 since the indirected symbol is already in the hash table. */
6305 /* Give the processor backend a chance to tweak the symbol value,
6306 and also to finish up anything that needs to be done for this
6307 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6308 forced local syms when non-shared is due to a historical quirk. */
6309 if ((h
->dynindx
!= -1
6310 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6311 && (finfo
->info
->shared
6312 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6313 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6315 struct elf_backend_data
*bed
;
6317 bed
= get_elf_backend_data (finfo
->output_bfd
);
6318 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
6319 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
6321 eoinfo
->failed
= true;
6326 /* If we are marking the symbol as undefined, and there are no
6327 non-weak references to this symbol from a regular object, then
6328 mark the symbol as weak undefined; if there are non-weak
6329 references, mark the symbol as strong. We can't do this earlier,
6330 because it might not be marked as undefined until the
6331 finish_dynamic_symbol routine gets through with it. */
6332 if (sym
.st_shndx
== SHN_UNDEF
6333 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
6334 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
6335 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
6339 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
6340 bindtype
= STB_GLOBAL
;
6342 bindtype
= STB_WEAK
;
6343 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
6346 /* If a symbol is not defined locally, we clear the visibility
6348 if (! finfo
->info
->relocateable
6349 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6350 sym
.st_other
^= ELF_ST_VISIBILITY (sym
.st_other
);
6352 /* If this symbol should be put in the .dynsym section, then put it
6353 there now. We already know the symbol index. We also fill in
6354 the entry in the .hash section. */
6355 if (h
->dynindx
!= -1
6356 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6360 size_t hash_entry_size
;
6361 bfd_byte
*bucketpos
;
6363 Elf_External_Sym
*esym
;
6365 sym
.st_name
= h
->dynstr_index
;
6366 esym
= (Elf_External_Sym
*) finfo
->dynsym_sec
->contents
+ h
->dynindx
;
6367 elf_swap_symbol_out (finfo
->output_bfd
, &sym
, (PTR
) esym
, (PTR
) 0);
6369 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
6370 bucket
= h
->elf_hash_value
% bucketcount
;
6372 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
6373 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
6374 + (bucket
+ 2) * hash_entry_size
);
6375 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
6376 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, (bfd_vma
) h
->dynindx
,
6378 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
6379 ((bfd_byte
*) finfo
->hash_sec
->contents
6380 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
6382 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
6384 Elf_Internal_Versym iversym
;
6385 Elf_External_Versym
*eversym
;
6387 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6389 if (h
->verinfo
.verdef
== NULL
)
6390 iversym
.vs_vers
= 0;
6392 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
6396 if (h
->verinfo
.vertree
== NULL
)
6397 iversym
.vs_vers
= 1;
6399 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
6402 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
6403 iversym
.vs_vers
|= VERSYM_HIDDEN
;
6405 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
6406 eversym
+= h
->dynindx
;
6407 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
6411 /* If we're stripping it, then it was just a dynamic symbol, and
6412 there's nothing else to do. */
6413 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
6416 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
6418 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
6420 eoinfo
->failed
= true;
6427 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6428 originated from the section given by INPUT_REL_HDR) to the
6432 elf_link_output_relocs (output_bfd
, input_section
, input_rel_hdr
,
6435 asection
*input_section
;
6436 Elf_Internal_Shdr
*input_rel_hdr
;
6437 Elf_Internal_Rela
*internal_relocs
;
6439 Elf_Internal_Rela
*irela
;
6440 Elf_Internal_Rela
*irelaend
;
6441 Elf_Internal_Shdr
*output_rel_hdr
;
6442 asection
*output_section
;
6443 unsigned int *rel_countp
= NULL
;
6444 struct elf_backend_data
*bed
;
6447 output_section
= input_section
->output_section
;
6448 output_rel_hdr
= NULL
;
6450 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
6451 == input_rel_hdr
->sh_entsize
)
6453 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6454 rel_countp
= &elf_section_data (output_section
)->rel_count
;
6456 else if (elf_section_data (output_section
)->rel_hdr2
6457 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
6458 == input_rel_hdr
->sh_entsize
))
6460 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
6461 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
6465 (*_bfd_error_handler
)
6466 (_("%s: relocation size mismatch in %s section %s"),
6467 bfd_get_filename (output_bfd
),
6468 bfd_archive_filename (input_section
->owner
),
6469 input_section
->name
);
6470 bfd_set_error (bfd_error_wrong_object_format
);
6474 bed
= get_elf_backend_data (output_bfd
);
6475 irela
= internal_relocs
;
6476 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
6477 * bed
->s
->int_rels_per_ext_rel
);
6479 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
6481 Elf_External_Rel
*erel
;
6482 Elf_Internal_Rel
*irel
;
6484 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
6485 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
6488 (*_bfd_error_handler
) (_("Error: out of memory"));
6492 erel
= ((Elf_External_Rel
*) output_rel_hdr
->contents
+ *rel_countp
);
6493 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erel
++)
6497 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6499 irel
[i
].r_offset
= irela
[i
].r_offset
;
6500 irel
[i
].r_info
= irela
[i
].r_info
;
6501 BFD_ASSERT (irela
[i
].r_addend
== 0);
6504 if (bed
->s
->swap_reloc_out
)
6505 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (PTR
) erel
);
6507 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6514 Elf_External_Rela
*erela
;
6516 BFD_ASSERT (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
));
6518 erela
= ((Elf_External_Rela
*) output_rel_hdr
->contents
+ *rel_countp
);
6519 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erela
++)
6520 if (bed
->s
->swap_reloca_out
)
6521 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (PTR
) erela
);
6523 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6526 /* Bump the counter, so that we know where to add the next set of
6528 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
6533 /* Link an input file into the linker output file. This function
6534 handles all the sections and relocations of the input file at once.
6535 This is so that we only have to read the local symbols once, and
6536 don't have to keep them in memory. */
6539 elf_link_input_bfd (finfo
, input_bfd
)
6540 struct elf_final_link_info
*finfo
;
6543 boolean (*relocate_section
) PARAMS ((bfd
*, struct bfd_link_info
*,
6544 bfd
*, asection
*, bfd_byte
*,
6545 Elf_Internal_Rela
*,
6546 Elf_Internal_Sym
*, asection
**));
6548 Elf_Internal_Shdr
*symtab_hdr
;
6551 Elf_Internal_Sym
*isymbuf
;
6552 Elf_Internal_Sym
*isym
;
6553 Elf_Internal_Sym
*isymend
;
6555 asection
**ppsection
;
6557 struct elf_backend_data
*bed
;
6558 boolean emit_relocs
;
6559 struct elf_link_hash_entry
**sym_hashes
;
6561 output_bfd
= finfo
->output_bfd
;
6562 bed
= get_elf_backend_data (output_bfd
);
6563 relocate_section
= bed
->elf_backend_relocate_section
;
6565 /* If this is a dynamic object, we don't want to do anything here:
6566 we don't want the local symbols, and we don't want the section
6568 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6571 emit_relocs
= (finfo
->info
->relocateable
6572 || finfo
->info
->emitrelocations
6573 || bed
->elf_backend_emit_relocs
);
6575 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6576 if (elf_bad_symtab (input_bfd
))
6578 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6583 locsymcount
= symtab_hdr
->sh_info
;
6584 extsymoff
= symtab_hdr
->sh_info
;
6587 /* Read the local symbols. */
6588 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6589 if (isymbuf
== NULL
&& locsymcount
!= 0)
6591 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6592 finfo
->internal_syms
,
6593 finfo
->external_syms
,
6594 finfo
->locsym_shndx
);
6595 if (isymbuf
== NULL
)
6599 /* Find local symbol sections and adjust values of symbols in
6600 SEC_MERGE sections. Write out those local symbols we know are
6601 going into the output file. */
6602 isymend
= isymbuf
+ locsymcount
;
6603 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
6605 isym
++, pindex
++, ppsection
++)
6609 Elf_Internal_Sym osym
;
6613 if (elf_bad_symtab (input_bfd
))
6615 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6622 if (isym
->st_shndx
== SHN_UNDEF
)
6623 isec
= bfd_und_section_ptr
;
6624 else if (isym
->st_shndx
< SHN_LORESERVE
6625 || isym
->st_shndx
> SHN_HIRESERVE
)
6627 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
6629 && elf_section_data (isec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
6630 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6632 _bfd_merged_section_offset (output_bfd
, &isec
,
6633 elf_section_data (isec
)->sec_info
,
6634 isym
->st_value
, (bfd_vma
) 0);
6636 else if (isym
->st_shndx
== SHN_ABS
)
6637 isec
= bfd_abs_section_ptr
;
6638 else if (isym
->st_shndx
== SHN_COMMON
)
6639 isec
= bfd_com_section_ptr
;
6648 /* Don't output the first, undefined, symbol. */
6649 if (ppsection
== finfo
->sections
)
6652 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6654 /* We never output section symbols. Instead, we use the
6655 section symbol of the corresponding section in the output
6660 /* If we are stripping all symbols, we don't want to output this
6662 if (finfo
->info
->strip
== strip_all
)
6665 /* If we are discarding all local symbols, we don't want to
6666 output this one. If we are generating a relocateable output
6667 file, then some of the local symbols may be required by
6668 relocs; we output them below as we discover that they are
6670 if (finfo
->info
->discard
== discard_all
)
6673 /* If this symbol is defined in a section which we are
6674 discarding, we don't need to keep it, but note that
6675 linker_mark is only reliable for sections that have contents.
6676 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6677 as well as linker_mark. */
6678 if ((isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
6680 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6681 || (! finfo
->info
->relocateable
6682 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6685 /* Get the name of the symbol. */
6686 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6691 /* See if we are discarding symbols with this name. */
6692 if ((finfo
->info
->strip
== strip_some
6693 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, false, false)
6695 || (((finfo
->info
->discard
== discard_sec_merge
6696 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocateable
)
6697 || finfo
->info
->discard
== discard_l
)
6698 && bfd_is_local_label_name (input_bfd
, name
)))
6701 /* If we get here, we are going to output this symbol. */
6705 /* Adjust the section index for the output file. */
6706 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6707 isec
->output_section
);
6708 if (osym
.st_shndx
== SHN_BAD
)
6711 *pindex
= bfd_get_symcount (output_bfd
);
6713 /* ELF symbols in relocateable files are section relative, but
6714 in executable files they are virtual addresses. Note that
6715 this code assumes that all ELF sections have an associated
6716 BFD section with a reasonable value for output_offset; below
6717 we assume that they also have a reasonable value for
6718 output_section. Any special sections must be set up to meet
6719 these requirements. */
6720 osym
.st_value
+= isec
->output_offset
;
6721 if (! finfo
->info
->relocateable
)
6723 osym
.st_value
+= isec
->output_section
->vma
;
6724 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
6726 /* STT_TLS symbols are relative to PT_TLS segment base. */
6727 BFD_ASSERT (finfo
->first_tls_sec
!= NULL
);
6728 osym
.st_value
-= finfo
->first_tls_sec
->vma
;
6732 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
6736 /* Relocate the contents of each section. */
6737 sym_hashes
= elf_sym_hashes (input_bfd
);
6738 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6742 if (! o
->linker_mark
)
6744 /* This section was omitted from the link. */
6748 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6749 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6752 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6754 /* Section was created by elf_link_create_dynamic_sections
6759 /* Get the contents of the section. They have been cached by a
6760 relaxation routine. Note that o is a section in an input
6761 file, so the contents field will not have been set by any of
6762 the routines which work on output files. */
6763 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6764 contents
= elf_section_data (o
)->this_hdr
.contents
;
6767 contents
= finfo
->contents
;
6768 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
6769 (file_ptr
) 0, o
->_raw_size
))
6773 if ((o
->flags
& SEC_RELOC
) != 0)
6775 Elf_Internal_Rela
*internal_relocs
;
6777 /* Get the swapped relocs. */
6778 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
6779 (input_bfd
, o
, finfo
->external_relocs
,
6780 finfo
->internal_relocs
, false));
6781 if (internal_relocs
== NULL
6782 && o
->reloc_count
> 0)
6785 /* Run through the relocs looking for any against symbols
6786 from discarded sections and section symbols from
6787 removed link-once sections. Complain about relocs
6788 against discarded sections. Zero relocs against removed
6789 link-once sections. We should really complain if
6790 anything in the final link tries to use it, but
6791 DWARF-based exception handling might have an entry in
6792 .eh_frame to describe a routine in the linkonce section,
6793 and it turns out to be hard to remove the .eh_frame
6794 entry too. FIXME. */
6795 if (!finfo
->info
->relocateable
6796 && !elf_section_ignore_discarded_relocs (o
))
6798 Elf_Internal_Rela
*rel
, *relend
;
6800 rel
= internal_relocs
;
6801 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6802 for ( ; rel
< relend
; rel
++)
6804 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6806 if (r_symndx
>= locsymcount
6807 || (elf_bad_symtab (input_bfd
)
6808 && finfo
->sections
[r_symndx
] == NULL
))
6810 struct elf_link_hash_entry
*h
;
6812 h
= sym_hashes
[r_symndx
- extsymoff
];
6813 while (h
->root
.type
== bfd_link_hash_indirect
6814 || h
->root
.type
== bfd_link_hash_warning
)
6815 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6817 /* Complain if the definition comes from a
6818 discarded section. */
6819 if ((h
->root
.type
== bfd_link_hash_defined
6820 || h
->root
.type
== bfd_link_hash_defweak
)
6821 && elf_discarded_section (h
->root
.u
.def
.section
))
6823 if ((o
->flags
& SEC_DEBUGGING
) != 0)
6825 BFD_ASSERT (r_symndx
!= 0);
6826 memset (rel
, 0, sizeof (*rel
));
6830 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6831 (finfo
->info
, h
->root
.root
.string
,
6832 input_bfd
, o
, rel
->r_offset
,
6840 asection
*sec
= finfo
->sections
[r_symndx
];
6842 if (sec
!= NULL
&& elf_discarded_section (sec
))
6844 if ((o
->flags
& SEC_DEBUGGING
) != 0
6845 || (sec
->flags
& SEC_LINK_ONCE
) != 0)
6847 BFD_ASSERT (r_symndx
!= 0);
6849 = ELF_R_INFO (0, ELF_R_TYPE (rel
->r_info
));
6856 = _("local symbols in discarded section %s");
6858 = strlen (sec
->name
) + strlen (msg
) - 1;
6859 char *buf
= (char *) bfd_malloc (amt
);
6862 sprintf (buf
, msg
, sec
->name
);
6864 buf
= (char *) sec
->name
;
6865 ok
= (*finfo
->info
->callbacks
6866 ->undefined_symbol
) (finfo
->info
, buf
,
6870 if (buf
!= sec
->name
)
6880 /* Relocate the section by invoking a back end routine.
6882 The back end routine is responsible for adjusting the
6883 section contents as necessary, and (if using Rela relocs
6884 and generating a relocateable output file) adjusting the
6885 reloc addend as necessary.
6887 The back end routine does not have to worry about setting
6888 the reloc address or the reloc symbol index.
6890 The back end routine is given a pointer to the swapped in
6891 internal symbols, and can access the hash table entries
6892 for the external symbols via elf_sym_hashes (input_bfd).
6894 When generating relocateable output, the back end routine
6895 must handle STB_LOCAL/STT_SECTION symbols specially. The
6896 output symbol is going to be a section symbol
6897 corresponding to the output section, which will require
6898 the addend to be adjusted. */
6900 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
6901 input_bfd
, o
, contents
,
6909 Elf_Internal_Rela
*irela
;
6910 Elf_Internal_Rela
*irelaend
;
6911 struct elf_link_hash_entry
**rel_hash
;
6912 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
6913 unsigned int next_erel
;
6914 boolean (*reloc_emitter
) PARAMS ((bfd
*, asection
*,
6915 Elf_Internal_Shdr
*,
6916 Elf_Internal_Rela
*));
6917 boolean rela_normal
;
6919 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6920 rela_normal
= (bed
->rela_normal
6921 && (input_rel_hdr
->sh_entsize
6922 == sizeof (Elf_External_Rela
)));
6924 /* Adjust the reloc addresses and symbol indices. */
6926 irela
= internal_relocs
;
6927 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6928 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
6929 + elf_section_data (o
->output_section
)->rel_count
6930 + elf_section_data (o
->output_section
)->rel_count2
);
6931 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
6933 unsigned long r_symndx
;
6935 Elf_Internal_Sym sym
;
6937 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
6943 irela
->r_offset
+= o
->output_offset
;
6945 /* Relocs in an executable have to be virtual addresses. */
6946 if (!finfo
->info
->relocateable
)
6947 irela
->r_offset
+= o
->output_section
->vma
;
6949 r_symndx
= ELF_R_SYM (irela
->r_info
);
6954 if (r_symndx
>= locsymcount
6955 || (elf_bad_symtab (input_bfd
)
6956 && finfo
->sections
[r_symndx
] == NULL
))
6958 struct elf_link_hash_entry
*rh
;
6961 /* This is a reloc against a global symbol. We
6962 have not yet output all the local symbols, so
6963 we do not know the symbol index of any global
6964 symbol. We set the rel_hash entry for this
6965 reloc to point to the global hash table entry
6966 for this symbol. The symbol index is then
6967 set at the end of elf_bfd_final_link. */
6968 indx
= r_symndx
- extsymoff
;
6969 rh
= elf_sym_hashes (input_bfd
)[indx
];
6970 while (rh
->root
.type
== bfd_link_hash_indirect
6971 || rh
->root
.type
== bfd_link_hash_warning
)
6972 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
6974 /* Setting the index to -2 tells
6975 elf_link_output_extsym that this symbol is
6977 BFD_ASSERT (rh
->indx
< 0);
6985 /* This is a reloc against a local symbol. */
6988 sym
= isymbuf
[r_symndx
];
6989 sec
= finfo
->sections
[r_symndx
];
6990 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
6992 /* I suppose the backend ought to fill in the
6993 section of any STT_SECTION symbol against a
6994 processor specific section. If we have
6995 discarded a section, the output_section will
6996 be the absolute section. */
6997 if (bfd_is_abs_section (sec
)
6999 && bfd_is_abs_section (sec
->output_section
)))
7001 else if (sec
== NULL
|| sec
->owner
== NULL
)
7003 bfd_set_error (bfd_error_bad_value
);
7008 r_symndx
= sec
->output_section
->target_index
;
7009 BFD_ASSERT (r_symndx
!= 0);
7012 /* Adjust the addend according to where the
7013 section winds up in the output section. */
7015 irela
->r_addend
+= sec
->output_offset
;
7019 if (finfo
->indices
[r_symndx
] == -1)
7021 unsigned long shlink
;
7025 if (finfo
->info
->strip
== strip_all
)
7027 /* You can't do ld -r -s. */
7028 bfd_set_error (bfd_error_invalid_operation
);
7032 /* This symbol was skipped earlier, but
7033 since it is needed by a reloc, we
7034 must output it now. */
7035 shlink
= symtab_hdr
->sh_link
;
7036 name
= (bfd_elf_string_from_elf_section
7037 (input_bfd
, shlink
, sym
.st_name
));
7041 osec
= sec
->output_section
;
7043 _bfd_elf_section_from_bfd_section (output_bfd
,
7045 if (sym
.st_shndx
== SHN_BAD
)
7048 sym
.st_value
+= sec
->output_offset
;
7049 if (! finfo
->info
->relocateable
)
7051 sym
.st_value
+= osec
->vma
;
7052 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
7054 /* STT_TLS symbols are relative to PT_TLS
7056 BFD_ASSERT (finfo
->first_tls_sec
!= NULL
);
7057 sym
.st_value
-= finfo
->first_tls_sec
->vma
;
7061 finfo
->indices
[r_symndx
]
7062 = bfd_get_symcount (output_bfd
);
7064 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
))
7068 r_symndx
= finfo
->indices
[r_symndx
];
7071 irela
->r_info
= ELF_R_INFO (r_symndx
,
7072 ELF_R_TYPE (irela
->r_info
));
7075 /* Swap out the relocs. */
7076 if (bed
->elf_backend_emit_relocs
7077 && !(finfo
->info
->relocateable
7078 || finfo
->info
->emitrelocations
))
7079 reloc_emitter
= bed
->elf_backend_emit_relocs
;
7081 reloc_emitter
= elf_link_output_relocs
;
7083 if (input_rel_hdr
->sh_size
!= 0
7084 && ! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
,
7088 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
7089 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
7091 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
7092 * bed
->s
->int_rels_per_ext_rel
);
7093 if (! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr2
,
7100 /* Write out the modified section contents. */
7101 if (bed
->elf_backend_write_section
7102 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
7104 /* Section written out. */
7106 else switch (elf_section_data (o
)->sec_info_type
)
7108 case ELF_INFO_TYPE_STABS
:
7109 if (! (_bfd_write_section_stabs
7111 &elf_hash_table (finfo
->info
)->stab_info
,
7112 o
, &elf_section_data (o
)->sec_info
, contents
)))
7115 case ELF_INFO_TYPE_MERGE
:
7116 if (! (_bfd_write_merged_section
7117 (output_bfd
, o
, elf_section_data (o
)->sec_info
)))
7120 case ELF_INFO_TYPE_EH_FRAME
:
7125 = bfd_get_section_by_name (elf_hash_table (finfo
->info
)->dynobj
,
7127 if (! (_bfd_elf_write_section_eh_frame (output_bfd
, o
, ehdrsec
,
7134 bfd_size_type sec_size
;
7136 sec_size
= (o
->_cooked_size
!= 0 ? o
->_cooked_size
: o
->_raw_size
);
7137 if (! (o
->flags
& SEC_EXCLUDE
)
7138 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
7140 (file_ptr
) o
->output_offset
,
7151 /* Generate a reloc when linking an ELF file. This is a reloc
7152 requested by the linker, and does come from any input file. This
7153 is used to build constructor and destructor tables when linking
7157 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
7159 struct bfd_link_info
*info
;
7160 asection
*output_section
;
7161 struct bfd_link_order
*link_order
;
7163 reloc_howto_type
*howto
;
7167 struct elf_link_hash_entry
**rel_hash_ptr
;
7168 Elf_Internal_Shdr
*rel_hdr
;
7169 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7171 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
7174 bfd_set_error (bfd_error_bad_value
);
7178 addend
= link_order
->u
.reloc
.p
->addend
;
7180 /* Figure out the symbol index. */
7181 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
7182 + elf_section_data (output_section
)->rel_count
7183 + elf_section_data (output_section
)->rel_count2
);
7184 if (link_order
->type
== bfd_section_reloc_link_order
)
7186 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
7187 BFD_ASSERT (indx
!= 0);
7188 *rel_hash_ptr
= NULL
;
7192 struct elf_link_hash_entry
*h
;
7194 /* Treat a reloc against a defined symbol as though it were
7195 actually against the section. */
7196 h
= ((struct elf_link_hash_entry
*)
7197 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
7198 link_order
->u
.reloc
.p
->u
.name
,
7199 false, false, true));
7201 && (h
->root
.type
== bfd_link_hash_defined
7202 || h
->root
.type
== bfd_link_hash_defweak
))
7206 section
= h
->root
.u
.def
.section
;
7207 indx
= section
->output_section
->target_index
;
7208 *rel_hash_ptr
= NULL
;
7209 /* It seems that we ought to add the symbol value to the
7210 addend here, but in practice it has already been added
7211 because it was passed to constructor_callback. */
7212 addend
+= section
->output_section
->vma
+ section
->output_offset
;
7216 /* Setting the index to -2 tells elf_link_output_extsym that
7217 this symbol is used by a reloc. */
7224 if (! ((*info
->callbacks
->unattached_reloc
)
7225 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
7226 (asection
*) NULL
, (bfd_vma
) 0)))
7232 /* If this is an inplace reloc, we must write the addend into the
7234 if (howto
->partial_inplace
&& addend
!= 0)
7237 bfd_reloc_status_type rstat
;
7240 const char *sym_name
;
7242 size
= bfd_get_reloc_size (howto
);
7243 buf
= (bfd_byte
*) bfd_zmalloc (size
);
7244 if (buf
== (bfd_byte
*) NULL
)
7246 rstat
= _bfd_relocate_contents (howto
, output_bfd
, (bfd_vma
) addend
, buf
);
7253 case bfd_reloc_outofrange
:
7256 case bfd_reloc_overflow
:
7257 if (link_order
->type
== bfd_section_reloc_link_order
)
7258 sym_name
= bfd_section_name (output_bfd
,
7259 link_order
->u
.reloc
.p
->u
.section
);
7261 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
7262 if (! ((*info
->callbacks
->reloc_overflow
)
7263 (info
, sym_name
, howto
->name
, addend
,
7264 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
7271 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
7272 (file_ptr
) link_order
->offset
, size
);
7278 /* The address of a reloc is relative to the section in a
7279 relocateable file, and is a virtual address in an executable
7281 offset
= link_order
->offset
;
7282 if (! info
->relocateable
)
7283 offset
+= output_section
->vma
;
7285 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
7287 if (rel_hdr
->sh_type
== SHT_REL
)
7290 Elf_Internal_Rel
*irel
;
7291 Elf_External_Rel
*erel
;
7294 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
7295 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (size
);
7299 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7300 irel
[i
].r_offset
= offset
;
7301 irel
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
7303 erel
= ((Elf_External_Rel
*) rel_hdr
->contents
7304 + elf_section_data (output_section
)->rel_count
);
7306 if (bed
->s
->swap_reloc_out
)
7307 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (bfd_byte
*) erel
);
7309 elf_swap_reloc_out (output_bfd
, irel
, erel
);
7316 Elf_Internal_Rela
*irela
;
7317 Elf_External_Rela
*erela
;
7320 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
7321 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (size
);
7325 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7326 irela
[i
].r_offset
= offset
;
7327 irela
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
7328 irela
[0].r_addend
= addend
;
7330 erela
= ((Elf_External_Rela
*) rel_hdr
->contents
7331 + elf_section_data (output_section
)->rel_count
);
7333 if (bed
->s
->swap_reloca_out
)
7334 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (bfd_byte
*) erela
);
7336 elf_swap_reloca_out (output_bfd
, irela
, erela
);
7339 ++elf_section_data (output_section
)->rel_count
;
7344 /* Allocate a pointer to live in a linker created section. */
7347 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
7349 struct bfd_link_info
*info
;
7350 elf_linker_section_t
*lsect
;
7351 struct elf_link_hash_entry
*h
;
7352 const Elf_Internal_Rela
*rel
;
7354 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
7355 elf_linker_section_pointers_t
*linker_section_ptr
;
7356 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7359 BFD_ASSERT (lsect
!= NULL
);
7361 /* Is this a global symbol? */
7364 /* Has this symbol already been allocated? If so, our work is done. */
7365 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
7370 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
7371 /* Make sure this symbol is output as a dynamic symbol. */
7372 if (h
->dynindx
== -1)
7374 if (! elf_link_record_dynamic_symbol (info
, h
))
7378 if (lsect
->rel_section
)
7379 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
7383 /* Allocation of a pointer to a local symbol. */
7384 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
7386 /* Allocate a table to hold the local symbols if first time. */
7389 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7390 register unsigned int i
;
7393 amt
*= sizeof (elf_linker_section_pointers_t
*);
7394 ptr
= (elf_linker_section_pointers_t
**) bfd_alloc (abfd
, amt
);
7399 elf_local_ptr_offsets (abfd
) = ptr
;
7400 for (i
= 0; i
< num_symbols
; i
++)
7401 ptr
[i
] = (elf_linker_section_pointers_t
*) 0;
7404 /* Has this symbol already been allocated? If so, our work is done. */
7405 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
7410 ptr_linker_section_ptr
= &ptr
[r_symndx
];
7414 /* If we are generating a shared object, we need to
7415 output a R_<xxx>_RELATIVE reloc so that the
7416 dynamic linker can adjust this GOT entry. */
7417 BFD_ASSERT (lsect
->rel_section
!= NULL
);
7418 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
7422 /* Allocate space for a pointer in the linker section, and allocate
7423 a new pointer record from internal memory. */
7424 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
7425 amt
= sizeof (elf_linker_section_pointers_t
);
7426 linker_section_ptr
= (elf_linker_section_pointers_t
*) bfd_alloc (abfd
, amt
);
7428 if (!linker_section_ptr
)
7431 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
7432 linker_section_ptr
->addend
= rel
->r_addend
;
7433 linker_section_ptr
->which
= lsect
->which
;
7434 linker_section_ptr
->written_address_p
= false;
7435 *ptr_linker_section_ptr
= linker_section_ptr
;
7438 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
7440 linker_section_ptr
->offset
= (lsect
->section
->_raw_size
7441 - lsect
->hole_size
+ (ARCH_SIZE
/ 8));
7442 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
7443 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
7444 if (lsect
->sym_hash
)
7446 /* Bump up symbol value if needed. */
7447 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
7449 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
7450 lsect
->sym_hash
->root
.root
.string
,
7451 (long) ARCH_SIZE
/ 8,
7452 (long) lsect
->sym_hash
->root
.u
.def
.value
);
7458 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
7460 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
7464 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7465 lsect
->name
, (long) linker_section_ptr
->offset
,
7466 (long) lsect
->section
->_raw_size
);
7473 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7476 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7479 /* Fill in the address for a pointer generated in a linker section. */
7482 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
,
7483 relocation
, rel
, relative_reloc
)
7486 struct bfd_link_info
*info
;
7487 elf_linker_section_t
*lsect
;
7488 struct elf_link_hash_entry
*h
;
7490 const Elf_Internal_Rela
*rel
;
7493 elf_linker_section_pointers_t
*linker_section_ptr
;
7495 BFD_ASSERT (lsect
!= NULL
);
7499 /* Handle global symbol. */
7500 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7501 (h
->linker_section_pointer
,
7505 BFD_ASSERT (linker_section_ptr
!= NULL
);
7507 if (! elf_hash_table (info
)->dynamic_sections_created
7510 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
7512 /* This is actually a static link, or it is a
7513 -Bsymbolic link and the symbol is defined
7514 locally. We must initialize this entry in the
7517 When doing a dynamic link, we create a .rela.<xxx>
7518 relocation entry to initialize the value. This
7519 is done in the finish_dynamic_symbol routine. */
7520 if (!linker_section_ptr
->written_address_p
)
7522 linker_section_ptr
->written_address_p
= true;
7523 bfd_put_ptr (output_bfd
,
7524 relocation
+ linker_section_ptr
->addend
,
7525 (lsect
->section
->contents
7526 + linker_section_ptr
->offset
));
7532 /* Handle local symbol. */
7533 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7534 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
7535 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
7536 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7537 (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
7541 BFD_ASSERT (linker_section_ptr
!= NULL
);
7543 /* Write out pointer if it hasn't been rewritten out before. */
7544 if (!linker_section_ptr
->written_address_p
)
7546 linker_section_ptr
->written_address_p
= true;
7547 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
7548 lsect
->section
->contents
+ linker_section_ptr
->offset
);
7552 asection
*srel
= lsect
->rel_section
;
7553 Elf_Internal_Rela
*outrel
;
7554 Elf_External_Rela
*erel
;
7555 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7559 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
7560 outrel
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
7563 (*_bfd_error_handler
) (_("Error: out of memory"));
7567 /* We need to generate a relative reloc for the dynamic
7571 srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
7573 lsect
->rel_section
= srel
;
7576 BFD_ASSERT (srel
!= NULL
);
7578 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7579 outrel
[i
].r_offset
= (lsect
->section
->output_section
->vma
7580 + lsect
->section
->output_offset
7581 + linker_section_ptr
->offset
);
7582 outrel
[0].r_info
= ELF_R_INFO (0, relative_reloc
);
7583 outrel
[0].r_addend
= 0;
7584 erel
= (Elf_External_Rela
*) lsect
->section
->contents
;
7585 erel
+= elf_section_data (lsect
->section
)->rel_count
;
7586 elf_swap_reloca_out (output_bfd
, outrel
, erel
);
7587 ++elf_section_data (lsect
->section
)->rel_count
;
7594 relocation
= (lsect
->section
->output_offset
7595 + linker_section_ptr
->offset
7596 - lsect
->hole_offset
7597 - lsect
->sym_offset
);
7601 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7602 lsect
->name
, (long) relocation
, (long) relocation
);
7605 /* Subtract out the addend, because it will get added back in by the normal
7607 return relocation
- linker_section_ptr
->addend
;
7610 /* Garbage collect unused sections. */
7612 static boolean elf_gc_mark
7613 PARAMS ((struct bfd_link_info
*, asection
*,
7614 asection
* (*) (asection
*, struct bfd_link_info
*,
7615 Elf_Internal_Rela
*, struct elf_link_hash_entry
*,
7616 Elf_Internal_Sym
*)));
7618 static boolean elf_gc_sweep
7619 PARAMS ((struct bfd_link_info
*,
7620 boolean (*) (bfd
*, struct bfd_link_info
*, asection
*,
7621 const Elf_Internal_Rela
*)));
7623 static boolean elf_gc_sweep_symbol
7624 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7626 static boolean elf_gc_allocate_got_offsets
7627 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7629 static boolean elf_gc_propagate_vtable_entries_used
7630 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7632 static boolean elf_gc_smash_unused_vtentry_relocs
7633 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7635 /* The mark phase of garbage collection. For a given section, mark
7636 it and any sections in this section's group, and all the sections
7637 which define symbols to which it refers. */
7640 elf_gc_mark (info
, sec
, gc_mark_hook
)
7641 struct bfd_link_info
*info
;
7643 asection
* (*gc_mark_hook
) PARAMS ((asection
*, struct bfd_link_info
*,
7644 Elf_Internal_Rela
*,
7645 struct elf_link_hash_entry
*,
7646 Elf_Internal_Sym
*));
7649 asection
*group_sec
;
7653 /* Mark all the sections in the group. */
7654 group_sec
= elf_section_data (sec
)->next_in_group
;
7655 if (group_sec
&& !group_sec
->gc_mark
)
7656 if (!elf_gc_mark (info
, group_sec
, gc_mark_hook
))
7659 /* Look through the section relocs. */
7661 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
7663 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7664 Elf_Internal_Shdr
*symtab_hdr
;
7665 struct elf_link_hash_entry
**sym_hashes
;
7668 bfd
*input_bfd
= sec
->owner
;
7669 struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
7670 Elf_Internal_Sym
*isym
= NULL
;
7672 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
7673 sym_hashes
= elf_sym_hashes (input_bfd
);
7675 /* Read the local symbols. */
7676 if (elf_bad_symtab (input_bfd
))
7678 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7682 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
7684 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
7685 if (isym
== NULL
&& nlocsyms
!= 0)
7687 isym
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, nlocsyms
, 0,
7693 /* Read the relocations. */
7694 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7695 (input_bfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
7696 info
->keep_memory
));
7697 if (relstart
== NULL
)
7702 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7704 for (rel
= relstart
; rel
< relend
; rel
++)
7706 unsigned long r_symndx
;
7708 struct elf_link_hash_entry
*h
;
7710 r_symndx
= ELF_R_SYM (rel
->r_info
);
7714 if (r_symndx
>= nlocsyms
7715 || ELF_ST_BIND (isym
[r_symndx
].st_info
) != STB_LOCAL
)
7717 h
= sym_hashes
[r_symndx
- extsymoff
];
7718 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, h
, NULL
);
7722 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, NULL
, &isym
[r_symndx
]);
7725 if (rsec
&& !rsec
->gc_mark
)
7727 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
7729 else if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
7738 if (elf_section_data (sec
)->relocs
!= relstart
)
7741 if (isym
!= NULL
&& symtab_hdr
->contents
!= (unsigned char *) isym
)
7743 if (! info
->keep_memory
)
7746 symtab_hdr
->contents
= (unsigned char *) isym
;
7753 /* The sweep phase of garbage collection. Remove all garbage sections. */
7756 elf_gc_sweep (info
, gc_sweep_hook
)
7757 struct bfd_link_info
*info
;
7758 boolean (*gc_sweep_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
7759 asection
*, const Elf_Internal_Rela
*));
7763 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7767 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7770 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7772 /* Keep special sections. Keep .debug sections. */
7773 if ((o
->flags
& SEC_LINKER_CREATED
)
7774 || (o
->flags
& SEC_DEBUGGING
))
7780 /* Skip sweeping sections already excluded. */
7781 if (o
->flags
& SEC_EXCLUDE
)
7784 /* Since this is early in the link process, it is simple
7785 to remove a section from the output. */
7786 o
->flags
|= SEC_EXCLUDE
;
7788 /* But we also have to update some of the relocation
7789 info we collected before. */
7791 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
7793 Elf_Internal_Rela
*internal_relocs
;
7796 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
7797 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
7798 if (internal_relocs
== NULL
)
7801 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
7803 if (elf_section_data (o
)->relocs
!= internal_relocs
)
7804 free (internal_relocs
);
7812 /* Remove the symbols that were in the swept sections from the dynamic
7813 symbol table. GCFIXME: Anyone know how to get them out of the
7814 static symbol table as well? */
7818 elf_link_hash_traverse (elf_hash_table (info
),
7819 elf_gc_sweep_symbol
,
7822 elf_hash_table (info
)->dynsymcount
= i
;
7828 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7831 elf_gc_sweep_symbol (h
, idxptr
)
7832 struct elf_link_hash_entry
*h
;
7835 int *idx
= (int *) idxptr
;
7837 if (h
->root
.type
== bfd_link_hash_warning
)
7838 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7840 if (h
->dynindx
!= -1
7841 && ((h
->root
.type
!= bfd_link_hash_defined
7842 && h
->root
.type
!= bfd_link_hash_defweak
)
7843 || h
->root
.u
.def
.section
->gc_mark
))
7844 h
->dynindx
= (*idx
)++;
7849 /* Propogate collected vtable information. This is called through
7850 elf_link_hash_traverse. */
7853 elf_gc_propagate_vtable_entries_used (h
, okp
)
7854 struct elf_link_hash_entry
*h
;
7857 if (h
->root
.type
== bfd_link_hash_warning
)
7858 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7860 /* Those that are not vtables. */
7861 if (h
->vtable_parent
== NULL
)
7864 /* Those vtables that do not have parents, we cannot merge. */
7865 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
7868 /* If we've already been done, exit. */
7869 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
7872 /* Make sure the parent's table is up to date. */
7873 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
7875 if (h
->vtable_entries_used
== NULL
)
7877 /* None of this table's entries were referenced. Re-use the
7879 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
7880 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
7887 /* Or the parent's entries into ours. */
7888 cu
= h
->vtable_entries_used
;
7890 pu
= h
->vtable_parent
->vtable_entries_used
;
7893 asection
*sec
= h
->root
.u
.def
.section
;
7894 struct elf_backend_data
*bed
= get_elf_backend_data (sec
->owner
);
7895 int file_align
= bed
->s
->file_align
;
7897 n
= h
->vtable_parent
->vtable_entries_size
/ file_align
;
7912 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
7913 struct elf_link_hash_entry
*h
;
7917 bfd_vma hstart
, hend
;
7918 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
7919 struct elf_backend_data
*bed
;
7922 if (h
->root
.type
== bfd_link_hash_warning
)
7923 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7925 /* Take care of both those symbols that do not describe vtables as
7926 well as those that are not loaded. */
7927 if (h
->vtable_parent
== NULL
)
7930 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
7931 || h
->root
.type
== bfd_link_hash_defweak
);
7933 sec
= h
->root
.u
.def
.section
;
7934 hstart
= h
->root
.u
.def
.value
;
7935 hend
= hstart
+ h
->size
;
7937 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7938 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true));
7940 return *(boolean
*) okp
= false;
7941 bed
= get_elf_backend_data (sec
->owner
);
7942 file_align
= bed
->s
->file_align
;
7944 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7946 for (rel
= relstart
; rel
< relend
; ++rel
)
7947 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
7949 /* If the entry is in use, do nothing. */
7950 if (h
->vtable_entries_used
7951 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
7953 bfd_vma entry
= (rel
->r_offset
- hstart
) / file_align
;
7954 if (h
->vtable_entries_used
[entry
])
7957 /* Otherwise, kill it. */
7958 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
7964 /* Do mark and sweep of unused sections. */
7967 elf_gc_sections (abfd
, info
)
7969 struct bfd_link_info
*info
;
7973 asection
* (*gc_mark_hook
)
7974 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7975 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
7977 if (!get_elf_backend_data (abfd
)->can_gc_sections
7978 || info
->relocateable
|| info
->emitrelocations
7979 || elf_hash_table (info
)->dynamic_sections_created
)
7982 /* Apply transitive closure to the vtable entry usage info. */
7983 elf_link_hash_traverse (elf_hash_table (info
),
7984 elf_gc_propagate_vtable_entries_used
,
7989 /* Kill the vtable relocations that were not used. */
7990 elf_link_hash_traverse (elf_hash_table (info
),
7991 elf_gc_smash_unused_vtentry_relocs
,
7996 /* Grovel through relocs to find out who stays ... */
7998 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
7999 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
8003 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
8006 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
8008 if (o
->flags
& SEC_KEEP
)
8009 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
8014 /* ... and mark SEC_EXCLUDE for those that go. */
8015 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
8021 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8024 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
8027 struct elf_link_hash_entry
*h
;
8030 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
8031 struct elf_link_hash_entry
**search
, *child
;
8032 bfd_size_type extsymcount
;
8034 /* The sh_info field of the symtab header tells us where the
8035 external symbols start. We don't care about the local symbols at
8037 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
8038 if (!elf_bad_symtab (abfd
))
8039 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
8041 sym_hashes
= elf_sym_hashes (abfd
);
8042 sym_hashes_end
= sym_hashes
+ extsymcount
;
8044 /* Hunt down the child symbol, which is in this section at the same
8045 offset as the relocation. */
8046 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
8048 if ((child
= *search
) != NULL
8049 && (child
->root
.type
== bfd_link_hash_defined
8050 || child
->root
.type
== bfd_link_hash_defweak
)
8051 && child
->root
.u
.def
.section
== sec
8052 && child
->root
.u
.def
.value
== offset
)
8056 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
8057 bfd_archive_filename (abfd
), sec
->name
,
8058 (unsigned long) offset
);
8059 bfd_set_error (bfd_error_invalid_operation
);
8065 /* This *should* only be the absolute section. It could potentially
8066 be that someone has defined a non-global vtable though, which
8067 would be bad. It isn't worth paging in the local symbols to be
8068 sure though; that case should simply be handled by the assembler. */
8070 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
8073 child
->vtable_parent
= h
;
8078 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8081 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
8082 bfd
*abfd ATTRIBUTE_UNUSED
;
8083 asection
*sec ATTRIBUTE_UNUSED
;
8084 struct elf_link_hash_entry
*h
;
8087 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8088 int file_align
= bed
->s
->file_align
;
8090 if (addend
>= h
->vtable_entries_size
)
8093 boolean
*ptr
= h
->vtable_entries_used
;
8095 /* While the symbol is undefined, we have to be prepared to handle
8097 if (h
->root
.type
== bfd_link_hash_undefined
)
8104 /* Oops! We've got a reference past the defined end of
8105 the table. This is probably a bug -- shall we warn? */
8110 /* Allocate one extra entry for use as a "done" flag for the
8111 consolidation pass. */
8112 bytes
= (size
/ file_align
+ 1) * sizeof (boolean
);
8116 ptr
= bfd_realloc (ptr
- 1, (bfd_size_type
) bytes
);
8122 oldbytes
= ((h
->vtable_entries_size
/ file_align
+ 1)
8123 * sizeof (boolean
));
8124 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
8128 ptr
= bfd_zmalloc ((bfd_size_type
) bytes
);
8133 /* And arrange for that done flag to be at index -1. */
8134 h
->vtable_entries_used
= ptr
+ 1;
8135 h
->vtable_entries_size
= size
;
8138 h
->vtable_entries_used
[addend
/ file_align
] = true;
8143 /* And an accompanying bit to work out final got entry offsets once
8144 we're done. Should be called from final_link. */
8147 elf_gc_common_finalize_got_offsets (abfd
, info
)
8149 struct bfd_link_info
*info
;
8152 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8155 /* The GOT offset is relative to the .got section, but the GOT header is
8156 put into the .got.plt section, if the backend uses it. */
8157 if (bed
->want_got_plt
)
8160 gotoff
= bed
->got_header_size
;
8162 /* Do the local .got entries first. */
8163 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
8165 bfd_signed_vma
*local_got
;
8166 bfd_size_type j
, locsymcount
;
8167 Elf_Internal_Shdr
*symtab_hdr
;
8169 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
8172 local_got
= elf_local_got_refcounts (i
);
8176 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
8177 if (elf_bad_symtab (i
))
8178 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
8180 locsymcount
= symtab_hdr
->sh_info
;
8182 for (j
= 0; j
< locsymcount
; ++j
)
8184 if (local_got
[j
] > 0)
8186 local_got
[j
] = gotoff
;
8187 gotoff
+= ARCH_SIZE
/ 8;
8190 local_got
[j
] = (bfd_vma
) -1;
8194 /* Then the global .got entries. .plt refcounts are handled by
8195 adjust_dynamic_symbol */
8196 elf_link_hash_traverse (elf_hash_table (info
),
8197 elf_gc_allocate_got_offsets
,
8202 /* We need a special top-level link routine to convert got reference counts
8203 to real got offsets. */
8206 elf_gc_allocate_got_offsets (h
, offarg
)
8207 struct elf_link_hash_entry
*h
;
8210 bfd_vma
*off
= (bfd_vma
*) offarg
;
8212 if (h
->root
.type
== bfd_link_hash_warning
)
8213 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8215 if (h
->got
.refcount
> 0)
8217 h
->got
.offset
= off
[0];
8218 off
[0] += ARCH_SIZE
/ 8;
8221 h
->got
.offset
= (bfd_vma
) -1;
8226 /* Many folk need no more in the way of final link than this, once
8227 got entry reference counting is enabled. */
8230 elf_gc_common_final_link (abfd
, info
)
8232 struct bfd_link_info
*info
;
8234 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
8237 /* Invoke the regular ELF backend linker to do all the work. */
8238 return elf_bfd_final_link (abfd
, info
);
8241 /* This function will be called though elf_link_hash_traverse to store
8242 all hash value of the exported symbols in an array. */
8245 elf_collect_hash_codes (h
, data
)
8246 struct elf_link_hash_entry
*h
;
8249 unsigned long **valuep
= (unsigned long **) data
;
8255 if (h
->root
.type
== bfd_link_hash_warning
)
8256 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8258 /* Ignore indirect symbols. These are added by the versioning code. */
8259 if (h
->dynindx
== -1)
8262 name
= h
->root
.root
.string
;
8263 p
= strchr (name
, ELF_VER_CHR
);
8266 alc
= bfd_malloc ((bfd_size_type
) (p
- name
+ 1));
8267 memcpy (alc
, name
, (size_t) (p
- name
));
8268 alc
[p
- name
] = '\0';
8272 /* Compute the hash value. */
8273 ha
= bfd_elf_hash (name
);
8275 /* Store the found hash value in the array given as the argument. */
8278 /* And store it in the struct so that we can put it in the hash table
8280 h
->elf_hash_value
= ha
;
8289 elf_reloc_symbol_deleted_p (offset
, cookie
)
8293 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
8295 if (rcookie
->bad_symtab
)
8296 rcookie
->rel
= rcookie
->rels
;
8298 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
8300 unsigned long r_symndx
= ELF_R_SYM (rcookie
->rel
->r_info
);
8302 if (! rcookie
->bad_symtab
)
8303 if (rcookie
->rel
->r_offset
> offset
)
8305 if (rcookie
->rel
->r_offset
!= offset
)
8308 if (r_symndx
>= rcookie
->locsymcount
8309 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
8311 struct elf_link_hash_entry
*h
;
8313 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
8315 while (h
->root
.type
== bfd_link_hash_indirect
8316 || h
->root
.type
== bfd_link_hash_warning
)
8317 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8319 if ((h
->root
.type
== bfd_link_hash_defined
8320 || h
->root
.type
== bfd_link_hash_defweak
)
8321 && elf_discarded_section (h
->root
.u
.def
.section
))
8328 /* It's not a relocation against a global symbol,
8329 but it could be a relocation against a local
8330 symbol for a discarded section. */
8332 Elf_Internal_Sym
*isym
;
8334 /* Need to: get the symbol; get the section. */
8335 isym
= &rcookie
->locsyms
[r_symndx
];
8336 if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
8338 isec
= section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
8339 if (isec
!= NULL
&& elf_discarded_section (isec
))
8348 /* Discard unneeded references to discarded sections.
8349 Returns true if any section's size was changed. */
8350 /* This function assumes that the relocations are in sorted order,
8351 which is true for all known assemblers. */
8354 elf_bfd_discard_info (output_bfd
, info
)
8356 struct bfd_link_info
*info
;
8358 struct elf_reloc_cookie cookie
;
8359 asection
*stab
, *eh
, *ehdr
;
8360 Elf_Internal_Shdr
*symtab_hdr
;
8361 struct elf_backend_data
*bed
;
8363 boolean ret
= false;
8364 boolean strip
= info
->strip
== strip_all
|| info
->strip
== strip_debugger
;
8366 if (info
->relocateable
8367 || info
->traditional_format
8368 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
8369 || ! is_elf_hash_table (info
))
8373 if (elf_hash_table (info
)->dynobj
!= NULL
)
8374 ehdr
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
8377 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
8379 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
8382 bed
= get_elf_backend_data (abfd
);
8384 if ((abfd
->flags
& DYNAMIC
) != 0)
8390 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
8391 if (eh
&& (eh
->_raw_size
== 0
8392 || bfd_is_abs_section (eh
->output_section
)))
8399 stab
= bfd_get_section_by_name (abfd
, ".stab");
8400 if (stab
&& (stab
->_raw_size
== 0
8401 || bfd_is_abs_section (stab
->output_section
)))
8405 || elf_section_data(stab
)->sec_info_type
!= ELF_INFO_TYPE_STABS
)
8407 && (strip
|| ! bed
->elf_backend_discard_info
))
8410 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8412 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
8413 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
8414 if (cookie
.bad_symtab
)
8416 cookie
.locsymcount
=
8417 symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
8418 cookie
.extsymoff
= 0;
8422 cookie
.locsymcount
= symtab_hdr
->sh_info
;
8423 cookie
.extsymoff
= symtab_hdr
->sh_info
;
8426 cookie
.locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8427 if (cookie
.locsyms
== NULL
&& cookie
.locsymcount
!= 0)
8429 cookie
.locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
8430 cookie
.locsymcount
, 0,
8432 if (cookie
.locsyms
== NULL
)
8438 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8439 (abfd
, stab
, (PTR
) NULL
, (Elf_Internal_Rela
*) NULL
,
8440 info
->keep_memory
));
8443 cookie
.rel
= cookie
.rels
;
8445 cookie
.rels
+ stab
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8446 if (_bfd_discard_section_stabs (abfd
, stab
,
8447 elf_section_data (stab
)->sec_info
,
8448 elf_reloc_symbol_deleted_p
,
8451 if (elf_section_data (stab
)->relocs
!= cookie
.rels
)
8460 cookie
.relend
= NULL
;
8461 if (eh
->reloc_count
)
8462 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8463 (abfd
, eh
, (PTR
) NULL
, (Elf_Internal_Rela
*) NULL
,
8464 info
->keep_memory
));
8467 cookie
.rel
= cookie
.rels
;
8469 cookie
.rels
+ eh
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8471 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
, ehdr
,
8472 elf_reloc_symbol_deleted_p
,
8475 /* Relocs have been edited. Ensure edited version is
8476 used later in relocate_section. */
8477 elf_section_data (eh
)->relocs
= cookie
.rels
;
8480 if (cookie
.rels
&& elf_section_data (eh
)->relocs
!= cookie
.rels
)
8484 if (bed
->elf_backend_discard_info
)
8486 if (bed
->elf_backend_discard_info (abfd
, &cookie
, info
))
8490 if (cookie
.locsyms
!= NULL
8491 && symtab_hdr
->contents
!= (unsigned char *) cookie
.locsyms
)
8493 if (! info
->keep_memory
)
8494 free (cookie
.locsyms
);
8496 symtab_hdr
->contents
= (unsigned char *) cookie
.locsyms
;
8500 if (ehdr
&& _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
, ehdr
))
8506 elf_section_ignore_discarded_relocs (sec
)
8509 struct elf_backend_data
*bed
;
8511 switch (elf_section_data (sec
)->sec_info_type
)
8513 case ELF_INFO_TYPE_STABS
:
8514 case ELF_INFO_TYPE_EH_FRAME
:
8520 bed
= get_elf_backend_data (sec
->owner
);
8521 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8522 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))