1 // layout.cc -- lay out output file sections for gold
18 // Layout_task_runner methods.
20 // Lay out the sections. This is called after all the input objects
24 Layout_task_runner::run(Workqueue
* workqueue
)
26 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file
* of
= new Output_file(this->options_
);
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_
, this->input_objects_
,
36 this->symtab_
, this->layout_
, workqueue
, of
);
41 Layout::Layout(const General_options
& options
)
42 : options_(options
), namepool_(), sympool_(), dynpool_(), signatures_(),
43 section_name_map_(), segment_list_(), section_list_(),
44 unattached_section_list_(), special_output_list_(),
45 tls_segment_(NULL
), symtab_section_(NULL
),
46 dynsym_section_(NULL
), dynamic_section_(NULL
), dynamic_data_(NULL
)
48 // Make space for more than enough segments for a typical file.
49 // This is just for efficiency--it's OK if we wind up needing more.
50 this->segment_list_
.reserve(12);
52 // We expect three unattached Output_data objects: the file header,
53 // the segment headers, and the section headers.
54 this->special_output_list_
.reserve(3);
57 // Hash a key we use to look up an output section mapping.
60 Layout::Hash_key::operator()(const Layout::Key
& k
) const
62 return k
.first
+ k
.second
.first
+ k
.second
.second
;
65 // Whether to include this section in the link.
67 template<int size
, bool big_endian
>
69 Layout::include_section(Object
*, const char*,
70 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
72 // Some section types are never linked. Some are only linked when
73 // doing a relocateable link.
74 switch (shdr
.get_sh_type())
76 case elfcpp::SHT_NULL
:
77 case elfcpp::SHT_SYMTAB
:
78 case elfcpp::SHT_DYNSYM
:
79 case elfcpp::SHT_STRTAB
:
80 case elfcpp::SHT_HASH
:
81 case elfcpp::SHT_DYNAMIC
:
82 case elfcpp::SHT_SYMTAB_SHNDX
:
85 case elfcpp::SHT_RELA
:
87 case elfcpp::SHT_GROUP
:
88 return this->options_
.is_relocatable();
91 // FIXME: Handle stripping debug sections here.
96 // Return an output section named NAME, or NULL if there is none.
99 Layout::find_output_section(const char* name
) const
101 for (Section_name_map::const_iterator p
= this->section_name_map_
.begin();
102 p
!= this->section_name_map_
.end();
104 if (strcmp(p
->second
->name(), name
) == 0)
109 // Return an output segment of type TYPE, with segment flags SET set
110 // and segment flags CLEAR clear. Return NULL if there is none.
113 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
114 elfcpp::Elf_Word clear
) const
116 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
117 p
!= this->segment_list_
.end();
119 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
120 && ((*p
)->flags() & set
) == set
121 && ((*p
)->flags() & clear
) == 0)
126 // Return the output section to use for section NAME with type TYPE
127 // and section flags FLAGS.
130 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
131 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
133 // We should ignore some flags.
134 flags
&= ~ (elfcpp::SHF_INFO_LINK
135 | elfcpp::SHF_LINK_ORDER
138 | elfcpp::SHF_STRINGS
);
140 const Key
key(name_key
, std::make_pair(type
, flags
));
141 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
142 std::pair
<Section_name_map::iterator
, bool> ins(
143 this->section_name_map_
.insert(v
));
146 return ins
.first
->second
;
149 // This is the first time we've seen this name/type/flags
151 Output_section
* os
= this->make_output_section(name
, type
, flags
);
152 ins
.first
->second
= os
;
157 // Return the output section to use for input section SHNDX, with name
158 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
159 // offset of this input section without the output section.
161 template<int size
, bool big_endian
>
163 Layout::layout(Relobj
* object
, unsigned int shndx
, const char* name
,
164 const elfcpp::Shdr
<size
, big_endian
>& shdr
, off_t
* off
)
166 if (!this->include_section(object
, name
, shdr
))
169 // If we are not doing a relocateable link, choose the name to use
170 // for the output section.
171 size_t len
= strlen(name
);
172 if (!this->options_
.is_relocatable())
173 name
= Layout::output_section_name(name
, &len
);
175 // FIXME: Handle SHF_OS_NONCONFORMING here.
177 // Canonicalize the section name.
178 Stringpool::Key name_key
;
179 name
= this->namepool_
.add(name
, len
, &name_key
);
181 // Find the output section. The output section is selected based on
182 // the section name, type, and flags.
183 Output_section
* os
= this->get_output_section(name
, name_key
,
185 shdr
.get_sh_flags());
187 // FIXME: Handle SHF_LINK_ORDER somewhere.
189 *off
= os
->add_input_section(object
, shndx
, name
, shdr
);
194 // Add POSD to an output section using NAME, TYPE, and FLAGS.
197 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
198 elfcpp::Elf_Xword flags
,
199 Output_section_data
* posd
)
201 // Canonicalize the name.
202 Stringpool::Key name_key
;
203 name
= this->namepool_
.add(name
, &name_key
);
205 Output_section
* os
= this->get_output_section(name
, name_key
, type
, flags
);
206 os
->add_output_section_data(posd
);
209 // Map section flags to segment flags.
212 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
214 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
215 if ((flags
& elfcpp::SHF_WRITE
) != 0)
217 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
222 // Make a new Output_section, and attach it to segments as
226 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
227 elfcpp::Elf_Xword flags
)
229 Output_section
* os
= new Output_section(name
, type
, flags
);
230 this->section_list_
.push_back(os
);
232 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
233 this->unattached_section_list_
.push_back(os
);
236 // This output section goes into a PT_LOAD segment.
238 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
240 // The only thing we really care about for PT_LOAD segments is
241 // whether or not they are writable, so that is how we search
242 // for them. People who need segments sorted on some other
243 // basis will have to wait until we implement a mechanism for
244 // them to describe the segments they want.
246 Segment_list::const_iterator p
;
247 for (p
= this->segment_list_
.begin();
248 p
!= this->segment_list_
.end();
251 if ((*p
)->type() == elfcpp::PT_LOAD
252 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
254 (*p
)->add_output_section(os
, seg_flags
);
259 if (p
== this->segment_list_
.end())
261 Output_segment
* oseg
= new Output_segment(elfcpp::PT_LOAD
,
263 this->segment_list_
.push_back(oseg
);
264 oseg
->add_output_section(os
, seg_flags
);
267 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
269 if (type
== elfcpp::SHT_NOTE
)
271 // See if we already have an equivalent PT_NOTE segment.
272 for (p
= this->segment_list_
.begin();
273 p
!= segment_list_
.end();
276 if ((*p
)->type() == elfcpp::PT_NOTE
277 && (((*p
)->flags() & elfcpp::PF_W
)
278 == (seg_flags
& elfcpp::PF_W
)))
280 (*p
)->add_output_section(os
, seg_flags
);
285 if (p
== this->segment_list_
.end())
287 Output_segment
* oseg
= new Output_segment(elfcpp::PT_NOTE
,
289 this->segment_list_
.push_back(oseg
);
290 oseg
->add_output_section(os
, seg_flags
);
294 // If we see a loadable SHF_TLS section, we create a PT_TLS
295 // segment. There can only be one such segment.
296 if ((flags
& elfcpp::SHF_TLS
) != 0)
298 if (this->tls_segment_
== NULL
)
300 this->tls_segment_
= new Output_segment(elfcpp::PT_TLS
,
302 this->segment_list_
.push_back(this->tls_segment_
);
304 this->tls_segment_
->add_output_section(os
, seg_flags
);
311 // Create the dynamic sections which are needed before we read the
315 Layout::create_initial_dynamic_sections(const Input_objects
* input_objects
,
316 Symbol_table
* symtab
)
318 if (!input_objects
->any_dynamic())
321 const char* dynamic_name
= this->namepool_
.add(".dynamic", NULL
);
322 this->dynamic_section_
= this->make_output_section(dynamic_name
,
325 | elfcpp::SHF_WRITE
));
327 symtab
->define_in_output_data(input_objects
->target(), "_DYNAMIC", NULL
,
328 this->dynamic_section_
, 0, 0,
329 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
330 elfcpp::STV_HIDDEN
, 0, false, false);
332 this->dynamic_data_
= new Output_data_dynamic(input_objects
->target(),
335 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
338 // Find the first read-only PT_LOAD segment, creating one if
342 Layout::find_first_load_seg()
344 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
345 p
!= this->segment_list_
.end();
348 if ((*p
)->type() == elfcpp::PT_LOAD
349 && ((*p
)->flags() & elfcpp::PF_R
) != 0
350 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
354 Output_segment
* load_seg
= new Output_segment(elfcpp::PT_LOAD
, elfcpp::PF_R
);
355 this->segment_list_
.push_back(load_seg
);
359 // Finalize the layout. When this is called, we have created all the
360 // output sections and all the output segments which are based on
361 // input sections. We have several things to do, and we have to do
362 // them in the right order, so that we get the right results correctly
365 // 1) Finalize the list of output segments and create the segment
368 // 2) Finalize the dynamic symbol table and associated sections.
370 // 3) Determine the final file offset of all the output segments.
372 // 4) Determine the final file offset of all the SHF_ALLOC output
375 // 5) Create the symbol table sections and the section name table
378 // 6) Finalize the symbol table: set symbol values to their final
379 // value and make a final determination of which symbols are going
380 // into the output symbol table.
382 // 7) Create the section table header.
384 // 8) Determine the final file offset of all the output sections which
385 // are not SHF_ALLOC, including the section table header.
387 // 9) Finalize the ELF file header.
389 // This function returns the size of the output file.
392 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
)
394 Target
* const target
= input_objects
->target();
395 const int size
= target
->get_size();
397 target
->finalize_sections(&this->options_
, this);
399 Output_segment
* phdr_seg
= NULL
;
400 if (input_objects
->any_dynamic())
402 // There was a dynamic object in the link. We need to create
403 // some information for the dynamic linker.
405 // Create the PT_PHDR segment which will hold the program
407 phdr_seg
= new Output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
408 this->segment_list_
.push_back(phdr_seg
);
410 // Create the dynamic symbol table, including the hash table.
411 Output_section
* dynstr
;
412 std::vector
<Symbol
*> dynamic_symbols
;
413 unsigned int local_dynamic_count
;
415 this->create_dynamic_symtab(target
, symtab
, &dynstr
,
416 &local_dynamic_count
, &dynamic_symbols
,
419 // Create the .interp section to hold the name of the
420 // interpreter, and put it in a PT_INTERP segment.
421 this->create_interp(target
);
423 // Finish the .dynamic section to hold the dynamic data, and put
424 // it in a PT_DYNAMIC segment.
425 this->finish_dynamic_section(input_objects
, symtab
);
427 // We should have added everything we need to the dynamic string
429 this->dynpool_
.set_string_offsets();
431 // Create the version sections. We can't do this until the
432 // dynamic string table is complete.
433 this->create_version_sections(target
, &versions
, local_dynamic_count
,
434 dynamic_symbols
, dynstr
);
437 // FIXME: Handle PT_GNU_STACK.
439 Output_segment
* load_seg
= this->find_first_load_seg();
441 // Lay out the segment headers.
442 bool big_endian
= target
->is_big_endian();
443 Output_segment_headers
* segment_headers
;
444 segment_headers
= new Output_segment_headers(size
, big_endian
,
445 this->segment_list_
);
446 load_seg
->add_initial_output_data(segment_headers
);
447 this->special_output_list_
.push_back(segment_headers
);
448 if (phdr_seg
!= NULL
)
449 phdr_seg
->add_initial_output_data(segment_headers
);
451 // Lay out the file header.
452 Output_file_header
* file_header
;
453 file_header
= new Output_file_header(size
,
459 load_seg
->add_initial_output_data(file_header
);
460 this->special_output_list_
.push_back(file_header
);
462 // We set the output section indexes in set_segment_offsets and
463 // set_section_offsets.
464 unsigned int shndx
= 1;
466 // Set the file offsets of all the segments, and all the sections
468 off_t off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
470 // Create the symbol table sections.
471 this->create_symtab_sections(size
, input_objects
, symtab
, &off
);
473 // Create the .shstrtab section.
474 Output_section
* shstrtab_section
= this->create_shstrtab();
476 // Set the file offsets of all the sections not associated with
478 off
= this->set_section_offsets(off
, &shndx
);
480 // Create the section table header.
481 Output_section_headers
* oshdrs
= this->create_shdrs(size
, big_endian
, &off
);
483 file_header
->set_section_info(oshdrs
, shstrtab_section
);
485 // Now we know exactly where everything goes in the output file.
486 Output_data::layout_complete();
491 // Return whether SEG1 should be before SEG2 in the output file. This
492 // is based entirely on the segment type and flags. When this is
493 // called the segment addresses has normally not yet been set.
496 Layout::segment_precedes(const Output_segment
* seg1
,
497 const Output_segment
* seg2
)
499 elfcpp::Elf_Word type1
= seg1
->type();
500 elfcpp::Elf_Word type2
= seg2
->type();
502 // The single PT_PHDR segment is required to precede any loadable
503 // segment. We simply make it always first.
504 if (type1
== elfcpp::PT_PHDR
)
506 gold_assert(type2
!= elfcpp::PT_PHDR
);
509 if (type2
== elfcpp::PT_PHDR
)
512 // The single PT_INTERP segment is required to precede any loadable
513 // segment. We simply make it always second.
514 if (type1
== elfcpp::PT_INTERP
)
516 gold_assert(type2
!= elfcpp::PT_INTERP
);
519 if (type2
== elfcpp::PT_INTERP
)
522 // We then put PT_LOAD segments before any other segments.
523 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
525 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
528 // We put the PT_TLS segment last, because that is where the dynamic
529 // linker expects to find it (this is just for efficiency; other
530 // positions would also work correctly).
531 if (type1
== elfcpp::PT_TLS
&& type2
!= elfcpp::PT_TLS
)
533 if (type2
== elfcpp::PT_TLS
&& type1
!= elfcpp::PT_TLS
)
536 const elfcpp::Elf_Word flags1
= seg1
->flags();
537 const elfcpp::Elf_Word flags2
= seg2
->flags();
539 // The order of non-PT_LOAD segments is unimportant. We simply sort
540 // by the numeric segment type and flags values. There should not
541 // be more than one segment with the same type and flags.
542 if (type1
!= elfcpp::PT_LOAD
)
545 return type1
< type2
;
546 gold_assert(flags1
!= flags2
);
547 return flags1
< flags2
;
550 // We sort PT_LOAD segments based on the flags. Readonly segments
551 // come before writable segments. Then executable segments come
552 // before non-executable segments. Then the unlikely case of a
553 // non-readable segment comes before the normal case of a readable
554 // segment. If there are multiple segments with the same type and
555 // flags, we require that the address be set, and we sort by
556 // virtual address and then physical address.
557 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
558 return (flags1
& elfcpp::PF_W
) == 0;
559 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
560 return (flags1
& elfcpp::PF_X
) != 0;
561 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
562 return (flags1
& elfcpp::PF_R
) == 0;
564 uint64_t vaddr1
= seg1
->vaddr();
565 uint64_t vaddr2
= seg2
->vaddr();
566 if (vaddr1
!= vaddr2
)
567 return vaddr1
< vaddr2
;
569 uint64_t paddr1
= seg1
->paddr();
570 uint64_t paddr2
= seg2
->paddr();
571 gold_assert(paddr1
!= paddr2
);
572 return paddr1
< paddr2
;
575 // Set the file offsets of all the segments, and all the sections they
576 // contain. They have all been created. LOAD_SEG must be be laid out
577 // first. Return the offset of the data to follow.
580 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
581 unsigned int *pshndx
)
583 // Sort them into the final order.
584 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
585 Layout::Compare_segments());
587 // Find the PT_LOAD segments, and set their addresses and offsets
588 // and their section's addresses and offsets.
589 uint64_t addr
= target
->text_segment_address();
591 bool was_readonly
= false;
592 for (Segment_list::iterator p
= this->segment_list_
.begin();
593 p
!= this->segment_list_
.end();
596 if ((*p
)->type() == elfcpp::PT_LOAD
)
598 if (load_seg
!= NULL
&& load_seg
!= *p
)
602 // If the last segment was readonly, and this one is not,
603 // then skip the address forward one page, maintaining the
604 // same position within the page. This lets us store both
605 // segments overlapping on a single page in the file, but
606 // the loader will put them on different pages in memory.
608 uint64_t orig_addr
= addr
;
609 uint64_t orig_off
= off
;
611 uint64_t aligned_addr
= addr
;
612 uint64_t abi_pagesize
= target
->abi_pagesize();
614 // FIXME: This should depend on the -n and -N options.
615 (*p
)->set_minimum_addralign(target
->common_pagesize());
617 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
619 uint64_t align
= (*p
)->addralign();
621 addr
= align_address(addr
, align
);
623 if ((addr
& (abi_pagesize
- 1)) != 0)
624 addr
= addr
+ abi_pagesize
;
627 unsigned int shndx_hold
= *pshndx
;
628 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
629 uint64_t new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
631 // Now that we know the size of this segment, we may be able
632 // to save a page in memory, at the cost of wasting some
633 // file space, by instead aligning to the start of a new
634 // page. Here we use the real machine page size rather than
635 // the ABI mandated page size.
637 if (aligned_addr
!= addr
)
639 uint64_t common_pagesize
= target
->common_pagesize();
640 uint64_t first_off
= (common_pagesize
642 & (common_pagesize
- 1)));
643 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
646 && ((aligned_addr
& ~ (common_pagesize
- 1))
647 != (new_addr
& ~ (common_pagesize
- 1)))
648 && first_off
+ last_off
<= common_pagesize
)
650 *pshndx
= shndx_hold
;
651 addr
= align_address(aligned_addr
, common_pagesize
);
652 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
653 new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
659 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
664 // Handle the non-PT_LOAD segments, setting their offsets from their
665 // section's offsets.
666 for (Segment_list::iterator p
= this->segment_list_
.begin();
667 p
!= this->segment_list_
.end();
670 if ((*p
)->type() != elfcpp::PT_LOAD
)
677 // Set the file offset of all the sections not associated with a
681 Layout::set_section_offsets(off_t off
, unsigned int* pshndx
)
683 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
684 p
!= this->unattached_section_list_
.end();
687 (*p
)->set_out_shndx(*pshndx
);
689 if ((*p
)->offset() != -1)
691 off
= align_address(off
, (*p
)->addralign());
692 (*p
)->set_address(0, off
);
693 off
+= (*p
)->data_size();
698 // Create the symbol table sections. Here we also set the final
699 // values of the symbols. At this point all the loadable sections are
703 Layout::create_symtab_sections(int size
, const Input_objects
* input_objects
,
704 Symbol_table
* symtab
,
711 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
716 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
723 off
= align_address(off
, align
);
724 off_t startoff
= off
;
726 // Save space for the dummy symbol at the start of the section. We
727 // never bother to write this out--it will just be left as zero.
729 unsigned int local_symbol_index
= 1;
731 // Add STT_SECTION symbols for each Output section which needs one.
732 for (Section_list::iterator p
= this->section_list_
.begin();
733 p
!= this->section_list_
.end();
736 if (!(*p
)->needs_symtab_index())
737 (*p
)->set_symtab_index(-1U);
740 (*p
)->set_symtab_index(local_symbol_index
);
741 ++local_symbol_index
;
746 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
747 p
!= input_objects
->relobj_end();
750 Task_lock_obj
<Object
> tlo(**p
);
751 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
754 off
+= (index
- local_symbol_index
) * symsize
;
755 local_symbol_index
= index
;
758 unsigned int local_symcount
= local_symbol_index
;
759 gold_assert(local_symcount
* symsize
== off
- startoff
);
762 size_t dyn_global_index
;
764 if (this->dynsym_section_
== NULL
)
767 dyn_global_index
= 0;
772 dyn_global_index
= this->dynsym_section_
->info();
773 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
774 dynoff
= this->dynsym_section_
->offset() + locsize
;
775 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
776 gold_assert(dyncount
* symsize
777 == this->dynsym_section_
->data_size() - locsize
);
780 off
= symtab
->finalize(local_symcount
, off
, dynoff
, dyn_global_index
,
781 dyncount
, &this->sympool_
);
783 this->sympool_
.set_string_offsets();
785 const char* symtab_name
= this->namepool_
.add(".symtab", NULL
);
786 Output_section
* osymtab
= this->make_output_section(symtab_name
,
789 this->symtab_section_
= osymtab
;
791 Output_section_data
* pos
= new Output_data_space(off
- startoff
,
793 osymtab
->add_output_section_data(pos
);
795 const char* strtab_name
= this->namepool_
.add(".strtab", NULL
);
796 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
800 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
801 ostrtab
->add_output_section_data(pstr
);
803 osymtab
->set_address(0, startoff
);
804 osymtab
->set_link_section(ostrtab
);
805 osymtab
->set_info(local_symcount
);
806 osymtab
->set_entsize(symsize
);
811 // Create the .shstrtab section, which holds the names of the
812 // sections. At the time this is called, we have created all the
813 // output sections except .shstrtab itself.
816 Layout::create_shstrtab()
818 // FIXME: We don't need to create a .shstrtab section if we are
819 // stripping everything.
821 const char* name
= this->namepool_
.add(".shstrtab", NULL
);
823 this->namepool_
.set_string_offsets();
825 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
827 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
828 os
->add_output_section_data(posd
);
833 // Create the section headers. SIZE is 32 or 64. OFF is the file
836 Output_section_headers
*
837 Layout::create_shdrs(int size
, bool big_endian
, off_t
* poff
)
839 Output_section_headers
* oshdrs
;
840 oshdrs
= new Output_section_headers(size
, big_endian
, this,
841 &this->segment_list_
,
842 &this->unattached_section_list_
,
844 off_t off
= align_address(*poff
, oshdrs
->addralign());
845 oshdrs
->set_address(0, off
);
846 off
+= oshdrs
->data_size();
848 this->special_output_list_
.push_back(oshdrs
);
852 // Create the dynamic symbol table.
855 Layout::create_dynamic_symtab(const Target
* target
, Symbol_table
* symtab
,
856 Output_section
**pdynstr
,
857 unsigned int* plocal_dynamic_count
,
858 std::vector
<Symbol
*>* pdynamic_symbols
,
861 // Count all the symbols in the dynamic symbol table, and set the
862 // dynamic symbol indexes.
864 // Skip symbol 0, which is always all zeroes.
865 unsigned int index
= 1;
867 // Add STT_SECTION symbols for each Output section which needs one.
868 for (Section_list::iterator p
= this->section_list_
.begin();
869 p
!= this->section_list_
.end();
872 if (!(*p
)->needs_dynsym_index())
873 (*p
)->set_dynsym_index(-1U);
876 (*p
)->set_dynsym_index(index
);
881 // FIXME: Some targets apparently require local symbols in the
882 // dynamic symbol table. Here is where we will have to count them,
883 // and set the dynamic symbol indexes, and add the names to
886 unsigned int local_symcount
= index
;
887 *plocal_dynamic_count
= local_symcount
;
889 // FIXME: We have to tell set_dynsym_indexes whether the
890 // -E/--export-dynamic option was used.
891 index
= symtab
->set_dynsym_indexes(&this->options_
, target
, index
,
892 pdynamic_symbols
, &this->dynpool_
,
897 const int size
= target
->get_size();
900 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
905 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
911 // Create the dynamic symbol table section.
913 const char* dynsym_name
= this->namepool_
.add(".dynsym", NULL
);
914 Output_section
* dynsym
= this->make_output_section(dynsym_name
,
918 Output_section_data
* odata
= new Output_data_space(index
* symsize
,
920 dynsym
->add_output_section_data(odata
);
922 dynsym
->set_info(local_symcount
);
923 dynsym
->set_entsize(symsize
);
924 dynsym
->set_addralign(align
);
926 this->dynsym_section_
= dynsym
;
928 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
929 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
930 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
932 // Create the dynamic string table section.
934 const char* dynstr_name
= this->namepool_
.add(".dynstr", NULL
);
935 Output_section
* dynstr
= this->make_output_section(dynstr_name
,
939 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
940 dynstr
->add_output_section_data(strdata
);
942 dynsym
->set_link_section(dynstr
);
943 this->dynamic_section_
->set_link_section(dynstr
);
945 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
946 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
950 // Create the hash tables.
952 // FIXME: We need an option to create a GNU hash table.
954 unsigned char* phash
;
955 unsigned int hashlen
;
956 Dynobj::create_elf_hash_table(target
, *pdynamic_symbols
, local_symcount
,
959 const char* hash_name
= this->namepool_
.add(".hash", NULL
);
960 Output_section
* hashsec
= this->make_output_section(hash_name
,
964 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
967 hashsec
->add_output_section_data(hashdata
);
969 hashsec
->set_link_section(dynsym
);
970 hashsec
->set_entsize(4);
972 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
975 // Create the version sections.
978 Layout::create_version_sections(const Target
* target
, const Versions
* versions
,
979 unsigned int local_symcount
,
980 const std::vector
<Symbol
*>& dynamic_symbols
,
981 const Output_section
* dynstr
)
983 if (!versions
->any_defs() && !versions
->any_needs())
986 if (target
->get_size() == 32)
988 if (target
->is_big_endian())
989 this->sized_create_version_sections
SELECT_SIZE_ENDIAN_NAME(32, true)(
990 versions
, local_symcount
, dynamic_symbols
, dynstr
991 SELECT_SIZE_ENDIAN(32, true));
993 this->sized_create_version_sections
SELECT_SIZE_ENDIAN_NAME(32, false)(
994 versions
, local_symcount
, dynamic_symbols
, dynstr
995 SELECT_SIZE_ENDIAN(32, false));
997 else if (target
->get_size() == 64)
999 if (target
->is_big_endian())
1000 this->sized_create_version_sections
SELECT_SIZE_ENDIAN_NAME(64, true)(
1001 versions
, local_symcount
, dynamic_symbols
, dynstr
1002 SELECT_SIZE_ENDIAN(64, true));
1004 this->sized_create_version_sections
SELECT_SIZE_ENDIAN_NAME(64, false)(
1005 versions
, local_symcount
, dynamic_symbols
, dynstr
1006 SELECT_SIZE_ENDIAN(64, false));
1012 // Create the version sections, sized version.
1014 template<int size
, bool big_endian
>
1016 Layout::sized_create_version_sections(
1017 const Versions
* versions
,
1018 unsigned int local_symcount
,
1019 const std::vector
<Symbol
*>& dynamic_symbols
,
1020 const Output_section
* dynstr
1023 const char* vname
= this->namepool_
.add(".gnu.version", NULL
);
1024 Output_section
* vsec
= this->make_output_section(vname
,
1025 elfcpp::SHT_GNU_versym
,
1028 unsigned char* vbuf
;
1030 versions
->symbol_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1031 &this->dynpool_
, local_symcount
, dynamic_symbols
, &vbuf
, &vsize
1032 SELECT_SIZE_ENDIAN(size
, big_endian
));
1034 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2);
1036 vsec
->add_output_section_data(vdata
);
1037 vsec
->set_entsize(2);
1038 vsec
->set_link_section(this->dynsym_section_
);
1040 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1041 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
1043 if (versions
->any_defs())
1045 const char* vdname
= this->namepool_
.add(".gnu.version_d", NULL
);
1046 Output_section
*vdsec
;
1047 vdsec
= this->make_output_section(vdname
, elfcpp::SHT_GNU_verdef
,
1050 unsigned char* vdbuf
;
1051 unsigned int vdsize
;
1052 unsigned int vdentries
;
1053 versions
->def_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1054 &this->dynpool_
, &vdbuf
, &vdsize
, &vdentries
1055 SELECT_SIZE_ENDIAN(size
, big_endian
));
1057 Output_section_data
* vddata
= new Output_data_const_buffer(vdbuf
,
1061 vdsec
->add_output_section_data(vddata
);
1062 vdsec
->set_link_section(dynstr
);
1063 vdsec
->set_info(vdentries
);
1065 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
1066 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
1069 if (versions
->any_needs())
1071 const char* vnname
= this->namepool_
.add(".gnu.version_r", NULL
);
1072 Output_section
* vnsec
;
1073 vnsec
= this->make_output_section(vnname
, elfcpp::SHT_GNU_verneed
,
1076 unsigned char* vnbuf
;
1077 unsigned int vnsize
;
1078 unsigned int vnentries
;
1079 versions
->need_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)
1080 (&this->dynpool_
, &vnbuf
, &vnsize
, &vnentries
1081 SELECT_SIZE_ENDIAN(size
, big_endian
));
1083 Output_section_data
* vndata
= new Output_data_const_buffer(vnbuf
,
1087 vnsec
->add_output_section_data(vndata
);
1088 vnsec
->set_link_section(dynstr
);
1089 vnsec
->set_info(vnentries
);
1091 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
1092 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
1096 // Create the .interp section and PT_INTERP segment.
1099 Layout::create_interp(const Target
* target
)
1101 const char* interp
= this->options_
.dynamic_linker();
1104 interp
= target
->dynamic_linker();
1105 gold_assert(interp
!= NULL
);
1108 size_t len
= strlen(interp
) + 1;
1110 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
1112 const char* interp_name
= this->namepool_
.add(".interp", NULL
);
1113 Output_section
* osec
= this->make_output_section(interp_name
,
1114 elfcpp::SHT_PROGBITS
,
1116 osec
->add_output_section_data(odata
);
1118 Output_segment
* oseg
= new Output_segment(elfcpp::PT_INTERP
, elfcpp::PF_R
);
1119 this->segment_list_
.push_back(oseg
);
1120 oseg
->add_initial_output_section(osec
, elfcpp::PF_R
);
1123 // Finish the .dynamic section and PT_DYNAMIC segment.
1126 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
1127 const Symbol_table
* symtab
)
1129 Output_segment
* oseg
= new Output_segment(elfcpp::PT_DYNAMIC
,
1130 elfcpp::PF_R
| elfcpp::PF_W
);
1131 this->segment_list_
.push_back(oseg
);
1132 oseg
->add_initial_output_section(this->dynamic_section_
,
1133 elfcpp::PF_R
| elfcpp::PF_W
);
1135 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1137 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
1138 p
!= input_objects
->dynobj_end();
1141 // FIXME: Handle --as-needed.
1142 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
1145 // FIXME: Support --init and --fini.
1146 Symbol
* sym
= symtab
->lookup("_init");
1147 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
1148 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
1150 sym
= symtab
->lookup("_fini");
1151 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
1152 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
1154 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1156 // Add a DT_RPATH entry if needed.
1157 const General_options::Dir_list
& rpath(this->options_
.rpath());
1160 std::string rpath_val
;
1161 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
1165 if (rpath_val
.empty())
1169 // Eliminate duplicates.
1170 General_options::Dir_list::const_iterator q
;
1171 for (q
= rpath
.begin(); q
!= p
; ++q
)
1172 if (strcmp(*q
, *p
) == 0)
1182 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
1186 // The mapping of .gnu.linkonce section names to real section names.
1188 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1189 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
1191 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1192 MAPPING_INIT("t", ".text"),
1193 MAPPING_INIT("r", ".rodata"),
1194 MAPPING_INIT("d", ".data"),
1195 MAPPING_INIT("b", ".bss"),
1196 MAPPING_INIT("s", ".sdata"),
1197 MAPPING_INIT("sb", ".sbss"),
1198 MAPPING_INIT("s2", ".sdata2"),
1199 MAPPING_INIT("sb2", ".sbss2"),
1200 MAPPING_INIT("wi", ".debug_info"),
1201 MAPPING_INIT("td", ".tdata"),
1202 MAPPING_INIT("tb", ".tbss"),
1203 MAPPING_INIT("lr", ".lrodata"),
1204 MAPPING_INIT("l", ".ldata"),
1205 MAPPING_INIT("lb", ".lbss"),
1209 const int Layout::linkonce_mapping_count
=
1210 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
1212 // Return the name of the output section to use for a .gnu.linkonce
1213 // section. This is based on the default ELF linker script of the old
1214 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1215 // to ".text". Set *PLEN to the length of the name. *PLEN is
1216 // initialized to the length of NAME.
1219 Layout::linkonce_output_name(const char* name
, size_t *plen
)
1221 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
1225 const Linkonce_mapping
* plm
= linkonce_mapping
;
1226 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
1228 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
1237 // Choose the output section name to use given an input section name.
1238 // Set *PLEN to the length of the name. *PLEN is initialized to the
1242 Layout::output_section_name(const char* name
, size_t* plen
)
1244 if (Layout::is_linkonce(name
))
1246 // .gnu.linkonce sections are laid out as though they were named
1247 // for the sections are placed into.
1248 return Layout::linkonce_output_name(name
, plen
);
1251 // If the section name has no '.', or only an initial '.', we use
1252 // the name unchanged (i.e., ".text" is unchanged).
1254 // Otherwise, if the section name does not include ".rel", we drop
1255 // the last '.' and everything that follows (i.e., ".text.XXX"
1256 // becomes ".text").
1258 // Otherwise, if the section name has zero or one '.' after the
1259 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1262 // Otherwise, we drop the last '.' and everything that follows
1263 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1265 const char* s
= name
;
1268 const char* sdot
= strchr(s
, '.');
1272 const char* srel
= strstr(s
, ".rel");
1275 *plen
= sdot
- name
;
1279 sdot
= strchr(srel
+ 1, '.');
1282 sdot
= strchr(sdot
+ 1, '.');
1286 *plen
= sdot
- name
;
1290 // Record the signature of a comdat section, and return whether to
1291 // include it in the link. If GROUP is true, this is a regular
1292 // section group. If GROUP is false, this is a group signature
1293 // derived from the name of a linkonce section. We want linkonce
1294 // signatures and group signatures to block each other, but we don't
1295 // want a linkonce signature to block another linkonce signature.
1298 Layout::add_comdat(const char* signature
, bool group
)
1300 std::string
sig(signature
);
1301 std::pair
<Signatures::iterator
, bool> ins(
1302 this->signatures_
.insert(std::make_pair(sig
, group
)));
1306 // This is the first time we've seen this signature.
1310 if (ins
.first
->second
)
1312 // We've already seen a real section group with this signature.
1317 // This is a real section group, and we've already seen a
1318 // linkonce section with tihs signature. Record that we've seen
1319 // a section group, and don't include this section group.
1320 ins
.first
->second
= true;
1325 // We've already seen a linkonce section and this is a linkonce
1326 // section. These don't block each other--this may be the same
1327 // symbol name with different section types.
1332 // Write out data not associated with a section or the symbol table.
1335 Layout::write_data(const Symbol_table
* symtab
, const Target
* target
,
1336 Output_file
* of
) const
1338 const Output_section
* symtab_section
= this->symtab_section_
;
1339 for (Section_list::const_iterator p
= this->section_list_
.begin();
1340 p
!= this->section_list_
.end();
1343 if ((*p
)->needs_symtab_index())
1345 gold_assert(symtab_section
!= NULL
);
1346 unsigned int index
= (*p
)->symtab_index();
1347 gold_assert(index
> 0 && index
!= -1U);
1348 off_t off
= (symtab_section
->offset()
1349 + index
* symtab_section
->entsize());
1350 symtab
->write_section_symbol(target
, *p
, of
, off
);
1354 const Output_section
* dynsym_section
= this->dynsym_section_
;
1355 for (Section_list::const_iterator p
= this->section_list_
.begin();
1356 p
!= this->section_list_
.end();
1359 if ((*p
)->needs_dynsym_index())
1361 gold_assert(dynsym_section
!= NULL
);
1362 unsigned int index
= (*p
)->dynsym_index();
1363 gold_assert(index
> 0 && index
!= -1U);
1364 off_t off
= (dynsym_section
->offset()
1365 + index
* dynsym_section
->entsize());
1366 symtab
->write_section_symbol(target
, *p
, of
, off
);
1370 // Write out the Output_sections. Most won't have anything to
1371 // write, since most of the data will come from input sections which
1372 // are handled elsewhere. But some Output_sections do have
1374 for (Section_list::const_iterator p
= this->section_list_
.begin();
1375 p
!= this->section_list_
.end();
1379 // Write out the Output_data which are not in an Output_section.
1380 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
1381 p
!= this->special_output_list_
.end();
1386 // Write_data_task methods.
1388 // We can always run this task.
1390 Task::Is_runnable_type
1391 Write_data_task::is_runnable(Workqueue
*)
1396 // We need to unlock FINAL_BLOCKER when finished.
1399 Write_data_task::locks(Workqueue
* workqueue
)
1401 return new Task_locker_block(*this->final_blocker_
, workqueue
);
1404 // Run the task--write out the data.
1407 Write_data_task::run(Workqueue
*)
1409 this->layout_
->write_data(this->symtab_
, this->target_
, this->of_
);
1412 // Write_symbols_task methods.
1414 // We can always run this task.
1416 Task::Is_runnable_type
1417 Write_symbols_task::is_runnable(Workqueue
*)
1422 // We need to unlock FINAL_BLOCKER when finished.
1425 Write_symbols_task::locks(Workqueue
* workqueue
)
1427 return new Task_locker_block(*this->final_blocker_
, workqueue
);
1430 // Run the task--write out the symbols.
1433 Write_symbols_task::run(Workqueue
*)
1435 this->symtab_
->write_globals(this->target_
, this->sympool_
, this->dynpool_
,
1439 // Close_task_runner methods.
1441 // Run the task--close the file.
1444 Close_task_runner::run(Workqueue
*)
1449 // Instantiate the templates we need. We could use the configure
1450 // script to restrict this to only the ones for implemented targets.
1454 Layout::layout
<32, false>(Relobj
* object
, unsigned int shndx
, const char* name
,
1455 const elfcpp::Shdr
<32, false>& shdr
, off_t
*);
1459 Layout::layout
<32, true>(Relobj
* object
, unsigned int shndx
, const char* name
,
1460 const elfcpp::Shdr
<32, true>& shdr
, off_t
*);
1464 Layout::layout
<64, false>(Relobj
* object
, unsigned int shndx
, const char* name
,
1465 const elfcpp::Shdr
<64, false>& shdr
, off_t
*);
1469 Layout::layout
<64, true>(Relobj
* object
, unsigned int shndx
, const char* name
,
1470 const elfcpp::Shdr
<64, true>& shdr
, off_t
*);
1473 } // End namespace gold.