1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
55 @* symbol handling functions::
59 Reading Symbols, Writing Symbols, Symbols, Symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
77 | if (storage_needed == 0) {
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
126 | ptrs[1] = (asymbol *)0;
128 | bfd_set_symtab(abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct symbol_cache_entry
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
207 . {* Attributes of a symbol: *}
209 .#define BSF_NO_FLAGS 0x00
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
247 . {* The symbol used to be a common symbol, but now it is
249 .#define BSF_OLD_COMMON 0x200
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
260 .#define BSF_NOT_AT_END 0x400
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
284 .#define BSF_OBJECT 0x10000
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
289 .#define BSF_DEBUGGING_RELOC 0x20000
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
298 . {* Back end special data. *}
312 #include "aout/stab_gnu.h"
314 static char coff_section_type
PARAMS ((const char *));
315 static int cmpindexentry
PARAMS ((const PTR
, const PTR
));
320 symbol handling functions, , typedef asymbol, Symbols
322 Symbol handling functions
327 bfd_get_symtab_upper_bound
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
345 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
348 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return false.
353 bfd_is_local_label (abfd
, sym
)
357 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
358 starts with '.' is local. This would accidentally catch section names
359 if we didn't reject them here. */
360 if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_SECTION_SYM
)) != 0)
362 if (sym
->name
== NULL
)
364 return bfd_is_local_label_name (abfd
, sym
->name
);
369 bfd_is_local_label_name
372 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
375 Return true if a symbol with the name @var{name} in the BFD
376 @var{abfd} is a compiler generated local label, else return
377 false. This just checks whether the name has the form of a
380 .#define bfd_is_local_label_name(abfd, name) \
381 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
386 bfd_canonicalize_symtab
389 Read the symbols from the BFD @var{abfd}, and fills in
390 the vector @var{location} with pointers to the symbols and
392 Return the actual number of symbol pointers, not
395 .#define bfd_canonicalize_symtab(abfd, location) \
396 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
406 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
409 Arrange that when the output BFD @var{abfd} is closed,
410 the table @var{location} of @var{count} pointers to symbols
415 bfd_set_symtab (abfd
, location
, symcount
)
418 unsigned int symcount
;
420 if ((abfd
->format
!= bfd_object
) || (bfd_read_p (abfd
)))
422 bfd_set_error (bfd_error_invalid_operation
);
426 bfd_get_outsymbols (abfd
) = location
;
427 bfd_get_symcount (abfd
) = symcount
;
433 bfd_print_symbol_vandf
436 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
439 Print the value and flags of the @var{symbol} supplied to the
443 bfd_print_symbol_vandf (abfd
, arg
, symbol
)
448 FILE *file
= (FILE *) arg
;
449 flagword type
= symbol
->flags
;
450 if (symbol
->section
!= (asection
*) NULL
)
452 bfd_fprintf_vma (abfd
, file
,
453 symbol
->value
+ symbol
->section
->vma
);
457 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
460 /* This presumes that a symbol can not be both BSF_DEBUGGING and
461 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
463 fprintf (file
, " %c%c%c%c%c%c%c",
465 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
466 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
467 (type
& BSF_WEAK
) ? 'w' : ' ',
468 (type
& BSF_CONSTRUCTOR
) ? 'C' : ' ',
469 (type
& BSF_WARNING
) ? 'W' : ' ',
470 (type
& BSF_INDIRECT
) ? 'I' : ' ',
471 (type
& BSF_DEBUGGING
) ? 'd' : (type
& BSF_DYNAMIC
) ? 'D' : ' ',
472 ((type
& BSF_FUNCTION
)
476 : ((type
& BSF_OBJECT
) ? 'O' : ' '))));
481 bfd_make_empty_symbol
484 Create a new <<asymbol>> structure for the BFD @var{abfd}
485 and return a pointer to it.
487 This routine is necessary because each back end has private
488 information surrounding the <<asymbol>>. Building your own
489 <<asymbol>> and pointing to it will not create the private
490 information, and will cause problems later on.
492 .#define bfd_make_empty_symbol(abfd) \
493 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
498 bfd_make_debug_symbol
501 Create a new <<asymbol>> structure for the BFD @var{abfd},
502 to be used as a debugging symbol. Further details of its use have
503 yet to be worked out.
505 .#define bfd_make_debug_symbol(abfd,ptr,size) \
506 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
509 struct section_to_type
515 /* Map section names to POSIX/BSD single-character symbol types.
516 This table is probably incomplete. It is sorted for convenience of
517 adding entries. Since it is so short, a linear search is used. */
518 static CONST
struct section_to_type stt
[] =
522 {"zerovars", 'b'}, /* MRI .bss */
524 {"vars", 'd'}, /* MRI .data */
525 {".rdata", 'r'}, /* Read only data. */
526 {".rodata", 'r'}, /* Read only data. */
527 {".sbss", 's'}, /* Small BSS (uninitialized data). */
528 {".scommon", 'c'}, /* Small common. */
529 {".sdata", 'g'}, /* Small initialized data. */
531 {"code", 't'}, /* MRI .text */
532 {".drectve", 'i'}, /* MSVC's .drective section */
533 {".idata", 'i'}, /* MSVC's .idata (import) section */
534 {".edata", 'e'}, /* MSVC's .edata (export) section */
535 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
536 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
540 /* Return the single-character symbol type corresponding to
541 section S, or '?' for an unknown COFF section.
543 Check for any leading string which matches, so .text5 returns
544 't' as well as .text */
547 coff_section_type (s
)
550 CONST
struct section_to_type
*t
;
552 for (t
= &stt
[0]; t
->section
; t
++)
553 if (!strncmp (s
, t
->section
, strlen (t
->section
)))
560 #define islower(c) ((c) >= 'a' && (c) <= 'z')
563 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
571 Return a character corresponding to the symbol
572 class of @var{symbol}, or '?' for an unknown class.
575 int bfd_decode_symclass(asymbol *symbol);
578 bfd_decode_symclass (symbol
)
583 if (bfd_is_com_section (symbol
->section
))
585 if (bfd_is_und_section (symbol
->section
))
587 if (symbol
->flags
& BSF_WEAK
)
589 /* If weak, determine if it's specifically an object
590 or non-object weak. */
591 if (symbol
->flags
& BSF_OBJECT
)
599 if (bfd_is_ind_section (symbol
->section
))
601 if (symbol
->flags
& BSF_WEAK
)
603 /* If weak, determine if it's specifically an object
604 or non-object weak. */
605 if (symbol
->flags
& BSF_OBJECT
)
610 if (!(symbol
->flags
& (BSF_GLOBAL
| BSF_LOCAL
)))
613 if (bfd_is_abs_section (symbol
->section
))
615 else if (symbol
->section
)
616 c
= coff_section_type (symbol
->section
->name
);
619 if (symbol
->flags
& BSF_GLOBAL
)
623 /* We don't have to handle these cases just yet, but we will soon:
635 bfd_is_undefined_symclass
638 Returns non-zero if the class symbol returned by
639 bfd_decode_symclass represents an undefined symbol.
640 Returns zero otherwise.
643 boolean bfd_is_undefined_symclass (int symclass);
647 bfd_is_undefined_symclass (symclass
)
650 return symclass
== 'U' || symclass
== 'w' || symclass
== 'v';
658 Fill in the basic info about symbol that nm needs.
659 Additional info may be added by the back-ends after
660 calling this function.
663 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
667 bfd_symbol_info (symbol
, ret
)
671 ret
->type
= bfd_decode_symclass (symbol
);
673 if (bfd_is_undefined_symclass (ret
->type
))
676 ret
->value
= symbol
->value
+ symbol
->section
->vma
;
678 ret
->name
= symbol
->name
;
683 bfd_copy_private_symbol_data
686 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
689 Copy private symbol information from @var{isym} in the BFD
690 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
691 Return <<true>> on success, <<false>> on error. Possible error
694 o <<bfd_error_no_memory>> -
695 Not enough memory exists to create private data for @var{osec}.
697 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
698 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
699 . (ibfd, isymbol, obfd, osymbol))
703 /* The generic version of the function which returns mini symbols.
704 This is used when the backend does not provide a more efficient
705 version. It just uses BFD asymbol structures as mini symbols. */
708 _bfd_generic_read_minisymbols (abfd
, dynamic
, minisymsp
, sizep
)
715 asymbol
**syms
= NULL
;
719 storage
= bfd_get_dynamic_symtab_upper_bound (abfd
);
721 storage
= bfd_get_symtab_upper_bound (abfd
);
725 syms
= (asymbol
**) bfd_malloc ((size_t) storage
);
730 symcount
= bfd_canonicalize_dynamic_symtab (abfd
, syms
);
732 symcount
= bfd_canonicalize_symtab (abfd
, syms
);
736 *minisymsp
= (PTR
) syms
;
737 *sizep
= sizeof (asymbol
*);
746 /* The generic version of the function which converts a minisymbol to
747 an asymbol. We don't worry about the sym argument we are passed;
748 we just return the asymbol the minisymbol points to. */
752 _bfd_generic_minisymbol_to_symbol (abfd
, dynamic
, minisym
, sym
)
753 bfd
*abfd ATTRIBUTE_UNUSED
;
754 boolean dynamic ATTRIBUTE_UNUSED
;
756 asymbol
*sym ATTRIBUTE_UNUSED
;
758 return *(asymbol
**) minisym
;
761 /* Look through stabs debugging information in .stab and .stabstr
762 sections to find the source file and line closest to a desired
763 location. This is used by COFF and ELF targets. It sets *pfound
764 to true if it finds some information. The *pinfo field is used to
765 pass cached information in and out of this routine; this first time
766 the routine is called for a BFD, *pinfo should be NULL. The value
767 placed in *pinfo should be saved with the BFD, and passed back each
768 time this function is called. */
770 /* We use a cache by default. */
772 #define ENABLE_CACHING
774 /* We keep an array of indexentry structures to record where in the
775 stabs section we should look to find line number information for a
776 particular address. */
783 char *directory_name
;
788 /* Compare two indexentry structures. This is called via qsort. */
795 const struct indexentry
*contestantA
= (const struct indexentry
*) a
;
796 const struct indexentry
*contestantB
= (const struct indexentry
*) b
;
798 if (contestantA
->val
< contestantB
->val
)
800 else if (contestantA
->val
> contestantB
->val
)
806 /* A pointer to this structure is stored in *pinfo. */
808 struct stab_find_info
810 /* The .stab section. */
812 /* The .stabstr section. */
814 /* The contents of the .stab section. */
816 /* The contents of the .stabstr section. */
819 /* A table that indexes stabs by memory address. */
820 struct indexentry
*indextable
;
821 /* The number of entries in indextable. */
824 #ifdef ENABLE_CACHING
825 /* Cached values to restart quickly. */
826 struct indexentry
*cached_indexentry
;
827 bfd_vma cached_offset
;
828 bfd_byte
*cached_stab
;
829 char *cached_file_name
;
832 /* Saved ptr to malloc'ed filename. */
837 _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
, pfound
,
838 pfilename
, pfnname
, pline
, pinfo
)
844 const char **pfilename
;
845 const char **pfnname
;
849 struct stab_find_info
*info
;
850 bfd_size_type stabsize
, strsize
;
851 bfd_byte
*stab
, *str
;
852 bfd_byte
*last_stab
= NULL
;
853 bfd_size_type stroff
;
854 struct indexentry
*indexentry
;
855 char *directory_name
, *file_name
;
859 *pfilename
= bfd_get_filename (abfd
);
863 /* Stabs entries use a 12 byte format:
864 4 byte string table index
866 1 byte stab other field
867 2 byte stab desc field
869 FIXME: This will have to change for a 64 bit object format.
871 The stabs symbols are divided into compilation units. For the
872 first entry in each unit, the type of 0, the value is the length
873 of the string table for this unit, and the desc field is the
874 number of stabs symbols for this unit. */
881 #define STABSIZE (12)
883 info
= (struct stab_find_info
*) *pinfo
;
886 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
888 /* No stabs debugging information. */
892 stabsize
= info
->stabsec
->_raw_size
;
893 strsize
= info
->strsec
->_raw_size
;
897 long reloc_size
, reloc_count
;
898 arelent
**reloc_vector
;
902 char *directory_name
;
905 info
= (struct stab_find_info
*) bfd_zalloc (abfd
, sizeof *info
);
909 /* FIXME: When using the linker --split-by-file or
910 --split-by-reloc options, it is possible for the .stab and
911 .stabstr sections to be split. We should handle that. */
913 info
->stabsec
= bfd_get_section_by_name (abfd
, ".stab");
914 info
->strsec
= bfd_get_section_by_name (abfd
, ".stabstr");
916 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
918 /* No stabs debugging information. Set *pinfo so that we
919 can return quickly in the info != NULL case above. */
924 stabsize
= info
->stabsec
->_raw_size
;
925 strsize
= info
->strsec
->_raw_size
;
927 info
->stabs
= (bfd_byte
*) bfd_alloc (abfd
, stabsize
);
928 info
->strs
= (bfd_byte
*) bfd_alloc (abfd
, strsize
);
929 if (info
->stabs
== NULL
|| info
->strs
== NULL
)
932 if (! bfd_get_section_contents (abfd
, info
->stabsec
, info
->stabs
, 0,
934 || ! bfd_get_section_contents (abfd
, info
->strsec
, info
->strs
, 0,
938 /* If this is a relocateable object file, we have to relocate
939 the entries in .stab. This should always be simple 32 bit
940 relocations against symbols defined in this object file, so
941 this should be no big deal. */
942 reloc_size
= bfd_get_reloc_upper_bound (abfd
, info
->stabsec
);
945 reloc_vector
= (arelent
**) bfd_malloc (reloc_size
);
946 if (reloc_vector
== NULL
&& reloc_size
!= 0)
948 reloc_count
= bfd_canonicalize_reloc (abfd
, info
->stabsec
, reloc_vector
,
952 if (reloc_vector
!= NULL
)
960 for (pr
= reloc_vector
; *pr
!= NULL
; pr
++)
967 if (r
->howto
->rightshift
!= 0
968 || r
->howto
->size
!= 2
969 || r
->howto
->bitsize
!= 32
970 || r
->howto
->pc_relative
971 || r
->howto
->bitpos
!= 0
972 || r
->howto
->dst_mask
!= 0xffffffff)
974 (*_bfd_error_handler
)
975 (_("Unsupported .stab relocation"));
976 bfd_set_error (bfd_error_invalid_operation
);
977 if (reloc_vector
!= NULL
)
982 val
= bfd_get_32 (abfd
, info
->stabs
+ r
->address
);
983 val
&= r
->howto
->src_mask
;
984 sym
= *r
->sym_ptr_ptr
;
985 val
+= sym
->value
+ sym
->section
->vma
+ r
->addend
;
986 bfd_put_32 (abfd
, val
, info
->stabs
+ r
->address
);
990 if (reloc_vector
!= NULL
)
993 /* First time through this function, build a table matching
994 function VM addresses to stabs, then sort based on starting
995 VM address. Do this in two passes: once to count how many
996 table entries we'll need, and a second to actually build the
999 info
->indextablesize
= 0;
1001 for (stab
= info
->stabs
; stab
< info
->stabs
+ stabsize
; stab
+= STABSIZE
)
1003 if (stab
[TYPEOFF
] == N_SO
)
1005 /* N_SO with null name indicates EOF */
1006 if (bfd_get_32 (abfd
, stab
+ STRDXOFF
) == 0)
1009 /* if we did not see a function def, leave space for one. */
1011 ++info
->indextablesize
;
1015 /* two N_SO's in a row is a filename and directory. Skip */
1016 if (stab
+ STABSIZE
< info
->stabs
+ stabsize
1017 && *(stab
+ STABSIZE
+ TYPEOFF
) == N_SO
)
1022 else if (stab
[TYPEOFF
] == N_FUN
)
1025 ++info
->indextablesize
;
1030 ++info
->indextablesize
;
1032 if (info
->indextablesize
== 0)
1034 ++info
->indextablesize
;
1036 info
->indextable
= ((struct indexentry
*)
1038 (sizeof (struct indexentry
)
1039 * info
->indextablesize
)));
1040 if (info
->indextable
== NULL
)
1044 directory_name
= NULL
;
1047 for (i
= 0, stroff
= 0, stab
= info
->stabs
, str
= info
->strs
;
1048 i
< info
->indextablesize
&& stab
< info
->stabs
+ stabsize
;
1051 switch (stab
[TYPEOFF
])
1054 /* This is the first entry in a compilation unit. */
1055 if ((bfd_size_type
) ((info
->strs
+ strsize
) - str
) < stroff
)
1058 stroff
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1062 /* The main file name. */
1064 /* The following code creates a new indextable entry with
1065 a NULL function name if there were no N_FUNs in a file.
1066 Note that a N_SO without a file name is an EOF and
1067 there could be 2 N_SO following it with the new filename
1071 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1072 info
->indextable
[i
].stab
= last_stab
;
1073 info
->indextable
[i
].str
= str
;
1074 info
->indextable
[i
].directory_name
= directory_name
;
1075 info
->indextable
[i
].file_name
= file_name
;
1076 info
->indextable
[i
].function_name
= NULL
;
1081 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1082 if (*file_name
== '\0')
1084 directory_name
= NULL
;
1091 if (stab
+ STABSIZE
>= info
->stabs
+ stabsize
1092 || *(stab
+ STABSIZE
+ TYPEOFF
) != N_SO
)
1094 directory_name
= NULL
;
1098 /* Two consecutive N_SOs are a directory and a
1101 directory_name
= file_name
;
1102 file_name
= ((char *) str
1103 + bfd_get_32 (abfd
, stab
+ STRDXOFF
));
1109 /* The name of an include file. */
1110 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1114 /* A function name. */
1116 name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1121 function_name
= name
;
1126 info
->indextable
[i
].val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1127 info
->indextable
[i
].stab
= stab
;
1128 info
->indextable
[i
].str
= str
;
1129 info
->indextable
[i
].directory_name
= directory_name
;
1130 info
->indextable
[i
].file_name
= file_name
;
1131 info
->indextable
[i
].function_name
= function_name
;
1139 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1140 info
->indextable
[i
].stab
= last_stab
;
1141 info
->indextable
[i
].str
= str
;
1142 info
->indextable
[i
].directory_name
= directory_name
;
1143 info
->indextable
[i
].file_name
= file_name
;
1144 info
->indextable
[i
].function_name
= NULL
;
1148 info
->indextable
[i
].val
= (bfd_vma
) -1;
1149 info
->indextable
[i
].stab
= info
->stabs
+ stabsize
;
1150 info
->indextable
[i
].str
= str
;
1151 info
->indextable
[i
].directory_name
= NULL
;
1152 info
->indextable
[i
].file_name
= NULL
;
1153 info
->indextable
[i
].function_name
= NULL
;
1156 info
->indextablesize
= i
;
1157 qsort (info
->indextable
, i
, sizeof (struct indexentry
), cmpindexentry
);
1159 *pinfo
= (PTR
) info
;
1162 /* We are passed a section relative offset. The offsets in the
1163 stabs information are absolute. */
1164 offset
+= bfd_get_section_vma (abfd
, section
);
1166 #ifdef ENABLE_CACHING
1167 if (info
->cached_indexentry
!= NULL
1168 && offset
>= info
->cached_offset
1169 && offset
< (info
->cached_indexentry
+ 1)->val
)
1171 stab
= info
->cached_stab
;
1172 indexentry
= info
->cached_indexentry
;
1173 file_name
= info
->cached_file_name
;
1178 /* Cache non-existant or invalid. Do binary search on
1187 high
= info
->indextablesize
- 1;
1190 mid
= (high
+ low
) / 2;
1191 if (offset
>= info
->indextable
[mid
].val
1192 && offset
< info
->indextable
[mid
+ 1].val
)
1194 indexentry
= &info
->indextable
[mid
];
1198 if (info
->indextable
[mid
].val
> offset
)
1204 if (indexentry
== NULL
)
1207 stab
= indexentry
->stab
+ STABSIZE
;
1208 file_name
= indexentry
->file_name
;
1211 directory_name
= indexentry
->directory_name
;
1212 str
= indexentry
->str
;
1214 for (; stab
< (indexentry
+1)->stab
; stab
+= STABSIZE
)
1221 switch (stab
[TYPEOFF
])
1224 /* The name of an include file. */
1225 val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1228 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1236 /* A line number. The value is relative to the start of the
1237 current function. */
1238 val
= indexentry
->val
+ bfd_get_32 (abfd
, stab
+ VALOFF
);
1241 *pline
= bfd_get_16 (abfd
, stab
+ DESCOFF
);
1243 #ifdef ENABLE_CACHING
1244 info
->cached_stab
= stab
;
1245 info
->cached_offset
= val
;
1246 info
->cached_file_name
= file_name
;
1247 info
->cached_indexentry
= indexentry
;
1266 if (IS_ABSOLUTE_PATH(file_name
) || directory_name
== NULL
)
1267 *pfilename
= file_name
;
1272 dirlen
= strlen (directory_name
);
1273 if (info
->filename
== NULL
1274 || strncmp (info
->filename
, directory_name
, dirlen
) != 0
1275 || strcmp (info
->filename
+ dirlen
, file_name
) != 0)
1277 if (info
->filename
!= NULL
)
1278 free (info
->filename
);
1279 info
->filename
= (char *) bfd_malloc (dirlen
+
1282 if (info
->filename
== NULL
)
1284 strcpy (info
->filename
, directory_name
);
1285 strcpy (info
->filename
+ dirlen
, file_name
);
1288 *pfilename
= info
->filename
;
1291 if (indexentry
->function_name
!= NULL
)
1295 /* This will typically be something like main:F(0,1), so we want
1296 to clobber the colon. It's OK to change the name, since the
1297 string is in our own local storage anyhow. */
1299 s
= strchr (indexentry
->function_name
, ':');
1303 *pfnname
= indexentry
->function_name
;