* config/tc-s390.c: Add missing prototypes
[binutils.git] / bfd / elf64-x86-64.c
blob1605b568a41652f3c5322427c52c8354f23850a6
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
26 #include "elf/x86-64.h"
28 /* We use only the RELA entries. */
29 #define USE_RELA
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
34 /* The relocation "howto" table. Order of fields:
35 type, size, bitsize, pc_relative, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
39 HOWTO(R_X86_64_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", false, 0x00000000, 0x00000000,
41 false),
42 HOWTO(R_X86_64_64, 0, 4, 64, false, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", false, MINUS_ONE, MINUS_ONE,
44 false),
45 HOWTO(R_X86_64_PC32, 0, 4, 32, true, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", false, 0xffffffff, 0xffffffff,
47 true),
48 HOWTO(R_X86_64_GOT32, 0, 4, 32, false, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", false, 0xffffffff, 0xffffffff,
50 false),
51 HOWTO(R_X86_64_PLT32, 0, 4, 32, true, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", false, 0xffffffff, 0xffffffff,
53 true),
54 HOWTO(R_X86_64_COPY, 0, 4, 32, false, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", false, 0xffffffff, 0xffffffff,
56 false),
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", false, MINUS_ONE,
59 MINUS_ONE, false),
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", false, MINUS_ONE,
62 MINUS_ONE, false),
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", false, MINUS_ONE,
65 MINUS_ONE, false),
66 HOWTO(R_X86_64_GOTPCREL, 0, 4, 32, true,0 , complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", false, 0xffffffff,
68 0xffffffff, true),
69 HOWTO(R_X86_64_32, 0, 4, 32, false, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", false, 0xffffffff, 0xffffffff,
71 false),
72 HOWTO(R_X86_64_32S, 0, 4, 32, false, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", false, 0xffffffff, 0xffffffff,
74 false),
75 HOWTO(R_X86_64_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", false, 0xffff, 0xffff, false),
77 HOWTO(R_X86_64_PC16,0, 1, 16, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", false, 0xffff, 0xffff, true),
79 HOWTO(R_X86_64_8, 0, 0, 8, false, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_8", false, 0xff, 0xff, false),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", false, 0xff, 0xff, true),
84 /* GNU extension to record C++ vtable hierarchy. */
85 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
86 NULL, "R_X86_64_GNU_VTINHERIT", false, 0, 0, false),
88 /* GNU extension to record C++ vtable member usage. */
89 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
90 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", false, 0, 0,
91 false)
94 /* Map BFD relocs to the x86_64 elf relocs. */
95 struct elf_reloc_map
97 bfd_reloc_code_real_type bfd_reloc_val;
98 unsigned char elf_reloc_val;
101 static CONST struct elf_reloc_map x86_64_reloc_map[] =
103 { BFD_RELOC_NONE, R_X86_64_NONE, },
104 { BFD_RELOC_64, R_X86_64_64, },
105 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
106 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
107 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
108 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
109 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
110 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
111 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
112 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
113 { BFD_RELOC_32, R_X86_64_32, },
114 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
115 { BFD_RELOC_16, R_X86_64_16, },
116 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
117 { BFD_RELOC_8, R_X86_64_8, },
118 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
119 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
120 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
123 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
124 PARAMS ((bfd *, bfd_reloc_code_real_type));
125 static void elf64_x86_64_info_to_howto
126 PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *));
127 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
128 PARAMS ((bfd *));
129 static boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
130 static boolean elf64_x86_64_check_relocs
131 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
132 const Elf_Internal_Rela *));
133 static asection *elf64_x86_64_gc_mark_hook
134 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
135 struct elf_link_hash_entry *, Elf_Internal_Sym *));
137 static boolean elf64_x86_64_gc_sweep_hook
138 PARAMS ((bfd *, struct bfd_link_info *, asection *,
139 const Elf_Internal_Rela *));
141 static struct bfd_hash_entry *elf64_x86_64_link_hash_newfunc
142 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
143 static boolean elf64_x86_64_adjust_dynamic_symbol
144 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
146 static boolean elf64_x86_64_size_dynamic_sections
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean elf64_x86_64_relocate_section
149 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
150 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
151 static boolean elf64_x86_64_finish_dynamic_symbol
152 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
153 Elf_Internal_Sym *sym));
154 static boolean elf64_x86_64_finish_dynamic_sections
155 PARAMS ((bfd *, struct bfd_link_info *));
156 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class PARAMS ((int));
158 /* Given a BFD reloc type, return a HOWTO structure. */
159 static reloc_howto_type *
160 elf64_x86_64_reloc_type_lookup (abfd, code)
161 bfd *abfd ATTRIBUTE_UNUSED;
162 bfd_reloc_code_real_type code;
164 unsigned int i;
165 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
166 i++)
168 if (x86_64_reloc_map[i].bfd_reloc_val == code)
169 return &x86_64_elf_howto_table[(int)
170 x86_64_reloc_map[i].elf_reloc_val];
172 return 0;
175 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
177 static void
178 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 arelent *cache_ptr;
181 Elf64_Internal_Rela *dst;
183 unsigned r_type, i;
185 r_type = ELF64_R_TYPE (dst->r_info);
186 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
188 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_PC8);
189 i = r_type;
191 else
193 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
194 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_PC8 - 1);
196 cache_ptr->howto = &x86_64_elf_howto_table[i];
197 BFD_ASSERT (r_type == cache_ptr->howto->type);
200 /* Functions for the x86-64 ELF linker. */
202 /* The name of the dynamic interpreter. This is put in the .interp
203 section. */
205 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
207 /* The size in bytes of an entry in the global offset table. */
209 #define GOT_ENTRY_SIZE 8
211 /* The size in bytes of an entry in the procedure linkage table. */
213 #define PLT_ENTRY_SIZE 16
215 /* The first entry in a procedure linkage table looks like this. See the
216 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
218 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
220 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
221 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
222 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
225 /* Subsequent entries in a procedure linkage table look like this. */
227 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
229 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
230 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
231 0x68, /* pushq immediate */
232 0, 0, 0, 0, /* replaced with index into relocation table. */
233 0xe9, /* jmp relative */
234 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
237 /* The x86-64 linker needs to keep track of the number of relocs that
238 it decides to copy in check_relocs for each symbol. This is so
239 that it can discard PC relative relocs if it doesn't need them when
240 linking with -Bsymbolic. We store the information in a field
241 extending the regular ELF linker hash table. */
243 /* This structure keeps track of the number of PC relative relocs we
244 have copied for a given symbol. */
246 struct elf64_x86_64_pcrel_relocs_copied
248 /* Next section. */
249 struct elf64_x86_64_pcrel_relocs_copied *next;
250 /* A section in dynobj. */
251 asection *section;
252 /* Number of relocs copied in this section. */
253 bfd_size_type count;
256 /* x86-64 ELF linker hash entry. */
258 struct elf64_x86_64_link_hash_entry
260 struct elf_link_hash_entry root;
262 /* Number of PC relative relocs copied for this symbol. */
263 struct elf64_x86_64_pcrel_relocs_copied *pcrel_relocs_copied;
266 /* x86-64 ELF linker hash table. */
268 struct elf64_x86_64_link_hash_table
270 struct elf_link_hash_table root;
273 /* Declare this now that the above structures are defined. */
275 static boolean elf64_x86_64_discard_copies
276 PARAMS ((struct elf64_x86_64_link_hash_entry *, PTR));
278 /* Traverse an x86-64 ELF linker hash table. */
280 #define elf64_x86_64_link_hash_traverse(table, func, info) \
281 (elf_link_hash_traverse \
282 (&(table)->root, \
283 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
284 (info)))
286 /* Get the x86-64 ELF linker hash table from a link_info structure. */
288 #define elf64_x86_64_hash_table(p) \
289 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
291 /* Create an entry in an x86-64 ELF linker hash table. */
293 static struct bfd_hash_entry *
294 elf64_x86_64_link_hash_newfunc (entry, table, string)
295 struct bfd_hash_entry *entry;
296 struct bfd_hash_table *table;
297 const char *string;
299 struct elf64_x86_64_link_hash_entry *ret =
300 (struct elf64_x86_64_link_hash_entry *) entry;
302 /* Allocate the structure if it has not already been allocated by a
303 subclass. */
304 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
305 ret = ((struct elf64_x86_64_link_hash_entry *)
306 bfd_hash_allocate (table,
307 sizeof (struct elf64_x86_64_link_hash_entry)));
308 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
309 return (struct bfd_hash_entry *) ret;
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_x86_64_link_hash_entry *)
313 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
314 table, string));
315 if (ret != (struct elf64_x86_64_link_hash_entry *) NULL)
317 ret->pcrel_relocs_copied = NULL;
320 return (struct bfd_hash_entry *) ret;
323 /* Create an X86-64 ELF linker hash table. */
325 static struct bfd_link_hash_table *
326 elf64_x86_64_link_hash_table_create (abfd)
327 bfd *abfd;
329 struct elf64_x86_64_link_hash_table *ret;
331 ret = ((struct elf64_x86_64_link_hash_table *)
332 bfd_alloc (abfd, sizeof (struct elf64_x86_64_link_hash_table)));
333 if (ret == (struct elf64_x86_64_link_hash_table *) NULL)
334 return NULL;
336 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
337 elf64_x86_64_link_hash_newfunc))
339 bfd_release (abfd, ret);
340 return NULL;
343 return &ret->root.root;
346 static boolean
347 elf64_x86_64_elf_object_p (abfd)
348 bfd *abfd;
350 /* Set the right machine number for an x86-64 elf64 file. */
351 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
352 return true;
355 /* Look through the relocs for a section during the first phase, and
356 allocate space in the global offset table or procedure linkage
357 table. */
359 static boolean
360 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
361 bfd *abfd;
362 struct bfd_link_info *info;
363 asection *sec;
364 const Elf_Internal_Rela *relocs;
366 bfd *dynobj;
367 Elf_Internal_Shdr *symtab_hdr;
368 struct elf_link_hash_entry **sym_hashes;
369 bfd_signed_vma *local_got_refcounts;
370 const Elf_Internal_Rela *rel;
371 const Elf_Internal_Rela *rel_end;
372 asection *sgot;
373 asection *srelgot;
374 asection *sreloc;
376 if (info->relocateable)
377 return true;
379 dynobj = elf_hash_table (info)->dynobj;
380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
381 sym_hashes = elf_sym_hashes (abfd);
382 local_got_refcounts = elf_local_got_refcounts (abfd);
384 sgot = srelgot = sreloc = NULL;
385 rel_end = relocs + sec->reloc_count;
386 for (rel = relocs; rel < rel_end; rel++)
388 unsigned long r_symndx;
389 struct elf_link_hash_entry *h;
391 r_symndx = ELF64_R_SYM (rel->r_info);
392 if (r_symndx < symtab_hdr->sh_info)
393 h = NULL;
394 else
395 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
397 /* Some relocs require a global offset table. */
398 if (dynobj == NULL)
400 switch (ELF64_R_TYPE (rel->r_info))
402 case R_X86_64_GOT32:
403 case R_X86_64_GOTPCREL:
404 elf_hash_table (info)->dynobj = dynobj = abfd;
405 if (! _bfd_elf_create_got_section (dynobj, info))
406 return false;
407 break;
411 switch (ELF64_R_TYPE (rel->r_info))
413 case R_X86_64_GOTPCREL:
414 case R_X86_64_GOT32:
415 /* This symbol requires a global offset table entry. */
417 if (sgot == NULL)
419 sgot = bfd_get_section_by_name (dynobj, ".got");
420 BFD_ASSERT (sgot != NULL);
423 if (srelgot == NULL && (h != NULL || info->shared))
425 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
426 if (srelgot == NULL)
428 srelgot = bfd_make_section (dynobj, ".rela.got");
429 if (srelgot == NULL
430 || ! bfd_set_section_flags (dynobj, srelgot,
431 (SEC_ALLOC
432 | SEC_LOAD
433 | SEC_HAS_CONTENTS
434 | SEC_IN_MEMORY
435 | SEC_LINKER_CREATED
436 | SEC_READONLY))
437 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
438 return false;
442 if (h != NULL)
444 if (h->got.refcount == -1)
446 h->got.refcount = 1;
448 /* Make sure this symbol is output as a dynamic symbol. */
449 if (h->dynindx == -1)
451 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
452 return false;
455 sgot->_raw_size += GOT_ENTRY_SIZE;
456 srelgot->_raw_size += sizeof (Elf64_External_Rela);
458 else
459 h->got.refcount += 1;
461 else
463 /* This is a global offset table entry for a local symbol. */
464 if (local_got_refcounts == NULL)
466 size_t size;
468 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
469 local_got_refcounts = ((bfd_signed_vma *)
470 bfd_alloc (abfd, size));
471 if (local_got_refcounts == NULL)
472 return false;
473 elf_local_got_refcounts (abfd) = local_got_refcounts;
474 memset (local_got_refcounts, -1, size);
476 if (local_got_refcounts[r_symndx] == -1)
478 local_got_refcounts[r_symndx] = 1;
480 sgot->_raw_size += GOT_ENTRY_SIZE;
481 if (info->shared)
483 /* If we are generating a shared object, we need to
484 output a R_X86_64_RELATIVE reloc so that the dynamic
485 linker can adjust this GOT entry. */
486 srelgot->_raw_size += sizeof (Elf64_External_Rela);
489 else
490 local_got_refcounts[r_symndx] += 1;
492 break;
494 case R_X86_64_PLT32:
495 /* This symbol requires a procedure linkage table entry. We
496 actually build the entry in adjust_dynamic_symbol,
497 because this might be a case of linking PIC code which is
498 never referenced by a dynamic object, in which case we
499 don't need to generate a procedure linkage table entry
500 after all. */
502 /* If this is a local symbol, we resolve it directly without
503 creating a procedure linkage table entry. */
504 if (h == NULL)
505 continue;
507 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
508 if (h->plt.refcount == -1)
509 h->plt.refcount = 1;
510 else
511 h->plt.refcount += 1;
512 break;
514 case R_X86_64_8:
515 case R_X86_64_16:
516 case R_X86_64_32:
517 case R_X86_64_64:
518 case R_X86_64_32S:
519 case R_X86_64_PC32:
520 if (h != NULL)
521 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
523 /* If we are creating a shared library, and this is a reloc
524 against a global symbol, or a non PC relative reloc
525 against a local symbol, then we need to copy the reloc
526 into the shared library. However, if we are linking with
527 -Bsymbolic, we do not need to copy a reloc against a
528 global symbol which is defined in an object we are
529 including in the link (i.e., DEF_REGULAR is set). At
530 this point we have not seen all the input files, so it is
531 possible that DEF_REGULAR is not set now but will be set
532 later (it is never cleared). We account for that
533 possibility below by storing information in the
534 pcrel_relocs_copied field of the hash table entry.
535 A similar situation occurs when creating shared libraries
536 and symbol visibility changes render the symbol local. */
537 if (info->shared
538 && (sec->flags & SEC_ALLOC) != 0
539 && (((ELF64_R_TYPE (rel->r_info) != R_X86_64_PC8)
540 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC16)
541 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC32))
542 || (h != NULL
543 && (! info->symbolic
544 || (h->elf_link_hash_flags
545 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
547 /* When creating a shared object, we must copy these
548 reloc types into the output file. We create a reloc
549 section in dynobj and make room for this reloc. */
550 if (sreloc == NULL)
552 const char *name;
554 name = (bfd_elf_string_from_elf_section
555 (abfd,
556 elf_elfheader (abfd)->e_shstrndx,
557 elf_section_data (sec)->rel_hdr.sh_name));
558 if (name == NULL)
559 return false;
561 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
562 && strcmp (bfd_get_section_name (abfd, sec),
563 name + 5) == 0);
565 sreloc = bfd_get_section_by_name (dynobj, name);
566 if (sreloc == NULL)
568 flagword flags;
570 sreloc = bfd_make_section (dynobj, name);
571 flags = (SEC_HAS_CONTENTS | SEC_READONLY
572 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
573 if ((sec->flags & SEC_ALLOC) != 0)
574 flags |= SEC_ALLOC | SEC_LOAD;
575 if (sreloc == NULL
576 || ! bfd_set_section_flags (dynobj, sreloc, flags)
577 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
578 return false;
580 if (sec->flags & SEC_READONLY)
581 info->flags |= DF_TEXTREL;
584 sreloc->_raw_size += sizeof (Elf64_External_Rela);
586 /* If this is a global symbol, we count the number of PC
587 relative relocations we have entered for this symbol,
588 so that we can discard them later as necessary. Note
589 that this function is only called if we are using an
590 elf64_x86_64 linker hash table, which means that h is
591 really a pointer to an elf64_x86_64_link_hash_entry. */
592 if (h != NULL
593 && ((ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8)
594 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16)
595 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)))
597 struct elf64_x86_64_link_hash_entry *eh;
598 struct elf64_x86_64_pcrel_relocs_copied *p;
600 eh = (struct elf64_x86_64_link_hash_entry *) h;
602 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
603 if (p->section == sreloc)
604 break;
606 if (p == NULL)
608 p = ((struct elf64_x86_64_pcrel_relocs_copied *)
609 bfd_alloc (dynobj, sizeof *p));
610 if (p == NULL)
611 return false;
612 p->next = eh->pcrel_relocs_copied;
613 eh->pcrel_relocs_copied = p;
614 p->section = sreloc;
615 p->count = 0;
618 ++p->count;
621 break;
623 /* This relocation describes the C++ object vtable hierarchy.
624 Reconstruct it for later use during GC. */
625 case R_X86_64_GNU_VTINHERIT:
626 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
627 return false;
628 break;
630 /* This relocation describes which C++ vtable entries are actually
631 used. Record for later use during GC. */
632 case R_X86_64_GNU_VTENTRY:
633 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
634 return false;
635 break;
639 return true;
642 /* Return the section that should be marked against GC for a given
643 relocation. */
645 static asection *
646 elf64_x86_64_gc_mark_hook (abfd, info, rel, h, sym)
647 bfd *abfd;
648 struct bfd_link_info *info ATTRIBUTE_UNUSED;
649 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED;
650 struct elf_link_hash_entry *h;
651 Elf_Internal_Sym *sym;
653 if (h != NULL)
655 switch (ELF64_R_TYPE (rel->r_info))
657 case R_X86_64_GNU_VTINHERIT:
658 case R_X86_64_GNU_VTENTRY:
659 break;
661 default:
662 switch (h->root.type)
664 case bfd_link_hash_defined:
665 case bfd_link_hash_defweak:
666 return h->root.u.def.section;
668 case bfd_link_hash_common:
669 return h->root.u.c.p->section;
671 default:
672 break;
676 else
678 if (!(elf_bad_symtab (abfd)
679 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
680 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
681 && sym->st_shndx != SHN_COMMON))
683 return bfd_section_from_elf_index (abfd, sym->st_shndx);
687 return NULL;
690 /* Update the got entry reference counts for the section being removed. */
692 static boolean
693 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
694 bfd *abfd;
695 struct bfd_link_info *info ATTRIBUTE_UNUSED;
696 asection *sec;
697 const Elf_Internal_Rela *relocs;
699 Elf_Internal_Shdr *symtab_hdr;
700 struct elf_link_hash_entry **sym_hashes;
701 bfd_signed_vma *local_got_refcounts;
702 const Elf_Internal_Rela *rel, *relend;
703 unsigned long r_symndx;
704 struct elf_link_hash_entry *h;
705 bfd *dynobj;
706 asection *sgot;
707 asection *srelgot;
709 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
710 sym_hashes = elf_sym_hashes (abfd);
711 local_got_refcounts = elf_local_got_refcounts (abfd);
713 dynobj = elf_hash_table (info)->dynobj;
714 if (dynobj == NULL)
715 return true;
717 sgot = bfd_get_section_by_name (dynobj, ".got");
718 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
720 relend = relocs + sec->reloc_count;
721 for (rel = relocs; rel < relend; rel++)
722 switch (ELF64_R_TYPE (rel->r_info))
724 case R_X86_64_GOT32:
725 case R_X86_64_GOTPCREL:
726 r_symndx = ELF64_R_SYM (rel->r_info);
727 if (r_symndx >= symtab_hdr->sh_info)
729 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
730 if (h->got.refcount > 0)
732 h->got.refcount -= 1;
733 if (h->got.refcount == 0)
735 sgot->_raw_size -= GOT_ENTRY_SIZE;
736 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
740 else if (local_got_refcounts != NULL)
742 if (local_got_refcounts[r_symndx] > 0)
744 local_got_refcounts[r_symndx] -= 1;
745 if (local_got_refcounts[r_symndx] == 0)
747 sgot->_raw_size -= GOT_ENTRY_SIZE;
748 if (info->shared)
749 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
753 break;
755 case R_X86_64_PLT32:
756 r_symndx = ELF64_R_SYM (rel->r_info);
757 if (r_symndx >= symtab_hdr->sh_info)
759 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
760 if (h->plt.refcount > 0)
761 h->plt.refcount -= 1;
763 break;
765 default:
766 break;
769 return true;
772 /* Adjust a symbol defined by a dynamic object and referenced by a
773 regular object. The current definition is in some section of the
774 dynamic object, but we're not including those sections. We have to
775 change the definition to something the rest of the link can
776 understand. */
778 static boolean
779 elf64_x86_64_adjust_dynamic_symbol (info, h)
780 struct bfd_link_info *info;
781 struct elf_link_hash_entry *h;
783 bfd *dynobj;
784 asection *s;
785 unsigned int power_of_two;
787 dynobj = elf_hash_table (info)->dynobj;
789 /* Make sure we know what is going on here. */
790 BFD_ASSERT (dynobj != NULL
791 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
792 || h->weakdef != NULL
793 || ((h->elf_link_hash_flags
794 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
795 && (h->elf_link_hash_flags
796 & ELF_LINK_HASH_REF_REGULAR) != 0
797 && (h->elf_link_hash_flags
798 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
800 /* If this is a function, put it in the procedure linkage table. We
801 will fill in the contents of the procedure linkage table later,
802 when we know the address of the .got section. */
803 if (h->type == STT_FUNC
804 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
806 if ((! info->shared
807 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
808 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
809 || (info->shared && h->plt.refcount <= 0))
811 /* This case can occur if we saw a PLT32 reloc in an input
812 file, but the symbol was never referred to by a dynamic
813 object, or if all references were garbage collected. In
814 such a case, we don't actually need to build a procedure
815 linkage table, and we can just do a PC32 reloc instead. */
816 h->plt.offset = (bfd_vma) -1;
817 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
818 return true;
821 /* Make sure this symbol is output as a dynamic symbol. */
822 if (h->dynindx == -1)
824 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
825 return false;
828 s = bfd_get_section_by_name (dynobj, ".plt");
829 BFD_ASSERT (s != NULL);
831 /* If this is the first .plt entry, make room for the special
832 first entry. */
833 if (s->_raw_size == 0)
834 s->_raw_size = PLT_ENTRY_SIZE;
836 /* If this symbol is not defined in a regular file, and we are
837 not generating a shared library, then set the symbol to this
838 location in the .plt. This is required to make function
839 pointers compare as equal between the normal executable and
840 the shared library. */
841 if (! info->shared
842 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
844 h->root.u.def.section = s;
845 h->root.u.def.value = s->_raw_size;
848 h->plt.offset = s->_raw_size;
850 /* Make room for this entry. */
851 s->_raw_size += PLT_ENTRY_SIZE;
853 /* We also need to make an entry in the .got.plt section, which
854 will be placed in the .got section by the linker script. */
855 s = bfd_get_section_by_name (dynobj, ".got.plt");
856 BFD_ASSERT (s != NULL);
857 s->_raw_size += GOT_ENTRY_SIZE;
859 /* We also need to make an entry in the .rela.plt section. */
860 s = bfd_get_section_by_name (dynobj, ".rela.plt");
861 BFD_ASSERT (s != NULL);
862 s->_raw_size += sizeof (Elf64_External_Rela);
864 return true;
867 /* If this is a weak symbol, and there is a real definition, the
868 processor independent code will have arranged for us to see the
869 real definition first, and we can just use the same value. */
870 if (h->weakdef != NULL)
872 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
873 || h->weakdef->root.type == bfd_link_hash_defweak);
874 h->root.u.def.section = h->weakdef->root.u.def.section;
875 h->root.u.def.value = h->weakdef->root.u.def.value;
876 return true;
879 /* This is a reference to a symbol defined by a dynamic object which
880 is not a function. */
882 /* If we are creating a shared library, we must presume that the
883 only references to the symbol are via the global offset table.
884 For such cases we need not do anything here; the relocations will
885 be handled correctly by relocate_section. */
886 if (info->shared)
887 return true;
889 /* If there are no references to this symbol that do not use the
890 GOT, we don't need to generate a copy reloc. */
891 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
892 return true;
894 /* We must allocate the symbol in our .dynbss section, which will
895 become part of the .bss section of the executable. There will be
896 an entry for this symbol in the .dynsym section. The dynamic
897 object will contain position independent code, so all references
898 from the dynamic object to this symbol will go through the global
899 offset table. The dynamic linker will use the .dynsym entry to
900 determine the address it must put in the global offset table, so
901 both the dynamic object and the regular object will refer to the
902 same memory location for the variable. */
904 s = bfd_get_section_by_name (dynobj, ".dynbss");
905 BFD_ASSERT (s != NULL);
907 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
908 to copy the initial value out of the dynamic object and into the
909 runtime process image. We need to remember the offset into the
910 .rela.bss section we are going to use. */
911 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
913 asection *srel;
915 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
916 BFD_ASSERT (srel != NULL);
917 srel->_raw_size += sizeof (Elf64_External_Rela);
918 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
921 /* We need to figure out the alignment required for this symbol. I
922 have no idea how ELF linkers handle this. 16-bytes is the size
923 of the largest type that requires hard alignment -- long double. */
924 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
925 this construct. */
926 power_of_two = bfd_log2 (h->size);
927 if (power_of_two > 4)
928 power_of_two = 4;
930 /* Apply the required alignment. */
931 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
932 if (power_of_two > bfd_get_section_alignment (dynobj, s))
934 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
935 return false;
938 /* Define the symbol as being at this point in the section. */
939 h->root.u.def.section = s;
940 h->root.u.def.value = s->_raw_size;
942 /* Increment the section size to make room for the symbol. */
943 s->_raw_size += h->size;
945 return true;
948 /* Set the sizes of the dynamic sections. */
950 static boolean
951 elf64_x86_64_size_dynamic_sections (output_bfd, info)
952 bfd *output_bfd ATTRIBUTE_UNUSED;
953 struct bfd_link_info *info;
955 bfd *dynobj;
956 asection *s;
957 boolean plt;
958 boolean relocs;
960 dynobj = elf_hash_table (info)->dynobj;
961 BFD_ASSERT (dynobj != NULL);
963 if (elf_hash_table (info)->dynamic_sections_created)
965 /* Set the contents of the .interp section to the interpreter. */
966 if (! info->shared)
968 s = bfd_get_section_by_name (dynobj, ".interp");
969 BFD_ASSERT (s != NULL);
970 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
971 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
974 else
976 /* We may have created entries in the .rela.got section.
977 However, if we are not creating the dynamic sections, we will
978 not actually use these entries. Reset the size of .rela.got,
979 which will cause it to get stripped from the output file
980 below. */
981 s = bfd_get_section_by_name (dynobj, ".rela.got");
982 if (s != NULL)
983 s->_raw_size = 0;
986 /* If this is a -Bsymbolic shared link, then we need to discard all
987 PC relative relocs against symbols defined in a regular object.
988 We allocated space for them in the check_relocs routine, but we
989 will not fill them in in the relocate_section routine. */
990 if (info->shared)
991 elf64_x86_64_link_hash_traverse (elf64_x86_64_hash_table (info),
992 elf64_x86_64_discard_copies,
993 (PTR) info);
995 /* The check_relocs and adjust_dynamic_symbol entry points have
996 determined the sizes of the various dynamic sections. Allocate
997 memory for them. */
998 plt = relocs = false;
999 for (s = dynobj->sections; s != NULL; s = s->next)
1001 const char *name;
1002 boolean strip;
1004 if ((s->flags & SEC_LINKER_CREATED) == 0)
1005 continue;
1007 /* It's OK to base decisions on the section name, because none
1008 of the dynobj section names depend upon the input files. */
1009 name = bfd_get_section_name (dynobj, s);
1011 strip = false;
1012 if (strcmp (name, ".plt") == 0)
1014 if (s->_raw_size == 0)
1016 /* Strip this section if we don't need it; see the
1017 comment below. */
1018 strip = true;
1020 else
1022 /* Remember whether there is a PLT. */
1023 plt = true;
1026 else if (strncmp (name, ".rela", 5) == 0)
1028 if (s->_raw_size == 0)
1030 /* If we don't need this section, strip it from the
1031 output file. This is mostly to handle .rela.bss and
1032 .rela.plt. We must create both sections in
1033 create_dynamic_sections, because they must be created
1034 before the linker maps input sections to output
1035 sections. The linker does that before
1036 adjust_dynamic_symbol is called, and it is that
1037 function which decides whether anything needs to go
1038 into these sections. */
1039 strip = true;
1041 else
1043 if (strcmp (name, ".rela.plt") != 0)
1044 relocs = true;
1046 /* We use the reloc_count field as a counter if we need
1047 to copy relocs into the output file. */
1048 s->reloc_count = 0;
1051 else if (strncmp (name, ".got", 4) != 0)
1053 /* It's not one of our sections, so don't allocate space. */
1054 continue;
1057 if (strip)
1059 _bfd_strip_section_from_output (info, s);
1060 continue;
1063 /* Allocate memory for the section contents. We use bfd_zalloc
1064 here in case unused entries are not reclaimed before the
1065 section's contents are written out. This should not happen,
1066 but this way if it does, we get a R_X86_64_NONE reloc instead
1067 of garbage. */
1068 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1069 if (s->contents == NULL && s->_raw_size != 0)
1070 return false;
1073 if (elf_hash_table (info)->dynamic_sections_created)
1075 /* Add some entries to the .dynamic section. We fill in the
1076 values later, in elf64_x86_64_finish_dynamic_sections, but we
1077 must add the entries now so that we get the correct size for
1078 the .dynamic section. The DT_DEBUG entry is filled in by the
1079 dynamic linker and used by the debugger. */
1080 if (! info->shared)
1082 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1083 return false;
1086 if (plt)
1088 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1089 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1090 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1091 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1092 return false;
1095 if (relocs)
1097 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1098 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1099 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1100 sizeof (Elf64_External_Rela)))
1101 return false;
1104 if ((info->flags & DF_TEXTREL) != 0)
1106 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1107 return false;
1111 return true;
1114 /* This function is called via elf64_x86_64_link_hash_traverse if we are
1115 creating a shared object. In the -Bsymbolic case, it discards the
1116 space allocated to copy PC relative relocs against symbols which
1117 are defined in regular objects. For the normal non-symbolic case,
1118 we also discard space for relocs that have become local due to
1119 symbol visibility changes. We allocated space for them in the
1120 check_relocs routine, but we won't fill them in in the
1121 relocate_section routine. */
1123 static boolean
1124 elf64_x86_64_discard_copies (h, inf)
1125 struct elf64_x86_64_link_hash_entry *h;
1126 PTR inf;
1128 struct elf64_x86_64_pcrel_relocs_copied *s;
1129 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1131 /* If a symbol has been forced local or we have found a regular
1132 definition for the symbolic link case, then we won't be needing
1133 any relocs. */
1134 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1135 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1136 || info->symbolic))
1138 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1139 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1142 return true;
1145 /* Relocate an x86_64 ELF section. */
1147 static boolean
1148 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1149 contents, relocs, local_syms, local_sections)
1150 bfd *output_bfd;
1151 struct bfd_link_info *info;
1152 bfd *input_bfd;
1153 asection *input_section;
1154 bfd_byte *contents;
1155 Elf_Internal_Rela *relocs;
1156 Elf_Internal_Sym *local_syms;
1157 asection **local_sections;
1159 bfd *dynobj;
1160 Elf_Internal_Shdr *symtab_hdr;
1161 struct elf_link_hash_entry **sym_hashes;
1162 bfd_vma *local_got_offsets;
1163 asection *sgot;
1164 asection *splt;
1165 asection *sreloc;
1166 Elf_Internal_Rela *rela;
1167 Elf_Internal_Rela *relend;
1169 dynobj = elf_hash_table (info)->dynobj;
1170 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1171 sym_hashes = elf_sym_hashes (input_bfd);
1172 local_got_offsets = elf_local_got_offsets (input_bfd);
1174 sreloc = splt = sgot = NULL;
1175 if (dynobj != NULL)
1177 splt = bfd_get_section_by_name (dynobj, ".plt");
1178 sgot = bfd_get_section_by_name (dynobj, ".got");
1181 rela = relocs;
1182 relend = relocs + input_section->reloc_count;
1183 for (; rela < relend; rela++)
1185 int r_type;
1186 reloc_howto_type *howto;
1187 unsigned long r_symndx;
1188 struct elf_link_hash_entry *h;
1189 Elf_Internal_Sym *sym;
1190 asection *sec;
1191 bfd_vma relocation;
1192 bfd_reloc_status_type r;
1193 unsigned int indx;
1195 r_type = ELF64_R_TYPE (rela->r_info);
1196 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1197 || r_type == (int) R_X86_64_GNU_VTENTRY)
1198 continue;
1200 if ((indx = (unsigned) r_type) >= R_X86_64_max)
1202 bfd_set_error (bfd_error_bad_value);
1203 return false;
1205 howto = x86_64_elf_howto_table + indx;
1207 r_symndx = ELF64_R_SYM (rela->r_info);
1209 if (info->relocateable)
1211 /* This is a relocateable link. We don't have to change
1212 anything, unless the reloc is against a section symbol,
1213 in which case we have to adjust according to where the
1214 section symbol winds up in the output section. */
1215 if (r_symndx < symtab_hdr->sh_info)
1217 sym = local_syms + r_symndx;
1218 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1220 sec = local_sections[r_symndx];
1221 rela->r_addend += sec->output_offset + sym->st_value;
1225 continue;
1228 /* This is a final link. */
1229 h = NULL;
1230 sym = NULL;
1231 sec = NULL;
1232 if (r_symndx < symtab_hdr->sh_info)
1234 sym = local_syms + r_symndx;
1235 sec = local_sections[r_symndx];
1236 relocation = (sec->output_section->vma
1237 + sec->output_offset
1238 + sym->st_value);
1240 else
1242 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1243 while (h->root.type == bfd_link_hash_indirect
1244 || h->root.type == bfd_link_hash_warning)
1245 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1246 if (h->root.type == bfd_link_hash_defined
1247 || h->root.type == bfd_link_hash_defweak)
1249 sec = h->root.u.def.section;
1250 if ((r_type == R_X86_64_PLT32
1251 && splt != NULL
1252 && h->plt.offset != (bfd_vma) -1)
1253 || ((r_type == R_X86_64_GOT32 || r_type == R_X86_64_GOTPCREL)
1254 && elf_hash_table (info)->dynamic_sections_created
1255 && (!info->shared
1256 || (! info->symbolic && h->dynindx != -1)
1257 || (h->elf_link_hash_flags
1258 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1259 || (info->shared
1260 && ((! info->symbolic && h->dynindx != -1)
1261 || (h->elf_link_hash_flags
1262 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1263 && (r_type == R_X86_64_8
1264 || r_type == R_X86_64_16
1265 || r_type == R_X86_64_32
1266 || r_type == R_X86_64_64
1267 || r_type == R_X86_64_PC8
1268 || r_type == R_X86_64_PC16
1269 || r_type == R_X86_64_PC32)
1270 && ((input_section->flags & SEC_ALLOC) != 0
1271 /* DWARF will emit R_X86_64_32 relocations in its
1272 sections against symbols defined externally
1273 in shared libraries. We can't do anything
1274 with them here. */
1275 || ((input_section->flags & SEC_DEBUGGING) != 0
1276 && (h->elf_link_hash_flags
1277 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1279 /* In these cases, we don't need the relocation
1280 value. We check specially because in some
1281 obscure cases sec->output_section will be NULL. */
1282 relocation = 0;
1284 else if (sec->output_section == NULL)
1286 (*_bfd_error_handler)
1287 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1288 bfd_get_filename (input_bfd), h->root.root.string,
1289 bfd_get_section_name (input_bfd, input_section));
1290 relocation = 0;
1292 else
1293 relocation = (h->root.u.def.value
1294 + sec->output_section->vma
1295 + sec->output_offset);
1297 else if (h->root.type == bfd_link_hash_undefweak)
1298 relocation = 0;
1299 else if (info->shared && !info->symbolic && !info->no_undefined
1300 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1301 relocation = 0;
1302 else
1304 if (! ((*info->callbacks->undefined_symbol)
1305 (info, h->root.root.string, input_bfd,
1306 input_section, rela->r_offset,
1307 (!info->shared || info->no_undefined
1308 || ELF_ST_VISIBILITY (h->other)))))
1309 return false;
1310 relocation = 0;
1314 /* When generating a shared object, the relocations handled here are
1315 copied into the output file to be resolved at run time. */
1316 switch (r_type)
1318 case R_X86_64_GOT32:
1319 /* Relocation is to the entry for this symbol in the global
1320 offset table. */
1321 case R_X86_64_GOTPCREL:
1322 /* Use global offset table as symbol value. */
1323 BFD_ASSERT (sgot != NULL);
1325 if (h != NULL)
1327 bfd_vma off = h->got.offset;
1328 BFD_ASSERT (off != (bfd_vma) -1);
1330 if (! elf_hash_table (info)->dynamic_sections_created
1331 || (info->shared
1332 && (info->symbolic || h->dynindx == -1)
1333 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1335 /* This is actually a static link, or it is a -Bsymbolic
1336 link and the symbol is defined locally, or the symbol
1337 was forced to be local because of a version file. We
1338 must initialize this entry in the global offset table.
1339 Since the offset must always be a multiple of 8, we
1340 use the least significant bit to record whether we
1341 have initialized it already.
1343 When doing a dynamic link, we create a .rela.got
1344 relocation entry to initialize the value. This is
1345 done in the finish_dynamic_symbol routine. */
1346 if ((off & 1) != 0)
1347 off &= ~1;
1348 else
1350 bfd_put_64 (output_bfd, relocation,
1351 sgot->contents + off);
1352 h->got.offset |= 1;
1355 if (r_type == R_X86_64_GOTPCREL)
1356 relocation = sgot->output_section->vma + sgot->output_offset + off;
1357 else
1358 relocation = sgot->output_offset + off;
1360 else
1362 bfd_vma off;
1364 BFD_ASSERT (local_got_offsets != NULL
1365 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1367 off = local_got_offsets[r_symndx];
1369 /* The offset must always be a multiple of 8. We use
1370 the least significant bit to record whether we have
1371 already generated the necessary reloc. */
1372 if ((off & 1) != 0)
1373 off &= ~1;
1374 else
1376 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1378 if (info->shared)
1380 asection *srelgot;
1381 Elf_Internal_Rela outrel;
1383 /* We need to generate a R_X86_64_RELATIVE reloc
1384 for the dynamic linker. */
1385 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1386 BFD_ASSERT (srelgot != NULL);
1388 outrel.r_offset = (sgot->output_section->vma
1389 + sgot->output_offset
1390 + off);
1391 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1392 outrel.r_addend = relocation;
1393 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1394 (((Elf64_External_Rela *)
1395 srelgot->contents)
1396 + srelgot->reloc_count));
1397 ++srelgot->reloc_count;
1400 local_got_offsets[r_symndx] |= 1;
1403 if (r_type == R_X86_64_GOTPCREL)
1404 relocation = sgot->output_section->vma + sgot->output_offset + off;
1405 else
1406 relocation = sgot->output_offset + off;
1409 break;
1411 case R_X86_64_PLT32:
1412 /* Relocation is to the entry for this symbol in the
1413 procedure linkage table. */
1415 /* Resolve a PLT32 reloc against a local symbol directly,
1416 without using the procedure linkage table. */
1417 if (h == NULL)
1418 break;
1420 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1422 /* We didn't make a PLT entry for this symbol. This
1423 happens when statically linking PIC code, or when
1424 using -Bsymbolic. */
1425 break;
1428 relocation = (splt->output_section->vma
1429 + splt->output_offset
1430 + h->plt.offset);
1431 break;
1433 case R_X86_64_PC8:
1434 case R_X86_64_PC16:
1435 case R_X86_64_PC32:
1436 if (h == NULL || h->dynindx == -1
1437 || (info->symbolic
1438 && h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1439 break;
1440 /* Fall through. */
1441 case R_X86_64_8:
1442 case R_X86_64_16:
1443 case R_X86_64_32:
1444 case R_X86_64_64:
1445 /* FIXME: The ABI says the linker should make sure the value is
1446 the same when it's zeroextended to 64 bit. */
1447 if (info->shared && (input_section->flags & SEC_ALLOC) != 0)
1449 Elf_Internal_Rela outrel;
1450 boolean skip, relocate;
1452 /* When generating a shared object, these relocations
1453 are copied into the output file to be resolved at run
1454 time. */
1456 if (sreloc == NULL)
1458 const char *name;
1460 name = (bfd_elf_string_from_elf_section
1461 (input_bfd,
1462 elf_elfheader (input_bfd)->e_shstrndx,
1463 elf_section_data (input_section)->rel_hdr.sh_name));
1464 if (name == NULL)
1465 return false;
1467 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1468 && strcmp (bfd_get_section_name (input_bfd,
1469 input_section),
1470 name + 5) == 0);
1472 sreloc = bfd_get_section_by_name (dynobj, name);
1473 BFD_ASSERT (sreloc != NULL);
1476 skip = false;
1478 if (elf_section_data (input_section)->stab_info == NULL)
1479 outrel.r_offset = rela->r_offset;
1480 else
1482 bfd_vma off;
1484 off = (_bfd_stab_section_offset
1485 (output_bfd, &elf_hash_table (info)->stab_info,
1486 input_section,
1487 &elf_section_data (input_section)->stab_info,
1488 rela->r_offset));
1489 if (off == (bfd_vma) -1)
1490 skip = true;
1491 outrel.r_offset = off;
1494 outrel.r_offset += (input_section->output_section->vma
1495 + input_section->output_offset);
1497 if (skip)
1499 memset (&outrel, 0, sizeof outrel);
1500 relocate = false;
1502 /* h->dynindx may be -1 if this symbol was marked to
1503 become local. */
1504 else if (h != NULL
1505 && ((! info->symbolic && h->dynindx != -1)
1506 || (h->elf_link_hash_flags
1507 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1509 BFD_ASSERT (h->dynindx != -1);
1510 relocate = false;
1511 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1512 outrel.r_addend = relocation + rela->r_addend;
1514 else
1516 if (r_type == R_X86_64_64)
1518 relocate = true;
1519 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1520 outrel.r_addend = relocation + rela->r_addend;
1522 else
1524 long indx;
1526 if (h == NULL)
1527 sec = local_sections[r_symndx];
1528 else
1530 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1531 || (h->root.type
1532 == bfd_link_hash_defweak));
1533 sec = h->root.u.def.section;
1535 if (sec != NULL && bfd_is_abs_section (sec))
1536 indx = 0;
1537 else if (sec == NULL || sec->owner == NULL)
1539 bfd_set_error (bfd_error_bad_value);
1540 return false;
1542 else
1544 asection *osec;
1546 osec = sec->output_section;
1547 indx = elf_section_data (osec)->dynindx;
1548 BFD_ASSERT (indx > 0);
1551 relocate = false;
1552 outrel.r_info = ELF64_R_INFO (indx, r_type);
1553 outrel.r_addend = relocation + rela->r_addend;
1558 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1559 (((Elf64_External_Rela *)
1560 sreloc->contents)
1561 + sreloc->reloc_count));
1562 ++sreloc->reloc_count;
1564 /* If this reloc is against an external symbol, we do
1565 not want to fiddle with the addend. Otherwise, we
1566 need to include the symbol value so that it becomes
1567 an addend for the dynamic reloc. */
1568 if (! relocate)
1569 continue;
1572 break;
1574 default:
1575 break;
1578 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1579 contents, rela->r_offset,
1580 relocation, rela->r_addend);
1582 if (r != bfd_reloc_ok)
1584 switch (r)
1586 default:
1587 case bfd_reloc_outofrange:
1588 abort ();
1589 case bfd_reloc_overflow:
1591 const char *name;
1593 if (h != NULL)
1594 name = h->root.root.string;
1595 else
1597 name = bfd_elf_string_from_elf_section (input_bfd,
1598 symtab_hdr->sh_link,
1599 sym->st_name);
1600 if (name == NULL)
1601 return false;
1602 if (*name == '\0')
1603 name = bfd_section_name (input_bfd, sec);
1605 if (! ((*info->callbacks->reloc_overflow)
1606 (info, name, howto->name, (bfd_vma) 0,
1607 input_bfd, input_section, rela->r_offset)))
1608 return false;
1610 break;
1615 return true;
1618 /* Finish up dynamic symbol handling. We set the contents of various
1619 dynamic sections here. */
1621 static boolean
1622 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
1623 bfd *output_bfd;
1624 struct bfd_link_info *info;
1625 struct elf_link_hash_entry *h;
1626 Elf_Internal_Sym *sym;
1628 bfd *dynobj;
1630 dynobj = elf_hash_table (info)->dynobj;
1632 if (h->plt.offset != (bfd_vma) -1)
1634 asection *splt;
1635 asection *sgot;
1636 asection *srela;
1637 bfd_vma plt_index;
1638 bfd_vma got_offset;
1639 Elf_Internal_Rela rela;
1641 /* This symbol has an entry in the procedure linkage table. Set
1642 it up. */
1644 BFD_ASSERT (h->dynindx != -1);
1646 splt = bfd_get_section_by_name (dynobj, ".plt");
1647 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1648 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1649 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1651 /* Get the index in the procedure linkage table which
1652 corresponds to this symbol. This is the index of this symbol
1653 in all the symbols for which we are making plt entries. The
1654 first entry in the procedure linkage table is reserved. */
1655 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1657 /* Get the offset into the .got table of the entry that
1658 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
1659 bytes. The first three are reserved for the dynamic linker. */
1660 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1662 /* Fill in the entry in the procedure linkage table. */
1663 memcpy (splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
1664 PLT_ENTRY_SIZE);
1666 /* Insert the relocation positions of the plt section. The magic
1667 numbers at the end of the statements are the positions of the
1668 relocations in the plt section. */
1669 /* Put offset for jmp *name@GOTPCREL(%rip), since the
1670 instruction uses 6 bytes, subtract this value. */
1671 bfd_put_32 (output_bfd,
1672 (sgot->output_section->vma
1673 + sgot->output_offset
1674 + got_offset
1675 - splt->output_section->vma
1676 - splt->output_offset
1677 - h->plt.offset
1678 - 6),
1679 splt->contents + h->plt.offset + 2);
1680 /* Put relocation index. */
1681 bfd_put_32 (output_bfd, plt_index,
1682 splt->contents + h->plt.offset + 7);
1683 /* Put offset for jmp .PLT0. */
1684 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1685 splt->contents + h->plt.offset + 12);
1687 /* Fill in the entry in the global offset table, initially this
1688 points to the pushq instruction in the PLT which is at offset 6. */
1689 bfd_put_64 (output_bfd, (splt->output_section->vma + splt->output_offset
1690 + h->plt.offset + 6),
1691 sgot->contents + got_offset);
1693 /* Fill in the entry in the .rela.plt section. */
1694 rela.r_offset = (sgot->output_section->vma
1695 + sgot->output_offset
1696 + got_offset);
1697 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
1698 rela.r_addend = 0;
1699 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1700 ((Elf64_External_Rela *) srela->contents
1701 + plt_index));
1703 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1705 /* Mark the symbol as undefined, rather than as defined in
1706 the .plt section. Leave the value alone. */
1707 sym->st_shndx = SHN_UNDEF;
1708 /* If the symbol is weak, we do need to clear the value.
1709 Otherwise, the PLT entry would provide a definition for
1710 the symbol even if the symbol wasn't defined anywhere,
1711 and so the symbol would never be NULL. */
1712 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
1713 == 0)
1714 sym->st_value = 0;
1718 if (h->got.offset != (bfd_vma) -1)
1720 asection *sgot;
1721 asection *srela;
1722 Elf_Internal_Rela rela;
1724 /* This symbol has an entry in the global offset table. Set it
1725 up. */
1727 sgot = bfd_get_section_by_name (dynobj, ".got");
1728 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1729 BFD_ASSERT (sgot != NULL && srela != NULL);
1731 rela.r_offset = (sgot->output_section->vma
1732 + sgot->output_offset
1733 + (h->got.offset &~ 1));
1735 /* If this is a static link, or it is a -Bsymbolic link and the
1736 symbol is defined locally or was forced to be local because
1737 of a version file, we just want to emit a RELATIVE reloc.
1738 The entry in the global offset table will already have been
1739 initialized in the relocate_section function. */
1740 if (! elf_hash_table (info)->dynamic_sections_created
1741 || (info->shared
1742 && (info->symbolic || h->dynindx == -1)
1743 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1745 BFD_ASSERT((h->got.offset & 1) != 0);
1746 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1747 rela.r_addend = (h->root.u.def.value
1748 + h->root.u.def.section->output_section->vma
1749 + h->root.u.def.section->output_offset);
1751 else
1753 BFD_ASSERT((h->got.offset & 1) == 0);
1754 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1755 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
1756 rela.r_addend = 0;
1759 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1760 ((Elf64_External_Rela *) srela->contents
1761 + srela->reloc_count));
1762 ++srela->reloc_count;
1765 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1767 asection *s;
1768 Elf_Internal_Rela rela;
1770 /* This symbol needs a copy reloc. Set it up. */
1772 BFD_ASSERT (h->dynindx != -1
1773 && (h->root.type == bfd_link_hash_defined
1774 || h->root.type == bfd_link_hash_defweak));
1776 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1777 ".rela.bss");
1778 BFD_ASSERT (s != NULL);
1780 rela.r_offset = (h->root.u.def.value
1781 + h->root.u.def.section->output_section->vma
1782 + h->root.u.def.section->output_offset);
1783 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
1784 rela.r_addend = 0;
1785 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1786 ((Elf64_External_Rela *) s->contents
1787 + s->reloc_count));
1788 ++s->reloc_count;
1791 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1792 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1793 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1794 sym->st_shndx = SHN_ABS;
1796 return true;
1799 /* Finish up the dynamic sections. */
1801 static boolean
1802 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
1803 bfd *output_bfd;
1804 struct bfd_link_info *info;
1806 bfd *dynobj;
1807 asection *sdyn;
1808 asection *sgot;
1810 dynobj = elf_hash_table (info)->dynobj;
1812 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1813 BFD_ASSERT (sgot != NULL);
1814 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1816 if (elf_hash_table (info)->dynamic_sections_created)
1818 asection *splt;
1819 Elf64_External_Dyn *dyncon, *dynconend;
1821 BFD_ASSERT (sdyn != NULL);
1823 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1824 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1825 for (; dyncon < dynconend; dyncon++)
1827 Elf_Internal_Dyn dyn;
1828 const char *name;
1829 asection *s;
1831 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1833 switch (dyn.d_tag)
1835 default:
1836 continue;
1838 case DT_PLTGOT:
1839 name = ".got";
1840 goto get_vma;
1842 case DT_JMPREL:
1843 name = ".rela.plt";
1845 get_vma:
1846 s = bfd_get_section_by_name (output_bfd, name);
1847 BFD_ASSERT (s != NULL);
1848 dyn.d_un.d_ptr = s->vma;
1849 break;
1851 case DT_RELASZ:
1852 /* FIXME: This comment and code is from elf64-alpha.c: */
1853 /* My interpretation of the TIS v1.1 ELF document indicates
1854 that RELASZ should not include JMPREL. This is not what
1855 the rest of the BFD does. It is, however, what the
1856 glibc ld.so wants. Do this fixup here until we found
1857 out who is right. */
1858 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1859 if (s)
1861 /* Subtract JMPREL size from RELASZ. */
1862 dyn.d_un.d_val -=
1863 (s->_cooked_size ? s->_cooked_size : s->_raw_size);
1865 break;
1867 case DT_PLTRELSZ:
1868 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1869 BFD_ASSERT (s != NULL);
1870 dyn.d_un.d_val =
1871 (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size);
1872 break;
1874 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1877 /* Initialize the contents of the .plt section. */
1878 splt = bfd_get_section_by_name (dynobj, ".plt");
1879 BFD_ASSERT (splt != NULL);
1880 if (splt->_raw_size > 0)
1882 /* Fill in the first entry in the procedure linkage table. */
1883 memcpy (splt->contents, elf64_x86_64_plt0_entry, PLT_ENTRY_SIZE);
1884 /* Add offset for pushq GOT+8(%rip), since the instruction
1885 uses 6 bytes subtract this value. */
1886 bfd_put_32 (output_bfd,
1887 (sgot->output_section->vma
1888 + sgot->output_offset
1890 - splt->output_section->vma
1891 - splt->output_offset
1892 - 6),
1893 splt->contents + 2);
1894 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
1895 the end of the instruction. */
1896 bfd_put_32 (output_bfd,
1897 (sgot->output_section->vma
1898 + sgot->output_offset
1899 + 16
1900 - splt->output_section->vma
1901 - splt->output_offset
1902 - 12),
1903 splt->contents + 8);
1907 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1908 PLT_ENTRY_SIZE;
1911 /* Set the first entry in the global offset table to the address of
1912 the dynamic section. */
1913 if (sgot->_raw_size > 0)
1915 if (sdyn == NULL)
1916 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
1917 else
1918 bfd_put_64 (output_bfd,
1919 sdyn->output_section->vma + sdyn->output_offset,
1920 sgot->contents);
1921 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
1922 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE);
1923 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE*2);
1926 elf_section_data (sgot->output_section)->this_hdr.sh_entsize =
1927 GOT_ENTRY_SIZE;
1929 return true;
1932 static enum elf_reloc_type_class
1933 elf64_x86_64_reloc_type_class (type)
1934 int type;
1936 switch (type)
1938 case R_X86_64_RELATIVE:
1939 return reloc_class_relative;
1940 case R_X86_64_JUMP_SLOT:
1941 return reloc_class_plt;
1942 case R_X86_64_COPY:
1943 return reloc_class_copy;
1944 default:
1945 return reloc_class_normal;
1949 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
1950 #define TARGET_LITTLE_NAME "elf64-x86-64"
1951 #define ELF_ARCH bfd_arch_i386
1952 #define ELF_MACHINE_CODE EM_X86_64
1953 #define ELF_MAXPAGESIZE 0x100000
1955 #define elf_backend_can_gc_sections 1
1956 #define elf_backend_want_got_plt 1
1957 #define elf_backend_plt_readonly 1
1958 #define elf_backend_want_plt_sym 0
1959 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
1960 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1962 #define elf_info_to_howto elf64_x86_64_info_to_howto
1964 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
1965 #define bfd_elf64_bfd_link_hash_table_create \
1966 elf64_x86_64_link_hash_table_create
1967 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
1969 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
1970 #define elf_backend_check_relocs elf64_x86_64_check_relocs
1971 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
1972 #define elf_backend_finish_dynamic_sections \
1973 elf64_x86_64_finish_dynamic_sections
1974 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
1975 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
1976 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
1977 #define elf_backend_relocate_section elf64_x86_64_relocate_section
1978 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
1979 #define elf_backend_object_p elf64_x86_64_elf_object_p
1980 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
1982 #include "elf64-target.h"