1 /* IBM S/390-specific support for 32-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Carl B. Pedersen and Martin Schwidefsky.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
28 static reloc_howto_type
*elf_s390_reloc_type_lookup
29 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
32 static boolean elf_s390_is_local_label_name
PARAMS ((bfd
*, const char *));
33 static struct bfd_hash_entry
*elf_s390_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
35 static struct bfd_link_hash_table
*elf_s390_link_hash_table_create
37 static boolean elf_s390_check_relocs
38 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
39 const Elf_Internal_Rela
*));
40 static asection
*elf_s390_gc_mark_hook
41 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
42 struct elf_link_hash_entry
*, Elf_Internal_Sym
*sym
));
43 static boolean elf_s390_gc_sweep_hook
44 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
45 const Elf_Internal_Rela
*));
46 static boolean elf_s390_adjust_dynamic_symbol
47 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
48 static boolean elf_s390_size_dynamic_sections
49 PARAMS ((bfd
*, struct bfd_link_info
*));
50 static boolean elf_s390_relocate_section
51 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
52 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
53 static boolean elf_s390_finish_dynamic_symbol
54 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
56 static boolean elf_s390_finish_dynamic_sections
57 PARAMS ((bfd
*, struct bfd_link_info
*));
58 static boolean elf_s390_object_p
PARAMS ((bfd
*));
60 #define USE_RELA 1 /* We want RELA relocations, not REL. */
64 /* The relocation "howto" table. */
66 static reloc_howto_type elf_howto_table
[] =
68 HOWTO (R_390_NONE
, /* type */
70 0, /* size (0 = byte, 1 = short, 2 = long) */
72 false, /* pc_relative */
74 complain_overflow_dont
, /* complain_on_overflow */
75 bfd_elf_generic_reloc
, /* special_function */
76 "R_390_NONE", /* name */
77 false, /* partial_inplace */
80 false), /* pcrel_offset */
82 HOWTO(R_390_8
, 0, 0, 8, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_8", false, 0,0x000000ff, false),
83 HOWTO(R_390_12
, 0, 1, 12, false, 0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_390_12", false, 0,0x00000fff, false),
84 HOWTO(R_390_16
, 0, 1, 16, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_16", false, 0,0x0000ffff, false),
85 HOWTO(R_390_32
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_32", false, 0,0xffffffff, false),
86 HOWTO(R_390_PC32
, 0, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC32", false, 0,0xffffffff, true),
87 HOWTO(R_390_GOT12
, 0, 1, 12, false, 0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_390_GOT12", false, 0,0x00000fff, false),
88 HOWTO(R_390_GOT32
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOT32", false, 0,0xffffffff, false),
89 HOWTO(R_390_PLT32
, 0, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PLT32", false, 0,0xffffffff, true),
90 HOWTO(R_390_COPY
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_COPY", false, 0,0xffffffff, false),
91 HOWTO(R_390_GLOB_DAT
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GLOB_DAT",false, 0,0xffffffff, false),
92 HOWTO(R_390_JMP_SLOT
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_JMP_SLOT",false, 0,0xffffffff, false),
93 HOWTO(R_390_RELATIVE
, 0, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_RELATIVE",false, 0,0xffffffff, false),
94 HOWTO(R_390_GOTOFF
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOTOFF", false, 0,0xffffffff, false),
95 HOWTO(R_390_GOTPC
, 0, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOTPC", false, 0,0xffffffff, true),
96 HOWTO(R_390_GOT16
, 0, 1, 16, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOT16", false, 0,0x0000ffff, false),
97 HOWTO(R_390_PC16
, 0, 1, 16, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC16", false, 0,0x0000ffff, true),
98 HOWTO(R_390_PC16DBL
, 1, 1, 16, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC16DBL", false, 0,0x0000ffff, true),
99 HOWTO(R_390_PLT16DBL
, 1, 1, 16, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
102 /* GNU extension to record C++ vtable hierarchy. */
103 static reloc_howto_type elf32_s390_vtinherit_howto
=
104 HOWTO (R_390_GNU_VTINHERIT
, 0,2,0,false,0,complain_overflow_dont
, NULL
, "R_390_GNU_VTINHERIT", false,0, 0, false);
105 static reloc_howto_type elf32_s390_vtentry_howto
=
106 HOWTO (R_390_GNU_VTENTRY
, 0,2,0,false,0,complain_overflow_dont
, _bfd_elf_rel_vtable_reloc_fn
,"R_390_GNU_VTENTRY", false,0,0, false);
108 static reloc_howto_type
*
109 elf_s390_reloc_type_lookup (abfd
, code
)
110 bfd
*abfd ATTRIBUTE_UNUSED
;
111 bfd_reloc_code_real_type code
;
115 return &elf_howto_table
[(int) R_390_NONE
];
117 return &elf_howto_table
[(int) R_390_8
];
118 case BFD_RELOC_390_12
:
119 return &elf_howto_table
[(int) R_390_12
];
121 return &elf_howto_table
[(int) R_390_16
];
123 return &elf_howto_table
[(int) R_390_32
];
125 return &elf_howto_table
[(int) R_390_32
];
126 case BFD_RELOC_32_PCREL
:
127 return &elf_howto_table
[(int) R_390_PC32
];
128 case BFD_RELOC_390_GOT12
:
129 return &elf_howto_table
[(int) R_390_GOT12
];
130 case BFD_RELOC_32_GOT_PCREL
:
131 return &elf_howto_table
[(int) R_390_GOT32
];
132 case BFD_RELOC_390_PLT32
:
133 return &elf_howto_table
[(int) R_390_PLT32
];
134 case BFD_RELOC_390_COPY
:
135 return &elf_howto_table
[(int) R_390_COPY
];
136 case BFD_RELOC_390_GLOB_DAT
:
137 return &elf_howto_table
[(int) R_390_GLOB_DAT
];
138 case BFD_RELOC_390_JMP_SLOT
:
139 return &elf_howto_table
[(int) R_390_JMP_SLOT
];
140 case BFD_RELOC_390_RELATIVE
:
141 return &elf_howto_table
[(int) R_390_RELATIVE
];
142 case BFD_RELOC_32_GOTOFF
:
143 return &elf_howto_table
[(int) R_390_GOTOFF
];
144 case BFD_RELOC_390_GOTPC
:
145 return &elf_howto_table
[(int) R_390_GOTPC
];
146 case BFD_RELOC_390_GOT16
:
147 return &elf_howto_table
[(int) R_390_GOT16
];
148 case BFD_RELOC_16_PCREL
:
149 return &elf_howto_table
[(int) R_390_PC16
];
150 case BFD_RELOC_390_PC16DBL
:
151 return &elf_howto_table
[(int) R_390_PC16DBL
];
152 case BFD_RELOC_390_PLT16DBL
:
153 return &elf_howto_table
[(int) R_390_PLT16DBL
];
154 case BFD_RELOC_VTABLE_INHERIT
:
155 return &elf32_s390_vtinherit_howto
;
156 case BFD_RELOC_VTABLE_ENTRY
:
157 return &elf32_s390_vtentry_howto
;
164 /* We need to use ELF32_R_TYPE so we have our own copy of this function,
165 and elf32-s390.c has its own copy. */
168 elf_s390_info_to_howto (abfd
, cache_ptr
, dst
)
169 bfd
*abfd ATTRIBUTE_UNUSED
;
171 Elf_Internal_Rela
*dst
;
173 switch (ELF32_R_TYPE(dst
->r_info
))
175 case R_390_GNU_VTINHERIT
:
176 cache_ptr
->howto
= &elf32_s390_vtinherit_howto
;
179 case R_390_GNU_VTENTRY
:
180 cache_ptr
->howto
= &elf32_s390_vtentry_howto
;
184 BFD_ASSERT (ELF32_R_TYPE(dst
->r_info
) < (unsigned int) R_390_max
);
185 cache_ptr
->howto
= &elf_howto_table
[ELF32_R_TYPE(dst
->r_info
)];
190 elf_s390_is_local_label_name (abfd
, name
)
194 if (name
[0] == '.' && (name
[1] == 'X' || name
[1] == 'L'))
197 return _bfd_elf_is_local_label_name (abfd
, name
);
200 /* Functions for the 390 ELF linker. */
202 /* The name of the dynamic interpreter. This is put in the .interp
205 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
207 /* The nop opcode we use. */
209 #define s390_NOP 0x07070707
212 /* The size in bytes of the first entry in the procedure linkage table. */
213 #define PLT_FIRST_ENTRY_SIZE 32
214 /* The size in bytes of an entry in the procedure linkage table. */
215 #define PLT_ENTRY_SIZE 32
217 #define GOT_ENTRY_SIZE 4
219 /* The first three entries in a procedure linkage table are reserved,
220 and the initial contents are unimportant (we zero them out).
221 Subsequent entries look like this. See the SVR4 ABI 386
222 supplement to see how this works. */
224 /* For the s390, simple addr offset can only be 0 - 4096.
225 To use the full 2 GB address space, several instructions
226 are needed to load an address in a register and execute
227 a branch( or just saving the address)
229 Furthermore, only r 0 and 1 are free to use!!! */
231 /* The first 3 words in the GOT are then reserved.
232 Word 0 is the address of the dynamic table.
233 Word 1 is a pointer to a structure describing the object
234 Word 2 is used to point to the loader entry address.
236 The code for position independand PLT entries looks like this:
238 r12 holds addr of the current GOT at entry to the PLT
240 The GOT holds the address in the PLT to be executed.
241 The loader then gets:
242 24(15) = Pointer to the structure describing the object.
243 28(15) = Offset in symbol table
245 The loader must then find the module where the function is
246 and insert the address in the GOT.
248 Note: 390 can only address +- 64 K relative.
249 We check if offset > 65536, then make a relative branch -64xxx
250 back to a previous defined branch
252 PLT1: BASR 1,0 # 2 bytes
253 L 1,22(1) # 4 bytes Load offset in GOT in r 1
254 L 1,(1,12) # 4 bytes Load address from GOT in r1
255 BCR 15,1 # 2 bytes Jump to address
256 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
257 L 1,14(1) # 4 bytes Load offset in symol table in r1
258 BRC 15,-x # 4 bytes Jump to start of PLT
259 .word 0 # 2 bytes filler
260 .long ? # 4 bytes offset in GOT
261 .long ? # 4 bytes offset into symbol table
263 This was the general case. There are two additional, optimizes PLT
264 definitions. One for GOT offsets < 4096 and one for GOT offsets < 32768.
265 First the one for GOT offsets < 4096:
267 PLT1: L 1,<offset>(12) # 4 bytes Load address from GOT in R1
268 BCR 15,1 # 2 bytes Jump to address
269 .word 0,0,0 # 6 bytes filler
270 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
271 L 1,14(1) # 4 bytes Load offset in symbol table in r1
272 BRC 15,-x # 4 bytes Jump to start of PLT
273 .word 0,0,0 # 6 bytes filler
274 .long ? # 4 bytes offset into symbol table
276 Second the one for GOT offsets < 32768:
278 PLT1: LHI 1,<offset> # 4 bytes Load offset in GOT to r1
279 L 1,(1,12) # 4 bytes Load address from GOT to r1
280 BCR 15,1 # 2 bytes Jump to address
281 .word 0 # 2 bytes filler
282 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
283 L 1,14(1) # 4 bytes Load offset in symbol table in r1
284 BRC 15,-x # 4 bytes Jump to start of PLT
285 .word 0,0,0 # 6 bytes filler
286 .long ? # 4 bytes offset into symbol table
288 Total = 32 bytes per PLT entry
290 The code for static build PLT entries looks like this:
292 PLT1: BASR 1,0 # 2 bytes
293 L 1,22(1) # 4 bytes Load address of GOT entry
294 L 1,0(0,1) # 4 bytes Load address from GOT in r1
295 BCR 15,1 # 2 bytes Jump to address
296 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
297 L 1,14(1) # 4 bytes Load offset in symbol table in r1
298 BRC 15,-x # 4 bytes Jump to start of PLT
299 .word 0 # 2 bytes filler
300 .long ? # 4 bytes address of GOT entry
301 .long ? # 4 bytes offset into symbol table */
303 #define PLT_PIC_ENTRY_WORD0 0x0d105810
304 #define PLT_PIC_ENTRY_WORD1 0x10165811
305 #define PLT_PIC_ENTRY_WORD2 0xc00007f1
306 #define PLT_PIC_ENTRY_WORD3 0x0d105810
307 #define PLT_PIC_ENTRY_WORD4 0x100ea7f4
309 #define PLT_PIC12_ENTRY_WORD0 0x5810c000
310 #define PLT_PIC12_ENTRY_WORD1 0x07f10000
311 #define PLT_PIC12_ENTRY_WORD2 0x00000000
312 #define PLT_PIC12_ENTRY_WORD3 0x0d105810
313 #define PLT_PIC12_ENTRY_WORD4 0x100ea7f4
315 #define PLT_PIC16_ENTRY_WORD0 0xa7180000
316 #define PLT_PIC16_ENTRY_WORD1 0x5811c000
317 #define PLT_PIC16_ENTRY_WORD2 0x07f10000
318 #define PLT_PIC16_ENTRY_WORD3 0x0d105810
319 #define PLT_PIC16_ENTRY_WORD4 0x100ea7f4
321 #define PLT_ENTRY_WORD0 0x0d105810
322 #define PLT_ENTRY_WORD1 0x10165810
323 #define PLT_ENTRY_WORD2 0x100007f1
324 #define PLT_ENTRY_WORD3 0x0d105810
325 #define PLT_ENTRY_WORD4 0x100ea7f4
327 /* The first PLT entry pushes the offset into the symbol table
328 from R1 onto the stack at 8(15) and the loader object info
329 at 12(15), loads the loader address in R1 and jumps to it. */
331 /* The first entry in the PLT for PIC code:
334 ST 1,28(15) # R1 has offset into symbol table
335 L 1,4(12) # Get loader ino(object struct address)
336 ST 1,24(15) # Store address
337 L 1,8(12) # Entry address of loader in R1
338 BR 1 # Jump to loader
340 The first entry in the PLT for static code:
343 ST 1,28(15) # R1 has offset into symbol table
345 L 1,18(0,1) # Get address of GOT
346 MVC 24(4,15),4(1) # Move loader ino to stack
347 L 1,8(1) # Get address of loader
348 BR 1 # Jump to loader
350 .long got # address of GOT */
352 #define PLT_PIC_FIRST_ENTRY_WORD0 0x5010f01c
353 #define PLT_PIC_FIRST_ENTRY_WORD1 0x5810c004
354 #define PLT_PIC_FIRST_ENTRY_WORD2 0x5010f018
355 #define PLT_PIC_FIRST_ENTRY_WORD3 0x5810c008
356 #define PLT_PIC_FIRST_ENTRY_WORD4 0x07f10000
358 #define PLT_FIRST_ENTRY_WORD0 0x5010f01c
359 #define PLT_FIRST_ENTRY_WORD1 0x0d105810
360 #define PLT_FIRST_ENTRY_WORD2 0x1012D203
361 #define PLT_FIRST_ENTRY_WORD3 0xf0181004
362 #define PLT_FIRST_ENTRY_WORD4 0x58101008
363 #define PLT_FIRST_ENTRY_WORD5 0x07f10000
365 /* The s390 linker needs to keep track of the number of relocs that it
366 decides to copy in check_relocs for each symbol. This is so that
367 it can discard PC relative relocs if it doesn't need them when
368 linking with -Bsymbolic. We store the information in a field
369 extending the regular ELF linker hash table. */
371 /* This structure keeps track of the number of PC relative relocs we
372 have copied for a given symbol. */
374 struct elf_s390_pcrel_relocs_copied
377 struct elf_s390_pcrel_relocs_copied
*next
;
378 /* A section in dynobj. */
380 /* Number of relocs copied in this section. */
384 /* s390 ELF linker hash entry. */
386 struct elf_s390_link_hash_entry
388 struct elf_link_hash_entry root
;
390 /* Number of PC relative relocs copied for this symbol. */
391 struct elf_s390_pcrel_relocs_copied
*pcrel_relocs_copied
;
394 /* s390 ELF linker hash table. */
396 struct elf_s390_link_hash_table
398 struct elf_link_hash_table root
;
401 /* Declare this now that the above structures are defined. */
403 static boolean elf_s390_discard_copies
404 PARAMS ((struct elf_s390_link_hash_entry
*, PTR
));
406 /* Traverse an s390 ELF linker hash table. */
408 #define elf_s390_link_hash_traverse(table, func, info) \
409 (elf_link_hash_traverse \
411 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
414 /* Get the s390 ELF linker hash table from a link_info structure. */
416 #define elf_s390_hash_table(p) \
417 ((struct elf_s390_link_hash_table *) ((p)->hash))
419 /* Create an entry in an s390 ELF linker hash table. */
421 static struct bfd_hash_entry
*
422 elf_s390_link_hash_newfunc (entry
, table
, string
)
423 struct bfd_hash_entry
*entry
;
424 struct bfd_hash_table
*table
;
427 struct elf_s390_link_hash_entry
*ret
=
428 (struct elf_s390_link_hash_entry
*) entry
;
430 /* Allocate the structure if it has not already been allocated by a
432 if (ret
== (struct elf_s390_link_hash_entry
*) NULL
)
433 ret
= ((struct elf_s390_link_hash_entry
*)
434 bfd_hash_allocate (table
,
435 sizeof (struct elf_s390_link_hash_entry
)));
436 if (ret
== (struct elf_s390_link_hash_entry
*) NULL
)
437 return (struct bfd_hash_entry
*) ret
;
439 /* Call the allocation method of the superclass. */
440 ret
= ((struct elf_s390_link_hash_entry
*)
441 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
443 if (ret
!= (struct elf_s390_link_hash_entry
*) NULL
)
445 ret
->pcrel_relocs_copied
= NULL
;
448 return (struct bfd_hash_entry
*) ret
;
451 /* Create an s390 ELF linker hash table. */
453 static struct bfd_link_hash_table
*
454 elf_s390_link_hash_table_create (abfd
)
457 struct elf_s390_link_hash_table
*ret
;
459 ret
= ((struct elf_s390_link_hash_table
*)
460 bfd_alloc (abfd
, sizeof (struct elf_s390_link_hash_table
)));
461 if (ret
== (struct elf_s390_link_hash_table
*) NULL
)
464 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
465 elf_s390_link_hash_newfunc
))
467 bfd_release (abfd
, ret
);
471 return &ret
->root
.root
;
475 /* Look through the relocs for a section during the first phase, and
476 allocate space in the global offset table or procedure linkage
480 elf_s390_check_relocs (abfd
, info
, sec
, relocs
)
482 struct bfd_link_info
*info
;
484 const Elf_Internal_Rela
*relocs
;
487 Elf_Internal_Shdr
*symtab_hdr
;
488 struct elf_link_hash_entry
**sym_hashes
;
489 bfd_signed_vma
*local_got_refcounts
;
490 const Elf_Internal_Rela
*rel
;
491 const Elf_Internal_Rela
*rel_end
;
496 if (info
->relocateable
)
499 dynobj
= elf_hash_table (info
)->dynobj
;
500 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
501 sym_hashes
= elf_sym_hashes (abfd
);
502 local_got_refcounts
= elf_local_got_offsets (abfd
);
508 rel_end
= relocs
+ sec
->reloc_count
;
509 for (rel
= relocs
; rel
< rel_end
; rel
++)
511 unsigned long r_symndx
;
512 struct elf_link_hash_entry
*h
;
514 r_symndx
= ELF32_R_SYM (rel
->r_info
);
516 if (r_symndx
< symtab_hdr
->sh_info
)
519 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
521 /* Some relocs require a global offset table. */
524 switch (ELF32_R_TYPE (rel
->r_info
))
531 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
532 if (! _bfd_elf_create_got_section (dynobj
, info
))
542 switch (ELF32_R_TYPE (rel
->r_info
))
547 /* This symbol requires a global offset table entry. */
551 sgot
= bfd_get_section_by_name (dynobj
, ".got");
552 BFD_ASSERT (sgot
!= NULL
);
557 && (h
!= NULL
|| info
->shared
))
559 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
562 srelgot
= bfd_make_section (dynobj
, ".rela.got");
564 || ! bfd_set_section_flags (dynobj
, srelgot
,
571 || ! bfd_set_section_alignment (dynobj
, srelgot
, 2))
578 if (h
->got
.refcount
== -1)
582 /* Make sure this symbol is output as a dynamic symbol. */
583 if (h
->dynindx
== -1)
585 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
589 sgot
->_raw_size
+= 4;
590 srelgot
->_raw_size
+= sizeof (Elf32_External_Rela
);
593 h
->got
.refcount
+= 1;
597 /* This is a global offset table entry for a local symbol. */
598 if (local_got_refcounts
== NULL
)
602 size
= symtab_hdr
->sh_info
* sizeof (bfd_signed_vma
);
603 local_got_refcounts
= (bfd_signed_vma
*)
604 bfd_alloc (abfd
, size
);
605 if (local_got_refcounts
== NULL
)
607 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
608 memset (local_got_refcounts
, -1, size
);
610 if (local_got_refcounts
[r_symndx
] == -1)
612 local_got_refcounts
[r_symndx
] = 1;
614 sgot
->_raw_size
+= 4;
617 /* If we are generating a shared object, we need to
618 output a R_390_RELATIVE reloc so that the dynamic
619 linker can adjust this GOT entry. */
620 srelgot
->_raw_size
+= sizeof (Elf32_External_Rela
);
624 local_got_refcounts
[r_symndx
] += 1;
630 /* This symbol requires a procedure linkage table entry. We
631 actually build the entry in adjust_dynamic_symbol,
632 because this might be a case of linking PIC code which is
633 never referenced by a dynamic object, in which case we
634 don't need to generate a procedure linkage table entry
637 /* If this is a local symbol, we resolve it directly without
638 creating a procedure linkage table entry. */
642 if (h
->plt
.refcount
== -1)
645 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
648 h
->plt
.refcount
+= 1;
658 h
->elf_link_hash_flags
|= ELF_LINK_NON_GOT_REF
;
660 /* If we are creating a shared library, and this is a reloc
661 against a global symbol, or a non PC relative reloc
662 against a local symbol, then we need to copy the reloc
663 into the shared library. However, if we are linking with
664 -Bsymbolic, we do not need to copy a reloc against a
665 global symbol which is defined in an object we are
666 including in the link (i.e., DEF_REGULAR is set). At
667 this point we have not seen all the input files, so it is
668 possible that DEF_REGULAR is not set now but will be set
669 later (it is never cleared). We account for that
670 possibility below by storing information in the
671 pcrel_relocs_copied field of the hash table entry. */
673 && (sec
->flags
& SEC_ALLOC
) != 0
674 && ((ELF32_R_TYPE (rel
->r_info
) != R_390_PC16
&&
675 ELF32_R_TYPE (rel
->r_info
) != R_390_PC16DBL
&&
676 ELF32_R_TYPE (rel
->r_info
) != R_390_PC32
)
679 || (h
->elf_link_hash_flags
680 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
682 /* When creating a shared object, we must copy these
683 reloc types into the output file. We create a reloc
684 section in dynobj and make room for this reloc. */
689 name
= (bfd_elf_string_from_elf_section
691 elf_elfheader (abfd
)->e_shstrndx
,
692 elf_section_data (sec
)->rel_hdr
.sh_name
));
696 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
697 && strcmp (bfd_get_section_name (abfd
, sec
),
700 sreloc
= bfd_get_section_by_name (dynobj
, name
);
705 sreloc
= bfd_make_section (dynobj
, name
);
706 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
707 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
708 if ((sec
->flags
& SEC_ALLOC
) != 0)
709 flags
|= SEC_ALLOC
| SEC_LOAD
;
711 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
712 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
717 sreloc
->_raw_size
+= sizeof (Elf32_External_Rela
);
719 /* If we are linking with -Bsymbolic, and this is a
720 global symbol, we count the number of PC relative
721 relocations we have entered for this symbol, so that
722 we can discard them again if the symbol is later
723 defined by a regular object. Note that this function
724 is only called if we are using an elf_s390 linker
725 hash table, which means that h is really a pointer to
726 an elf_s390_link_hash_entry. */
728 && (ELF32_R_TYPE (rel
->r_info
) == R_390_PC16
||
729 ELF32_R_TYPE (rel
->r_info
) == R_390_PC16DBL
||
730 ELF32_R_TYPE (rel
->r_info
) == R_390_PC32
))
732 struct elf_s390_link_hash_entry
*eh
;
733 struct elf_s390_pcrel_relocs_copied
*p
;
735 eh
= (struct elf_s390_link_hash_entry
*) h
;
737 for (p
= eh
->pcrel_relocs_copied
; p
!= NULL
; p
= p
->next
)
738 if (p
->section
== sreloc
)
743 p
= ((struct elf_s390_pcrel_relocs_copied
*)
744 bfd_alloc (dynobj
, sizeof *p
));
747 p
->next
= eh
->pcrel_relocs_copied
;
748 eh
->pcrel_relocs_copied
= p
;
759 /* This relocation describes the C++ object vtable hierarchy.
760 Reconstruct it for later use during GC. */
761 case R_390_GNU_VTINHERIT
:
762 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
766 /* This relocation describes which C++ vtable entries are actually
767 used. Record for later use during GC. */
768 case R_390_GNU_VTENTRY
:
769 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
781 /* Return the section that should be marked against GC for a given
785 elf_s390_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
787 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
788 Elf_Internal_Rela
*rel
;
789 struct elf_link_hash_entry
*h
;
790 Elf_Internal_Sym
*sym
;
794 switch (ELF32_R_TYPE (rel
->r_info
))
796 case R_390_GNU_VTINHERIT
:
797 case R_390_GNU_VTENTRY
:
801 switch (h
->root
.type
)
803 case bfd_link_hash_defined
:
804 case bfd_link_hash_defweak
:
805 return h
->root
.u
.def
.section
;
807 case bfd_link_hash_common
:
808 return h
->root
.u
.c
.p
->section
;
817 if (!(elf_bad_symtab (abfd
)
818 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
819 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
820 && sym
->st_shndx
!= SHN_COMMON
))
822 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
829 /* Update the got entry reference counts for the section being removed. */
832 elf_s390_gc_sweep_hook (abfd
, info
, sec
, relocs
)
833 bfd
*abfd ATTRIBUTE_UNUSED
;
834 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
835 asection
*sec ATTRIBUTE_UNUSED
;
836 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
838 Elf_Internal_Shdr
*symtab_hdr
;
839 struct elf_link_hash_entry
**sym_hashes
;
840 bfd_signed_vma
*local_got_refcounts
;
841 const Elf_Internal_Rela
*rel
, *relend
;
842 unsigned long r_symndx
;
843 struct elf_link_hash_entry
*h
;
848 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
849 sym_hashes
= elf_sym_hashes (abfd
);
850 local_got_refcounts
= elf_local_got_refcounts (abfd
);
852 dynobj
= elf_hash_table (info
)->dynobj
;
856 sgot
= bfd_get_section_by_name (dynobj
, ".got");
857 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
859 relend
= relocs
+ sec
->reloc_count
;
860 for (rel
= relocs
; rel
< relend
; rel
++)
861 switch (ELF32_R_TYPE (rel
->r_info
))
868 r_symndx
= ELF32_R_SYM (rel
->r_info
);
869 if (r_symndx
>= symtab_hdr
->sh_info
)
871 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
872 if (h
->got
.refcount
> 0)
874 h
->got
.refcount
-= 1;
875 if (h
->got
.refcount
== 0)
877 sgot
->_raw_size
-= 4;
878 srelgot
->_raw_size
-= sizeof (Elf32_External_Rela
);
882 else if (local_got_refcounts
!= NULL
)
884 if (local_got_refcounts
[r_symndx
] > 0)
886 local_got_refcounts
[r_symndx
] -= 1;
887 if (local_got_refcounts
[r_symndx
] == 0)
889 sgot
->_raw_size
-= 4;
891 srelgot
->_raw_size
-= sizeof (Elf32_External_Rela
);
899 r_symndx
= ELF32_R_SYM (rel
->r_info
);
900 if (r_symndx
>= symtab_hdr
->sh_info
)
902 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
903 if (h
->plt
.refcount
> 0)
904 h
->plt
.refcount
-= 1;
915 /* Adjust a symbol defined by a dynamic object and referenced by a
916 regular object. The current definition is in some section of the
917 dynamic object, but we're not including those sections. We have to
918 change the definition to something the rest of the link can
922 elf_s390_adjust_dynamic_symbol (info
, h
)
923 struct bfd_link_info
*info
;
924 struct elf_link_hash_entry
*h
;
928 unsigned int power_of_two
;
930 dynobj
= elf_hash_table (info
)->dynobj
;
932 /* Make sure we know what is going on here. */
933 BFD_ASSERT (dynobj
!= NULL
934 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
935 || h
->weakdef
!= NULL
936 || ((h
->elf_link_hash_flags
937 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
938 && (h
->elf_link_hash_flags
939 & ELF_LINK_HASH_REF_REGULAR
) != 0
940 && (h
->elf_link_hash_flags
941 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
943 /* If this is a function, put it in the procedure linkage table. We
944 will fill in the contents of the procedure linkage table later
945 (although we could actually do it here). */
946 if (h
->type
== STT_FUNC
947 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
950 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
951 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
952 || (info
->shared
&& h
->plt
.refcount
<= 0))
954 /* This case can occur if we saw a PLT32 reloc in an input
955 file, but the symbol was never referred to by a dynamic
956 object, or if all references were garbage collected. In
957 such a case, we don't actually need to build a procedure
958 linkage table, and we can just do a PC32 reloc instead. */
959 h
->plt
.offset
= (bfd_vma
) -1;
960 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
964 /* Make sure this symbol is output as a dynamic symbol. */
965 if (h
->dynindx
== -1)
967 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
971 s
= bfd_get_section_by_name (dynobj
, ".plt");
972 BFD_ASSERT (s
!= NULL
);
974 /* The first entry in .plt is reserved. */
975 if (s
->_raw_size
== 0)
976 s
->_raw_size
= PLT_FIRST_ENTRY_SIZE
;
978 /* If this symbol is not defined in a regular file, and we are
979 not generating a shared library, then set the symbol to this
980 location in the .plt. This is required to make function
981 pointers compare as equal between the normal executable and
982 the shared library. */
984 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
986 h
->root
.u
.def
.section
= s
;
987 h
->root
.u
.def
.value
= s
->_raw_size
;
990 h
->plt
.offset
= s
->_raw_size
;
992 /* Make room for this entry. */
993 s
->_raw_size
+= PLT_ENTRY_SIZE
;
995 /* We also need to make an entry in the .got.plt section, which
996 will be placed in the .got section by the linker script. */
997 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
998 BFD_ASSERT (s
!= NULL
);
999 s
->_raw_size
+= GOT_ENTRY_SIZE
;
1001 /* We also need to make an entry in the .rela.plt section. */
1002 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1003 BFD_ASSERT (s
!= NULL
);
1004 s
->_raw_size
+= sizeof (Elf32_External_Rela
);
1009 /* If this is a weak symbol, and there is a real definition, the
1010 processor independent code will have arranged for us to see the
1011 real definition first, and we can just use the same value. */
1012 if (h
->weakdef
!= NULL
)
1014 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1015 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1016 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1017 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1021 /* This is a reference to a symbol defined by a dynamic object which
1022 is not a function. */
1024 /* If we are creating a shared library, we must presume that the
1025 only references to the symbol are via the global offset table.
1026 For such cases we need not do anything here; the relocations will
1027 be handled correctly by relocate_section. */
1031 /* If there are no references to this symbol that do not use the
1032 GOT, we don't need to generate a copy reloc. */
1033 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0)
1036 /* We must allocate the symbol in our .dynbss section, which will
1037 become part of the .bss section of the executable. There will be
1038 an entry for this symbol in the .dynsym section. The dynamic
1039 object will contain position independent code, so all references
1040 from the dynamic object to this symbol will go through the global
1041 offset table. The dynamic linker will use the .dynsym entry to
1042 determine the address it must put in the global offset table, so
1043 both the dynamic object and the regular object will refer to the
1044 same memory location for the variable. */
1046 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1047 BFD_ASSERT (s
!= NULL
);
1049 /* We must generate a R_390_COPY reloc to tell the dynamic linker
1050 to copy the initial value out of the dynamic object and into the
1051 runtime process image. We need to remember the offset into the
1052 .rel.bss section we are going to use. */
1053 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1057 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1058 BFD_ASSERT (srel
!= NULL
);
1059 srel
->_raw_size
+= sizeof (Elf32_External_Rela
);
1060 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1063 /* We need to figure out the alignment required for this symbol. I
1064 have no idea how ELF linkers handle this. */
1065 power_of_two
= bfd_log2 (h
->size
);
1066 if (power_of_two
> 3)
1069 /* Apply the required alignment. */
1070 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1071 (bfd_size_type
) (1 << power_of_two
));
1072 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1074 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1078 /* Define the symbol as being at this point in the section. */
1079 h
->root
.u
.def
.section
= s
;
1080 h
->root
.u
.def
.value
= s
->_raw_size
;
1082 /* Increment the section size to make room for the symbol. */
1083 s
->_raw_size
+= h
->size
;
1088 /* Set the sizes of the dynamic sections. */
1091 elf_s390_size_dynamic_sections (output_bfd
, info
)
1093 struct bfd_link_info
*info
;
1101 dynobj
= elf_hash_table (info
)->dynobj
;
1102 BFD_ASSERT (dynobj
!= NULL
);
1104 if (elf_hash_table (info
)->dynamic_sections_created
)
1106 /* Set the contents of the .interp section to the interpreter. */
1109 s
= bfd_get_section_by_name (dynobj
, ".interp");
1110 BFD_ASSERT (s
!= NULL
);
1111 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1112 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1117 /* We may have created entries in the .rela.got section.
1118 However, if we are not creating the dynamic sections, we will
1119 not actually use these entries. Reset the size of .rela.got,
1120 which will cause it to get stripped from the output file
1122 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1127 /* If this is a -Bsymbolic shared link, then we need to discard all
1128 PC relative relocs against symbols defined in a regular object.
1129 We allocated space for them in the check_relocs routine, but we
1130 will not fill them in in the relocate_section routine. */
1132 elf_s390_link_hash_traverse (elf_s390_hash_table (info
),
1133 elf_s390_discard_copies
,
1136 /* The check_relocs and adjust_dynamic_symbol entry points have
1137 determined the sizes of the various dynamic sections. Allocate
1142 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1147 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1150 /* It's OK to base decisions on the section name, because none
1151 of the dynobj section names depend upon the input files. */
1152 name
= bfd_get_section_name (dynobj
, s
);
1156 if (strcmp (name
, ".plt") == 0)
1158 if (s
->_raw_size
== 0)
1160 /* Strip this section if we don't need it; see the
1166 /* Remember whether there is a PLT. */
1170 else if (strncmp (name
, ".rela", 5) == 0)
1172 if (s
->_raw_size
== 0)
1174 /* If we don't need this section, strip it from the
1175 output file. This is to handle .rela.bss and
1176 .rel.plt. We must create it in
1177 create_dynamic_sections, because it must be created
1178 before the linker maps input sections to output
1179 sections. The linker does that before
1180 adjust_dynamic_symbol is called, and it is that
1181 function which decides whether anything needs to go
1182 into these sections. */
1189 /* Remember whether there are any reloc sections other
1191 if (strcmp (name
, ".rela.plt") != 0)
1193 const char *outname
;
1197 /* If this relocation section applies to a read only
1198 section, then we probably need a DT_TEXTREL
1199 entry. The entries in the .rela.plt section
1200 really apply to the .got section, which we
1201 created ourselves and so know is not readonly. */
1202 outname
= bfd_get_section_name (output_bfd
,
1204 target
= bfd_get_section_by_name (output_bfd
, outname
+ 5);
1206 && (target
->flags
& SEC_READONLY
) != 0
1207 && (target
->flags
& SEC_ALLOC
) != 0)
1211 /* We use the reloc_count field as a counter if we need
1212 to copy relocs into the output file. */
1216 else if (strncmp (name
, ".got", 4) != 0)
1218 /* It's not one of our sections, so don't allocate space. */
1224 _bfd_strip_section_from_output (info
, s
);
1228 /* Allocate memory for the section contents. */
1229 s
->contents
= (bfd_byte
*) bfd_alloc (dynobj
, s
->_raw_size
);
1230 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1234 if (elf_hash_table (info
)->dynamic_sections_created
)
1236 /* Add some entries to the .dynamic section. We fill in the
1237 values later, in elf_s390_finish_dynamic_sections, but we
1238 must add the entries now so that we get the correct size for
1239 the .dynamic section. The DT_DEBUG entry is filled in by the
1240 dynamic linker and used by the debugger. */
1243 if (! bfd_elf32_add_dynamic_entry (info
, DT_DEBUG
, 0))
1249 if (! bfd_elf32_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1250 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1251 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1252 || ! bfd_elf32_add_dynamic_entry (info
, DT_JMPREL
, 0))
1258 if (! bfd_elf32_add_dynamic_entry (info
, DT_RELA
, 0)
1259 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELASZ
, 0)
1260 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELAENT
,
1261 sizeof (Elf32_External_Rela
)))
1267 if (! bfd_elf32_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1269 info
->flags
|= DF_TEXTREL
;
1276 /* This function is called via elf_s390_link_hash_traverse if we are
1277 creating a shared object with -Bsymbolic. It discards the space
1278 allocated to copy PC relative relocs against symbols which are
1279 defined in regular objects. We allocated space for them in the
1280 check_relocs routine, but we won't fill them in in the
1281 relocate_section routine. */
1285 elf_s390_discard_copies (h
, inf
)
1286 struct elf_s390_link_hash_entry
*h
;
1289 struct elf_s390_pcrel_relocs_copied
*s
;
1290 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
1292 /* If a symbol has been forced local or we have found a regular
1293 definition for the symbolic link case, then we won't be needing
1295 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1296 && ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0
1299 for (s
= h
->pcrel_relocs_copied
; s
!= NULL
; s
= s
->next
)
1300 s
->section
->_raw_size
-= s
->count
* sizeof (Elf32_External_Rela
);
1304 /* Relocate a 390 ELF section. */
1307 elf_s390_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1308 contents
, relocs
, local_syms
, local_sections
)
1310 struct bfd_link_info
*info
;
1312 asection
*input_section
;
1314 Elf_Internal_Rela
*relocs
;
1315 Elf_Internal_Sym
*local_syms
;
1316 asection
**local_sections
;
1319 Elf_Internal_Shdr
*symtab_hdr
;
1320 struct elf_link_hash_entry
**sym_hashes
;
1321 bfd_vma
*local_got_offsets
;
1325 Elf_Internal_Rela
*rel
;
1326 Elf_Internal_Rela
*relend
;
1328 dynobj
= elf_hash_table (info
)->dynobj
;
1329 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1330 sym_hashes
= elf_sym_hashes (input_bfd
);
1331 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1338 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1339 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1343 relend
= relocs
+ input_section
->reloc_count
;
1344 for (; rel
< relend
; rel
++)
1347 reloc_howto_type
*howto
;
1348 unsigned long r_symndx
;
1349 struct elf_link_hash_entry
*h
;
1350 Elf_Internal_Sym
*sym
;
1353 bfd_reloc_status_type r
;
1355 r_type
= ELF32_R_TYPE (rel
->r_info
);
1356 if (r_type
== (int) R_390_GNU_VTINHERIT
1357 || r_type
== (int) R_390_GNU_VTENTRY
)
1359 if (r_type
< 0 || r_type
>= (int) R_390_max
)
1361 bfd_set_error (bfd_error_bad_value
);
1364 howto
= elf_howto_table
+ r_type
;
1366 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1368 if (info
->relocateable
)
1370 /* This is a relocateable link. We don't have to change
1371 anything, unless the reloc is against a section symbol,
1372 in which case we have to adjust according to where the
1373 section symbol winds up in the output section. */
1374 if (r_symndx
< symtab_hdr
->sh_info
)
1376 sym
= local_syms
+ r_symndx
;
1377 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1379 sec
= local_sections
[r_symndx
];
1380 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1387 /* This is a final link. */
1391 if (r_symndx
< symtab_hdr
->sh_info
)
1393 sym
= local_syms
+ r_symndx
;
1394 sec
= local_sections
[r_symndx
];
1395 relocation
= (sec
->output_section
->vma
1396 + sec
->output_offset
1401 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1402 while (h
->root
.type
== bfd_link_hash_indirect
1403 || h
->root
.type
== bfd_link_hash_warning
)
1404 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1405 if (h
->root
.type
== bfd_link_hash_defined
1406 || h
->root
.type
== bfd_link_hash_defweak
)
1408 sec
= h
->root
.u
.def
.section
;
1409 if (r_type
== R_390_GOTPC
1410 || ((r_type
== R_390_PLT16DBL
||
1411 r_type
== R_390_PLT32
)
1413 && h
->plt
.offset
!= (bfd_vma
) -1)
1414 || ((r_type
== R_390_GOT12
||
1415 r_type
== R_390_GOT16
||
1416 r_type
== R_390_GOT32
)
1417 && elf_hash_table (info
)->dynamic_sections_created
1419 || (! info
->symbolic
&& h
->dynindx
!= -1)
1420 || (h
->elf_link_hash_flags
1421 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
1423 && ((! info
->symbolic
&& h
->dynindx
!= -1)
1424 || (h
->elf_link_hash_flags
1425 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
1426 && ( r_type
== R_390_8
||
1427 r_type
== R_390_16
||
1428 r_type
== R_390_32
||
1429 r_type
== R_390_PC16
||
1430 r_type
== R_390_PC16DBL
||
1431 r_type
== R_390_PC32
)
1432 && ((input_section
->flags
& SEC_ALLOC
) != 0
1433 /* DWARF will emit R_386_32 relocations in its
1434 sections against symbols defined externally
1435 in shared libraries. We can't do anything
1437 || ((input_section
->flags
& SEC_DEBUGGING
) != 0
1438 && (h
->elf_link_hash_flags
1439 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0))))
1441 /* In these cases, we don't need the relocation
1442 value. We check specially because in some
1443 obscure cases sec->output_section will be NULL. */
1446 else if (sec
->output_section
== NULL
)
1448 (*_bfd_error_handler
)
1449 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1450 bfd_get_filename (input_bfd
), h
->root
.root
.string
,
1451 bfd_get_section_name (input_bfd
, input_section
));
1455 relocation
= (h
->root
.u
.def
.value
1456 + sec
->output_section
->vma
1457 + sec
->output_offset
);
1459 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1461 else if (info
->shared
&& !info
->symbolic
1462 && !info
->no_undefined
1463 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
1467 if (! ((*info
->callbacks
->undefined_symbol
)
1468 (info
, h
->root
.root
.string
, input_bfd
,
1469 input_section
, rel
->r_offset
,
1470 (!info
->shared
|| info
->no_undefined
1471 || ELF_ST_VISIBILITY (h
->other
)))))
1482 /* Relocation is to the entry for this symbol in the global
1484 BFD_ASSERT (sgot
!= NULL
);
1490 off
= h
->got
.offset
;
1491 BFD_ASSERT (off
!= (bfd_vma
) -1);
1493 if (! elf_hash_table (info
)->dynamic_sections_created
1495 && (info
->symbolic
|| h
->dynindx
== -1)
1496 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1498 /* This is actually a static link, or it is a
1499 -Bsymbolic link and the symbol is defined
1500 locally, or the symbol was forced to be local
1501 because of a version file. We must initialize
1502 this entry in the global offset table. Since the
1503 offset must always be a multiple of 2, we use the
1504 least significant bit to record whether we have
1505 initialized it already.
1507 When doing a dynamic link, we create a .rel.got
1508 relocation entry to initialize the value. This
1509 is done in the finish_dynamic_symbol routine. */
1514 bfd_put_32 (output_bfd
, relocation
,
1515 sgot
->contents
+ off
);
1519 relocation
= sgot
->output_offset
+ off
;
1525 BFD_ASSERT (local_got_offsets
!= NULL
1526 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1528 off
= local_got_offsets
[r_symndx
];
1530 /* The offset must always be a multiple of 4. We use
1531 the least significant bit to record whether we have
1532 already generated the necessary reloc. */
1537 bfd_put_32 (output_bfd
, relocation
, sgot
->contents
+ off
);
1542 Elf_Internal_Rela outrel
;
1544 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1545 BFD_ASSERT (srelgot
!= NULL
);
1547 outrel
.r_offset
= (sgot
->output_section
->vma
1548 + sgot
->output_offset
1550 outrel
.r_info
= ELF32_R_INFO (0, R_390_RELATIVE
);
1551 outrel
.r_addend
= relocation
;
1552 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
,
1553 (((Elf32_External_Rela
*)
1555 + srelgot
->reloc_count
));
1556 ++srelgot
->reloc_count
;
1559 local_got_offsets
[r_symndx
] |= 1;
1562 relocation
= sgot
->output_offset
+ off
;
1569 /* Relocation is relative to the start of the global offset
1574 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1575 BFD_ASSERT (sgot
!= NULL
);
1578 /* Note that sgot->output_offset is not involved in this
1579 calculation. We always want the start of .got. If we
1580 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1581 permitted by the ABI, we might have to change this
1583 relocation
-= sgot
->output_section
->vma
;
1588 /* Use global offset table as symbol value. */
1592 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1593 BFD_ASSERT (sgot
!= NULL
);
1596 relocation
= sgot
->output_section
->vma
;
1600 case R_390_PLT16DBL
:
1602 /* Relocation is to the entry for this symbol in the
1603 procedure linkage table. */
1605 /* Resolve a PLT32 reloc against a local symbol directly,
1606 without using the procedure linkage table. */
1610 if (h
->plt
.offset
== (bfd_vma
) -1 || splt
== NULL
)
1612 /* We didn't make a PLT entry for this symbol. This
1613 happens when statically linking PIC code, or when
1614 using -Bsymbolic. */
1618 relocation
= (splt
->output_section
->vma
1619 + splt
->output_offset
1631 && (input_section
->flags
& SEC_ALLOC
) != 0
1632 && ((r_type
!= R_390_PC16
&&
1633 r_type
!= R_390_PC16DBL
&&
1634 r_type
!= R_390_PC32
)
1637 && (! info
->symbolic
1638 || (h
->elf_link_hash_flags
1639 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1641 Elf_Internal_Rela outrel
;
1642 boolean skip
, relocate
;
1644 /* When generating a shared object, these relocations
1645 are copied into the output file to be resolved at run
1652 name
= (bfd_elf_string_from_elf_section
1654 elf_elfheader (input_bfd
)->e_shstrndx
,
1655 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1659 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1660 && strcmp (bfd_get_section_name (input_bfd
,
1664 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1665 BFD_ASSERT (sreloc
!= NULL
);
1670 if (elf_section_data (input_section
)->stab_info
== NULL
)
1671 outrel
.r_offset
= rel
->r_offset
;
1676 off
= (_bfd_stab_section_offset
1677 (output_bfd
, &elf_hash_table (info
)->stab_info
,
1679 &elf_section_data (input_section
)->stab_info
,
1681 if (off
== (bfd_vma
) -1)
1683 outrel
.r_offset
= off
;
1686 outrel
.r_offset
+= (input_section
->output_section
->vma
1687 + input_section
->output_offset
);
1691 memset (&outrel
, 0, sizeof outrel
);
1694 else if (r_type
== R_390_PC16
||
1695 r_type
== R_390_PC16DBL
||
1696 r_type
== R_390_PC32
)
1698 BFD_ASSERT (h
!= NULL
&& h
->dynindx
!= -1);
1700 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
1701 outrel
.r_addend
= relocation
+ rel
->r_addend
;
1705 /* h->dynindx may be -1 if this symbol was marked to
1708 || ((info
->symbolic
|| h
->dynindx
== -1)
1709 && (h
->elf_link_hash_flags
1710 & ELF_LINK_HASH_DEF_REGULAR
) != 0))
1713 outrel
.r_info
= ELF32_R_INFO (0, R_390_RELATIVE
);
1714 outrel
.r_addend
= relocation
+ rel
->r_addend
;
1718 BFD_ASSERT (h
->dynindx
!= -1);
1720 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_390_32
);
1721 outrel
.r_addend
= relocation
+ rel
->r_addend
;
1725 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
,
1726 (((Elf32_External_Rela
*)
1728 + sreloc
->reloc_count
));
1729 ++sreloc
->reloc_count
;
1731 /* If this reloc is against an external symbol, we do
1732 not want to fiddle with the addend. Otherwise, we
1733 need to include the symbol value so that it becomes
1734 an addend for the dynamic reloc. */
1745 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1746 contents
, rel
->r_offset
,
1747 relocation
, rel
->r_addend
);
1749 if (r
!= bfd_reloc_ok
)
1754 case bfd_reloc_outofrange
:
1756 case bfd_reloc_overflow
:
1761 name
= h
->root
.root
.string
;
1764 name
= bfd_elf_string_from_elf_section (input_bfd
,
1765 symtab_hdr
->sh_link
,
1770 name
= bfd_section_name (input_bfd
, sec
);
1772 if (! ((*info
->callbacks
->reloc_overflow
)
1773 (info
, name
, howto
->name
, (bfd_vma
) 0,
1774 input_bfd
, input_section
, rel
->r_offset
)))
1785 /* Finish up dynamic symbol handling. We set the contents of various
1786 dynamic sections here. */
1789 elf_s390_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1791 struct bfd_link_info
*info
;
1792 struct elf_link_hash_entry
*h
;
1793 Elf_Internal_Sym
*sym
;
1797 dynobj
= elf_hash_table (info
)->dynobj
;
1799 if (h
->plt
.offset
!= (bfd_vma
) -1)
1803 Elf_Internal_Rela rela
;
1804 bfd_vma relative_offset
;
1809 /* This symbol has an entry in the procedure linkage table. Set
1812 BFD_ASSERT (h
->dynindx
!= -1);
1814 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1815 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
1816 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1817 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srela
!= NULL
);
1820 Current offset - size first entry / entry size. */
1821 plt_index
= (h
->plt
.offset
- PLT_FIRST_ENTRY_SIZE
) / PLT_ENTRY_SIZE
;
1823 /* Offset in GOT is PLT index plus GOT headers(3) times 4,
1825 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
1827 /* S390 uses halfwords for relative branch calc! */
1828 relative_offset
= - ((PLT_FIRST_ENTRY_SIZE
+
1829 (PLT_ENTRY_SIZE
* plt_index
) + 18)/2);
1830 /* If offset is > 32768, branch to a previous branch
1831 390 can only handle +-64 K jumps. */
1832 if ( -32768 > (int)relative_offset
)
1833 relative_offset
= -(((65536/PLT_ENTRY_SIZE
-1)*PLT_ENTRY_SIZE
)/2);
1835 /* Fill in the entry in the procedure linkage table. */
1838 bfd_put_32 (output_bfd
, PLT_ENTRY_WORD0
,
1839 splt
->contents
+ h
->plt
.offset
);
1840 bfd_put_32 (output_bfd
, PLT_ENTRY_WORD1
,
1841 splt
->contents
+ h
->plt
.offset
+ 4);
1842 bfd_put_32 (output_bfd
, PLT_ENTRY_WORD2
,
1843 splt
->contents
+ h
->plt
.offset
+ 8);
1844 bfd_put_32 (output_bfd
, PLT_ENTRY_WORD3
,
1845 splt
->contents
+ h
->plt
.offset
+ 12);
1846 bfd_put_32 (output_bfd
, PLT_ENTRY_WORD4
,
1847 splt
->contents
+ h
->plt
.offset
+ 16);
1848 bfd_put_32 (output_bfd
, 0+(relative_offset
<< 16),
1849 splt
->contents
+ h
->plt
.offset
+ 20);
1850 bfd_put_32 (output_bfd
,
1851 (sgot
->output_section
->vma
+
1852 sgot
->output_offset
+
1854 splt
->contents
+ h
->plt
.offset
+ 24);
1856 else if (got_offset
< 4096)
1858 bfd_put_32 (output_bfd
, PLT_PIC12_ENTRY_WORD0
+ got_offset
,
1859 splt
->contents
+ h
->plt
.offset
);
1860 bfd_put_32 (output_bfd
, PLT_PIC12_ENTRY_WORD1
,
1861 splt
->contents
+ h
->plt
.offset
+ 4);
1862 bfd_put_32 (output_bfd
, PLT_PIC12_ENTRY_WORD2
,
1863 splt
->contents
+ h
->plt
.offset
+ 8);
1864 bfd_put_32 (output_bfd
, PLT_PIC12_ENTRY_WORD3
,
1865 splt
->contents
+ h
->plt
.offset
+ 12);
1866 bfd_put_32 (output_bfd
, PLT_PIC12_ENTRY_WORD4
,
1867 splt
->contents
+ h
->plt
.offset
+ 16);
1868 bfd_put_32 (output_bfd
, 0+(relative_offset
<< 16),
1869 splt
->contents
+ h
->plt
.offset
+ 20);
1870 bfd_put_32 (output_bfd
, 0,
1871 splt
->contents
+ h
->plt
.offset
+ 24);
1873 else if (got_offset
< 32768)
1875 bfd_put_32 (output_bfd
, PLT_PIC16_ENTRY_WORD0
+ got_offset
,
1876 splt
->contents
+ h
->plt
.offset
);
1877 bfd_put_32 (output_bfd
, PLT_PIC16_ENTRY_WORD1
,
1878 splt
->contents
+ h
->plt
.offset
+ 4);
1879 bfd_put_32 (output_bfd
, PLT_PIC16_ENTRY_WORD2
,
1880 splt
->contents
+ h
->plt
.offset
+ 8);
1881 bfd_put_32 (output_bfd
, PLT_PIC16_ENTRY_WORD3
,
1882 splt
->contents
+ h
->plt
.offset
+ 12);
1883 bfd_put_32 (output_bfd
, PLT_PIC16_ENTRY_WORD4
,
1884 splt
->contents
+ h
->plt
.offset
+ 16);
1885 bfd_put_32 (output_bfd
, 0+(relative_offset
<< 16),
1886 splt
->contents
+ h
->plt
.offset
+ 20);
1887 bfd_put_32 (output_bfd
, 0,
1888 splt
->contents
+ h
->plt
.offset
+ 24);
1892 bfd_put_32 (output_bfd
, PLT_PIC_ENTRY_WORD0
,
1893 splt
->contents
+ h
->plt
.offset
);
1894 bfd_put_32 (output_bfd
, PLT_PIC_ENTRY_WORD1
,
1895 splt
->contents
+ h
->plt
.offset
+ 4);
1896 bfd_put_32 (output_bfd
, PLT_PIC_ENTRY_WORD2
,
1897 splt
->contents
+ h
->plt
.offset
+ 8);
1898 bfd_put_32 (output_bfd
, PLT_PIC_ENTRY_WORD3
,
1899 splt
->contents
+ h
->plt
.offset
+ 12);
1900 bfd_put_32 (output_bfd
, PLT_PIC_ENTRY_WORD4
,
1901 splt
->contents
+ h
->plt
.offset
+ 16);
1902 bfd_put_32 (output_bfd
, 0+(relative_offset
<< 16),
1903 splt
->contents
+ h
->plt
.offset
+ 20);
1904 bfd_put_32 (output_bfd
, got_offset
,
1905 splt
->contents
+ h
->plt
.offset
+ 24);
1907 /* Insert offset into reloc. table here. */
1908 bfd_put_32 (output_bfd
, plt_index
* sizeof (Elf32_External_Rela
),
1909 splt
->contents
+ h
->plt
.offset
+ 28);
1910 /* Fill in the entry in the .rela.plt section. */
1911 rela
.r_offset
= (sgot
->output_section
->vma
1912 + sgot
->output_offset
1914 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_390_JMP_SLOT
);
1916 bfd_elf32_swap_reloca_out (output_bfd
, &rela
,
1917 ((Elf32_External_Rela
*) srela
->contents
1920 /* Fill in the entry in the global offset table.
1921 Points to instruction after GOT offset. */
1922 bfd_put_32 (output_bfd
,
1923 (splt
->output_section
->vma
1924 + splt
->output_offset
1927 sgot
->contents
+ got_offset
);
1930 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1932 /* Mark the symbol as undefined, rather than as defined in
1933 the .plt section. Leave the value alone. */
1934 sym
->st_shndx
= SHN_UNDEF
;
1938 if (h
->got
.offset
!= (bfd_vma
) -1)
1942 Elf_Internal_Rela rela
;
1944 /* This symbol has an entry in the global offset table. Set it
1947 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1948 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
1949 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
1951 rela
.r_offset
= (sgot
->output_section
->vma
1952 + sgot
->output_offset
1953 + (h
->got
.offset
&~ 1));
1955 /* If this is a static link, or it is a -Bsymbolic link and the
1956 symbol is defined locally or was forced to be local because
1957 of a version file, we just want to emit a RELATIVE reloc.
1958 The entry in the global offset table will already have been
1959 initialized in the relocate_section function. */
1960 if (! elf_hash_table (info
)->dynamic_sections_created
1962 && (info
->symbolic
|| h
->dynindx
== -1)
1963 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1965 rela
.r_info
= ELF32_R_INFO (0, R_390_RELATIVE
);
1966 rela
.r_addend
= (h
->root
.u
.def
.value
1967 + h
->root
.u
.def
.section
->output_section
->vma
1968 + h
->root
.u
.def
.section
->output_offset
);
1972 BFD_ASSERT((h
->got
.offset
& 1) == 0);
1973 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
1974 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_390_GLOB_DAT
);
1978 bfd_elf32_swap_reloca_out (output_bfd
, &rela
,
1979 ((Elf32_External_Rela
*) srela
->contents
1980 + srela
->reloc_count
));
1981 ++srela
->reloc_count
;
1984 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
1987 Elf_Internal_Rela rela
;
1989 /* This symbols needs a copy reloc. Set it up. */
1991 BFD_ASSERT (h
->dynindx
!= -1
1992 && (h
->root
.type
== bfd_link_hash_defined
1993 || h
->root
.type
== bfd_link_hash_defweak
));
1996 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
1998 BFD_ASSERT (s
!= NULL
);
2000 rela
.r_offset
= (h
->root
.u
.def
.value
2001 + h
->root
.u
.def
.section
->output_section
->vma
2002 + h
->root
.u
.def
.section
->output_offset
);
2003 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_390_COPY
);
2005 bfd_elf32_swap_reloca_out (output_bfd
, &rela
,
2006 ((Elf32_External_Rela
*) s
->contents
2011 /* Mark some specially defined symbols as absolute. */
2012 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2013 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2014 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2015 sym
->st_shndx
= SHN_ABS
;
2020 /* Finish up the dynamic sections. */
2023 elf_s390_finish_dynamic_sections (output_bfd
, info
)
2025 struct bfd_link_info
*info
;
2031 dynobj
= elf_hash_table (info
)->dynobj
;
2033 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
2034 BFD_ASSERT (sgot
!= NULL
);
2035 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2037 if (elf_hash_table (info
)->dynamic_sections_created
)
2040 Elf32_External_Dyn
*dyncon
, *dynconend
;
2042 BFD_ASSERT (sdyn
!= NULL
);
2044 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
2045 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2046 for (; dyncon
< dynconend
; dyncon
++)
2048 Elf_Internal_Dyn dyn
;
2052 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2065 s
= bfd_get_section_by_name(output_bfd
, name
);
2066 BFD_ASSERT (s
!= NULL
);
2067 dyn
.d_un
.d_ptr
= s
->vma
;
2068 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2072 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2073 BFD_ASSERT (s
!= NULL
);
2074 if (s
->_cooked_size
!= 0)
2075 dyn
.d_un
.d_val
= s
->_cooked_size
;
2077 dyn
.d_un
.d_val
= s
->_raw_size
;
2078 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2083 /* Fill in the special first entry in the procedure linkage table. */
2084 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2085 if (splt
&& splt
->_raw_size
> 0)
2087 memset (splt
->contents
, 0, PLT_FIRST_ENTRY_SIZE
);
2090 bfd_put_32 (output_bfd
, PLT_PIC_FIRST_ENTRY_WORD0
,
2092 bfd_put_32 (output_bfd
, PLT_PIC_FIRST_ENTRY_WORD1
,
2093 splt
->contents
+4 );
2094 bfd_put_32 (output_bfd
, PLT_PIC_FIRST_ENTRY_WORD2
,
2095 splt
->contents
+8 );
2096 bfd_put_32 (output_bfd
, PLT_PIC_FIRST_ENTRY_WORD3
,
2097 splt
->contents
+12 );
2098 bfd_put_32 (output_bfd
, PLT_PIC_FIRST_ENTRY_WORD4
,
2099 splt
->contents
+16 );
2103 bfd_put_32 (output_bfd
, PLT_FIRST_ENTRY_WORD0
,
2105 bfd_put_32 (output_bfd
, PLT_FIRST_ENTRY_WORD1
,
2106 splt
->contents
+4 );
2107 bfd_put_32 (output_bfd
, PLT_FIRST_ENTRY_WORD2
,
2108 splt
->contents
+8 );
2109 bfd_put_32 (output_bfd
, PLT_FIRST_ENTRY_WORD3
,
2110 splt
->contents
+12 );
2111 bfd_put_32 (output_bfd
, PLT_FIRST_ENTRY_WORD4
,
2112 splt
->contents
+16 );
2113 bfd_put_32 (output_bfd
, PLT_FIRST_ENTRY_WORD5
,
2114 splt
->contents
+20 );
2115 bfd_put_32 (output_bfd
,
2116 sgot
->output_section
->vma
+ sgot
->output_offset
,
2117 splt
->contents
+ 24);
2119 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
2124 /* Set the first entry in the global offset table to the address of
2125 the dynamic section. */
2126 if (sgot
->_raw_size
> 0)
2129 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2131 bfd_put_32 (output_bfd
,
2132 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2135 /* One entry for shared object struct ptr. */
2136 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
2137 /* One entry for _dl_runtime_resolve. */
2138 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
2141 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
2147 elf_s390_object_p (abfd
)
2150 return bfd_default_set_arch_mach (abfd
, bfd_arch_s390
, bfd_mach_s390_esa
);
2153 #define TARGET_BIG_SYM bfd_elf32_s390_vec
2154 #define TARGET_BIG_NAME "elf32-s390"
2155 #define ELF_ARCH bfd_arch_s390
2156 #define ELF_MACHINE_CODE EM_S390
2157 #define ELF_MACHINE_ALT1 EM_S390_OLD
2158 #define ELF_MAXPAGESIZE 0x1000
2160 #define elf_backend_can_gc_sections 1
2161 #define elf_backend_want_got_plt 1
2162 #define elf_backend_plt_readonly 1
2163 #define elf_backend_want_plt_sym 0
2164 #define elf_backend_got_header_size 12
2165 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2167 #define elf_info_to_howto elf_s390_info_to_howto
2169 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2170 #define bfd_elf32_bfd_is_local_label_name elf_s390_is_local_label_name
2171 #define bfd_elf32_bfd_link_hash_table_create elf_s390_link_hash_table_create
2172 #define bfd_elf32_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2174 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2175 #define elf_backend_check_relocs elf_s390_check_relocs
2176 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2177 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2178 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2179 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2180 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2181 #define elf_backend_relocate_section elf_s390_relocate_section
2182 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2184 #define elf_backend_object_p elf_s390_object_p
2186 #include "elf32-target.h"