* config/tc-s390.c: Add missing prototypes
[binutils.git] / bfd / elf32-arm.h
blobaf27354f40046b8630e4bb2b91f5fe078ff85ef0
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, unsigned char, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
96 /* The linker script knows the section names for placement.
97 The entry_names are used to do simple name mangling on the stubs.
98 Given a function name, and its type, the stub can be found. The
99 name can be changed. The only requirement is the %s be present. */
100 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
101 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
103 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
104 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 16
113 /* The first entry in a procedure linkage table looks like
114 this. It is set up so that any shared library function that is
115 called before the relocation has been set up calls the dynamic
116 linker first. */
117 static const unsigned long elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
119 0xe52de004, /* str lr, [sp, #-4]! */
120 0xe59fe010, /* ldr lr, [pc, #16] */
121 0xe08fe00e, /* add lr, pc, lr */
122 0xe5bef008 /* ldr pc, [lr, #8]! */
125 /* Subsequent entries in a procedure linkage table look like
126 this. */
127 static const unsigned long elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
129 0xe59fc004, /* ldr ip, [pc, #4] */
130 0xe08fc00c, /* add ip, pc, ip */
131 0xe59cf000, /* ldr pc, [ip] */
132 0x00000000 /* offset to symbol in got */
135 /* The ARM linker needs to keep track of the number of relocs that it
136 decides to copy in check_relocs for each symbol. This is so that
137 it can discard PC relative relocs if it doesn't need them when
138 linking with -Bsymbolic. We store the information in a field
139 extending the regular ELF linker hash table. */
141 /* This structure keeps track of the number of PC relative relocs we
142 have copied for a given symbol. */
143 struct elf32_arm_pcrel_relocs_copied
145 /* Next section. */
146 struct elf32_arm_pcrel_relocs_copied * next;
147 /* A section in dynobj. */
148 asection * section;
149 /* Number of relocs copied in this section. */
150 bfd_size_type count;
153 /* Arm ELF linker hash entry. */
154 struct elf32_arm_link_hash_entry
156 struct elf_link_hash_entry root;
158 /* Number of PC relative relocs copied for this symbol. */
159 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
162 /* Declare this now that the above structures are defined. */
163 static boolean elf32_arm_discard_copies
164 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
166 /* Traverse an arm ELF linker hash table. */
167 #define elf32_arm_link_hash_traverse(table, func, info) \
168 (elf_link_hash_traverse \
169 (&(table)->root, \
170 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
171 (info)))
173 /* Get the ARM elf linker hash table from a link_info structure. */
174 #define elf32_arm_hash_table(info) \
175 ((struct elf32_arm_link_hash_table *) ((info)->hash))
177 /* ARM ELF linker hash table. */
178 struct elf32_arm_link_hash_table
180 /* The main hash table. */
181 struct elf_link_hash_table root;
183 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
184 long int thumb_glue_size;
186 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
187 long int arm_glue_size;
189 /* An arbitary input BFD chosen to hold the glue sections. */
190 bfd * bfd_of_glue_owner;
192 /* A boolean indicating whether knowledge of the ARM's pipeline
193 length should be applied by the linker. */
194 int no_pipeline_knowledge;
197 /* Create an entry in an ARM ELF linker hash table. */
199 static struct bfd_hash_entry *
200 elf32_arm_link_hash_newfunc (entry, table, string)
201 struct bfd_hash_entry * entry;
202 struct bfd_hash_table * table;
203 const char * string;
205 struct elf32_arm_link_hash_entry * ret =
206 (struct elf32_arm_link_hash_entry *) entry;
208 /* Allocate the structure if it has not already been allocated by a
209 subclass. */
210 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
211 ret = ((struct elf32_arm_link_hash_entry *)
212 bfd_hash_allocate (table,
213 sizeof (struct elf32_arm_link_hash_entry)));
214 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
215 return (struct bfd_hash_entry *) ret;
217 /* Call the allocation method of the superclass. */
218 ret = ((struct elf32_arm_link_hash_entry *)
219 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
220 table, string));
221 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
222 ret->pcrel_relocs_copied = NULL;
224 return (struct bfd_hash_entry *) ret;
227 /* Create an ARM elf linker hash table. */
229 static struct bfd_link_hash_table *
230 elf32_arm_link_hash_table_create (abfd)
231 bfd *abfd;
233 struct elf32_arm_link_hash_table *ret;
235 ret = ((struct elf32_arm_link_hash_table *)
236 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
237 if (ret == (struct elf32_arm_link_hash_table *) NULL)
238 return NULL;
240 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
241 elf32_arm_link_hash_newfunc))
243 bfd_release (abfd, ret);
244 return NULL;
247 ret->thumb_glue_size = 0;
248 ret->arm_glue_size = 0;
249 ret->bfd_of_glue_owner = NULL;
250 ret->no_pipeline_knowledge = 0;
252 return &ret->root.root;
255 /* Locate the Thumb encoded calling stub for NAME. */
257 static struct elf_link_hash_entry *
258 find_thumb_glue (link_info, name, input_bfd)
259 struct bfd_link_info *link_info;
260 const char *name;
261 bfd *input_bfd;
263 char *tmp_name;
264 struct elf_link_hash_entry *hash;
265 struct elf32_arm_link_hash_table *hash_table;
267 /* We need a pointer to the armelf specific hash table. */
268 hash_table = elf32_arm_hash_table (link_info);
270 tmp_name = ((char *)
271 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
273 BFD_ASSERT (tmp_name);
275 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
277 hash = elf_link_hash_lookup
278 (&(hash_table)->root, tmp_name, false, false, true);
280 if (hash == NULL)
281 /* xgettext:c-format */
282 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
283 bfd_get_filename (input_bfd), tmp_name, name);
285 free (tmp_name);
287 return hash;
290 /* Locate the ARM encoded calling stub for NAME. */
292 static struct elf_link_hash_entry *
293 find_arm_glue (link_info, name, input_bfd)
294 struct bfd_link_info *link_info;
295 const char *name;
296 bfd *input_bfd;
298 char *tmp_name;
299 struct elf_link_hash_entry *myh;
300 struct elf32_arm_link_hash_table *hash_table;
302 /* We need a pointer to the elfarm specific hash table. */
303 hash_table = elf32_arm_hash_table (link_info);
305 tmp_name = ((char *)
306 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
308 BFD_ASSERT (tmp_name);
310 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
312 myh = elf_link_hash_lookup
313 (&(hash_table)->root, tmp_name, false, false, true);
315 if (myh == NULL)
316 /* xgettext:c-format */
317 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
318 bfd_get_filename (input_bfd), tmp_name, name);
320 free (tmp_name);
322 return myh;
325 /* ARM->Thumb glue:
327 .arm
328 __func_from_arm:
329 ldr r12, __func_addr
330 bx r12
331 __func_addr:
332 .word func @ behave as if you saw a ARM_32 reloc. */
334 #define ARM2THUMB_GLUE_SIZE 12
335 static const insn32 a2t1_ldr_insn = 0xe59fc000;
336 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
337 static const insn32 a2t3_func_addr_insn = 0x00000001;
339 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
341 .thumb .thumb
342 .align 2 .align 2
343 __func_from_thumb: __func_from_thumb:
344 bx pc push {r6, lr}
345 nop ldr r6, __func_addr
346 .arm mov lr, pc
347 __func_change_to_arm: bx r6
348 b func .arm
349 __func_back_to_thumb:
350 ldmia r13! {r6, lr}
351 bx lr
352 __func_addr:
353 .word func */
355 #define THUMB2ARM_GLUE_SIZE 8
356 static const insn16 t2a1_bx_pc_insn = 0x4778;
357 static const insn16 t2a2_noop_insn = 0x46c0;
358 static const insn32 t2a3_b_insn = 0xea000000;
360 static const insn16 t2a1_push_insn = 0xb540;
361 static const insn16 t2a2_ldr_insn = 0x4e03;
362 static const insn16 t2a3_mov_insn = 0x46fe;
363 static const insn16 t2a4_bx_insn = 0x4730;
364 static const insn32 t2a5_pop_insn = 0xe8bd4040;
365 static const insn32 t2a6_bx_insn = 0xe12fff1e;
367 boolean
368 bfd_elf32_arm_allocate_interworking_sections (info)
369 struct bfd_link_info * info;
371 asection * s;
372 bfd_byte * foo;
373 struct elf32_arm_link_hash_table * globals;
375 globals = elf32_arm_hash_table (info);
377 BFD_ASSERT (globals != NULL);
379 if (globals->arm_glue_size != 0)
381 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
383 s = bfd_get_section_by_name
384 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
386 BFD_ASSERT (s != NULL);
388 foo = (bfd_byte *) bfd_alloc
389 (globals->bfd_of_glue_owner, globals->arm_glue_size);
391 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
392 s->contents = foo;
395 if (globals->thumb_glue_size != 0)
397 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
399 s = bfd_get_section_by_name
400 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
402 BFD_ASSERT (s != NULL);
404 foo = (bfd_byte *) bfd_alloc
405 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
407 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
408 s->contents = foo;
411 return true;
414 static void
415 record_arm_to_thumb_glue (link_info, h)
416 struct bfd_link_info * link_info;
417 struct elf_link_hash_entry * h;
419 const char * name = h->root.root.string;
420 register asection * s;
421 char * tmp_name;
422 struct elf_link_hash_entry * myh;
423 struct elf32_arm_link_hash_table * globals;
425 globals = elf32_arm_hash_table (link_info);
427 BFD_ASSERT (globals != NULL);
428 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
430 s = bfd_get_section_by_name
431 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
433 BFD_ASSERT (s != NULL);
435 tmp_name = ((char *)
436 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
438 BFD_ASSERT (tmp_name);
440 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
442 myh = elf_link_hash_lookup
443 (&(globals)->root, tmp_name, false, false, true);
445 if (myh != NULL)
447 /* We've already seen this guy. */
448 free (tmp_name);
449 return;
452 /* The only trick here is using hash_table->arm_glue_size as the value. Even
453 though the section isn't allocated yet, this is where we will be putting
454 it. */
455 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
456 BSF_GLOBAL,
457 s, globals->arm_glue_size + 1,
458 NULL, true, false,
459 (struct bfd_link_hash_entry **) &myh);
461 free (tmp_name);
463 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
465 return;
468 static void
469 record_thumb_to_arm_glue (link_info, h)
470 struct bfd_link_info *link_info;
471 struct elf_link_hash_entry *h;
473 const char *name = h->root.root.string;
474 register asection *s;
475 char *tmp_name;
476 struct elf_link_hash_entry *myh;
477 struct elf32_arm_link_hash_table *hash_table;
478 char bind;
480 hash_table = elf32_arm_hash_table (link_info);
482 BFD_ASSERT (hash_table != NULL);
483 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
485 s = bfd_get_section_by_name
486 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
488 BFD_ASSERT (s != NULL);
490 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
492 BFD_ASSERT (tmp_name);
494 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
496 myh = elf_link_hash_lookup
497 (&(hash_table)->root, tmp_name, false, false, true);
499 if (myh != NULL)
501 /* We've already seen this guy. */
502 free (tmp_name);
503 return;
506 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
507 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
508 NULL, true, false,
509 (struct bfd_link_hash_entry **) &myh);
511 /* If we mark it 'Thumb', the disassembler will do a better job. */
512 bind = ELF_ST_BIND (myh->type);
513 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
515 free (tmp_name);
517 #define CHANGE_TO_ARM "__%s_change_to_arm"
518 #define BACK_FROM_ARM "__%s_back_from_arm"
520 /* Allocate another symbol to mark where we switch to Arm mode. */
521 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
523 BFD_ASSERT (tmp_name);
525 sprintf (tmp_name, CHANGE_TO_ARM, name);
527 myh = NULL;
529 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
530 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
531 NULL, true, false,
532 (struct bfd_link_hash_entry **) &myh);
534 free (tmp_name);
536 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
538 return;
541 /* Select a BFD to be used to hold the sections used by the glue code.
542 This function is called from the linker scripts in ld/emultempl/
543 {armelf/pe}.em */
545 boolean
546 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
547 bfd *abfd;
548 struct bfd_link_info *info;
550 struct elf32_arm_link_hash_table *globals;
551 flagword flags;
552 asection *sec;
554 /* If we are only performing a partial link do not bother
555 getting a bfd to hold the glue. */
556 if (info->relocateable)
557 return true;
559 globals = elf32_arm_hash_table (info);
561 BFD_ASSERT (globals != NULL);
563 if (globals->bfd_of_glue_owner != NULL)
564 return true;
566 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
568 if (sec == NULL)
570 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
571 will prevent elf_link_input_bfd() from processing the contents
572 of this section. */
573 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
575 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
577 if (sec == NULL
578 || !bfd_set_section_flags (abfd, sec, flags)
579 || !bfd_set_section_alignment (abfd, sec, 2))
580 return false;
582 /* Set the gc mark to prevent the section from being removed by garbage
583 collection, despite the fact that no relocs refer to this section. */
584 sec->gc_mark = 1;
587 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
589 if (sec == NULL)
591 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
593 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
595 if (sec == NULL
596 || !bfd_set_section_flags (abfd, sec, flags)
597 || !bfd_set_section_alignment (abfd, sec, 2))
598 return false;
600 sec->gc_mark = 1;
603 /* Save the bfd for later use. */
604 globals->bfd_of_glue_owner = abfd;
606 return true;
609 boolean
610 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
611 bfd *abfd;
612 struct bfd_link_info *link_info;
613 int no_pipeline_knowledge;
615 Elf_Internal_Shdr *symtab_hdr;
616 Elf_Internal_Rela *free_relocs = NULL;
617 Elf_Internal_Rela *irel, *irelend;
618 bfd_byte *contents = NULL;
619 bfd_byte *free_contents = NULL;
620 Elf32_External_Sym *extsyms = NULL;
621 Elf32_External_Sym *free_extsyms = NULL;
623 asection *sec;
624 struct elf32_arm_link_hash_table *globals;
626 /* If we are only performing a partial link do not bother
627 to construct any glue. */
628 if (link_info->relocateable)
629 return true;
631 /* Here we have a bfd that is to be included on the link. We have a hook
632 to do reloc rummaging, before section sizes are nailed down. */
633 globals = elf32_arm_hash_table (link_info);
635 BFD_ASSERT (globals != NULL);
636 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
638 globals->no_pipeline_knowledge = no_pipeline_knowledge;
640 /* Rummage around all the relocs and map the glue vectors. */
641 sec = abfd->sections;
643 if (sec == NULL)
644 return true;
646 for (; sec != NULL; sec = sec->next)
648 if (sec->reloc_count == 0)
649 continue;
651 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
653 /* Load the relocs. */
654 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
655 (Elf_Internal_Rela *) NULL, false));
657 BFD_ASSERT (irel != 0);
659 irelend = irel + sec->reloc_count;
660 for (; irel < irelend; irel++)
662 long r_type;
663 unsigned long r_index;
665 struct elf_link_hash_entry *h;
667 r_type = ELF32_R_TYPE (irel->r_info);
668 r_index = ELF32_R_SYM (irel->r_info);
670 /* These are the only relocation types we care about. */
671 if ( r_type != R_ARM_PC24
672 && r_type != R_ARM_THM_PC22)
673 continue;
675 /* Get the section contents if we haven't done so already. */
676 if (contents == NULL)
678 /* Get cached copy if it exists. */
679 if (elf_section_data (sec)->this_hdr.contents != NULL)
680 contents = elf_section_data (sec)->this_hdr.contents;
681 else
683 /* Go get them off disk. */
684 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
685 if (contents == NULL)
686 goto error_return;
688 free_contents = contents;
690 if (!bfd_get_section_contents (abfd, sec, contents,
691 (file_ptr) 0, sec->_raw_size))
692 goto error_return;
696 /* Read this BFD's symbols if we haven't done so already. */
697 if (extsyms == NULL)
699 /* Get cached copy if it exists. */
700 if (symtab_hdr->contents != NULL)
701 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
702 else
704 /* Go get them off disk. */
705 extsyms = ((Elf32_External_Sym *)
706 bfd_malloc (symtab_hdr->sh_size));
707 if (extsyms == NULL)
708 goto error_return;
710 free_extsyms = extsyms;
712 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
713 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
714 != symtab_hdr->sh_size))
715 goto error_return;
719 /* If the relocation is not against a symbol it cannot concern us. */
720 h = NULL;
722 /* We don't care about local symbols. */
723 if (r_index < symtab_hdr->sh_info)
724 continue;
726 /* This is an external symbol. */
727 r_index -= symtab_hdr->sh_info;
728 h = (struct elf_link_hash_entry *)
729 elf_sym_hashes (abfd)[r_index];
731 /* If the relocation is against a static symbol it must be within
732 the current section and so cannot be a cross ARM/Thumb relocation. */
733 if (h == NULL)
734 continue;
736 switch (r_type)
738 case R_ARM_PC24:
739 /* This one is a call from arm code. We need to look up
740 the target of the call. If it is a thumb target, we
741 insert glue. */
742 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
743 record_arm_to_thumb_glue (link_info, h);
744 break;
746 case R_ARM_THM_PC22:
747 /* This one is a call from thumb code. We look
748 up the target of the call. If it is not a thumb
749 target, we insert glue. */
750 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
751 record_thumb_to_arm_glue (link_info, h);
752 break;
754 default:
755 break;
760 return true;
762 error_return:
763 if (free_relocs != NULL)
764 free (free_relocs);
765 if (free_contents != NULL)
766 free (free_contents);
767 if (free_extsyms != NULL)
768 free (free_extsyms);
770 return false;
773 /* The thumb form of a long branch is a bit finicky, because the offset
774 encoding is split over two fields, each in it's own instruction. They
775 can occur in any order. So given a thumb form of long branch, and an
776 offset, insert the offset into the thumb branch and return finished
777 instruction.
779 It takes two thumb instructions to encode the target address. Each has
780 11 bits to invest. The upper 11 bits are stored in one (identifed by
781 H-0.. see below), the lower 11 bits are stored in the other (identified
782 by H-1).
784 Combine together and shifted left by 1 (it's a half word address) and
785 there you have it.
787 Op: 1111 = F,
788 H-0, upper address-0 = 000
789 Op: 1111 = F,
790 H-1, lower address-0 = 800
792 They can be ordered either way, but the arm tools I've seen always put
793 the lower one first. It probably doesn't matter. krk@cygnus.com
795 XXX: Actually the order does matter. The second instruction (H-1)
796 moves the computed address into the PC, so it must be the second one
797 in the sequence. The problem, however is that whilst little endian code
798 stores the instructions in HI then LOW order, big endian code does the
799 reverse. nickc@cygnus.com. */
801 #define LOW_HI_ORDER 0xF800F000
802 #define HI_LOW_ORDER 0xF000F800
804 static insn32
805 insert_thumb_branch (br_insn, rel_off)
806 insn32 br_insn;
807 int rel_off;
809 unsigned int low_bits;
810 unsigned int high_bits;
812 BFD_ASSERT ((rel_off & 1) != 1);
814 rel_off >>= 1; /* Half word aligned address. */
815 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
816 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
818 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
819 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
820 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
821 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
822 else
823 /* FIXME: abort is probably not the right call. krk@cygnus.com */
824 abort (); /* error - not a valid branch instruction form. */
826 return br_insn;
829 /* Thumb code calling an ARM function. */
831 static int
832 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
833 hit_data, sym_sec, offset, addend, val)
834 struct bfd_link_info * info;
835 const char * name;
836 bfd * input_bfd;
837 bfd * output_bfd;
838 asection * input_section;
839 bfd_byte * hit_data;
840 asection * sym_sec;
841 bfd_vma offset;
842 bfd_signed_vma addend;
843 bfd_vma val;
845 asection * s = 0;
846 long int my_offset;
847 unsigned long int tmp;
848 long int ret_offset;
849 struct elf_link_hash_entry * myh;
850 struct elf32_arm_link_hash_table * globals;
852 myh = find_thumb_glue (info, name, input_bfd);
853 if (myh == NULL)
854 return false;
856 globals = elf32_arm_hash_table (info);
858 BFD_ASSERT (globals != NULL);
859 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
861 my_offset = myh->root.u.def.value;
863 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
864 THUMB2ARM_GLUE_SECTION_NAME);
866 BFD_ASSERT (s != NULL);
867 BFD_ASSERT (s->contents != NULL);
868 BFD_ASSERT (s->output_section != NULL);
870 if ((my_offset & 0x01) == 0x01)
872 if (sym_sec != NULL
873 && sym_sec->owner != NULL
874 && !INTERWORK_FLAG (sym_sec->owner))
876 _bfd_error_handler
877 (_("%s(%s): warning: interworking not enabled."),
878 bfd_get_filename (sym_sec->owner), name);
879 _bfd_error_handler
880 (_(" first occurrence: %s: thumb call to arm"),
881 bfd_get_filename (input_bfd));
883 return false;
886 --my_offset;
887 myh->root.u.def.value = my_offset;
889 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
890 s->contents + my_offset);
892 bfd_put_16 (output_bfd, t2a2_noop_insn,
893 s->contents + my_offset + 2);
895 ret_offset =
896 /* Address of destination of the stub. */
897 ((bfd_signed_vma) val)
898 - ((bfd_signed_vma)
899 /* Offset from the start of the current section to the start of the stubs. */
900 (s->output_offset
901 /* Offset of the start of this stub from the start of the stubs. */
902 + my_offset
903 /* Address of the start of the current section. */
904 + s->output_section->vma)
905 /* The branch instruction is 4 bytes into the stub. */
907 /* ARM branches work from the pc of the instruction + 8. */
908 + 8);
910 bfd_put_32 (output_bfd,
911 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
912 s->contents + my_offset + 4);
915 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
917 /* Now go back and fix up the original BL insn to point
918 to here. */
919 ret_offset =
920 s->output_offset
921 + my_offset
922 - (input_section->output_offset
923 + offset + addend)
924 - 8;
926 tmp = bfd_get_32 (input_bfd, hit_data
927 - input_section->vma);
929 bfd_put_32 (output_bfd,
930 insert_thumb_branch (tmp, ret_offset),
931 hit_data - input_section->vma);
933 return true;
936 /* Arm code calling a Thumb function. */
938 static int
939 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
940 hit_data, sym_sec, offset, addend, val)
941 struct bfd_link_info * info;
942 const char * name;
943 bfd * input_bfd;
944 bfd * output_bfd;
945 asection * input_section;
946 bfd_byte * hit_data;
947 asection * sym_sec;
948 bfd_vma offset;
949 bfd_signed_vma addend;
950 bfd_vma val;
952 unsigned long int tmp;
953 long int my_offset;
954 asection * s;
955 long int ret_offset;
956 struct elf_link_hash_entry * myh;
957 struct elf32_arm_link_hash_table * globals;
959 myh = find_arm_glue (info, name, input_bfd);
960 if (myh == NULL)
961 return false;
963 globals = elf32_arm_hash_table (info);
965 BFD_ASSERT (globals != NULL);
966 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
968 my_offset = myh->root.u.def.value;
969 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
970 ARM2THUMB_GLUE_SECTION_NAME);
971 BFD_ASSERT (s != NULL);
972 BFD_ASSERT (s->contents != NULL);
973 BFD_ASSERT (s->output_section != NULL);
975 if ((my_offset & 0x01) == 0x01)
977 if (sym_sec != NULL
978 && sym_sec->owner != NULL
979 && !INTERWORK_FLAG (sym_sec->owner))
981 _bfd_error_handler
982 (_("%s(%s): warning: interworking not enabled."),
983 bfd_get_filename (sym_sec->owner), name);
984 _bfd_error_handler
985 (_(" first occurrence: %s: arm call to thumb"),
986 bfd_get_filename (input_bfd));
989 --my_offset;
990 myh->root.u.def.value = my_offset;
992 bfd_put_32 (output_bfd, a2t1_ldr_insn,
993 s->contents + my_offset);
995 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
996 s->contents + my_offset + 4);
998 /* It's a thumb address. Add the low order bit. */
999 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1000 s->contents + my_offset + 8);
1003 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1005 tmp = bfd_get_32 (input_bfd, hit_data);
1006 tmp = tmp & 0xFF000000;
1008 /* Somehow these are both 4 too far, so subtract 8. */
1009 ret_offset = s->output_offset
1010 + my_offset
1011 + s->output_section->vma
1012 - (input_section->output_offset
1013 + input_section->output_section->vma
1014 + offset + addend)
1015 - 8;
1017 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1019 bfd_put_32 (output_bfd, tmp, hit_data
1020 - input_section->vma);
1022 return true;
1025 /* Perform a relocation as part of a final link. */
1027 static bfd_reloc_status_type
1028 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1029 input_section, contents, rel, value,
1030 info, sym_sec, sym_name, sym_flags, h)
1031 reloc_howto_type * howto;
1032 bfd * input_bfd;
1033 bfd * output_bfd;
1034 asection * input_section;
1035 bfd_byte * contents;
1036 Elf_Internal_Rela * rel;
1037 bfd_vma value;
1038 struct bfd_link_info * info;
1039 asection * sym_sec;
1040 const char * sym_name;
1041 unsigned char sym_flags;
1042 struct elf_link_hash_entry * h;
1044 unsigned long r_type = howto->type;
1045 unsigned long r_symndx;
1046 bfd_byte * hit_data = contents + rel->r_offset;
1047 bfd * dynobj = NULL;
1048 Elf_Internal_Shdr * symtab_hdr;
1049 struct elf_link_hash_entry ** sym_hashes;
1050 bfd_vma * local_got_offsets;
1051 asection * sgot = NULL;
1052 asection * splt = NULL;
1053 asection * sreloc = NULL;
1054 bfd_vma addend;
1055 bfd_signed_vma signed_addend;
1056 struct elf32_arm_link_hash_table * globals;
1058 /* If the start address has been set, then set the EF_ARM_HASENTRY
1059 flag. Setting this more than once is redundant, but the cost is
1060 not too high, and it keeps the code simple.
1062 The test is done here, rather than somewhere else, because the
1063 start address is only set just before the final link commences.
1065 Note - if the user deliberately sets a start address of 0, the
1066 flag will not be set. */
1067 if (bfd_get_start_address (output_bfd) != 0)
1068 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1070 globals = elf32_arm_hash_table (info);
1072 dynobj = elf_hash_table (info)->dynobj;
1073 if (dynobj)
1075 sgot = bfd_get_section_by_name (dynobj, ".got");
1076 splt = bfd_get_section_by_name (dynobj, ".plt");
1078 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1079 sym_hashes = elf_sym_hashes (input_bfd);
1080 local_got_offsets = elf_local_got_offsets (input_bfd);
1081 r_symndx = ELF32_R_SYM (rel->r_info);
1083 #ifdef USE_REL
1084 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1086 if (addend & ((howto->src_mask + 1) >> 1))
1088 signed_addend = -1;
1089 signed_addend &= ~ howto->src_mask;
1090 signed_addend |= addend;
1092 else
1093 signed_addend = addend;
1094 #else
1095 addend = signed_addend = rel->r_addend;
1096 #endif
1098 switch (r_type)
1100 case R_ARM_NONE:
1101 return bfd_reloc_ok;
1103 case R_ARM_PC24:
1104 case R_ARM_ABS32:
1105 case R_ARM_REL32:
1106 #ifndef OLD_ARM_ABI
1107 case R_ARM_XPC25:
1108 #endif
1109 /* When generating a shared object, these relocations are copied
1110 into the output file to be resolved at run time. */
1111 if (info->shared
1112 && (r_type != R_ARM_PC24
1113 || (h != NULL
1114 && h->dynindx != -1
1115 && (! info->symbolic
1116 || (h->elf_link_hash_flags
1117 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1119 Elf_Internal_Rel outrel;
1120 boolean skip, relocate;
1122 if (sreloc == NULL)
1124 const char * name;
1126 name = (bfd_elf_string_from_elf_section
1127 (input_bfd,
1128 elf_elfheader (input_bfd)->e_shstrndx,
1129 elf_section_data (input_section)->rel_hdr.sh_name));
1130 if (name == NULL)
1131 return bfd_reloc_notsupported;
1133 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1134 && strcmp (bfd_get_section_name (input_bfd,
1135 input_section),
1136 name + 4) == 0);
1138 sreloc = bfd_get_section_by_name (dynobj, name);
1139 BFD_ASSERT (sreloc != NULL);
1142 skip = false;
1144 if (elf_section_data (input_section)->stab_info == NULL)
1145 outrel.r_offset = rel->r_offset;
1146 else
1148 bfd_vma off;
1150 off = (_bfd_stab_section_offset
1151 (output_bfd, &elf_hash_table (info)->stab_info,
1152 input_section,
1153 & elf_section_data (input_section)->stab_info,
1154 rel->r_offset));
1155 if (off == (bfd_vma) -1)
1156 skip = true;
1157 outrel.r_offset = off;
1160 outrel.r_offset += (input_section->output_section->vma
1161 + input_section->output_offset);
1163 if (skip)
1165 memset (&outrel, 0, sizeof outrel);
1166 relocate = false;
1168 else if (r_type == R_ARM_PC24)
1170 BFD_ASSERT (h != NULL && h->dynindx != -1);
1171 if ((input_section->flags & SEC_ALLOC) != 0)
1172 relocate = false;
1173 else
1174 relocate = true;
1175 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1177 else
1179 if (h == NULL
1180 || ((info->symbolic || h->dynindx == -1)
1181 && (h->elf_link_hash_flags
1182 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1184 relocate = true;
1185 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1187 else
1189 BFD_ASSERT (h->dynindx != -1);
1190 if ((input_section->flags & SEC_ALLOC) != 0)
1191 relocate = false;
1192 else
1193 relocate = true;
1194 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1198 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1199 (((Elf32_External_Rel *)
1200 sreloc->contents)
1201 + sreloc->reloc_count));
1202 ++sreloc->reloc_count;
1204 /* If this reloc is against an external symbol, we do not want to
1205 fiddle with the addend. Otherwise, we need to include the symbol
1206 value so that it becomes an addend for the dynamic reloc. */
1207 if (! relocate)
1208 return bfd_reloc_ok;
1210 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1211 contents, rel->r_offset, value,
1212 (bfd_vma) 0);
1214 else switch (r_type)
1216 #ifndef OLD_ARM_ABI
1217 case R_ARM_XPC25: /* Arm BLX instruction. */
1218 #endif
1219 case R_ARM_PC24: /* Arm B/BL instruction */
1220 #ifndef OLD_ARM_ABI
1221 if (r_type == R_ARM_XPC25)
1223 /* Check for Arm calling Arm function. */
1224 /* FIXME: Should we translate the instruction into a BL
1225 instruction instead ? */
1226 if (sym_flags != STT_ARM_TFUNC)
1227 _bfd_error_handler (_("\
1228 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1229 bfd_get_filename (input_bfd),
1230 h ? h->root.root.string : "(local)");
1232 else
1233 #endif
1235 /* Check for Arm calling Thumb function. */
1236 if (sym_flags == STT_ARM_TFUNC)
1238 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1239 input_section, hit_data, sym_sec, rel->r_offset,
1240 signed_addend, value);
1241 return bfd_reloc_ok;
1245 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1246 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1248 /* The old way of doing things. Trearing the addend as a
1249 byte sized field and adding in the pipeline offset. */
1250 value -= (input_section->output_section->vma
1251 + input_section->output_offset);
1252 value -= rel->r_offset;
1253 value += addend;
1255 if (! globals->no_pipeline_knowledge)
1256 value -= 8;
1258 else
1260 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1261 where:
1262 S is the address of the symbol in the relocation.
1263 P is address of the instruction being relocated.
1264 A is the addend (extracted from the instruction) in bytes.
1266 S is held in 'value'.
1267 P is the base address of the section containing the instruction
1268 plus the offset of the reloc into that section, ie:
1269 (input_section->output_section->vma +
1270 input_section->output_offset +
1271 rel->r_offset).
1272 A is the addend, converted into bytes, ie:
1273 (signed_addend * 4)
1275 Note: None of these operations have knowledge of the pipeline
1276 size of the processor, thus it is up to the assembler to encode
1277 this information into the addend. */
1278 value -= (input_section->output_section->vma
1279 + input_section->output_offset);
1280 value -= rel->r_offset;
1281 value += (signed_addend << howto->size);
1283 /* Previous versions of this code also used to add in the pipeline
1284 offset here. This is wrong because the linker is not supposed
1285 to know about such things, and one day it might change. In order
1286 to support old binaries that need the old behaviour however, so
1287 we attempt to detect which ABI was used to create the reloc. */
1288 if (! globals->no_pipeline_knowledge)
1290 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1292 i_ehdrp = elf_elfheader (input_bfd);
1294 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1295 value -= 8;
1299 signed_addend = value;
1300 signed_addend >>= howto->rightshift;
1302 /* It is not an error for an undefined weak reference to be
1303 out of range. Any program that branches to such a symbol
1304 is going to crash anyway, so there is no point worrying
1305 about getting the destination exactly right. */
1306 if (! h || h->root.type != bfd_link_hash_undefweak)
1308 /* Perform a signed range check. */
1309 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1310 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1311 return bfd_reloc_overflow;
1314 #ifndef OLD_ARM_ABI
1315 /* If necessary set the H bit in the BLX instruction. */
1316 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1317 value = (signed_addend & howto->dst_mask)
1318 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1319 | (1 << 24);
1320 else
1321 #endif
1322 value = (signed_addend & howto->dst_mask)
1323 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1324 break;
1326 case R_ARM_ABS32:
1327 value += addend;
1328 if (sym_flags == STT_ARM_TFUNC)
1329 value |= 1;
1330 break;
1332 case R_ARM_REL32:
1333 value -= (input_section->output_section->vma
1334 + input_section->output_offset + rel->r_offset);
1335 value += addend;
1336 break;
1339 bfd_put_32 (input_bfd, value, hit_data);
1340 return bfd_reloc_ok;
1342 case R_ARM_ABS8:
1343 value += addend;
1344 if ((long) value > 0x7f || (long) value < -0x80)
1345 return bfd_reloc_overflow;
1347 bfd_put_8 (input_bfd, value, hit_data);
1348 return bfd_reloc_ok;
1350 case R_ARM_ABS16:
1351 value += addend;
1353 if ((long) value > 0x7fff || (long) value < -0x8000)
1354 return bfd_reloc_overflow;
1356 bfd_put_16 (input_bfd, value, hit_data);
1357 return bfd_reloc_ok;
1359 case R_ARM_ABS12:
1360 /* Support ldr and str instruction for the arm */
1361 /* Also thumb b (unconditional branch). ??? Really? */
1362 value += addend;
1364 if ((long) value > 0x7ff || (long) value < -0x800)
1365 return bfd_reloc_overflow;
1367 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1368 bfd_put_32 (input_bfd, value, hit_data);
1369 return bfd_reloc_ok;
1371 case R_ARM_THM_ABS5:
1372 /* Support ldr and str instructions for the thumb. */
1373 #ifdef USE_REL
1374 /* Need to refetch addend. */
1375 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1376 /* ??? Need to determine shift amount from operand size. */
1377 addend >>= howto->rightshift;
1378 #endif
1379 value += addend;
1381 /* ??? Isn't value unsigned? */
1382 if ((long) value > 0x1f || (long) value < -0x10)
1383 return bfd_reloc_overflow;
1385 /* ??? Value needs to be properly shifted into place first. */
1386 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1387 bfd_put_16 (input_bfd, value, hit_data);
1388 return bfd_reloc_ok;
1390 #ifndef OLD_ARM_ABI
1391 case R_ARM_THM_XPC22:
1392 #endif
1393 case R_ARM_THM_PC22:
1394 /* Thumb BL (branch long instruction). */
1396 bfd_vma relocation;
1397 boolean overflow = false;
1398 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1399 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1400 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1401 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1402 bfd_vma check;
1403 bfd_signed_vma signed_check;
1405 #ifdef USE_REL
1406 /* Need to refetch the addend and squish the two 11 bit pieces
1407 together. */
1409 bfd_vma upper = upper_insn & 0x7ff;
1410 bfd_vma lower = lower_insn & 0x7ff;
1411 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1412 addend = (upper << 12) | (lower << 1);
1413 signed_addend = addend;
1415 #endif
1416 #ifndef OLD_ARM_ABI
1417 if (r_type == R_ARM_THM_XPC22)
1419 /* Check for Thumb to Thumb call. */
1420 /* FIXME: Should we translate the instruction into a BL
1421 instruction instead ? */
1422 if (sym_flags == STT_ARM_TFUNC)
1423 _bfd_error_handler (_("\
1424 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1425 bfd_get_filename (input_bfd),
1426 h ? h->root.root.string : "(local)");
1428 else
1429 #endif
1431 /* If it is not a call to Thumb, assume call to Arm.
1432 If it is a call relative to a section name, then it is not a
1433 function call at all, but rather a long jump. */
1434 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1436 if (elf32_thumb_to_arm_stub
1437 (info, sym_name, input_bfd, output_bfd, input_section,
1438 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1439 return bfd_reloc_ok;
1440 else
1441 return bfd_reloc_dangerous;
1445 relocation = value + signed_addend;
1447 relocation -= (input_section->output_section->vma
1448 + input_section->output_offset
1449 + rel->r_offset);
1451 if (! globals->no_pipeline_knowledge)
1453 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1455 i_ehdrp = elf_elfheader (input_bfd);
1457 /* Previous versions of this code also used to add in the pipline
1458 offset here. This is wrong because the linker is not supposed
1459 to know about such things, and one day it might change. In order
1460 to support old binaries that need the old behaviour however, so
1461 we attempt to detect which ABI was used to create the reloc. */
1462 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1463 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1464 || i_ehdrp->e_ident[EI_OSABI] == 0)
1465 relocation += 4;
1468 check = relocation >> howto->rightshift;
1470 /* If this is a signed value, the rightshift just dropped
1471 leading 1 bits (assuming twos complement). */
1472 if ((bfd_signed_vma) relocation >= 0)
1473 signed_check = check;
1474 else
1475 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1477 /* Assumes two's complement. */
1478 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1479 overflow = true;
1481 /* Put RELOCATION back into the insn. */
1482 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1483 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1485 #ifndef OLD_ARM_ABI
1486 if (r_type == R_ARM_THM_XPC22
1487 && ((lower_insn & 0x1800) == 0x0800))
1488 /* Remove bit zero of the adjusted offset. Bit zero can only be
1489 set if the upper insn is at a half-word boundary, since the
1490 destination address, an ARM instruction, must always be on a
1491 word boundary. The semantics of the BLX (1) instruction, however,
1492 are that bit zero in the offset must always be zero, and the
1493 corresponding bit one in the target address will be set from bit
1494 one of the source address. */
1495 lower_insn &= ~1;
1496 #endif
1497 /* Put the relocated value back in the object file: */
1498 bfd_put_16 (input_bfd, upper_insn, hit_data);
1499 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1501 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1503 break;
1505 case R_ARM_GNU_VTINHERIT:
1506 case R_ARM_GNU_VTENTRY:
1507 return bfd_reloc_ok;
1509 case R_ARM_COPY:
1510 return bfd_reloc_notsupported;
1512 case R_ARM_GLOB_DAT:
1513 return bfd_reloc_notsupported;
1515 case R_ARM_JUMP_SLOT:
1516 return bfd_reloc_notsupported;
1518 case R_ARM_RELATIVE:
1519 return bfd_reloc_notsupported;
1521 case R_ARM_GOTOFF:
1522 /* Relocation is relative to the start of the
1523 global offset table. */
1525 BFD_ASSERT (sgot != NULL);
1526 if (sgot == NULL)
1527 return bfd_reloc_notsupported;
1529 /* Note that sgot->output_offset is not involved in this
1530 calculation. We always want the start of .got. If we
1531 define _GLOBAL_OFFSET_TABLE in a different way, as is
1532 permitted by the ABI, we might have to change this
1533 calculation. */
1534 value -= sgot->output_section->vma;
1535 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1536 contents, rel->r_offset, value,
1537 (bfd_vma) 0);
1539 case R_ARM_GOTPC:
1540 /* Use global offset table as symbol value. */
1541 BFD_ASSERT (sgot != NULL);
1543 if (sgot == NULL)
1544 return bfd_reloc_notsupported;
1546 value = sgot->output_section->vma;
1547 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1548 contents, rel->r_offset, value,
1549 (bfd_vma) 0);
1551 case R_ARM_GOT32:
1552 /* Relocation is to the entry for this symbol in the
1553 global offset table. */
1554 if (sgot == NULL)
1555 return bfd_reloc_notsupported;
1557 if (h != NULL)
1559 bfd_vma off;
1561 off = h->got.offset;
1562 BFD_ASSERT (off != (bfd_vma) -1);
1564 if (!elf_hash_table (info)->dynamic_sections_created ||
1565 (info->shared && (info->symbolic || h->dynindx == -1)
1566 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1568 /* This is actually a static link, or it is a -Bsymbolic link
1569 and the symbol is defined locally. We must initialize this
1570 entry in the global offset table. Since the offset must
1571 always be a multiple of 4, we use the least significant bit
1572 to record whether we have initialized it already.
1574 When doing a dynamic link, we create a .rel.got relocation
1575 entry to initialize the value. This is done in the
1576 finish_dynamic_symbol routine. */
1577 if ((off & 1) != 0)
1578 off &= ~1;
1579 else
1581 bfd_put_32 (output_bfd, value, sgot->contents + off);
1582 h->got.offset |= 1;
1586 value = sgot->output_offset + off;
1588 else
1590 bfd_vma off;
1592 BFD_ASSERT (local_got_offsets != NULL &&
1593 local_got_offsets[r_symndx] != (bfd_vma) -1);
1595 off = local_got_offsets[r_symndx];
1597 /* The offset must always be a multiple of 4. We use the
1598 least significant bit to record whether we have already
1599 generated the necessary reloc. */
1600 if ((off & 1) != 0)
1601 off &= ~1;
1602 else
1604 bfd_put_32 (output_bfd, value, sgot->contents + off);
1606 if (info->shared)
1608 asection * srelgot;
1609 Elf_Internal_Rel outrel;
1611 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1612 BFD_ASSERT (srelgot != NULL);
1614 outrel.r_offset = (sgot->output_section->vma
1615 + sgot->output_offset
1616 + off);
1617 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1618 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1619 (((Elf32_External_Rel *)
1620 srelgot->contents)
1621 + srelgot->reloc_count));
1622 ++srelgot->reloc_count;
1625 local_got_offsets[r_symndx] |= 1;
1628 value = sgot->output_offset + off;
1631 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1632 contents, rel->r_offset, value,
1633 (bfd_vma) 0);
1635 case R_ARM_PLT32:
1636 /* Relocation is to the entry for this symbol in the
1637 procedure linkage table. */
1639 /* Resolve a PLT32 reloc against a local symbol directly,
1640 without using the procedure linkage table. */
1641 if (h == NULL)
1642 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1643 contents, rel->r_offset, value,
1644 (bfd_vma) 0);
1646 if (h->plt.offset == (bfd_vma) -1)
1647 /* We didn't make a PLT entry for this symbol. This
1648 happens when statically linking PIC code, or when
1649 using -Bsymbolic. */
1650 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1651 contents, rel->r_offset, value,
1652 (bfd_vma) 0);
1654 BFD_ASSERT(splt != NULL);
1655 if (splt == NULL)
1656 return bfd_reloc_notsupported;
1658 value = (splt->output_section->vma
1659 + splt->output_offset
1660 + h->plt.offset);
1661 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1662 contents, rel->r_offset, value,
1663 (bfd_vma) 0);
1665 case R_ARM_SBREL32:
1666 return bfd_reloc_notsupported;
1668 case R_ARM_AMP_VCALL9:
1669 return bfd_reloc_notsupported;
1671 case R_ARM_RSBREL32:
1672 return bfd_reloc_notsupported;
1674 case R_ARM_THM_RPC22:
1675 return bfd_reloc_notsupported;
1677 case R_ARM_RREL32:
1678 return bfd_reloc_notsupported;
1680 case R_ARM_RABS32:
1681 return bfd_reloc_notsupported;
1683 case R_ARM_RPC24:
1684 return bfd_reloc_notsupported;
1686 case R_ARM_RBASE:
1687 return bfd_reloc_notsupported;
1689 default:
1690 return bfd_reloc_notsupported;
1694 #ifdef USE_REL
1695 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1696 static void
1697 arm_add_to_rel (abfd, address, howto, increment)
1698 bfd * abfd;
1699 bfd_byte * address;
1700 reloc_howto_type * howto;
1701 bfd_signed_vma increment;
1703 bfd_signed_vma addend;
1705 if (howto->type == R_ARM_THM_PC22)
1707 int upper_insn, lower_insn;
1708 int upper, lower;
1710 upper_insn = bfd_get_16 (abfd, address);
1711 lower_insn = bfd_get_16 (abfd, address + 2);
1712 upper = upper_insn & 0x7ff;
1713 lower = lower_insn & 0x7ff;
1715 addend = (upper << 12) | (lower << 1);
1716 addend += increment;
1717 addend >>= 1;
1719 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1720 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1722 bfd_put_16 (abfd, upper_insn, address);
1723 bfd_put_16 (abfd, lower_insn, address + 2);
1725 else
1727 bfd_vma contents;
1729 contents = bfd_get_32 (abfd, address);
1731 /* Get the (signed) value from the instruction. */
1732 addend = contents & howto->src_mask;
1733 if (addend & ((howto->src_mask + 1) >> 1))
1735 bfd_signed_vma mask;
1737 mask = -1;
1738 mask &= ~ howto->src_mask;
1739 addend |= mask;
1742 /* Add in the increment, (which is a byte value). */
1743 switch (howto->type)
1745 default:
1746 addend += increment;
1747 break;
1749 case R_ARM_PC24:
1750 addend <<= howto->size;
1751 addend += increment;
1753 /* Should we check for overflow here ? */
1755 /* Drop any undesired bits. */
1756 addend >>= howto->rightshift;
1757 break;
1760 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1762 bfd_put_32 (abfd, contents, address);
1765 #endif /* USE_REL */
1767 /* Relocate an ARM ELF section. */
1768 static boolean
1769 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1770 contents, relocs, local_syms, local_sections)
1771 bfd * output_bfd;
1772 struct bfd_link_info * info;
1773 bfd * input_bfd;
1774 asection * input_section;
1775 bfd_byte * contents;
1776 Elf_Internal_Rela * relocs;
1777 Elf_Internal_Sym * local_syms;
1778 asection ** local_sections;
1780 Elf_Internal_Shdr * symtab_hdr;
1781 struct elf_link_hash_entry ** sym_hashes;
1782 Elf_Internal_Rela * rel;
1783 Elf_Internal_Rela * relend;
1784 const char * name;
1786 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1787 sym_hashes = elf_sym_hashes (input_bfd);
1789 rel = relocs;
1790 relend = relocs + input_section->reloc_count;
1791 for (; rel < relend; rel++)
1793 int r_type;
1794 reloc_howto_type * howto;
1795 unsigned long r_symndx;
1796 Elf_Internal_Sym * sym;
1797 asection * sec;
1798 struct elf_link_hash_entry * h;
1799 bfd_vma relocation;
1800 bfd_reloc_status_type r;
1801 arelent bfd_reloc;
1803 r_symndx = ELF32_R_SYM (rel->r_info);
1804 r_type = ELF32_R_TYPE (rel->r_info);
1806 if ( r_type == R_ARM_GNU_VTENTRY
1807 || r_type == R_ARM_GNU_VTINHERIT)
1808 continue;
1810 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1811 howto = bfd_reloc.howto;
1813 if (info->relocateable)
1815 /* This is a relocateable link. We don't have to change
1816 anything, unless the reloc is against a section symbol,
1817 in which case we have to adjust according to where the
1818 section symbol winds up in the output section. */
1819 if (r_symndx < symtab_hdr->sh_info)
1821 sym = local_syms + r_symndx;
1822 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1824 sec = local_sections[r_symndx];
1825 #ifdef USE_REL
1826 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1827 howto, sec->output_offset + sym->st_value);
1828 #else
1829 rel->r_addend += (sec->output_offset + sym->st_value)
1830 >> howto->rightshift;
1831 #endif
1835 continue;
1838 /* This is a final link. */
1839 h = NULL;
1840 sym = NULL;
1841 sec = NULL;
1843 if (r_symndx < symtab_hdr->sh_info)
1845 sym = local_syms + r_symndx;
1846 sec = local_sections[r_symndx];
1847 relocation = (sec->output_section->vma
1848 + sec->output_offset
1849 + sym->st_value);
1851 else
1853 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1855 while ( h->root.type == bfd_link_hash_indirect
1856 || h->root.type == bfd_link_hash_warning)
1857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859 if ( h->root.type == bfd_link_hash_defined
1860 || h->root.type == bfd_link_hash_defweak)
1862 int relocation_needed = 1;
1864 sec = h->root.u.def.section;
1866 /* In these cases, we don't need the relocation value.
1867 We check specially because in some obscure cases
1868 sec->output_section will be NULL. */
1869 switch (r_type)
1871 case R_ARM_PC24:
1872 case R_ARM_ABS32:
1873 if (info->shared
1874 && (
1875 (!info->symbolic && h->dynindx != -1)
1876 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1878 && ((input_section->flags & SEC_ALLOC) != 0
1879 /* DWARF will emit R_ARM_ABS32 relocations in its
1880 sections against symbols defined externally
1881 in shared libraries. We can't do anything
1882 with them here. */
1883 || ((input_section->flags & SEC_DEBUGGING) != 0
1884 && (h->elf_link_hash_flags
1885 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1887 relocation_needed = 0;
1888 break;
1890 case R_ARM_GOTPC:
1891 relocation_needed = 0;
1892 break;
1894 case R_ARM_GOT32:
1895 if (elf_hash_table(info)->dynamic_sections_created
1896 && (!info->shared
1897 || (!info->symbolic && h->dynindx != -1)
1898 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1901 relocation_needed = 0;
1902 break;
1904 case R_ARM_PLT32:
1905 if (h->plt.offset != (bfd_vma)-1)
1906 relocation_needed = 0;
1907 break;
1909 default:
1910 if (sec->output_section == NULL)
1912 (*_bfd_error_handler)
1913 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1914 bfd_get_filename (input_bfd), h->root.root.string,
1915 bfd_get_section_name (input_bfd, input_section));
1916 relocation_needed = 0;
1920 if (relocation_needed)
1921 relocation = h->root.u.def.value
1922 + sec->output_section->vma
1923 + sec->output_offset;
1924 else
1925 relocation = 0;
1927 else if (h->root.type == bfd_link_hash_undefweak)
1928 relocation = 0;
1929 else if (info->shared && !info->symbolic
1930 && !info->no_undefined
1931 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1932 relocation = 0;
1933 else
1935 if (!((*info->callbacks->undefined_symbol)
1936 (info, h->root.root.string, input_bfd,
1937 input_section, rel->r_offset,
1938 (!info->shared || info->no_undefined
1939 || ELF_ST_VISIBILITY (h->other)))))
1940 return false;
1941 relocation = 0;
1945 if (h != NULL)
1946 name = h->root.root.string;
1947 else
1949 name = (bfd_elf_string_from_elf_section
1950 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1951 if (name == NULL || *name == '\0')
1952 name = bfd_section_name (input_bfd, sec);
1955 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1956 input_section, contents, rel,
1957 relocation, info, sec, name,
1958 (h ? ELF_ST_TYPE (h->type) :
1959 ELF_ST_TYPE (sym->st_info)), h);
1961 if (r != bfd_reloc_ok)
1963 const char * msg = (const char *) 0;
1965 switch (r)
1967 case bfd_reloc_overflow:
1968 /* If the overflowing reloc was to an undefined symbol,
1969 we have already printed one error message and there
1970 is no point complaining again. */
1971 if ((! h ||
1972 h->root.type != bfd_link_hash_undefined)
1973 && (!((*info->callbacks->reloc_overflow)
1974 (info, name, howto->name, (bfd_vma) 0,
1975 input_bfd, input_section, rel->r_offset))))
1976 return false;
1977 break;
1979 case bfd_reloc_undefined:
1980 if (!((*info->callbacks->undefined_symbol)
1981 (info, name, input_bfd, input_section,
1982 rel->r_offset, true)))
1983 return false;
1984 break;
1986 case bfd_reloc_outofrange:
1987 msg = _("internal error: out of range error");
1988 goto common_error;
1990 case bfd_reloc_notsupported:
1991 msg = _("internal error: unsupported relocation error");
1992 goto common_error;
1994 case bfd_reloc_dangerous:
1995 msg = _("internal error: dangerous error");
1996 goto common_error;
1998 default:
1999 msg = _("internal error: unknown error");
2000 /* fall through */
2002 common_error:
2003 if (!((*info->callbacks->warning)
2004 (info, msg, name, input_bfd, input_section,
2005 rel->r_offset)))
2006 return false;
2007 break;
2012 return true;
2015 /* Function to keep ARM specific flags in the ELF header. */
2016 static boolean
2017 elf32_arm_set_private_flags (abfd, flags)
2018 bfd *abfd;
2019 flagword flags;
2021 if (elf_flags_init (abfd)
2022 && elf_elfheader (abfd)->e_flags != flags)
2024 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2026 if (flags & EF_ARM_INTERWORK)
2027 _bfd_error_handler (_("\
2028 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
2029 bfd_get_filename (abfd));
2030 else
2031 _bfd_error_handler (_("\
2032 Warning: Clearing the interwork flag of %s due to outside request"),
2033 bfd_get_filename (abfd));
2036 else
2038 elf_elfheader (abfd)->e_flags = flags;
2039 elf_flags_init (abfd) = true;
2042 return true;
2045 /* Copy backend specific data from one object module to another. */
2047 static boolean
2048 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2049 bfd *ibfd;
2050 bfd *obfd;
2052 flagword in_flags;
2053 flagword out_flags;
2055 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2056 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2057 return true;
2059 in_flags = elf_elfheader (ibfd)->e_flags;
2060 out_flags = elf_elfheader (obfd)->e_flags;
2062 if (elf_flags_init (obfd)
2063 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2064 && in_flags != out_flags)
2066 /* Cannot mix APCS26 and APCS32 code. */
2067 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2068 return false;
2070 /* Cannot mix float APCS and non-float APCS code. */
2071 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2072 return false;
2074 /* If the src and dest have different interworking flags
2075 then turn off the interworking bit. */
2076 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2078 if (out_flags & EF_ARM_INTERWORK)
2079 _bfd_error_handler (_("\
2080 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2081 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2083 in_flags &= ~EF_ARM_INTERWORK;
2086 /* Likewise for PIC, though don't warn for this case. */
2087 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2088 in_flags &= ~EF_ARM_PIC;
2091 elf_elfheader (obfd)->e_flags = in_flags;
2092 elf_flags_init (obfd) = true;
2094 return true;
2097 /* Merge backend specific data from an object file to the output
2098 object file when linking. */
2100 static boolean
2101 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2102 bfd * ibfd;
2103 bfd * obfd;
2105 flagword out_flags;
2106 flagword in_flags;
2107 boolean flags_compatible = true;
2108 boolean null_input_bfd = true;
2109 asection *sec;
2111 /* Check if we have the same endianess. */
2112 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2113 return false;
2115 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2116 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2117 return true;
2119 /* The input BFD must have had its flags initialised. */
2120 /* The following seems bogus to me -- The flags are initialized in
2121 the assembler but I don't think an elf_flags_init field is
2122 written into the object. */
2123 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2125 in_flags = elf_elfheader (ibfd)->e_flags;
2126 out_flags = elf_elfheader (obfd)->e_flags;
2128 if (!elf_flags_init (obfd))
2130 /* If the input is the default architecture and had the default
2131 flags then do not bother setting the flags for the output
2132 architecture, instead allow future merges to do this. If no
2133 future merges ever set these flags then they will retain their
2134 uninitialised values, which surprise surprise, correspond
2135 to the default values. */
2136 if (bfd_get_arch_info (ibfd)->the_default
2137 && elf_elfheader (ibfd)->e_flags == 0)
2138 return true;
2140 elf_flags_init (obfd) = true;
2141 elf_elfheader (obfd)->e_flags = in_flags;
2143 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2144 && bfd_get_arch_info (obfd)->the_default)
2145 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2147 return true;
2150 /* Identical flags must be compatible. */
2151 if (in_flags == out_flags)
2152 return true;
2154 /* Check to see if the input BFD actually contains any sections.
2155 If not, its flags may not have been initialised either, but it cannot
2156 actually cause any incompatibility. */
2157 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2159 /* Ignore synthetic glue sections. */
2160 if (strcmp (sec->name, ".glue_7")
2161 && strcmp (sec->name, ".glue_7t"))
2163 null_input_bfd = false;
2164 break;
2167 if (null_input_bfd)
2168 return true;
2170 /* Complain about various flag mismatches. */
2171 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2173 _bfd_error_handler (_("\
2174 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2175 bfd_get_filename (ibfd),
2176 (in_flags & EF_ARM_EABIMASK) >> 24,
2177 bfd_get_filename (obfd),
2178 (out_flags & EF_ARM_EABIMASK) >> 24);
2179 return false;
2182 /* Not sure what needs to be checked for EABI versions >= 1. */
2183 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2185 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2187 _bfd_error_handler (_("\
2188 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2189 bfd_get_filename (ibfd),
2190 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2191 bfd_get_filename (obfd),
2192 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2193 flags_compatible = false;
2196 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2198 _bfd_error_handler (_("\
2199 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2200 bfd_get_filename (ibfd),
2201 in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer"),
2202 bfd_get_filename (obfd),
2203 out_flags & EF_ARM_APCS_26 ? _("float") : _("integer"));
2204 flags_compatible = false;
2207 #ifdef EF_ARM_SOFT_FLOAT
2208 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2210 _bfd_error_handler (_ ("\
2211 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2212 bfd_get_filename (ibfd),
2213 in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"),
2214 bfd_get_filename (obfd),
2215 out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"));
2216 flags_compatible = false;
2218 #endif
2220 /* Interworking mismatch is only a warning. */
2221 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2222 _bfd_error_handler (_("\
2223 Warning: %s %s interworking, whereas %s %s"),
2224 bfd_get_filename (ibfd),
2225 in_flags & EF_ARM_INTERWORK ? _("supports") : _("does not support"),
2226 bfd_get_filename (obfd),
2227 out_flags & EF_ARM_INTERWORK ? _("does") : _("does not"));
2230 return flags_compatible;
2233 /* Display the flags field. */
2235 static boolean
2236 elf32_arm_print_private_bfd_data (abfd, ptr)
2237 bfd *abfd;
2238 PTR ptr;
2240 FILE * file = (FILE *) ptr;
2241 unsigned long flags;
2243 BFD_ASSERT (abfd != NULL && ptr != NULL);
2245 /* Print normal ELF private data. */
2246 _bfd_elf_print_private_bfd_data (abfd, ptr);
2248 flags = elf_elfheader (abfd)->e_flags;
2249 /* Ignore init flag - it may not be set, despite the flags field
2250 containing valid data. */
2252 /* xgettext:c-format */
2253 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2255 switch (EF_ARM_EABI_VERSION (flags))
2257 case EF_ARM_EABI_UNKNOWN:
2258 /* The following flag bits are GNU extenstions and not part of the
2259 official ARM ELF extended ABI. Hence they are only decoded if
2260 the EABI version is not set. */
2261 if (flags & EF_ARM_INTERWORK)
2262 fprintf (file, _(" [interworking enabled]"));
2264 if (flags & EF_ARM_APCS_26)
2265 fprintf (file, _(" [APCS-26]"));
2266 else
2267 fprintf (file, _(" [APCS-32]"));
2269 if (flags & EF_ARM_APCS_FLOAT)
2270 fprintf (file, _(" [floats passed in float registers]"));
2272 if (flags & EF_ARM_PIC)
2273 fprintf (file, _(" [position independent]"));
2275 if (flags & EF_ARM_NEW_ABI)
2276 fprintf (file, _(" [new ABI]"));
2278 if (flags & EF_ARM_OLD_ABI)
2279 fprintf (file, _(" [old ABI]"));
2281 if (flags & EF_ARM_SOFT_FLOAT)
2282 fprintf (file, _(" [software FP]"));
2284 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2285 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2286 break;
2288 case EF_ARM_EABI_VER1:
2289 fprintf (file, _(" [Version1 EABI]"));
2291 if (flags & EF_ARM_SYMSARESORTED)
2292 fprintf (file, _(" [sorted symbol table]"));
2293 else
2294 fprintf (file, _(" [unsorted symbol table]"));
2296 flags &= ~ EF_ARM_SYMSARESORTED;
2297 break;
2299 case EF_ARM_EABI_VER2:
2300 fprintf (file, _(" [Version2 EABI]"));
2302 if (flags & EF_ARM_SYMSARESORTED)
2303 fprintf (file, _(" [sorted symbol table]"));
2304 else
2305 fprintf (file, _(" [unsorted symbol table]"));
2307 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2308 fprintf (file, _(" [dynamic symbols use segment index]"));
2310 if (flags & EF_ARM_MAPSYMSFIRST)
2311 fprintf (file, _(" [mapping symbols precede others]"));
2313 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2314 | EF_ARM_MAPSYMSFIRST);
2315 break;
2317 default:
2318 fprintf (file, _(" <EABI version unrecognised>"));
2319 break;
2322 flags &= ~ EF_ARM_EABIMASK;
2324 if (flags & EF_ARM_RELEXEC)
2325 fprintf (file, _(" [relocatable executable]"));
2327 if (flags & EF_ARM_HASENTRY)
2328 fprintf (file, _(" [has entry point]"));
2330 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2332 if (flags)
2333 fprintf (file, _("<Unrecognised flag bits set>"));
2335 fputc ('\n', file);
2337 return true;
2340 static int
2341 elf32_arm_get_symbol_type (elf_sym, type)
2342 Elf_Internal_Sym * elf_sym;
2343 int type;
2345 switch (ELF_ST_TYPE (elf_sym->st_info))
2347 case STT_ARM_TFUNC:
2348 return ELF_ST_TYPE (elf_sym->st_info);
2350 case STT_ARM_16BIT:
2351 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2352 This allows us to distinguish between data used by Thumb instructions
2353 and non-data (which is probably code) inside Thumb regions of an
2354 executable. */
2355 if (type != STT_OBJECT)
2356 return ELF_ST_TYPE (elf_sym->st_info);
2357 break;
2359 default:
2360 break;
2363 return type;
2366 static asection *
2367 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2368 bfd *abfd;
2369 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2370 Elf_Internal_Rela *rel;
2371 struct elf_link_hash_entry *h;
2372 Elf_Internal_Sym *sym;
2374 if (h != NULL)
2376 switch (ELF32_R_TYPE (rel->r_info))
2378 case R_ARM_GNU_VTINHERIT:
2379 case R_ARM_GNU_VTENTRY:
2380 break;
2382 default:
2383 switch (h->root.type)
2385 case bfd_link_hash_defined:
2386 case bfd_link_hash_defweak:
2387 return h->root.u.def.section;
2389 case bfd_link_hash_common:
2390 return h->root.u.c.p->section;
2392 default:
2393 break;
2397 else
2399 if (!(elf_bad_symtab (abfd)
2400 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2401 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2402 && sym->st_shndx != SHN_COMMON))
2404 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2407 return NULL;
2410 /* Update the got entry reference counts for the section being removed. */
2412 static boolean
2413 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2414 bfd *abfd ATTRIBUTE_UNUSED;
2415 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2416 asection *sec ATTRIBUTE_UNUSED;
2417 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2419 /* We don't support garbage collection of GOT and PLT relocs yet. */
2420 return true;
2423 /* Look through the relocs for a section during the first phase. */
2425 static boolean
2426 elf32_arm_check_relocs (abfd, info, sec, relocs)
2427 bfd * abfd;
2428 struct bfd_link_info * info;
2429 asection * sec;
2430 const Elf_Internal_Rela * relocs;
2432 Elf_Internal_Shdr * symtab_hdr;
2433 struct elf_link_hash_entry ** sym_hashes;
2434 struct elf_link_hash_entry ** sym_hashes_end;
2435 const Elf_Internal_Rela * rel;
2436 const Elf_Internal_Rela * rel_end;
2437 bfd * dynobj;
2438 asection * sgot, *srelgot, *sreloc;
2439 bfd_vma * local_got_offsets;
2441 if (info->relocateable)
2442 return true;
2444 sgot = srelgot = sreloc = NULL;
2446 dynobj = elf_hash_table (info)->dynobj;
2447 local_got_offsets = elf_local_got_offsets (abfd);
2449 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2450 sym_hashes = elf_sym_hashes (abfd);
2451 sym_hashes_end = sym_hashes
2452 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2454 if (!elf_bad_symtab (abfd))
2455 sym_hashes_end -= symtab_hdr->sh_info;
2457 rel_end = relocs + sec->reloc_count;
2458 for (rel = relocs; rel < rel_end; rel++)
2460 struct elf_link_hash_entry *h;
2461 unsigned long r_symndx;
2463 r_symndx = ELF32_R_SYM (rel->r_info);
2464 if (r_symndx < symtab_hdr->sh_info)
2465 h = NULL;
2466 else
2467 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2469 /* Some relocs require a global offset table. */
2470 if (dynobj == NULL)
2472 switch (ELF32_R_TYPE (rel->r_info))
2474 case R_ARM_GOT32:
2475 case R_ARM_GOTOFF:
2476 case R_ARM_GOTPC:
2477 elf_hash_table (info)->dynobj = dynobj = abfd;
2478 if (! _bfd_elf_create_got_section (dynobj, info))
2479 return false;
2480 break;
2482 default:
2483 break;
2487 switch (ELF32_R_TYPE (rel->r_info))
2489 case R_ARM_GOT32:
2490 /* This symbol requires a global offset table entry. */
2491 if (sgot == NULL)
2493 sgot = bfd_get_section_by_name (dynobj, ".got");
2494 BFD_ASSERT (sgot != NULL);
2497 /* Get the got relocation section if necessary. */
2498 if (srelgot == NULL
2499 && (h != NULL || info->shared))
2501 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2503 /* If no got relocation section, make one and initialize. */
2504 if (srelgot == NULL)
2506 srelgot = bfd_make_section (dynobj, ".rel.got");
2507 if (srelgot == NULL
2508 || ! bfd_set_section_flags (dynobj, srelgot,
2509 (SEC_ALLOC
2510 | SEC_LOAD
2511 | SEC_HAS_CONTENTS
2512 | SEC_IN_MEMORY
2513 | SEC_LINKER_CREATED
2514 | SEC_READONLY))
2515 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2516 return false;
2520 if (h != NULL)
2522 if (h->got.offset != (bfd_vma) -1)
2523 /* We have already allocated space in the .got. */
2524 break;
2526 h->got.offset = sgot->_raw_size;
2528 /* Make sure this symbol is output as a dynamic symbol. */
2529 if (h->dynindx == -1)
2530 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2531 return false;
2533 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2535 else
2537 /* This is a global offset table entry for a local
2538 symbol. */
2539 if (local_got_offsets == NULL)
2541 size_t size;
2542 register unsigned int i;
2544 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2545 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2546 if (local_got_offsets == NULL)
2547 return false;
2548 elf_local_got_offsets (abfd) = local_got_offsets;
2549 for (i = 0; i < symtab_hdr->sh_info; i++)
2550 local_got_offsets[i] = (bfd_vma) -1;
2553 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2554 /* We have already allocated space in the .got. */
2555 break;
2557 local_got_offsets[r_symndx] = sgot->_raw_size;
2559 if (info->shared)
2560 /* If we are generating a shared object, we need to
2561 output a R_ARM_RELATIVE reloc so that the dynamic
2562 linker can adjust this GOT entry. */
2563 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2566 sgot->_raw_size += 4;
2567 break;
2569 case R_ARM_PLT32:
2570 /* This symbol requires a procedure linkage table entry. We
2571 actually build the entry in adjust_dynamic_symbol,
2572 because this might be a case of linking PIC code which is
2573 never referenced by a dynamic object, in which case we
2574 don't need to generate a procedure linkage table entry
2575 after all. */
2577 /* If this is a local symbol, we resolve it directly without
2578 creating a procedure linkage table entry. */
2579 if (h == NULL)
2580 continue;
2582 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2583 break;
2585 case R_ARM_ABS32:
2586 case R_ARM_REL32:
2587 case R_ARM_PC24:
2588 /* If we are creating a shared library, and this is a reloc
2589 against a global symbol, or a non PC relative reloc
2590 against a local symbol, then we need to copy the reloc
2591 into the shared library. However, if we are linking with
2592 -Bsymbolic, we do not need to copy a reloc against a
2593 global symbol which is defined in an object we are
2594 including in the link (i.e., DEF_REGULAR is set). At
2595 this point we have not seen all the input files, so it is
2596 possible that DEF_REGULAR is not set now but will be set
2597 later (it is never cleared). We account for that
2598 possibility below by storing information in the
2599 pcrel_relocs_copied field of the hash table entry. */
2600 if (info->shared
2601 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2602 || (h != NULL
2603 && (! info->symbolic
2604 || (h->elf_link_hash_flags
2605 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2607 /* When creating a shared object, we must copy these
2608 reloc types into the output file. We create a reloc
2609 section in dynobj and make room for this reloc. */
2610 if (sreloc == NULL)
2612 const char * name;
2614 name = (bfd_elf_string_from_elf_section
2615 (abfd,
2616 elf_elfheader (abfd)->e_shstrndx,
2617 elf_section_data (sec)->rel_hdr.sh_name));
2618 if (name == NULL)
2619 return false;
2621 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2622 && strcmp (bfd_get_section_name (abfd, sec),
2623 name + 4) == 0);
2625 sreloc = bfd_get_section_by_name (dynobj, name);
2626 if (sreloc == NULL)
2628 flagword flags;
2630 sreloc = bfd_make_section (dynobj, name);
2631 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2632 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2633 if ((sec->flags & SEC_ALLOC) != 0)
2634 flags |= SEC_ALLOC | SEC_LOAD;
2635 if (sreloc == NULL
2636 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2637 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2638 return false;
2642 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2643 /* If we are linking with -Bsymbolic, and this is a
2644 global symbol, we count the number of PC relative
2645 relocations we have entered for this symbol, so that
2646 we can discard them again if the symbol is later
2647 defined by a regular object. Note that this function
2648 is only called if we are using an elf_i386 linker
2649 hash table, which means that h is really a pointer to
2650 an elf_i386_link_hash_entry. */
2651 if (h != NULL && info->symbolic
2652 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2654 struct elf32_arm_link_hash_entry * eh;
2655 struct elf32_arm_pcrel_relocs_copied * p;
2657 eh = (struct elf32_arm_link_hash_entry *) h;
2659 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2660 if (p->section == sreloc)
2661 break;
2663 if (p == NULL)
2665 p = ((struct elf32_arm_pcrel_relocs_copied *)
2666 bfd_alloc (dynobj, sizeof * p));
2668 if (p == NULL)
2669 return false;
2670 p->next = eh->pcrel_relocs_copied;
2671 eh->pcrel_relocs_copied = p;
2672 p->section = sreloc;
2673 p->count = 0;
2676 ++p->count;
2679 break;
2681 /* This relocation describes the C++ object vtable hierarchy.
2682 Reconstruct it for later use during GC. */
2683 case R_ARM_GNU_VTINHERIT:
2684 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2685 return false;
2686 break;
2688 /* This relocation describes which C++ vtable entries are actually
2689 used. Record for later use during GC. */
2690 case R_ARM_GNU_VTENTRY:
2691 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2692 return false;
2693 break;
2697 return true;
2700 /* Find the nearest line to a particular section and offset, for error
2701 reporting. This code is a duplicate of the code in elf.c, except
2702 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2704 static boolean
2705 elf32_arm_find_nearest_line
2706 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2707 bfd * abfd;
2708 asection * section;
2709 asymbol ** symbols;
2710 bfd_vma offset;
2711 const char ** filename_ptr;
2712 const char ** functionname_ptr;
2713 unsigned int * line_ptr;
2715 boolean found;
2716 const char * filename;
2717 asymbol * func;
2718 bfd_vma low_func;
2719 asymbol ** p;
2721 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2722 filename_ptr, functionname_ptr,
2723 line_ptr, 0,
2724 &elf_tdata (abfd)->dwarf2_find_line_info))
2725 return true;
2727 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2728 &found, filename_ptr,
2729 functionname_ptr, line_ptr,
2730 &elf_tdata (abfd)->line_info))
2731 return false;
2733 if (found)
2734 return true;
2736 if (symbols == NULL)
2737 return false;
2739 filename = NULL;
2740 func = NULL;
2741 low_func = 0;
2743 for (p = symbols; *p != NULL; p++)
2745 elf_symbol_type *q;
2747 q = (elf_symbol_type *) *p;
2749 if (bfd_get_section (&q->symbol) != section)
2750 continue;
2752 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2754 default:
2755 break;
2756 case STT_FILE:
2757 filename = bfd_asymbol_name (&q->symbol);
2758 break;
2759 case STT_NOTYPE:
2760 case STT_FUNC:
2761 case STT_ARM_TFUNC:
2762 if (q->symbol.section == section
2763 && q->symbol.value >= low_func
2764 && q->symbol.value <= offset)
2766 func = (asymbol *) q;
2767 low_func = q->symbol.value;
2769 break;
2773 if (func == NULL)
2774 return false;
2776 *filename_ptr = filename;
2777 *functionname_ptr = bfd_asymbol_name (func);
2778 *line_ptr = 0;
2780 return true;
2783 /* Adjust a symbol defined by a dynamic object and referenced by a
2784 regular object. The current definition is in some section of the
2785 dynamic object, but we're not including those sections. We have to
2786 change the definition to something the rest of the link can
2787 understand. */
2789 static boolean
2790 elf32_arm_adjust_dynamic_symbol (info, h)
2791 struct bfd_link_info * info;
2792 struct elf_link_hash_entry * h;
2794 bfd * dynobj;
2795 asection * s;
2796 unsigned int power_of_two;
2798 dynobj = elf_hash_table (info)->dynobj;
2800 /* Make sure we know what is going on here. */
2801 BFD_ASSERT (dynobj != NULL
2802 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2803 || h->weakdef != NULL
2804 || ((h->elf_link_hash_flags
2805 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2806 && (h->elf_link_hash_flags
2807 & ELF_LINK_HASH_REF_REGULAR) != 0
2808 && (h->elf_link_hash_flags
2809 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2811 /* If this is a function, put it in the procedure linkage table. We
2812 will fill in the contents of the procedure linkage table later,
2813 when we know the address of the .got section. */
2814 if (h->type == STT_FUNC
2815 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2817 if (! info->shared
2818 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2819 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2821 /* This case can occur if we saw a PLT32 reloc in an input
2822 file, but the symbol was never referred to by a dynamic
2823 object. In such a case, we don't actually need to build
2824 a procedure linkage table, and we can just do a PC32
2825 reloc instead. */
2826 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2827 return true;
2830 /* Make sure this symbol is output as a dynamic symbol. */
2831 if (h->dynindx == -1)
2833 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2834 return false;
2837 s = bfd_get_section_by_name (dynobj, ".plt");
2838 BFD_ASSERT (s != NULL);
2840 /* If this is the first .plt entry, make room for the special
2841 first entry. */
2842 if (s->_raw_size == 0)
2843 s->_raw_size += PLT_ENTRY_SIZE;
2845 /* If this symbol is not defined in a regular file, and we are
2846 not generating a shared library, then set the symbol to this
2847 location in the .plt. This is required to make function
2848 pointers compare as equal between the normal executable and
2849 the shared library. */
2850 if (! info->shared
2851 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2853 h->root.u.def.section = s;
2854 h->root.u.def.value = s->_raw_size;
2857 h->plt.offset = s->_raw_size;
2859 /* Make room for this entry. */
2860 s->_raw_size += PLT_ENTRY_SIZE;
2862 /* We also need to make an entry in the .got.plt section, which
2863 will be placed in the .got section by the linker script. */
2864 s = bfd_get_section_by_name (dynobj, ".got.plt");
2865 BFD_ASSERT (s != NULL);
2866 s->_raw_size += 4;
2868 /* We also need to make an entry in the .rel.plt section. */
2870 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2871 BFD_ASSERT (s != NULL);
2872 s->_raw_size += sizeof (Elf32_External_Rel);
2874 return true;
2877 /* If this is a weak symbol, and there is a real definition, the
2878 processor independent code will have arranged for us to see the
2879 real definition first, and we can just use the same value. */
2880 if (h->weakdef != NULL)
2882 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2883 || h->weakdef->root.type == bfd_link_hash_defweak);
2884 h->root.u.def.section = h->weakdef->root.u.def.section;
2885 h->root.u.def.value = h->weakdef->root.u.def.value;
2886 return true;
2889 /* This is a reference to a symbol defined by a dynamic object which
2890 is not a function. */
2892 /* If we are creating a shared library, we must presume that the
2893 only references to the symbol are via the global offset table.
2894 For such cases we need not do anything here; the relocations will
2895 be handled correctly by relocate_section. */
2896 if (info->shared)
2897 return true;
2899 /* We must allocate the symbol in our .dynbss section, which will
2900 become part of the .bss section of the executable. There will be
2901 an entry for this symbol in the .dynsym section. The dynamic
2902 object will contain position independent code, so all references
2903 from the dynamic object to this symbol will go through the global
2904 offset table. The dynamic linker will use the .dynsym entry to
2905 determine the address it must put in the global offset table, so
2906 both the dynamic object and the regular object will refer to the
2907 same memory location for the variable. */
2908 s = bfd_get_section_by_name (dynobj, ".dynbss");
2909 BFD_ASSERT (s != NULL);
2911 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2912 copy the initial value out of the dynamic object and into the
2913 runtime process image. We need to remember the offset into the
2914 .rel.bss section we are going to use. */
2915 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2917 asection *srel;
2919 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2920 BFD_ASSERT (srel != NULL);
2921 srel->_raw_size += sizeof (Elf32_External_Rel);
2922 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2925 /* We need to figure out the alignment required for this symbol. I
2926 have no idea how ELF linkers handle this. */
2927 power_of_two = bfd_log2 (h->size);
2928 if (power_of_two > 3)
2929 power_of_two = 3;
2931 /* Apply the required alignment. */
2932 s->_raw_size = BFD_ALIGN (s->_raw_size,
2933 (bfd_size_type) (1 << power_of_two));
2934 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2936 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2937 return false;
2940 /* Define the symbol as being at this point in the section. */
2941 h->root.u.def.section = s;
2942 h->root.u.def.value = s->_raw_size;
2944 /* Increment the section size to make room for the symbol. */
2945 s->_raw_size += h->size;
2947 return true;
2950 /* Set the sizes of the dynamic sections. */
2952 static boolean
2953 elf32_arm_size_dynamic_sections (output_bfd, info)
2954 bfd * output_bfd;
2955 struct bfd_link_info * info;
2957 bfd * dynobj;
2958 asection * s;
2959 boolean plt;
2960 boolean relocs;
2961 boolean reltext;
2963 dynobj = elf_hash_table (info)->dynobj;
2964 BFD_ASSERT (dynobj != NULL);
2966 if (elf_hash_table (info)->dynamic_sections_created)
2968 /* Set the contents of the .interp section to the interpreter. */
2969 if (! info->shared)
2971 s = bfd_get_section_by_name (dynobj, ".interp");
2972 BFD_ASSERT (s != NULL);
2973 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2974 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2977 else
2979 /* We may have created entries in the .rel.got section.
2980 However, if we are not creating the dynamic sections, we will
2981 not actually use these entries. Reset the size of .rel.got,
2982 which will cause it to get stripped from the output file
2983 below. */
2984 s = bfd_get_section_by_name (dynobj, ".rel.got");
2985 if (s != NULL)
2986 s->_raw_size = 0;
2989 /* If this is a -Bsymbolic shared link, then we need to discard all
2990 PC relative relocs against symbols defined in a regular object.
2991 We allocated space for them in the check_relocs routine, but we
2992 will not fill them in in the relocate_section routine. */
2993 if (info->shared && info->symbolic)
2994 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2995 elf32_arm_discard_copies,
2996 (PTR) NULL);
2998 /* The check_relocs and adjust_dynamic_symbol entry points have
2999 determined the sizes of the various dynamic sections. Allocate
3000 memory for them. */
3001 plt = false;
3002 relocs = false;
3003 reltext = false;
3004 for (s = dynobj->sections; s != NULL; s = s->next)
3006 const char * name;
3007 boolean strip;
3009 if ((s->flags & SEC_LINKER_CREATED) == 0)
3010 continue;
3012 /* It's OK to base decisions on the section name, because none
3013 of the dynobj section names depend upon the input files. */
3014 name = bfd_get_section_name (dynobj, s);
3016 strip = false;
3018 if (strcmp (name, ".plt") == 0)
3020 if (s->_raw_size == 0)
3022 /* Strip this section if we don't need it; see the
3023 comment below. */
3024 strip = true;
3026 else
3028 /* Remember whether there is a PLT. */
3029 plt = true;
3032 else if (strncmp (name, ".rel", 4) == 0)
3034 if (s->_raw_size == 0)
3036 /* If we don't need this section, strip it from the
3037 output file. This is mostly to handle .rel.bss and
3038 .rel.plt. We must create both sections in
3039 create_dynamic_sections, because they must be created
3040 before the linker maps input sections to output
3041 sections. The linker does that before
3042 adjust_dynamic_symbol is called, and it is that
3043 function which decides whether anything needs to go
3044 into these sections. */
3045 strip = true;
3047 else
3049 asection * target;
3051 /* Remember whether there are any reloc sections other
3052 than .rel.plt. */
3053 if (strcmp (name, ".rel.plt") != 0)
3055 const char *outname;
3057 relocs = true;
3059 /* If this relocation section applies to a read only
3060 section, then we probably need a DT_TEXTREL
3061 entry. The entries in the .rel.plt section
3062 really apply to the .got section, which we
3063 created ourselves and so know is not readonly. */
3064 outname = bfd_get_section_name (output_bfd,
3065 s->output_section);
3066 target = bfd_get_section_by_name (output_bfd, outname + 4);
3068 if (target != NULL
3069 && (target->flags & SEC_READONLY) != 0
3070 && (target->flags & SEC_ALLOC) != 0)
3071 reltext = true;
3074 /* We use the reloc_count field as a counter if we need
3075 to copy relocs into the output file. */
3076 s->reloc_count = 0;
3079 else if (strncmp (name, ".got", 4) != 0)
3081 /* It's not one of our sections, so don't allocate space. */
3082 continue;
3085 if (strip)
3087 asection ** spp;
3089 for (spp = &s->output_section->owner->sections;
3090 *spp != s->output_section;
3091 spp = &(*spp)->next)
3093 *spp = s->output_section->next;
3094 --s->output_section->owner->section_count;
3096 continue;
3099 /* Allocate memory for the section contents. */
3100 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3101 if (s->contents == NULL && s->_raw_size != 0)
3102 return false;
3105 if (elf_hash_table (info)->dynamic_sections_created)
3107 /* Add some entries to the .dynamic section. We fill in the
3108 values later, in elf32_arm_finish_dynamic_sections, but we
3109 must add the entries now so that we get the correct size for
3110 the .dynamic section. The DT_DEBUG entry is filled in by the
3111 dynamic linker and used by the debugger. */
3112 if (! info->shared)
3114 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
3115 return false;
3118 if (plt)
3120 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
3121 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
3122 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
3123 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
3124 return false;
3127 if (relocs)
3129 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
3130 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
3131 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
3132 sizeof (Elf32_External_Rel)))
3133 return false;
3136 if (reltext)
3138 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3139 return false;
3140 info->flags |= DF_TEXTREL;
3144 return true;
3147 /* This function is called via elf32_arm_link_hash_traverse if we are
3148 creating a shared object with -Bsymbolic. It discards the space
3149 allocated to copy PC relative relocs against symbols which are
3150 defined in regular objects. We allocated space for them in the
3151 check_relocs routine, but we won't fill them in in the
3152 relocate_section routine. */
3154 static boolean
3155 elf32_arm_discard_copies (h, ignore)
3156 struct elf32_arm_link_hash_entry * h;
3157 PTR ignore ATTRIBUTE_UNUSED;
3159 struct elf32_arm_pcrel_relocs_copied * s;
3161 /* We only discard relocs for symbols defined in a regular object. */
3162 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3163 return true;
3165 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3166 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3168 return true;
3171 /* Finish up dynamic symbol handling. We set the contents of various
3172 dynamic sections here. */
3174 static boolean
3175 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3176 bfd * output_bfd;
3177 struct bfd_link_info * info;
3178 struct elf_link_hash_entry * h;
3179 Elf_Internal_Sym * sym;
3181 bfd * dynobj;
3183 dynobj = elf_hash_table (info)->dynobj;
3185 if (h->plt.offset != (bfd_vma) -1)
3187 asection * splt;
3188 asection * sgot;
3189 asection * srel;
3190 bfd_vma plt_index;
3191 bfd_vma got_offset;
3192 Elf_Internal_Rel rel;
3194 /* This symbol has an entry in the procedure linkage table. Set
3195 it up. */
3197 BFD_ASSERT (h->dynindx != -1);
3199 splt = bfd_get_section_by_name (dynobj, ".plt");
3200 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3201 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3202 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3204 /* Get the index in the procedure linkage table which
3205 corresponds to this symbol. This is the index of this symbol
3206 in all the symbols for which we are making plt entries. The
3207 first entry in the procedure linkage table is reserved. */
3208 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3210 /* Get the offset into the .got table of the entry that
3211 corresponds to this function. Each .got entry is 4 bytes.
3212 The first three are reserved. */
3213 got_offset = (plt_index + 3) * 4;
3215 /* Fill in the entry in the procedure linkage table. */
3216 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3217 splt->contents + h->plt.offset + 0);
3218 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3219 splt->contents + h->plt.offset + 4);
3220 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3221 splt->contents + h->plt.offset + 8);
3222 bfd_put_32 (output_bfd,
3223 (sgot->output_section->vma
3224 + sgot->output_offset
3225 + got_offset
3226 - splt->output_section->vma
3227 - splt->output_offset
3228 - h->plt.offset - 12),
3229 splt->contents + h->plt.offset + 12);
3231 /* Fill in the entry in the global offset table. */
3232 bfd_put_32 (output_bfd,
3233 (splt->output_section->vma
3234 + splt->output_offset),
3235 sgot->contents + got_offset);
3237 /* Fill in the entry in the .rel.plt section. */
3238 rel.r_offset = (sgot->output_section->vma
3239 + sgot->output_offset
3240 + got_offset);
3241 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3242 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3243 ((Elf32_External_Rel *) srel->contents
3244 + plt_index));
3246 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3248 /* Mark the symbol as undefined, rather than as defined in
3249 the .plt section. Leave the value alone. */
3250 sym->st_shndx = SHN_UNDEF;
3251 /* If the symbol is weak, we do need to clear the value.
3252 Otherwise, the PLT entry would provide a definition for
3253 the symbol even if the symbol wasn't defined anywhere,
3254 and so the symbol would never be NULL. */
3255 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3256 == 0)
3257 sym->st_value = 0;
3261 if (h->got.offset != (bfd_vma) -1)
3263 asection * sgot;
3264 asection * srel;
3265 Elf_Internal_Rel rel;
3267 /* This symbol has an entry in the global offset table. Set it
3268 up. */
3269 sgot = bfd_get_section_by_name (dynobj, ".got");
3270 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3271 BFD_ASSERT (sgot != NULL && srel != NULL);
3273 rel.r_offset = (sgot->output_section->vma
3274 + sgot->output_offset
3275 + (h->got.offset &~ 1));
3277 /* If this is a -Bsymbolic link, and the symbol is defined
3278 locally, we just want to emit a RELATIVE reloc. The entry in
3279 the global offset table will already have been initialized in
3280 the relocate_section function. */
3281 if (info->shared
3282 && (info->symbolic || h->dynindx == -1)
3283 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3284 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3285 else
3287 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3288 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3291 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3292 ((Elf32_External_Rel *) srel->contents
3293 + srel->reloc_count));
3294 ++srel->reloc_count;
3297 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3299 asection * s;
3300 Elf_Internal_Rel rel;
3302 /* This symbol needs a copy reloc. Set it up. */
3303 BFD_ASSERT (h->dynindx != -1
3304 && (h->root.type == bfd_link_hash_defined
3305 || h->root.type == bfd_link_hash_defweak));
3307 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3308 ".rel.bss");
3309 BFD_ASSERT (s != NULL);
3311 rel.r_offset = (h->root.u.def.value
3312 + h->root.u.def.section->output_section->vma
3313 + h->root.u.def.section->output_offset);
3314 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3315 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3316 ((Elf32_External_Rel *) s->contents
3317 + s->reloc_count));
3318 ++s->reloc_count;
3321 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3322 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3323 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3324 sym->st_shndx = SHN_ABS;
3326 return true;
3329 /* Finish up the dynamic sections. */
3331 static boolean
3332 elf32_arm_finish_dynamic_sections (output_bfd, info)
3333 bfd * output_bfd;
3334 struct bfd_link_info * info;
3336 bfd * dynobj;
3337 asection * sgot;
3338 asection * sdyn;
3340 dynobj = elf_hash_table (info)->dynobj;
3342 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3343 BFD_ASSERT (sgot != NULL);
3344 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3346 if (elf_hash_table (info)->dynamic_sections_created)
3348 asection *splt;
3349 Elf32_External_Dyn *dyncon, *dynconend;
3351 splt = bfd_get_section_by_name (dynobj, ".plt");
3352 BFD_ASSERT (splt != NULL && sdyn != NULL);
3354 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3355 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3357 for (; dyncon < dynconend; dyncon++)
3359 Elf_Internal_Dyn dyn;
3360 const char * name;
3361 asection * s;
3363 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3365 switch (dyn.d_tag)
3367 default:
3368 break;
3370 case DT_PLTGOT:
3371 name = ".got";
3372 goto get_vma;
3373 case DT_JMPREL:
3374 name = ".rel.plt";
3375 get_vma:
3376 s = bfd_get_section_by_name (output_bfd, name);
3377 BFD_ASSERT (s != NULL);
3378 dyn.d_un.d_ptr = s->vma;
3379 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3380 break;
3382 case DT_PLTRELSZ:
3383 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3384 BFD_ASSERT (s != NULL);
3385 if (s->_cooked_size != 0)
3386 dyn.d_un.d_val = s->_cooked_size;
3387 else
3388 dyn.d_un.d_val = s->_raw_size;
3389 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3390 break;
3392 case DT_RELSZ:
3393 /* My reading of the SVR4 ABI indicates that the
3394 procedure linkage table relocs (DT_JMPREL) should be
3395 included in the overall relocs (DT_REL). This is
3396 what Solaris does. However, UnixWare can not handle
3397 that case. Therefore, we override the DT_RELSZ entry
3398 here to make it not include the JMPREL relocs. Since
3399 the linker script arranges for .rel.plt to follow all
3400 other relocation sections, we don't have to worry
3401 about changing the DT_REL entry. */
3402 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3403 if (s != NULL)
3405 if (s->_cooked_size != 0)
3406 dyn.d_un.d_val -= s->_cooked_size;
3407 else
3408 dyn.d_un.d_val -= s->_raw_size;
3410 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3411 break;
3415 /* Fill in the first entry in the procedure linkage table. */
3416 if (splt->_raw_size > 0)
3418 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3419 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3420 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3421 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3424 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3425 really seem like the right value. */
3426 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3429 /* Fill in the first three entries in the global offset table. */
3430 if (sgot->_raw_size > 0)
3432 if (sdyn == NULL)
3433 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3434 else
3435 bfd_put_32 (output_bfd,
3436 sdyn->output_section->vma + sdyn->output_offset,
3437 sgot->contents);
3438 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3439 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3442 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3444 return true;
3447 static void
3448 elf32_arm_post_process_headers (abfd, link_info)
3449 bfd * abfd;
3450 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3452 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3454 i_ehdrp = elf_elfheader (abfd);
3456 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3457 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3460 #define ELF_ARCH bfd_arch_arm
3461 #define ELF_MACHINE_CODE EM_ARM
3462 #define ELF_MAXPAGESIZE 0x8000
3464 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3465 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3466 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3467 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3468 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3469 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3470 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3472 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3473 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3474 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3475 #define elf_backend_check_relocs elf32_arm_check_relocs
3476 #define elf_backend_relocate_section elf32_arm_relocate_section
3477 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3478 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3479 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3480 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3481 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3482 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3484 #define elf_backend_can_gc_sections 1
3485 #define elf_backend_plt_readonly 1
3486 #define elf_backend_want_got_plt 1
3487 #define elf_backend_want_plt_sym 0
3489 #define elf_backend_got_header_size 12
3490 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3492 #include "elf32-target.h"