1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
264 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
266 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
269 if (info
->emit_gnu_hash
)
271 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
272 flags
| SEC_READONLY
);
274 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed
->s
->arch_size
== 64)
280 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
282 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
291 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
296 /* Create dynamic sections when linking against a dynamic object. */
299 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
301 flagword flags
, pltflags
;
302 struct elf_link_hash_entry
*h
;
304 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
305 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 if (bed
->want_plt_sym
)
332 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info
)->hplt
= h
;
339 s
= bfd_make_section_with_flags (abfd
,
340 (bed
->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags
| SEC_READONLY
);
344 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
348 if (! _bfd_elf_create_got_section (abfd
, info
))
351 if (bed
->want_dynbss
)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
361 | SEC_LINKER_CREATED
));
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
378 s
= bfd_make_section_with_flags (abfd
,
379 (bed
->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags
| SEC_READONLY
);
383 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
401 struct elf_link_hash_entry
*h
)
403 if (h
->dynindx
== -1)
405 struct elf_strtab_hash
*dynstr
;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h
->other
))
418 if (h
->root
.type
!= bfd_link_hash_undefined
419 && h
->root
.type
!= bfd_link_hash_undefweak
)
422 if (!elf_hash_table (info
)->is_relocatable_executable
)
430 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
431 ++elf_hash_table (info
)->dynsymcount
;
433 dynstr
= elf_hash_table (info
)->dynstr
;
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
442 /* We don't put any version information in the dynamic string
444 name
= h
->root
.root
.string
;
445 p
= strchr (name
, ELF_VER_CHR
);
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
454 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
459 if (indx
== (bfd_size_type
) -1)
461 h
->dynstr_index
= indx
;
467 /* Mark a symbol dynamic. */
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
,
472 Elf_Internal_Sym
*sym
)
474 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
476 /* It may be called more than once on the same H. */
477 if(h
->dynamic
|| info
->relocatable
)
480 if ((info
->dynamic_data
481 && (h
->type
== STT_OBJECT
483 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
485 && h
->root
.type
== bfd_link_hash_new
486 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
494 bfd_elf_record_link_assignment (bfd
*output_bfd
,
495 struct bfd_link_info
*info
,
500 struct elf_link_hash_entry
*h
, *hv
;
501 struct elf_link_hash_table
*htab
;
502 const struct elf_backend_data
*bed
;
504 if (!is_elf_hash_table (info
->hash
))
507 htab
= elf_hash_table (info
);
508 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
512 switch (h
->root
.type
)
514 case bfd_link_hash_defined
:
515 case bfd_link_hash_defweak
:
516 case bfd_link_hash_common
:
518 case bfd_link_hash_undefweak
:
519 case bfd_link_hash_undefined
:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h
->root
.type
= bfd_link_hash_new
;
524 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
525 bfd_link_repair_undef_list (&htab
->root
);
527 case bfd_link_hash_new
:
528 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
531 case bfd_link_hash_indirect
:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed
= get_elf_backend_data (output_bfd
);
536 while (hv
->root
.type
== bfd_link_hash_indirect
537 || hv
->root
.type
== bfd_link_hash_warning
)
538 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
539 /* We don't need to update h->root.u since linker will set them
541 h
->root
.type
= bfd_link_hash_undefined
;
542 hv
->root
.type
= bfd_link_hash_indirect
;
543 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
544 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
546 case bfd_link_hash_warning
:
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
558 h
->root
.type
= bfd_link_hash_undefined
;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
567 h
->verinfo
.verdef
= NULL
;
571 if (provide
&& hidden
)
573 bed
= get_elf_backend_data (output_bfd
);
574 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
575 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 if (!info
->relocatable
582 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
589 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
592 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h
->u
.weakdef
!= NULL
599 && h
->u
.weakdef
->dynindx
== -1)
601 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
619 struct elf_link_local_dynamic_entry
*entry
;
620 struct elf_link_hash_table
*eht
;
621 struct elf_strtab_hash
*dynstr
;
622 unsigned long dynstr_index
;
624 Elf_External_Sym_Shndx eshndx
;
625 char esym
[sizeof (Elf64_External_Sym
)];
627 if (! is_elf_hash_table (info
->hash
))
630 /* See if the entry exists already. */
631 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
632 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
635 amt
= sizeof (*entry
);
636 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
642 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
644 bfd_release (input_bfd
, entry
);
648 if (entry
->isym
.st_shndx
!= SHN_UNDEF
649 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
653 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
654 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd
, entry
);
663 name
= (bfd_elf_string_from_elf_section
664 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
665 entry
->isym
.st_name
));
667 dynstr
= elf_hash_table (info
)->dynstr
;
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
676 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
677 if (dynstr_index
== (unsigned long) -1)
679 entry
->isym
.st_name
= dynstr_index
;
681 eht
= elf_hash_table (info
);
683 entry
->next
= eht
->dynlocal
;
684 eht
->dynlocal
= entry
;
685 entry
->input_bfd
= input_bfd
;
686 entry
->input_indx
= input_indx
;
689 /* Whatever binding the symbol had before, it's now local. */
691 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
693 /* The dynindx will be set at the end of size_dynamic_sections. */
698 /* Return the dynindex of a local dynamic symbol. */
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
705 struct elf_link_local_dynamic_entry
*e
;
707 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
708 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
721 size_t *count
= (size_t *) data
;
723 if (h
->root
.type
== bfd_link_hash_warning
)
724 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
729 if (h
->dynindx
!= -1)
730 h
->dynindx
= ++(*count
);
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
743 size_t *count
= (size_t *) data
;
745 if (h
->root
.type
== bfd_link_hash_warning
)
746 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
748 if (!h
->forced_local
)
751 if (h
->dynindx
!= -1)
752 h
->dynindx
= ++(*count
);
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
760 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
761 struct bfd_link_info
*info
,
764 struct elf_link_hash_table
*htab
;
766 switch (elf_section_data (p
)->this_hdr
.sh_type
)
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
773 htab
= elf_hash_table (info
);
774 if (p
== htab
->tls_sec
)
777 if (htab
->text_index_section
!= NULL
)
778 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
780 if (strcmp (p
->name
, ".got") == 0
781 || strcmp (p
->name
, ".got.plt") == 0
782 || strcmp (p
->name
, ".plt") == 0)
786 if (htab
->dynobj
!= NULL
787 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
788 && (ip
->flags
& SEC_LINKER_CREATED
)
789 && ip
->output_section
== p
)
794 /* There shouldn't be section relative relocations
795 against any other section. */
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
808 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
809 struct bfd_link_info
*info
,
810 unsigned long *section_sym_count
)
812 unsigned long dynsymcount
= 0;
814 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
816 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
818 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
819 if ((p
->flags
& SEC_EXCLUDE
) == 0
820 && (p
->flags
& SEC_ALLOC
) != 0
821 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
822 elf_section_data (p
)->dynindx
= ++dynsymcount
;
824 elf_section_data (p
)->dynindx
= 0;
826 *section_sym_count
= dynsymcount
;
828 elf_link_hash_traverse (elf_hash_table (info
),
829 elf_link_renumber_local_hash_table_dynsyms
,
832 if (elf_hash_table (info
)->dynlocal
)
834 struct elf_link_local_dynamic_entry
*p
;
835 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
836 p
->dynindx
= ++dynsymcount
;
839 elf_link_hash_traverse (elf_hash_table (info
),
840 elf_link_renumber_hash_table_dynsyms
,
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount
!= 0)
849 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
853 /* Merge st_other field. */
856 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
857 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
860 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed
->elf_backend_merge_symbol_attribute
)
866 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
874 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
875 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
876 isym
->st_other
= (STV_HIDDEN
877 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
879 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
881 unsigned char hvis
, symvis
, other
, nvis
;
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
887 /* Combine visibilities, using the most constraining one. */
888 hvis
= ELF_ST_VISIBILITY (h
->other
);
889 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
895 nvis
= hvis
< symvis
? hvis
: symvis
;
897 h
->other
= other
| nvis
;
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
914 _bfd_elf_merge_symbol (bfd
*abfd
,
915 struct bfd_link_info
*info
,
917 Elf_Internal_Sym
*sym
,
920 unsigned int *pold_alignment
,
921 struct elf_link_hash_entry
**sym_hash
,
923 bfd_boolean
*override
,
924 bfd_boolean
*type_change_ok
,
925 bfd_boolean
*size_change_ok
)
927 asection
*sec
, *oldsec
;
928 struct elf_link_hash_entry
*h
;
929 struct elf_link_hash_entry
*flip
;
932 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
933 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
934 const struct elf_backend_data
*bed
;
940 bind
= ELF_ST_BIND (sym
->st_info
);
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
945 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
951 if (! bfd_is_und_section (sec
))
952 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
954 h
= ((struct elf_link_hash_entry
*)
955 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
960 bed
= get_elf_backend_data (abfd
);
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
967 /* For merging, we only care about real symbols. */
969 while (h
->root
.type
== bfd_link_hash_indirect
970 || h
->root
.type
== bfd_link_hash_warning
)
971 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
976 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
982 if (h
->root
.type
== bfd_link_hash_new
)
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
991 switch (h
->root
.type
)
998 case bfd_link_hash_undefined
:
999 case bfd_link_hash_undefweak
:
1000 oldbfd
= h
->root
.u
.undef
.abfd
;
1004 case bfd_link_hash_defined
:
1005 case bfd_link_hash_defweak
:
1006 oldbfd
= h
->root
.u
.def
.section
->owner
;
1007 oldsec
= h
->root
.u
.def
.section
;
1010 case bfd_link_hash_common
:
1011 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1012 oldsec
= h
->root
.u
.c
.p
->section
;
1016 /* Differentiate strong and weak symbols. */
1017 newweak
= bind
== STB_WEAK
;
1018 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1019 || h
->root
.type
== bfd_link_hash_undefweak
);
1021 /* In cases involving weak versioned symbols, we may wind up trying
1022 to merge a symbol with itself. Catch that here, to avoid the
1023 confusion that results if we try to override a symbol with
1024 itself. The additional tests catch cases like
1025 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1026 dynamic object, which we do want to handle here. */
1028 && (newweak
|| oldweak
)
1029 && ((abfd
->flags
& DYNAMIC
) == 0
1030 || !h
->def_regular
))
1033 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1034 respectively, is from a dynamic object. */
1036 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1040 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1041 else if (oldsec
!= NULL
)
1043 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1044 indices used by MIPS ELF. */
1045 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1048 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1049 respectively, appear to be a definition rather than reference. */
1051 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1053 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1054 && h
->root
.type
!= bfd_link_hash_undefweak
1055 && h
->root
.type
!= bfd_link_hash_common
);
1057 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1058 respectively, appear to be a function. */
1060 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1061 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1063 oldfunc
= (h
->type
!= STT_NOTYPE
1064 && bed
->is_function_type (h
->type
));
1066 /* When we try to create a default indirect symbol from the dynamic
1067 definition with the default version, we skip it if its type and
1068 the type of existing regular definition mismatch. We only do it
1069 if the existing regular definition won't be dynamic. */
1070 if (pold_alignment
== NULL
1072 && !info
->export_dynamic
1077 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1078 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1079 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1080 && h
->type
!= STT_NOTYPE
1081 && !(newfunc
&& oldfunc
))
1087 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1090 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1094 bfd_boolean ntdef
, tdef
;
1095 asection
*ntsec
, *tsec
;
1097 if (h
->type
== STT_TLS
)
1117 (*_bfd_error_handler
)
1118 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1119 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1120 else if (!tdef
&& !ntdef
)
1121 (*_bfd_error_handler
)
1122 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1123 tbfd
, ntbfd
, h
->root
.root
.string
);
1125 (*_bfd_error_handler
)
1126 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1127 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1129 (*_bfd_error_handler
)
1130 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1131 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1133 bfd_set_error (bfd_error_bad_value
);
1137 /* We need to remember if a symbol has a definition in a dynamic
1138 object or is weak in all dynamic objects. Internal and hidden
1139 visibility will make it unavailable to dynamic objects. */
1140 if (newdyn
&& !h
->dynamic_def
)
1142 if (!bfd_is_und_section (sec
))
1146 /* Check if this symbol is weak in all dynamic objects. If it
1147 is the first time we see it in a dynamic object, we mark
1148 if it is weak. Otherwise, we clear it. */
1149 if (!h
->ref_dynamic
)
1151 if (bind
== STB_WEAK
)
1152 h
->dynamic_weak
= 1;
1154 else if (bind
!= STB_WEAK
)
1155 h
->dynamic_weak
= 0;
1159 /* If the old symbol has non-default visibility, we ignore the new
1160 definition from a dynamic object. */
1162 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1163 && !bfd_is_und_section (sec
))
1166 /* Make sure this symbol is dynamic. */
1168 /* A protected symbol has external availability. Make sure it is
1169 recorded as dynamic.
1171 FIXME: Should we check type and size for protected symbol? */
1172 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1173 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1178 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1181 /* If the new symbol with non-default visibility comes from a
1182 relocatable file and the old definition comes from a dynamic
1183 object, we remove the old definition. */
1184 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1186 /* Handle the case where the old dynamic definition is
1187 default versioned. We need to copy the symbol info from
1188 the symbol with default version to the normal one if it
1189 was referenced before. */
1192 struct elf_link_hash_entry
*vh
= *sym_hash
;
1194 vh
->root
.type
= h
->root
.type
;
1195 h
->root
.type
= bfd_link_hash_indirect
;
1196 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1197 /* Protected symbols will override the dynamic definition
1198 with default version. */
1199 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1201 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1202 vh
->dynamic_def
= 1;
1203 vh
->ref_dynamic
= 1;
1207 h
->root
.type
= vh
->root
.type
;
1208 vh
->ref_dynamic
= 0;
1209 /* We have to hide it here since it was made dynamic
1210 global with extra bits when the symbol info was
1211 copied from the old dynamic definition. */
1212 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1220 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1221 && bfd_is_und_section (sec
))
1223 /* If the new symbol is undefined and the old symbol was
1224 also undefined before, we need to make sure
1225 _bfd_generic_link_add_one_symbol doesn't mess
1226 up the linker hash table undefs list. Since the old
1227 definition came from a dynamic object, it is still on the
1229 h
->root
.type
= bfd_link_hash_undefined
;
1230 h
->root
.u
.undef
.abfd
= abfd
;
1234 h
->root
.type
= bfd_link_hash_new
;
1235 h
->root
.u
.undef
.abfd
= NULL
;
1244 /* FIXME: Should we check type and size for protected symbol? */
1250 if (bind
== STB_GNU_UNIQUE
)
1251 h
->unique_global
= 1;
1253 /* If a new weak symbol definition comes from a regular file and the
1254 old symbol comes from a dynamic library, we treat the new one as
1255 strong. Similarly, an old weak symbol definition from a regular
1256 file is treated as strong when the new symbol comes from a dynamic
1257 library. Further, an old weak symbol from a dynamic library is
1258 treated as strong if the new symbol is from a dynamic library.
1259 This reflects the way glibc's ld.so works.
1261 Do this before setting *type_change_ok or *size_change_ok so that
1262 we warn properly when dynamic library symbols are overridden. */
1264 if (newdef
&& !newdyn
&& olddyn
)
1266 if (olddef
&& newdyn
)
1269 /* Allow changes between different types of function symbol. */
1270 if (newfunc
&& oldfunc
)
1271 *type_change_ok
= TRUE
;
1273 /* It's OK to change the type if either the existing symbol or the
1274 new symbol is weak. A type change is also OK if the old symbol
1275 is undefined and the new symbol is defined. */
1280 && h
->root
.type
== bfd_link_hash_undefined
))
1281 *type_change_ok
= TRUE
;
1283 /* It's OK to change the size if either the existing symbol or the
1284 new symbol is weak, or if the old symbol is undefined. */
1287 || h
->root
.type
== bfd_link_hash_undefined
)
1288 *size_change_ok
= TRUE
;
1290 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291 symbol, respectively, appears to be a common symbol in a dynamic
1292 object. If a symbol appears in an uninitialized section, and is
1293 not weak, and is not a function, then it may be a common symbol
1294 which was resolved when the dynamic object was created. We want
1295 to treat such symbols specially, because they raise special
1296 considerations when setting the symbol size: if the symbol
1297 appears as a common symbol in a regular object, and the size in
1298 the regular object is larger, we must make sure that we use the
1299 larger size. This problematic case can always be avoided in C,
1300 but it must be handled correctly when using Fortran shared
1303 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304 likewise for OLDDYNCOMMON and OLDDEF.
1306 Note that this test is just a heuristic, and that it is quite
1307 possible to have an uninitialized symbol in a shared object which
1308 is really a definition, rather than a common symbol. This could
1309 lead to some minor confusion when the symbol really is a common
1310 symbol in some regular object. However, I think it will be
1316 && (sec
->flags
& SEC_ALLOC
) != 0
1317 && (sec
->flags
& SEC_LOAD
) == 0
1320 newdyncommon
= TRUE
;
1322 newdyncommon
= FALSE
;
1326 && h
->root
.type
== bfd_link_hash_defined
1328 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1329 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1332 olddyncommon
= TRUE
;
1334 olddyncommon
= FALSE
;
1336 /* We now know everything about the old and new symbols. We ask the
1337 backend to check if we can merge them. */
1338 if (bed
->merge_symbol
1339 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1340 pold_alignment
, skip
, override
,
1341 type_change_ok
, size_change_ok
,
1342 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1344 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1348 /* If both the old and the new symbols look like common symbols in a
1349 dynamic object, set the size of the symbol to the larger of the
1354 && sym
->st_size
!= h
->size
)
1356 /* Since we think we have two common symbols, issue a multiple
1357 common warning if desired. Note that we only warn if the
1358 size is different. If the size is the same, we simply let
1359 the old symbol override the new one as normally happens with
1360 symbols defined in dynamic objects. */
1362 if (! ((*info
->callbacks
->multiple_common
)
1363 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1364 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1367 if (sym
->st_size
> h
->size
)
1368 h
->size
= sym
->st_size
;
1370 *size_change_ok
= TRUE
;
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1390 || (h
->root
.type
== bfd_link_hash_common
1391 && (newweak
|| newfunc
))))
1395 newdyncommon
= FALSE
;
1397 *psec
= sec
= bfd_und_section_ptr
;
1398 *size_change_ok
= TRUE
;
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1406 if (h
->root
.type
== bfd_link_hash_common
)
1407 *type_change_ok
= TRUE
;
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1417 && h
->root
.type
== bfd_link_hash_common
)
1421 newdyncommon
= FALSE
;
1422 *pvalue
= sym
->st_size
;
1423 *psec
= sec
= bed
->common_section (oldsec
);
1424 *size_change_ok
= TRUE
;
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef
&& olddef
&& newweak
)
1432 /* Merge st_other. If the symbol already has a dynamic index,
1433 but visibility says it should not be visible, turn it into a
1435 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1436 if (h
->dynindx
!= -1)
1437 switch (ELF_ST_VISIBILITY (h
->other
))
1441 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1446 /* If the old symbol is from a dynamic object, and the new symbol is
1447 a definition which is not from a dynamic object, then the new
1448 symbol overrides the old symbol. Symbols from regular files
1449 always take precedence over symbols from dynamic objects, even if
1450 they are defined after the dynamic object in the link.
1452 As above, we again permit a common symbol in a regular object to
1453 override a definition in a shared object if the shared object
1454 symbol is a function or is weak. */
1459 || (bfd_is_com_section (sec
)
1460 && (oldweak
|| oldfunc
)))
1465 /* Change the hash table entry to undefined, and let
1466 _bfd_generic_link_add_one_symbol do the right thing with the
1469 h
->root
.type
= bfd_link_hash_undefined
;
1470 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1471 *size_change_ok
= TRUE
;
1474 olddyncommon
= FALSE
;
1476 /* We again permit a type change when a common symbol may be
1477 overriding a function. */
1479 if (bfd_is_com_section (sec
))
1483 /* If a common symbol overrides a function, make sure
1484 that it isn't defined dynamically nor has type
1487 h
->type
= STT_NOTYPE
;
1489 *type_change_ok
= TRUE
;
1492 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1495 /* This union may have been set to be non-NULL when this symbol
1496 was seen in a dynamic object. We must force the union to be
1497 NULL, so that it is correct for a regular symbol. */
1498 h
->verinfo
.vertree
= NULL
;
1501 /* Handle the special case of a new common symbol merging with an
1502 old symbol that looks like it might be a common symbol defined in
1503 a shared object. Note that we have already handled the case in
1504 which a new common symbol should simply override the definition
1505 in the shared library. */
1508 && bfd_is_com_section (sec
)
1511 /* It would be best if we could set the hash table entry to a
1512 common symbol, but we don't know what to use for the section
1513 or the alignment. */
1514 if (! ((*info
->callbacks
->multiple_common
)
1515 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1516 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1522 if (h
->size
> *pvalue
)
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment
);
1528 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1531 olddyncommon
= FALSE
;
1533 h
->root
.type
= bfd_link_hash_undefined
;
1534 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1536 *size_change_ok
= TRUE
;
1537 *type_change_ok
= TRUE
;
1539 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1542 h
->verinfo
.vertree
= NULL
;
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip
->root
.type
= h
->root
.type
;
1551 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1552 h
->root
.type
= bfd_link_hash_indirect
;
1553 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1554 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1558 flip
->ref_dynamic
= 1;
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1571 _bfd_elf_add_default_symbol (bfd
*abfd
,
1572 struct bfd_link_info
*info
,
1573 struct elf_link_hash_entry
*h
,
1575 Elf_Internal_Sym
*sym
,
1578 bfd_boolean
*dynsym
,
1579 bfd_boolean override
)
1581 bfd_boolean type_change_ok
;
1582 bfd_boolean size_change_ok
;
1585 struct elf_link_hash_entry
*hi
;
1586 struct bfd_link_hash_entry
*bh
;
1587 const struct elf_backend_data
*bed
;
1588 bfd_boolean collect
;
1589 bfd_boolean dynamic
;
1591 size_t len
, shortlen
;
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p
= strchr (name
, ELF_VER_CHR
);
1599 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1608 BFD_ASSERT (hi
!= NULL
);
1611 while (hi
->root
.type
== bfd_link_hash_indirect
1612 || hi
->root
.type
== bfd_link_hash_warning
)
1614 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1620 bed
= get_elf_backend_data (abfd
);
1621 collect
= bed
->collect
;
1622 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1624 shortlen
= p
- name
;
1625 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1626 if (shortname
== NULL
)
1628 memcpy (shortname
, name
, shortlen
);
1629 shortname
[shortlen
] = '\0';
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok
= FALSE
;
1636 size_change_ok
= FALSE
;
1638 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1639 NULL
, &hi
, &skip
, &override
,
1640 &type_change_ok
, &size_change_ok
))
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1651 0, name
, FALSE
, collect
, &bh
)))
1653 hi
= (struct elf_link_hash_entry
*) bh
;
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1675 while (hi
->root
.type
== bfd_link_hash_indirect
1676 || hi
->root
.type
== bfd_link_hash_warning
)
1677 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1679 h
->root
.type
= bfd_link_hash_indirect
;
1680 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1684 hi
->ref_dynamic
= 1;
1688 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1698 /* Check if HI is a warning symbol. */
1699 if (hi
->root
.type
== bfd_link_hash_warning
)
1700 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1706 if (hi
->root
.type
== bfd_link_hash_indirect
)
1708 struct elf_link_hash_entry
*ht
;
1710 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1711 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1713 /* See if the new flags lead us to realize that the symbol must
1719 if (! info
->executable
1725 if (hi
->ref_regular
)
1731 /* We also need to define an indirection from the nondefault version
1735 len
= strlen (name
);
1736 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1737 if (shortname
== NULL
)
1739 memcpy (shortname
, name
, shortlen
);
1740 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok
= FALSE
;
1744 size_change_ok
= FALSE
;
1746 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1747 NULL
, &hi
, &skip
, &override
,
1748 &type_change_ok
, &size_change_ok
))
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi
->root
.type
!= bfd_link_hash_defined
1760 && hi
->root
.type
!= bfd_link_hash_defweak
)
1761 (*_bfd_error_handler
)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info
, abfd
, shortname
, BSF_INDIRECT
,
1770 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1772 hi
= (struct elf_link_hash_entry
*) bh
;
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1778 if (hi
->root
.type
== bfd_link_hash_indirect
)
1780 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1782 /* See if the new flags lead us to realize that the symbol
1788 if (! info
->executable
1794 if (hi
->ref_regular
)
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1810 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1812 /* Ignore this if we won't export it. */
1813 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1816 /* Ignore indirect symbols. These are added by the versioning code. */
1817 if (h
->root
.type
== bfd_link_hash_indirect
)
1820 if (h
->root
.type
== bfd_link_hash_warning
)
1821 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1823 if (h
->dynindx
== -1
1829 if (eif
->verdefs
== NULL
1830 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1833 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1844 /* Look through the symbols which are defined in other shared
1845 libraries and referenced here. Update the list of version
1846 dependencies. This will be put into the .gnu.version_r section.
1847 This function is called via elf_link_hash_traverse. */
1850 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1853 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1854 Elf_Internal_Verneed
*t
;
1855 Elf_Internal_Vernaux
*a
;
1858 if (h
->root
.type
== bfd_link_hash_warning
)
1859 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1861 /* We only care about symbols defined in shared objects with version
1866 || h
->verinfo
.verdef
== NULL
)
1869 /* See if we already know about this version. */
1870 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1874 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1877 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1878 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1884 /* This is a new version. Add it to tree we are building. */
1889 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1892 rinfo
->failed
= TRUE
;
1896 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1897 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1898 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1902 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1905 rinfo
->failed
= TRUE
;
1909 /* Note that we are copying a string pointer here, and testing it
1910 above. If bfd_elf_string_from_elf_section is ever changed to
1911 discard the string data when low in memory, this will have to be
1913 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1915 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1916 a
->vna_nextptr
= t
->vn_auxptr
;
1918 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1921 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1928 /* Figure out appropriate versions for all the symbols. We may not
1929 have the version number script until we have read all of the input
1930 files, so until that point we don't know which symbols should be
1931 local. This function is called via elf_link_hash_traverse. */
1934 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1936 struct elf_info_failed
*sinfo
;
1937 struct bfd_link_info
*info
;
1938 const struct elf_backend_data
*bed
;
1939 struct elf_info_failed eif
;
1943 sinfo
= (struct elf_info_failed
*) data
;
1946 if (h
->root
.type
== bfd_link_hash_warning
)
1947 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1949 /* Fix the symbol flags. */
1952 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1955 sinfo
->failed
= TRUE
;
1959 /* We only need version numbers for symbols defined in regular
1961 if (!h
->def_regular
)
1964 bed
= get_elf_backend_data (info
->output_bfd
);
1965 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1966 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1968 struct bfd_elf_version_tree
*t
;
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1976 if (*p
== ELF_VER_CHR
)
1982 /* If there is no version string, we can just return out. */
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1993 if (strcmp (t
->name
, p
) == 0)
1997 struct bfd_elf_version_expr
*d
;
1999 len
= p
- h
->root
.root
.string
;
2000 alc
= (char *) bfd_malloc (len
);
2003 sinfo
->failed
= TRUE
;
2006 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2007 alc
[len
- 1] = '\0';
2008 if (alc
[len
- 2] == ELF_VER_CHR
)
2009 alc
[len
- 2] = '\0';
2011 h
->verinfo
.vertree
= t
;
2015 if (t
->globals
.list
!= NULL
)
2016 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2018 /* See if there is anything to force this symbol to
2020 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2022 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2025 && ! info
->export_dynamic
)
2026 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
2036 if (t
== NULL
&& info
->executable
)
2038 struct bfd_elf_version_tree
**pp
;
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h
->dynindx
== -1)
2047 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2050 sinfo
->failed
= TRUE
;
2055 t
->name_indx
= (unsigned int) -1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2062 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2064 t
->vernum
= version_index
;
2068 h
->verinfo
.vertree
= t
;
2072 /* We could not find the version for a symbol when
2073 generating a shared archive. Return an error. */
2074 (*_bfd_error_handler
)
2075 (_("%B: version node not found for symbol %s"),
2076 info
->output_bfd
, h
->root
.root
.string
);
2077 bfd_set_error (bfd_error_bad_value
);
2078 sinfo
->failed
= TRUE
;
2086 /* If we don't have a version for this symbol, see if we can find
2088 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2092 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2093 h
->root
.root
.string
, &hide
);
2094 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2095 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2101 /* Read and swap the relocs from the section indicated by SHDR. This
2102 may be either a REL or a RELA section. The relocations are
2103 translated into RELA relocations and stored in INTERNAL_RELOCS,
2104 which should have already been allocated to contain enough space.
2105 The EXTERNAL_RELOCS are a buffer where the external form of the
2106 relocations should be stored.
2108 Returns FALSE if something goes wrong. */
2111 elf_link_read_relocs_from_section (bfd
*abfd
,
2113 Elf_Internal_Shdr
*shdr
,
2114 void *external_relocs
,
2115 Elf_Internal_Rela
*internal_relocs
)
2117 const struct elf_backend_data
*bed
;
2118 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2119 const bfd_byte
*erela
;
2120 const bfd_byte
*erelaend
;
2121 Elf_Internal_Rela
*irela
;
2122 Elf_Internal_Shdr
*symtab_hdr
;
2125 /* Position ourselves at the start of the section. */
2126 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2129 /* Read the relocations. */
2130 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2133 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2134 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2136 bed
= get_elf_backend_data (abfd
);
2138 /* Convert the external relocations to the internal format. */
2139 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2140 swap_in
= bed
->s
->swap_reloc_in
;
2141 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2142 swap_in
= bed
->s
->swap_reloca_in
;
2145 bfd_set_error (bfd_error_wrong_format
);
2149 erela
= (const bfd_byte
*) external_relocs
;
2150 erelaend
= erela
+ shdr
->sh_size
;
2151 irela
= internal_relocs
;
2152 while (erela
< erelaend
)
2156 (*swap_in
) (abfd
, erela
, irela
);
2157 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2158 if (bed
->s
->arch_size
== 64)
2162 if ((size_t) r_symndx
>= nsyms
)
2164 (*_bfd_error_handler
)
2165 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2166 " for offset 0x%lx in section `%A'"),
2168 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2169 bfd_set_error (bfd_error_bad_value
);
2173 else if (r_symndx
!= 0)
2175 (*_bfd_error_handler
)
2176 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2177 " when the object file has no symbol table"),
2179 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2180 bfd_set_error (bfd_error_bad_value
);
2183 irela
+= bed
->s
->int_rels_per_ext_rel
;
2184 erela
+= shdr
->sh_entsize
;
2190 /* Read and swap the relocs for a section O. They may have been
2191 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2192 not NULL, they are used as buffers to read into. They are known to
2193 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2194 the return value is allocated using either malloc or bfd_alloc,
2195 according to the KEEP_MEMORY argument. If O has two relocation
2196 sections (both REL and RELA relocations), then the REL_HDR
2197 relocations will appear first in INTERNAL_RELOCS, followed by the
2198 REL_HDR2 relocations. */
2201 _bfd_elf_link_read_relocs (bfd
*abfd
,
2203 void *external_relocs
,
2204 Elf_Internal_Rela
*internal_relocs
,
2205 bfd_boolean keep_memory
)
2207 Elf_Internal_Shdr
*rel_hdr
;
2208 void *alloc1
= NULL
;
2209 Elf_Internal_Rela
*alloc2
= NULL
;
2210 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2212 if (elf_section_data (o
)->relocs
!= NULL
)
2213 return elf_section_data (o
)->relocs
;
2215 if (o
->reloc_count
== 0)
2218 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2220 if (internal_relocs
== NULL
)
2224 size
= o
->reloc_count
;
2225 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2227 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2229 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2230 if (internal_relocs
== NULL
)
2234 if (external_relocs
== NULL
)
2236 bfd_size_type size
= rel_hdr
->sh_size
;
2238 if (elf_section_data (o
)->rel_hdr2
)
2239 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2240 alloc1
= bfd_malloc (size
);
2243 external_relocs
= alloc1
;
2246 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2250 if (elf_section_data (o
)->rel_hdr2
2251 && (!elf_link_read_relocs_from_section
2253 elf_section_data (o
)->rel_hdr2
,
2254 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2255 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2256 * bed
->s
->int_rels_per_ext_rel
))))
2259 /* Cache the results for next time, if we can. */
2261 elf_section_data (o
)->relocs
= internal_relocs
;
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2269 return internal_relocs
;
2277 bfd_release (abfd
, alloc2
);
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2288 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2289 Elf_Internal_Shdr
*rel_hdr
,
2292 bfd_size_type reloc_count
;
2293 bfd_size_type num_rel_hashes
;
2295 /* Figure out how many relocations there will be. */
2296 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2297 reloc_count
= elf_section_data (o
)->rel_count
;
2299 reloc_count
= elf_section_data (o
)->rel_count2
;
2301 num_rel_hashes
= o
->reloc_count
;
2302 if (num_rel_hashes
< reloc_count
)
2303 num_rel_hashes
= reloc_count
;
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
2312 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2313 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2316 /* We only allocate one set of hash entries, so we only do it the
2317 first time we are called. */
2318 if (elf_section_data (o
)->rel_hashes
== NULL
2321 struct elf_link_hash_entry
**p
;
2323 p
= (struct elf_link_hash_entry
**)
2324 bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2328 elf_section_data (o
)->rel_hashes
= p
;
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2339 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2340 asection
*input_section
,
2341 Elf_Internal_Shdr
*input_rel_hdr
,
2342 Elf_Internal_Rela
*internal_relocs
,
2343 struct elf_link_hash_entry
**rel_hash
2346 Elf_Internal_Rela
*irela
;
2347 Elf_Internal_Rela
*irelaend
;
2349 Elf_Internal_Shdr
*output_rel_hdr
;
2350 asection
*output_section
;
2351 unsigned int *rel_countp
= NULL
;
2352 const struct elf_backend_data
*bed
;
2353 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2355 output_section
= input_section
->output_section
;
2356 output_rel_hdr
= NULL
;
2358 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2359 == input_rel_hdr
->sh_entsize
)
2361 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2362 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2364 else if (elf_section_data (output_section
)->rel_hdr2
2365 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2366 == input_rel_hdr
->sh_entsize
))
2368 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2369 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2373 (*_bfd_error_handler
)
2374 (_("%B: relocation size mismatch in %B section %A"),
2375 output_bfd
, input_section
->owner
, input_section
);
2376 bfd_set_error (bfd_error_wrong_format
);
2380 bed
= get_elf_backend_data (output_bfd
);
2381 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2382 swap_out
= bed
->s
->swap_reloc_out
;
2383 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2384 swap_out
= bed
->s
->swap_reloca_out
;
2388 erel
= output_rel_hdr
->contents
;
2389 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2390 irela
= internal_relocs
;
2391 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2392 * bed
->s
->int_rels_per_ext_rel
);
2393 while (irela
< irelaend
)
2395 (*swap_out
) (output_bfd
, irela
, erel
);
2396 irela
+= bed
->s
->int_rels_per_ext_rel
;
2397 erel
+= input_rel_hdr
->sh_entsize
;
2400 /* Bump the counter, so that we know where to add the next set of
2402 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2407 /* Make weak undefined symbols in PIE dynamic. */
2410 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2411 struct elf_link_hash_entry
*h
)
2415 && h
->root
.type
== bfd_link_hash_undefweak
)
2416 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2421 /* Fix up the flags for a symbol. This handles various cases which
2422 can only be fixed after all the input files are seen. This is
2423 currently called by both adjust_dynamic_symbol and
2424 assign_sym_version, which is unnecessary but perhaps more robust in
2425 the face of future changes. */
2428 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2429 struct elf_info_failed
*eif
)
2431 const struct elf_backend_data
*bed
;
2433 /* If this symbol was mentioned in a non-ELF file, try to set
2434 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2435 permit a non-ELF file to correctly refer to a symbol defined in
2436 an ELF dynamic object. */
2439 while (h
->root
.type
== bfd_link_hash_indirect
)
2440 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2442 if (h
->root
.type
!= bfd_link_hash_defined
2443 && h
->root
.type
!= bfd_link_hash_defweak
)
2446 h
->ref_regular_nonweak
= 1;
2450 if (h
->root
.u
.def
.section
->owner
!= NULL
2451 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2452 == bfd_target_elf_flavour
))
2455 h
->ref_regular_nonweak
= 1;
2461 if (h
->dynindx
== -1
2465 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2474 /* Unfortunately, NON_ELF is only correct if the symbol
2475 was first seen in a non-ELF file. Fortunately, if the symbol
2476 was first seen in an ELF file, we're probably OK unless the
2477 symbol was defined in a non-ELF file. Catch that case here.
2478 FIXME: We're still in trouble if the symbol was first seen in
2479 a dynamic object, and then later in a non-ELF regular object. */
2480 if ((h
->root
.type
== bfd_link_hash_defined
2481 || h
->root
.type
== bfd_link_hash_defweak
)
2483 && (h
->root
.u
.def
.section
->owner
!= NULL
2484 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2485 != bfd_target_elf_flavour
)
2486 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2487 && !h
->def_dynamic
)))
2491 /* Backend specific symbol fixup. */
2492 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2493 if (bed
->elf_backend_fixup_symbol
2494 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2497 /* If this is a final link, and the symbol was defined as a common
2498 symbol in a regular object file, and there was no definition in
2499 any dynamic object, then the linker will have allocated space for
2500 the symbol in a common section but the DEF_REGULAR
2501 flag will not have been set. */
2502 if (h
->root
.type
== bfd_link_hash_defined
2506 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2509 /* If -Bsymbolic was used (which means to bind references to global
2510 symbols to the definition within the shared object), and this
2511 symbol was defined in a regular object, then it actually doesn't
2512 need a PLT entry. Likewise, if the symbol has non-default
2513 visibility. If the symbol has hidden or internal visibility, we
2514 will force it local. */
2516 && eif
->info
->shared
2517 && is_elf_hash_table (eif
->info
->hash
)
2518 && (SYMBOLIC_BIND (eif
->info
, h
)
2519 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2522 bfd_boolean force_local
;
2524 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2525 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2526 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2529 /* If a weak undefined symbol has non-default visibility, we also
2530 hide it from the dynamic linker. */
2531 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2532 && h
->root
.type
== bfd_link_hash_undefweak
)
2533 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2535 /* If this is a weak defined symbol in a dynamic object, and we know
2536 the real definition in the dynamic object, copy interesting flags
2537 over to the real definition. */
2538 if (h
->u
.weakdef
!= NULL
)
2540 struct elf_link_hash_entry
*weakdef
;
2542 weakdef
= h
->u
.weakdef
;
2543 if (h
->root
.type
== bfd_link_hash_indirect
)
2544 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2546 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2547 || h
->root
.type
== bfd_link_hash_defweak
);
2548 BFD_ASSERT (weakdef
->def_dynamic
);
2550 /* If the real definition is defined by a regular object file,
2551 don't do anything special. See the longer description in
2552 _bfd_elf_adjust_dynamic_symbol, below. */
2553 if (weakdef
->def_regular
)
2554 h
->u
.weakdef
= NULL
;
2557 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2558 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2559 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2566 /* Make the backend pick a good value for a dynamic symbol. This is
2567 called via elf_link_hash_traverse, and also calls itself
2571 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2573 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2575 const struct elf_backend_data
*bed
;
2577 if (! is_elf_hash_table (eif
->info
->hash
))
2580 if (h
->root
.type
== bfd_link_hash_warning
)
2582 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2583 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2585 /* When warning symbols are created, they **replace** the "real"
2586 entry in the hash table, thus we never get to see the real
2587 symbol in a hash traversal. So look at it now. */
2588 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2591 /* Ignore indirect symbols. These are added by the versioning code. */
2592 if (h
->root
.type
== bfd_link_hash_indirect
)
2595 /* Fix the symbol flags. */
2596 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2599 /* If this symbol does not require a PLT entry, and it is not
2600 defined by a dynamic object, or is not referenced by a regular
2601 object, ignore it. We do have to handle a weak defined symbol,
2602 even if no regular object refers to it, if we decided to add it
2603 to the dynamic symbol table. FIXME: Do we normally need to worry
2604 about symbols which are defined by one dynamic object and
2605 referenced by another one? */
2607 && h
->type
!= STT_GNU_IFUNC
2611 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2613 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2617 /* If we've already adjusted this symbol, don't do it again. This
2618 can happen via a recursive call. */
2619 if (h
->dynamic_adjusted
)
2622 /* Don't look at this symbol again. Note that we must set this
2623 after checking the above conditions, because we may look at a
2624 symbol once, decide not to do anything, and then get called
2625 recursively later after REF_REGULAR is set below. */
2626 h
->dynamic_adjusted
= 1;
2628 /* If this is a weak definition, and we know a real definition, and
2629 the real symbol is not itself defined by a regular object file,
2630 then get a good value for the real definition. We handle the
2631 real symbol first, for the convenience of the backend routine.
2633 Note that there is a confusing case here. If the real definition
2634 is defined by a regular object file, we don't get the real symbol
2635 from the dynamic object, but we do get the weak symbol. If the
2636 processor backend uses a COPY reloc, then if some routine in the
2637 dynamic object changes the real symbol, we will not see that
2638 change in the corresponding weak symbol. This is the way other
2639 ELF linkers work as well, and seems to be a result of the shared
2642 I will clarify this issue. Most SVR4 shared libraries define the
2643 variable _timezone and define timezone as a weak synonym. The
2644 tzset call changes _timezone. If you write
2645 extern int timezone;
2647 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2648 you might expect that, since timezone is a synonym for _timezone,
2649 the same number will print both times. However, if the processor
2650 backend uses a COPY reloc, then actually timezone will be copied
2651 into your process image, and, since you define _timezone
2652 yourself, _timezone will not. Thus timezone and _timezone will
2653 wind up at different memory locations. The tzset call will set
2654 _timezone, leaving timezone unchanged. */
2656 if (h
->u
.weakdef
!= NULL
)
2658 /* If we get to this point, we know there is an implicit
2659 reference by a regular object file via the weak symbol H.
2660 FIXME: Is this really true? What if the traversal finds
2661 H->U.WEAKDEF before it finds H? */
2662 h
->u
.weakdef
->ref_regular
= 1;
2664 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2668 /* If a symbol has no type and no size and does not require a PLT
2669 entry, then we are probably about to do the wrong thing here: we
2670 are probably going to create a COPY reloc for an empty object.
2671 This case can arise when a shared object is built with assembly
2672 code, and the assembly code fails to set the symbol type. */
2674 && h
->type
== STT_NOTYPE
2676 (*_bfd_error_handler
)
2677 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2678 h
->root
.root
.string
);
2680 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2681 bed
= get_elf_backend_data (dynobj
);
2683 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2692 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2696 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2699 unsigned int power_of_two
;
2701 asection
*sec
= h
->root
.u
.def
.section
;
2703 /* The section aligment of definition is the maximum alignment
2704 requirement of symbols defined in the section. Since we don't
2705 know the symbol alignment requirement, we start with the
2706 maximum alignment and check low bits of the symbol address
2707 for the minimum alignment. */
2708 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2709 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2710 while ((h
->root
.u
.def
.value
& mask
) != 0)
2716 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2719 /* Adjust the section alignment if needed. */
2720 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2725 /* We make sure that the symbol will be aligned properly. */
2726 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2728 /* Define the symbol as being at this point in DYNBSS. */
2729 h
->root
.u
.def
.section
= dynbss
;
2730 h
->root
.u
.def
.value
= dynbss
->size
;
2732 /* Increment the size of DYNBSS to make room for the symbol. */
2733 dynbss
->size
+= h
->size
;
2738 /* Adjust all external symbols pointing into SEC_MERGE sections
2739 to reflect the object merging within the sections. */
2742 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2746 if (h
->root
.type
== bfd_link_hash_warning
)
2747 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2749 if ((h
->root
.type
== bfd_link_hash_defined
2750 || h
->root
.type
== bfd_link_hash_defweak
)
2751 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2752 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2754 bfd
*output_bfd
= (bfd
*) data
;
2756 h
->root
.u
.def
.value
=
2757 _bfd_merged_section_offset (output_bfd
,
2758 &h
->root
.u
.def
.section
,
2759 elf_section_data (sec
)->sec_info
,
2760 h
->root
.u
.def
.value
);
2766 /* Returns false if the symbol referred to by H should be considered
2767 to resolve local to the current module, and true if it should be
2768 considered to bind dynamically. */
2771 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2772 struct bfd_link_info
*info
,
2773 bfd_boolean not_local_protected
)
2775 bfd_boolean binding_stays_local_p
;
2776 const struct elf_backend_data
*bed
;
2777 struct elf_link_hash_table
*hash_table
;
2782 while (h
->root
.type
== bfd_link_hash_indirect
2783 || h
->root
.type
== bfd_link_hash_warning
)
2784 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2786 /* If it was forced local, then clearly it's not dynamic. */
2787 if (h
->dynindx
== -1)
2789 if (h
->forced_local
)
2792 /* Identify the cases where name binding rules say that a
2793 visible symbol resolves locally. */
2794 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2796 switch (ELF_ST_VISIBILITY (h
->other
))
2803 hash_table
= elf_hash_table (info
);
2804 if (!is_elf_hash_table (hash_table
))
2807 bed
= get_elf_backend_data (hash_table
->dynobj
);
2809 /* Proper resolution for function pointer equality may require
2810 that these symbols perhaps be resolved dynamically, even though
2811 we should be resolving them to the current module. */
2812 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
2813 binding_stays_local_p
= TRUE
;
2820 /* If it isn't defined locally, then clearly it's dynamic. */
2821 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2824 /* Otherwise, the symbol is dynamic if binding rules don't tell
2825 us that it remains local. */
2826 return !binding_stays_local_p
;
2829 /* Return true if the symbol referred to by H should be considered
2830 to resolve local to the current module, and false otherwise. Differs
2831 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2832 undefined symbols. The two functions are vitually identical except
2833 for the place where forced_local and dynindx == -1 are tested. If
2834 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2835 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2836 the symbol is local only for defined symbols.
2837 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2838 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2839 treatment of undefined weak symbols. For those that do not make
2840 undefined weak symbols dynamic, both functions may return false. */
2843 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2844 struct bfd_link_info
*info
,
2845 bfd_boolean local_protected
)
2847 const struct elf_backend_data
*bed
;
2848 struct elf_link_hash_table
*hash_table
;
2850 /* If it's a local sym, of course we resolve locally. */
2854 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2855 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2856 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2859 /* Common symbols that become definitions don't get the DEF_REGULAR
2860 flag set, so test it first, and don't bail out. */
2861 if (ELF_COMMON_DEF_P (h
))
2863 /* If we don't have a definition in a regular file, then we can't
2864 resolve locally. The sym is either undefined or dynamic. */
2865 else if (!h
->def_regular
)
2868 /* Forced local symbols resolve locally. */
2869 if (h
->forced_local
)
2872 /* As do non-dynamic symbols. */
2873 if (h
->dynindx
== -1)
2876 /* At this point, we know the symbol is defined and dynamic. In an
2877 executable it must resolve locally, likewise when building symbolic
2878 shared libraries. */
2879 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2882 /* Now deal with defined dynamic symbols in shared libraries. Ones
2883 with default visibility might not resolve locally. */
2884 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2887 hash_table
= elf_hash_table (info
);
2888 if (!is_elf_hash_table (hash_table
))
2891 bed
= get_elf_backend_data (hash_table
->dynobj
);
2893 /* STV_PROTECTED non-function symbols are local. */
2894 if (!bed
->is_function_type (h
->type
))
2897 /* Function pointer equality tests may require that STV_PROTECTED
2898 symbols be treated as dynamic symbols, even when we know that the
2899 dynamic linker will resolve them locally. */
2900 return local_protected
;
2903 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2904 aligned. Returns the first TLS output section. */
2906 struct bfd_section
*
2907 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2909 struct bfd_section
*sec
, *tls
;
2910 unsigned int align
= 0;
2912 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2913 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2917 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2918 if (sec
->alignment_power
> align
)
2919 align
= sec
->alignment_power
;
2921 elf_hash_table (info
)->tls_sec
= tls
;
2923 /* Ensure the alignment of the first section is the largest alignment,
2924 so that the tls segment starts aligned. */
2926 tls
->alignment_power
= align
;
2931 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2933 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2934 Elf_Internal_Sym
*sym
)
2936 const struct elf_backend_data
*bed
;
2938 /* Local symbols do not count, but target specific ones might. */
2939 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2940 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2943 bed
= get_elf_backend_data (abfd
);
2944 /* Function symbols do not count. */
2945 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2948 /* If the section is undefined, then so is the symbol. */
2949 if (sym
->st_shndx
== SHN_UNDEF
)
2952 /* If the symbol is defined in the common section, then
2953 it is a common definition and so does not count. */
2954 if (bed
->common_definition (sym
))
2957 /* If the symbol is in a target specific section then we
2958 must rely upon the backend to tell us what it is. */
2959 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2960 /* FIXME - this function is not coded yet:
2962 return _bfd_is_global_symbol_definition (abfd, sym);
2964 Instead for now assume that the definition is not global,
2965 Even if this is wrong, at least the linker will behave
2966 in the same way that it used to do. */
2972 /* Search the symbol table of the archive element of the archive ABFD
2973 whose archive map contains a mention of SYMDEF, and determine if
2974 the symbol is defined in this element. */
2976 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2978 Elf_Internal_Shdr
* hdr
;
2979 bfd_size_type symcount
;
2980 bfd_size_type extsymcount
;
2981 bfd_size_type extsymoff
;
2982 Elf_Internal_Sym
*isymbuf
;
2983 Elf_Internal_Sym
*isym
;
2984 Elf_Internal_Sym
*isymend
;
2987 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2991 if (! bfd_check_format (abfd
, bfd_object
))
2994 /* If we have already included the element containing this symbol in the
2995 link then we do not need to include it again. Just claim that any symbol
2996 it contains is not a definition, so that our caller will not decide to
2997 (re)include this element. */
2998 if (abfd
->archive_pass
)
3001 /* Select the appropriate symbol table. */
3002 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
3003 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3005 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3007 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3009 /* The sh_info field of the symtab header tells us where the
3010 external symbols start. We don't care about the local symbols. */
3011 if (elf_bad_symtab (abfd
))
3013 extsymcount
= symcount
;
3018 extsymcount
= symcount
- hdr
->sh_info
;
3019 extsymoff
= hdr
->sh_info
;
3022 if (extsymcount
== 0)
3025 /* Read in the symbol table. */
3026 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3028 if (isymbuf
== NULL
)
3031 /* Scan the symbol table looking for SYMDEF. */
3033 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3037 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3042 if (strcmp (name
, symdef
->name
) == 0)
3044 result
= is_global_data_symbol_definition (abfd
, isym
);
3054 /* Add an entry to the .dynamic table. */
3057 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3061 struct elf_link_hash_table
*hash_table
;
3062 const struct elf_backend_data
*bed
;
3064 bfd_size_type newsize
;
3065 bfd_byte
*newcontents
;
3066 Elf_Internal_Dyn dyn
;
3068 hash_table
= elf_hash_table (info
);
3069 if (! is_elf_hash_table (hash_table
))
3072 bed
= get_elf_backend_data (hash_table
->dynobj
);
3073 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3074 BFD_ASSERT (s
!= NULL
);
3076 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3077 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3078 if (newcontents
== NULL
)
3082 dyn
.d_un
.d_val
= val
;
3083 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3086 s
->contents
= newcontents
;
3091 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3092 otherwise just check whether one already exists. Returns -1 on error,
3093 1 if a DT_NEEDED tag already exists, and 0 on success. */
3096 elf_add_dt_needed_tag (bfd
*abfd
,
3097 struct bfd_link_info
*info
,
3101 struct elf_link_hash_table
*hash_table
;
3102 bfd_size_type oldsize
;
3103 bfd_size_type strindex
;
3105 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3108 hash_table
= elf_hash_table (info
);
3109 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3110 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3111 if (strindex
== (bfd_size_type
) -1)
3114 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3117 const struct elf_backend_data
*bed
;
3120 bed
= get_elf_backend_data (hash_table
->dynobj
);
3121 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3123 for (extdyn
= sdyn
->contents
;
3124 extdyn
< sdyn
->contents
+ sdyn
->size
;
3125 extdyn
+= bed
->s
->sizeof_dyn
)
3127 Elf_Internal_Dyn dyn
;
3129 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3130 if (dyn
.d_tag
== DT_NEEDED
3131 && dyn
.d_un
.d_val
== strindex
)
3133 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3141 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3144 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3148 /* We were just checking for existence of the tag. */
3149 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3155 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3157 for (; needed
!= NULL
; needed
= needed
->next
)
3158 if (strcmp (soname
, needed
->name
) == 0)
3164 /* Sort symbol by value and section. */
3166 elf_sort_symbol (const void *arg1
, const void *arg2
)
3168 const struct elf_link_hash_entry
*h1
;
3169 const struct elf_link_hash_entry
*h2
;
3170 bfd_signed_vma vdiff
;
3172 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3173 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3174 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3176 return vdiff
> 0 ? 1 : -1;
3179 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3181 return sdiff
> 0 ? 1 : -1;
3186 /* This function is used to adjust offsets into .dynstr for
3187 dynamic symbols. This is called via elf_link_hash_traverse. */
3190 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3192 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3194 if (h
->root
.type
== bfd_link_hash_warning
)
3195 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3197 if (h
->dynindx
!= -1)
3198 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3202 /* Assign string offsets in .dynstr, update all structures referencing
3206 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3208 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3209 struct elf_link_local_dynamic_entry
*entry
;
3210 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3211 bfd
*dynobj
= hash_table
->dynobj
;
3214 const struct elf_backend_data
*bed
;
3217 _bfd_elf_strtab_finalize (dynstr
);
3218 size
= _bfd_elf_strtab_size (dynstr
);
3220 bed
= get_elf_backend_data (dynobj
);
3221 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3222 BFD_ASSERT (sdyn
!= NULL
);
3224 /* Update all .dynamic entries referencing .dynstr strings. */
3225 for (extdyn
= sdyn
->contents
;
3226 extdyn
< sdyn
->contents
+ sdyn
->size
;
3227 extdyn
+= bed
->s
->sizeof_dyn
)
3229 Elf_Internal_Dyn dyn
;
3231 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3235 dyn
.d_un
.d_val
= size
;
3245 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3250 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3253 /* Now update local dynamic symbols. */
3254 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3255 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3256 entry
->isym
.st_name
);
3258 /* And the rest of dynamic symbols. */
3259 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3261 /* Adjust version definitions. */
3262 if (elf_tdata (output_bfd
)->cverdefs
)
3267 Elf_Internal_Verdef def
;
3268 Elf_Internal_Verdaux defaux
;
3270 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3274 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3276 p
+= sizeof (Elf_External_Verdef
);
3277 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3279 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3281 _bfd_elf_swap_verdaux_in (output_bfd
,
3282 (Elf_External_Verdaux
*) p
, &defaux
);
3283 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3285 _bfd_elf_swap_verdaux_out (output_bfd
,
3286 &defaux
, (Elf_External_Verdaux
*) p
);
3287 p
+= sizeof (Elf_External_Verdaux
);
3290 while (def
.vd_next
);
3293 /* Adjust version references. */
3294 if (elf_tdata (output_bfd
)->verref
)
3299 Elf_Internal_Verneed need
;
3300 Elf_Internal_Vernaux needaux
;
3302 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3306 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3308 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3309 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3310 (Elf_External_Verneed
*) p
);
3311 p
+= sizeof (Elf_External_Verneed
);
3312 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3314 _bfd_elf_swap_vernaux_in (output_bfd
,
3315 (Elf_External_Vernaux
*) p
, &needaux
);
3316 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3318 _bfd_elf_swap_vernaux_out (output_bfd
,
3320 (Elf_External_Vernaux
*) p
);
3321 p
+= sizeof (Elf_External_Vernaux
);
3324 while (need
.vn_next
);
3330 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3331 The default is to only match when the INPUT and OUTPUT are exactly
3335 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3336 const bfd_target
*output
)
3338 return input
== output
;
3341 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3342 This version is used when different targets for the same architecture
3343 are virtually identical. */
3346 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3347 const bfd_target
*output
)
3349 const struct elf_backend_data
*obed
, *ibed
;
3351 if (input
== output
)
3354 ibed
= xvec_get_elf_backend_data (input
);
3355 obed
= xvec_get_elf_backend_data (output
);
3357 if (ibed
->arch
!= obed
->arch
)
3360 /* If both backends are using this function, deem them compatible. */
3361 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3364 /* Add symbols from an ELF object file to the linker hash table. */
3367 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3369 Elf_Internal_Ehdr
*ehdr
;
3370 Elf_Internal_Shdr
*hdr
;
3371 bfd_size_type symcount
;
3372 bfd_size_type extsymcount
;
3373 bfd_size_type extsymoff
;
3374 struct elf_link_hash_entry
**sym_hash
;
3375 bfd_boolean dynamic
;
3376 Elf_External_Versym
*extversym
= NULL
;
3377 Elf_External_Versym
*ever
;
3378 struct elf_link_hash_entry
*weaks
;
3379 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3380 bfd_size_type nondeflt_vers_cnt
= 0;
3381 Elf_Internal_Sym
*isymbuf
= NULL
;
3382 Elf_Internal_Sym
*isym
;
3383 Elf_Internal_Sym
*isymend
;
3384 const struct elf_backend_data
*bed
;
3385 bfd_boolean add_needed
;
3386 struct elf_link_hash_table
*htab
;
3388 void *alloc_mark
= NULL
;
3389 struct bfd_hash_entry
**old_table
= NULL
;
3390 unsigned int old_size
= 0;
3391 unsigned int old_count
= 0;
3392 void *old_tab
= NULL
;
3395 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3396 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3397 long old_dynsymcount
= 0;
3399 size_t hashsize
= 0;
3401 htab
= elf_hash_table (info
);
3402 bed
= get_elf_backend_data (abfd
);
3404 if ((abfd
->flags
& DYNAMIC
) == 0)
3410 /* You can't use -r against a dynamic object. Also, there's no
3411 hope of using a dynamic object which does not exactly match
3412 the format of the output file. */
3413 if (info
->relocatable
3414 || !is_elf_hash_table (htab
)
3415 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3417 if (info
->relocatable
)
3418 bfd_set_error (bfd_error_invalid_operation
);
3420 bfd_set_error (bfd_error_wrong_format
);
3425 ehdr
= elf_elfheader (abfd
);
3426 if (info
->warn_alternate_em
3427 && bed
->elf_machine_code
!= ehdr
->e_machine
3428 && ((bed
->elf_machine_alt1
!= 0
3429 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3430 || (bed
->elf_machine_alt2
!= 0
3431 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3432 info
->callbacks
->einfo
3433 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3434 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3436 /* As a GNU extension, any input sections which are named
3437 .gnu.warning.SYMBOL are treated as warning symbols for the given
3438 symbol. This differs from .gnu.warning sections, which generate
3439 warnings when they are included in an output file. */
3440 if (info
->executable
)
3444 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3448 name
= bfd_get_section_name (abfd
, s
);
3449 if (CONST_STRNEQ (name
, ".gnu.warning."))
3454 name
+= sizeof ".gnu.warning." - 1;
3456 /* If this is a shared object, then look up the symbol
3457 in the hash table. If it is there, and it is already
3458 been defined, then we will not be using the entry
3459 from this shared object, so we don't need to warn.
3460 FIXME: If we see the definition in a regular object
3461 later on, we will warn, but we shouldn't. The only
3462 fix is to keep track of what warnings we are supposed
3463 to emit, and then handle them all at the end of the
3467 struct elf_link_hash_entry
*h
;
3469 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3471 /* FIXME: What about bfd_link_hash_common? */
3473 && (h
->root
.type
== bfd_link_hash_defined
3474 || h
->root
.type
== bfd_link_hash_defweak
))
3476 /* We don't want to issue this warning. Clobber
3477 the section size so that the warning does not
3478 get copied into the output file. */
3485 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3489 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3494 if (! (_bfd_generic_link_add_one_symbol
3495 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3496 FALSE
, bed
->collect
, NULL
)))
3499 if (! info
->relocatable
)
3501 /* Clobber the section size so that the warning does
3502 not get copied into the output file. */
3505 /* Also set SEC_EXCLUDE, so that symbols defined in
3506 the warning section don't get copied to the output. */
3507 s
->flags
|= SEC_EXCLUDE
;
3516 /* If we are creating a shared library, create all the dynamic
3517 sections immediately. We need to attach them to something,
3518 so we attach them to this BFD, provided it is the right
3519 format. FIXME: If there are no input BFD's of the same
3520 format as the output, we can't make a shared library. */
3522 && is_elf_hash_table (htab
)
3523 && info
->output_bfd
->xvec
== abfd
->xvec
3524 && !htab
->dynamic_sections_created
)
3526 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3530 else if (!is_elf_hash_table (htab
))
3535 const char *soname
= NULL
;
3537 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3540 /* ld --just-symbols and dynamic objects don't mix very well.
3541 ld shouldn't allow it. */
3542 if ((s
= abfd
->sections
) != NULL
3543 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3546 /* If this dynamic lib was specified on the command line with
3547 --as-needed in effect, then we don't want to add a DT_NEEDED
3548 tag unless the lib is actually used. Similary for libs brought
3549 in by another lib's DT_NEEDED. When --no-add-needed is used
3550 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3551 any dynamic library in DT_NEEDED tags in the dynamic lib at
3553 add_needed
= (elf_dyn_lib_class (abfd
)
3554 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3555 | DYN_NO_NEEDED
)) == 0;
3557 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3562 unsigned int elfsec
;
3563 unsigned long shlink
;
3565 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3572 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3573 if (elfsec
== SHN_BAD
)
3574 goto error_free_dyn
;
3575 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3577 for (extdyn
= dynbuf
;
3578 extdyn
< dynbuf
+ s
->size
;
3579 extdyn
+= bed
->s
->sizeof_dyn
)
3581 Elf_Internal_Dyn dyn
;
3583 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3584 if (dyn
.d_tag
== DT_SONAME
)
3586 unsigned int tagv
= dyn
.d_un
.d_val
;
3587 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3589 goto error_free_dyn
;
3591 if (dyn
.d_tag
== DT_NEEDED
)
3593 struct bfd_link_needed_list
*n
, **pn
;
3595 unsigned int tagv
= dyn
.d_un
.d_val
;
3597 amt
= sizeof (struct bfd_link_needed_list
);
3598 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3599 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3600 if (n
== NULL
|| fnm
== NULL
)
3601 goto error_free_dyn
;
3602 amt
= strlen (fnm
) + 1;
3603 anm
= (char *) bfd_alloc (abfd
, amt
);
3605 goto error_free_dyn
;
3606 memcpy (anm
, fnm
, amt
);
3610 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3614 if (dyn
.d_tag
== DT_RUNPATH
)
3616 struct bfd_link_needed_list
*n
, **pn
;
3618 unsigned int tagv
= dyn
.d_un
.d_val
;
3620 amt
= sizeof (struct bfd_link_needed_list
);
3621 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3622 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3623 if (n
== NULL
|| fnm
== NULL
)
3624 goto error_free_dyn
;
3625 amt
= strlen (fnm
) + 1;
3626 anm
= (char *) bfd_alloc (abfd
, amt
);
3628 goto error_free_dyn
;
3629 memcpy (anm
, fnm
, amt
);
3633 for (pn
= & runpath
;
3639 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3640 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3642 struct bfd_link_needed_list
*n
, **pn
;
3644 unsigned int tagv
= dyn
.d_un
.d_val
;
3646 amt
= sizeof (struct bfd_link_needed_list
);
3647 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3648 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3649 if (n
== NULL
|| fnm
== NULL
)
3650 goto error_free_dyn
;
3651 amt
= strlen (fnm
) + 1;
3652 anm
= (char *) bfd_alloc (abfd
, amt
);
3654 goto error_free_dyn
;
3655 memcpy (anm
, fnm
, amt
);
3665 if (dyn
.d_tag
== DT_AUDIT
)
3667 unsigned int tagv
= dyn
.d_un
.d_val
;
3668 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3675 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3676 frees all more recently bfd_alloc'd blocks as well. */
3682 struct bfd_link_needed_list
**pn
;
3683 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3688 /* We do not want to include any of the sections in a dynamic
3689 object in the output file. We hack by simply clobbering the
3690 list of sections in the BFD. This could be handled more
3691 cleanly by, say, a new section flag; the existing
3692 SEC_NEVER_LOAD flag is not the one we want, because that one
3693 still implies that the section takes up space in the output
3695 bfd_section_list_clear (abfd
);
3697 /* Find the name to use in a DT_NEEDED entry that refers to this
3698 object. If the object has a DT_SONAME entry, we use it.
3699 Otherwise, if the generic linker stuck something in
3700 elf_dt_name, we use that. Otherwise, we just use the file
3702 if (soname
== NULL
|| *soname
== '\0')
3704 soname
= elf_dt_name (abfd
);
3705 if (soname
== NULL
|| *soname
== '\0')
3706 soname
= bfd_get_filename (abfd
);
3709 /* Save the SONAME because sometimes the linker emulation code
3710 will need to know it. */
3711 elf_dt_name (abfd
) = soname
;
3713 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3717 /* If we have already included this dynamic object in the
3718 link, just ignore it. There is no reason to include a
3719 particular dynamic object more than once. */
3723 /* Save the DT_AUDIT entry for the linker emulation code. */
3724 elf_dt_audit (abfd
) = audit
;
3727 /* If this is a dynamic object, we always link against the .dynsym
3728 symbol table, not the .symtab symbol table. The dynamic linker
3729 will only see the .dynsym symbol table, so there is no reason to
3730 look at .symtab for a dynamic object. */
3732 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3733 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3735 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3737 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3739 /* The sh_info field of the symtab header tells us where the
3740 external symbols start. We don't care about the local symbols at
3742 if (elf_bad_symtab (abfd
))
3744 extsymcount
= symcount
;
3749 extsymcount
= symcount
- hdr
->sh_info
;
3750 extsymoff
= hdr
->sh_info
;
3754 if (extsymcount
!= 0)
3756 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3758 if (isymbuf
== NULL
)
3761 /* We store a pointer to the hash table entry for each external
3763 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3764 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3765 if (sym_hash
== NULL
)
3766 goto error_free_sym
;
3767 elf_sym_hashes (abfd
) = sym_hash
;
3772 /* Read in any version definitions. */
3773 if (!_bfd_elf_slurp_version_tables (abfd
,
3774 info
->default_imported_symver
))
3775 goto error_free_sym
;
3777 /* Read in the symbol versions, but don't bother to convert them
3778 to internal format. */
3779 if (elf_dynversym (abfd
) != 0)
3781 Elf_Internal_Shdr
*versymhdr
;
3783 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3784 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3785 if (extversym
== NULL
)
3786 goto error_free_sym
;
3787 amt
= versymhdr
->sh_size
;
3788 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3789 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3790 goto error_free_vers
;
3794 /* If we are loading an as-needed shared lib, save the symbol table
3795 state before we start adding symbols. If the lib turns out
3796 to be unneeded, restore the state. */
3797 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3802 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3804 struct bfd_hash_entry
*p
;
3805 struct elf_link_hash_entry
*h
;
3807 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3809 h
= (struct elf_link_hash_entry
*) p
;
3810 entsize
+= htab
->root
.table
.entsize
;
3811 if (h
->root
.type
== bfd_link_hash_warning
)
3812 entsize
+= htab
->root
.table
.entsize
;
3816 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3817 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3818 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3819 if (old_tab
== NULL
)
3820 goto error_free_vers
;
3822 /* Remember the current objalloc pointer, so that all mem for
3823 symbols added can later be reclaimed. */
3824 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3825 if (alloc_mark
== NULL
)
3826 goto error_free_vers
;
3828 /* Make a special call to the linker "notice" function to
3829 tell it that we are about to handle an as-needed lib. */
3830 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3832 goto error_free_vers
;
3834 /* Clone the symbol table and sym hashes. Remember some
3835 pointers into the symbol table, and dynamic symbol count. */
3836 old_hash
= (char *) old_tab
+ tabsize
;
3837 old_ent
= (char *) old_hash
+ hashsize
;
3838 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3839 memcpy (old_hash
, sym_hash
, hashsize
);
3840 old_undefs
= htab
->root
.undefs
;
3841 old_undefs_tail
= htab
->root
.undefs_tail
;
3842 old_table
= htab
->root
.table
.table
;
3843 old_size
= htab
->root
.table
.size
;
3844 old_count
= htab
->root
.table
.count
;
3845 old_dynsymcount
= htab
->dynsymcount
;
3847 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3849 struct bfd_hash_entry
*p
;
3850 struct elf_link_hash_entry
*h
;
3852 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3854 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3855 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3856 h
= (struct elf_link_hash_entry
*) p
;
3857 if (h
->root
.type
== bfd_link_hash_warning
)
3859 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3860 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3867 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3868 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3870 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3874 asection
*sec
, *new_sec
;
3877 struct elf_link_hash_entry
*h
;
3878 bfd_boolean definition
;
3879 bfd_boolean size_change_ok
;
3880 bfd_boolean type_change_ok
;
3881 bfd_boolean new_weakdef
;
3882 bfd_boolean override
;
3884 unsigned int old_alignment
;
3886 bfd
* undef_bfd
= NULL
;
3890 flags
= BSF_NO_FLAGS
;
3892 value
= isym
->st_value
;
3894 common
= bed
->common_definition (isym
);
3896 bind
= ELF_ST_BIND (isym
->st_info
);
3900 /* This should be impossible, since ELF requires that all
3901 global symbols follow all local symbols, and that sh_info
3902 point to the first global symbol. Unfortunately, Irix 5
3907 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3915 case STB_GNU_UNIQUE
:
3916 flags
= BSF_GNU_UNIQUE
;
3920 /* Leave it up to the processor backend. */
3924 if (isym
->st_shndx
== SHN_UNDEF
)
3925 sec
= bfd_und_section_ptr
;
3926 else if (isym
->st_shndx
== SHN_ABS
)
3927 sec
= bfd_abs_section_ptr
;
3928 else if (isym
->st_shndx
== SHN_COMMON
)
3930 sec
= bfd_com_section_ptr
;
3931 /* What ELF calls the size we call the value. What ELF
3932 calls the value we call the alignment. */
3933 value
= isym
->st_size
;
3937 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3939 sec
= bfd_abs_section_ptr
;
3940 else if (sec
->kept_section
)
3942 /* Symbols from discarded section are undefined. We keep
3944 sec
= bfd_und_section_ptr
;
3945 isym
->st_shndx
= SHN_UNDEF
;
3947 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3951 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3954 goto error_free_vers
;
3956 if (isym
->st_shndx
== SHN_COMMON
3957 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3958 && !info
->relocatable
)
3960 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3964 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3967 | SEC_LINKER_CREATED
3968 | SEC_THREAD_LOCAL
));
3970 goto error_free_vers
;
3974 else if (bed
->elf_add_symbol_hook
)
3976 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3978 goto error_free_vers
;
3980 /* The hook function sets the name to NULL if this symbol
3981 should be skipped for some reason. */
3986 /* Sanity check that all possibilities were handled. */
3989 bfd_set_error (bfd_error_bad_value
);
3990 goto error_free_vers
;
3993 if (bfd_is_und_section (sec
)
3994 || bfd_is_com_section (sec
))
3999 size_change_ok
= FALSE
;
4000 type_change_ok
= bed
->type_change_ok
;
4005 if (is_elf_hash_table (htab
))
4007 Elf_Internal_Versym iver
;
4008 unsigned int vernum
= 0;
4011 /* If this is a definition of a symbol which was previously
4012 referenced in a non-weak manner then make a note of the bfd
4013 that contained the reference. This is used if we need to
4014 refer to the source of the reference later on. */
4015 if (! bfd_is_und_section (sec
))
4017 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4020 && h
->root
.type
== bfd_link_hash_undefined
4021 && h
->root
.u
.undef
.abfd
)
4022 undef_bfd
= h
->root
.u
.undef
.abfd
;
4027 if (info
->default_imported_symver
)
4028 /* Use the default symbol version created earlier. */
4029 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4034 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4036 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4038 /* If this is a hidden symbol, or if it is not version
4039 1, we append the version name to the symbol name.
4040 However, we do not modify a non-hidden absolute symbol
4041 if it is not a function, because it might be the version
4042 symbol itself. FIXME: What if it isn't? */
4043 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4045 && (!bfd_is_abs_section (sec
)
4046 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4049 size_t namelen
, verlen
, newlen
;
4052 if (isym
->st_shndx
!= SHN_UNDEF
)
4054 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4056 else if (vernum
> 1)
4058 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4064 (*_bfd_error_handler
)
4065 (_("%B: %s: invalid version %u (max %d)"),
4067 elf_tdata (abfd
)->cverdefs
);
4068 bfd_set_error (bfd_error_bad_value
);
4069 goto error_free_vers
;
4074 /* We cannot simply test for the number of
4075 entries in the VERNEED section since the
4076 numbers for the needed versions do not start
4078 Elf_Internal_Verneed
*t
;
4081 for (t
= elf_tdata (abfd
)->verref
;
4085 Elf_Internal_Vernaux
*a
;
4087 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4089 if (a
->vna_other
== vernum
)
4091 verstr
= a
->vna_nodename
;
4100 (*_bfd_error_handler
)
4101 (_("%B: %s: invalid needed version %d"),
4102 abfd
, name
, vernum
);
4103 bfd_set_error (bfd_error_bad_value
);
4104 goto error_free_vers
;
4108 namelen
= strlen (name
);
4109 verlen
= strlen (verstr
);
4110 newlen
= namelen
+ verlen
+ 2;
4111 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4112 && isym
->st_shndx
!= SHN_UNDEF
)
4115 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4116 if (newname
== NULL
)
4117 goto error_free_vers
;
4118 memcpy (newname
, name
, namelen
);
4119 p
= newname
+ namelen
;
4121 /* If this is a defined non-hidden version symbol,
4122 we add another @ to the name. This indicates the
4123 default version of the symbol. */
4124 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4125 && isym
->st_shndx
!= SHN_UNDEF
)
4127 memcpy (p
, verstr
, verlen
+ 1);
4132 /* If necessary, make a second attempt to locate the bfd
4133 containing an unresolved, non-weak reference to the
4135 if (! bfd_is_und_section (sec
) && undef_bfd
== NULL
)
4137 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4140 && h
->root
.type
== bfd_link_hash_undefined
4141 && h
->root
.u
.undef
.abfd
)
4142 undef_bfd
= h
->root
.u
.undef
.abfd
;
4145 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4146 &value
, &old_alignment
,
4147 sym_hash
, &skip
, &override
,
4148 &type_change_ok
, &size_change_ok
))
4149 goto error_free_vers
;
4158 while (h
->root
.type
== bfd_link_hash_indirect
4159 || h
->root
.type
== bfd_link_hash_warning
)
4160 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4162 /* Remember the old alignment if this is a common symbol, so
4163 that we don't reduce the alignment later on. We can't
4164 check later, because _bfd_generic_link_add_one_symbol
4165 will set a default for the alignment which we want to
4166 override. We also remember the old bfd where the existing
4167 definition comes from. */
4168 switch (h
->root
.type
)
4173 case bfd_link_hash_defined
:
4174 case bfd_link_hash_defweak
:
4175 old_bfd
= h
->root
.u
.def
.section
->owner
;
4178 case bfd_link_hash_common
:
4179 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4180 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4184 if (elf_tdata (abfd
)->verdef
!= NULL
4188 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4191 if (! (_bfd_generic_link_add_one_symbol
4192 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4193 (struct bfd_link_hash_entry
**) sym_hash
)))
4194 goto error_free_vers
;
4197 while (h
->root
.type
== bfd_link_hash_indirect
4198 || h
->root
.type
== bfd_link_hash_warning
)
4199 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4202 if (is_elf_hash_table (htab
))
4203 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4205 new_weakdef
= FALSE
;
4208 && (flags
& BSF_WEAK
) != 0
4209 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4210 && is_elf_hash_table (htab
)
4211 && h
->u
.weakdef
== NULL
)
4213 /* Keep a list of all weak defined non function symbols from
4214 a dynamic object, using the weakdef field. Later in this
4215 function we will set the weakdef field to the correct
4216 value. We only put non-function symbols from dynamic
4217 objects on this list, because that happens to be the only
4218 time we need to know the normal symbol corresponding to a
4219 weak symbol, and the information is time consuming to
4220 figure out. If the weakdef field is not already NULL,
4221 then this symbol was already defined by some previous
4222 dynamic object, and we will be using that previous
4223 definition anyhow. */
4225 h
->u
.weakdef
= weaks
;
4230 /* Set the alignment of a common symbol. */
4231 if ((common
|| bfd_is_com_section (sec
))
4232 && h
->root
.type
== bfd_link_hash_common
)
4237 align
= bfd_log2 (isym
->st_value
);
4240 /* The new symbol is a common symbol in a shared object.
4241 We need to get the alignment from the section. */
4242 align
= new_sec
->alignment_power
;
4244 if (align
> old_alignment
4245 /* Permit an alignment power of zero if an alignment of one
4246 is specified and no other alignments have been specified. */
4247 || (isym
->st_value
== 1 && old_alignment
== 0))
4248 h
->root
.u
.c
.p
->alignment_power
= align
;
4250 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4253 if (is_elf_hash_table (htab
))
4257 /* Check the alignment when a common symbol is involved. This
4258 can change when a common symbol is overridden by a normal
4259 definition or a common symbol is ignored due to the old
4260 normal definition. We need to make sure the maximum
4261 alignment is maintained. */
4262 if ((old_alignment
|| common
)
4263 && h
->root
.type
!= bfd_link_hash_common
)
4265 unsigned int common_align
;
4266 unsigned int normal_align
;
4267 unsigned int symbol_align
;
4271 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4272 if (h
->root
.u
.def
.section
->owner
!= NULL
4273 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4275 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4276 if (normal_align
> symbol_align
)
4277 normal_align
= symbol_align
;
4280 normal_align
= symbol_align
;
4284 common_align
= old_alignment
;
4285 common_bfd
= old_bfd
;
4290 common_align
= bfd_log2 (isym
->st_value
);
4292 normal_bfd
= old_bfd
;
4295 if (normal_align
< common_align
)
4297 /* PR binutils/2735 */
4298 if (normal_bfd
== NULL
)
4299 (*_bfd_error_handler
)
4300 (_("Warning: alignment %u of common symbol `%s' in %B"
4301 " is greater than the alignment (%u) of its section %A"),
4302 common_bfd
, h
->root
.u
.def
.section
,
4303 1 << common_align
, name
, 1 << normal_align
);
4305 (*_bfd_error_handler
)
4306 (_("Warning: alignment %u of symbol `%s' in %B"
4307 " is smaller than %u in %B"),
4308 normal_bfd
, common_bfd
,
4309 1 << normal_align
, name
, 1 << common_align
);
4313 /* Remember the symbol size if it isn't undefined. */
4314 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4315 && (definition
|| h
->size
== 0))
4318 && h
->size
!= isym
->st_size
4319 && ! size_change_ok
)
4320 (*_bfd_error_handler
)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4324 name
, (unsigned long) h
->size
,
4325 (unsigned long) isym
->st_size
);
4327 h
->size
= isym
->st_size
;
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changed between different
4336 if (h
->root
.type
== bfd_link_hash_common
)
4337 h
->size
= h
->root
.u
.c
.size
;
4339 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4340 && (definition
|| h
->type
== STT_NOTYPE
))
4342 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4344 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4346 if (type
== STT_GNU_IFUNC
4347 && (abfd
->flags
& DYNAMIC
) != 0)
4350 if (h
->type
!= type
)
4352 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4353 (*_bfd_error_handler
)
4354 (_("Warning: type of symbol `%s' changed"
4355 " from %d to %d in %B"),
4356 abfd
, name
, h
->type
, type
);
4362 /* Merge st_other field. */
4363 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4365 /* Set a flag in the hash table entry indicating the type of
4366 reference or definition we just found. Keep a count of
4367 the number of dynamic symbols we find. A dynamic symbol
4368 is one which is referenced or defined by both a regular
4369 object and a shared object. */
4376 if (bind
!= STB_WEAK
)
4377 h
->ref_regular_nonweak
= 1;
4389 if (! info
->executable
4402 || (h
->u
.weakdef
!= NULL
4404 && h
->u
.weakdef
->dynindx
!= -1))
4408 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4410 /* We don't want to make debug symbol dynamic. */
4414 /* Check to see if we need to add an indirect symbol for
4415 the default name. */
4416 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4417 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4418 &sec
, &value
, &dynsym
,
4420 goto error_free_vers
;
4422 if (definition
&& !dynamic
)
4424 char *p
= strchr (name
, ELF_VER_CHR
);
4425 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4427 /* Queue non-default versions so that .symver x, x@FOO
4428 aliases can be checked. */
4431 amt
= ((isymend
- isym
+ 1)
4432 * sizeof (struct elf_link_hash_entry
*));
4434 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4436 goto error_free_vers
;
4438 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4442 if (dynsym
&& h
->dynindx
== -1)
4444 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4445 goto error_free_vers
;
4446 if (h
->u
.weakdef
!= NULL
4448 && h
->u
.weakdef
->dynindx
== -1)
4450 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4451 goto error_free_vers
;
4454 else if (dynsym
&& h
->dynindx
!= -1)
4455 /* If the symbol already has a dynamic index, but
4456 visibility says it should not be visible, turn it into
4458 switch (ELF_ST_VISIBILITY (h
->other
))
4462 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4472 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4473 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4476 const char *soname
= elf_dt_name (abfd
);
4478 /* A symbol from a library loaded via DT_NEEDED of some
4479 other library is referenced by a regular object.
4480 Add a DT_NEEDED entry for it. Issue an error if
4481 --no-add-needed is used and the reference was not
4483 if (undef_bfd
!= NULL
4484 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4486 (*_bfd_error_handler
)
4487 (_("%B: undefined reference to symbol '%s'"),
4489 (*_bfd_error_handler
)
4490 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4492 bfd_set_error (bfd_error_invalid_operation
);
4493 goto error_free_vers
;
4496 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4497 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4500 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4502 goto error_free_vers
;
4504 BFD_ASSERT (ret
== 0);
4509 if (extversym
!= NULL
)
4515 if (isymbuf
!= NULL
)
4521 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4525 /* Restore the symbol table. */
4526 if (bed
->as_needed_cleanup
)
4527 (*bed
->as_needed_cleanup
) (abfd
, info
);
4528 old_hash
= (char *) old_tab
+ tabsize
;
4529 old_ent
= (char *) old_hash
+ hashsize
;
4530 sym_hash
= elf_sym_hashes (abfd
);
4531 htab
->root
.table
.table
= old_table
;
4532 htab
->root
.table
.size
= old_size
;
4533 htab
->root
.table
.count
= old_count
;
4534 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4535 memcpy (sym_hash
, old_hash
, hashsize
);
4536 htab
->root
.undefs
= old_undefs
;
4537 htab
->root
.undefs_tail
= old_undefs_tail
;
4538 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4540 struct bfd_hash_entry
*p
;
4541 struct elf_link_hash_entry
*h
;
4543 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4545 h
= (struct elf_link_hash_entry
*) p
;
4546 if (h
->root
.type
== bfd_link_hash_warning
)
4547 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4548 if (h
->dynindx
>= old_dynsymcount
)
4549 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4551 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4552 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4553 h
= (struct elf_link_hash_entry
*) p
;
4554 if (h
->root
.type
== bfd_link_hash_warning
)
4556 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4557 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4562 /* Make a special call to the linker "notice" function to
4563 tell it that symbols added for crefs may need to be removed. */
4564 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4566 goto error_free_vers
;
4569 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4571 if (nondeflt_vers
!= NULL
)
4572 free (nondeflt_vers
);
4576 if (old_tab
!= NULL
)
4578 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4580 goto error_free_vers
;
4585 /* Now that all the symbols from this input file are created, handle
4586 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4587 if (nondeflt_vers
!= NULL
)
4589 bfd_size_type cnt
, symidx
;
4591 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4593 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4594 char *shortname
, *p
;
4596 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4598 || (h
->root
.type
!= bfd_link_hash_defined
4599 && h
->root
.type
!= bfd_link_hash_defweak
))
4602 amt
= p
- h
->root
.root
.string
;
4603 shortname
= (char *) bfd_malloc (amt
+ 1);
4605 goto error_free_vers
;
4606 memcpy (shortname
, h
->root
.root
.string
, amt
);
4607 shortname
[amt
] = '\0';
4609 hi
= (struct elf_link_hash_entry
*)
4610 bfd_link_hash_lookup (&htab
->root
, shortname
,
4611 FALSE
, FALSE
, FALSE
);
4613 && hi
->root
.type
== h
->root
.type
4614 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4615 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4617 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4618 hi
->root
.type
= bfd_link_hash_indirect
;
4619 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4620 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4621 sym_hash
= elf_sym_hashes (abfd
);
4623 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4624 if (sym_hash
[symidx
] == hi
)
4626 sym_hash
[symidx
] = h
;
4632 free (nondeflt_vers
);
4633 nondeflt_vers
= NULL
;
4636 /* Now set the weakdefs field correctly for all the weak defined
4637 symbols we found. The only way to do this is to search all the
4638 symbols. Since we only need the information for non functions in
4639 dynamic objects, that's the only time we actually put anything on
4640 the list WEAKS. We need this information so that if a regular
4641 object refers to a symbol defined weakly in a dynamic object, the
4642 real symbol in the dynamic object is also put in the dynamic
4643 symbols; we also must arrange for both symbols to point to the
4644 same memory location. We could handle the general case of symbol
4645 aliasing, but a general symbol alias can only be generated in
4646 assembler code, handling it correctly would be very time
4647 consuming, and other ELF linkers don't handle general aliasing
4651 struct elf_link_hash_entry
**hpp
;
4652 struct elf_link_hash_entry
**hppend
;
4653 struct elf_link_hash_entry
**sorted_sym_hash
;
4654 struct elf_link_hash_entry
*h
;
4657 /* Since we have to search the whole symbol list for each weak
4658 defined symbol, search time for N weak defined symbols will be
4659 O(N^2). Binary search will cut it down to O(NlogN). */
4660 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4661 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4662 if (sorted_sym_hash
== NULL
)
4664 sym_hash
= sorted_sym_hash
;
4665 hpp
= elf_sym_hashes (abfd
);
4666 hppend
= hpp
+ extsymcount
;
4668 for (; hpp
< hppend
; hpp
++)
4672 && h
->root
.type
== bfd_link_hash_defined
4673 && !bed
->is_function_type (h
->type
))
4681 qsort (sorted_sym_hash
, sym_count
,
4682 sizeof (struct elf_link_hash_entry
*),
4685 while (weaks
!= NULL
)
4687 struct elf_link_hash_entry
*hlook
;
4694 weaks
= hlook
->u
.weakdef
;
4695 hlook
->u
.weakdef
= NULL
;
4697 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4698 || hlook
->root
.type
== bfd_link_hash_defweak
4699 || hlook
->root
.type
== bfd_link_hash_common
4700 || hlook
->root
.type
== bfd_link_hash_indirect
);
4701 slook
= hlook
->root
.u
.def
.section
;
4702 vlook
= hlook
->root
.u
.def
.value
;
4709 bfd_signed_vma vdiff
;
4711 h
= sorted_sym_hash
[idx
];
4712 vdiff
= vlook
- h
->root
.u
.def
.value
;
4719 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4732 /* We didn't find a value/section match. */
4736 for (i
= ilook
; i
< sym_count
; i
++)
4738 h
= sorted_sym_hash
[i
];
4740 /* Stop if value or section doesn't match. */
4741 if (h
->root
.u
.def
.value
!= vlook
4742 || h
->root
.u
.def
.section
!= slook
)
4744 else if (h
!= hlook
)
4746 hlook
->u
.weakdef
= h
;
4748 /* If the weak definition is in the list of dynamic
4749 symbols, make sure the real definition is put
4751 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4753 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4756 free (sorted_sym_hash
);
4761 /* If the real definition is in the list of dynamic
4762 symbols, make sure the weak definition is put
4763 there as well. If we don't do this, then the
4764 dynamic loader might not merge the entries for the
4765 real definition and the weak definition. */
4766 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4768 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4769 goto err_free_sym_hash
;
4776 free (sorted_sym_hash
);
4779 if (bed
->check_directives
4780 && !(*bed
->check_directives
) (abfd
, info
))
4783 /* If this object is the same format as the output object, and it is
4784 not a shared library, then let the backend look through the
4787 This is required to build global offset table entries and to
4788 arrange for dynamic relocs. It is not required for the
4789 particular common case of linking non PIC code, even when linking
4790 against shared libraries, but unfortunately there is no way of
4791 knowing whether an object file has been compiled PIC or not.
4792 Looking through the relocs is not particularly time consuming.
4793 The problem is that we must either (1) keep the relocs in memory,
4794 which causes the linker to require additional runtime memory or
4795 (2) read the relocs twice from the input file, which wastes time.
4796 This would be a good case for using mmap.
4798 I have no idea how to handle linking PIC code into a file of a
4799 different format. It probably can't be done. */
4801 && is_elf_hash_table (htab
)
4802 && bed
->check_relocs
!= NULL
4803 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
4804 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4808 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4810 Elf_Internal_Rela
*internal_relocs
;
4813 if ((o
->flags
& SEC_RELOC
) == 0
4814 || o
->reloc_count
== 0
4815 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4816 && (o
->flags
& SEC_DEBUGGING
) != 0)
4817 || bfd_is_abs_section (o
->output_section
))
4820 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4822 if (internal_relocs
== NULL
)
4825 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4827 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4828 free (internal_relocs
);
4835 /* If this is a non-traditional link, try to optimize the handling
4836 of the .stab/.stabstr sections. */
4838 && ! info
->traditional_format
4839 && is_elf_hash_table (htab
)
4840 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4844 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4845 if (stabstr
!= NULL
)
4847 bfd_size_type string_offset
= 0;
4850 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4851 if (CONST_STRNEQ (stab
->name
, ".stab")
4852 && (!stab
->name
[5] ||
4853 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4854 && (stab
->flags
& SEC_MERGE
) == 0
4855 && !bfd_is_abs_section (stab
->output_section
))
4857 struct bfd_elf_section_data
*secdata
;
4859 secdata
= elf_section_data (stab
);
4860 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4861 stabstr
, &secdata
->sec_info
,
4864 if (secdata
->sec_info
)
4865 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4870 if (is_elf_hash_table (htab
) && add_needed
)
4872 /* Add this bfd to the loaded list. */
4873 struct elf_link_loaded_list
*n
;
4875 n
= (struct elf_link_loaded_list
*)
4876 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4880 n
->next
= htab
->loaded
;
4887 if (old_tab
!= NULL
)
4889 if (nondeflt_vers
!= NULL
)
4890 free (nondeflt_vers
);
4891 if (extversym
!= NULL
)
4894 if (isymbuf
!= NULL
)
4900 /* Return the linker hash table entry of a symbol that might be
4901 satisfied by an archive symbol. Return -1 on error. */
4903 struct elf_link_hash_entry
*
4904 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4905 struct bfd_link_info
*info
,
4908 struct elf_link_hash_entry
*h
;
4912 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4916 /* If this is a default version (the name contains @@), look up the
4917 symbol again with only one `@' as well as without the version.
4918 The effect is that references to the symbol with and without the
4919 version will be matched by the default symbol in the archive. */
4921 p
= strchr (name
, ELF_VER_CHR
);
4922 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4925 /* First check with only one `@'. */
4926 len
= strlen (name
);
4927 copy
= (char *) bfd_alloc (abfd
, len
);
4929 return (struct elf_link_hash_entry
*) 0 - 1;
4931 first
= p
- name
+ 1;
4932 memcpy (copy
, name
, first
);
4933 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4935 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4938 /* We also need to check references to the symbol without the
4940 copy
[first
- 1] = '\0';
4941 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4942 FALSE
, FALSE
, FALSE
);
4945 bfd_release (abfd
, copy
);
4949 /* Add symbols from an ELF archive file to the linker hash table. We
4950 don't use _bfd_generic_link_add_archive_symbols because of a
4951 problem which arises on UnixWare. The UnixWare libc.so is an
4952 archive which includes an entry libc.so.1 which defines a bunch of
4953 symbols. The libc.so archive also includes a number of other
4954 object files, which also define symbols, some of which are the same
4955 as those defined in libc.so.1. Correct linking requires that we
4956 consider each object file in turn, and include it if it defines any
4957 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4958 this; it looks through the list of undefined symbols, and includes
4959 any object file which defines them. When this algorithm is used on
4960 UnixWare, it winds up pulling in libc.so.1 early and defining a
4961 bunch of symbols. This means that some of the other objects in the
4962 archive are not included in the link, which is incorrect since they
4963 precede libc.so.1 in the archive.
4965 Fortunately, ELF archive handling is simpler than that done by
4966 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4967 oddities. In ELF, if we find a symbol in the archive map, and the
4968 symbol is currently undefined, we know that we must pull in that
4971 Unfortunately, we do have to make multiple passes over the symbol
4972 table until nothing further is resolved. */
4975 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4978 bfd_boolean
*defined
= NULL
;
4979 bfd_boolean
*included
= NULL
;
4983 const struct elf_backend_data
*bed
;
4984 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4985 (bfd
*, struct bfd_link_info
*, const char *);
4987 if (! bfd_has_map (abfd
))
4989 /* An empty archive is a special case. */
4990 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4992 bfd_set_error (bfd_error_no_armap
);
4996 /* Keep track of all symbols we know to be already defined, and all
4997 files we know to be already included. This is to speed up the
4998 second and subsequent passes. */
4999 c
= bfd_ardata (abfd
)->symdef_count
;
5003 amt
*= sizeof (bfd_boolean
);
5004 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
5005 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
5006 if (defined
== NULL
|| included
== NULL
)
5009 symdefs
= bfd_ardata (abfd
)->symdefs
;
5010 bed
= get_elf_backend_data (abfd
);
5011 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5024 symdefend
= symdef
+ c
;
5025 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5027 struct elf_link_hash_entry
*h
;
5029 struct bfd_link_hash_entry
*undefs_tail
;
5032 if (defined
[i
] || included
[i
])
5034 if (symdef
->file_offset
== last
)
5040 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5041 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5047 if (h
->root
.type
== bfd_link_hash_common
)
5049 /* We currently have a common symbol. The archive map contains
5050 a reference to this symbol, so we may want to include it. We
5051 only want to include it however, if this archive element
5052 contains a definition of the symbol, not just another common
5055 Unfortunately some archivers (including GNU ar) will put
5056 declarations of common symbols into their archive maps, as
5057 well as real definitions, so we cannot just go by the archive
5058 map alone. Instead we must read in the element's symbol
5059 table and check that to see what kind of symbol definition
5061 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5064 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5066 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5071 /* We need to include this archive member. */
5072 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5073 if (element
== NULL
)
5076 if (! bfd_check_format (element
, bfd_object
))
5079 /* Doublecheck that we have not included this object
5080 already--it should be impossible, but there may be
5081 something wrong with the archive. */
5082 if (element
->archive_pass
!= 0)
5084 bfd_set_error (bfd_error_bad_value
);
5087 element
->archive_pass
= 1;
5089 undefs_tail
= info
->hash
->undefs_tail
;
5091 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5094 if (! bfd_link_add_symbols (element
, info
))
5097 /* If there are any new undefined symbols, we need to make
5098 another pass through the archive in order to see whether
5099 they can be defined. FIXME: This isn't perfect, because
5100 common symbols wind up on undefs_tail and because an
5101 undefined symbol which is defined later on in this pass
5102 does not require another pass. This isn't a bug, but it
5103 does make the code less efficient than it could be. */
5104 if (undefs_tail
!= info
->hash
->undefs_tail
)
5107 /* Look backward to mark all symbols from this object file
5108 which we have already seen in this pass. */
5112 included
[mark
] = TRUE
;
5117 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5119 /* We mark subsequent symbols from this object file as we go
5120 on through the loop. */
5121 last
= symdef
->file_offset
;
5132 if (defined
!= NULL
)
5134 if (included
!= NULL
)
5139 /* Given an ELF BFD, add symbols to the global hash table as
5143 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5145 switch (bfd_get_format (abfd
))
5148 return elf_link_add_object_symbols (abfd
, info
);
5150 return elf_link_add_archive_symbols (abfd
, info
);
5152 bfd_set_error (bfd_error_wrong_format
);
5157 struct hash_codes_info
5159 unsigned long *hashcodes
;
5163 /* This function will be called though elf_link_hash_traverse to store
5164 all hash value of the exported symbols in an array. */
5167 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5169 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5175 if (h
->root
.type
== bfd_link_hash_warning
)
5176 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5178 /* Ignore indirect symbols. These are added by the versioning code. */
5179 if (h
->dynindx
== -1)
5182 name
= h
->root
.root
.string
;
5183 p
= strchr (name
, ELF_VER_CHR
);
5186 alc
= (char *) bfd_malloc (p
- name
+ 1);
5192 memcpy (alc
, name
, p
- name
);
5193 alc
[p
- name
] = '\0';
5197 /* Compute the hash value. */
5198 ha
= bfd_elf_hash (name
);
5200 /* Store the found hash value in the array given as the argument. */
5201 *(inf
->hashcodes
)++ = ha
;
5203 /* And store it in the struct so that we can put it in the hash table
5205 h
->u
.elf_hash_value
= ha
;
5213 struct collect_gnu_hash_codes
5216 const struct elf_backend_data
*bed
;
5217 unsigned long int nsyms
;
5218 unsigned long int maskbits
;
5219 unsigned long int *hashcodes
;
5220 unsigned long int *hashval
;
5221 unsigned long int *indx
;
5222 unsigned long int *counts
;
5225 long int min_dynindx
;
5226 unsigned long int bucketcount
;
5227 unsigned long int symindx
;
5228 long int local_indx
;
5229 long int shift1
, shift2
;
5230 unsigned long int mask
;
5234 /* This function will be called though elf_link_hash_traverse to store
5235 all hash value of the exported symbols in an array. */
5238 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5240 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5246 if (h
->root
.type
== bfd_link_hash_warning
)
5247 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5249 /* Ignore indirect symbols. These are added by the versioning code. */
5250 if (h
->dynindx
== -1)
5253 /* Ignore also local symbols and undefined symbols. */
5254 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5257 name
= h
->root
.root
.string
;
5258 p
= strchr (name
, ELF_VER_CHR
);
5261 alc
= (char *) bfd_malloc (p
- name
+ 1);
5267 memcpy (alc
, name
, p
- name
);
5268 alc
[p
- name
] = '\0';
5272 /* Compute the hash value. */
5273 ha
= bfd_elf_gnu_hash (name
);
5275 /* Store the found hash value in the array for compute_bucket_count,
5276 and also for .dynsym reordering purposes. */
5277 s
->hashcodes
[s
->nsyms
] = ha
;
5278 s
->hashval
[h
->dynindx
] = ha
;
5280 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5281 s
->min_dynindx
= h
->dynindx
;
5289 /* This function will be called though elf_link_hash_traverse to do
5290 final dynaminc symbol renumbering. */
5293 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5295 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5296 unsigned long int bucket
;
5297 unsigned long int val
;
5299 if (h
->root
.type
== bfd_link_hash_warning
)
5300 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5302 /* Ignore indirect symbols. */
5303 if (h
->dynindx
== -1)
5306 /* Ignore also local symbols and undefined symbols. */
5307 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5309 if (h
->dynindx
>= s
->min_dynindx
)
5310 h
->dynindx
= s
->local_indx
++;
5314 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5315 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5316 & ((s
->maskbits
>> s
->shift1
) - 1);
5317 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5319 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5320 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5321 if (s
->counts
[bucket
] == 1)
5322 /* Last element terminates the chain. */
5324 bfd_put_32 (s
->output_bfd
, val
,
5325 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5326 --s
->counts
[bucket
];
5327 h
->dynindx
= s
->indx
[bucket
]++;
5331 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5334 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5336 return !(h
->forced_local
5337 || h
->root
.type
== bfd_link_hash_undefined
5338 || h
->root
.type
== bfd_link_hash_undefweak
5339 || ((h
->root
.type
== bfd_link_hash_defined
5340 || h
->root
.type
== bfd_link_hash_defweak
)
5341 && h
->root
.u
.def
.section
->output_section
== NULL
));
5344 /* Array used to determine the number of hash table buckets to use
5345 based on the number of symbols there are. If there are fewer than
5346 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5347 fewer than 37 we use 17 buckets, and so forth. We never use more
5348 than 32771 buckets. */
5350 static const size_t elf_buckets
[] =
5352 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5356 /* Compute bucket count for hashing table. We do not use a static set
5357 of possible tables sizes anymore. Instead we determine for all
5358 possible reasonable sizes of the table the outcome (i.e., the
5359 number of collisions etc) and choose the best solution. The
5360 weighting functions are not too simple to allow the table to grow
5361 without bounds. Instead one of the weighting factors is the size.
5362 Therefore the result is always a good payoff between few collisions
5363 (= short chain lengths) and table size. */
5365 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5366 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5367 unsigned long int nsyms
,
5370 size_t best_size
= 0;
5371 unsigned long int i
;
5373 /* We have a problem here. The following code to optimize the table
5374 size requires an integer type with more the 32 bits. If
5375 BFD_HOST_U_64_BIT is set we know about such a type. */
5376 #ifdef BFD_HOST_U_64_BIT
5381 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5382 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5383 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5384 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5385 unsigned long int *counts
;
5387 unsigned int no_improvement_count
= 0;
5389 /* Possible optimization parameters: if we have NSYMS symbols we say
5390 that the hashing table must at least have NSYMS/4 and at most
5392 minsize
= nsyms
/ 4;
5395 best_size
= maxsize
= nsyms
* 2;
5400 if ((best_size
& 31) == 0)
5404 /* Create array where we count the collisions in. We must use bfd_malloc
5405 since the size could be large. */
5407 amt
*= sizeof (unsigned long int);
5408 counts
= (unsigned long int *) bfd_malloc (amt
);
5412 /* Compute the "optimal" size for the hash table. The criteria is a
5413 minimal chain length. The minor criteria is (of course) the size
5415 for (i
= minsize
; i
< maxsize
; ++i
)
5417 /* Walk through the array of hashcodes and count the collisions. */
5418 BFD_HOST_U_64_BIT max
;
5419 unsigned long int j
;
5420 unsigned long int fact
;
5422 if (gnu_hash
&& (i
& 31) == 0)
5425 memset (counts
, '\0', i
* sizeof (unsigned long int));
5427 /* Determine how often each hash bucket is used. */
5428 for (j
= 0; j
< nsyms
; ++j
)
5429 ++counts
[hashcodes
[j
] % i
];
5431 /* For the weight function we need some information about the
5432 pagesize on the target. This is information need not be 100%
5433 accurate. Since this information is not available (so far) we
5434 define it here to a reasonable default value. If it is crucial
5435 to have a better value some day simply define this value. */
5436 # ifndef BFD_TARGET_PAGESIZE
5437 # define BFD_TARGET_PAGESIZE (4096)
5440 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5442 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5445 /* Variant 1: optimize for short chains. We add the squares
5446 of all the chain lengths (which favors many small chain
5447 over a few long chains). */
5448 for (j
= 0; j
< i
; ++j
)
5449 max
+= counts
[j
] * counts
[j
];
5451 /* This adds penalties for the overall size of the table. */
5452 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5455 /* Variant 2: Optimize a lot more for small table. Here we
5456 also add squares of the size but we also add penalties for
5457 empty slots (the +1 term). */
5458 for (j
= 0; j
< i
; ++j
)
5459 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5461 /* The overall size of the table is considered, but not as
5462 strong as in variant 1, where it is squared. */
5463 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5467 /* Compare with current best results. */
5468 if (max
< best_chlen
)
5472 no_improvement_count
= 0;
5474 /* PR 11843: Avoid futile long searches for the best bucket size
5475 when there are a large number of symbols. */
5476 else if (++no_improvement_count
== 100)
5483 #endif /* defined (BFD_HOST_U_64_BIT) */
5485 /* This is the fallback solution if no 64bit type is available or if we
5486 are not supposed to spend much time on optimizations. We select the
5487 bucket count using a fixed set of numbers. */
5488 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5490 best_size
= elf_buckets
[i
];
5491 if (nsyms
< elf_buckets
[i
+ 1])
5494 if (gnu_hash
&& best_size
< 2)
5501 /* Size any SHT_GROUP section for ld -r. */
5504 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
5508 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
5509 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
5510 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
5515 /* Set up the sizes and contents of the ELF dynamic sections. This is
5516 called by the ELF linker emulation before_allocation routine. We
5517 must set the sizes of the sections before the linker sets the
5518 addresses of the various sections. */
5521 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5524 const char *filter_shlib
,
5526 const char *depaudit
,
5527 const char * const *auxiliary_filters
,
5528 struct bfd_link_info
*info
,
5529 asection
**sinterpptr
,
5530 struct bfd_elf_version_tree
*verdefs
)
5532 bfd_size_type soname_indx
;
5534 const struct elf_backend_data
*bed
;
5535 struct elf_info_failed asvinfo
;
5539 soname_indx
= (bfd_size_type
) -1;
5541 if (!is_elf_hash_table (info
->hash
))
5544 bed
= get_elf_backend_data (output_bfd
);
5545 if (info
->execstack
)
5546 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5547 else if (info
->noexecstack
)
5548 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5552 asection
*notesec
= NULL
;
5555 for (inputobj
= info
->input_bfds
;
5557 inputobj
= inputobj
->link_next
)
5561 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5563 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5566 if (s
->flags
& SEC_CODE
)
5570 else if (bed
->default_execstack
)
5575 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5576 if (exec
&& info
->relocatable
5577 && notesec
->output_section
!= bfd_abs_section_ptr
)
5578 notesec
->output_section
->flags
|= SEC_CODE
;
5582 /* Any syms created from now on start with -1 in
5583 got.refcount/offset and plt.refcount/offset. */
5584 elf_hash_table (info
)->init_got_refcount
5585 = elf_hash_table (info
)->init_got_offset
;
5586 elf_hash_table (info
)->init_plt_refcount
5587 = elf_hash_table (info
)->init_plt_offset
;
5589 if (info
->relocatable
5590 && !_bfd_elf_size_group_sections (info
))
5593 /* The backend may have to create some sections regardless of whether
5594 we're dynamic or not. */
5595 if (bed
->elf_backend_always_size_sections
5596 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5599 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5602 dynobj
= elf_hash_table (info
)->dynobj
;
5604 /* If there were no dynamic objects in the link, there is nothing to
5609 if (elf_hash_table (info
)->dynamic_sections_created
)
5611 struct elf_info_failed eif
;
5612 struct elf_link_hash_entry
*h
;
5614 struct bfd_elf_version_tree
*t
;
5615 struct bfd_elf_version_expr
*d
;
5617 bfd_boolean all_defined
;
5619 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5620 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5624 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5626 if (soname_indx
== (bfd_size_type
) -1
5627 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5633 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5635 info
->flags
|= DF_SYMBOLIC
;
5642 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5644 if (indx
== (bfd_size_type
) -1
5645 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5648 if (info
->new_dtags
)
5650 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5651 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5656 if (filter_shlib
!= NULL
)
5660 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5661 filter_shlib
, TRUE
);
5662 if (indx
== (bfd_size_type
) -1
5663 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5667 if (auxiliary_filters
!= NULL
)
5669 const char * const *p
;
5671 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5675 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5677 if (indx
== (bfd_size_type
) -1
5678 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5687 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5689 if (indx
== (bfd_size_type
) -1
5690 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5694 if (depaudit
!= NULL
)
5698 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5700 if (indx
== (bfd_size_type
) -1
5701 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5706 eif
.verdefs
= verdefs
;
5709 /* If we are supposed to export all symbols into the dynamic symbol
5710 table (this is not the normal case), then do so. */
5711 if (info
->export_dynamic
5712 || (info
->executable
&& info
->dynamic
))
5714 elf_link_hash_traverse (elf_hash_table (info
),
5715 _bfd_elf_export_symbol
,
5721 /* Make all global versions with definition. */
5722 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5723 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5724 if (!d
->symver
&& d
->literal
)
5726 const char *verstr
, *name
;
5727 size_t namelen
, verlen
, newlen
;
5729 struct elf_link_hash_entry
*newh
;
5732 namelen
= strlen (name
);
5734 verlen
= strlen (verstr
);
5735 newlen
= namelen
+ verlen
+ 3;
5737 newname
= (char *) bfd_malloc (newlen
);
5738 if (newname
== NULL
)
5740 memcpy (newname
, name
, namelen
);
5742 /* Check the hidden versioned definition. */
5743 p
= newname
+ namelen
;
5745 memcpy (p
, verstr
, verlen
+ 1);
5746 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5747 newname
, FALSE
, FALSE
,
5750 || (newh
->root
.type
!= bfd_link_hash_defined
5751 && newh
->root
.type
!= bfd_link_hash_defweak
))
5753 /* Check the default versioned definition. */
5755 memcpy (p
, verstr
, verlen
+ 1);
5756 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5757 newname
, FALSE
, FALSE
,
5762 /* Mark this version if there is a definition and it is
5763 not defined in a shared object. */
5765 && !newh
->def_dynamic
5766 && (newh
->root
.type
== bfd_link_hash_defined
5767 || newh
->root
.type
== bfd_link_hash_defweak
))
5771 /* Attach all the symbols to their version information. */
5772 asvinfo
.info
= info
;
5773 asvinfo
.verdefs
= verdefs
;
5774 asvinfo
.failed
= FALSE
;
5776 elf_link_hash_traverse (elf_hash_table (info
),
5777 _bfd_elf_link_assign_sym_version
,
5782 if (!info
->allow_undefined_version
)
5784 /* Check if all global versions have a definition. */
5786 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5787 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5788 if (d
->literal
&& !d
->symver
&& !d
->script
)
5790 (*_bfd_error_handler
)
5791 (_("%s: undefined version: %s"),
5792 d
->pattern
, t
->name
);
5793 all_defined
= FALSE
;
5798 bfd_set_error (bfd_error_bad_value
);
5803 /* Find all symbols which were defined in a dynamic object and make
5804 the backend pick a reasonable value for them. */
5805 elf_link_hash_traverse (elf_hash_table (info
),
5806 _bfd_elf_adjust_dynamic_symbol
,
5811 /* Add some entries to the .dynamic section. We fill in some of the
5812 values later, in bfd_elf_final_link, but we must add the entries
5813 now so that we know the final size of the .dynamic section. */
5815 /* If there are initialization and/or finalization functions to
5816 call then add the corresponding DT_INIT/DT_FINI entries. */
5817 h
= (info
->init_function
5818 ? elf_link_hash_lookup (elf_hash_table (info
),
5819 info
->init_function
, FALSE
,
5826 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5829 h
= (info
->fini_function
5830 ? elf_link_hash_lookup (elf_hash_table (info
),
5831 info
->fini_function
, FALSE
,
5838 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5842 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5843 if (s
!= NULL
&& s
->linker_has_input
)
5845 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5846 if (! info
->executable
)
5851 for (sub
= info
->input_bfds
; sub
!= NULL
;
5852 sub
= sub
->link_next
)
5853 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5854 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5855 if (elf_section_data (o
)->this_hdr
.sh_type
5856 == SHT_PREINIT_ARRAY
)
5858 (*_bfd_error_handler
)
5859 (_("%B: .preinit_array section is not allowed in DSO"),
5864 bfd_set_error (bfd_error_nonrepresentable_section
);
5868 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5869 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5872 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5873 if (s
!= NULL
&& s
->linker_has_input
)
5875 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5876 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5879 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5880 if (s
!= NULL
&& s
->linker_has_input
)
5882 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5883 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5887 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5888 /* If .dynstr is excluded from the link, we don't want any of
5889 these tags. Strictly, we should be checking each section
5890 individually; This quick check covers for the case where
5891 someone does a /DISCARD/ : { *(*) }. */
5892 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5894 bfd_size_type strsize
;
5896 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5897 if ((info
->emit_hash
5898 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5899 || (info
->emit_gnu_hash
5900 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5901 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5902 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5903 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5904 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5905 bed
->s
->sizeof_sym
))
5910 /* The backend must work out the sizes of all the other dynamic
5912 if (bed
->elf_backend_size_dynamic_sections
5913 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5916 if (elf_hash_table (info
)->dynamic_sections_created
)
5918 unsigned long section_sym_count
;
5921 /* Set up the version definition section. */
5922 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5923 BFD_ASSERT (s
!= NULL
);
5925 /* We may have created additional version definitions if we are
5926 just linking a regular application. */
5927 verdefs
= asvinfo
.verdefs
;
5929 /* Skip anonymous version tag. */
5930 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5931 verdefs
= verdefs
->next
;
5933 if (verdefs
== NULL
&& !info
->create_default_symver
)
5934 s
->flags
|= SEC_EXCLUDE
;
5939 struct bfd_elf_version_tree
*t
;
5941 Elf_Internal_Verdef def
;
5942 Elf_Internal_Verdaux defaux
;
5943 struct bfd_link_hash_entry
*bh
;
5944 struct elf_link_hash_entry
*h
;
5950 /* Make space for the base version. */
5951 size
+= sizeof (Elf_External_Verdef
);
5952 size
+= sizeof (Elf_External_Verdaux
);
5955 /* Make space for the default version. */
5956 if (info
->create_default_symver
)
5958 size
+= sizeof (Elf_External_Verdef
);
5962 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5964 struct bfd_elf_version_deps
*n
;
5966 /* Don't emit base version twice. */
5970 size
+= sizeof (Elf_External_Verdef
);
5971 size
+= sizeof (Elf_External_Verdaux
);
5974 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5975 size
+= sizeof (Elf_External_Verdaux
);
5979 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5980 if (s
->contents
== NULL
&& s
->size
!= 0)
5983 /* Fill in the version definition section. */
5987 def
.vd_version
= VER_DEF_CURRENT
;
5988 def
.vd_flags
= VER_FLG_BASE
;
5991 if (info
->create_default_symver
)
5993 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5994 def
.vd_next
= sizeof (Elf_External_Verdef
);
5998 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5999 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6000 + sizeof (Elf_External_Verdaux
));
6003 if (soname_indx
!= (bfd_size_type
) -1)
6005 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6007 def
.vd_hash
= bfd_elf_hash (soname
);
6008 defaux
.vda_name
= soname_indx
;
6015 name
= lbasename (output_bfd
->filename
);
6016 def
.vd_hash
= bfd_elf_hash (name
);
6017 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6019 if (indx
== (bfd_size_type
) -1)
6021 defaux
.vda_name
= indx
;
6023 defaux
.vda_next
= 0;
6025 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6026 (Elf_External_Verdef
*) p
);
6027 p
+= sizeof (Elf_External_Verdef
);
6028 if (info
->create_default_symver
)
6030 /* Add a symbol representing this version. */
6032 if (! (_bfd_generic_link_add_one_symbol
6033 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6035 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6037 h
= (struct elf_link_hash_entry
*) bh
;
6040 h
->type
= STT_OBJECT
;
6041 h
->verinfo
.vertree
= NULL
;
6043 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6046 /* Create a duplicate of the base version with the same
6047 aux block, but different flags. */
6050 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6052 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6053 + sizeof (Elf_External_Verdaux
));
6056 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6057 (Elf_External_Verdef
*) p
);
6058 p
+= sizeof (Elf_External_Verdef
);
6060 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6061 (Elf_External_Verdaux
*) p
);
6062 p
+= sizeof (Elf_External_Verdaux
);
6064 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6067 struct bfd_elf_version_deps
*n
;
6069 /* Don't emit the base version twice. */
6074 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6077 /* Add a symbol representing this version. */
6079 if (! (_bfd_generic_link_add_one_symbol
6080 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6082 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6084 h
= (struct elf_link_hash_entry
*) bh
;
6087 h
->type
= STT_OBJECT
;
6088 h
->verinfo
.vertree
= t
;
6090 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6093 def
.vd_version
= VER_DEF_CURRENT
;
6095 if (t
->globals
.list
== NULL
6096 && t
->locals
.list
== NULL
6098 def
.vd_flags
|= VER_FLG_WEAK
;
6099 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6100 def
.vd_cnt
= cdeps
+ 1;
6101 def
.vd_hash
= bfd_elf_hash (t
->name
);
6102 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6105 /* If a basever node is next, it *must* be the last node in
6106 the chain, otherwise Verdef construction breaks. */
6107 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6108 BFD_ASSERT (t
->next
->next
== NULL
);
6110 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6111 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6112 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6114 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6115 (Elf_External_Verdef
*) p
);
6116 p
+= sizeof (Elf_External_Verdef
);
6118 defaux
.vda_name
= h
->dynstr_index
;
6119 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6121 defaux
.vda_next
= 0;
6122 if (t
->deps
!= NULL
)
6123 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6124 t
->name_indx
= defaux
.vda_name
;
6126 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6127 (Elf_External_Verdaux
*) p
);
6128 p
+= sizeof (Elf_External_Verdaux
);
6130 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6132 if (n
->version_needed
== NULL
)
6134 /* This can happen if there was an error in the
6136 defaux
.vda_name
= 0;
6140 defaux
.vda_name
= n
->version_needed
->name_indx
;
6141 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6144 if (n
->next
== NULL
)
6145 defaux
.vda_next
= 0;
6147 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6149 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6150 (Elf_External_Verdaux
*) p
);
6151 p
+= sizeof (Elf_External_Verdaux
);
6155 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6156 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6159 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6162 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6164 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6167 else if (info
->flags
& DF_BIND_NOW
)
6169 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6175 if (info
->executable
)
6176 info
->flags_1
&= ~ (DF_1_INITFIRST
6179 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6183 /* Work out the size of the version reference section. */
6185 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6186 BFD_ASSERT (s
!= NULL
);
6188 struct elf_find_verdep_info sinfo
;
6191 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6192 if (sinfo
.vers
== 0)
6194 sinfo
.failed
= FALSE
;
6196 elf_link_hash_traverse (elf_hash_table (info
),
6197 _bfd_elf_link_find_version_dependencies
,
6202 if (elf_tdata (output_bfd
)->verref
== NULL
)
6203 s
->flags
|= SEC_EXCLUDE
;
6206 Elf_Internal_Verneed
*t
;
6211 /* Build the version dependency section. */
6214 for (t
= elf_tdata (output_bfd
)->verref
;
6218 Elf_Internal_Vernaux
*a
;
6220 size
+= sizeof (Elf_External_Verneed
);
6222 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6223 size
+= sizeof (Elf_External_Vernaux
);
6227 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6228 if (s
->contents
== NULL
)
6232 for (t
= elf_tdata (output_bfd
)->verref
;
6237 Elf_Internal_Vernaux
*a
;
6241 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6244 t
->vn_version
= VER_NEED_CURRENT
;
6246 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6247 elf_dt_name (t
->vn_bfd
) != NULL
6248 ? elf_dt_name (t
->vn_bfd
)
6249 : lbasename (t
->vn_bfd
->filename
),
6251 if (indx
== (bfd_size_type
) -1)
6254 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6255 if (t
->vn_nextref
== NULL
)
6258 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6259 + caux
* sizeof (Elf_External_Vernaux
));
6261 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6262 (Elf_External_Verneed
*) p
);
6263 p
+= sizeof (Elf_External_Verneed
);
6265 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6267 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6268 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6269 a
->vna_nodename
, FALSE
);
6270 if (indx
== (bfd_size_type
) -1)
6273 if (a
->vna_nextptr
== NULL
)
6276 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6278 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6279 (Elf_External_Vernaux
*) p
);
6280 p
+= sizeof (Elf_External_Vernaux
);
6284 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6285 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6288 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6292 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6293 && elf_tdata (output_bfd
)->cverdefs
== 0)
6294 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6295 §ion_sym_count
) == 0)
6297 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6298 s
->flags
|= SEC_EXCLUDE
;
6304 /* Find the first non-excluded output section. We'll use its
6305 section symbol for some emitted relocs. */
6307 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6311 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6312 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6313 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6315 elf_hash_table (info
)->text_index_section
= s
;
6320 /* Find two non-excluded output sections, one for code, one for data.
6321 We'll use their section symbols for some emitted relocs. */
6323 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6327 /* Data first, since setting text_index_section changes
6328 _bfd_elf_link_omit_section_dynsym. */
6329 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6330 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6331 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6333 elf_hash_table (info
)->data_index_section
= s
;
6337 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6338 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6339 == (SEC_ALLOC
| SEC_READONLY
))
6340 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6342 elf_hash_table (info
)->text_index_section
= s
;
6346 if (elf_hash_table (info
)->text_index_section
== NULL
)
6347 elf_hash_table (info
)->text_index_section
6348 = elf_hash_table (info
)->data_index_section
;
6352 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6354 const struct elf_backend_data
*bed
;
6356 if (!is_elf_hash_table (info
->hash
))
6359 bed
= get_elf_backend_data (output_bfd
);
6360 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6362 if (elf_hash_table (info
)->dynamic_sections_created
)
6366 bfd_size_type dynsymcount
;
6367 unsigned long section_sym_count
;
6368 unsigned int dtagcount
;
6370 dynobj
= elf_hash_table (info
)->dynobj
;
6372 /* Assign dynsym indicies. In a shared library we generate a
6373 section symbol for each output section, which come first.
6374 Next come all of the back-end allocated local dynamic syms,
6375 followed by the rest of the global symbols. */
6377 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6378 §ion_sym_count
);
6380 /* Work out the size of the symbol version section. */
6381 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6382 BFD_ASSERT (s
!= NULL
);
6383 if (dynsymcount
!= 0
6384 && (s
->flags
& SEC_EXCLUDE
) == 0)
6386 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6387 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6388 if (s
->contents
== NULL
)
6391 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6395 /* Set the size of the .dynsym and .hash sections. We counted
6396 the number of dynamic symbols in elf_link_add_object_symbols.
6397 We will build the contents of .dynsym and .hash when we build
6398 the final symbol table, because until then we do not know the
6399 correct value to give the symbols. We built the .dynstr
6400 section as we went along in elf_link_add_object_symbols. */
6401 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6402 BFD_ASSERT (s
!= NULL
);
6403 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6405 if (dynsymcount
!= 0)
6407 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6408 if (s
->contents
== NULL
)
6411 /* The first entry in .dynsym is a dummy symbol.
6412 Clear all the section syms, in case we don't output them all. */
6413 ++section_sym_count
;
6414 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6417 elf_hash_table (info
)->bucketcount
= 0;
6419 /* Compute the size of the hashing table. As a side effect this
6420 computes the hash values for all the names we export. */
6421 if (info
->emit_hash
)
6423 unsigned long int *hashcodes
;
6424 struct hash_codes_info hashinf
;
6426 unsigned long int nsyms
;
6428 size_t hash_entry_size
;
6430 /* Compute the hash values for all exported symbols. At the same
6431 time store the values in an array so that we could use them for
6433 amt
= dynsymcount
* sizeof (unsigned long int);
6434 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6435 if (hashcodes
== NULL
)
6437 hashinf
.hashcodes
= hashcodes
;
6438 hashinf
.error
= FALSE
;
6440 /* Put all hash values in HASHCODES. */
6441 elf_link_hash_traverse (elf_hash_table (info
),
6442 elf_collect_hash_codes
, &hashinf
);
6449 nsyms
= hashinf
.hashcodes
- hashcodes
;
6451 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6454 if (bucketcount
== 0)
6457 elf_hash_table (info
)->bucketcount
= bucketcount
;
6459 s
= bfd_get_section_by_name (dynobj
, ".hash");
6460 BFD_ASSERT (s
!= NULL
);
6461 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6462 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6463 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6464 if (s
->contents
== NULL
)
6467 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6468 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6469 s
->contents
+ hash_entry_size
);
6472 if (info
->emit_gnu_hash
)
6475 unsigned char *contents
;
6476 struct collect_gnu_hash_codes cinfo
;
6480 memset (&cinfo
, 0, sizeof (cinfo
));
6482 /* Compute the hash values for all exported symbols. At the same
6483 time store the values in an array so that we could use them for
6485 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6486 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6487 if (cinfo
.hashcodes
== NULL
)
6490 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6491 cinfo
.min_dynindx
= -1;
6492 cinfo
.output_bfd
= output_bfd
;
6495 /* Put all hash values in HASHCODES. */
6496 elf_link_hash_traverse (elf_hash_table (info
),
6497 elf_collect_gnu_hash_codes
, &cinfo
);
6500 free (cinfo
.hashcodes
);
6505 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6507 if (bucketcount
== 0)
6509 free (cinfo
.hashcodes
);
6513 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6514 BFD_ASSERT (s
!= NULL
);
6516 if (cinfo
.nsyms
== 0)
6518 /* Empty .gnu.hash section is special. */
6519 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6520 free (cinfo
.hashcodes
);
6521 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6522 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6523 if (contents
== NULL
)
6525 s
->contents
= contents
;
6526 /* 1 empty bucket. */
6527 bfd_put_32 (output_bfd
, 1, contents
);
6528 /* SYMIDX above the special symbol 0. */
6529 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6530 /* Just one word for bitmask. */
6531 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6532 /* Only hash fn bloom filter. */
6533 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6534 /* No hashes are valid - empty bitmask. */
6535 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6536 /* No hashes in the only bucket. */
6537 bfd_put_32 (output_bfd
, 0,
6538 contents
+ 16 + bed
->s
->arch_size
/ 8);
6542 unsigned long int maskwords
, maskbitslog2
;
6543 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6545 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6546 if (maskbitslog2
< 3)
6548 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6549 maskbitslog2
= maskbitslog2
+ 3;
6551 maskbitslog2
= maskbitslog2
+ 2;
6552 if (bed
->s
->arch_size
== 64)
6554 if (maskbitslog2
== 5)
6560 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6561 cinfo
.shift2
= maskbitslog2
;
6562 cinfo
.maskbits
= 1 << maskbitslog2
;
6563 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6564 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6565 amt
+= maskwords
* sizeof (bfd_vma
);
6566 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6567 if (cinfo
.bitmask
== NULL
)
6569 free (cinfo
.hashcodes
);
6573 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6574 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6575 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6576 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6578 /* Determine how often each hash bucket is used. */
6579 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6580 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6581 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6583 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6584 if (cinfo
.counts
[i
] != 0)
6586 cinfo
.indx
[i
] = cnt
;
6587 cnt
+= cinfo
.counts
[i
];
6589 BFD_ASSERT (cnt
== dynsymcount
);
6590 cinfo
.bucketcount
= bucketcount
;
6591 cinfo
.local_indx
= cinfo
.min_dynindx
;
6593 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6594 s
->size
+= cinfo
.maskbits
/ 8;
6595 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6596 if (contents
== NULL
)
6598 free (cinfo
.bitmask
);
6599 free (cinfo
.hashcodes
);
6603 s
->contents
= contents
;
6604 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6605 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6606 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6607 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6608 contents
+= 16 + cinfo
.maskbits
/ 8;
6610 for (i
= 0; i
< bucketcount
; ++i
)
6612 if (cinfo
.counts
[i
] == 0)
6613 bfd_put_32 (output_bfd
, 0, contents
);
6615 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6619 cinfo
.contents
= contents
;
6621 /* Renumber dynamic symbols, populate .gnu.hash section. */
6622 elf_link_hash_traverse (elf_hash_table (info
),
6623 elf_renumber_gnu_hash_syms
, &cinfo
);
6625 contents
= s
->contents
+ 16;
6626 for (i
= 0; i
< maskwords
; ++i
)
6628 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6630 contents
+= bed
->s
->arch_size
/ 8;
6633 free (cinfo
.bitmask
);
6634 free (cinfo
.hashcodes
);
6638 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6639 BFD_ASSERT (s
!= NULL
);
6641 elf_finalize_dynstr (output_bfd
, info
);
6643 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6645 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6646 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6653 /* Indicate that we are only retrieving symbol values from this
6657 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6659 if (is_elf_hash_table (info
->hash
))
6660 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6661 _bfd_generic_link_just_syms (sec
, info
);
6664 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6667 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6670 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6671 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6674 /* Finish SHF_MERGE section merging. */
6677 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6682 if (!is_elf_hash_table (info
->hash
))
6685 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6686 if ((ibfd
->flags
& DYNAMIC
) == 0)
6687 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6688 if ((sec
->flags
& SEC_MERGE
) != 0
6689 && !bfd_is_abs_section (sec
->output_section
))
6691 struct bfd_elf_section_data
*secdata
;
6693 secdata
= elf_section_data (sec
);
6694 if (! _bfd_add_merge_section (abfd
,
6695 &elf_hash_table (info
)->merge_info
,
6696 sec
, &secdata
->sec_info
))
6698 else if (secdata
->sec_info
)
6699 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6702 if (elf_hash_table (info
)->merge_info
!= NULL
)
6703 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6704 merge_sections_remove_hook
);
6708 /* Create an entry in an ELF linker hash table. */
6710 struct bfd_hash_entry
*
6711 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6712 struct bfd_hash_table
*table
,
6715 /* Allocate the structure if it has not already been allocated by a
6719 entry
= (struct bfd_hash_entry
*)
6720 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6725 /* Call the allocation method of the superclass. */
6726 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6729 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6730 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6732 /* Set local fields. */
6735 ret
->got
= htab
->init_got_refcount
;
6736 ret
->plt
= htab
->init_plt_refcount
;
6737 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6738 - offsetof (struct elf_link_hash_entry
, size
)));
6739 /* Assume that we have been called by a non-ELF symbol reader.
6740 This flag is then reset by the code which reads an ELF input
6741 file. This ensures that a symbol created by a non-ELF symbol
6742 reader will have the flag set correctly. */
6749 /* Copy data from an indirect symbol to its direct symbol, hiding the
6750 old indirect symbol. Also used for copying flags to a weakdef. */
6753 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6754 struct elf_link_hash_entry
*dir
,
6755 struct elf_link_hash_entry
*ind
)
6757 struct elf_link_hash_table
*htab
;
6759 /* Copy down any references that we may have already seen to the
6760 symbol which just became indirect. */
6762 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6763 dir
->ref_regular
|= ind
->ref_regular
;
6764 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6765 dir
->non_got_ref
|= ind
->non_got_ref
;
6766 dir
->needs_plt
|= ind
->needs_plt
;
6767 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6769 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6772 /* Copy over the global and procedure linkage table refcount entries.
6773 These may have been already set up by a check_relocs routine. */
6774 htab
= elf_hash_table (info
);
6775 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6777 if (dir
->got
.refcount
< 0)
6778 dir
->got
.refcount
= 0;
6779 dir
->got
.refcount
+= ind
->got
.refcount
;
6780 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6783 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6785 if (dir
->plt
.refcount
< 0)
6786 dir
->plt
.refcount
= 0;
6787 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6788 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6791 if (ind
->dynindx
!= -1)
6793 if (dir
->dynindx
!= -1)
6794 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6795 dir
->dynindx
= ind
->dynindx
;
6796 dir
->dynstr_index
= ind
->dynstr_index
;
6798 ind
->dynstr_index
= 0;
6803 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6804 struct elf_link_hash_entry
*h
,
6805 bfd_boolean force_local
)
6807 /* STT_GNU_IFUNC symbol must go through PLT. */
6808 if (h
->type
!= STT_GNU_IFUNC
)
6810 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6815 h
->forced_local
= 1;
6816 if (h
->dynindx
!= -1)
6819 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6825 /* Initialize an ELF linker hash table. */
6828 _bfd_elf_link_hash_table_init
6829 (struct elf_link_hash_table
*table
,
6831 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6832 struct bfd_hash_table
*,
6834 unsigned int entsize
,
6835 enum elf_target_id target_id
)
6838 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6840 memset (table
, 0, sizeof * table
);
6841 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6842 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6843 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6844 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6845 /* The first dynamic symbol is a dummy. */
6846 table
->dynsymcount
= 1;
6848 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6850 table
->root
.type
= bfd_link_elf_hash_table
;
6851 table
->hash_table_id
= target_id
;
6856 /* Create an ELF linker hash table. */
6858 struct bfd_link_hash_table
*
6859 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6861 struct elf_link_hash_table
*ret
;
6862 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6864 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6868 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6869 sizeof (struct elf_link_hash_entry
),
6879 /* This is a hook for the ELF emulation code in the generic linker to
6880 tell the backend linker what file name to use for the DT_NEEDED
6881 entry for a dynamic object. */
6884 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6886 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6887 && bfd_get_format (abfd
) == bfd_object
)
6888 elf_dt_name (abfd
) = name
;
6892 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6895 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6896 && bfd_get_format (abfd
) == bfd_object
)
6897 lib_class
= elf_dyn_lib_class (abfd
);
6904 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6906 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6907 && bfd_get_format (abfd
) == bfd_object
)
6908 elf_dyn_lib_class (abfd
) = lib_class
;
6911 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6912 the linker ELF emulation code. */
6914 struct bfd_link_needed_list
*
6915 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6916 struct bfd_link_info
*info
)
6918 if (! is_elf_hash_table (info
->hash
))
6920 return elf_hash_table (info
)->needed
;
6923 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6924 hook for the linker ELF emulation code. */
6926 struct bfd_link_needed_list
*
6927 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6928 struct bfd_link_info
*info
)
6930 if (! is_elf_hash_table (info
->hash
))
6932 return elf_hash_table (info
)->runpath
;
6935 /* Get the name actually used for a dynamic object for a link. This
6936 is the SONAME entry if there is one. Otherwise, it is the string
6937 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6940 bfd_elf_get_dt_soname (bfd
*abfd
)
6942 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6943 && bfd_get_format (abfd
) == bfd_object
)
6944 return elf_dt_name (abfd
);
6948 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6949 the ELF linker emulation code. */
6952 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6953 struct bfd_link_needed_list
**pneeded
)
6956 bfd_byte
*dynbuf
= NULL
;
6957 unsigned int elfsec
;
6958 unsigned long shlink
;
6959 bfd_byte
*extdyn
, *extdynend
;
6961 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6965 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6966 || bfd_get_format (abfd
) != bfd_object
)
6969 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6970 if (s
== NULL
|| s
->size
== 0)
6973 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6976 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6977 if (elfsec
== SHN_BAD
)
6980 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6982 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6983 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6986 extdynend
= extdyn
+ s
->size
;
6987 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6989 Elf_Internal_Dyn dyn
;
6991 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6993 if (dyn
.d_tag
== DT_NULL
)
6996 if (dyn
.d_tag
== DT_NEEDED
)
6999 struct bfd_link_needed_list
*l
;
7000 unsigned int tagv
= dyn
.d_un
.d_val
;
7003 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
7008 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7029 struct elf_symbuf_symbol
7031 unsigned long st_name
; /* Symbol name, index in string tbl */
7032 unsigned char st_info
; /* Type and binding attributes */
7033 unsigned char st_other
; /* Visibilty, and target specific */
7036 struct elf_symbuf_head
7038 struct elf_symbuf_symbol
*ssym
;
7039 bfd_size_type count
;
7040 unsigned int st_shndx
;
7047 Elf_Internal_Sym
*isym
;
7048 struct elf_symbuf_symbol
*ssym
;
7053 /* Sort references to symbols by ascending section number. */
7056 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7058 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7059 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7061 return s1
->st_shndx
- s2
->st_shndx
;
7065 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7067 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7068 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7069 return strcmp (s1
->name
, s2
->name
);
7072 static struct elf_symbuf_head
*
7073 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7075 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7076 struct elf_symbuf_symbol
*ssym
;
7077 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7078 bfd_size_type i
, shndx_count
, total_size
;
7080 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7084 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7085 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7086 *ind
++ = &isymbuf
[i
];
7089 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7090 elf_sort_elf_symbol
);
7093 if (indbufend
> indbuf
)
7094 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7095 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7098 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7099 + (indbufend
- indbuf
) * sizeof (*ssym
));
7100 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7101 if (ssymbuf
== NULL
)
7107 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7108 ssymbuf
->ssym
= NULL
;
7109 ssymbuf
->count
= shndx_count
;
7110 ssymbuf
->st_shndx
= 0;
7111 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7113 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7116 ssymhead
->ssym
= ssym
;
7117 ssymhead
->count
= 0;
7118 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7120 ssym
->st_name
= (*ind
)->st_name
;
7121 ssym
->st_info
= (*ind
)->st_info
;
7122 ssym
->st_other
= (*ind
)->st_other
;
7125 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7126 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7133 /* Check if 2 sections define the same set of local and global
7137 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7138 struct bfd_link_info
*info
)
7141 const struct elf_backend_data
*bed1
, *bed2
;
7142 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7143 bfd_size_type symcount1
, symcount2
;
7144 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7145 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7146 Elf_Internal_Sym
*isym
, *isymend
;
7147 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7148 bfd_size_type count1
, count2
, i
;
7149 unsigned int shndx1
, shndx2
;
7155 /* Both sections have to be in ELF. */
7156 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7157 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7160 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7163 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7164 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7165 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7168 bed1
= get_elf_backend_data (bfd1
);
7169 bed2
= get_elf_backend_data (bfd2
);
7170 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7171 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7172 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7173 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7175 if (symcount1
== 0 || symcount2
== 0)
7181 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7182 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7184 if (ssymbuf1
== NULL
)
7186 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7188 if (isymbuf1
== NULL
)
7191 if (!info
->reduce_memory_overheads
)
7192 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7193 = elf_create_symbuf (symcount1
, isymbuf1
);
7196 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7198 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7200 if (isymbuf2
== NULL
)
7203 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7204 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7205 = elf_create_symbuf (symcount2
, isymbuf2
);
7208 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7210 /* Optimized faster version. */
7211 bfd_size_type lo
, hi
, mid
;
7212 struct elf_symbol
*symp
;
7213 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7216 hi
= ssymbuf1
->count
;
7221 mid
= (lo
+ hi
) / 2;
7222 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7224 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7228 count1
= ssymbuf1
[mid
].count
;
7235 hi
= ssymbuf2
->count
;
7240 mid
= (lo
+ hi
) / 2;
7241 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7243 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7247 count2
= ssymbuf2
[mid
].count
;
7253 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7256 symtable1
= (struct elf_symbol
*)
7257 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7258 symtable2
= (struct elf_symbol
*)
7259 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7260 if (symtable1
== NULL
|| symtable2
== NULL
)
7264 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7265 ssym
< ssymend
; ssym
++, symp
++)
7267 symp
->u
.ssym
= ssym
;
7268 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7274 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7275 ssym
< ssymend
; ssym
++, symp
++)
7277 symp
->u
.ssym
= ssym
;
7278 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7283 /* Sort symbol by name. */
7284 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7285 elf_sym_name_compare
);
7286 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7287 elf_sym_name_compare
);
7289 for (i
= 0; i
< count1
; i
++)
7290 /* Two symbols must have the same binding, type and name. */
7291 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7292 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7293 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7300 symtable1
= (struct elf_symbol
*)
7301 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7302 symtable2
= (struct elf_symbol
*)
7303 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7304 if (symtable1
== NULL
|| symtable2
== NULL
)
7307 /* Count definitions in the section. */
7309 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7310 if (isym
->st_shndx
== shndx1
)
7311 symtable1
[count1
++].u
.isym
= isym
;
7314 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7315 if (isym
->st_shndx
== shndx2
)
7316 symtable2
[count2
++].u
.isym
= isym
;
7318 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7321 for (i
= 0; i
< count1
; i
++)
7323 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7324 symtable1
[i
].u
.isym
->st_name
);
7326 for (i
= 0; i
< count2
; i
++)
7328 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7329 symtable2
[i
].u
.isym
->st_name
);
7331 /* Sort symbol by name. */
7332 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7333 elf_sym_name_compare
);
7334 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7335 elf_sym_name_compare
);
7337 for (i
= 0; i
< count1
; i
++)
7338 /* Two symbols must have the same binding, type and name. */
7339 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7340 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7341 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7359 /* Return TRUE if 2 section types are compatible. */
7362 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7363 bfd
*bbfd
, const asection
*bsec
)
7367 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7368 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7371 return elf_section_type (asec
) == elf_section_type (bsec
);
7374 /* Final phase of ELF linker. */
7376 /* A structure we use to avoid passing large numbers of arguments. */
7378 struct elf_final_link_info
7380 /* General link information. */
7381 struct bfd_link_info
*info
;
7384 /* Symbol string table. */
7385 struct bfd_strtab_hash
*symstrtab
;
7386 /* .dynsym section. */
7387 asection
*dynsym_sec
;
7388 /* .hash section. */
7390 /* symbol version section (.gnu.version). */
7391 asection
*symver_sec
;
7392 /* Buffer large enough to hold contents of any section. */
7394 /* Buffer large enough to hold external relocs of any section. */
7395 void *external_relocs
;
7396 /* Buffer large enough to hold internal relocs of any section. */
7397 Elf_Internal_Rela
*internal_relocs
;
7398 /* Buffer large enough to hold external local symbols of any input
7400 bfd_byte
*external_syms
;
7401 /* And a buffer for symbol section indices. */
7402 Elf_External_Sym_Shndx
*locsym_shndx
;
7403 /* Buffer large enough to hold internal local symbols of any input
7405 Elf_Internal_Sym
*internal_syms
;
7406 /* Array large enough to hold a symbol index for each local symbol
7407 of any input BFD. */
7409 /* Array large enough to hold a section pointer for each local
7410 symbol of any input BFD. */
7411 asection
**sections
;
7412 /* Buffer to hold swapped out symbols. */
7414 /* And one for symbol section indices. */
7415 Elf_External_Sym_Shndx
*symshndxbuf
;
7416 /* Number of swapped out symbols in buffer. */
7417 size_t symbuf_count
;
7418 /* Number of symbols which fit in symbuf. */
7420 /* And same for symshndxbuf. */
7421 size_t shndxbuf_size
;
7424 /* This struct is used to pass information to elf_link_output_extsym. */
7426 struct elf_outext_info
7429 bfd_boolean localsyms
;
7430 struct elf_final_link_info
*finfo
;
7434 /* Support for evaluating a complex relocation.
7436 Complex relocations are generalized, self-describing relocations. The
7437 implementation of them consists of two parts: complex symbols, and the
7438 relocations themselves.
7440 The relocations are use a reserved elf-wide relocation type code (R_RELC
7441 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7442 information (start bit, end bit, word width, etc) into the addend. This
7443 information is extracted from CGEN-generated operand tables within gas.
7445 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7446 internal) representing prefix-notation expressions, including but not
7447 limited to those sorts of expressions normally encoded as addends in the
7448 addend field. The symbol mangling format is:
7451 | <unary-operator> ':' <node>
7452 | <binary-operator> ':' <node> ':' <node>
7455 <literal> := 's' <digits=N> ':' <N character symbol name>
7456 | 'S' <digits=N> ':' <N character section name>
7460 <binary-operator> := as in C
7461 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7464 set_symbol_value (bfd
*bfd_with_globals
,
7465 Elf_Internal_Sym
*isymbuf
,
7470 struct elf_link_hash_entry
**sym_hashes
;
7471 struct elf_link_hash_entry
*h
;
7472 size_t extsymoff
= locsymcount
;
7474 if (symidx
< locsymcount
)
7476 Elf_Internal_Sym
*sym
;
7478 sym
= isymbuf
+ symidx
;
7479 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7481 /* It is a local symbol: move it to the
7482 "absolute" section and give it a value. */
7483 sym
->st_shndx
= SHN_ABS
;
7484 sym
->st_value
= val
;
7487 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7491 /* It is a global symbol: set its link type
7492 to "defined" and give it a value. */
7494 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7495 h
= sym_hashes
[symidx
- extsymoff
];
7496 while (h
->root
.type
== bfd_link_hash_indirect
7497 || h
->root
.type
== bfd_link_hash_warning
)
7498 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7499 h
->root
.type
= bfd_link_hash_defined
;
7500 h
->root
.u
.def
.value
= val
;
7501 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7505 resolve_symbol (const char *name
,
7507 struct elf_final_link_info
*finfo
,
7509 Elf_Internal_Sym
*isymbuf
,
7512 Elf_Internal_Sym
*sym
;
7513 struct bfd_link_hash_entry
*global_entry
;
7514 const char *candidate
= NULL
;
7515 Elf_Internal_Shdr
*symtab_hdr
;
7518 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7520 for (i
= 0; i
< locsymcount
; ++ i
)
7524 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7527 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7528 symtab_hdr
->sh_link
,
7531 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7532 name
, candidate
, (unsigned long) sym
->st_value
);
7534 if (candidate
&& strcmp (candidate
, name
) == 0)
7536 asection
*sec
= finfo
->sections
[i
];
7538 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7539 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7541 printf ("Found symbol with value %8.8lx\n",
7542 (unsigned long) *result
);
7548 /* Hmm, haven't found it yet. perhaps it is a global. */
7549 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7550 FALSE
, FALSE
, TRUE
);
7554 if (global_entry
->type
== bfd_link_hash_defined
7555 || global_entry
->type
== bfd_link_hash_defweak
)
7557 *result
= (global_entry
->u
.def
.value
7558 + global_entry
->u
.def
.section
->output_section
->vma
7559 + global_entry
->u
.def
.section
->output_offset
);
7561 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7562 global_entry
->root
.string
, (unsigned long) *result
);
7571 resolve_section (const char *name
,
7578 for (curr
= sections
; curr
; curr
= curr
->next
)
7579 if (strcmp (curr
->name
, name
) == 0)
7581 *result
= curr
->vma
;
7585 /* Hmm. still haven't found it. try pseudo-section names. */
7586 for (curr
= sections
; curr
; curr
= curr
->next
)
7588 len
= strlen (curr
->name
);
7589 if (len
> strlen (name
))
7592 if (strncmp (curr
->name
, name
, len
) == 0)
7594 if (strncmp (".end", name
+ len
, 4) == 0)
7596 *result
= curr
->vma
+ curr
->size
;
7600 /* Insert more pseudo-section names here, if you like. */
7608 undefined_reference (const char *reftype
, const char *name
)
7610 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7615 eval_symbol (bfd_vma
*result
,
7618 struct elf_final_link_info
*finfo
,
7620 Elf_Internal_Sym
*isymbuf
,
7629 const char *sym
= *symp
;
7631 bfd_boolean symbol_is_section
= FALSE
;
7636 if (len
< 1 || len
> sizeof (symbuf
))
7638 bfd_set_error (bfd_error_invalid_operation
);
7651 *result
= strtoul (sym
, (char **) symp
, 16);
7655 symbol_is_section
= TRUE
;
7658 symlen
= strtol (sym
, (char **) symp
, 10);
7659 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7661 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7663 bfd_set_error (bfd_error_invalid_operation
);
7667 memcpy (symbuf
, sym
, symlen
);
7668 symbuf
[symlen
] = '\0';
7669 *symp
= sym
+ symlen
;
7671 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7672 the symbol as a section, or vice-versa. so we're pretty liberal in our
7673 interpretation here; section means "try section first", not "must be a
7674 section", and likewise with symbol. */
7676 if (symbol_is_section
)
7678 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7679 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7680 isymbuf
, locsymcount
))
7682 undefined_reference ("section", symbuf
);
7688 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7689 isymbuf
, locsymcount
)
7690 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7693 undefined_reference ("symbol", symbuf
);
7700 /* All that remains are operators. */
7702 #define UNARY_OP(op) \
7703 if (strncmp (sym, #op, strlen (#op)) == 0) \
7705 sym += strlen (#op); \
7709 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7710 isymbuf, locsymcount, signed_p)) \
7713 *result = op ((bfd_signed_vma) a); \
7719 #define BINARY_OP(op) \
7720 if (strncmp (sym, #op, strlen (#op)) == 0) \
7722 sym += strlen (#op); \
7726 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7727 isymbuf, locsymcount, signed_p)) \
7730 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7731 isymbuf, locsymcount, signed_p)) \
7734 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7764 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7765 bfd_set_error (bfd_error_invalid_operation
);
7771 put_value (bfd_vma size
,
7772 unsigned long chunksz
,
7777 location
+= (size
- chunksz
);
7779 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7787 bfd_put_8 (input_bfd
, x
, location
);
7790 bfd_put_16 (input_bfd
, x
, location
);
7793 bfd_put_32 (input_bfd
, x
, location
);
7797 bfd_put_64 (input_bfd
, x
, location
);
7807 get_value (bfd_vma size
,
7808 unsigned long chunksz
,
7814 for (; size
; size
-= chunksz
, location
+= chunksz
)
7822 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7825 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7828 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7832 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7843 decode_complex_addend (unsigned long *start
, /* in bits */
7844 unsigned long *oplen
, /* in bits */
7845 unsigned long *len
, /* in bits */
7846 unsigned long *wordsz
, /* in bytes */
7847 unsigned long *chunksz
, /* in bytes */
7848 unsigned long *lsb0_p
,
7849 unsigned long *signed_p
,
7850 unsigned long *trunc_p
,
7851 unsigned long encoded
)
7853 * start
= encoded
& 0x3F;
7854 * len
= (encoded
>> 6) & 0x3F;
7855 * oplen
= (encoded
>> 12) & 0x3F;
7856 * wordsz
= (encoded
>> 18) & 0xF;
7857 * chunksz
= (encoded
>> 22) & 0xF;
7858 * lsb0_p
= (encoded
>> 27) & 1;
7859 * signed_p
= (encoded
>> 28) & 1;
7860 * trunc_p
= (encoded
>> 29) & 1;
7863 bfd_reloc_status_type
7864 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7865 asection
*input_section ATTRIBUTE_UNUSED
,
7867 Elf_Internal_Rela
*rel
,
7870 bfd_vma shift
, x
, mask
;
7871 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7872 bfd_reloc_status_type r
;
7874 /* Perform this reloc, since it is complex.
7875 (this is not to say that it necessarily refers to a complex
7876 symbol; merely that it is a self-describing CGEN based reloc.
7877 i.e. the addend has the complete reloc information (bit start, end,
7878 word size, etc) encoded within it.). */
7880 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7881 &chunksz
, &lsb0_p
, &signed_p
,
7882 &trunc_p
, rel
->r_addend
);
7884 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7887 shift
= (start
+ 1) - len
;
7889 shift
= (8 * wordsz
) - (start
+ len
);
7891 /* FIXME: octets_per_byte. */
7892 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7895 printf ("Doing complex reloc: "
7896 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7897 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7898 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7899 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7900 oplen
, x
, mask
, relocation
);
7905 /* Now do an overflow check. */
7906 r
= bfd_check_overflow ((signed_p
7907 ? complain_overflow_signed
7908 : complain_overflow_unsigned
),
7909 len
, 0, (8 * wordsz
),
7913 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7916 printf (" relocation: %8.8lx\n"
7917 " shifted mask: %8.8lx\n"
7918 " shifted/masked reloc: %8.8lx\n"
7919 " result: %8.8lx\n",
7920 relocation
, (mask
<< shift
),
7921 ((relocation
& mask
) << shift
), x
);
7923 /* FIXME: octets_per_byte. */
7924 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7928 /* When performing a relocatable link, the input relocations are
7929 preserved. But, if they reference global symbols, the indices
7930 referenced must be updated. Update all the relocations in
7931 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7934 elf_link_adjust_relocs (bfd
*abfd
,
7935 Elf_Internal_Shdr
*rel_hdr
,
7937 struct elf_link_hash_entry
**rel_hash
)
7940 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7942 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7943 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7944 bfd_vma r_type_mask
;
7947 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7949 swap_in
= bed
->s
->swap_reloc_in
;
7950 swap_out
= bed
->s
->swap_reloc_out
;
7952 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7954 swap_in
= bed
->s
->swap_reloca_in
;
7955 swap_out
= bed
->s
->swap_reloca_out
;
7960 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7963 if (bed
->s
->arch_size
== 32)
7970 r_type_mask
= 0xffffffff;
7974 erela
= rel_hdr
->contents
;
7975 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7977 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7980 if (*rel_hash
== NULL
)
7983 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7985 (*swap_in
) (abfd
, erela
, irela
);
7986 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7987 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7988 | (irela
[j
].r_info
& r_type_mask
));
7989 (*swap_out
) (abfd
, irela
, erela
);
7993 struct elf_link_sort_rela
7999 enum elf_reloc_type_class type
;
8000 /* We use this as an array of size int_rels_per_ext_rel. */
8001 Elf_Internal_Rela rela
[1];
8005 elf_link_sort_cmp1 (const void *A
, const void *B
)
8007 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8008 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8009 int relativea
, relativeb
;
8011 relativea
= a
->type
== reloc_class_relative
;
8012 relativeb
= b
->type
== reloc_class_relative
;
8014 if (relativea
< relativeb
)
8016 if (relativea
> relativeb
)
8018 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
8020 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
8022 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8024 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8030 elf_link_sort_cmp2 (const void *A
, const void *B
)
8032 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8033 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8036 if (a
->u
.offset
< b
->u
.offset
)
8038 if (a
->u
.offset
> b
->u
.offset
)
8040 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
8041 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
8046 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8048 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8054 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
8056 asection
*dynamic_relocs
;
8059 bfd_size_type count
, size
;
8060 size_t i
, ret
, sort_elt
, ext_size
;
8061 bfd_byte
*sort
, *s_non_relative
, *p
;
8062 struct elf_link_sort_rela
*sq
;
8063 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8064 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8065 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8066 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8067 struct bfd_link_order
*lo
;
8069 bfd_boolean use_rela
;
8071 /* Find a dynamic reloc section. */
8072 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8073 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8074 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8075 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8077 bfd_boolean use_rela_initialised
= FALSE
;
8079 /* This is just here to stop gcc from complaining.
8080 It's initialization checking code is not perfect. */
8083 /* Both sections are present. Examine the sizes
8084 of the indirect sections to help us choose. */
8085 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8086 if (lo
->type
== bfd_indirect_link_order
)
8088 asection
*o
= lo
->u
.indirect
.section
;
8090 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8092 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8093 /* Section size is divisible by both rel and rela sizes.
8094 It is of no help to us. */
8098 /* Section size is only divisible by rela. */
8099 if (use_rela_initialised
&& (use_rela
== FALSE
))
8102 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8103 bfd_set_error (bfd_error_invalid_operation
);
8109 use_rela_initialised
= TRUE
;
8113 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8115 /* Section size is only divisible by rel. */
8116 if (use_rela_initialised
&& (use_rela
== TRUE
))
8119 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8120 bfd_set_error (bfd_error_invalid_operation
);
8126 use_rela_initialised
= TRUE
;
8131 /* The section size is not divisible by either - something is wrong. */
8133 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8134 bfd_set_error (bfd_error_invalid_operation
);
8139 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8140 if (lo
->type
== bfd_indirect_link_order
)
8142 asection
*o
= lo
->u
.indirect
.section
;
8144 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8146 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8147 /* Section size is divisible by both rel and rela sizes.
8148 It is of no help to us. */
8152 /* Section size is only divisible by rela. */
8153 if (use_rela_initialised
&& (use_rela
== FALSE
))
8156 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8157 bfd_set_error (bfd_error_invalid_operation
);
8163 use_rela_initialised
= TRUE
;
8167 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8169 /* Section size is only divisible by rel. */
8170 if (use_rela_initialised
&& (use_rela
== TRUE
))
8173 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8174 bfd_set_error (bfd_error_invalid_operation
);
8180 use_rela_initialised
= TRUE
;
8185 /* The section size is not divisible by either - something is wrong. */
8187 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8188 bfd_set_error (bfd_error_invalid_operation
);
8193 if (! use_rela_initialised
)
8197 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8199 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8206 dynamic_relocs
= rela_dyn
;
8207 ext_size
= bed
->s
->sizeof_rela
;
8208 swap_in
= bed
->s
->swap_reloca_in
;
8209 swap_out
= bed
->s
->swap_reloca_out
;
8213 dynamic_relocs
= rel_dyn
;
8214 ext_size
= bed
->s
->sizeof_rel
;
8215 swap_in
= bed
->s
->swap_reloc_in
;
8216 swap_out
= bed
->s
->swap_reloc_out
;
8220 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8221 if (lo
->type
== bfd_indirect_link_order
)
8222 size
+= lo
->u
.indirect
.section
->size
;
8224 if (size
!= dynamic_relocs
->size
)
8227 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8228 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8230 count
= dynamic_relocs
->size
/ ext_size
;
8233 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8237 (*info
->callbacks
->warning
)
8238 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8242 if (bed
->s
->arch_size
== 32)
8243 r_sym_mask
= ~(bfd_vma
) 0xff;
8245 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8247 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8248 if (lo
->type
== bfd_indirect_link_order
)
8250 bfd_byte
*erel
, *erelend
;
8251 asection
*o
= lo
->u
.indirect
.section
;
8253 if (o
->contents
== NULL
&& o
->size
!= 0)
8255 /* This is a reloc section that is being handled as a normal
8256 section. See bfd_section_from_shdr. We can't combine
8257 relocs in this case. */
8262 erelend
= o
->contents
+ o
->size
;
8263 /* FIXME: octets_per_byte. */
8264 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8266 while (erel
< erelend
)
8268 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8270 (*swap_in
) (abfd
, erel
, s
->rela
);
8271 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8272 s
->u
.sym_mask
= r_sym_mask
;
8278 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8280 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8282 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8283 if (s
->type
!= reloc_class_relative
)
8289 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8290 for (; i
< count
; i
++, p
+= sort_elt
)
8292 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8293 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8295 sp
->u
.offset
= sq
->rela
->r_offset
;
8298 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8300 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8301 if (lo
->type
== bfd_indirect_link_order
)
8303 bfd_byte
*erel
, *erelend
;
8304 asection
*o
= lo
->u
.indirect
.section
;
8307 erelend
= o
->contents
+ o
->size
;
8308 /* FIXME: octets_per_byte. */
8309 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8310 while (erel
< erelend
)
8312 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8313 (*swap_out
) (abfd
, s
->rela
, erel
);
8320 *psec
= dynamic_relocs
;
8324 /* Flush the output symbols to the file. */
8327 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8328 const struct elf_backend_data
*bed
)
8330 if (finfo
->symbuf_count
> 0)
8332 Elf_Internal_Shdr
*hdr
;
8336 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8337 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8338 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8339 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8340 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8343 hdr
->sh_size
+= amt
;
8344 finfo
->symbuf_count
= 0;
8350 /* Add a symbol to the output symbol table. */
8353 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8355 Elf_Internal_Sym
*elfsym
,
8356 asection
*input_sec
,
8357 struct elf_link_hash_entry
*h
)
8360 Elf_External_Sym_Shndx
*destshndx
;
8361 int (*output_symbol_hook
)
8362 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8363 struct elf_link_hash_entry
*);
8364 const struct elf_backend_data
*bed
;
8366 bed
= get_elf_backend_data (finfo
->output_bfd
);
8367 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8368 if (output_symbol_hook
!= NULL
)
8370 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8375 if (name
== NULL
|| *name
== '\0')
8376 elfsym
->st_name
= 0;
8377 else if (input_sec
->flags
& SEC_EXCLUDE
)
8378 elfsym
->st_name
= 0;
8381 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8383 if (elfsym
->st_name
== (unsigned long) -1)
8387 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8389 if (! elf_link_flush_output_syms (finfo
, bed
))
8393 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8394 destshndx
= finfo
->symshndxbuf
;
8395 if (destshndx
!= NULL
)
8397 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8401 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8402 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8404 if (destshndx
== NULL
)
8406 finfo
->symshndxbuf
= destshndx
;
8407 memset ((char *) destshndx
+ amt
, 0, amt
);
8408 finfo
->shndxbuf_size
*= 2;
8410 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8413 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8414 finfo
->symbuf_count
+= 1;
8415 bfd_get_symcount (finfo
->output_bfd
) += 1;
8420 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8423 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8425 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8426 && sym
->st_shndx
< SHN_LORESERVE
)
8428 /* The gABI doesn't support dynamic symbols in output sections
8430 (*_bfd_error_handler
)
8431 (_("%B: Too many sections: %d (>= %d)"),
8432 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8433 bfd_set_error (bfd_error_nonrepresentable_section
);
8439 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8440 allowing an unsatisfied unversioned symbol in the DSO to match a
8441 versioned symbol that would normally require an explicit version.
8442 We also handle the case that a DSO references a hidden symbol
8443 which may be satisfied by a versioned symbol in another DSO. */
8446 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8447 const struct elf_backend_data
*bed
,
8448 struct elf_link_hash_entry
*h
)
8451 struct elf_link_loaded_list
*loaded
;
8453 if (!is_elf_hash_table (info
->hash
))
8456 switch (h
->root
.type
)
8462 case bfd_link_hash_undefined
:
8463 case bfd_link_hash_undefweak
:
8464 abfd
= h
->root
.u
.undef
.abfd
;
8465 if ((abfd
->flags
& DYNAMIC
) == 0
8466 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8470 case bfd_link_hash_defined
:
8471 case bfd_link_hash_defweak
:
8472 abfd
= h
->root
.u
.def
.section
->owner
;
8475 case bfd_link_hash_common
:
8476 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8479 BFD_ASSERT (abfd
!= NULL
);
8481 for (loaded
= elf_hash_table (info
)->loaded
;
8483 loaded
= loaded
->next
)
8486 Elf_Internal_Shdr
*hdr
;
8487 bfd_size_type symcount
;
8488 bfd_size_type extsymcount
;
8489 bfd_size_type extsymoff
;
8490 Elf_Internal_Shdr
*versymhdr
;
8491 Elf_Internal_Sym
*isym
;
8492 Elf_Internal_Sym
*isymend
;
8493 Elf_Internal_Sym
*isymbuf
;
8494 Elf_External_Versym
*ever
;
8495 Elf_External_Versym
*extversym
;
8497 input
= loaded
->abfd
;
8499 /* We check each DSO for a possible hidden versioned definition. */
8501 || (input
->flags
& DYNAMIC
) == 0
8502 || elf_dynversym (input
) == 0)
8505 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8507 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8508 if (elf_bad_symtab (input
))
8510 extsymcount
= symcount
;
8515 extsymcount
= symcount
- hdr
->sh_info
;
8516 extsymoff
= hdr
->sh_info
;
8519 if (extsymcount
== 0)
8522 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8524 if (isymbuf
== NULL
)
8527 /* Read in any version definitions. */
8528 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8529 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8530 if (extversym
== NULL
)
8533 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8534 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8535 != versymhdr
->sh_size
))
8543 ever
= extversym
+ extsymoff
;
8544 isymend
= isymbuf
+ extsymcount
;
8545 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8548 Elf_Internal_Versym iver
;
8549 unsigned short version_index
;
8551 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8552 || isym
->st_shndx
== SHN_UNDEF
)
8555 name
= bfd_elf_string_from_elf_section (input
,
8558 if (strcmp (name
, h
->root
.root
.string
) != 0)
8561 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8563 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
8565 && h
->forced_local
))
8567 /* If we have a non-hidden versioned sym, then it should
8568 have provided a definition for the undefined sym unless
8569 it is defined in a non-shared object and forced local.
8574 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8575 if (version_index
== 1 || version_index
== 2)
8577 /* This is the base or first version. We can use it. */
8591 /* Add an external symbol to the symbol table. This is called from
8592 the hash table traversal routine. When generating a shared object,
8593 we go through the symbol table twice. The first time we output
8594 anything that might have been forced to local scope in a version
8595 script. The second time we output the symbols that are still
8599 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8601 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8602 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8604 Elf_Internal_Sym sym
;
8605 asection
*input_sec
;
8606 const struct elf_backend_data
*bed
;
8610 if (h
->root
.type
== bfd_link_hash_warning
)
8612 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8613 if (h
->root
.type
== bfd_link_hash_new
)
8617 /* Decide whether to output this symbol in this pass. */
8618 if (eoinfo
->localsyms
)
8620 if (!h
->forced_local
)
8625 if (h
->forced_local
)
8629 bed
= get_elf_backend_data (finfo
->output_bfd
);
8631 if (h
->root
.type
== bfd_link_hash_undefined
)
8633 /* If we have an undefined symbol reference here then it must have
8634 come from a shared library that is being linked in. (Undefined
8635 references in regular files have already been handled unless
8636 they are in unreferenced sections which are removed by garbage
8638 bfd_boolean ignore_undef
= FALSE
;
8640 /* Some symbols may be special in that the fact that they're
8641 undefined can be safely ignored - let backend determine that. */
8642 if (bed
->elf_backend_ignore_undef_symbol
)
8643 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8645 /* If we are reporting errors for this situation then do so now. */
8648 && (!h
->ref_regular
|| finfo
->info
->gc_sections
)
8649 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8650 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8652 if (! (finfo
->info
->callbacks
->undefined_symbol
8653 (finfo
->info
, h
->root
.root
.string
,
8654 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
8655 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8657 eoinfo
->failed
= TRUE
;
8663 /* We should also warn if a forced local symbol is referenced from
8664 shared libraries. */
8665 if (! finfo
->info
->relocatable
8666 && (! finfo
->info
->shared
)
8671 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8673 (*_bfd_error_handler
)
8674 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8676 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8677 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8678 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8680 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8681 ? "hidden" : "local",
8682 h
->root
.root
.string
);
8683 eoinfo
->failed
= TRUE
;
8687 /* We don't want to output symbols that have never been mentioned by
8688 a regular file, or that we have been told to strip. However, if
8689 h->indx is set to -2, the symbol is used by a reloc and we must
8693 else if ((h
->def_dynamic
8695 || h
->root
.type
== bfd_link_hash_new
)
8699 else if (finfo
->info
->strip
== strip_all
)
8701 else if (finfo
->info
->strip
== strip_some
8702 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8703 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8705 else if (finfo
->info
->strip_discarded
8706 && (h
->root
.type
== bfd_link_hash_defined
8707 || h
->root
.type
== bfd_link_hash_defweak
)
8708 && elf_discarded_section (h
->root
.u
.def
.section
))
8713 /* If we're stripping it, and it's not a dynamic symbol, there's
8714 nothing else to do unless it is a forced local symbol or a
8715 STT_GNU_IFUNC symbol. */
8718 && h
->type
!= STT_GNU_IFUNC
8719 && !h
->forced_local
)
8723 sym
.st_size
= h
->size
;
8724 sym
.st_other
= h
->other
;
8725 if (h
->forced_local
)
8727 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8728 /* Turn off visibility on local symbol. */
8729 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8731 else if (h
->unique_global
)
8732 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8733 else if (h
->root
.type
== bfd_link_hash_undefweak
8734 || h
->root
.type
== bfd_link_hash_defweak
)
8735 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8737 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8739 switch (h
->root
.type
)
8742 case bfd_link_hash_new
:
8743 case bfd_link_hash_warning
:
8747 case bfd_link_hash_undefined
:
8748 case bfd_link_hash_undefweak
:
8749 input_sec
= bfd_und_section_ptr
;
8750 sym
.st_shndx
= SHN_UNDEF
;
8753 case bfd_link_hash_defined
:
8754 case bfd_link_hash_defweak
:
8756 input_sec
= h
->root
.u
.def
.section
;
8757 if (input_sec
->output_section
!= NULL
)
8760 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8761 input_sec
->output_section
);
8762 if (sym
.st_shndx
== SHN_BAD
)
8764 (*_bfd_error_handler
)
8765 (_("%B: could not find output section %A for input section %A"),
8766 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8767 eoinfo
->failed
= TRUE
;
8771 /* ELF symbols in relocatable files are section relative,
8772 but in nonrelocatable files they are virtual
8774 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8775 if (! finfo
->info
->relocatable
)
8777 sym
.st_value
+= input_sec
->output_section
->vma
;
8778 if (h
->type
== STT_TLS
)
8780 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8781 if (tls_sec
!= NULL
)
8782 sym
.st_value
-= tls_sec
->vma
;
8785 /* The TLS section may have been garbage collected. */
8786 BFD_ASSERT (finfo
->info
->gc_sections
8787 && !input_sec
->gc_mark
);
8794 BFD_ASSERT (input_sec
->owner
== NULL
8795 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8796 sym
.st_shndx
= SHN_UNDEF
;
8797 input_sec
= bfd_und_section_ptr
;
8802 case bfd_link_hash_common
:
8803 input_sec
= h
->root
.u
.c
.p
->section
;
8804 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8805 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8808 case bfd_link_hash_indirect
:
8809 /* These symbols are created by symbol versioning. They point
8810 to the decorated version of the name. For example, if the
8811 symbol foo@@GNU_1.2 is the default, which should be used when
8812 foo is used with no version, then we add an indirect symbol
8813 foo which points to foo@@GNU_1.2. We ignore these symbols,
8814 since the indirected symbol is already in the hash table. */
8818 /* Give the processor backend a chance to tweak the symbol value,
8819 and also to finish up anything that needs to be done for this
8820 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8821 forced local syms when non-shared is due to a historical quirk.
8822 STT_GNU_IFUNC symbol must go through PLT. */
8823 if ((h
->type
== STT_GNU_IFUNC
8825 && !finfo
->info
->relocatable
)
8826 || ((h
->dynindx
!= -1
8828 && ((finfo
->info
->shared
8829 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8830 || h
->root
.type
!= bfd_link_hash_undefweak
))
8831 || !h
->forced_local
)
8832 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8834 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8835 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8837 eoinfo
->failed
= TRUE
;
8842 /* If we are marking the symbol as undefined, and there are no
8843 non-weak references to this symbol from a regular object, then
8844 mark the symbol as weak undefined; if there are non-weak
8845 references, mark the symbol as strong. We can't do this earlier,
8846 because it might not be marked as undefined until the
8847 finish_dynamic_symbol routine gets through with it. */
8848 if (sym
.st_shndx
== SHN_UNDEF
8850 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8851 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8854 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8856 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8857 if (type
== STT_GNU_IFUNC
)
8860 if (h
->ref_regular_nonweak
)
8861 bindtype
= STB_GLOBAL
;
8863 bindtype
= STB_WEAK
;
8864 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8867 /* If this is a symbol defined in a dynamic library, don't use the
8868 symbol size from the dynamic library. Relinking an executable
8869 against a new library may introduce gratuitous changes in the
8870 executable's symbols if we keep the size. */
8871 if (sym
.st_shndx
== SHN_UNDEF
8876 /* If a non-weak symbol with non-default visibility is not defined
8877 locally, it is a fatal error. */
8878 if (! finfo
->info
->relocatable
8879 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8880 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8881 && h
->root
.type
== bfd_link_hash_undefined
8884 (*_bfd_error_handler
)
8885 (_("%B: %s symbol `%s' isn't defined"),
8887 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8889 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8890 ? "internal" : "hidden",
8891 h
->root
.root
.string
);
8892 eoinfo
->failed
= TRUE
;
8896 /* If this symbol should be put in the .dynsym section, then put it
8897 there now. We already know the symbol index. We also fill in
8898 the entry in the .hash section. */
8899 if (h
->dynindx
!= -1
8900 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8904 sym
.st_name
= h
->dynstr_index
;
8905 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8906 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8908 eoinfo
->failed
= TRUE
;
8911 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8913 if (finfo
->hash_sec
!= NULL
)
8915 size_t hash_entry_size
;
8916 bfd_byte
*bucketpos
;
8921 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8922 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8925 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8926 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8927 + (bucket
+ 2) * hash_entry_size
);
8928 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8929 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8930 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8931 ((bfd_byte
*) finfo
->hash_sec
->contents
8932 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8935 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8937 Elf_Internal_Versym iversym
;
8938 Elf_External_Versym
*eversym
;
8940 if (!h
->def_regular
)
8942 if (h
->verinfo
.verdef
== NULL
)
8943 iversym
.vs_vers
= 0;
8945 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8949 if (h
->verinfo
.vertree
== NULL
)
8950 iversym
.vs_vers
= 1;
8952 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8953 if (finfo
->info
->create_default_symver
)
8958 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8960 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8961 eversym
+= h
->dynindx
;
8962 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8966 /* If we're stripping it, then it was just a dynamic symbol, and
8967 there's nothing else to do. */
8968 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8971 indx
= bfd_get_symcount (finfo
->output_bfd
);
8972 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8975 eoinfo
->failed
= TRUE
;
8980 else if (h
->indx
== -2)
8986 /* Return TRUE if special handling is done for relocs in SEC against
8987 symbols defined in discarded sections. */
8990 elf_section_ignore_discarded_relocs (asection
*sec
)
8992 const struct elf_backend_data
*bed
;
8994 switch (sec
->sec_info_type
)
8996 case ELF_INFO_TYPE_STABS
:
8997 case ELF_INFO_TYPE_EH_FRAME
:
9003 bed
= get_elf_backend_data (sec
->owner
);
9004 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
9005 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
9011 /* Return a mask saying how ld should treat relocations in SEC against
9012 symbols defined in discarded sections. If this function returns
9013 COMPLAIN set, ld will issue a warning message. If this function
9014 returns PRETEND set, and the discarded section was link-once and the
9015 same size as the kept link-once section, ld will pretend that the
9016 symbol was actually defined in the kept section. Otherwise ld will
9017 zero the reloc (at least that is the intent, but some cooperation by
9018 the target dependent code is needed, particularly for REL targets). */
9021 _bfd_elf_default_action_discarded (asection
*sec
)
9023 if (sec
->flags
& SEC_DEBUGGING
)
9026 if (strcmp (".eh_frame", sec
->name
) == 0)
9029 if (strcmp (".gcc_except_table", sec
->name
) == 0)
9032 return COMPLAIN
| PRETEND
;
9035 /* Find a match between a section and a member of a section group. */
9038 match_group_member (asection
*sec
, asection
*group
,
9039 struct bfd_link_info
*info
)
9041 asection
*first
= elf_next_in_group (group
);
9042 asection
*s
= first
;
9046 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
9049 s
= elf_next_in_group (s
);
9057 /* Check if the kept section of a discarded section SEC can be used
9058 to replace it. Return the replacement if it is OK. Otherwise return
9062 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
9066 kept
= sec
->kept_section
;
9069 if ((kept
->flags
& SEC_GROUP
) != 0)
9070 kept
= match_group_member (sec
, kept
, info
);
9072 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9073 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9075 sec
->kept_section
= kept
;
9080 /* Link an input file into the linker output file. This function
9081 handles all the sections and relocations of the input file at once.
9082 This is so that we only have to read the local symbols once, and
9083 don't have to keep them in memory. */
9086 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
9088 int (*relocate_section
)
9089 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9090 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9092 Elf_Internal_Shdr
*symtab_hdr
;
9095 Elf_Internal_Sym
*isymbuf
;
9096 Elf_Internal_Sym
*isym
;
9097 Elf_Internal_Sym
*isymend
;
9099 asection
**ppsection
;
9101 const struct elf_backend_data
*bed
;
9102 struct elf_link_hash_entry
**sym_hashes
;
9104 output_bfd
= finfo
->output_bfd
;
9105 bed
= get_elf_backend_data (output_bfd
);
9106 relocate_section
= bed
->elf_backend_relocate_section
;
9108 /* If this is a dynamic object, we don't want to do anything here:
9109 we don't want the local symbols, and we don't want the section
9111 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9114 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9115 if (elf_bad_symtab (input_bfd
))
9117 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9122 locsymcount
= symtab_hdr
->sh_info
;
9123 extsymoff
= symtab_hdr
->sh_info
;
9126 /* Read the local symbols. */
9127 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9128 if (isymbuf
== NULL
&& locsymcount
!= 0)
9130 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9131 finfo
->internal_syms
,
9132 finfo
->external_syms
,
9133 finfo
->locsym_shndx
);
9134 if (isymbuf
== NULL
)
9138 /* Find local symbol sections and adjust values of symbols in
9139 SEC_MERGE sections. Write out those local symbols we know are
9140 going into the output file. */
9141 isymend
= isymbuf
+ locsymcount
;
9142 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9144 isym
++, pindex
++, ppsection
++)
9148 Elf_Internal_Sym osym
;
9154 if (elf_bad_symtab (input_bfd
))
9156 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9163 if (isym
->st_shndx
== SHN_UNDEF
)
9164 isec
= bfd_und_section_ptr
;
9165 else if (isym
->st_shndx
== SHN_ABS
)
9166 isec
= bfd_abs_section_ptr
;
9167 else if (isym
->st_shndx
== SHN_COMMON
)
9168 isec
= bfd_com_section_ptr
;
9171 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9174 /* Don't attempt to output symbols with st_shnx in the
9175 reserved range other than SHN_ABS and SHN_COMMON. */
9179 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9180 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9182 _bfd_merged_section_offset (output_bfd
, &isec
,
9183 elf_section_data (isec
)->sec_info
,
9189 /* Don't output the first, undefined, symbol. */
9190 if (ppsection
== finfo
->sections
)
9193 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9195 /* We never output section symbols. Instead, we use the
9196 section symbol of the corresponding section in the output
9201 /* If we are stripping all symbols, we don't want to output this
9203 if (finfo
->info
->strip
== strip_all
)
9206 /* If we are discarding all local symbols, we don't want to
9207 output this one. If we are generating a relocatable output
9208 file, then some of the local symbols may be required by
9209 relocs; we output them below as we discover that they are
9211 if (finfo
->info
->discard
== discard_all
)
9214 /* If this symbol is defined in a section which we are
9215 discarding, we don't need to keep it. */
9216 if (isym
->st_shndx
!= SHN_UNDEF
9217 && isym
->st_shndx
< SHN_LORESERVE
9218 && bfd_section_removed_from_list (output_bfd
,
9219 isec
->output_section
))
9222 /* Get the name of the symbol. */
9223 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9228 /* See if we are discarding symbols with this name. */
9229 if ((finfo
->info
->strip
== strip_some
9230 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9232 || (((finfo
->info
->discard
== discard_sec_merge
9233 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9234 || finfo
->info
->discard
== discard_l
)
9235 && bfd_is_local_label_name (input_bfd
, name
)))
9240 /* Adjust the section index for the output file. */
9241 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9242 isec
->output_section
);
9243 if (osym
.st_shndx
== SHN_BAD
)
9246 /* ELF symbols in relocatable files are section relative, but
9247 in executable files they are virtual addresses. Note that
9248 this code assumes that all ELF sections have an associated
9249 BFD section with a reasonable value for output_offset; below
9250 we assume that they also have a reasonable value for
9251 output_section. Any special sections must be set up to meet
9252 these requirements. */
9253 osym
.st_value
+= isec
->output_offset
;
9254 if (! finfo
->info
->relocatable
)
9256 osym
.st_value
+= isec
->output_section
->vma
;
9257 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9259 /* STT_TLS symbols are relative to PT_TLS segment base. */
9260 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9261 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9265 indx
= bfd_get_symcount (output_bfd
);
9266 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9273 /* Relocate the contents of each section. */
9274 sym_hashes
= elf_sym_hashes (input_bfd
);
9275 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9279 if (! o
->linker_mark
)
9281 /* This section was omitted from the link. */
9285 if (finfo
->info
->relocatable
9286 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9288 /* Deal with the group signature symbol. */
9289 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9290 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9291 asection
*osec
= o
->output_section
;
9293 if (symndx
>= locsymcount
9294 || (elf_bad_symtab (input_bfd
)
9295 && finfo
->sections
[symndx
] == NULL
))
9297 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9298 while (h
->root
.type
== bfd_link_hash_indirect
9299 || h
->root
.type
== bfd_link_hash_warning
)
9300 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9301 /* Arrange for symbol to be output. */
9303 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9305 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9307 /* We'll use the output section target_index. */
9308 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9309 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9313 if (finfo
->indices
[symndx
] == -1)
9315 /* Otherwise output the local symbol now. */
9316 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9317 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9322 name
= bfd_elf_string_from_elf_section (input_bfd
,
9323 symtab_hdr
->sh_link
,
9328 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9330 if (sym
.st_shndx
== SHN_BAD
)
9333 sym
.st_value
+= o
->output_offset
;
9335 indx
= bfd_get_symcount (output_bfd
);
9336 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9340 finfo
->indices
[symndx
] = indx
;
9344 elf_section_data (osec
)->this_hdr
.sh_info
9345 = finfo
->indices
[symndx
];
9349 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9350 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9353 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9355 /* Section was created by _bfd_elf_link_create_dynamic_sections
9360 /* Get the contents of the section. They have been cached by a
9361 relaxation routine. Note that o is a section in an input
9362 file, so the contents field will not have been set by any of
9363 the routines which work on output files. */
9364 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9365 contents
= elf_section_data (o
)->this_hdr
.contents
;
9368 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9370 contents
= finfo
->contents
;
9371 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9375 if ((o
->flags
& SEC_RELOC
) != 0)
9377 Elf_Internal_Rela
*internal_relocs
;
9378 Elf_Internal_Rela
*rel
, *relend
;
9379 bfd_vma r_type_mask
;
9381 int action_discarded
;
9384 /* Get the swapped relocs. */
9386 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9387 finfo
->internal_relocs
, FALSE
);
9388 if (internal_relocs
== NULL
9389 && o
->reloc_count
> 0)
9392 if (bed
->s
->arch_size
== 32)
9399 r_type_mask
= 0xffffffff;
9403 action_discarded
= -1;
9404 if (!elf_section_ignore_discarded_relocs (o
))
9405 action_discarded
= (*bed
->action_discarded
) (o
);
9407 /* Run through the relocs evaluating complex reloc symbols and
9408 looking for relocs against symbols from discarded sections
9409 or section symbols from removed link-once sections.
9410 Complain about relocs against discarded sections. Zero
9411 relocs against removed link-once sections. */
9413 rel
= internal_relocs
;
9414 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9415 for ( ; rel
< relend
; rel
++)
9417 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9418 unsigned int s_type
;
9419 asection
**ps
, *sec
;
9420 struct elf_link_hash_entry
*h
= NULL
;
9421 const char *sym_name
;
9423 if (r_symndx
== STN_UNDEF
)
9426 if (r_symndx
>= locsymcount
9427 || (elf_bad_symtab (input_bfd
)
9428 && finfo
->sections
[r_symndx
] == NULL
))
9430 h
= sym_hashes
[r_symndx
- extsymoff
];
9432 /* Badly formatted input files can contain relocs that
9433 reference non-existant symbols. Check here so that
9434 we do not seg fault. */
9439 sprintf_vma (buffer
, rel
->r_info
);
9440 (*_bfd_error_handler
)
9441 (_("error: %B contains a reloc (0x%s) for section %A "
9442 "that references a non-existent global symbol"),
9443 input_bfd
, o
, buffer
);
9444 bfd_set_error (bfd_error_bad_value
);
9448 while (h
->root
.type
== bfd_link_hash_indirect
9449 || h
->root
.type
== bfd_link_hash_warning
)
9450 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9455 if (h
->root
.type
== bfd_link_hash_defined
9456 || h
->root
.type
== bfd_link_hash_defweak
)
9457 ps
= &h
->root
.u
.def
.section
;
9459 sym_name
= h
->root
.root
.string
;
9463 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9465 s_type
= ELF_ST_TYPE (sym
->st_info
);
9466 ps
= &finfo
->sections
[r_symndx
];
9467 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9471 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9472 && !finfo
->info
->relocatable
)
9475 bfd_vma dot
= (rel
->r_offset
9476 + o
->output_offset
+ o
->output_section
->vma
);
9478 printf ("Encountered a complex symbol!");
9479 printf (" (input_bfd %s, section %s, reloc %ld\n",
9480 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9481 printf (" symbol: idx %8.8lx, name %s\n",
9482 r_symndx
, sym_name
);
9483 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9484 (unsigned long) rel
->r_info
,
9485 (unsigned long) rel
->r_offset
);
9487 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9488 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9491 /* Symbol evaluated OK. Update to absolute value. */
9492 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9497 if (action_discarded
!= -1 && ps
!= NULL
)
9499 /* Complain if the definition comes from a
9500 discarded section. */
9501 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9503 BFD_ASSERT (r_symndx
!= 0);
9504 if (action_discarded
& COMPLAIN
)
9505 (*finfo
->info
->callbacks
->einfo
)
9506 (_("%X`%s' referenced in section `%A' of %B: "
9507 "defined in discarded section `%A' of %B\n"),
9508 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9510 /* Try to do the best we can to support buggy old
9511 versions of gcc. Pretend that the symbol is
9512 really defined in the kept linkonce section.
9513 FIXME: This is quite broken. Modifying the
9514 symbol here means we will be changing all later
9515 uses of the symbol, not just in this section. */
9516 if (action_discarded
& PRETEND
)
9520 kept
= _bfd_elf_check_kept_section (sec
,
9532 /* Relocate the section by invoking a back end routine.
9534 The back end routine is responsible for adjusting the
9535 section contents as necessary, and (if using Rela relocs
9536 and generating a relocatable output file) adjusting the
9537 reloc addend as necessary.
9539 The back end routine does not have to worry about setting
9540 the reloc address or the reloc symbol index.
9542 The back end routine is given a pointer to the swapped in
9543 internal symbols, and can access the hash table entries
9544 for the external symbols via elf_sym_hashes (input_bfd).
9546 When generating relocatable output, the back end routine
9547 must handle STB_LOCAL/STT_SECTION symbols specially. The
9548 output symbol is going to be a section symbol
9549 corresponding to the output section, which will require
9550 the addend to be adjusted. */
9552 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9553 input_bfd
, o
, contents
,
9561 || finfo
->info
->relocatable
9562 || finfo
->info
->emitrelocations
)
9564 Elf_Internal_Rela
*irela
;
9565 Elf_Internal_Rela
*irelaend
;
9566 bfd_vma last_offset
;
9567 struct elf_link_hash_entry
**rel_hash
;
9568 struct elf_link_hash_entry
**rel_hash_list
;
9569 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9570 unsigned int next_erel
;
9571 bfd_boolean rela_normal
;
9573 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9574 rela_normal
= (bed
->rela_normal
9575 && (input_rel_hdr
->sh_entsize
9576 == bed
->s
->sizeof_rela
));
9578 /* Adjust the reloc addresses and symbol indices. */
9580 irela
= internal_relocs
;
9581 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9582 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9583 + elf_section_data (o
->output_section
)->rel_count
9584 + elf_section_data (o
->output_section
)->rel_count2
);
9585 rel_hash_list
= rel_hash
;
9586 last_offset
= o
->output_offset
;
9587 if (!finfo
->info
->relocatable
)
9588 last_offset
+= o
->output_section
->vma
;
9589 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9591 unsigned long r_symndx
;
9593 Elf_Internal_Sym sym
;
9595 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9601 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9604 if (irela
->r_offset
>= (bfd_vma
) -2)
9606 /* This is a reloc for a deleted entry or somesuch.
9607 Turn it into an R_*_NONE reloc, at the same
9608 offset as the last reloc. elf_eh_frame.c and
9609 bfd_elf_discard_info rely on reloc offsets
9611 irela
->r_offset
= last_offset
;
9613 irela
->r_addend
= 0;
9617 irela
->r_offset
+= o
->output_offset
;
9619 /* Relocs in an executable have to be virtual addresses. */
9620 if (!finfo
->info
->relocatable
)
9621 irela
->r_offset
+= o
->output_section
->vma
;
9623 last_offset
= irela
->r_offset
;
9625 r_symndx
= irela
->r_info
>> r_sym_shift
;
9626 if (r_symndx
== STN_UNDEF
)
9629 if (r_symndx
>= locsymcount
9630 || (elf_bad_symtab (input_bfd
)
9631 && finfo
->sections
[r_symndx
] == NULL
))
9633 struct elf_link_hash_entry
*rh
;
9636 /* This is a reloc against a global symbol. We
9637 have not yet output all the local symbols, so
9638 we do not know the symbol index of any global
9639 symbol. We set the rel_hash entry for this
9640 reloc to point to the global hash table entry
9641 for this symbol. The symbol index is then
9642 set at the end of bfd_elf_final_link. */
9643 indx
= r_symndx
- extsymoff
;
9644 rh
= elf_sym_hashes (input_bfd
)[indx
];
9645 while (rh
->root
.type
== bfd_link_hash_indirect
9646 || rh
->root
.type
== bfd_link_hash_warning
)
9647 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9649 /* Setting the index to -2 tells
9650 elf_link_output_extsym that this symbol is
9652 BFD_ASSERT (rh
->indx
< 0);
9660 /* This is a reloc against a local symbol. */
9663 sym
= isymbuf
[r_symndx
];
9664 sec
= finfo
->sections
[r_symndx
];
9665 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9667 /* I suppose the backend ought to fill in the
9668 section of any STT_SECTION symbol against a
9669 processor specific section. */
9671 if (bfd_is_abs_section (sec
))
9673 else if (sec
== NULL
|| sec
->owner
== NULL
)
9675 bfd_set_error (bfd_error_bad_value
);
9680 asection
*osec
= sec
->output_section
;
9682 /* If we have discarded a section, the output
9683 section will be the absolute section. In
9684 case of discarded SEC_MERGE sections, use
9685 the kept section. relocate_section should
9686 have already handled discarded linkonce
9688 if (bfd_is_abs_section (osec
)
9689 && sec
->kept_section
!= NULL
9690 && sec
->kept_section
->output_section
!= NULL
)
9692 osec
= sec
->kept_section
->output_section
;
9693 irela
->r_addend
-= osec
->vma
;
9696 if (!bfd_is_abs_section (osec
))
9698 r_symndx
= osec
->target_index
;
9701 struct elf_link_hash_table
*htab
;
9704 htab
= elf_hash_table (finfo
->info
);
9705 oi
= htab
->text_index_section
;
9706 if ((osec
->flags
& SEC_READONLY
) == 0
9707 && htab
->data_index_section
!= NULL
)
9708 oi
= htab
->data_index_section
;
9712 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9713 r_symndx
= oi
->target_index
;
9717 BFD_ASSERT (r_symndx
!= 0);
9721 /* Adjust the addend according to where the
9722 section winds up in the output section. */
9724 irela
->r_addend
+= sec
->output_offset
;
9728 if (finfo
->indices
[r_symndx
] == -1)
9730 unsigned long shlink
;
9735 if (finfo
->info
->strip
== strip_all
)
9737 /* You can't do ld -r -s. */
9738 bfd_set_error (bfd_error_invalid_operation
);
9742 /* This symbol was skipped earlier, but
9743 since it is needed by a reloc, we
9744 must output it now. */
9745 shlink
= symtab_hdr
->sh_link
;
9746 name
= (bfd_elf_string_from_elf_section
9747 (input_bfd
, shlink
, sym
.st_name
));
9751 osec
= sec
->output_section
;
9753 _bfd_elf_section_from_bfd_section (output_bfd
,
9755 if (sym
.st_shndx
== SHN_BAD
)
9758 sym
.st_value
+= sec
->output_offset
;
9759 if (! finfo
->info
->relocatable
)
9761 sym
.st_value
+= osec
->vma
;
9762 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9764 /* STT_TLS symbols are relative to PT_TLS
9766 BFD_ASSERT (elf_hash_table (finfo
->info
)
9768 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9773 indx
= bfd_get_symcount (output_bfd
);
9774 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9779 finfo
->indices
[r_symndx
] = indx
;
9784 r_symndx
= finfo
->indices
[r_symndx
];
9787 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9788 | (irela
->r_info
& r_type_mask
));
9791 /* Swap out the relocs. */
9792 if (input_rel_hdr
->sh_size
!= 0
9793 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9799 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9800 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9802 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9803 * bed
->s
->int_rels_per_ext_rel
);
9804 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9805 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9814 /* Write out the modified section contents. */
9815 if (bed
->elf_backend_write_section
9816 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9819 /* Section written out. */
9821 else switch (o
->sec_info_type
)
9823 case ELF_INFO_TYPE_STABS
:
9824 if (! (_bfd_write_section_stabs
9826 &elf_hash_table (finfo
->info
)->stab_info
,
9827 o
, &elf_section_data (o
)->sec_info
, contents
)))
9830 case ELF_INFO_TYPE_MERGE
:
9831 if (! _bfd_write_merged_section (output_bfd
, o
,
9832 elf_section_data (o
)->sec_info
))
9835 case ELF_INFO_TYPE_EH_FRAME
:
9837 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9844 /* FIXME: octets_per_byte. */
9845 if (! (o
->flags
& SEC_EXCLUDE
)
9846 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9847 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9849 (file_ptr
) o
->output_offset
,
9860 /* Generate a reloc when linking an ELF file. This is a reloc
9861 requested by the linker, and does not come from any input file. This
9862 is used to build constructor and destructor tables when linking
9866 elf_reloc_link_order (bfd
*output_bfd
,
9867 struct bfd_link_info
*info
,
9868 asection
*output_section
,
9869 struct bfd_link_order
*link_order
)
9871 reloc_howto_type
*howto
;
9875 struct elf_link_hash_entry
**rel_hash_ptr
;
9876 Elf_Internal_Shdr
*rel_hdr
;
9877 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9878 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9882 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9885 bfd_set_error (bfd_error_bad_value
);
9889 addend
= link_order
->u
.reloc
.p
->addend
;
9891 /* Figure out the symbol index. */
9892 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9893 + elf_section_data (output_section
)->rel_count
9894 + elf_section_data (output_section
)->rel_count2
);
9895 if (link_order
->type
== bfd_section_reloc_link_order
)
9897 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9898 BFD_ASSERT (indx
!= 0);
9899 *rel_hash_ptr
= NULL
;
9903 struct elf_link_hash_entry
*h
;
9905 /* Treat a reloc against a defined symbol as though it were
9906 actually against the section. */
9907 h
= ((struct elf_link_hash_entry
*)
9908 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9909 link_order
->u
.reloc
.p
->u
.name
,
9910 FALSE
, FALSE
, TRUE
));
9912 && (h
->root
.type
== bfd_link_hash_defined
9913 || h
->root
.type
== bfd_link_hash_defweak
))
9917 section
= h
->root
.u
.def
.section
;
9918 indx
= section
->output_section
->target_index
;
9919 *rel_hash_ptr
= NULL
;
9920 /* It seems that we ought to add the symbol value to the
9921 addend here, but in practice it has already been added
9922 because it was passed to constructor_callback. */
9923 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9927 /* Setting the index to -2 tells elf_link_output_extsym that
9928 this symbol is used by a reloc. */
9935 if (! ((*info
->callbacks
->unattached_reloc
)
9936 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9942 /* If this is an inplace reloc, we must write the addend into the
9944 if (howto
->partial_inplace
&& addend
!= 0)
9947 bfd_reloc_status_type rstat
;
9950 const char *sym_name
;
9952 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
9953 buf
= (bfd_byte
*) bfd_zmalloc (size
);
9956 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9963 case bfd_reloc_outofrange
:
9966 case bfd_reloc_overflow
:
9967 if (link_order
->type
== bfd_section_reloc_link_order
)
9968 sym_name
= bfd_section_name (output_bfd
,
9969 link_order
->u
.reloc
.p
->u
.section
);
9971 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9972 if (! ((*info
->callbacks
->reloc_overflow
)
9973 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9974 NULL
, (bfd_vma
) 0)))
9981 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9982 link_order
->offset
, size
);
9988 /* The address of a reloc is relative to the section in a
9989 relocatable file, and is a virtual address in an executable
9991 offset
= link_order
->offset
;
9992 if (! info
->relocatable
)
9993 offset
+= output_section
->vma
;
9995 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9997 irel
[i
].r_offset
= offset
;
9999 irel
[i
].r_addend
= 0;
10001 if (bed
->s
->arch_size
== 32)
10002 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
10004 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
10006 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
10007 erel
= rel_hdr
->contents
;
10008 if (rel_hdr
->sh_type
== SHT_REL
)
10010 erel
+= (elf_section_data (output_section
)->rel_count
10011 * bed
->s
->sizeof_rel
);
10012 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
10016 irel
[0].r_addend
= addend
;
10017 erel
+= (elf_section_data (output_section
)->rel_count
10018 * bed
->s
->sizeof_rela
);
10019 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
10022 ++elf_section_data (output_section
)->rel_count
;
10028 /* Get the output vma of the section pointed to by the sh_link field. */
10031 elf_get_linked_section_vma (struct bfd_link_order
*p
)
10033 Elf_Internal_Shdr
**elf_shdrp
;
10037 s
= p
->u
.indirect
.section
;
10038 elf_shdrp
= elf_elfsections (s
->owner
);
10039 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
10040 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
10042 The Intel C compiler generates SHT_IA_64_UNWIND with
10043 SHF_LINK_ORDER. But it doesn't set the sh_link or
10044 sh_info fields. Hence we could get the situation
10045 where elfsec is 0. */
10048 const struct elf_backend_data
*bed
10049 = get_elf_backend_data (s
->owner
);
10050 if (bed
->link_order_error_handler
)
10051 bed
->link_order_error_handler
10052 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
10057 s
= elf_shdrp
[elfsec
]->bfd_section
;
10058 return s
->output_section
->vma
+ s
->output_offset
;
10063 /* Compare two sections based on the locations of the sections they are
10064 linked to. Used by elf_fixup_link_order. */
10067 compare_link_order (const void * a
, const void * b
)
10072 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10073 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10076 return apos
> bpos
;
10080 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10081 order as their linked sections. Returns false if this could not be done
10082 because an output section includes both ordered and unordered
10083 sections. Ideally we'd do this in the linker proper. */
10086 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10088 int seen_linkorder
;
10091 struct bfd_link_order
*p
;
10093 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10095 struct bfd_link_order
**sections
;
10096 asection
*s
, *other_sec
, *linkorder_sec
;
10100 linkorder_sec
= NULL
;
10102 seen_linkorder
= 0;
10103 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10105 if (p
->type
== bfd_indirect_link_order
)
10107 s
= p
->u
.indirect
.section
;
10109 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10110 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10111 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10112 && elfsec
< elf_numsections (sub
)
10113 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10114 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10128 if (seen_other
&& seen_linkorder
)
10130 if (other_sec
&& linkorder_sec
)
10131 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10133 linkorder_sec
->owner
, other_sec
,
10136 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10138 bfd_set_error (bfd_error_bad_value
);
10143 if (!seen_linkorder
)
10146 sections
= (struct bfd_link_order
**)
10147 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10148 if (sections
== NULL
)
10150 seen_linkorder
= 0;
10152 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10154 sections
[seen_linkorder
++] = p
;
10156 /* Sort the input sections in the order of their linked section. */
10157 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10158 compare_link_order
);
10160 /* Change the offsets of the sections. */
10162 for (n
= 0; n
< seen_linkorder
; n
++)
10164 s
= sections
[n
]->u
.indirect
.section
;
10165 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10166 s
->output_offset
= offset
;
10167 sections
[n
]->offset
= offset
;
10168 /* FIXME: octets_per_byte. */
10169 offset
+= sections
[n
]->size
;
10177 /* Do the final step of an ELF link. */
10180 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10182 bfd_boolean dynamic
;
10183 bfd_boolean emit_relocs
;
10185 struct elf_final_link_info finfo
;
10187 struct bfd_link_order
*p
;
10189 bfd_size_type max_contents_size
;
10190 bfd_size_type max_external_reloc_size
;
10191 bfd_size_type max_internal_reloc_count
;
10192 bfd_size_type max_sym_count
;
10193 bfd_size_type max_sym_shndx_count
;
10195 Elf_Internal_Sym elfsym
;
10197 Elf_Internal_Shdr
*symtab_hdr
;
10198 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10199 Elf_Internal_Shdr
*symstrtab_hdr
;
10200 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10201 struct elf_outext_info eoinfo
;
10202 bfd_boolean merged
;
10203 size_t relativecount
= 0;
10204 asection
*reldyn
= 0;
10206 asection
*attr_section
= NULL
;
10207 bfd_vma attr_size
= 0;
10208 const char *std_attrs_section
;
10210 if (! is_elf_hash_table (info
->hash
))
10214 abfd
->flags
|= DYNAMIC
;
10216 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10217 dynobj
= elf_hash_table (info
)->dynobj
;
10219 emit_relocs
= (info
->relocatable
10220 || info
->emitrelocations
);
10223 finfo
.output_bfd
= abfd
;
10224 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10225 if (finfo
.symstrtab
== NULL
)
10230 finfo
.dynsym_sec
= NULL
;
10231 finfo
.hash_sec
= NULL
;
10232 finfo
.symver_sec
= NULL
;
10236 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10237 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10238 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10239 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10240 /* Note that it is OK if symver_sec is NULL. */
10243 finfo
.contents
= NULL
;
10244 finfo
.external_relocs
= NULL
;
10245 finfo
.internal_relocs
= NULL
;
10246 finfo
.external_syms
= NULL
;
10247 finfo
.locsym_shndx
= NULL
;
10248 finfo
.internal_syms
= NULL
;
10249 finfo
.indices
= NULL
;
10250 finfo
.sections
= NULL
;
10251 finfo
.symbuf
= NULL
;
10252 finfo
.symshndxbuf
= NULL
;
10253 finfo
.symbuf_count
= 0;
10254 finfo
.shndxbuf_size
= 0;
10256 /* The object attributes have been merged. Remove the input
10257 sections from the link, and set the contents of the output
10259 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10260 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10262 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10263 || strcmp (o
->name
, ".gnu.attributes") == 0)
10265 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10267 asection
*input_section
;
10269 if (p
->type
!= bfd_indirect_link_order
)
10271 input_section
= p
->u
.indirect
.section
;
10272 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10273 elf_link_input_bfd ignores this section. */
10274 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10277 attr_size
= bfd_elf_obj_attr_size (abfd
);
10280 bfd_set_section_size (abfd
, o
, attr_size
);
10282 /* Skip this section later on. */
10283 o
->map_head
.link_order
= NULL
;
10286 o
->flags
|= SEC_EXCLUDE
;
10290 /* Count up the number of relocations we will output for each output
10291 section, so that we know the sizes of the reloc sections. We
10292 also figure out some maximum sizes. */
10293 max_contents_size
= 0;
10294 max_external_reloc_size
= 0;
10295 max_internal_reloc_count
= 0;
10297 max_sym_shndx_count
= 0;
10299 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10301 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10302 o
->reloc_count
= 0;
10304 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10306 unsigned int reloc_count
= 0;
10307 struct bfd_elf_section_data
*esdi
= NULL
;
10308 unsigned int *rel_count1
;
10310 if (p
->type
== bfd_section_reloc_link_order
10311 || p
->type
== bfd_symbol_reloc_link_order
)
10313 else if (p
->type
== bfd_indirect_link_order
)
10317 sec
= p
->u
.indirect
.section
;
10318 esdi
= elf_section_data (sec
);
10320 /* Mark all sections which are to be included in the
10321 link. This will normally be every section. We need
10322 to do this so that we can identify any sections which
10323 the linker has decided to not include. */
10324 sec
->linker_mark
= TRUE
;
10326 if (sec
->flags
& SEC_MERGE
)
10329 if (info
->relocatable
|| info
->emitrelocations
)
10330 reloc_count
= sec
->reloc_count
;
10331 else if (bed
->elf_backend_count_relocs
)
10332 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10334 if (sec
->rawsize
> max_contents_size
)
10335 max_contents_size
= sec
->rawsize
;
10336 if (sec
->size
> max_contents_size
)
10337 max_contents_size
= sec
->size
;
10339 /* We are interested in just local symbols, not all
10341 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10342 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10346 if (elf_bad_symtab (sec
->owner
))
10347 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10348 / bed
->s
->sizeof_sym
);
10350 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10352 if (sym_count
> max_sym_count
)
10353 max_sym_count
= sym_count
;
10355 if (sym_count
> max_sym_shndx_count
10356 && elf_symtab_shndx (sec
->owner
) != 0)
10357 max_sym_shndx_count
= sym_count
;
10359 if ((sec
->flags
& SEC_RELOC
) != 0)
10363 ext_size
= esdi
->rel_hdr
.sh_size
;
10364 if (esdi
->rel_hdr2
!= NULL
)
10365 ext_size
+= esdi
->rel_hdr2
->sh_size
;
10367 if (ext_size
> max_external_reloc_size
)
10368 max_external_reloc_size
= ext_size
;
10369 if (sec
->reloc_count
> max_internal_reloc_count
)
10370 max_internal_reloc_count
= sec
->reloc_count
;
10375 if (reloc_count
== 0)
10378 o
->reloc_count
+= reloc_count
;
10380 /* MIPS may have a mix of REL and RELA relocs on sections.
10381 To support this curious ABI we keep reloc counts in
10382 elf_section_data too. We must be careful to add the
10383 relocations from the input section to the right output
10384 count. FIXME: Get rid of one count. We have
10385 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10386 rel_count1
= &esdo
->rel_count
;
10389 bfd_boolean same_size
;
10390 bfd_size_type entsize1
;
10392 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10393 /* PR 9827: If the header size has not been set yet then
10394 assume that it will match the output section's reloc type. */
10396 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10398 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10399 || entsize1
== bed
->s
->sizeof_rela
);
10400 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10403 rel_count1
= &esdo
->rel_count2
;
10405 if (esdi
->rel_hdr2
!= NULL
)
10407 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10408 unsigned int alt_count
;
10409 unsigned int *rel_count2
;
10411 BFD_ASSERT (entsize2
!= entsize1
10412 && (entsize2
== bed
->s
->sizeof_rel
10413 || entsize2
== bed
->s
->sizeof_rela
));
10415 rel_count2
= &esdo
->rel_count2
;
10417 rel_count2
= &esdo
->rel_count
;
10419 /* The following is probably too simplistic if the
10420 backend counts output relocs unusually. */
10421 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10422 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10423 *rel_count2
+= alt_count
;
10424 reloc_count
-= alt_count
;
10427 *rel_count1
+= reloc_count
;
10430 if (o
->reloc_count
> 0)
10431 o
->flags
|= SEC_RELOC
;
10434 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10435 set it (this is probably a bug) and if it is set
10436 assign_section_numbers will create a reloc section. */
10437 o
->flags
&=~ SEC_RELOC
;
10440 /* If the SEC_ALLOC flag is not set, force the section VMA to
10441 zero. This is done in elf_fake_sections as well, but forcing
10442 the VMA to 0 here will ensure that relocs against these
10443 sections are handled correctly. */
10444 if ((o
->flags
& SEC_ALLOC
) == 0
10445 && ! o
->user_set_vma
)
10449 if (! info
->relocatable
&& merged
)
10450 elf_link_hash_traverse (elf_hash_table (info
),
10451 _bfd_elf_link_sec_merge_syms
, abfd
);
10453 /* Figure out the file positions for everything but the symbol table
10454 and the relocs. We set symcount to force assign_section_numbers
10455 to create a symbol table. */
10456 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10457 BFD_ASSERT (! abfd
->output_has_begun
);
10458 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10461 /* Set sizes, and assign file positions for reloc sections. */
10462 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10464 if ((o
->flags
& SEC_RELOC
) != 0)
10466 if (!(_bfd_elf_link_size_reloc_section
10467 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10470 if (elf_section_data (o
)->rel_hdr2
10471 && !(_bfd_elf_link_size_reloc_section
10472 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10476 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10477 to count upwards while actually outputting the relocations. */
10478 elf_section_data (o
)->rel_count
= 0;
10479 elf_section_data (o
)->rel_count2
= 0;
10482 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10484 /* We have now assigned file positions for all the sections except
10485 .symtab and .strtab. We start the .symtab section at the current
10486 file position, and write directly to it. We build the .strtab
10487 section in memory. */
10488 bfd_get_symcount (abfd
) = 0;
10489 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10490 /* sh_name is set in prep_headers. */
10491 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10492 /* sh_flags, sh_addr and sh_size all start off zero. */
10493 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10494 /* sh_link is set in assign_section_numbers. */
10495 /* sh_info is set below. */
10496 /* sh_offset is set just below. */
10497 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10499 off
= elf_tdata (abfd
)->next_file_pos
;
10500 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10502 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10503 incorrect. We do not yet know the size of the .symtab section.
10504 We correct next_file_pos below, after we do know the size. */
10506 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10507 continuously seeking to the right position in the file. */
10508 if (! info
->keep_memory
|| max_sym_count
< 20)
10509 finfo
.symbuf_size
= 20;
10511 finfo
.symbuf_size
= max_sym_count
;
10512 amt
= finfo
.symbuf_size
;
10513 amt
*= bed
->s
->sizeof_sym
;
10514 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10515 if (finfo
.symbuf
== NULL
)
10517 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10519 /* Wild guess at number of output symbols. realloc'd as needed. */
10520 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10521 finfo
.shndxbuf_size
= amt
;
10522 amt
*= sizeof (Elf_External_Sym_Shndx
);
10523 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10524 if (finfo
.symshndxbuf
== NULL
)
10528 /* Start writing out the symbol table. The first symbol is always a
10530 if (info
->strip
!= strip_all
10533 elfsym
.st_value
= 0;
10534 elfsym
.st_size
= 0;
10535 elfsym
.st_info
= 0;
10536 elfsym
.st_other
= 0;
10537 elfsym
.st_shndx
= SHN_UNDEF
;
10538 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10543 /* Output a symbol for each section. We output these even if we are
10544 discarding local symbols, since they are used for relocs. These
10545 symbols have no names. We store the index of each one in the
10546 index field of the section, so that we can find it again when
10547 outputting relocs. */
10548 if (info
->strip
!= strip_all
10551 elfsym
.st_size
= 0;
10552 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10553 elfsym
.st_other
= 0;
10554 elfsym
.st_value
= 0;
10555 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10557 o
= bfd_section_from_elf_index (abfd
, i
);
10560 o
->target_index
= bfd_get_symcount (abfd
);
10561 elfsym
.st_shndx
= i
;
10562 if (!info
->relocatable
)
10563 elfsym
.st_value
= o
->vma
;
10564 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10570 /* Allocate some memory to hold information read in from the input
10572 if (max_contents_size
!= 0)
10574 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10575 if (finfo
.contents
== NULL
)
10579 if (max_external_reloc_size
!= 0)
10581 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10582 if (finfo
.external_relocs
== NULL
)
10586 if (max_internal_reloc_count
!= 0)
10588 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10589 amt
*= sizeof (Elf_Internal_Rela
);
10590 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10591 if (finfo
.internal_relocs
== NULL
)
10595 if (max_sym_count
!= 0)
10597 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10598 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10599 if (finfo
.external_syms
== NULL
)
10602 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10603 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10604 if (finfo
.internal_syms
== NULL
)
10607 amt
= max_sym_count
* sizeof (long);
10608 finfo
.indices
= (long int *) bfd_malloc (amt
);
10609 if (finfo
.indices
== NULL
)
10612 amt
= max_sym_count
* sizeof (asection
*);
10613 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10614 if (finfo
.sections
== NULL
)
10618 if (max_sym_shndx_count
!= 0)
10620 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10621 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10622 if (finfo
.locsym_shndx
== NULL
)
10626 if (elf_hash_table (info
)->tls_sec
)
10628 bfd_vma base
, end
= 0;
10631 for (sec
= elf_hash_table (info
)->tls_sec
;
10632 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10635 bfd_size_type size
= sec
->size
;
10638 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10640 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
10643 size
= ord
->offset
+ ord
->size
;
10645 end
= sec
->vma
+ size
;
10647 base
= elf_hash_table (info
)->tls_sec
->vma
;
10648 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10649 elf_hash_table (info
)->tls_size
= end
- base
;
10652 /* Reorder SHF_LINK_ORDER sections. */
10653 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10655 if (!elf_fixup_link_order (abfd
, o
))
10659 /* Since ELF permits relocations to be against local symbols, we
10660 must have the local symbols available when we do the relocations.
10661 Since we would rather only read the local symbols once, and we
10662 would rather not keep them in memory, we handle all the
10663 relocations for a single input file at the same time.
10665 Unfortunately, there is no way to know the total number of local
10666 symbols until we have seen all of them, and the local symbol
10667 indices precede the global symbol indices. This means that when
10668 we are generating relocatable output, and we see a reloc against
10669 a global symbol, we can not know the symbol index until we have
10670 finished examining all the local symbols to see which ones we are
10671 going to output. To deal with this, we keep the relocations in
10672 memory, and don't output them until the end of the link. This is
10673 an unfortunate waste of memory, but I don't see a good way around
10674 it. Fortunately, it only happens when performing a relocatable
10675 link, which is not the common case. FIXME: If keep_memory is set
10676 we could write the relocs out and then read them again; I don't
10677 know how bad the memory loss will be. */
10679 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10680 sub
->output_has_begun
= FALSE
;
10681 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10683 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10685 if (p
->type
== bfd_indirect_link_order
10686 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10687 == bfd_target_elf_flavour
)
10688 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10690 if (! sub
->output_has_begun
)
10692 if (! elf_link_input_bfd (&finfo
, sub
))
10694 sub
->output_has_begun
= TRUE
;
10697 else if (p
->type
== bfd_section_reloc_link_order
10698 || p
->type
== bfd_symbol_reloc_link_order
)
10700 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10705 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10711 /* Free symbol buffer if needed. */
10712 if (!info
->reduce_memory_overheads
)
10714 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10715 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10716 && elf_tdata (sub
)->symbuf
)
10718 free (elf_tdata (sub
)->symbuf
);
10719 elf_tdata (sub
)->symbuf
= NULL
;
10723 /* Output any global symbols that got converted to local in a
10724 version script or due to symbol visibility. We do this in a
10725 separate step since ELF requires all local symbols to appear
10726 prior to any global symbols. FIXME: We should only do this if
10727 some global symbols were, in fact, converted to become local.
10728 FIXME: Will this work correctly with the Irix 5 linker? */
10729 eoinfo
.failed
= FALSE
;
10730 eoinfo
.finfo
= &finfo
;
10731 eoinfo
.localsyms
= TRUE
;
10732 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10737 /* If backend needs to output some local symbols not present in the hash
10738 table, do it now. */
10739 if (bed
->elf_backend_output_arch_local_syms
)
10741 typedef int (*out_sym_func
)
10742 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10743 struct elf_link_hash_entry
*);
10745 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10746 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10750 /* That wrote out all the local symbols. Finish up the symbol table
10751 with the global symbols. Even if we want to strip everything we
10752 can, we still need to deal with those global symbols that got
10753 converted to local in a version script. */
10755 /* The sh_info field records the index of the first non local symbol. */
10756 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10759 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10761 Elf_Internal_Sym sym
;
10762 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10763 long last_local
= 0;
10765 /* Write out the section symbols for the output sections. */
10766 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10772 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10775 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10781 dynindx
= elf_section_data (s
)->dynindx
;
10784 indx
= elf_section_data (s
)->this_idx
;
10785 BFD_ASSERT (indx
> 0);
10786 sym
.st_shndx
= indx
;
10787 if (! check_dynsym (abfd
, &sym
))
10789 sym
.st_value
= s
->vma
;
10790 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10791 if (last_local
< dynindx
)
10792 last_local
= dynindx
;
10793 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10797 /* Write out the local dynsyms. */
10798 if (elf_hash_table (info
)->dynlocal
)
10800 struct elf_link_local_dynamic_entry
*e
;
10801 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10806 /* Copy the internal symbol and turn off visibility.
10807 Note that we saved a word of storage and overwrote
10808 the original st_name with the dynstr_index. */
10810 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10812 s
= bfd_section_from_elf_index (e
->input_bfd
,
10817 elf_section_data (s
->output_section
)->this_idx
;
10818 if (! check_dynsym (abfd
, &sym
))
10820 sym
.st_value
= (s
->output_section
->vma
10822 + e
->isym
.st_value
);
10825 if (last_local
< e
->dynindx
)
10826 last_local
= e
->dynindx
;
10828 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10829 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10833 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10837 /* We get the global symbols from the hash table. */
10838 eoinfo
.failed
= FALSE
;
10839 eoinfo
.localsyms
= FALSE
;
10840 eoinfo
.finfo
= &finfo
;
10841 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10846 /* If backend needs to output some symbols not present in the hash
10847 table, do it now. */
10848 if (bed
->elf_backend_output_arch_syms
)
10850 typedef int (*out_sym_func
)
10851 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10852 struct elf_link_hash_entry
*);
10854 if (! ((*bed
->elf_backend_output_arch_syms
)
10855 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10859 /* Flush all symbols to the file. */
10860 if (! elf_link_flush_output_syms (&finfo
, bed
))
10863 /* Now we know the size of the symtab section. */
10864 off
+= symtab_hdr
->sh_size
;
10866 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10867 if (symtab_shndx_hdr
->sh_name
!= 0)
10869 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10870 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10871 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10872 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10873 symtab_shndx_hdr
->sh_size
= amt
;
10875 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10878 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10879 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10884 /* Finish up and write out the symbol string table (.strtab)
10886 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10887 /* sh_name was set in prep_headers. */
10888 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10889 symstrtab_hdr
->sh_flags
= 0;
10890 symstrtab_hdr
->sh_addr
= 0;
10891 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10892 symstrtab_hdr
->sh_entsize
= 0;
10893 symstrtab_hdr
->sh_link
= 0;
10894 symstrtab_hdr
->sh_info
= 0;
10895 /* sh_offset is set just below. */
10896 symstrtab_hdr
->sh_addralign
= 1;
10898 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10899 elf_tdata (abfd
)->next_file_pos
= off
;
10901 if (bfd_get_symcount (abfd
) > 0)
10903 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10904 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10908 /* Adjust the relocs to have the correct symbol indices. */
10909 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10911 if ((o
->flags
& SEC_RELOC
) == 0)
10914 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10915 elf_section_data (o
)->rel_count
,
10916 elf_section_data (o
)->rel_hashes
);
10917 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10918 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10919 elf_section_data (o
)->rel_count2
,
10920 (elf_section_data (o
)->rel_hashes
10921 + elf_section_data (o
)->rel_count
));
10923 /* Set the reloc_count field to 0 to prevent write_relocs from
10924 trying to swap the relocs out itself. */
10925 o
->reloc_count
= 0;
10928 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10929 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10931 /* If we are linking against a dynamic object, or generating a
10932 shared library, finish up the dynamic linking information. */
10935 bfd_byte
*dyncon
, *dynconend
;
10937 /* Fix up .dynamic entries. */
10938 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10939 BFD_ASSERT (o
!= NULL
);
10941 dyncon
= o
->contents
;
10942 dynconend
= o
->contents
+ o
->size
;
10943 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10945 Elf_Internal_Dyn dyn
;
10949 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10956 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10958 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10960 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10961 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10964 dyn
.d_un
.d_val
= relativecount
;
10971 name
= info
->init_function
;
10974 name
= info
->fini_function
;
10977 struct elf_link_hash_entry
*h
;
10979 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10980 FALSE
, FALSE
, TRUE
);
10982 && (h
->root
.type
== bfd_link_hash_defined
10983 || h
->root
.type
== bfd_link_hash_defweak
))
10985 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10986 o
= h
->root
.u
.def
.section
;
10987 if (o
->output_section
!= NULL
)
10988 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10989 + o
->output_offset
);
10992 /* The symbol is imported from another shared
10993 library and does not apply to this one. */
10994 dyn
.d_un
.d_ptr
= 0;
11001 case DT_PREINIT_ARRAYSZ
:
11002 name
= ".preinit_array";
11004 case DT_INIT_ARRAYSZ
:
11005 name
= ".init_array";
11007 case DT_FINI_ARRAYSZ
:
11008 name
= ".fini_array";
11010 o
= bfd_get_section_by_name (abfd
, name
);
11013 (*_bfd_error_handler
)
11014 (_("%B: could not find output section %s"), abfd
, name
);
11018 (*_bfd_error_handler
)
11019 (_("warning: %s section has zero size"), name
);
11020 dyn
.d_un
.d_val
= o
->size
;
11023 case DT_PREINIT_ARRAY
:
11024 name
= ".preinit_array";
11026 case DT_INIT_ARRAY
:
11027 name
= ".init_array";
11029 case DT_FINI_ARRAY
:
11030 name
= ".fini_array";
11037 name
= ".gnu.hash";
11046 name
= ".gnu.version_d";
11049 name
= ".gnu.version_r";
11052 name
= ".gnu.version";
11054 o
= bfd_get_section_by_name (abfd
, name
);
11057 (*_bfd_error_handler
)
11058 (_("%B: could not find output section %s"), abfd
, name
);
11061 dyn
.d_un
.d_ptr
= o
->vma
;
11068 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
11072 dyn
.d_un
.d_val
= 0;
11073 dyn
.d_un
.d_ptr
= 0;
11074 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11076 Elf_Internal_Shdr
*hdr
;
11078 hdr
= elf_elfsections (abfd
)[i
];
11079 if (hdr
->sh_type
== type
11080 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11082 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11083 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11086 if (dyn
.d_un
.d_ptr
== 0
11087 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11088 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11094 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11098 /* If we have created any dynamic sections, then output them. */
11099 if (dynobj
!= NULL
)
11101 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11104 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11105 if (info
->warn_shared_textrel
&& info
->shared
)
11107 bfd_byte
*dyncon
, *dynconend
;
11109 /* Fix up .dynamic entries. */
11110 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11111 BFD_ASSERT (o
!= NULL
);
11113 dyncon
= o
->contents
;
11114 dynconend
= o
->contents
+ o
->size
;
11115 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11117 Elf_Internal_Dyn dyn
;
11119 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11121 if (dyn
.d_tag
== DT_TEXTREL
)
11123 info
->callbacks
->einfo
11124 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11130 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11132 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11134 || o
->output_section
== bfd_abs_section_ptr
)
11136 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11138 /* At this point, we are only interested in sections
11139 created by _bfd_elf_link_create_dynamic_sections. */
11142 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11144 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11146 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11148 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11150 /* FIXME: octets_per_byte. */
11151 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11153 (file_ptr
) o
->output_offset
,
11159 /* The contents of the .dynstr section are actually in a
11161 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11162 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11163 || ! _bfd_elf_strtab_emit (abfd
,
11164 elf_hash_table (info
)->dynstr
))
11170 if (info
->relocatable
)
11172 bfd_boolean failed
= FALSE
;
11174 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11179 /* If we have optimized stabs strings, output them. */
11180 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11182 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11186 if (info
->eh_frame_hdr
)
11188 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11192 if (finfo
.symstrtab
!= NULL
)
11193 _bfd_stringtab_free (finfo
.symstrtab
);
11194 if (finfo
.contents
!= NULL
)
11195 free (finfo
.contents
);
11196 if (finfo
.external_relocs
!= NULL
)
11197 free (finfo
.external_relocs
);
11198 if (finfo
.internal_relocs
!= NULL
)
11199 free (finfo
.internal_relocs
);
11200 if (finfo
.external_syms
!= NULL
)
11201 free (finfo
.external_syms
);
11202 if (finfo
.locsym_shndx
!= NULL
)
11203 free (finfo
.locsym_shndx
);
11204 if (finfo
.internal_syms
!= NULL
)
11205 free (finfo
.internal_syms
);
11206 if (finfo
.indices
!= NULL
)
11207 free (finfo
.indices
);
11208 if (finfo
.sections
!= NULL
)
11209 free (finfo
.sections
);
11210 if (finfo
.symbuf
!= NULL
)
11211 free (finfo
.symbuf
);
11212 if (finfo
.symshndxbuf
!= NULL
)
11213 free (finfo
.symshndxbuf
);
11214 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11216 if ((o
->flags
& SEC_RELOC
) != 0
11217 && elf_section_data (o
)->rel_hashes
!= NULL
)
11218 free (elf_section_data (o
)->rel_hashes
);
11221 elf_tdata (abfd
)->linker
= TRUE
;
11225 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11226 if (contents
== NULL
)
11227 return FALSE
; /* Bail out and fail. */
11228 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11229 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11236 if (finfo
.symstrtab
!= NULL
)
11237 _bfd_stringtab_free (finfo
.symstrtab
);
11238 if (finfo
.contents
!= NULL
)
11239 free (finfo
.contents
);
11240 if (finfo
.external_relocs
!= NULL
)
11241 free (finfo
.external_relocs
);
11242 if (finfo
.internal_relocs
!= NULL
)
11243 free (finfo
.internal_relocs
);
11244 if (finfo
.external_syms
!= NULL
)
11245 free (finfo
.external_syms
);
11246 if (finfo
.locsym_shndx
!= NULL
)
11247 free (finfo
.locsym_shndx
);
11248 if (finfo
.internal_syms
!= NULL
)
11249 free (finfo
.internal_syms
);
11250 if (finfo
.indices
!= NULL
)
11251 free (finfo
.indices
);
11252 if (finfo
.sections
!= NULL
)
11253 free (finfo
.sections
);
11254 if (finfo
.symbuf
!= NULL
)
11255 free (finfo
.symbuf
);
11256 if (finfo
.symshndxbuf
!= NULL
)
11257 free (finfo
.symshndxbuf
);
11258 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11260 if ((o
->flags
& SEC_RELOC
) != 0
11261 && elf_section_data (o
)->rel_hashes
!= NULL
)
11262 free (elf_section_data (o
)->rel_hashes
);
11268 /* Initialize COOKIE for input bfd ABFD. */
11271 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11272 struct bfd_link_info
*info
, bfd
*abfd
)
11274 Elf_Internal_Shdr
*symtab_hdr
;
11275 const struct elf_backend_data
*bed
;
11277 bed
= get_elf_backend_data (abfd
);
11278 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11280 cookie
->abfd
= abfd
;
11281 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11282 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11283 if (cookie
->bad_symtab
)
11285 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11286 cookie
->extsymoff
= 0;
11290 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11291 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11294 if (bed
->s
->arch_size
== 32)
11295 cookie
->r_sym_shift
= 8;
11297 cookie
->r_sym_shift
= 32;
11299 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11300 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11302 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11303 cookie
->locsymcount
, 0,
11305 if (cookie
->locsyms
== NULL
)
11307 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11310 if (info
->keep_memory
)
11311 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11316 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11319 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11321 Elf_Internal_Shdr
*symtab_hdr
;
11323 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11324 if (cookie
->locsyms
!= NULL
11325 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11326 free (cookie
->locsyms
);
11329 /* Initialize the relocation information in COOKIE for input section SEC
11330 of input bfd ABFD. */
11333 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11334 struct bfd_link_info
*info
, bfd
*abfd
,
11337 const struct elf_backend_data
*bed
;
11339 if (sec
->reloc_count
== 0)
11341 cookie
->rels
= NULL
;
11342 cookie
->relend
= NULL
;
11346 bed
= get_elf_backend_data (abfd
);
11348 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11349 info
->keep_memory
);
11350 if (cookie
->rels
== NULL
)
11352 cookie
->rel
= cookie
->rels
;
11353 cookie
->relend
= (cookie
->rels
11354 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11356 cookie
->rel
= cookie
->rels
;
11360 /* Free the memory allocated by init_reloc_cookie_rels,
11364 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11367 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11368 free (cookie
->rels
);
11371 /* Initialize the whole of COOKIE for input section SEC. */
11374 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11375 struct bfd_link_info
*info
,
11378 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11380 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11385 fini_reloc_cookie (cookie
, sec
->owner
);
11390 /* Free the memory allocated by init_reloc_cookie_for_section,
11394 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11397 fini_reloc_cookie_rels (cookie
, sec
);
11398 fini_reloc_cookie (cookie
, sec
->owner
);
11401 /* Garbage collect unused sections. */
11403 /* Default gc_mark_hook. */
11406 _bfd_elf_gc_mark_hook (asection
*sec
,
11407 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11408 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11409 struct elf_link_hash_entry
*h
,
11410 Elf_Internal_Sym
*sym
)
11412 const char *sec_name
;
11416 switch (h
->root
.type
)
11418 case bfd_link_hash_defined
:
11419 case bfd_link_hash_defweak
:
11420 return h
->root
.u
.def
.section
;
11422 case bfd_link_hash_common
:
11423 return h
->root
.u
.c
.p
->section
;
11425 case bfd_link_hash_undefined
:
11426 case bfd_link_hash_undefweak
:
11427 /* To work around a glibc bug, keep all XXX input sections
11428 when there is an as yet undefined reference to __start_XXX
11429 or __stop_XXX symbols. The linker will later define such
11430 symbols for orphan input sections that have a name
11431 representable as a C identifier. */
11432 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
11433 sec_name
= h
->root
.root
.string
+ 8;
11434 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
11435 sec_name
= h
->root
.root
.string
+ 7;
11439 if (sec_name
&& *sec_name
!= '\0')
11443 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11445 sec
= bfd_get_section_by_name (i
, sec_name
);
11447 sec
->flags
|= SEC_KEEP
;
11457 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11462 /* COOKIE->rel describes a relocation against section SEC, which is
11463 a section we've decided to keep. Return the section that contains
11464 the relocation symbol, or NULL if no section contains it. */
11467 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11468 elf_gc_mark_hook_fn gc_mark_hook
,
11469 struct elf_reloc_cookie
*cookie
)
11471 unsigned long r_symndx
;
11472 struct elf_link_hash_entry
*h
;
11474 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11478 if (r_symndx
>= cookie
->locsymcount
11479 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11481 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11482 while (h
->root
.type
== bfd_link_hash_indirect
11483 || h
->root
.type
== bfd_link_hash_warning
)
11484 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11485 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11488 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11489 &cookie
->locsyms
[r_symndx
]);
11492 /* COOKIE->rel describes a relocation against section SEC, which is
11493 a section we've decided to keep. Mark the section that contains
11494 the relocation symbol. */
11497 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11499 elf_gc_mark_hook_fn gc_mark_hook
,
11500 struct elf_reloc_cookie
*cookie
)
11504 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11505 if (rsec
&& !rsec
->gc_mark
)
11507 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11509 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11515 /* The mark phase of garbage collection. For a given section, mark
11516 it and any sections in this section's group, and all the sections
11517 which define symbols to which it refers. */
11520 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11522 elf_gc_mark_hook_fn gc_mark_hook
)
11525 asection
*group_sec
, *eh_frame
;
11529 /* Mark all the sections in the group. */
11530 group_sec
= elf_section_data (sec
)->next_in_group
;
11531 if (group_sec
&& !group_sec
->gc_mark
)
11532 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11535 /* Look through the section relocs. */
11537 eh_frame
= elf_eh_frame_section (sec
->owner
);
11538 if ((sec
->flags
& SEC_RELOC
) != 0
11539 && sec
->reloc_count
> 0
11540 && sec
!= eh_frame
)
11542 struct elf_reloc_cookie cookie
;
11544 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11548 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11549 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11554 fini_reloc_cookie_for_section (&cookie
, sec
);
11558 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11560 struct elf_reloc_cookie cookie
;
11562 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11566 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11567 gc_mark_hook
, &cookie
))
11569 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11576 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11578 struct elf_gc_sweep_symbol_info
11580 struct bfd_link_info
*info
;
11581 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11586 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11588 if (h
->root
.type
== bfd_link_hash_warning
)
11589 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11591 if ((h
->root
.type
== bfd_link_hash_defined
11592 || h
->root
.type
== bfd_link_hash_defweak
)
11593 && !h
->root
.u
.def
.section
->gc_mark
11594 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11596 struct elf_gc_sweep_symbol_info
*inf
=
11597 (struct elf_gc_sweep_symbol_info
*) data
;
11598 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11604 /* The sweep phase of garbage collection. Remove all garbage sections. */
11606 typedef bfd_boolean (*gc_sweep_hook_fn
)
11607 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11610 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11613 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11614 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11615 unsigned long section_sym_count
;
11616 struct elf_gc_sweep_symbol_info sweep_info
;
11618 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11622 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11625 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11627 /* When any section in a section group is kept, we keep all
11628 sections in the section group. If the first member of
11629 the section group is excluded, we will also exclude the
11631 if (o
->flags
& SEC_GROUP
)
11633 asection
*first
= elf_next_in_group (o
);
11634 o
->gc_mark
= first
->gc_mark
;
11636 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11637 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0
11638 || elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
)
11640 /* Keep debug, special and SHT_NOTE sections. */
11647 /* Skip sweeping sections already excluded. */
11648 if (o
->flags
& SEC_EXCLUDE
)
11651 /* Since this is early in the link process, it is simple
11652 to remove a section from the output. */
11653 o
->flags
|= SEC_EXCLUDE
;
11655 if (info
->print_gc_sections
&& o
->size
!= 0)
11656 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11658 /* But we also have to update some of the relocation
11659 info we collected before. */
11661 && (o
->flags
& SEC_RELOC
) != 0
11662 && o
->reloc_count
> 0
11663 && !bfd_is_abs_section (o
->output_section
))
11665 Elf_Internal_Rela
*internal_relocs
;
11669 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11670 info
->keep_memory
);
11671 if (internal_relocs
== NULL
)
11674 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11676 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11677 free (internal_relocs
);
11685 /* Remove the symbols that were in the swept sections from the dynamic
11686 symbol table. GCFIXME: Anyone know how to get them out of the
11687 static symbol table as well? */
11688 sweep_info
.info
= info
;
11689 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11690 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11693 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11697 /* Propagate collected vtable information. This is called through
11698 elf_link_hash_traverse. */
11701 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11703 if (h
->root
.type
== bfd_link_hash_warning
)
11704 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11706 /* Those that are not vtables. */
11707 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11710 /* Those vtables that do not have parents, we cannot merge. */
11711 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11714 /* If we've already been done, exit. */
11715 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11718 /* Make sure the parent's table is up to date. */
11719 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11721 if (h
->vtable
->used
== NULL
)
11723 /* None of this table's entries were referenced. Re-use the
11725 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11726 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11731 bfd_boolean
*cu
, *pu
;
11733 /* Or the parent's entries into ours. */
11734 cu
= h
->vtable
->used
;
11736 pu
= h
->vtable
->parent
->vtable
->used
;
11739 const struct elf_backend_data
*bed
;
11740 unsigned int log_file_align
;
11742 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11743 log_file_align
= bed
->s
->log_file_align
;
11744 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11759 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11762 bfd_vma hstart
, hend
;
11763 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11764 const struct elf_backend_data
*bed
;
11765 unsigned int log_file_align
;
11767 if (h
->root
.type
== bfd_link_hash_warning
)
11768 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11770 /* Take care of both those symbols that do not describe vtables as
11771 well as those that are not loaded. */
11772 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11775 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11776 || h
->root
.type
== bfd_link_hash_defweak
);
11778 sec
= h
->root
.u
.def
.section
;
11779 hstart
= h
->root
.u
.def
.value
;
11780 hend
= hstart
+ h
->size
;
11782 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11784 return *(bfd_boolean
*) okp
= FALSE
;
11785 bed
= get_elf_backend_data (sec
->owner
);
11786 log_file_align
= bed
->s
->log_file_align
;
11788 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11790 for (rel
= relstart
; rel
< relend
; ++rel
)
11791 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11793 /* If the entry is in use, do nothing. */
11794 if (h
->vtable
->used
11795 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11797 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11798 if (h
->vtable
->used
[entry
])
11801 /* Otherwise, kill it. */
11802 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11808 /* Mark sections containing dynamically referenced symbols. When
11809 building shared libraries, we must assume that any visible symbol is
11813 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11815 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11817 if (h
->root
.type
== bfd_link_hash_warning
)
11818 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11820 if ((h
->root
.type
== bfd_link_hash_defined
11821 || h
->root
.type
== bfd_link_hash_defweak
)
11823 || (!info
->executable
11825 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11826 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11827 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11832 /* Keep all sections containing symbols undefined on the command-line,
11833 and the section containing the entry symbol. */
11836 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11838 struct bfd_sym_chain
*sym
;
11840 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11842 struct elf_link_hash_entry
*h
;
11844 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11845 FALSE
, FALSE
, FALSE
);
11848 && (h
->root
.type
== bfd_link_hash_defined
11849 || h
->root
.type
== bfd_link_hash_defweak
)
11850 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11851 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11855 /* Do mark and sweep of unused sections. */
11858 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11860 bfd_boolean ok
= TRUE
;
11862 elf_gc_mark_hook_fn gc_mark_hook
;
11863 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11865 if (!bed
->can_gc_sections
11866 || !is_elf_hash_table (info
->hash
))
11868 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11872 bed
->gc_keep (info
);
11874 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11875 at the .eh_frame section if we can mark the FDEs individually. */
11876 _bfd_elf_begin_eh_frame_parsing (info
);
11877 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11880 struct elf_reloc_cookie cookie
;
11882 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11883 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11885 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11886 if (elf_section_data (sec
)->sec_info
)
11887 elf_eh_frame_section (sub
) = sec
;
11888 fini_reloc_cookie_for_section (&cookie
, sec
);
11891 _bfd_elf_end_eh_frame_parsing (info
);
11893 /* Apply transitive closure to the vtable entry usage info. */
11894 elf_link_hash_traverse (elf_hash_table (info
),
11895 elf_gc_propagate_vtable_entries_used
,
11900 /* Kill the vtable relocations that were not used. */
11901 elf_link_hash_traverse (elf_hash_table (info
),
11902 elf_gc_smash_unused_vtentry_relocs
,
11907 /* Mark dynamically referenced symbols. */
11908 if (elf_hash_table (info
)->dynamic_sections_created
)
11909 elf_link_hash_traverse (elf_hash_table (info
),
11910 bed
->gc_mark_dynamic_ref
,
11913 /* Grovel through relocs to find out who stays ... */
11914 gc_mark_hook
= bed
->gc_mark_hook
;
11915 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11919 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11922 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11923 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11924 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11928 /* Allow the backend to mark additional target specific sections. */
11929 if (bed
->gc_mark_extra_sections
)
11930 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11932 /* ... and mark SEC_EXCLUDE for those that go. */
11933 return elf_gc_sweep (abfd
, info
);
11936 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11939 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11941 struct elf_link_hash_entry
*h
,
11944 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11945 struct elf_link_hash_entry
**search
, *child
;
11946 bfd_size_type extsymcount
;
11947 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11949 /* The sh_info field of the symtab header tells us where the
11950 external symbols start. We don't care about the local symbols at
11952 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11953 if (!elf_bad_symtab (abfd
))
11954 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11956 sym_hashes
= elf_sym_hashes (abfd
);
11957 sym_hashes_end
= sym_hashes
+ extsymcount
;
11959 /* Hunt down the child symbol, which is in this section at the same
11960 offset as the relocation. */
11961 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11963 if ((child
= *search
) != NULL
11964 && (child
->root
.type
== bfd_link_hash_defined
11965 || child
->root
.type
== bfd_link_hash_defweak
)
11966 && child
->root
.u
.def
.section
== sec
11967 && child
->root
.u
.def
.value
== offset
)
11971 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11972 abfd
, sec
, (unsigned long) offset
);
11973 bfd_set_error (bfd_error_invalid_operation
);
11977 if (!child
->vtable
)
11979 child
->vtable
= (struct elf_link_virtual_table_entry
*)
11980 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11981 if (!child
->vtable
)
11986 /* This *should* only be the absolute section. It could potentially
11987 be that someone has defined a non-global vtable though, which
11988 would be bad. It isn't worth paging in the local symbols to be
11989 sure though; that case should simply be handled by the assembler. */
11991 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11994 child
->vtable
->parent
= h
;
11999 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12002 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
12003 asection
*sec ATTRIBUTE_UNUSED
,
12004 struct elf_link_hash_entry
*h
,
12007 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12008 unsigned int log_file_align
= bed
->s
->log_file_align
;
12012 h
->vtable
= (struct elf_link_virtual_table_entry
*)
12013 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
12018 if (addend
>= h
->vtable
->size
)
12020 size_t size
, bytes
, file_align
;
12021 bfd_boolean
*ptr
= h
->vtable
->used
;
12023 /* While the symbol is undefined, we have to be prepared to handle
12025 file_align
= 1 << log_file_align
;
12026 if (h
->root
.type
== bfd_link_hash_undefined
)
12027 size
= addend
+ file_align
;
12031 if (addend
>= size
)
12033 /* Oops! We've got a reference past the defined end of
12034 the table. This is probably a bug -- shall we warn? */
12035 size
= addend
+ file_align
;
12038 size
= (size
+ file_align
- 1) & -file_align
;
12040 /* Allocate one extra entry for use as a "done" flag for the
12041 consolidation pass. */
12042 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
12046 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
12052 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
12053 * sizeof (bfd_boolean
));
12054 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
12058 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
12063 /* And arrange for that done flag to be at index -1. */
12064 h
->vtable
->used
= ptr
+ 1;
12065 h
->vtable
->size
= size
;
12068 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
12073 struct alloc_got_off_arg
{
12075 struct bfd_link_info
*info
;
12078 /* We need a special top-level link routine to convert got reference counts
12079 to real got offsets. */
12082 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
12084 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
12085 bfd
*obfd
= gofarg
->info
->output_bfd
;
12086 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12088 if (h
->root
.type
== bfd_link_hash_warning
)
12089 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12091 if (h
->got
.refcount
> 0)
12093 h
->got
.offset
= gofarg
->gotoff
;
12094 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
12097 h
->got
.offset
= (bfd_vma
) -1;
12102 /* And an accompanying bit to work out final got entry offsets once
12103 we're done. Should be called from final_link. */
12106 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
12107 struct bfd_link_info
*info
)
12110 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12112 struct alloc_got_off_arg gofarg
;
12114 BFD_ASSERT (abfd
== info
->output_bfd
);
12116 if (! is_elf_hash_table (info
->hash
))
12119 /* The GOT offset is relative to the .got section, but the GOT header is
12120 put into the .got.plt section, if the backend uses it. */
12121 if (bed
->want_got_plt
)
12124 gotoff
= bed
->got_header_size
;
12126 /* Do the local .got entries first. */
12127 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12129 bfd_signed_vma
*local_got
;
12130 bfd_size_type j
, locsymcount
;
12131 Elf_Internal_Shdr
*symtab_hdr
;
12133 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12136 local_got
= elf_local_got_refcounts (i
);
12140 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12141 if (elf_bad_symtab (i
))
12142 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12144 locsymcount
= symtab_hdr
->sh_info
;
12146 for (j
= 0; j
< locsymcount
; ++j
)
12148 if (local_got
[j
] > 0)
12150 local_got
[j
] = gotoff
;
12151 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12154 local_got
[j
] = (bfd_vma
) -1;
12158 /* Then the global .got entries. .plt refcounts are handled by
12159 adjust_dynamic_symbol */
12160 gofarg
.gotoff
= gotoff
;
12161 gofarg
.info
= info
;
12162 elf_link_hash_traverse (elf_hash_table (info
),
12163 elf_gc_allocate_got_offsets
,
12168 /* Many folk need no more in the way of final link than this, once
12169 got entry reference counting is enabled. */
12172 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12174 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12177 /* Invoke the regular ELF backend linker to do all the work. */
12178 return bfd_elf_final_link (abfd
, info
);
12182 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12184 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12186 if (rcookie
->bad_symtab
)
12187 rcookie
->rel
= rcookie
->rels
;
12189 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12191 unsigned long r_symndx
;
12193 if (! rcookie
->bad_symtab
)
12194 if (rcookie
->rel
->r_offset
> offset
)
12196 if (rcookie
->rel
->r_offset
!= offset
)
12199 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12200 if (r_symndx
== SHN_UNDEF
)
12203 if (r_symndx
>= rcookie
->locsymcount
12204 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12206 struct elf_link_hash_entry
*h
;
12208 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12210 while (h
->root
.type
== bfd_link_hash_indirect
12211 || h
->root
.type
== bfd_link_hash_warning
)
12212 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12214 if ((h
->root
.type
== bfd_link_hash_defined
12215 || h
->root
.type
== bfd_link_hash_defweak
)
12216 && elf_discarded_section (h
->root
.u
.def
.section
))
12223 /* It's not a relocation against a global symbol,
12224 but it could be a relocation against a local
12225 symbol for a discarded section. */
12227 Elf_Internal_Sym
*isym
;
12229 /* Need to: get the symbol; get the section. */
12230 isym
= &rcookie
->locsyms
[r_symndx
];
12231 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12232 if (isec
!= NULL
&& elf_discarded_section (isec
))
12240 /* Discard unneeded references to discarded sections.
12241 Returns TRUE if any section's size was changed. */
12242 /* This function assumes that the relocations are in sorted order,
12243 which is true for all known assemblers. */
12246 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12248 struct elf_reloc_cookie cookie
;
12249 asection
*stab
, *eh
;
12250 const struct elf_backend_data
*bed
;
12252 bfd_boolean ret
= FALSE
;
12254 if (info
->traditional_format
12255 || !is_elf_hash_table (info
->hash
))
12258 _bfd_elf_begin_eh_frame_parsing (info
);
12259 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12261 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12264 bed
= get_elf_backend_data (abfd
);
12266 if ((abfd
->flags
& DYNAMIC
) != 0)
12270 if (!info
->relocatable
)
12272 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12275 || bfd_is_abs_section (eh
->output_section
)))
12279 stab
= bfd_get_section_by_name (abfd
, ".stab");
12281 && (stab
->size
== 0
12282 || bfd_is_abs_section (stab
->output_section
)
12283 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12288 && bed
->elf_backend_discard_info
== NULL
)
12291 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12295 && stab
->reloc_count
> 0
12296 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12298 if (_bfd_discard_section_stabs (abfd
, stab
,
12299 elf_section_data (stab
)->sec_info
,
12300 bfd_elf_reloc_symbol_deleted_p
,
12303 fini_reloc_cookie_rels (&cookie
, stab
);
12307 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12309 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12310 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12311 bfd_elf_reloc_symbol_deleted_p
,
12314 fini_reloc_cookie_rels (&cookie
, eh
);
12317 if (bed
->elf_backend_discard_info
!= NULL
12318 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12321 fini_reloc_cookie (&cookie
, abfd
);
12323 _bfd_elf_end_eh_frame_parsing (info
);
12325 if (info
->eh_frame_hdr
12326 && !info
->relocatable
12327 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12333 /* For a SHT_GROUP section, return the group signature. For other
12334 sections, return the normal section name. */
12336 static const char *
12337 section_signature (asection
*sec
)
12339 if ((sec
->flags
& SEC_GROUP
) != 0
12340 && elf_next_in_group (sec
) != NULL
12341 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12342 return elf_group_name (elf_next_in_group (sec
));
12347 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12348 struct bfd_link_info
*info
)
12351 const char *name
, *p
;
12352 struct bfd_section_already_linked
*l
;
12353 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12355 if (sec
->output_section
== bfd_abs_section_ptr
)
12358 flags
= sec
->flags
;
12360 /* Return if it isn't a linkonce section. A comdat group section
12361 also has SEC_LINK_ONCE set. */
12362 if ((flags
& SEC_LINK_ONCE
) == 0)
12365 /* Don't put group member sections on our list of already linked
12366 sections. They are handled as a group via their group section. */
12367 if (elf_sec_group (sec
) != NULL
)
12370 /* FIXME: When doing a relocatable link, we may have trouble
12371 copying relocations in other sections that refer to local symbols
12372 in the section being discarded. Those relocations will have to
12373 be converted somehow; as of this writing I'm not sure that any of
12374 the backends handle that correctly.
12376 It is tempting to instead not discard link once sections when
12377 doing a relocatable link (technically, they should be discarded
12378 whenever we are building constructors). However, that fails,
12379 because the linker winds up combining all the link once sections
12380 into a single large link once section, which defeats the purpose
12381 of having link once sections in the first place.
12383 Also, not merging link once sections in a relocatable link
12384 causes trouble for MIPS ELF, which relies on link once semantics
12385 to handle the .reginfo section correctly. */
12387 name
= section_signature (sec
);
12389 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12390 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12395 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12397 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12399 /* We may have 2 different types of sections on the list: group
12400 sections and linkonce sections. Match like sections. */
12401 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12402 && strcmp (name
, section_signature (l
->sec
)) == 0
12403 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12405 /* The section has already been linked. See if we should
12406 issue a warning. */
12407 switch (flags
& SEC_LINK_DUPLICATES
)
12412 case SEC_LINK_DUPLICATES_DISCARD
:
12415 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12416 (*_bfd_error_handler
)
12417 (_("%B: ignoring duplicate section `%A'"),
12421 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12422 if (sec
->size
!= l
->sec
->size
)
12423 (*_bfd_error_handler
)
12424 (_("%B: duplicate section `%A' has different size"),
12428 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12429 if (sec
->size
!= l
->sec
->size
)
12430 (*_bfd_error_handler
)
12431 (_("%B: duplicate section `%A' has different size"),
12433 else if (sec
->size
!= 0)
12435 bfd_byte
*sec_contents
, *l_sec_contents
;
12437 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12438 (*_bfd_error_handler
)
12439 (_("%B: warning: could not read contents of section `%A'"),
12441 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12443 (*_bfd_error_handler
)
12444 (_("%B: warning: could not read contents of section `%A'"),
12445 l
->sec
->owner
, l
->sec
);
12446 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12447 (*_bfd_error_handler
)
12448 (_("%B: warning: duplicate section `%A' has different contents"),
12452 free (sec_contents
);
12453 if (l_sec_contents
)
12454 free (l_sec_contents
);
12459 /* Set the output_section field so that lang_add_section
12460 does not create a lang_input_section structure for this
12461 section. Since there might be a symbol in the section
12462 being discarded, we must retain a pointer to the section
12463 which we are really going to use. */
12464 sec
->output_section
= bfd_abs_section_ptr
;
12465 sec
->kept_section
= l
->sec
;
12467 if (flags
& SEC_GROUP
)
12469 asection
*first
= elf_next_in_group (sec
);
12470 asection
*s
= first
;
12474 s
->output_section
= bfd_abs_section_ptr
;
12475 /* Record which group discards it. */
12476 s
->kept_section
= l
->sec
;
12477 s
= elf_next_in_group (s
);
12478 /* These lists are circular. */
12488 /* A single member comdat group section may be discarded by a
12489 linkonce section and vice versa. */
12491 if ((flags
& SEC_GROUP
) != 0)
12493 asection
*first
= elf_next_in_group (sec
);
12495 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12496 /* Check this single member group against linkonce sections. */
12497 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12498 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12499 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12500 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12502 first
->output_section
= bfd_abs_section_ptr
;
12503 first
->kept_section
= l
->sec
;
12504 sec
->output_section
= bfd_abs_section_ptr
;
12509 /* Check this linkonce section against single member groups. */
12510 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12511 if (l
->sec
->flags
& SEC_GROUP
)
12513 asection
*first
= elf_next_in_group (l
->sec
);
12516 && elf_next_in_group (first
) == first
12517 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12519 sec
->output_section
= bfd_abs_section_ptr
;
12520 sec
->kept_section
= first
;
12525 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12526 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12527 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12528 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12529 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12530 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12531 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12532 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12533 The reverse order cannot happen as there is never a bfd with only the
12534 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12535 matter as here were are looking only for cross-bfd sections. */
12537 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12538 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12539 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12540 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12542 if (abfd
!= l
->sec
->owner
)
12543 sec
->output_section
= bfd_abs_section_ptr
;
12547 /* This is the first section with this name. Record it. */
12548 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12549 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12553 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12555 return sym
->st_shndx
== SHN_COMMON
;
12559 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12565 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12567 return bfd_com_section_ptr
;
12571 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12572 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12573 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12574 bfd
*ibfd ATTRIBUTE_UNUSED
,
12575 unsigned long symndx ATTRIBUTE_UNUSED
)
12577 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12578 return bed
->s
->arch_size
/ 8;
12581 /* Routines to support the creation of dynamic relocs. */
12583 /* Return true if NAME is a name of a relocation
12584 section associated with section S. */
12587 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12590 return CONST_STRNEQ (name
, ".rela")
12591 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12593 return CONST_STRNEQ (name
, ".rel")
12594 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12597 /* Returns the name of the dynamic reloc section associated with SEC. */
12599 static const char *
12600 get_dynamic_reloc_section_name (bfd
* abfd
,
12602 bfd_boolean is_rela
)
12605 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12606 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12608 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12612 if (! is_reloc_section (is_rela
, name
, sec
))
12614 static bfd_boolean complained
= FALSE
;
12618 (*_bfd_error_handler
)
12619 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12628 /* Returns the dynamic reloc section associated with SEC.
12629 If necessary compute the name of the dynamic reloc section based
12630 on SEC's name (looked up in ABFD's string table) and the setting
12634 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12636 bfd_boolean is_rela
)
12638 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12640 if (reloc_sec
== NULL
)
12642 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12646 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12648 if (reloc_sec
!= NULL
)
12649 elf_section_data (sec
)->sreloc
= reloc_sec
;
12656 /* Returns the dynamic reloc section associated with SEC. If the
12657 section does not exist it is created and attached to the DYNOBJ
12658 bfd and stored in the SRELOC field of SEC's elf_section_data
12661 ALIGNMENT is the alignment for the newly created section and
12662 IS_RELA defines whether the name should be .rela.<SEC's name>
12663 or .rel.<SEC's name>. The section name is looked up in the
12664 string table associated with ABFD. */
12667 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12669 unsigned int alignment
,
12671 bfd_boolean is_rela
)
12673 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12675 if (reloc_sec
== NULL
)
12677 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12682 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12684 if (reloc_sec
== NULL
)
12688 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12689 if ((sec
->flags
& SEC_ALLOC
) != 0)
12690 flags
|= SEC_ALLOC
| SEC_LOAD
;
12692 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12693 if (reloc_sec
!= NULL
)
12695 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12700 elf_section_data (sec
)->sreloc
= reloc_sec
;
12706 /* Copy the ELF symbol type associated with a linker hash entry. */
12708 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
12709 struct bfd_link_hash_entry
* hdest
,
12710 struct bfd_link_hash_entry
* hsrc
)
12712 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*)hdest
;
12713 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*)hsrc
;
12715 ehdest
->type
= ehsrc
->type
;