1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
44 static void sparc64_elf_build_plt
45 PARAMS((bfd
*, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
48 static bfd_vma sparc64_elf_plt_ptr_offset
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd
*, struct bfd_link_info
*, asection
*sec
,
53 const Elf_Internal_Rela
*));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info
*, struct elf_link_hash_entry
*));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd
*, struct bfd_link_info
*));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym
*, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
62 const char **, flagword
*, asection
**, bfd_vma
*));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd
*, asymbol
*));
66 static boolean sparc64_elf_copy_private_bfd_data
67 PARAMS ((bfd
*, bfd
*));
68 static boolean sparc64_elf_merge_private_bfd_data
69 PARAMS ((bfd
*, bfd
*));
71 static boolean sparc64_elf_relax_section
72 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, boolean
*));
73 static boolean sparc64_elf_relocate_section
74 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
75 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
76 static boolean sparc64_elf_object_p
PARAMS ((bfd
*));
77 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
78 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
79 static boolean sparc64_elf_slurp_one_reloc_table
80 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, boolean
));
81 static boolean sparc64_elf_slurp_reloc_table
82 PARAMS ((bfd
*, asection
*, asymbol
**, boolean
));
83 static long sparc64_elf_canonicalize_dynamic_reloc
84 PARAMS ((bfd
*, arelent
**, asymbol
**));
85 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
87 /* The relocation "howto" table. */
89 static bfd_reloc_status_type sparc_elf_notsup_reloc
90 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
91 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
92 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
93 static bfd_reloc_status_type sparc_elf_hix22_reloc
94 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
95 static bfd_reloc_status_type sparc_elf_lox10_reloc
96 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
98 static reloc_howto_type sparc64_elf_howto_table
[] =
100 HOWTO(R_SPARC_NONE
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", false,0,0x00000000,true),
101 HOWTO(R_SPARC_8
, 0,0, 8,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", false,0,0x000000ff,true),
102 HOWTO(R_SPARC_16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", false,0,0x0000ffff,true),
103 HOWTO(R_SPARC_32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", false,0,0xffffffff,true),
104 HOWTO(R_SPARC_DISP8
, 0,0, 8,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", false,0,0x000000ff,true),
105 HOWTO(R_SPARC_DISP16
, 0,1,16,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", false,0,0x0000ffff,true),
106 HOWTO(R_SPARC_DISP32
, 0,2,32,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", false,0,0x00ffffff,true),
107 HOWTO(R_SPARC_WDISP30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
108 HOWTO(R_SPARC_WDISP22
, 2,2,22,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_HI22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_22
, 0,2,22,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_13
, 0,2,13,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", false,0,0x00001fff,true),
112 HOWTO(R_SPARC_LO10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", false,0,0x000003ff,true),
113 HOWTO(R_SPARC_GOT10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", false,0,0x000003ff,true),
114 HOWTO(R_SPARC_GOT13
, 0,2,13,false,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", false,0,0x00001fff,true),
115 HOWTO(R_SPARC_GOT22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_PC10
, 0,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", false,0,0x000003ff,true),
117 HOWTO(R_SPARC_PC22
, 10,2,22,true, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", false,0,0x003fffff,true),
118 HOWTO(R_SPARC_WPLT30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
119 HOWTO(R_SPARC_COPY
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", false,0,0x00000000,true),
120 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
121 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
122 HOWTO(R_SPARC_RELATIVE
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",false,0,0x00000000,true),
123 HOWTO(R_SPARC_UA32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", false,0,0xffffffff,true),
124 #ifndef SPARC64_OLD_RELOCS
125 /* These aren't implemented yet. */
126 HOWTO(R_SPARC_PLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PLT32", false,0,0x00000000,true),
127 HOWTO(R_SPARC_HIPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", false,0,0x00000000,true),
128 HOWTO(R_SPARC_LOPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", false,0,0x00000000,true),
130 HOWTO(R_SPARC_PCPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", false,0,0x00000000,true),
131 HOWTO(R_SPARC_PCPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", false,0,0x00000000,true),
133 HOWTO(R_SPARC_10
, 0,2,10,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_11
, 0,2,11,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", false,0,0x000007ff,true),
135 HOWTO(R_SPARC_64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", false,0,MINUS_ONE
, true),
136 HOWTO(R_SPARC_OLO10
, 0,2,13,false,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", false,0,0x00001fff,true),
137 HOWTO(R_SPARC_HH22
, 42,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_HM10
, 32,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", false,0,0x000003ff,true),
139 HOWTO(R_SPARC_LM22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", false,0,0x003fffff,true),
140 HOWTO(R_SPARC_PC_HH22
, 42,2,22,true, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_PC_HM10
, 32,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
142 HOWTO(R_SPARC_PC_LM22
, 10,2,22,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
143 HOWTO(R_SPARC_WDISP16
, 2,2,16,true, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", false,0,0x00000000,true),
144 HOWTO(R_SPARC_WDISP19
, 2,2,19,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
145 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
146 HOWTO(R_SPARC_7
, 0,2, 7,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", false,0,0x0000007f,true),
147 HOWTO(R_SPARC_5
, 0,2, 5,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", false,0,0x0000001f,true),
148 HOWTO(R_SPARC_6
, 0,2, 6,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", false,0,0x0000003f,true),
149 HOWTO(R_SPARC_DISP64
, 0,4,64,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", false,0,MINUS_ONE
, true),
150 HOWTO(R_SPARC_PLT64
, 0,4,64,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_PLT64", false,0,MINUS_ONE
, false),
151 HOWTO(R_SPARC_HIX22
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", false,0,MINUS_ONE
, false),
152 HOWTO(R_SPARC_LOX10
, 0,4, 0,false,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", false,0,MINUS_ONE
, false),
153 HOWTO(R_SPARC_H44
, 22,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", false,0,0x003fffff,false),
154 HOWTO(R_SPARC_M44
, 12,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", false,0,0x000003ff,false),
155 HOWTO(R_SPARC_L44
, 0,2,13,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", false,0,0x00000fff,false),
156 HOWTO(R_SPARC_REGISTER
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",false,0,MINUS_ONE
, false),
157 HOWTO(R_SPARC_UA64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", false,0,MINUS_ONE
, true),
158 HOWTO(R_SPARC_UA16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", false,0,0x0000ffff,true)
161 struct elf_reloc_map
{
162 bfd_reloc_code_real_type bfd_reloc_val
;
163 unsigned char elf_reloc_val
;
166 static CONST
struct elf_reloc_map sparc_reloc_map
[] =
168 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
169 { BFD_RELOC_16
, R_SPARC_16
, },
170 { BFD_RELOC_8
, R_SPARC_8
},
171 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
172 { BFD_RELOC_CTOR
, R_SPARC_64
},
173 { BFD_RELOC_32
, R_SPARC_32
},
174 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
175 { BFD_RELOC_HI22
, R_SPARC_HI22
},
176 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
177 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
178 { BFD_RELOC_SPARC22
, R_SPARC_22
},
179 { BFD_RELOC_SPARC13
, R_SPARC_13
},
180 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
181 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
182 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
183 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
184 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
185 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
186 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
187 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
188 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
189 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
190 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
191 { BFD_RELOC_SPARC_UA16
, R_SPARC_UA16
},
192 { BFD_RELOC_SPARC_UA32
, R_SPARC_UA32
},
193 { BFD_RELOC_SPARC_UA64
, R_SPARC_UA64
},
194 { BFD_RELOC_SPARC_10
, R_SPARC_10
},
195 { BFD_RELOC_SPARC_11
, R_SPARC_11
},
196 { BFD_RELOC_SPARC_64
, R_SPARC_64
},
197 { BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
198 { BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
199 { BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
200 { BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
201 { BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
202 { BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
203 { BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
204 { BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
205 { BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
206 { BFD_RELOC_SPARC_7
, R_SPARC_7
},
207 { BFD_RELOC_SPARC_5
, R_SPARC_5
},
208 { BFD_RELOC_SPARC_6
, R_SPARC_6
},
209 { BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
210 { BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
211 { BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
212 { BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
213 { BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
214 { BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
215 { BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
216 { BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
219 static reloc_howto_type
*
220 sparc64_elf_reloc_type_lookup (abfd
, code
)
221 bfd
*abfd ATTRIBUTE_UNUSED
;
222 bfd_reloc_code_real_type code
;
225 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
227 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
228 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
234 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
235 bfd
*abfd ATTRIBUTE_UNUSED
;
237 Elf64_Internal_Rela
*dst
;
239 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
240 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
243 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
244 section can represent up to two relocs, we must tell the user to allocate
248 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
249 bfd
*abfd ATTRIBUTE_UNUSED
;
252 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
256 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
259 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
262 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
263 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
264 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
265 for the same location, R_SPARC_LO10 and R_SPARC_13. */
268 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
271 Elf_Internal_Shdr
*rel_hdr
;
275 PTR allocated
= NULL
;
276 bfd_byte
*native_relocs
;
283 allocated
= (PTR
) bfd_malloc ((size_t) rel_hdr
->sh_size
);
284 if (allocated
== NULL
)
287 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
288 || (bfd_read (allocated
, 1, rel_hdr
->sh_size
, abfd
)
289 != rel_hdr
->sh_size
))
292 native_relocs
= (bfd_byte
*) allocated
;
294 relents
= asect
->relocation
+ asect
->reloc_count
;
296 entsize
= rel_hdr
->sh_entsize
;
297 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
299 count
= rel_hdr
->sh_size
/ entsize
;
301 for (i
= 0, relent
= relents
; i
< count
;
302 i
++, relent
++, native_relocs
+= entsize
)
304 Elf_Internal_Rela rela
;
306 bfd_elf64_swap_reloca_in (abfd
, (Elf64_External_Rela
*) native_relocs
, &rela
);
308 /* The address of an ELF reloc is section relative for an object
309 file, and absolute for an executable file or shared library.
310 The address of a normal BFD reloc is always section relative,
311 and the address of a dynamic reloc is absolute.. */
312 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
313 relent
->address
= rela
.r_offset
;
315 relent
->address
= rela
.r_offset
- asect
->vma
;
317 if (ELF64_R_SYM (rela
.r_info
) == 0)
318 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
323 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
326 /* Canonicalize ELF section symbols. FIXME: Why? */
327 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
328 relent
->sym_ptr_ptr
= ps
;
330 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
333 relent
->addend
= rela
.r_addend
;
335 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
336 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
338 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
339 relent
[1].address
= relent
->address
;
341 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
342 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
343 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
346 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
349 asect
->reloc_count
+= relent
- relents
;
351 if (allocated
!= NULL
)
357 if (allocated
!= NULL
)
362 /* Read in and swap the external relocs. */
365 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
371 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
372 Elf_Internal_Shdr
*rel_hdr
;
373 Elf_Internal_Shdr
*rel_hdr2
;
375 if (asect
->relocation
!= NULL
)
380 if ((asect
->flags
& SEC_RELOC
) == 0
381 || asect
->reloc_count
== 0)
384 rel_hdr
= &d
->rel_hdr
;
385 rel_hdr2
= d
->rel_hdr2
;
387 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
388 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
392 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
393 case because relocations against this section may use the
394 dynamic symbol table, and in that case bfd_section_from_shdr
395 in elf.c does not update the RELOC_COUNT. */
396 if (asect
->_raw_size
== 0)
399 rel_hdr
= &d
->this_hdr
;
400 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
404 asect
->relocation
= ((arelent
*)
406 asect
->reloc_count
* 2 * sizeof (arelent
)));
407 if (asect
->relocation
== NULL
)
410 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
411 asect
->reloc_count
= 0;
413 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
418 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
425 /* Canonicalize the dynamic relocation entries. Note that we return
426 the dynamic relocations as a single block, although they are
427 actually associated with particular sections; the interface, which
428 was designed for SunOS style shared libraries, expects that there
429 is only one set of dynamic relocs. Any section that was actually
430 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
431 the dynamic symbol table, is considered to be a dynamic reloc
435 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
443 if (elf_dynsymtab (abfd
) == 0)
445 bfd_set_error (bfd_error_invalid_operation
);
450 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
452 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
453 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
458 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, true))
460 count
= s
->reloc_count
;
462 for (i
= 0; i
< count
; i
++)
473 /* Write out the relocs. */
476 sparc64_elf_write_relocs (abfd
, sec
, data
)
481 boolean
*failedp
= (boolean
*) data
;
482 Elf_Internal_Shdr
*rela_hdr
;
483 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
484 unsigned int idx
, count
;
485 asymbol
*last_sym
= 0;
486 int last_sym_idx
= 0;
488 /* If we have already failed, don't do anything. */
492 if ((sec
->flags
& SEC_RELOC
) == 0)
495 /* The linker backend writes the relocs out itself, and sets the
496 reloc_count field to zero to inhibit writing them here. Also,
497 sometimes the SEC_RELOC flag gets set even when there aren't any
499 if (sec
->reloc_count
== 0)
502 /* We can combine two relocs that refer to the same address
503 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
504 latter is R_SPARC_13 with no associated symbol. */
506 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
512 addr
= sec
->orelocation
[idx
]->address
;
513 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
514 && idx
< sec
->reloc_count
- 1)
516 arelent
*r
= sec
->orelocation
[idx
+ 1];
518 if (r
->howto
->type
== R_SPARC_13
519 && r
->address
== addr
520 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
521 && (*r
->sym_ptr_ptr
)->value
== 0)
526 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
528 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
529 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
530 if (rela_hdr
->contents
== NULL
)
536 /* Figure out whether the relocations are RELA or REL relocations. */
537 if (rela_hdr
->sh_type
!= SHT_RELA
)
540 /* orelocation has the data, reloc_count has the count... */
541 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
542 src_rela
= outbound_relocas
;
544 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
546 Elf_Internal_Rela dst_rela
;
551 ptr
= sec
->orelocation
[idx
];
553 /* The address of an ELF reloc is section relative for an object
554 file, and absolute for an executable file or shared library.
555 The address of a BFD reloc is always section relative. */
556 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
557 dst_rela
.r_offset
= ptr
->address
;
559 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
561 sym
= *ptr
->sym_ptr_ptr
;
564 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
569 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
578 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
579 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
580 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
586 if (ptr
->howto
->type
== R_SPARC_LO10
587 && idx
< sec
->reloc_count
- 1)
589 arelent
*r
= sec
->orelocation
[idx
+ 1];
591 if (r
->howto
->type
== R_SPARC_13
592 && r
->address
== ptr
->address
593 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
594 && (*r
->sym_ptr_ptr
)->value
== 0)
598 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
602 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
605 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
607 dst_rela
.r_addend
= ptr
->addend
;
608 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, src_rela
);
613 /* Sparc64 ELF linker hash table. */
615 struct sparc64_elf_app_reg
618 unsigned short shndx
;
623 struct sparc64_elf_link_hash_table
625 struct elf_link_hash_table root
;
627 struct sparc64_elf_app_reg app_regs
[4];
630 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
632 #define sparc64_elf_hash_table(p) \
633 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
635 /* Create a Sparc64 ELF linker hash table. */
637 static struct bfd_link_hash_table
*
638 sparc64_elf_bfd_link_hash_table_create (abfd
)
641 struct sparc64_elf_link_hash_table
*ret
;
643 ret
= ((struct sparc64_elf_link_hash_table
*)
644 bfd_zalloc (abfd
, sizeof (struct sparc64_elf_link_hash_table
)));
645 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
648 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
649 _bfd_elf_link_hash_newfunc
))
651 bfd_release (abfd
, ret
);
655 return &ret
->root
.root
;
658 /* Utility for performing the standard initial work of an instruction
660 *PRELOCATION will contain the relocated item.
661 *PINSN will contain the instruction from the input stream.
662 If the result is `bfd_reloc_other' the caller can continue with
663 performing the relocation. Otherwise it must stop and return the
664 value to its caller. */
666 static bfd_reloc_status_type
667 init_insn_reloc (abfd
,
676 arelent
*reloc_entry
;
679 asection
*input_section
;
681 bfd_vma
*prelocation
;
685 reloc_howto_type
*howto
= reloc_entry
->howto
;
687 if (output_bfd
!= (bfd
*) NULL
688 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
689 && (! howto
->partial_inplace
690 || reloc_entry
->addend
== 0))
692 reloc_entry
->address
+= input_section
->output_offset
;
696 /* This works because partial_inplace == false. */
697 if (output_bfd
!= NULL
)
698 return bfd_reloc_continue
;
700 if (reloc_entry
->address
> input_section
->_cooked_size
)
701 return bfd_reloc_outofrange
;
703 relocation
= (symbol
->value
704 + symbol
->section
->output_section
->vma
705 + symbol
->section
->output_offset
);
706 relocation
+= reloc_entry
->addend
;
707 if (howto
->pc_relative
)
709 relocation
-= (input_section
->output_section
->vma
710 + input_section
->output_offset
);
711 relocation
-= reloc_entry
->address
;
714 *prelocation
= relocation
;
715 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
716 return bfd_reloc_other
;
719 /* For unsupported relocs. */
721 static bfd_reloc_status_type
722 sparc_elf_notsup_reloc (abfd
,
729 bfd
*abfd ATTRIBUTE_UNUSED
;
730 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
731 asymbol
*symbol ATTRIBUTE_UNUSED
;
732 PTR data ATTRIBUTE_UNUSED
;
733 asection
*input_section ATTRIBUTE_UNUSED
;
734 bfd
*output_bfd ATTRIBUTE_UNUSED
;
735 char **error_message ATTRIBUTE_UNUSED
;
737 return bfd_reloc_notsupported
;
740 /* Handle the WDISP16 reloc. */
742 static bfd_reloc_status_type
743 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
744 output_bfd
, error_message
)
746 arelent
*reloc_entry
;
749 asection
*input_section
;
751 char **error_message ATTRIBUTE_UNUSED
;
755 bfd_reloc_status_type status
;
757 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
758 input_section
, output_bfd
, &relocation
, &insn
);
759 if (status
!= bfd_reloc_other
)
762 insn
= (insn
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
763 | ((relocation
>> 2) & 0x3fff));
764 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
766 if ((bfd_signed_vma
) relocation
< - 0x40000
767 || (bfd_signed_vma
) relocation
> 0x3ffff)
768 return bfd_reloc_overflow
;
773 /* Handle the HIX22 reloc. */
775 static bfd_reloc_status_type
776 sparc_elf_hix22_reloc (abfd
,
784 arelent
*reloc_entry
;
787 asection
*input_section
;
789 char **error_message ATTRIBUTE_UNUSED
;
793 bfd_reloc_status_type status
;
795 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
796 input_section
, output_bfd
, &relocation
, &insn
);
797 if (status
!= bfd_reloc_other
)
800 relocation
^= MINUS_ONE
;
801 insn
= (insn
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
802 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
804 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
805 return bfd_reloc_overflow
;
810 /* Handle the LOX10 reloc. */
812 static bfd_reloc_status_type
813 sparc_elf_lox10_reloc (abfd
,
821 arelent
*reloc_entry
;
824 asection
*input_section
;
826 char **error_message ATTRIBUTE_UNUSED
;
830 bfd_reloc_status_type status
;
832 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
833 input_section
, output_bfd
, &relocation
, &insn
);
834 if (status
!= bfd_reloc_other
)
837 insn
= (insn
& ~0x1fff) | 0x1c00 | (relocation
& 0x3ff);
838 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
845 /* Both the headers and the entries are icache aligned. */
846 #define PLT_ENTRY_SIZE 32
847 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
848 #define LARGE_PLT_THRESHOLD 32768
849 #define GOT_RESERVED_ENTRIES 1
851 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
853 /* Fill in the .plt section. */
856 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
858 unsigned char *contents
;
861 const unsigned int nop
= 0x01000000;
864 /* The first four entries are reserved, and are initially undefined.
865 We fill them with `illtrap 0' to force ld.so to do something. */
867 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
868 bfd_put_32 (output_bfd
, 0, contents
+i
*4);
870 /* The first 32768 entries are close enough to plt1 to get there via
871 a straight branch. */
873 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
875 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
876 unsigned int sethi
, ba
;
878 /* sethi (. - plt0), %g1 */
879 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
881 /* ba,a,pt %xcc, plt1 */
882 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
884 bfd_put_32 (output_bfd
, sethi
, entry
);
885 bfd_put_32 (output_bfd
, ba
, entry
+4);
886 bfd_put_32 (output_bfd
, nop
, entry
+8);
887 bfd_put_32 (output_bfd
, nop
, entry
+12);
888 bfd_put_32 (output_bfd
, nop
, entry
+16);
889 bfd_put_32 (output_bfd
, nop
, entry
+20);
890 bfd_put_32 (output_bfd
, nop
, entry
+24);
891 bfd_put_32 (output_bfd
, nop
, entry
+28);
894 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
895 160: 160 entries and 160 pointers. This is to separate code from data,
896 which is much friendlier on the cache. */
898 for (; i
< nentries
; i
+= 160)
900 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
901 for (j
= 0; j
< block
; ++j
)
903 unsigned char *entry
, *ptr
;
906 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
907 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
909 /* ldx [%o7 + ptr - entry+4], %g1 */
910 ldx
= 0xc25be000 | ((ptr
- entry
+4) & 0x1fff);
912 bfd_put_32 (output_bfd
, 0x8a10000f, entry
); /* mov %o7,%g5 */
913 bfd_put_32 (output_bfd
, 0x40000002, entry
+4); /* call .+8 */
914 bfd_put_32 (output_bfd
, nop
, entry
+8); /* nop */
915 bfd_put_32 (output_bfd
, ldx
, entry
+12); /* ldx [%o7+P],%g1 */
916 bfd_put_32 (output_bfd
, 0x83c3c001, entry
+16); /* jmpl %o7+%g1,%g1 */
917 bfd_put_32 (output_bfd
, 0x9e100005, entry
+20); /* mov %g5,%o7 */
919 bfd_put_64 (output_bfd
, contents
- (entry
+4), ptr
);
924 /* Return the offset of a particular plt entry within the .plt section. */
927 sparc64_elf_plt_entry_offset (index
)
932 if (index
< LARGE_PLT_THRESHOLD
)
933 return index
* PLT_ENTRY_SIZE
;
935 /* See above for details. */
937 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
938 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
940 return ((bfd_vma
) (LARGE_PLT_THRESHOLD
+ block
*160) * PLT_ENTRY_SIZE
945 sparc64_elf_plt_ptr_offset (index
, max
)
948 int block
, ofs
, last
;
950 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
952 /* See above for details. */
954 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160)
955 + LARGE_PLT_THRESHOLD
;
957 if (block
+ 160 > max
)
958 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
962 return (block
* PLT_ENTRY_SIZE
967 /* Look through the relocs for a section during the first phase, and
968 allocate space in the global offset table or procedure linkage
972 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
974 struct bfd_link_info
*info
;
976 const Elf_Internal_Rela
*relocs
;
979 Elf_Internal_Shdr
*symtab_hdr
;
980 struct elf_link_hash_entry
**sym_hashes
;
981 bfd_vma
*local_got_offsets
;
982 const Elf_Internal_Rela
*rel
;
983 const Elf_Internal_Rela
*rel_end
;
988 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
991 dynobj
= elf_hash_table (info
)->dynobj
;
992 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
993 sym_hashes
= elf_sym_hashes (abfd
);
994 local_got_offsets
= elf_local_got_offsets (abfd
);
1000 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1001 for (rel
= relocs
; rel
< rel_end
; rel
++)
1003 unsigned long r_symndx
;
1004 struct elf_link_hash_entry
*h
;
1006 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1007 if (r_symndx
< symtab_hdr
->sh_info
)
1010 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1012 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1017 /* This symbol requires a global offset table entry. */
1021 /* Create the .got section. */
1022 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1023 if (! _bfd_elf_create_got_section (dynobj
, info
))
1029 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1030 BFD_ASSERT (sgot
!= NULL
);
1033 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1035 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1036 if (srelgot
== NULL
)
1038 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1040 || ! bfd_set_section_flags (dynobj
, srelgot
,
1045 | SEC_LINKER_CREATED
1047 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1054 if (h
->got
.offset
!= (bfd_vma
) -1)
1056 /* We have already allocated space in the .got. */
1059 h
->got
.offset
= sgot
->_raw_size
;
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h
->dynindx
== -1)
1064 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1068 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1072 /* This is a global offset table entry for a local
1074 if (local_got_offsets
== NULL
)
1077 register unsigned int i
;
1079 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
1080 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1081 if (local_got_offsets
== NULL
)
1083 elf_local_got_offsets (abfd
) = local_got_offsets
;
1084 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1085 local_got_offsets
[i
] = (bfd_vma
) -1;
1087 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1089 /* We have already allocated space in the .got. */
1092 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1103 sgot
->_raw_size
+= 8;
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot
->_raw_size
>= 0x1000
1115 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1116 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1121 case R_SPARC_WPLT30
:
1123 case R_SPARC_HIPLT22
:
1124 case R_SPARC_LOPLT10
:
1125 case R_SPARC_PCPLT32
:
1126 case R_SPARC_PCPLT22
:
1127 case R_SPARC_PCPLT10
:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value
);
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h
->dynindx
== -1)
1146 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1150 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1155 case R_SPARC_PC_HH22
:
1156 case R_SPARC_PC_HM10
:
1157 case R_SPARC_PC_LM22
:
1159 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1163 case R_SPARC_DISP16
:
1164 case R_SPARC_DISP32
:
1165 case R_SPARC_DISP64
:
1166 case R_SPARC_WDISP30
:
1167 case R_SPARC_WDISP22
:
1168 case R_SPARC_WDISP19
:
1169 case R_SPARC_WDISP16
:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1212 name
= (bfd_elf_string_from_elf_section
1214 elf_elfheader (abfd
)->e_shstrndx
,
1215 elf_section_data (sec
)->rel_hdr
.sh_name
));
1219 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd
, sec
),
1223 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1228 sreloc
= bfd_make_section (dynobj
, name
);
1229 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1230 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1231 if ((sec
->flags
& SEC_ALLOC
) != 0)
1232 flags
|= SEC_ALLOC
| SEC_LOAD
;
1234 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1235 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1240 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1244 case R_SPARC_REGISTER
:
1245 /* Nothing to do. */
1249 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd
),
1251 ELF64_R_TYPE_ID (rel
->r_info
));
1259 /* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1263 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1265 struct bfd_link_info
*info
;
1266 const Elf_Internal_Sym
*sym
;
1268 flagword
*flagsp ATTRIBUTE_UNUSED
;
1269 asection
**secp ATTRIBUTE_UNUSED
;
1270 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1272 static char *stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1277 struct sparc64_elf_app_reg
*p
;
1279 reg
= (int)sym
->st_value
;
1282 case 2: reg
-= 2; break;
1283 case 6: reg
-= 4; break;
1285 (*_bfd_error_handler
)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd
));
1291 if (info
->hash
->creator
!= abfd
->xvec
1292 || (abfd
->flags
& DYNAMIC
) != 0)
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1301 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1303 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1305 (*_bfd_error_handler
)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1309 bfd_get_filename (p
->abfd
), *p
->name
? p
->name
: "#scratch",
1310 bfd_get_filename (abfd
), **namep
? *namep
: "#scratch");
1314 if (p
->name
== NULL
)
1318 struct elf_link_hash_entry
*h
;
1320 h
= (struct elf_link_hash_entry
*)
1321 bfd_link_hash_lookup (info
->hash
, *namep
, false, false, false);
1325 unsigned char type
= h
->type
;
1327 if (type
> STT_FUNC
) type
= 0;
1328 (*_bfd_error_handler
)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep
, stt_types
[type
], bfd_get_filename (abfd
));
1335 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1336 strlen (*namep
) + 1);
1340 strcpy (p
->name
, *namep
);
1344 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1346 p
->shndx
= sym
->st_shndx
;
1350 if (p
->bind
== STB_WEAK
1351 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1353 p
->bind
= STB_GLOBAL
;
1360 else if (! *namep
|| ! **namep
)
1365 struct sparc64_elf_app_reg
*p
;
1367 p
= sparc64_elf_hash_table(info
)->app_regs
;
1368 for (i
= 0; i
< 4; i
++, p
++)
1369 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1371 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1373 if (type
> STT_FUNC
) type
= 0;
1374 (*_bfd_error_handler
)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep
, bfd_get_filename (p
->abfd
), stt_types
[type
],
1378 bfd_get_filename (abfd
));
1385 /* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1389 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1390 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1391 struct bfd_link_info
*info
;
1393 boolean (*func
) PARAMS ((PTR
, const char *,
1394 Elf_Internal_Sym
*, asection
*));
1397 struct sparc64_elf_app_reg
*app_regs
=
1398 sparc64_elf_hash_table(info
)->app_regs
;
1399 Elf_Internal_Sym sym
;
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info
)->dynlocal
)
1407 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1408 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1409 struct elf_link_local_dynamic_entry
*e
;
1411 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1412 if (e
->input_indx
== -1)
1416 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1421 if (info
->strip
== strip_all
)
1424 for (reg
= 0; reg
< 4; reg
++)
1425 if (app_regs
[reg
].name
!= NULL
)
1427 if (info
->strip
== strip_some
1428 && bfd_hash_lookup (info
->keep_hash
,
1429 app_regs
[reg
].name
,
1430 false, false) == NULL
)
1433 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1436 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1437 sym
.st_shndx
= app_regs
[reg
].shndx
;
1438 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1439 sym
.st_shndx
== SHN_ABS
1440 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1448 sparc64_elf_get_symbol_type (elf_sym
, type
)
1449 Elf_Internal_Sym
* elf_sym
;
1452 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1453 return STT_REGISTER
;
1458 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1462 sparc64_elf_symbol_processing (abfd
, asym
)
1463 bfd
*abfd ATTRIBUTE_UNUSED
;
1466 elf_symbol_type
*elfsym
;
1468 elfsym
= (elf_symbol_type
*) asym
;
1469 if (elfsym
->internal_elf_sym
.st_info
1470 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1472 asym
->flags
|= BSF_GLOBAL
;
1476 /* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1483 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1484 struct bfd_link_info
*info
;
1485 struct elf_link_hash_entry
*h
;
1489 unsigned int power_of_two
;
1491 dynobj
= elf_hash_table (info
)->dynobj
;
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj
!= NULL
1495 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1496 || h
->weakdef
!= NULL
1497 || ((h
->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1499 && (h
->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR
) != 0
1501 && (h
->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1511 if (h
->type
== STT_FUNC
1512 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1513 || (h
->type
== STT_NOTYPE
1514 && (h
->root
.type
== bfd_link_hash_defined
1515 || h
->root
.type
== bfd_link_hash_defweak
)
1516 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1518 if (! elf_hash_table (info
)->dynamic_sections_created
)
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1525 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1529 s
= bfd_get_section_by_name (dynobj
, ".plt");
1530 BFD_ASSERT (s
!= NULL
);
1532 /* The first four bit in .plt is reserved. */
1533 if (s
->_raw_size
== 0)
1534 s
->_raw_size
= PLT_HEADER_SIZE
;
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1542 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1544 h
->root
.u
.def
.section
= s
;
1545 h
->root
.u
.def
.value
= s
->_raw_size
;
1548 /* To simplify matters later, just store the plt index here. */
1549 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1551 /* Make room for this entry. */
1552 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1554 /* We also need to make an entry in the .rela.plt section. */
1556 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1557 BFD_ASSERT (s
!= NULL
);
1559 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1561 /* The procedure linkage table size is bounded by the magnitude
1562 of the offset we can describe in the entry. */
1563 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1565 bfd_set_error (bfd_error_bad_value
);
1572 /* If this is a weak symbol, and there is a real definition, the
1573 processor independent code will have arranged for us to see the
1574 real definition first, and we can just use the same value. */
1575 if (h
->weakdef
!= NULL
)
1577 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1578 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1579 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1580 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1584 /* This is a reference to a symbol defined by a dynamic object which
1585 is not a function. */
1587 /* If we are creating a shared library, we must presume that the
1588 only references to the symbol are via the global offset table.
1589 For such cases we need not do anything here; the relocations will
1590 be handled correctly by relocate_section. */
1594 /* We must allocate the symbol in our .dynbss section, which will
1595 become part of the .bss section of the executable. There will be
1596 an entry for this symbol in the .dynsym section. The dynamic
1597 object will contain position independent code, so all references
1598 from the dynamic object to this symbol will go through the global
1599 offset table. The dynamic linker will use the .dynsym entry to
1600 determine the address it must put in the global offset table, so
1601 both the dynamic object and the regular object will refer to the
1602 same memory location for the variable. */
1604 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1605 BFD_ASSERT (s
!= NULL
);
1607 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1608 to copy the initial value out of the dynamic object and into the
1609 runtime process image. We need to remember the offset into the
1610 .rel.bss section we are going to use. */
1611 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1615 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1616 BFD_ASSERT (srel
!= NULL
);
1617 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1618 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1621 /* We need to figure out the alignment required for this symbol. I
1622 have no idea how ELF linkers handle this. 16-bytes is the size
1623 of the largest type that requires hard alignment -- long double. */
1624 power_of_two
= bfd_log2 (h
->size
);
1625 if (power_of_two
> 4)
1628 /* Apply the required alignment. */
1629 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1630 (bfd_size_type
) (1 << power_of_two
));
1631 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1633 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1637 /* Define the symbol as being at this point in the section. */
1638 h
->root
.u
.def
.section
= s
;
1639 h
->root
.u
.def
.value
= s
->_raw_size
;
1641 /* Increment the section size to make room for the symbol. */
1642 s
->_raw_size
+= h
->size
;
1647 /* Set the sizes of the dynamic sections. */
1650 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1652 struct bfd_link_info
*info
;
1659 dynobj
= elf_hash_table (info
)->dynobj
;
1660 BFD_ASSERT (dynobj
!= NULL
);
1662 if (elf_hash_table (info
)->dynamic_sections_created
)
1664 /* Set the contents of the .interp section to the interpreter. */
1667 s
= bfd_get_section_by_name (dynobj
, ".interp");
1668 BFD_ASSERT (s
!= NULL
);
1669 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1670 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1675 /* We may have created entries in the .rela.got section.
1676 However, if we are not creating the dynamic sections, we will
1677 not actually use these entries. Reset the size of .rela.got,
1678 which will cause it to get stripped from the output file
1680 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1685 /* The check_relocs and adjust_dynamic_symbol entry points have
1686 determined the sizes of the various dynamic sections. Allocate
1690 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1695 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1698 /* It's OK to base decisions on the section name, because none
1699 of the dynobj section names depend upon the input files. */
1700 name
= bfd_get_section_name (dynobj
, s
);
1704 if (strncmp (name
, ".rela", 5) == 0)
1706 if (s
->_raw_size
== 0)
1708 /* If we don't need this section, strip it from the
1709 output file. This is to handle .rela.bss and
1710 .rel.plt. We must create it in
1711 create_dynamic_sections, because it must be created
1712 before the linker maps input sections to output
1713 sections. The linker does that before
1714 adjust_dynamic_symbol is called, and it is that
1715 function which decides whether anything needs to go
1716 into these sections. */
1721 const char *outname
;
1724 /* If this relocation section applies to a read only
1725 section, then we probably need a DT_TEXTREL entry. */
1726 outname
= bfd_get_section_name (output_bfd
,
1728 target
= bfd_get_section_by_name (output_bfd
, outname
+ 5);
1730 && (target
->flags
& SEC_READONLY
) != 0)
1733 if (strcmp (name
, ".rela.plt") == 0)
1736 /* We use the reloc_count field as a counter if we need
1737 to copy relocs into the output file. */
1741 else if (strcmp (name
, ".plt") != 0
1742 && strncmp (name
, ".got", 4) != 0)
1744 /* It's not one of our sections, so don't allocate space. */
1750 _bfd_strip_section_from_output (info
, s
);
1754 /* Allocate memory for the section contents. Zero the memory
1755 for the benefit of .rela.plt, which has 4 unused entries
1756 at the beginning, and we don't want garbage. */
1757 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1758 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1762 if (elf_hash_table (info
)->dynamic_sections_created
)
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in sparc64_elf_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1770 struct sparc64_elf_app_reg
* app_regs
;
1771 struct bfd_strtab_hash
*dynstr
;
1772 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1776 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0))
1782 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1784 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1785 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1789 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1792 sizeof (Elf64_External_Rela
)))
1797 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1799 info
->flags
|= DF_TEXTREL
;
1802 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1803 entries if needed. */
1804 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1805 dynstr
= eht
->dynstr
;
1807 for (reg
= 0; reg
< 4; reg
++)
1808 if (app_regs
[reg
].name
!= NULL
)
1810 struct elf_link_local_dynamic_entry
*entry
, *e
;
1812 if (! bfd_elf64_add_dynamic_entry (info
, DT_SPARC_REGISTER
, 0))
1815 entry
= (struct elf_link_local_dynamic_entry
*)
1816 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1820 /* We cheat here a little bit: the symbol will not be local, so we
1821 put it at the end of the dynlocal linked list. We will fix it
1822 later on, as we have to fix other fields anyway. */
1823 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1824 entry
->isym
.st_size
= 0;
1825 if (*app_regs
[reg
].name
!= '\0')
1827 = _bfd_stringtab_add (dynstr
, app_regs
[reg
].name
, true, false);
1829 entry
->isym
.st_name
= 0;
1830 entry
->isym
.st_other
= 0;
1831 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1833 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1835 entry
->input_bfd
= output_bfd
;
1836 entry
->input_indx
= -1;
1838 if (eht
->dynlocal
== NULL
)
1839 eht
->dynlocal
= entry
;
1842 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1853 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1854 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1857 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1858 bfd
*abfd ATTRIBUTE_UNUSED
;
1859 asection
*section ATTRIBUTE_UNUSED
;
1860 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1864 SET_SEC_DO_RELAX (section
);
1868 /* Relocate a SPARC64 ELF section. */
1871 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1872 contents
, relocs
, local_syms
, local_sections
)
1874 struct bfd_link_info
*info
;
1876 asection
*input_section
;
1878 Elf_Internal_Rela
*relocs
;
1879 Elf_Internal_Sym
*local_syms
;
1880 asection
**local_sections
;
1883 Elf_Internal_Shdr
*symtab_hdr
;
1884 struct elf_link_hash_entry
**sym_hashes
;
1885 bfd_vma
*local_got_offsets
;
1890 Elf_Internal_Rela
*rel
;
1891 Elf_Internal_Rela
*relend
;
1893 dynobj
= elf_hash_table (info
)->dynobj
;
1894 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1895 sym_hashes
= elf_sym_hashes (input_bfd
);
1896 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1898 if (elf_hash_table(info
)->hgot
== NULL
)
1901 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
1903 sgot
= splt
= sreloc
= NULL
;
1906 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
1907 for (; rel
< relend
; rel
++)
1910 reloc_howto_type
*howto
;
1911 unsigned long r_symndx
;
1912 struct elf_link_hash_entry
*h
;
1913 Elf_Internal_Sym
*sym
;
1916 bfd_reloc_status_type r
;
1918 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
1919 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
1921 bfd_set_error (bfd_error_bad_value
);
1924 howto
= sparc64_elf_howto_table
+ r_type
;
1926 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1928 if (info
->relocateable
)
1930 /* This is a relocateable link. We don't have to change
1931 anything, unless the reloc is against a section symbol,
1932 in which case we have to adjust according to where the
1933 section symbol winds up in the output section. */
1934 if (r_symndx
< symtab_hdr
->sh_info
)
1936 sym
= local_syms
+ r_symndx
;
1937 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1939 sec
= local_sections
[r_symndx
];
1940 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1947 /* This is a final link. */
1951 if (r_symndx
< symtab_hdr
->sh_info
)
1953 sym
= local_syms
+ r_symndx
;
1954 sec
= local_sections
[r_symndx
];
1955 relocation
= (sec
->output_section
->vma
1956 + sec
->output_offset
1961 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1962 while (h
->root
.type
== bfd_link_hash_indirect
1963 || h
->root
.type
== bfd_link_hash_warning
)
1964 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1965 if (h
->root
.type
== bfd_link_hash_defined
1966 || h
->root
.type
== bfd_link_hash_defweak
)
1968 boolean skip_it
= false;
1969 sec
= h
->root
.u
.def
.section
;
1973 case R_SPARC_WPLT30
:
1975 case R_SPARC_HIPLT22
:
1976 case R_SPARC_LOPLT10
:
1977 case R_SPARC_PCPLT32
:
1978 case R_SPARC_PCPLT22
:
1979 case R_SPARC_PCPLT10
:
1981 if (h
->plt
.offset
!= (bfd_vma
) -1)
1988 if (elf_hash_table(info
)->dynamic_sections_created
1990 || (!info
->symbolic
&& h
->dynindx
!= -1)
1991 || !(h
->elf_link_hash_flags
1992 & ELF_LINK_HASH_DEF_REGULAR
)))
1998 case R_SPARC_PC_HH22
:
1999 case R_SPARC_PC_HM10
:
2000 case R_SPARC_PC_LM22
:
2001 if (!strcmp(h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2009 case R_SPARC_DISP16
:
2010 case R_SPARC_DISP32
:
2011 case R_SPARC_WDISP30
:
2012 case R_SPARC_WDISP22
:
2025 case R_SPARC_WDISP19
:
2026 case R_SPARC_WDISP16
:
2030 case R_SPARC_DISP64
:
2039 && ((!info
->symbolic
&& h
->dynindx
!= -1)
2040 || !(h
->elf_link_hash_flags
2041 & ELF_LINK_HASH_DEF_REGULAR
)))
2048 /* In these cases, we don't need the relocation
2049 value. We check specially because in some
2050 obscure cases sec->output_section will be NULL. */
2055 relocation
= (h
->root
.u
.def
.value
2056 + sec
->output_section
->vma
2057 + sec
->output_offset
);
2060 else if (h
->root
.type
== bfd_link_hash_undefweak
)
2062 else if (info
->shared
&& !info
->symbolic
2063 && !info
->no_undefined
2064 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2068 if (! ((*info
->callbacks
->undefined_symbol
)
2069 (info
, h
->root
.root
.string
, input_bfd
,
2070 input_section
, rel
->r_offset
,
2071 (!info
->shared
|| info
->no_undefined
2072 || ELF_ST_VISIBILITY (h
->other
)))))
2075 /* To avoid generating warning messages about truncated
2076 relocations, set the relocation's address to be the same as
2077 the start of this section. */
2079 if (input_section
->output_section
!= NULL
)
2080 relocation
= input_section
->output_section
->vma
;
2086 /* When generating a shared object, these relocations are copied
2087 into the output file to be resolved at run time. */
2088 if (info
->shared
&& (input_section
->flags
& SEC_ALLOC
))
2094 case R_SPARC_PC_HH22
:
2095 case R_SPARC_PC_HM10
:
2096 case R_SPARC_PC_LM22
:
2098 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2102 case R_SPARC_DISP16
:
2103 case R_SPARC_DISP32
:
2104 case R_SPARC_WDISP30
:
2105 case R_SPARC_WDISP22
:
2106 case R_SPARC_WDISP19
:
2107 case R_SPARC_WDISP16
:
2108 case R_SPARC_DISP64
:
2138 Elf_Internal_Rela outrel
;
2144 (bfd_elf_string_from_elf_section
2146 elf_elfheader (input_bfd
)->e_shstrndx
,
2147 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2152 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2153 && strcmp (bfd_get_section_name(input_bfd
,
2157 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2158 BFD_ASSERT (sreloc
!= NULL
);
2163 if (elf_section_data (input_section
)->stab_info
== NULL
)
2164 outrel
.r_offset
= rel
->r_offset
;
2169 off
= (_bfd_stab_section_offset
2170 (output_bfd
, &elf_hash_table (info
)->stab_info
,
2172 &elf_section_data (input_section
)->stab_info
,
2174 if (off
== MINUS_ONE
)
2176 outrel
.r_offset
= off
;
2179 outrel
.r_offset
+= (input_section
->output_section
->vma
2180 + input_section
->output_offset
);
2182 /* Optimize unaligned reloc usage now that we know where
2183 it finally resides. */
2187 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2190 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2193 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2196 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2199 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2202 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2207 memset (&outrel
, 0, sizeof outrel
);
2208 /* h->dynindx may be -1 if the symbol was marked to
2211 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2212 || (h
->elf_link_hash_flags
2213 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2215 BFD_ASSERT (h
->dynindx
!= -1);
2217 = ELF64_R_INFO (h
->dynindx
,
2219 ELF64_R_TYPE_DATA (rel
->r_info
),
2221 outrel
.r_addend
= rel
->r_addend
;
2225 if (r_type
== R_SPARC_64
)
2227 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2228 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2235 sec
= local_sections
[r_symndx
];
2238 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2240 == bfd_link_hash_defweak
));
2241 sec
= h
->root
.u
.def
.section
;
2243 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2245 else if (sec
== NULL
|| sec
->owner
== NULL
)
2247 bfd_set_error (bfd_error_bad_value
);
2254 osec
= sec
->output_section
;
2255 indx
= elf_section_data (osec
)->dynindx
;
2257 /* FIXME: we really should be able to link non-pic
2258 shared libraries. */
2262 (*_bfd_error_handler
)
2263 (_("%s: probably compiled without -fPIC?"),
2264 bfd_get_filename (input_bfd
));
2265 bfd_set_error (bfd_error_bad_value
);
2271 = ELF64_R_INFO (indx
,
2273 ELF64_R_TYPE_DATA (rel
->r_info
),
2275 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2279 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2280 (((Elf64_External_Rela
*)
2282 + sreloc
->reloc_count
));
2283 ++sreloc
->reloc_count
;
2285 /* This reloc will be computed at runtime, so there's no
2286 need to do anything now, unless this is a RELATIVE
2287 reloc in an unallocated section. */
2289 || (input_section
->flags
& SEC_ALLOC
) != 0
2290 || ELF64_R_TYPE_ID (outrel
.r_info
) != R_SPARC_RELATIVE
)
2302 /* Relocation is to the entry for this symbol in the global
2306 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2307 BFD_ASSERT (sgot
!= NULL
);
2312 bfd_vma off
= h
->got
.offset
;
2313 BFD_ASSERT (off
!= (bfd_vma
) -1);
2315 if (! elf_hash_table (info
)->dynamic_sections_created
2317 && (info
->symbolic
|| h
->dynindx
== -1)
2318 && (h
->elf_link_hash_flags
2319 & ELF_LINK_HASH_DEF_REGULAR
)))
2321 /* This is actually a static link, or it is a -Bsymbolic
2322 link and the symbol is defined locally, or the symbol
2323 was forced to be local because of a version file. We
2324 must initialize this entry in the global offset table.
2325 Since the offset must always be a multiple of 8, we
2326 use the least significant bit to record whether we
2327 have initialized it already.
2329 When doing a dynamic link, we create a .rela.got
2330 relocation entry to initialize the value. This is
2331 done in the finish_dynamic_symbol routine. */
2337 bfd_put_64 (output_bfd
, relocation
,
2338 sgot
->contents
+ off
);
2342 relocation
= sgot
->output_offset
+ off
- got_base
;
2348 BFD_ASSERT (local_got_offsets
!= NULL
);
2349 off
= local_got_offsets
[r_symndx
];
2350 BFD_ASSERT (off
!= (bfd_vma
) -1);
2352 /* The offset must always be a multiple of 8. We use
2353 the least significant bit to record whether we have
2354 already processed this entry. */
2359 local_got_offsets
[r_symndx
] |= 1;
2364 Elf_Internal_Rela outrel
;
2366 /* The Solaris 2.7 64-bit linker adds the contents
2367 of the location to the value of the reloc.
2368 Note this is different behaviour to the
2369 32-bit linker, which both adds the contents
2370 and ignores the addend. So clear the location. */
2371 bfd_put_64 (output_bfd
, 0, sgot
->contents
+ off
);
2373 /* We need to generate a R_SPARC_RELATIVE reloc
2374 for the dynamic linker. */
2375 srelgot
= bfd_get_section_by_name(dynobj
, ".rela.got");
2376 BFD_ASSERT (srelgot
!= NULL
);
2378 outrel
.r_offset
= (sgot
->output_section
->vma
2379 + sgot
->output_offset
2381 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2382 outrel
.r_addend
= relocation
;
2383 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2384 (((Elf64_External_Rela
*)
2386 + srelgot
->reloc_count
));
2387 ++srelgot
->reloc_count
;
2390 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2392 relocation
= sgot
->output_offset
+ off
- got_base
;
2396 case R_SPARC_WPLT30
:
2398 case R_SPARC_HIPLT22
:
2399 case R_SPARC_LOPLT10
:
2400 case R_SPARC_PCPLT32
:
2401 case R_SPARC_PCPLT22
:
2402 case R_SPARC_PCPLT10
:
2404 /* Relocation is to the entry for this symbol in the
2405 procedure linkage table. */
2406 BFD_ASSERT (h
!= NULL
);
2408 if (h
->plt
.offset
== (bfd_vma
) -1)
2410 /* We didn't make a PLT entry for this symbol. This
2411 happens when statically linking PIC code, or when
2412 using -Bsymbolic. */
2418 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2419 BFD_ASSERT (splt
!= NULL
);
2422 relocation
= (splt
->output_section
->vma
2423 + splt
->output_offset
2424 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2425 if (r_type
== R_SPARC_WPLT30
)
2433 relocation
+= rel
->r_addend
;
2434 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2436 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2437 x
= (x
& ~0x1fff) | (relocation
& 0x1fff);
2438 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2440 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2441 howto
->bitsize
, howto
->rightshift
,
2442 bfd_arch_bits_per_address (input_bfd
),
2447 case R_SPARC_WDISP16
:
2451 relocation
+= rel
->r_addend
;
2452 /* Adjust for pc-relative-ness. */
2453 relocation
-= (input_section
->output_section
->vma
2454 + input_section
->output_offset
);
2455 relocation
-= rel
->r_offset
;
2457 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2458 x
= (x
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
2459 | ((relocation
>> 2) & 0x3fff));
2460 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2462 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2463 howto
->bitsize
, howto
->rightshift
,
2464 bfd_arch_bits_per_address (input_bfd
),
2473 relocation
+= rel
->r_addend
;
2474 relocation
= relocation
^ MINUS_ONE
;
2476 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2477 x
= (x
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2478 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2480 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2481 howto
->bitsize
, howto
->rightshift
,
2482 bfd_arch_bits_per_address (input_bfd
),
2491 relocation
+= rel
->r_addend
;
2492 relocation
= (relocation
& 0x3ff) | 0x1c00;
2494 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2495 x
= (x
& ~0x1fff) | relocation
;
2496 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2502 case R_SPARC_WDISP30
:
2504 if (SEC_DO_RELAX (input_section
)
2505 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2509 #define XCC (2 << 20)
2510 #define COND(x) (((x)&0xf)<<25)
2511 #define CONDA COND(0x8)
2512 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2513 #define INSN_BA (F2(0,2) | CONDA)
2514 #define INSN_OR F3(2, 0x2, 0)
2515 #define INSN_NOP F2(0,4)
2519 /* If the instruction is a call with either:
2521 arithmetic instruction with rd == %o7
2522 where rs1 != %o7 and rs2 if it is register != %o7
2523 then we can optimize if the call destination is near
2524 by changing the call into a branch always. */
2525 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2526 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2527 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2529 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2530 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2531 && (y
& RD(~0)) == RD(O7
)))
2532 && (y
& RS1(~0)) != RS1(O7
)
2534 || (y
& RS2(~0)) != RS2(O7
)))
2538 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2539 reloc
-= (input_section
->output_section
->vma
2540 + input_section
->output_offset
);
2544 /* Ensure the branch fits into simm22. */
2545 if ((reloc
& ~(bfd_vma
)0x7fffff)
2546 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2550 /* Check whether it fits into simm19. */
2551 if ((reloc
& 0x3c0000) == 0
2552 || (reloc
& 0x3c0000) == 0x3c0000)
2553 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2555 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2556 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2558 if (rel
->r_offset
>= 4
2559 && (y
& (0xffffffff ^ RS1(~0)))
2560 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2565 z
= bfd_get_32 (input_bfd
,
2566 contents
+ rel
->r_offset
- 4);
2567 if ((z
& (0xffffffff ^ RD(~0)))
2568 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2576 If call foo was replaced with ba, replace
2577 or %rN, %g0, %o7 with nop. */
2579 reg
= (y
& RS1(~0)) >> 14;
2580 if (reg
!= ((z
& RD(~0)) >> 25)
2581 || reg
== G0
|| reg
== O7
)
2584 bfd_put_32 (input_bfd
, INSN_NOP
,
2585 contents
+ rel
->r_offset
+ 4);
2595 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2596 contents
, rel
->r_offset
,
2597 relocation
, rel
->r_addend
);
2607 case bfd_reloc_outofrange
:
2610 case bfd_reloc_overflow
:
2616 if (h
->root
.type
== bfd_link_hash_undefweak
2617 && howto
->pc_relative
)
2619 /* Assume this is a call protected by other code that
2620 detect the symbol is undefined. If this is the case,
2621 we can safely ignore the overflow. If not, the
2622 program is hosed anyway, and a little warning isn't
2627 name
= h
->root
.root
.string
;
2631 name
= (bfd_elf_string_from_elf_section
2633 symtab_hdr
->sh_link
,
2638 name
= bfd_section_name (input_bfd
, sec
);
2640 if (! ((*info
->callbacks
->reloc_overflow
)
2641 (info
, name
, howto
->name
, (bfd_vma
) 0,
2642 input_bfd
, input_section
, rel
->r_offset
)))
2652 /* Finish up dynamic symbol handling. We set the contents of various
2653 dynamic sections here. */
2656 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2658 struct bfd_link_info
*info
;
2659 struct elf_link_hash_entry
*h
;
2660 Elf_Internal_Sym
*sym
;
2664 dynobj
= elf_hash_table (info
)->dynobj
;
2666 if (h
->plt
.offset
!= (bfd_vma
) -1)
2670 Elf_Internal_Rela rela
;
2672 /* This symbol has an entry in the PLT. Set it up. */
2674 BFD_ASSERT (h
->dynindx
!= -1);
2676 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2677 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2678 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2680 /* Fill in the entry in the .rela.plt section. */
2682 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2684 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2689 int max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2690 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2691 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2692 -(splt
->output_section
->vma
+ splt
->output_offset
);
2694 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2695 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2697 /* Adjust for the first 4 reserved elements in the .plt section
2698 when setting the offset in the .rela.plt section.
2699 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2700 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2702 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2703 ((Elf64_External_Rela
*) srela
->contents
2704 + (h
->plt
.offset
- 4)));
2706 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2708 /* Mark the symbol as undefined, rather than as defined in
2709 the .plt section. Leave the value alone. */
2710 sym
->st_shndx
= SHN_UNDEF
;
2711 /* If the symbol is weak, we do need to clear the value.
2712 Otherwise, the PLT entry would provide a definition for
2713 the symbol even if the symbol wasn't defined anywhere,
2714 and so the symbol would never be NULL. */
2715 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
2721 if (h
->got
.offset
!= (bfd_vma
) -1)
2725 Elf_Internal_Rela rela
;
2727 /* This symbol has an entry in the GOT. Set it up. */
2729 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2730 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2731 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2733 rela
.r_offset
= (sgot
->output_section
->vma
2734 + sgot
->output_offset
2735 + (h
->got
.offset
&~ 1));
2737 /* If this is a -Bsymbolic link, and the symbol is defined
2738 locally, we just want to emit a RELATIVE reloc. Likewise if
2739 the symbol was forced to be local because of a version file.
2740 The entry in the global offset table will already have been
2741 initialized in the relocate_section function. */
2743 && (info
->symbolic
|| h
->dynindx
== -1)
2744 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2746 asection
*sec
= h
->root
.u
.def
.section
;
2747 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2748 rela
.r_addend
= (h
->root
.u
.def
.value
2749 + sec
->output_section
->vma
2750 + sec
->output_offset
);
2754 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
2755 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2759 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2760 ((Elf64_External_Rela
*) srela
->contents
2761 + srela
->reloc_count
));
2762 ++srela
->reloc_count
;
2765 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2768 Elf_Internal_Rela rela
;
2770 /* This symbols needs a copy reloc. Set it up. */
2772 BFD_ASSERT (h
->dynindx
!= -1);
2774 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2776 BFD_ASSERT (s
!= NULL
);
2778 rela
.r_offset
= (h
->root
.u
.def
.value
2779 + h
->root
.u
.def
.section
->output_section
->vma
2780 + h
->root
.u
.def
.section
->output_offset
);
2781 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2783 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2784 ((Elf64_External_Rela
*) s
->contents
2789 /* Mark some specially defined symbols as absolute. */
2790 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2791 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2792 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2793 sym
->st_shndx
= SHN_ABS
;
2798 /* Finish up the dynamic sections. */
2801 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2803 struct bfd_link_info
*info
;
2806 int stt_regidx
= -1;
2810 dynobj
= elf_hash_table (info
)->dynobj
;
2812 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2814 if (elf_hash_table (info
)->dynamic_sections_created
)
2817 Elf64_External_Dyn
*dyncon
, *dynconend
;
2819 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2820 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2822 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2823 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2824 for (; dyncon
< dynconend
; dyncon
++)
2826 Elf_Internal_Dyn dyn
;
2830 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2834 case DT_PLTGOT
: name
= ".plt"; size
= false; break;
2835 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= true; break;
2836 case DT_JMPREL
: name
= ".rela.plt"; size
= false; break;
2837 case DT_SPARC_REGISTER
:
2838 if (stt_regidx
== -1)
2841 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2842 if (stt_regidx
== -1)
2845 dyn
.d_un
.d_val
= stt_regidx
++;
2846 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2848 default: name
= NULL
; size
= false; break;
2855 s
= bfd_get_section_by_name (output_bfd
, name
);
2861 dyn
.d_un
.d_ptr
= s
->vma
;
2864 if (s
->_cooked_size
!= 0)
2865 dyn
.d_un
.d_val
= s
->_cooked_size
;
2867 dyn
.d_un
.d_val
= s
->_raw_size
;
2870 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2874 /* Initialize the contents of the .plt section. */
2875 if (splt
->_raw_size
> 0)
2877 sparc64_elf_build_plt(output_bfd
, splt
->contents
,
2878 splt
->_raw_size
/ PLT_ENTRY_SIZE
);
2881 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2885 /* Set the first entry in the global offset table to the address of
2886 the dynamic section. */
2887 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2888 BFD_ASSERT (sgot
!= NULL
);
2889 if (sgot
->_raw_size
> 0)
2892 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2894 bfd_put_64 (output_bfd
,
2895 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2899 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2904 /* Functions for dealing with the e_flags field. */
2906 /* Copy backend specific data from one object module to another */
2908 sparc64_elf_copy_private_bfd_data (ibfd
, obfd
)
2911 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2912 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2915 BFD_ASSERT (!elf_flags_init (obfd
)
2916 || (elf_elfheader (obfd
)->e_flags
2917 == elf_elfheader (ibfd
)->e_flags
));
2919 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
2920 elf_flags_init (obfd
) = true;
2924 /* Merge backend specific data from an object file to the output
2925 object file when linking. */
2928 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2933 flagword new_flags
, old_flags
;
2936 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2937 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2940 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2941 old_flags
= elf_elfheader (obfd
)->e_flags
;
2943 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2945 elf_flags_init (obfd
) = true;
2946 elf_elfheader (obfd
)->e_flags
= new_flags
;
2949 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2952 else /* Incompatible flags */
2956 #define EF_SPARC_ISA_EXTENSIONS \
2957 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2959 if ((ibfd
->flags
& DYNAMIC
) != 0)
2961 /* We don't want dynamic objects memory ordering and
2962 architecture to have any role. That's what dynamic linker
2964 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
2965 new_flags
|= (old_flags
2966 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
2970 /* Choose the highest architecture requirements. */
2971 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
2972 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
2973 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
2974 && (old_flags
& EF_SPARC_HAL_R1
))
2977 (*_bfd_error_handler
)
2978 (_("%s: linking UltraSPARC specific with HAL specific code"),
2979 bfd_get_filename (ibfd
));
2981 /* Choose the most restrictive memory ordering. */
2982 old_mm
= (old_flags
& EF_SPARCV9_MM
);
2983 new_mm
= (new_flags
& EF_SPARCV9_MM
);
2984 old_flags
&= ~EF_SPARCV9_MM
;
2985 new_flags
&= ~EF_SPARCV9_MM
;
2986 if (new_mm
< old_mm
)
2988 old_flags
|= old_mm
;
2989 new_flags
|= old_mm
;
2992 /* Warn about any other mismatches */
2993 if (new_flags
!= old_flags
)
2996 (*_bfd_error_handler
)
2997 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2998 bfd_get_filename (ibfd
), (long)new_flags
, (long)old_flags
);
3001 elf_elfheader (obfd
)->e_flags
= old_flags
;
3005 bfd_set_error (bfd_error_bad_value
);
3012 /* Print a STT_REGISTER symbol to file FILE. */
3015 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3016 bfd
*abfd ATTRIBUTE_UNUSED
;
3020 FILE *file
= (FILE *) filep
;
3023 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3027 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3028 type
= symbol
->flags
;
3029 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3031 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3032 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3033 (type
& BSF_WEAK
) ? 'w' : ' ');
3034 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3037 return symbol
->name
;
3040 /* Set the right machine number for a SPARC64 ELF file. */
3043 sparc64_elf_object_p (abfd
)
3046 unsigned long mach
= bfd_mach_sparc_v9
;
3048 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3049 mach
= bfd_mach_sparc_v9b
;
3050 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3051 mach
= bfd_mach_sparc_v9a
;
3052 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3055 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3056 standard ELF, because R_SPARC_OLO10 has secondary addend in
3057 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3058 relocation handling routines. */
3060 const struct elf_size_info sparc64_elf_size_info
=
3062 sizeof (Elf64_External_Ehdr
),
3063 sizeof (Elf64_External_Phdr
),
3064 sizeof (Elf64_External_Shdr
),
3065 sizeof (Elf64_External_Rel
),
3066 sizeof (Elf64_External_Rela
),
3067 sizeof (Elf64_External_Sym
),
3068 sizeof (Elf64_External_Dyn
),
3069 sizeof (Elf_External_Note
),
3070 4, /* hash-table entry size */
3071 /* internal relocations per external relocations.
3072 For link purposes we use just 1 internal per
3073 1 external, for assembly and slurp symbol table
3080 bfd_elf64_write_out_phdrs
,
3081 bfd_elf64_write_shdrs_and_ehdr
,
3082 sparc64_elf_write_relocs
,
3083 bfd_elf64_swap_symbol_out
,
3084 sparc64_elf_slurp_reloc_table
,
3085 bfd_elf64_slurp_symbol_table
,
3086 bfd_elf64_swap_dyn_in
,
3087 bfd_elf64_swap_dyn_out
,
3094 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3095 #define TARGET_BIG_NAME "elf64-sparc"
3096 #define ELF_ARCH bfd_arch_sparc
3097 #define ELF_MAXPAGESIZE 0x100000
3099 /* This is the official ABI value. */
3100 #define ELF_MACHINE_CODE EM_SPARCV9
3102 /* This is the value that we used before the ABI was released. */
3103 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3105 #define bfd_elf64_bfd_link_hash_table_create \
3106 sparc64_elf_bfd_link_hash_table_create
3108 #define elf_info_to_howto \
3109 sparc64_elf_info_to_howto
3110 #define bfd_elf64_get_reloc_upper_bound \
3111 sparc64_elf_get_reloc_upper_bound
3112 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3113 sparc64_elf_get_dynamic_reloc_upper_bound
3114 #define bfd_elf64_canonicalize_dynamic_reloc \
3115 sparc64_elf_canonicalize_dynamic_reloc
3116 #define bfd_elf64_bfd_reloc_type_lookup \
3117 sparc64_elf_reloc_type_lookup
3118 #define bfd_elf64_bfd_relax_section \
3119 sparc64_elf_relax_section
3121 #define elf_backend_create_dynamic_sections \
3122 _bfd_elf_create_dynamic_sections
3123 #define elf_backend_add_symbol_hook \
3124 sparc64_elf_add_symbol_hook
3125 #define elf_backend_get_symbol_type \
3126 sparc64_elf_get_symbol_type
3127 #define elf_backend_symbol_processing \
3128 sparc64_elf_symbol_processing
3129 #define elf_backend_check_relocs \
3130 sparc64_elf_check_relocs
3131 #define elf_backend_adjust_dynamic_symbol \
3132 sparc64_elf_adjust_dynamic_symbol
3133 #define elf_backend_size_dynamic_sections \
3134 sparc64_elf_size_dynamic_sections
3135 #define elf_backend_relocate_section \
3136 sparc64_elf_relocate_section
3137 #define elf_backend_finish_dynamic_symbol \
3138 sparc64_elf_finish_dynamic_symbol
3139 #define elf_backend_finish_dynamic_sections \
3140 sparc64_elf_finish_dynamic_sections
3141 #define elf_backend_print_symbol_all \
3142 sparc64_elf_print_symbol_all
3143 #define elf_backend_output_arch_syms \
3144 sparc64_elf_output_arch_syms
3145 #define bfd_elf64_bfd_copy_private_bfd_data \
3146 sparc64_elf_copy_private_bfd_data
3147 #define bfd_elf64_bfd_merge_private_bfd_data \
3148 sparc64_elf_merge_private_bfd_data
3150 #define elf_backend_size_info \
3151 sparc64_elf_size_info
3152 #define elf_backend_object_p \
3153 sparc64_elf_object_p
3155 #define elf_backend_want_got_plt 0
3156 #define elf_backend_plt_readonly 0
3157 #define elf_backend_want_plt_sym 1
3159 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3160 #define elf_backend_plt_alignment 8
3162 #define elf_backend_got_header_size 8
3163 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3165 #include "elf64-target.h"