* elf-bfd.h: Add prototypes for _bfd_elfcore_make_pseudosection
[binutils.git] / bfd / elf32-mips.c
blob44c2a4c9da5c5f2fa846ba72d86c9ca22ecb4fe9
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
52 struct mips_got_info
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
68 struct mips_elf_link_hash_entry
70 struct elf_link_hash_entry root;
72 /* External symbol information. */
73 EXTR esym;
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
114 static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
124 #if 0
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
127 #endif
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
130 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
134 static INLINE int elf_mips_isa PARAMS ((flagword));
135 static INLINE int elf_mips_mach PARAMS ((flagword));
136 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
141 static int gptab_compare PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152 static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
155 static asection *mips_elf_create_msym_section
156 PARAMS ((bfd *));
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
175 static const Elf_Internal_Rela *mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
177 const Elf_Internal_Rela *));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
187 const Elf_Internal_Rela *, bfd_vma,
188 bfd *, asection *, bfd_byte *, boolean));
189 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info *, unsigned long));
194 static asection * mips_elf_got_section PARAMS ((bfd *));
195 static struct mips_got_info *mips_elf_got_info
196 PARAMS ((bfd *, asection **));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
205 struct mips_elf_link_hash_entry *, asection *,
206 bfd_vma, bfd_vma *, asection *));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd *, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd *, asection *));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
214 extern const bfd_target bfd_elf32_tradbigmips_vec;
215 extern const bfd_target bfd_elf32_tradlittlemips_vec;
216 #ifdef BFD64
217 extern const bfd_target bfd_elf64_tradbigmips_vec;
218 extern const bfd_target bfd_elf64_tradlittlemips_vec;
219 #endif
221 /* The level of IRIX compatibility we're striving for. */
223 typedef enum {
224 ict_none,
225 ict_irix5,
226 ict_irix6
227 } irix_compat_t;
229 /* This will be used when we sort the dynamic relocation records. */
230 static bfd *reldyn_sorting_bfd;
232 /* Nonzero if ABFD is using the N32 ABI. */
234 #define ABI_N32_P(abfd) \
235 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
237 /* Nonzero if ABFD is using the 64-bit ABI. */
238 #define ABI_64_P(abfd) \
239 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
241 /* Depending on the target vector we generate some version of Irix
242 executables or "normal" MIPS ELF ABI executables. */
243 #ifdef BFD64
244 #define IRIX_COMPAT(abfd) \
245 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
246 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
247 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
248 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
249 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
250 #else
251 #define IRIX_COMPAT(abfd) \
252 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
253 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
254 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
255 #endif
257 /* Whether we are trying to be compatible with IRIX at all. */
258 #define SGI_COMPAT(abfd) \
259 (IRIX_COMPAT (abfd) != ict_none)
261 /* The name of the msym section. */
262 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
264 /* The name of the srdata section. */
265 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
267 /* The name of the options section. */
268 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
269 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
271 /* The name of the stub section. */
272 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
273 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
275 /* The name of the dynamic relocation section. */
276 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
278 /* The size of an external REL relocation. */
279 #define MIPS_ELF_REL_SIZE(abfd) \
280 (get_elf_backend_data (abfd)->s->sizeof_rel)
282 /* The size of an external dynamic table entry. */
283 #define MIPS_ELF_DYN_SIZE(abfd) \
284 (get_elf_backend_data (abfd)->s->sizeof_dyn)
286 /* The size of a GOT entry. */
287 #define MIPS_ELF_GOT_SIZE(abfd) \
288 (get_elf_backend_data (abfd)->s->arch_size / 8)
290 /* The size of a symbol-table entry. */
291 #define MIPS_ELF_SYM_SIZE(abfd) \
292 (get_elf_backend_data (abfd)->s->sizeof_sym)
294 /* The default alignment for sections, as a power of two. */
295 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
296 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
298 /* Get word-sized data. */
299 #define MIPS_ELF_GET_WORD(abfd, ptr) \
300 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
302 /* Put out word-sized data. */
303 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
304 (ABI_64_P (abfd) \
305 ? bfd_put_64 (abfd, val, ptr) \
306 : bfd_put_32 (abfd, val, ptr))
308 /* Add a dynamic symbol table-entry. */
309 #ifdef BFD64
310 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
311 (ABI_64_P (elf_hash_table (info)->dynobj) \
312 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
313 : bfd_elf32_add_dynamic_entry (info, tag, val))
314 #else
315 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
316 (ABI_64_P (elf_hash_table (info)->dynobj) \
317 ? (abort (), false) \
318 : bfd_elf32_add_dynamic_entry (info, tag, val))
319 #endif
321 /* The number of local .got entries we reserve. */
322 #define MIPS_RESERVED_GOTNO (2)
324 /* Instructions which appear in a stub. For some reason the stub is
325 slightly different on an SGI system. */
326 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
327 #define STUB_LW(abfd) \
328 (SGI_COMPAT (abfd) \
329 ? (ABI_64_P (abfd) \
330 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
331 : 0x8f998010) /* lw t9,0x8010(gp) */ \
332 : 0x8f998010) /* lw t9,0x8000(gp) */
333 #define STUB_MOVE(abfd) \
334 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
335 #define STUB_JALR 0x0320f809 /* jal t9 */
336 #define STUB_LI16(abfd) \
337 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
338 #define MIPS_FUNCTION_STUB_SIZE (16)
340 #if 0
341 /* We no longer try to identify particular sections for the .dynsym
342 section. When we do, we wind up crashing if there are other random
343 sections with relocations. */
345 /* Names of sections which appear in the .dynsym section in an Irix 5
346 executable. */
348 static const char * const mips_elf_dynsym_sec_names[] =
350 ".text",
351 ".init",
352 ".fini",
353 ".data",
354 ".rodata",
355 ".sdata",
356 ".sbss",
357 ".bss",
358 NULL
361 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
362 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
364 /* The number of entries in mips_elf_dynsym_sec_names which go in the
365 text segment. */
367 #define MIPS_TEXT_DYNSYM_SECNO (3)
369 #endif /* 0 */
371 /* The names of the runtime procedure table symbols used on Irix 5. */
373 static const char * const mips_elf_dynsym_rtproc_names[] =
375 "_procedure_table",
376 "_procedure_string_table",
377 "_procedure_table_size",
378 NULL
381 /* These structures are used to generate the .compact_rel section on
382 Irix 5. */
384 typedef struct
386 unsigned long id1; /* Always one? */
387 unsigned long num; /* Number of compact relocation entries. */
388 unsigned long id2; /* Always two? */
389 unsigned long offset; /* The file offset of the first relocation. */
390 unsigned long reserved0; /* Zero? */
391 unsigned long reserved1; /* Zero? */
392 } Elf32_compact_rel;
394 typedef struct
396 bfd_byte id1[4];
397 bfd_byte num[4];
398 bfd_byte id2[4];
399 bfd_byte offset[4];
400 bfd_byte reserved0[4];
401 bfd_byte reserved1[4];
402 } Elf32_External_compact_rel;
404 typedef struct
406 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
407 unsigned int rtype : 4; /* Relocation types. See below. */
408 unsigned int dist2to : 8;
409 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
410 unsigned long konst; /* KONST field. See below. */
411 unsigned long vaddr; /* VADDR to be relocated. */
412 } Elf32_crinfo;
414 typedef struct
416 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
417 unsigned int rtype : 4; /* Relocation types. See below. */
418 unsigned int dist2to : 8;
419 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
420 unsigned long konst; /* KONST field. See below. */
421 } Elf32_crinfo2;
423 typedef struct
425 bfd_byte info[4];
426 bfd_byte konst[4];
427 bfd_byte vaddr[4];
428 } Elf32_External_crinfo;
430 typedef struct
432 bfd_byte info[4];
433 bfd_byte konst[4];
434 } Elf32_External_crinfo2;
436 /* These are the constants used to swap the bitfields in a crinfo. */
438 #define CRINFO_CTYPE (0x1)
439 #define CRINFO_CTYPE_SH (31)
440 #define CRINFO_RTYPE (0xf)
441 #define CRINFO_RTYPE_SH (27)
442 #define CRINFO_DIST2TO (0xff)
443 #define CRINFO_DIST2TO_SH (19)
444 #define CRINFO_RELVADDR (0x7ffff)
445 #define CRINFO_RELVADDR_SH (0)
447 /* A compact relocation info has long (3 words) or short (2 words)
448 formats. A short format doesn't have VADDR field and relvaddr
449 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
450 #define CRF_MIPS_LONG 1
451 #define CRF_MIPS_SHORT 0
453 /* There are 4 types of compact relocation at least. The value KONST
454 has different meaning for each type:
456 (type) (konst)
457 CT_MIPS_REL32 Address in data
458 CT_MIPS_WORD Address in word (XXX)
459 CT_MIPS_GPHI_LO GP - vaddr
460 CT_MIPS_JMPAD Address to jump
463 #define CRT_MIPS_REL32 0xa
464 #define CRT_MIPS_WORD 0xb
465 #define CRT_MIPS_GPHI_LO 0xc
466 #define CRT_MIPS_JMPAD 0xd
468 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
469 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
470 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
471 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
473 static void bfd_elf32_swap_compact_rel_out
474 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
475 static void bfd_elf32_swap_crinfo_out
476 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
478 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
480 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
481 from smaller values. Start with zero, widen, *then* decrement. */
482 #define MINUS_ONE (((bfd_vma)0) - 1)
484 static reloc_howto_type elf_mips_howto_table[] =
486 /* No relocation. */
487 HOWTO (R_MIPS_NONE, /* type */
488 0, /* rightshift */
489 0, /* size (0 = byte, 1 = short, 2 = long) */
490 0, /* bitsize */
491 false, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_dont, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
495 "R_MIPS_NONE", /* name */
496 false, /* partial_inplace */
497 0, /* src_mask */
498 0, /* dst_mask */
499 false), /* pcrel_offset */
501 /* 16 bit relocation. */
502 HOWTO (R_MIPS_16, /* type */
503 0, /* rightshift */
504 1, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 false, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_bitfield, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 "R_MIPS_16", /* name */
511 true, /* partial_inplace */
512 0xffff, /* src_mask */
513 0xffff, /* dst_mask */
514 false), /* pcrel_offset */
516 /* 32 bit relocation. */
517 HOWTO (R_MIPS_32, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 false, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_bitfield, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_MIPS_32", /* name */
526 true, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 false), /* pcrel_offset */
531 /* 32 bit symbol relative relocation. */
532 HOWTO (R_MIPS_REL32, /* type */
533 0, /* rightshift */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
535 32, /* bitsize */
536 false, /* pc_relative */
537 0, /* bitpos */
538 complain_overflow_bitfield, /* complain_on_overflow */
539 bfd_elf_generic_reloc, /* special_function */
540 "R_MIPS_REL32", /* name */
541 true, /* partial_inplace */
542 0xffffffff, /* src_mask */
543 0xffffffff, /* dst_mask */
544 false), /* pcrel_offset */
546 /* 26 bit jump address. */
547 HOWTO (R_MIPS_26, /* type */
548 2, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 26, /* bitsize */
551 false, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_dont, /* complain_on_overflow */
554 /* This needs complex overflow
555 detection, because the upper four
556 bits must match the PC + 4. */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_MIPS_26", /* name */
559 true, /* partial_inplace */
560 0x3ffffff, /* src_mask */
561 0x3ffffff, /* dst_mask */
562 false), /* pcrel_offset */
564 /* High 16 bits of symbol value. */
565 HOWTO (R_MIPS_HI16, /* type */
566 0, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 16, /* bitsize */
569 false, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_dont, /* complain_on_overflow */
572 _bfd_mips_elf_hi16_reloc, /* special_function */
573 "R_MIPS_HI16", /* name */
574 true, /* partial_inplace */
575 0xffff, /* src_mask */
576 0xffff, /* dst_mask */
577 false), /* pcrel_offset */
579 /* Low 16 bits of symbol value. */
580 HOWTO (R_MIPS_LO16, /* type */
581 0, /* rightshift */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
583 16, /* bitsize */
584 false, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 _bfd_mips_elf_lo16_reloc, /* special_function */
588 "R_MIPS_LO16", /* name */
589 true, /* partial_inplace */
590 0xffff, /* src_mask */
591 0xffff, /* dst_mask */
592 false), /* pcrel_offset */
594 /* GP relative reference. */
595 HOWTO (R_MIPS_GPREL16, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 16, /* bitsize */
599 false, /* pc_relative */
600 0, /* bitpos */
601 complain_overflow_signed, /* complain_on_overflow */
602 _bfd_mips_elf_gprel16_reloc, /* special_function */
603 "R_MIPS_GPREL16", /* name */
604 true, /* partial_inplace */
605 0xffff, /* src_mask */
606 0xffff, /* dst_mask */
607 false), /* pcrel_offset */
609 /* Reference to literal section. */
610 HOWTO (R_MIPS_LITERAL, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 16, /* bitsize */
614 false, /* pc_relative */
615 0, /* bitpos */
616 complain_overflow_signed, /* complain_on_overflow */
617 _bfd_mips_elf_gprel16_reloc, /* special_function */
618 "R_MIPS_LITERAL", /* name */
619 true, /* partial_inplace */
620 0xffff, /* src_mask */
621 0xffff, /* dst_mask */
622 false), /* pcrel_offset */
624 /* Reference to global offset table. */
625 HOWTO (R_MIPS_GOT16, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 16, /* bitsize */
629 false, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_signed, /* complain_on_overflow */
632 _bfd_mips_elf_got16_reloc, /* special_function */
633 "R_MIPS_GOT16", /* name */
634 false, /* partial_inplace */
635 0xffff, /* src_mask */
636 0xffff, /* dst_mask */
637 false), /* pcrel_offset */
639 /* 16 bit PC relative reference. */
640 HOWTO (R_MIPS_PC16, /* type */
641 0, /* rightshift */
642 2, /* size (0 = byte, 1 = short, 2 = long) */
643 16, /* bitsize */
644 true, /* pc_relative */
645 0, /* bitpos */
646 complain_overflow_signed, /* complain_on_overflow */
647 bfd_elf_generic_reloc, /* special_function */
648 "R_MIPS_PC16", /* name */
649 true, /* partial_inplace */
650 0xffff, /* src_mask */
651 0xffff, /* dst_mask */
652 true), /* pcrel_offset */
654 /* 16 bit call through global offset table. */
655 HOWTO (R_MIPS_CALL16, /* type */
656 0, /* rightshift */
657 2, /* size (0 = byte, 1 = short, 2 = long) */
658 16, /* bitsize */
659 false, /* pc_relative */
660 0, /* bitpos */
661 complain_overflow_signed, /* complain_on_overflow */
662 bfd_elf_generic_reloc, /* special_function */
663 "R_MIPS_CALL16", /* name */
664 false, /* partial_inplace */
665 0xffff, /* src_mask */
666 0xffff, /* dst_mask */
667 false), /* pcrel_offset */
669 /* 32 bit GP relative reference. */
670 HOWTO (R_MIPS_GPREL32, /* type */
671 0, /* rightshift */
672 2, /* size (0 = byte, 1 = short, 2 = long) */
673 32, /* bitsize */
674 false, /* pc_relative */
675 0, /* bitpos */
676 complain_overflow_bitfield, /* complain_on_overflow */
677 _bfd_mips_elf_gprel32_reloc, /* special_function */
678 "R_MIPS_GPREL32", /* name */
679 true, /* partial_inplace */
680 0xffffffff, /* src_mask */
681 0xffffffff, /* dst_mask */
682 false), /* pcrel_offset */
684 /* The remaining relocs are defined on Irix 5, although they are
685 not defined by the ABI. */
686 EMPTY_HOWTO (13),
687 EMPTY_HOWTO (14),
688 EMPTY_HOWTO (15),
690 /* A 5 bit shift field. */
691 HOWTO (R_MIPS_SHIFT5, /* type */
692 0, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 5, /* bitsize */
695 false, /* pc_relative */
696 6, /* bitpos */
697 complain_overflow_bitfield, /* complain_on_overflow */
698 bfd_elf_generic_reloc, /* special_function */
699 "R_MIPS_SHIFT5", /* name */
700 true, /* partial_inplace */
701 0x000007c0, /* src_mask */
702 0x000007c0, /* dst_mask */
703 false), /* pcrel_offset */
705 /* A 6 bit shift field. */
706 /* FIXME: This is not handled correctly; a special function is
707 needed to put the most significant bit in the right place. */
708 HOWTO (R_MIPS_SHIFT6, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 6, /* bitsize */
712 false, /* pc_relative */
713 6, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_SHIFT6", /* name */
717 true, /* partial_inplace */
718 0x000007c4, /* src_mask */
719 0x000007c4, /* dst_mask */
720 false), /* pcrel_offset */
722 /* A 64 bit relocation. */
723 HOWTO (R_MIPS_64, /* type */
724 0, /* rightshift */
725 4, /* size (0 = byte, 1 = short, 2 = long) */
726 64, /* bitsize */
727 false, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_bitfield, /* complain_on_overflow */
730 mips32_64bit_reloc, /* special_function */
731 "R_MIPS_64", /* name */
732 true, /* partial_inplace */
733 MINUS_ONE, /* src_mask */
734 MINUS_ONE, /* dst_mask */
735 false), /* pcrel_offset */
737 /* Displacement in the global offset table. */
738 HOWTO (R_MIPS_GOT_DISP, /* type */
739 0, /* rightshift */
740 2, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 false, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_bitfield, /* complain_on_overflow */
745 bfd_elf_generic_reloc, /* special_function */
746 "R_MIPS_GOT_DISP", /* name */
747 true, /* partial_inplace */
748 0x0000ffff, /* src_mask */
749 0x0000ffff, /* dst_mask */
750 false), /* pcrel_offset */
752 /* Displacement to page pointer in the global offset table. */
753 HOWTO (R_MIPS_GOT_PAGE, /* type */
754 0, /* rightshift */
755 2, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 false, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_bitfield, /* complain_on_overflow */
760 bfd_elf_generic_reloc, /* special_function */
761 "R_MIPS_GOT_PAGE", /* name */
762 true, /* partial_inplace */
763 0x0000ffff, /* src_mask */
764 0x0000ffff, /* dst_mask */
765 false), /* pcrel_offset */
767 /* Offset from page pointer in the global offset table. */
768 HOWTO (R_MIPS_GOT_OFST, /* type */
769 0, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 16, /* bitsize */
772 false, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_bitfield, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_MIPS_GOT_OFST", /* name */
777 true, /* partial_inplace */
778 0x0000ffff, /* src_mask */
779 0x0000ffff, /* dst_mask */
780 false), /* pcrel_offset */
782 /* High 16 bits of displacement in global offset table. */
783 HOWTO (R_MIPS_GOT_HI16, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 false, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_dont, /* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_MIPS_GOT_HI16", /* name */
792 true, /* partial_inplace */
793 0x0000ffff, /* src_mask */
794 0x0000ffff, /* dst_mask */
795 false), /* pcrel_offset */
797 /* Low 16 bits of displacement in global offset table. */
798 HOWTO (R_MIPS_GOT_LO16, /* type */
799 0, /* rightshift */
800 2, /* size (0 = byte, 1 = short, 2 = long) */
801 16, /* bitsize */
802 false, /* pc_relative */
803 0, /* bitpos */
804 complain_overflow_dont, /* complain_on_overflow */
805 bfd_elf_generic_reloc, /* special_function */
806 "R_MIPS_GOT_LO16", /* name */
807 true, /* partial_inplace */
808 0x0000ffff, /* src_mask */
809 0x0000ffff, /* dst_mask */
810 false), /* pcrel_offset */
812 /* 64 bit subtraction. Used in the N32 ABI. */
813 HOWTO (R_MIPS_SUB, /* type */
814 0, /* rightshift */
815 4, /* size (0 = byte, 1 = short, 2 = long) */
816 64, /* bitsize */
817 false, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_bitfield, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_MIPS_SUB", /* name */
822 true, /* partial_inplace */
823 MINUS_ONE, /* src_mask */
824 MINUS_ONE, /* dst_mask */
825 false), /* pcrel_offset */
827 /* Used to cause the linker to insert and delete instructions? */
828 EMPTY_HOWTO (R_MIPS_INSERT_A),
829 EMPTY_HOWTO (R_MIPS_INSERT_B),
830 EMPTY_HOWTO (R_MIPS_DELETE),
832 /* Get the higher value of a 64 bit addend. */
833 HOWTO (R_MIPS_HIGHER, /* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 16, /* bitsize */
837 false, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont, /* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_MIPS_HIGHER", /* name */
842 true, /* partial_inplace */
843 0, /* src_mask */
844 0xffff, /* dst_mask */
845 false), /* pcrel_offset */
847 /* Get the highest value of a 64 bit addend. */
848 HOWTO (R_MIPS_HIGHEST, /* type */
849 0, /* rightshift */
850 2, /* size (0 = byte, 1 = short, 2 = long) */
851 16, /* bitsize */
852 false, /* pc_relative */
853 0, /* bitpos */
854 complain_overflow_dont, /* complain_on_overflow */
855 bfd_elf_generic_reloc, /* special_function */
856 "R_MIPS_HIGHEST", /* name */
857 true, /* partial_inplace */
858 0, /* src_mask */
859 0xffff, /* dst_mask */
860 false), /* pcrel_offset */
862 /* High 16 bits of displacement in global offset table. */
863 HOWTO (R_MIPS_CALL_HI16, /* type */
864 0, /* rightshift */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
866 16, /* bitsize */
867 false, /* pc_relative */
868 0, /* bitpos */
869 complain_overflow_dont, /* complain_on_overflow */
870 bfd_elf_generic_reloc, /* special_function */
871 "R_MIPS_CALL_HI16", /* name */
872 true, /* partial_inplace */
873 0x0000ffff, /* src_mask */
874 0x0000ffff, /* dst_mask */
875 false), /* pcrel_offset */
877 /* Low 16 bits of displacement in global offset table. */
878 HOWTO (R_MIPS_CALL_LO16, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 16, /* bitsize */
882 false, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont, /* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_MIPS_CALL_LO16", /* name */
887 true, /* partial_inplace */
888 0x0000ffff, /* src_mask */
889 0x0000ffff, /* dst_mask */
890 false), /* pcrel_offset */
892 /* Section displacement. */
893 HOWTO (R_MIPS_SCN_DISP, /* type */
894 0, /* rightshift */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
896 32, /* bitsize */
897 false, /* pc_relative */
898 0, /* bitpos */
899 complain_overflow_dont, /* complain_on_overflow */
900 bfd_elf_generic_reloc, /* special_function */
901 "R_MIPS_SCN_DISP", /* name */
902 false, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 false), /* pcrel_offset */
907 EMPTY_HOWTO (R_MIPS_REL16),
908 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
909 EMPTY_HOWTO (R_MIPS_PJUMP),
910 EMPTY_HOWTO (R_MIPS_RELGOT),
912 /* Protected jump conversion. This is an optimization hint. No
913 relocation is required for correctness. */
914 HOWTO (R_MIPS_JALR, /* type */
915 0, /* rightshift */
916 0, /* size (0 = byte, 1 = short, 2 = long) */
917 0, /* bitsize */
918 false, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont, /* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_MIPS_JALR", /* name */
923 false, /* partial_inplace */
924 0x00000000, /* src_mask */
925 0x00000000, /* dst_mask */
926 false), /* pcrel_offset */
929 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
930 is a hack to make the linker think that we need 64 bit values. */
931 static reloc_howto_type elf_mips_ctor64_howto =
932 HOWTO (R_MIPS_64, /* type */
933 0, /* rightshift */
934 4, /* size (0 = byte, 1 = short, 2 = long) */
935 32, /* bitsize */
936 false, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_signed, /* complain_on_overflow */
939 mips32_64bit_reloc, /* special_function */
940 "R_MIPS_64", /* name */
941 true, /* partial_inplace */
942 0xffffffff, /* src_mask */
943 0xffffffff, /* dst_mask */
944 false); /* pcrel_offset */
946 /* The reloc used for the mips16 jump instruction. */
947 static reloc_howto_type elf_mips16_jump_howto =
948 HOWTO (R_MIPS16_26, /* type */
949 2, /* rightshift */
950 2, /* size (0 = byte, 1 = short, 2 = long) */
951 26, /* bitsize */
952 false, /* pc_relative */
953 0, /* bitpos */
954 complain_overflow_dont, /* complain_on_overflow */
955 /* This needs complex overflow
956 detection, because the upper four
957 bits must match the PC. */
958 mips16_jump_reloc, /* special_function */
959 "R_MIPS16_26", /* name */
960 true, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 false); /* pcrel_offset */
965 /* The reloc used for the mips16 gprel instruction. */
966 static reloc_howto_type elf_mips16_gprel_howto =
967 HOWTO (R_MIPS16_GPREL, /* type */
968 0, /* rightshift */
969 2, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 false, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_signed, /* complain_on_overflow */
974 mips16_gprel_reloc, /* special_function */
975 "R_MIPS16_GPREL", /* name */
976 true, /* partial_inplace */
977 0x07ff001f, /* src_mask */
978 0x07ff001f, /* dst_mask */
979 false); /* pcrel_offset */
981 /* GNU extensions for embedded-pic. */
982 /* High 16 bits of symbol value, pc-relative. */
983 static reloc_howto_type elf_mips_gnu_rel_hi16 =
984 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 16, /* bitsize */
988 true, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont, /* complain_on_overflow */
991 _bfd_mips_elf_hi16_reloc, /* special_function */
992 "R_MIPS_GNU_REL_HI16", /* name */
993 true, /* partial_inplace */
994 0xffff, /* src_mask */
995 0xffff, /* dst_mask */
996 true); /* pcrel_offset */
998 /* Low 16 bits of symbol value, pc-relative. */
999 static reloc_howto_type elf_mips_gnu_rel_lo16 =
1000 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1001 0, /* rightshift */
1002 2, /* size (0 = byte, 1 = short, 2 = long) */
1003 16, /* bitsize */
1004 true, /* pc_relative */
1005 0, /* bitpos */
1006 complain_overflow_dont, /* complain_on_overflow */
1007 _bfd_mips_elf_lo16_reloc, /* special_function */
1008 "R_MIPS_GNU_REL_LO16", /* name */
1009 true, /* partial_inplace */
1010 0xffff, /* src_mask */
1011 0xffff, /* dst_mask */
1012 true); /* pcrel_offset */
1014 /* 16 bit offset for pc-relative branches. */
1015 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1016 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1017 2, /* rightshift */
1018 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 16, /* bitsize */
1020 true, /* pc_relative */
1021 0, /* bitpos */
1022 complain_overflow_signed, /* complain_on_overflow */
1023 bfd_elf_generic_reloc, /* special_function */
1024 "R_MIPS_GNU_REL16_S2", /* name */
1025 true, /* partial_inplace */
1026 0xffff, /* src_mask */
1027 0xffff, /* dst_mask */
1028 true); /* pcrel_offset */
1030 /* 64 bit pc-relative. */
1031 static reloc_howto_type elf_mips_gnu_pcrel64 =
1032 HOWTO (R_MIPS_PC64, /* type */
1033 0, /* rightshift */
1034 4, /* size (0 = byte, 1 = short, 2 = long) */
1035 64, /* bitsize */
1036 true, /* pc_relative */
1037 0, /* bitpos */
1038 complain_overflow_signed, /* complain_on_overflow */
1039 bfd_elf_generic_reloc, /* special_function */
1040 "R_MIPS_PC64", /* name */
1041 true, /* partial_inplace */
1042 MINUS_ONE, /* src_mask */
1043 MINUS_ONE, /* dst_mask */
1044 true); /* pcrel_offset */
1046 /* 32 bit pc-relative. */
1047 static reloc_howto_type elf_mips_gnu_pcrel32 =
1048 HOWTO (R_MIPS_PC32, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 true, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_signed, /* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_MIPS_PC32", /* name */
1057 true, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 true); /* pcrel_offset */
1062 /* GNU extension to record C++ vtable hierarchy */
1063 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1064 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 0, /* bitsize */
1068 false, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont, /* complain_on_overflow */
1071 NULL, /* special_function */
1072 "R_MIPS_GNU_VTINHERIT", /* name */
1073 false, /* partial_inplace */
1074 0, /* src_mask */
1075 0, /* dst_mask */
1076 false); /* pcrel_offset */
1078 /* GNU extension to record C++ vtable member usage */
1079 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1080 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1081 0, /* rightshift */
1082 2, /* size (0 = byte, 1 = short, 2 = long) */
1083 0, /* bitsize */
1084 false, /* pc_relative */
1085 0, /* bitpos */
1086 complain_overflow_dont, /* complain_on_overflow */
1087 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1088 "R_MIPS_GNU_VTENTRY", /* name */
1089 false, /* partial_inplace */
1090 0, /* src_mask */
1091 0, /* dst_mask */
1092 false); /* pcrel_offset */
1094 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1095 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1096 the HI16. Here we just save the information we need; we do the
1097 actual relocation when we see the LO16. MIPS ELF requires that the
1098 LO16 immediately follow the HI16. As a GNU extension, we permit an
1099 arbitrary number of HI16 relocs to be associated with a single LO16
1100 reloc. This extension permits gcc to output the HI and LO relocs
1101 itself. */
1103 struct mips_hi16
1105 struct mips_hi16 *next;
1106 bfd_byte *addr;
1107 bfd_vma addend;
1110 /* FIXME: This should not be a static variable. */
1112 static struct mips_hi16 *mips_hi16_list;
1114 bfd_reloc_status_type
1115 _bfd_mips_elf_hi16_reloc (abfd,
1116 reloc_entry,
1117 symbol,
1118 data,
1119 input_section,
1120 output_bfd,
1121 error_message)
1122 bfd *abfd ATTRIBUTE_UNUSED;
1123 arelent *reloc_entry;
1124 asymbol *symbol;
1125 PTR data;
1126 asection *input_section;
1127 bfd *output_bfd;
1128 char **error_message;
1130 bfd_reloc_status_type ret;
1131 bfd_vma relocation;
1132 struct mips_hi16 *n;
1134 /* If we're relocating, and this an external symbol, we don't want
1135 to change anything. */
1136 if (output_bfd != (bfd *) NULL
1137 && (symbol->flags & BSF_SECTION_SYM) == 0
1138 && reloc_entry->addend == 0)
1140 reloc_entry->address += input_section->output_offset;
1141 return bfd_reloc_ok;
1144 ret = bfd_reloc_ok;
1146 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1148 boolean relocateable;
1149 bfd_vma gp;
1151 if (ret == bfd_reloc_undefined)
1152 abort ();
1154 if (output_bfd != NULL)
1155 relocateable = true;
1156 else
1158 relocateable = false;
1159 output_bfd = symbol->section->output_section->owner;
1162 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1163 error_message, &gp);
1164 if (ret != bfd_reloc_ok)
1165 return ret;
1167 relocation = gp - reloc_entry->address;
1169 else
1171 if (bfd_is_und_section (symbol->section)
1172 && output_bfd == (bfd *) NULL)
1173 ret = bfd_reloc_undefined;
1175 if (bfd_is_com_section (symbol->section))
1176 relocation = 0;
1177 else
1178 relocation = symbol->value;
1181 relocation += symbol->section->output_section->vma;
1182 relocation += symbol->section->output_offset;
1183 relocation += reloc_entry->addend;
1185 if (reloc_entry->address > input_section->_cooked_size)
1186 return bfd_reloc_outofrange;
1188 /* Save the information, and let LO16 do the actual relocation. */
1189 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1190 if (n == NULL)
1191 return bfd_reloc_outofrange;
1192 n->addr = (bfd_byte *) data + reloc_entry->address;
1193 n->addend = relocation;
1194 n->next = mips_hi16_list;
1195 mips_hi16_list = n;
1197 if (output_bfd != (bfd *) NULL)
1198 reloc_entry->address += input_section->output_offset;
1200 return ret;
1203 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1204 inplace relocation; this function exists in order to do the
1205 R_MIPS_HI16 relocation described above. */
1207 bfd_reloc_status_type
1208 _bfd_mips_elf_lo16_reloc (abfd,
1209 reloc_entry,
1210 symbol,
1211 data,
1212 input_section,
1213 output_bfd,
1214 error_message)
1215 bfd *abfd;
1216 arelent *reloc_entry;
1217 asymbol *symbol;
1218 PTR data;
1219 asection *input_section;
1220 bfd *output_bfd;
1221 char **error_message;
1223 arelent gp_disp_relent;
1225 if (mips_hi16_list != NULL)
1227 struct mips_hi16 *l;
1229 l = mips_hi16_list;
1230 while (l != NULL)
1232 unsigned long insn;
1233 unsigned long val;
1234 unsigned long vallo;
1235 struct mips_hi16 *next;
1237 /* Do the HI16 relocation. Note that we actually don't need
1238 to know anything about the LO16 itself, except where to
1239 find the low 16 bits of the addend needed by the LO16. */
1240 insn = bfd_get_32 (abfd, l->addr);
1241 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1242 & 0xffff);
1243 val = ((insn & 0xffff) << 16) + vallo;
1244 val += l->addend;
1246 /* The low order 16 bits are always treated as a signed
1247 value. Therefore, a negative value in the low order bits
1248 requires an adjustment in the high order bits. We need
1249 to make this adjustment in two ways: once for the bits we
1250 took from the data, and once for the bits we are putting
1251 back in to the data. */
1252 if ((vallo & 0x8000) != 0)
1253 val -= 0x10000;
1254 if ((val & 0x8000) != 0)
1255 val += 0x10000;
1257 insn = (insn & ~0xffff) | ((val >> 16) & 0xffff);
1258 bfd_put_32 (abfd, insn, l->addr);
1260 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1262 gp_disp_relent = *reloc_entry;
1263 reloc_entry = &gp_disp_relent;
1264 reloc_entry->addend = l->addend;
1267 next = l->next;
1268 free (l);
1269 l = next;
1272 mips_hi16_list = NULL;
1274 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1276 bfd_reloc_status_type ret;
1277 bfd_vma gp, relocation;
1279 /* FIXME: Does this case ever occur? */
1281 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1282 if (ret != bfd_reloc_ok)
1283 return ret;
1285 relocation = gp - reloc_entry->address;
1286 relocation += symbol->section->output_section->vma;
1287 relocation += symbol->section->output_offset;
1288 relocation += reloc_entry->addend;
1290 if (reloc_entry->address > input_section->_cooked_size)
1291 return bfd_reloc_outofrange;
1293 gp_disp_relent = *reloc_entry;
1294 reloc_entry = &gp_disp_relent;
1295 reloc_entry->addend = relocation - 4;
1298 /* Now do the LO16 reloc in the usual way. */
1299 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1300 input_section, output_bfd, error_message);
1303 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1304 table used for PIC code. If the symbol is an external symbol, the
1305 instruction is modified to contain the offset of the appropriate
1306 entry in the global offset table. If the symbol is a section
1307 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1308 addends are combined to form the real addend against the section
1309 symbol; the GOT16 is modified to contain the offset of an entry in
1310 the global offset table, and the LO16 is modified to offset it
1311 appropriately. Thus an offset larger than 16 bits requires a
1312 modified value in the global offset table.
1314 This implementation suffices for the assembler, but the linker does
1315 not yet know how to create global offset tables. */
1317 bfd_reloc_status_type
1318 _bfd_mips_elf_got16_reloc (abfd,
1319 reloc_entry,
1320 symbol,
1321 data,
1322 input_section,
1323 output_bfd,
1324 error_message)
1325 bfd *abfd;
1326 arelent *reloc_entry;
1327 asymbol *symbol;
1328 PTR data;
1329 asection *input_section;
1330 bfd *output_bfd;
1331 char **error_message;
1333 /* If we're relocating, and this an external symbol, we don't want
1334 to change anything. */
1335 if (output_bfd != (bfd *) NULL
1336 && (symbol->flags & BSF_SECTION_SYM) == 0
1337 && reloc_entry->addend == 0)
1339 reloc_entry->address += input_section->output_offset;
1340 return bfd_reloc_ok;
1343 /* If we're relocating, and this is a local symbol, we can handle it
1344 just like HI16. */
1345 if (output_bfd != (bfd *) NULL
1346 && (symbol->flags & BSF_SECTION_SYM) != 0)
1347 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1348 input_section, output_bfd, error_message);
1350 abort ();
1353 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1354 dangerous relocation. */
1356 static boolean
1357 mips_elf_assign_gp (output_bfd, pgp)
1358 bfd *output_bfd;
1359 bfd_vma *pgp;
1361 unsigned int count;
1362 asymbol **sym;
1363 unsigned int i;
1365 /* If we've already figured out what GP will be, just return it. */
1366 *pgp = _bfd_get_gp_value (output_bfd);
1367 if (*pgp)
1368 return true;
1370 count = bfd_get_symcount (output_bfd);
1371 sym = bfd_get_outsymbols (output_bfd);
1373 /* The linker script will have created a symbol named `_gp' with the
1374 appropriate value. */
1375 if (sym == (asymbol **) NULL)
1376 i = count;
1377 else
1379 for (i = 0; i < count; i++, sym++)
1381 register CONST char *name;
1383 name = bfd_asymbol_name (*sym);
1384 if (*name == '_' && strcmp (name, "_gp") == 0)
1386 *pgp = bfd_asymbol_value (*sym);
1387 _bfd_set_gp_value (output_bfd, *pgp);
1388 break;
1393 if (i >= count)
1395 /* Only get the error once. */
1396 *pgp = 4;
1397 _bfd_set_gp_value (output_bfd, *pgp);
1398 return false;
1401 return true;
1404 /* We have to figure out the gp value, so that we can adjust the
1405 symbol value correctly. We look up the symbol _gp in the output
1406 BFD. If we can't find it, we're stuck. We cache it in the ELF
1407 target data. We don't need to adjust the symbol value for an
1408 external symbol if we are producing relocateable output. */
1410 static bfd_reloc_status_type
1411 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1412 bfd *output_bfd;
1413 asymbol *symbol;
1414 boolean relocateable;
1415 char **error_message;
1416 bfd_vma *pgp;
1418 if (bfd_is_und_section (symbol->section)
1419 && ! relocateable)
1421 *pgp = 0;
1422 return bfd_reloc_undefined;
1425 *pgp = _bfd_get_gp_value (output_bfd);
1426 if (*pgp == 0
1427 && (! relocateable
1428 || (symbol->flags & BSF_SECTION_SYM) != 0))
1430 if (relocateable)
1432 /* Make up a value. */
1433 *pgp = symbol->section->output_section->vma + 0x4000;
1434 _bfd_set_gp_value (output_bfd, *pgp);
1436 else if (!mips_elf_assign_gp (output_bfd, pgp))
1438 *error_message =
1439 (char *) _("GP relative relocation when _gp not defined");
1440 return bfd_reloc_dangerous;
1444 return bfd_reloc_ok;
1447 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1448 become the offset from the gp register. This function also handles
1449 R_MIPS_LITERAL relocations, although those can be handled more
1450 cleverly because the entries in the .lit8 and .lit4 sections can be
1451 merged. */
1453 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1454 arelent *, asection *,
1455 boolean, PTR, bfd_vma));
1457 bfd_reloc_status_type
1458 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1459 output_bfd, error_message)
1460 bfd *abfd;
1461 arelent *reloc_entry;
1462 asymbol *symbol;
1463 PTR data;
1464 asection *input_section;
1465 bfd *output_bfd;
1466 char **error_message;
1468 boolean relocateable;
1469 bfd_reloc_status_type ret;
1470 bfd_vma gp;
1472 /* If we're relocating, and this is an external symbol with no
1473 addend, we don't want to change anything. We will only have an
1474 addend if this is a newly created reloc, not read from an ELF
1475 file. */
1476 if (output_bfd != (bfd *) NULL
1477 && (symbol->flags & BSF_SECTION_SYM) == 0
1478 && reloc_entry->addend == 0)
1480 reloc_entry->address += input_section->output_offset;
1481 return bfd_reloc_ok;
1484 if (output_bfd != (bfd *) NULL)
1485 relocateable = true;
1486 else
1488 relocateable = false;
1489 output_bfd = symbol->section->output_section->owner;
1492 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1493 &gp);
1494 if (ret != bfd_reloc_ok)
1495 return ret;
1497 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1498 relocateable, data, gp);
1501 static bfd_reloc_status_type
1502 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1504 bfd *abfd;
1505 asymbol *symbol;
1506 arelent *reloc_entry;
1507 asection *input_section;
1508 boolean relocateable;
1509 PTR data;
1510 bfd_vma gp;
1512 bfd_vma relocation;
1513 unsigned long insn;
1514 unsigned long val;
1516 if (bfd_is_com_section (symbol->section))
1517 relocation = 0;
1518 else
1519 relocation = symbol->value;
1521 relocation += symbol->section->output_section->vma;
1522 relocation += symbol->section->output_offset;
1524 if (reloc_entry->address > input_section->_cooked_size)
1525 return bfd_reloc_outofrange;
1527 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1529 /* Set val to the offset into the section or symbol. */
1530 if (reloc_entry->howto->src_mask == 0)
1532 /* This case occurs with the 64-bit MIPS ELF ABI. */
1533 val = reloc_entry->addend;
1535 else
1537 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1538 if (val & 0x8000)
1539 val -= 0x10000;
1542 /* Adjust val for the final section location and GP value. If we
1543 are producing relocateable output, we don't want to do this for
1544 an external symbol. */
1545 if (! relocateable
1546 || (symbol->flags & BSF_SECTION_SYM) != 0)
1547 val += relocation - gp;
1549 insn = (insn & ~0xffff) | (val & 0xffff);
1550 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1552 if (relocateable)
1553 reloc_entry->address += input_section->output_offset;
1555 /* Make sure it fit in 16 bits. */
1556 if ((long) val >= 0x8000 || (long) val < -0x8000)
1557 return bfd_reloc_overflow;
1559 return bfd_reloc_ok;
1562 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1563 from the gp register? XXX */
1565 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1566 arelent *, asection *,
1567 boolean, PTR, bfd_vma));
1569 bfd_reloc_status_type
1570 _bfd_mips_elf_gprel32_reloc (abfd,
1571 reloc_entry,
1572 symbol,
1573 data,
1574 input_section,
1575 output_bfd,
1576 error_message)
1577 bfd *abfd;
1578 arelent *reloc_entry;
1579 asymbol *symbol;
1580 PTR data;
1581 asection *input_section;
1582 bfd *output_bfd;
1583 char **error_message;
1585 boolean relocateable;
1586 bfd_reloc_status_type ret;
1587 bfd_vma gp;
1589 /* If we're relocating, and this is an external symbol with no
1590 addend, we don't want to change anything. We will only have an
1591 addend if this is a newly created reloc, not read from an ELF
1592 file. */
1593 if (output_bfd != (bfd *) NULL
1594 && (symbol->flags & BSF_SECTION_SYM) == 0
1595 && reloc_entry->addend == 0)
1597 *error_message = (char *)
1598 _("32bits gp relative relocation occurs for an external symbol");
1599 return bfd_reloc_outofrange;
1602 if (output_bfd != (bfd *) NULL)
1604 relocateable = true;
1605 gp = _bfd_get_gp_value (output_bfd);
1607 else
1609 relocateable = false;
1610 output_bfd = symbol->section->output_section->owner;
1612 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1613 error_message, &gp);
1614 if (ret != bfd_reloc_ok)
1615 return ret;
1618 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1619 relocateable, data, gp);
1622 static bfd_reloc_status_type
1623 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1625 bfd *abfd;
1626 asymbol *symbol;
1627 arelent *reloc_entry;
1628 asection *input_section;
1629 boolean relocateable;
1630 PTR data;
1631 bfd_vma gp;
1633 bfd_vma relocation;
1634 unsigned long val;
1636 if (bfd_is_com_section (symbol->section))
1637 relocation = 0;
1638 else
1639 relocation = symbol->value;
1641 relocation += symbol->section->output_section->vma;
1642 relocation += symbol->section->output_offset;
1644 if (reloc_entry->address > input_section->_cooked_size)
1645 return bfd_reloc_outofrange;
1647 if (reloc_entry->howto->src_mask == 0)
1649 /* This case arises with the 64-bit MIPS ELF ABI. */
1650 val = 0;
1652 else
1653 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1655 /* Set val to the offset into the section or symbol. */
1656 val += reloc_entry->addend;
1658 /* Adjust val for the final section location and GP value. If we
1659 are producing relocateable output, we don't want to do this for
1660 an external symbol. */
1661 if (! relocateable
1662 || (symbol->flags & BSF_SECTION_SYM) != 0)
1663 val += relocation - gp;
1665 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1667 if (relocateable)
1668 reloc_entry->address += input_section->output_offset;
1670 return bfd_reloc_ok;
1673 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1674 generated when addresses are 64 bits. The upper 32 bits are a simple
1675 sign extension. */
1677 static bfd_reloc_status_type
1678 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1679 output_bfd, error_message)
1680 bfd *abfd;
1681 arelent *reloc_entry;
1682 asymbol *symbol;
1683 PTR data;
1684 asection *input_section;
1685 bfd *output_bfd;
1686 char **error_message;
1688 bfd_reloc_status_type r;
1689 arelent reloc32;
1690 unsigned long val;
1691 bfd_size_type addr;
1693 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1694 input_section, output_bfd, error_message);
1695 if (r != bfd_reloc_continue)
1696 return r;
1698 /* Do a normal 32 bit relocation on the lower 32 bits. */
1699 reloc32 = *reloc_entry;
1700 if (bfd_big_endian (abfd))
1701 reloc32.address += 4;
1702 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1703 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1704 output_bfd, error_message);
1706 /* Sign extend into the upper 32 bits. */
1707 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1708 if ((val & 0x80000000) != 0)
1709 val = 0xffffffff;
1710 else
1711 val = 0;
1712 addr = reloc_entry->address;
1713 if (bfd_little_endian (abfd))
1714 addr += 4;
1715 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1717 return r;
1720 /* Handle a mips16 jump. */
1722 static bfd_reloc_status_type
1723 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1724 output_bfd, error_message)
1725 bfd *abfd ATTRIBUTE_UNUSED;
1726 arelent *reloc_entry;
1727 asymbol *symbol;
1728 PTR data ATTRIBUTE_UNUSED;
1729 asection *input_section;
1730 bfd *output_bfd;
1731 char **error_message ATTRIBUTE_UNUSED;
1733 if (output_bfd != (bfd *) NULL
1734 && (symbol->flags & BSF_SECTION_SYM) == 0
1735 && reloc_entry->addend == 0)
1737 reloc_entry->address += input_section->output_offset;
1738 return bfd_reloc_ok;
1741 /* FIXME. */
1743 static boolean warned;
1745 if (! warned)
1746 (*_bfd_error_handler)
1747 (_("Linking mips16 objects into %s format is not supported"),
1748 bfd_get_target (input_section->output_section->owner));
1749 warned = true;
1752 return bfd_reloc_undefined;
1755 /* Handle a mips16 GP relative reloc. */
1757 static bfd_reloc_status_type
1758 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1759 output_bfd, error_message)
1760 bfd *abfd;
1761 arelent *reloc_entry;
1762 asymbol *symbol;
1763 PTR data;
1764 asection *input_section;
1765 bfd *output_bfd;
1766 char **error_message;
1768 boolean relocateable;
1769 bfd_reloc_status_type ret;
1770 bfd_vma gp;
1771 unsigned short extend, insn;
1772 unsigned long final;
1774 /* If we're relocating, and this is an external symbol with no
1775 addend, we don't want to change anything. We will only have an
1776 addend if this is a newly created reloc, not read from an ELF
1777 file. */
1778 if (output_bfd != NULL
1779 && (symbol->flags & BSF_SECTION_SYM) == 0
1780 && reloc_entry->addend == 0)
1782 reloc_entry->address += input_section->output_offset;
1783 return bfd_reloc_ok;
1786 if (output_bfd != NULL)
1787 relocateable = true;
1788 else
1790 relocateable = false;
1791 output_bfd = symbol->section->output_section->owner;
1794 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1795 &gp);
1796 if (ret != bfd_reloc_ok)
1797 return ret;
1799 if (reloc_entry->address > input_section->_cooked_size)
1800 return bfd_reloc_outofrange;
1802 /* Pick up the mips16 extend instruction and the real instruction. */
1803 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1804 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1806 /* Stuff the current addend back as a 32 bit value, do the usual
1807 relocation, and then clean up. */
1808 bfd_put_32 (abfd,
1809 (((extend & 0x1f) << 11)
1810 | (extend & 0x7e0)
1811 | (insn & 0x1f)),
1812 (bfd_byte *) data + reloc_entry->address);
1814 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1815 relocateable, data, gp);
1817 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1818 bfd_put_16 (abfd,
1819 ((extend & 0xf800)
1820 | ((final >> 11) & 0x1f)
1821 | (final & 0x7e0)),
1822 (bfd_byte *) data + reloc_entry->address);
1823 bfd_put_16 (abfd,
1824 ((insn & 0xffe0)
1825 | (final & 0x1f)),
1826 (bfd_byte *) data + reloc_entry->address + 2);
1828 return ret;
1831 /* Return the ISA for a MIPS e_flags value. */
1833 static INLINE int
1834 elf_mips_isa (flags)
1835 flagword flags;
1837 switch (flags & EF_MIPS_ARCH)
1839 case E_MIPS_ARCH_1:
1840 return 1;
1841 case E_MIPS_ARCH_2:
1842 return 2;
1843 case E_MIPS_ARCH_3:
1844 return 3;
1845 case E_MIPS_ARCH_4:
1846 return 4;
1847 case E_MIPS_ARCH_5:
1848 return 5;
1849 case E_MIPS_ARCH_32:
1850 return 32;
1851 case E_MIPS_ARCH_64:
1852 return 64;
1854 return 4;
1857 /* Return the MACH for a MIPS e_flags value. */
1859 static INLINE int
1860 elf_mips_mach (flags)
1861 flagword flags;
1863 switch (flags & EF_MIPS_MACH)
1865 case E_MIPS_MACH_3900:
1866 return bfd_mach_mips3900;
1868 case E_MIPS_MACH_4010:
1869 return bfd_mach_mips4010;
1871 case E_MIPS_MACH_4100:
1872 return bfd_mach_mips4100;
1874 case E_MIPS_MACH_4111:
1875 return bfd_mach_mips4111;
1877 case E_MIPS_MACH_4650:
1878 return bfd_mach_mips4650;
1880 case E_MIPS_MACH_MIPS32_4K:
1881 return bfd_mach_mips32_4k;
1883 case E_MIPS_MACH_SB1:
1884 return bfd_mach_mips_sb1;
1886 default:
1887 switch (flags & EF_MIPS_ARCH)
1889 default:
1890 case E_MIPS_ARCH_1:
1891 return bfd_mach_mips3000;
1892 break;
1894 case E_MIPS_ARCH_2:
1895 return bfd_mach_mips6000;
1896 break;
1898 case E_MIPS_ARCH_3:
1899 return bfd_mach_mips4000;
1900 break;
1902 case E_MIPS_ARCH_4:
1903 return bfd_mach_mips8000;
1904 break;
1906 case E_MIPS_ARCH_5:
1907 return bfd_mach_mips5;
1908 break;
1910 case E_MIPS_ARCH_32:
1911 return bfd_mach_mips32;
1912 break;
1914 case E_MIPS_ARCH_64:
1915 return bfd_mach_mips64;
1916 break;
1920 return 0;
1923 /* Return printable name for ABI. */
1925 static INLINE char *
1926 elf_mips_abi_name (abfd)
1927 bfd *abfd;
1929 flagword flags;
1931 if (ABI_N32_P (abfd))
1932 return "N32";
1933 else if (ABI_64_P (abfd))
1934 return "64";
1936 flags = elf_elfheader (abfd)->e_flags;
1937 switch (flags & EF_MIPS_ABI)
1939 case 0:
1940 return "none";
1941 case E_MIPS_ABI_O32:
1942 return "O32";
1943 case E_MIPS_ABI_O64:
1944 return "O64";
1945 case E_MIPS_ABI_EABI32:
1946 return "EABI32";
1947 case E_MIPS_ABI_EABI64:
1948 return "EABI64";
1949 default:
1950 return "unknown abi";
1954 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1956 struct elf_reloc_map {
1957 bfd_reloc_code_real_type bfd_reloc_val;
1958 enum elf_mips_reloc_type elf_reloc_val;
1961 static CONST struct elf_reloc_map mips_reloc_map[] =
1963 { BFD_RELOC_NONE, R_MIPS_NONE, },
1964 { BFD_RELOC_16, R_MIPS_16 },
1965 { BFD_RELOC_32, R_MIPS_32 },
1966 { BFD_RELOC_64, R_MIPS_64 },
1967 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1968 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1969 { BFD_RELOC_LO16, R_MIPS_LO16 },
1970 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1971 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1972 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1973 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1974 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1975 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1976 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1977 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1978 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1979 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1980 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1981 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1982 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1983 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1986 /* Given a BFD reloc type, return a howto structure. */
1988 static reloc_howto_type *
1989 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1990 bfd *abfd;
1991 bfd_reloc_code_real_type code;
1993 unsigned int i;
1995 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1997 if (mips_reloc_map[i].bfd_reloc_val == code)
1998 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
2001 switch (code)
2003 default:
2004 bfd_set_error (bfd_error_bad_value);
2005 return NULL;
2007 case BFD_RELOC_CTOR:
2008 /* We need to handle BFD_RELOC_CTOR specially.
2009 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2010 size of addresses on this architecture. */
2011 if (bfd_arch_bits_per_address (abfd) == 32)
2012 return &elf_mips_howto_table[(int) R_MIPS_32];
2013 else
2014 return &elf_mips_ctor64_howto;
2016 case BFD_RELOC_MIPS16_JMP:
2017 return &elf_mips16_jump_howto;
2018 case BFD_RELOC_MIPS16_GPREL:
2019 return &elf_mips16_gprel_howto;
2020 case BFD_RELOC_VTABLE_INHERIT:
2021 return &elf_mips_gnu_vtinherit_howto;
2022 case BFD_RELOC_VTABLE_ENTRY:
2023 return &elf_mips_gnu_vtentry_howto;
2024 case BFD_RELOC_PCREL_HI16_S:
2025 return &elf_mips_gnu_rel_hi16;
2026 case BFD_RELOC_PCREL_LO16:
2027 return &elf_mips_gnu_rel_lo16;
2028 case BFD_RELOC_16_PCREL_S2:
2029 return &elf_mips_gnu_rel16_s2;
2030 case BFD_RELOC_64_PCREL:
2031 return &elf_mips_gnu_pcrel64;
2032 case BFD_RELOC_32_PCREL:
2033 return &elf_mips_gnu_pcrel32;
2037 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2039 static reloc_howto_type *
2040 mips_rtype_to_howto (r_type)
2041 unsigned int r_type;
2043 switch (r_type)
2045 case R_MIPS16_26:
2046 return &elf_mips16_jump_howto;
2047 break;
2048 case R_MIPS16_GPREL:
2049 return &elf_mips16_gprel_howto;
2050 break;
2051 case R_MIPS_GNU_VTINHERIT:
2052 return &elf_mips_gnu_vtinherit_howto;
2053 break;
2054 case R_MIPS_GNU_VTENTRY:
2055 return &elf_mips_gnu_vtentry_howto;
2056 break;
2057 case R_MIPS_GNU_REL_HI16:
2058 return &elf_mips_gnu_rel_hi16;
2059 break;
2060 case R_MIPS_GNU_REL_LO16:
2061 return &elf_mips_gnu_rel_lo16;
2062 break;
2063 case R_MIPS_GNU_REL16_S2:
2064 return &elf_mips_gnu_rel16_s2;
2065 break;
2066 case R_MIPS_PC64:
2067 return &elf_mips_gnu_pcrel64;
2068 break;
2069 case R_MIPS_PC32:
2070 return &elf_mips_gnu_pcrel32;
2071 break;
2073 default:
2074 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2075 return &elf_mips_howto_table[r_type];
2076 break;
2080 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2082 static void
2083 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2084 bfd *abfd;
2085 arelent *cache_ptr;
2086 Elf32_Internal_Rel *dst;
2088 unsigned int r_type;
2090 r_type = ELF32_R_TYPE (dst->r_info);
2091 cache_ptr->howto = mips_rtype_to_howto (r_type);
2093 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2094 value for the object file. We get the addend now, rather than
2095 when we do the relocation, because the symbol manipulations done
2096 by the linker may cause us to lose track of the input BFD. */
2097 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2098 && (r_type == (unsigned int) R_MIPS_GPREL16
2099 || r_type == (unsigned int) R_MIPS_LITERAL))
2100 cache_ptr->addend = elf_gp (abfd);
2103 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2105 static void
2106 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2107 bfd *abfd;
2108 arelent *cache_ptr;
2109 Elf32_Internal_Rela *dst;
2111 /* Since an Elf32_Internal_Rel is an initial prefix of an
2112 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2113 above. */
2114 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2116 /* If we ever need to do any extra processing with dst->r_addend
2117 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2120 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2121 routines swap this structure in and out. They are used outside of
2122 BFD, so they are globally visible. */
2124 void
2125 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2126 bfd *abfd;
2127 const Elf32_External_RegInfo *ex;
2128 Elf32_RegInfo *in;
2130 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2131 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2132 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2133 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2134 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2135 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2138 void
2139 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2140 bfd *abfd;
2141 const Elf32_RegInfo *in;
2142 Elf32_External_RegInfo *ex;
2144 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2145 (bfd_byte *) ex->ri_gprmask);
2146 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2147 (bfd_byte *) ex->ri_cprmask[0]);
2148 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2149 (bfd_byte *) ex->ri_cprmask[1]);
2150 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2151 (bfd_byte *) ex->ri_cprmask[2]);
2152 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2153 (bfd_byte *) ex->ri_cprmask[3]);
2154 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2155 (bfd_byte *) ex->ri_gp_value);
2158 /* In the 64 bit ABI, the .MIPS.options section holds register
2159 information in an Elf64_Reginfo structure. These routines swap
2160 them in and out. They are globally visible because they are used
2161 outside of BFD. These routines are here so that gas can call them
2162 without worrying about whether the 64 bit ABI has been included. */
2164 void
2165 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2166 bfd *abfd;
2167 const Elf64_External_RegInfo *ex;
2168 Elf64_Internal_RegInfo *in;
2170 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2171 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2172 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2173 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2174 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2175 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2176 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2179 void
2180 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2181 bfd *abfd;
2182 const Elf64_Internal_RegInfo *in;
2183 Elf64_External_RegInfo *ex;
2185 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2186 (bfd_byte *) ex->ri_gprmask);
2187 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2188 (bfd_byte *) ex->ri_pad);
2189 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2190 (bfd_byte *) ex->ri_cprmask[0]);
2191 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2192 (bfd_byte *) ex->ri_cprmask[1]);
2193 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2194 (bfd_byte *) ex->ri_cprmask[2]);
2195 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2196 (bfd_byte *) ex->ri_cprmask[3]);
2197 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2198 (bfd_byte *) ex->ri_gp_value);
2201 /* Swap an entry in a .gptab section. Note that these routines rely
2202 on the equivalence of the two elements of the union. */
2204 static void
2205 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2206 bfd *abfd;
2207 const Elf32_External_gptab *ex;
2208 Elf32_gptab *in;
2210 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2211 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2214 static void
2215 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2216 bfd *abfd;
2217 const Elf32_gptab *in;
2218 Elf32_External_gptab *ex;
2220 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2221 ex->gt_entry.gt_g_value);
2222 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2223 ex->gt_entry.gt_bytes);
2226 static void
2227 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2228 bfd *abfd;
2229 const Elf32_compact_rel *in;
2230 Elf32_External_compact_rel *ex;
2232 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2233 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2234 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2235 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2236 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2237 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2240 static void
2241 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2242 bfd *abfd;
2243 const Elf32_crinfo *in;
2244 Elf32_External_crinfo *ex;
2246 unsigned long l;
2248 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2249 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2250 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2251 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2252 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2253 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2254 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2257 /* Swap in an options header. */
2259 void
2260 bfd_mips_elf_swap_options_in (abfd, ex, in)
2261 bfd *abfd;
2262 const Elf_External_Options *ex;
2263 Elf_Internal_Options *in;
2265 in->kind = bfd_h_get_8 (abfd, ex->kind);
2266 in->size = bfd_h_get_8 (abfd, ex->size);
2267 in->section = bfd_h_get_16 (abfd, ex->section);
2268 in->info = bfd_h_get_32 (abfd, ex->info);
2271 /* Swap out an options header. */
2273 void
2274 bfd_mips_elf_swap_options_out (abfd, in, ex)
2275 bfd *abfd;
2276 const Elf_Internal_Options *in;
2277 Elf_External_Options *ex;
2279 bfd_h_put_8 (abfd, in->kind, ex->kind);
2280 bfd_h_put_8 (abfd, in->size, ex->size);
2281 bfd_h_put_16 (abfd, in->section, ex->section);
2282 bfd_h_put_32 (abfd, in->info, ex->info);
2284 #if 0
2285 /* Swap in an MSYM entry. */
2287 static void
2288 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2289 bfd *abfd;
2290 const Elf32_External_Msym *ex;
2291 Elf32_Internal_Msym *in;
2293 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2294 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2296 #endif
2297 /* Swap out an MSYM entry. */
2299 static void
2300 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2301 bfd *abfd;
2302 const Elf32_Internal_Msym *in;
2303 Elf32_External_Msym *ex;
2305 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2306 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2309 /* Determine whether a symbol is global for the purposes of splitting
2310 the symbol table into global symbols and local symbols. At least
2311 on Irix 5, this split must be between section symbols and all other
2312 symbols. On most ELF targets the split is between static symbols
2313 and externally visible symbols. */
2315 static boolean
2316 mips_elf_sym_is_global (abfd, sym)
2317 bfd *abfd ATTRIBUTE_UNUSED;
2318 asymbol *sym;
2320 if (SGI_COMPAT(abfd))
2321 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2322 else
2323 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2324 || bfd_is_und_section (bfd_get_section (sym))
2325 || bfd_is_com_section (bfd_get_section (sym)));
2328 /* Set the right machine number for a MIPS ELF file. This is used for
2329 both the 32-bit and the 64-bit ABI. */
2331 boolean
2332 _bfd_mips_elf_object_p (abfd)
2333 bfd *abfd;
2335 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2336 sorted correctly such that local symbols precede global symbols,
2337 and the sh_info field in the symbol table is not always right. */
2338 if (SGI_COMPAT(abfd))
2339 elf_bad_symtab (abfd) = true;
2341 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2342 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2343 return true;
2346 /* The final processing done just before writing out a MIPS ELF object
2347 file. This gets the MIPS architecture right based on the machine
2348 number. This is used by both the 32-bit and the 64-bit ABI. */
2350 void
2351 _bfd_mips_elf_final_write_processing (abfd, linker)
2352 bfd *abfd;
2353 boolean linker ATTRIBUTE_UNUSED;
2355 unsigned long val;
2356 unsigned int i;
2357 Elf_Internal_Shdr **hdrpp;
2358 const char *name;
2359 asection *sec;
2361 switch (bfd_get_mach (abfd))
2363 default:
2364 case bfd_mach_mips3000:
2365 val = E_MIPS_ARCH_1;
2366 break;
2368 case bfd_mach_mips3900:
2369 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2370 break;
2372 case bfd_mach_mips6000:
2373 val = E_MIPS_ARCH_2;
2374 break;
2376 case bfd_mach_mips4000:
2377 case bfd_mach_mips4300:
2378 val = E_MIPS_ARCH_3;
2379 break;
2381 case bfd_mach_mips4010:
2382 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2383 break;
2385 case bfd_mach_mips4100:
2386 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2387 break;
2389 case bfd_mach_mips4111:
2390 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2391 break;
2393 case bfd_mach_mips4650:
2394 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2395 break;
2397 case bfd_mach_mips8000:
2398 case bfd_mach_mips10000:
2399 case bfd_mach_mips12000:
2400 val = E_MIPS_ARCH_4;
2401 break;
2403 case bfd_mach_mips32:
2404 val = E_MIPS_ARCH_32;
2405 break;
2407 case bfd_mach_mips32_4k:
2408 val = E_MIPS_ARCH_32 | E_MIPS_MACH_MIPS32_4K;
2409 break;
2411 case bfd_mach_mips5:
2412 val = E_MIPS_ARCH_5;
2413 break;
2415 case bfd_mach_mips64:
2416 val = E_MIPS_ARCH_64;
2417 break;
2419 case bfd_mach_mips_sb1:
2420 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2421 break;
2424 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2425 elf_elfheader (abfd)->e_flags |= val;
2427 /* Set the sh_info field for .gptab sections and other appropriate
2428 info for each special section. */
2429 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2430 i < elf_elfheader (abfd)->e_shnum;
2431 i++, hdrpp++)
2433 switch ((*hdrpp)->sh_type)
2435 case SHT_MIPS_MSYM:
2436 case SHT_MIPS_LIBLIST:
2437 sec = bfd_get_section_by_name (abfd, ".dynstr");
2438 if (sec != NULL)
2439 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2440 break;
2442 case SHT_MIPS_GPTAB:
2443 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2444 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2445 BFD_ASSERT (name != NULL
2446 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2447 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2448 BFD_ASSERT (sec != NULL);
2449 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2450 break;
2452 case SHT_MIPS_CONTENT:
2453 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2454 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2455 BFD_ASSERT (name != NULL
2456 && strncmp (name, ".MIPS.content",
2457 sizeof ".MIPS.content" - 1) == 0);
2458 sec = bfd_get_section_by_name (abfd,
2459 name + sizeof ".MIPS.content" - 1);
2460 BFD_ASSERT (sec != NULL);
2461 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2462 break;
2464 case SHT_MIPS_SYMBOL_LIB:
2465 sec = bfd_get_section_by_name (abfd, ".dynsym");
2466 if (sec != NULL)
2467 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2468 sec = bfd_get_section_by_name (abfd, ".liblist");
2469 if (sec != NULL)
2470 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2471 break;
2473 case SHT_MIPS_EVENTS:
2474 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2475 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2476 BFD_ASSERT (name != NULL);
2477 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2478 sec = bfd_get_section_by_name (abfd,
2479 name + sizeof ".MIPS.events" - 1);
2480 else
2482 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2483 sizeof ".MIPS.post_rel" - 1) == 0);
2484 sec = bfd_get_section_by_name (abfd,
2485 (name
2486 + sizeof ".MIPS.post_rel" - 1));
2488 BFD_ASSERT (sec != NULL);
2489 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2490 break;
2496 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2498 boolean
2499 _bfd_mips_elf_set_private_flags (abfd, flags)
2500 bfd *abfd;
2501 flagword flags;
2503 BFD_ASSERT (!elf_flags_init (abfd)
2504 || elf_elfheader (abfd)->e_flags == flags);
2506 elf_elfheader (abfd)->e_flags = flags;
2507 elf_flags_init (abfd) = true;
2508 return true;
2511 /* Copy backend specific data from one object module to another */
2513 boolean
2514 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2515 bfd *ibfd;
2516 bfd *obfd;
2518 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2519 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2520 return true;
2522 BFD_ASSERT (!elf_flags_init (obfd)
2523 || (elf_elfheader (obfd)->e_flags
2524 == elf_elfheader (ibfd)->e_flags));
2526 elf_gp (obfd) = elf_gp (ibfd);
2527 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2528 elf_flags_init (obfd) = true;
2529 return true;
2532 /* Merge backend specific data from an object file to the output
2533 object file when linking. */
2535 boolean
2536 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2537 bfd *ibfd;
2538 bfd *obfd;
2540 flagword old_flags;
2541 flagword new_flags;
2542 boolean ok;
2543 boolean null_input_bfd = true;
2544 asection *sec;
2546 /* Check if we have the same endianess */
2547 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2548 return false;
2550 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2551 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2552 return true;
2554 new_flags = elf_elfheader (ibfd)->e_flags;
2555 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2556 old_flags = elf_elfheader (obfd)->e_flags;
2558 if (! elf_flags_init (obfd))
2560 elf_flags_init (obfd) = true;
2561 elf_elfheader (obfd)->e_flags = new_flags;
2562 elf_elfheader (obfd)->e_ident[EI_CLASS]
2563 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2565 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2566 && bfd_get_arch_info (obfd)->the_default)
2568 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2569 bfd_get_mach (ibfd)))
2570 return false;
2573 return true;
2576 /* Check flag compatibility. */
2578 new_flags &= ~EF_MIPS_NOREORDER;
2579 old_flags &= ~EF_MIPS_NOREORDER;
2581 if (new_flags == old_flags)
2582 return true;
2584 /* Check to see if the input BFD actually contains any sections.
2585 If not, its flags may not have been initialised either, but it cannot
2586 actually cause any incompatibility. */
2587 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2589 /* Ignore synthetic sections and empty .text, .data and .bss sections
2590 which are automatically generated by gas. */
2591 if (strcmp (sec->name, ".reginfo")
2592 && strcmp (sec->name, ".mdebug")
2593 && ((!strcmp (sec->name, ".text")
2594 || !strcmp (sec->name, ".data")
2595 || !strcmp (sec->name, ".bss"))
2596 && sec->_raw_size != 0))
2598 null_input_bfd = false;
2599 break;
2602 if (null_input_bfd)
2603 return true;
2605 ok = true;
2607 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2609 new_flags &= ~EF_MIPS_PIC;
2610 old_flags &= ~EF_MIPS_PIC;
2611 (*_bfd_error_handler)
2612 (_("%s: linking PIC files with non-PIC files"),
2613 bfd_get_filename (ibfd));
2614 ok = false;
2617 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2619 new_flags &= ~EF_MIPS_CPIC;
2620 old_flags &= ~EF_MIPS_CPIC;
2621 (*_bfd_error_handler)
2622 (_("%s: linking abicalls files with non-abicalls files"),
2623 bfd_get_filename (ibfd));
2624 ok = false;
2627 /* Compare the ISA's. */
2628 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2629 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2631 int new_mach = new_flags & EF_MIPS_MACH;
2632 int old_mach = old_flags & EF_MIPS_MACH;
2633 int new_isa = elf_mips_isa (new_flags);
2634 int old_isa = elf_mips_isa (old_flags);
2636 /* If either has no machine specified, just compare the general isa's.
2637 Some combinations of machines are ok, if the isa's match. */
2638 if (! new_mach
2639 || ! old_mach
2640 || new_mach == old_mach
2643 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2644 using 64-bit ISAs. They will normally use the same data sizes
2645 and calling conventions. */
2647 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2648 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
2650 (*_bfd_error_handler)
2651 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2652 bfd_get_filename (ibfd), new_isa, old_isa);
2653 ok = false;
2657 else
2659 (*_bfd_error_handler)
2660 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2661 bfd_get_filename (ibfd),
2662 elf_mips_mach (new_flags),
2663 elf_mips_mach (old_flags));
2664 ok = false;
2667 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2668 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2671 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2672 does set EI_CLASS differently from any 32-bit ABI. */
2673 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2674 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2675 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2677 /* Only error if both are set (to different values). */
2678 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2679 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2680 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2682 (*_bfd_error_handler)
2683 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2684 bfd_get_filename (ibfd),
2685 elf_mips_abi_name (ibfd),
2686 elf_mips_abi_name (obfd));
2687 ok = false;
2689 new_flags &= ~EF_MIPS_ABI;
2690 old_flags &= ~EF_MIPS_ABI;
2693 /* Warn about any other mismatches */
2694 if (new_flags != old_flags)
2696 (*_bfd_error_handler)
2697 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2698 bfd_get_filename (ibfd), (unsigned long) new_flags,
2699 (unsigned long) old_flags);
2700 ok = false;
2703 if (! ok)
2705 bfd_set_error (bfd_error_bad_value);
2706 return false;
2709 return true;
2712 boolean
2713 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2714 bfd *abfd;
2715 PTR ptr;
2717 FILE *file = (FILE *) ptr;
2719 BFD_ASSERT (abfd != NULL && ptr != NULL);
2721 /* Print normal ELF private data. */
2722 _bfd_elf_print_private_bfd_data (abfd, ptr);
2724 /* xgettext:c-format */
2725 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2727 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2728 fprintf (file, _(" [abi=O32]"));
2729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2730 fprintf (file, _(" [abi=O64]"));
2731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2732 fprintf (file, _(" [abi=EABI32]"));
2733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2734 fprintf (file, _(" [abi=EABI64]"));
2735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2736 fprintf (file, _(" [abi unknown]"));
2737 else if (ABI_N32_P (abfd))
2738 fprintf (file, _(" [abi=N32]"));
2739 else if (ABI_64_P (abfd))
2740 fprintf (file, _(" [abi=64]"));
2741 else
2742 fprintf (file, _(" [no abi set]"));
2744 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2745 fprintf (file, _(" [mips1]"));
2746 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2747 fprintf (file, _(" [mips2]"));
2748 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2749 fprintf (file, _(" [mips3]"));
2750 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2751 fprintf (file, _(" [mips4]"));
2752 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2753 fprintf (file, _ (" [mips5]"));
2754 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2755 fprintf (file, _ (" [mips32]"));
2756 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2757 fprintf (file, _ (" [mips64]"));
2758 else
2759 fprintf (file, _(" [unknown ISA]"));
2761 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2762 fprintf (file, _(" [32bitmode]"));
2763 else
2764 fprintf (file, _(" [not 32bitmode]"));
2766 fputc ('\n', file);
2768 return true;
2771 /* Handle a MIPS specific section when reading an object file. This
2772 is called when elfcode.h finds a section with an unknown type.
2773 This routine supports both the 32-bit and 64-bit ELF ABI.
2775 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2776 how to. */
2778 boolean
2779 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2780 bfd *abfd;
2781 Elf_Internal_Shdr *hdr;
2782 char *name;
2784 flagword flags = 0;
2786 /* There ought to be a place to keep ELF backend specific flags, but
2787 at the moment there isn't one. We just keep track of the
2788 sections by their name, instead. Fortunately, the ABI gives
2789 suggested names for all the MIPS specific sections, so we will
2790 probably get away with this. */
2791 switch (hdr->sh_type)
2793 case SHT_MIPS_LIBLIST:
2794 if (strcmp (name, ".liblist") != 0)
2795 return false;
2796 break;
2797 case SHT_MIPS_MSYM:
2798 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2799 return false;
2800 break;
2801 case SHT_MIPS_CONFLICT:
2802 if (strcmp (name, ".conflict") != 0)
2803 return false;
2804 break;
2805 case SHT_MIPS_GPTAB:
2806 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2807 return false;
2808 break;
2809 case SHT_MIPS_UCODE:
2810 if (strcmp (name, ".ucode") != 0)
2811 return false;
2812 break;
2813 case SHT_MIPS_DEBUG:
2814 if (strcmp (name, ".mdebug") != 0)
2815 return false;
2816 flags = SEC_DEBUGGING;
2817 break;
2818 case SHT_MIPS_REGINFO:
2819 if (strcmp (name, ".reginfo") != 0
2820 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2821 return false;
2822 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2823 break;
2824 case SHT_MIPS_IFACE:
2825 if (strcmp (name, ".MIPS.interfaces") != 0)
2826 return false;
2827 break;
2828 case SHT_MIPS_CONTENT:
2829 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2830 return false;
2831 break;
2832 case SHT_MIPS_OPTIONS:
2833 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2834 return false;
2835 break;
2836 case SHT_MIPS_DWARF:
2837 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2838 return false;
2839 break;
2840 case SHT_MIPS_SYMBOL_LIB:
2841 if (strcmp (name, ".MIPS.symlib") != 0)
2842 return false;
2843 break;
2844 case SHT_MIPS_EVENTS:
2845 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2846 && strncmp (name, ".MIPS.post_rel",
2847 sizeof ".MIPS.post_rel" - 1) != 0)
2848 return false;
2849 break;
2850 default:
2851 return false;
2854 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2855 return false;
2857 if (flags)
2859 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2860 (bfd_get_section_flags (abfd,
2861 hdr->bfd_section)
2862 | flags)))
2863 return false;
2866 /* FIXME: We should record sh_info for a .gptab section. */
2868 /* For a .reginfo section, set the gp value in the tdata information
2869 from the contents of this section. We need the gp value while
2870 processing relocs, so we just get it now. The .reginfo section
2871 is not used in the 64-bit MIPS ELF ABI. */
2872 if (hdr->sh_type == SHT_MIPS_REGINFO)
2874 Elf32_External_RegInfo ext;
2875 Elf32_RegInfo s;
2877 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2878 (file_ptr) 0, sizeof ext))
2879 return false;
2880 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2881 elf_gp (abfd) = s.ri_gp_value;
2884 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2885 set the gp value based on what we find. We may see both
2886 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2887 they should agree. */
2888 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2890 bfd_byte *contents, *l, *lend;
2892 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2893 if (contents == NULL)
2894 return false;
2895 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2896 (file_ptr) 0, hdr->sh_size))
2898 free (contents);
2899 return false;
2901 l = contents;
2902 lend = contents + hdr->sh_size;
2903 while (l + sizeof (Elf_External_Options) <= lend)
2905 Elf_Internal_Options intopt;
2907 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2908 &intopt);
2909 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2911 Elf64_Internal_RegInfo intreg;
2913 bfd_mips_elf64_swap_reginfo_in
2914 (abfd,
2915 ((Elf64_External_RegInfo *)
2916 (l + sizeof (Elf_External_Options))),
2917 &intreg);
2918 elf_gp (abfd) = intreg.ri_gp_value;
2920 else if (intopt.kind == ODK_REGINFO)
2922 Elf32_RegInfo intreg;
2924 bfd_mips_elf32_swap_reginfo_in
2925 (abfd,
2926 ((Elf32_External_RegInfo *)
2927 (l + sizeof (Elf_External_Options))),
2928 &intreg);
2929 elf_gp (abfd) = intreg.ri_gp_value;
2931 l += intopt.size;
2933 free (contents);
2936 return true;
2939 /* Set the correct type for a MIPS ELF section. We do this by the
2940 section name, which is a hack, but ought to work. This routine is
2941 used by both the 32-bit and the 64-bit ABI. */
2943 boolean
2944 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2945 bfd *abfd;
2946 Elf32_Internal_Shdr *hdr;
2947 asection *sec;
2949 register const char *name;
2951 name = bfd_get_section_name (abfd, sec);
2953 if (strcmp (name, ".liblist") == 0)
2955 hdr->sh_type = SHT_MIPS_LIBLIST;
2956 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2957 /* The sh_link field is set in final_write_processing. */
2959 else if (strcmp (name, ".conflict") == 0)
2960 hdr->sh_type = SHT_MIPS_CONFLICT;
2961 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2963 hdr->sh_type = SHT_MIPS_GPTAB;
2964 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2965 /* The sh_info field is set in final_write_processing. */
2967 else if (strcmp (name, ".ucode") == 0)
2968 hdr->sh_type = SHT_MIPS_UCODE;
2969 else if (strcmp (name, ".mdebug") == 0)
2971 hdr->sh_type = SHT_MIPS_DEBUG;
2972 /* In a shared object on Irix 5.3, the .mdebug section has an
2973 entsize of 0. FIXME: Does this matter? */
2974 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2975 hdr->sh_entsize = 0;
2976 else
2977 hdr->sh_entsize = 1;
2979 else if (strcmp (name, ".reginfo") == 0)
2981 hdr->sh_type = SHT_MIPS_REGINFO;
2982 /* In a shared object on Irix 5.3, the .reginfo section has an
2983 entsize of 0x18. FIXME: Does this matter? */
2984 if (SGI_COMPAT (abfd))
2986 if ((abfd->flags & DYNAMIC) != 0)
2987 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2988 else
2989 hdr->sh_entsize = 1;
2991 else
2992 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2994 else if (SGI_COMPAT (abfd)
2995 && (strcmp (name, ".hash") == 0
2996 || strcmp (name, ".dynamic") == 0
2997 || strcmp (name, ".dynstr") == 0))
2999 if (SGI_COMPAT (abfd))
3000 hdr->sh_entsize = 0;
3001 #if 0
3002 /* This isn't how the Irix 6 linker behaves. */
3003 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3004 #endif
3006 else if (strcmp (name, ".got") == 0
3007 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3008 || strcmp (name, ".sdata") == 0
3009 || strcmp (name, ".sbss") == 0
3010 || strcmp (name, ".lit4") == 0
3011 || strcmp (name, ".lit8") == 0)
3012 hdr->sh_flags |= SHF_MIPS_GPREL;
3013 else if (strcmp (name, ".MIPS.interfaces") == 0)
3015 hdr->sh_type = SHT_MIPS_IFACE;
3016 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3018 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3020 hdr->sh_type = SHT_MIPS_CONTENT;
3021 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3022 /* The sh_info field is set in final_write_processing. */
3024 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3026 hdr->sh_type = SHT_MIPS_OPTIONS;
3027 hdr->sh_entsize = 1;
3028 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3030 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3031 hdr->sh_type = SHT_MIPS_DWARF;
3032 else if (strcmp (name, ".MIPS.symlib") == 0)
3034 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3035 /* The sh_link and sh_info fields are set in
3036 final_write_processing. */
3038 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3039 || strncmp (name, ".MIPS.post_rel",
3040 sizeof ".MIPS.post_rel" - 1) == 0)
3042 hdr->sh_type = SHT_MIPS_EVENTS;
3043 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3044 /* The sh_link field is set in final_write_processing. */
3046 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3048 hdr->sh_type = SHT_MIPS_MSYM;
3049 hdr->sh_flags |= SHF_ALLOC;
3050 hdr->sh_entsize = 8;
3053 /* The generic elf_fake_sections will set up REL_HDR using the
3054 default kind of relocations. But, we may actually need both
3055 kinds of relocations, so we set up the second header here. */
3056 if ((sec->flags & SEC_RELOC) != 0)
3058 struct bfd_elf_section_data *esd;
3060 esd = elf_section_data (sec);
3061 BFD_ASSERT (esd->rel_hdr2 == NULL);
3062 esd->rel_hdr2
3063 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3064 if (!esd->rel_hdr2)
3065 return false;
3066 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3067 !elf_section_data (sec)->use_rela_p);
3070 return true;
3073 /* Given a BFD section, try to locate the corresponding ELF section
3074 index. This is used by both the 32-bit and the 64-bit ABI.
3075 Actually, it's not clear to me that the 64-bit ABI supports these,
3076 but for non-PIC objects we will certainly want support for at least
3077 the .scommon section. */
3079 boolean
3080 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3081 bfd *abfd ATTRIBUTE_UNUSED;
3082 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3083 asection *sec;
3084 int *retval;
3086 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3088 *retval = SHN_MIPS_SCOMMON;
3089 return true;
3091 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3093 *retval = SHN_MIPS_ACOMMON;
3094 return true;
3096 return false;
3099 /* When are writing out the .options or .MIPS.options section,
3100 remember the bytes we are writing out, so that we can install the
3101 GP value in the section_processing routine. */
3103 boolean
3104 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3105 bfd *abfd;
3106 sec_ptr section;
3107 PTR location;
3108 file_ptr offset;
3109 bfd_size_type count;
3111 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3113 bfd_byte *c;
3115 if (elf_section_data (section) == NULL)
3117 section->used_by_bfd =
3118 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3119 if (elf_section_data (section) == NULL)
3120 return false;
3122 c = (bfd_byte *) elf_section_data (section)->tdata;
3123 if (c == NULL)
3125 bfd_size_type size;
3127 if (section->_cooked_size != 0)
3128 size = section->_cooked_size;
3129 else
3130 size = section->_raw_size;
3131 c = (bfd_byte *) bfd_zalloc (abfd, size);
3132 if (c == NULL)
3133 return false;
3134 elf_section_data (section)->tdata = (PTR) c;
3137 memcpy (c + offset, location, count);
3140 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3141 count);
3144 /* Work over a section just before writing it out. This routine is
3145 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3146 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3147 a better way. */
3149 boolean
3150 _bfd_mips_elf_section_processing (abfd, hdr)
3151 bfd *abfd;
3152 Elf_Internal_Shdr *hdr;
3154 if (hdr->sh_type == SHT_MIPS_REGINFO
3155 && hdr->sh_size > 0)
3157 bfd_byte buf[4];
3159 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3160 BFD_ASSERT (hdr->contents == NULL);
3162 if (bfd_seek (abfd,
3163 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3164 SEEK_SET) == -1)
3165 return false;
3166 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3167 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3168 return false;
3171 if (hdr->sh_type == SHT_MIPS_OPTIONS
3172 && hdr->bfd_section != NULL
3173 && elf_section_data (hdr->bfd_section) != NULL
3174 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3176 bfd_byte *contents, *l, *lend;
3178 /* We stored the section contents in the elf_section_data tdata
3179 field in the set_section_contents routine. We save the
3180 section contents so that we don't have to read them again.
3181 At this point we know that elf_gp is set, so we can look
3182 through the section contents to see if there is an
3183 ODK_REGINFO structure. */
3185 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3186 l = contents;
3187 lend = contents + hdr->sh_size;
3188 while (l + sizeof (Elf_External_Options) <= lend)
3190 Elf_Internal_Options intopt;
3192 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3193 &intopt);
3194 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3196 bfd_byte buf[8];
3198 if (bfd_seek (abfd,
3199 (hdr->sh_offset
3200 + (l - contents)
3201 + sizeof (Elf_External_Options)
3202 + (sizeof (Elf64_External_RegInfo) - 8)),
3203 SEEK_SET) == -1)
3204 return false;
3205 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3206 if (bfd_write (buf, 1, 8, abfd) != 8)
3207 return false;
3209 else if (intopt.kind == ODK_REGINFO)
3211 bfd_byte buf[4];
3213 if (bfd_seek (abfd,
3214 (hdr->sh_offset
3215 + (l - contents)
3216 + sizeof (Elf_External_Options)
3217 + (sizeof (Elf32_External_RegInfo) - 4)),
3218 SEEK_SET) == -1)
3219 return false;
3220 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3221 if (bfd_write (buf, 1, 4, abfd) != 4)
3222 return false;
3224 l += intopt.size;
3228 if (hdr->bfd_section != NULL)
3230 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3232 if (strcmp (name, ".sdata") == 0
3233 || strcmp (name, ".lit8") == 0
3234 || strcmp (name, ".lit4") == 0)
3236 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3237 hdr->sh_type = SHT_PROGBITS;
3239 else if (strcmp (name, ".sbss") == 0)
3241 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3242 hdr->sh_type = SHT_NOBITS;
3244 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3246 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3247 hdr->sh_type = SHT_PROGBITS;
3249 else if (strcmp (name, ".compact_rel") == 0)
3251 hdr->sh_flags = 0;
3252 hdr->sh_type = SHT_PROGBITS;
3254 else if (strcmp (name, ".rtproc") == 0)
3256 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3258 unsigned int adjust;
3260 adjust = hdr->sh_size % hdr->sh_addralign;
3261 if (adjust != 0)
3262 hdr->sh_size += hdr->sh_addralign - adjust;
3267 return true;
3270 /* MIPS ELF uses two common sections. One is the usual one, and the
3271 other is for small objects. All the small objects are kept
3272 together, and then referenced via the gp pointer, which yields
3273 faster assembler code. This is what we use for the small common
3274 section. This approach is copied from ecoff.c. */
3275 static asection mips_elf_scom_section;
3276 static asymbol mips_elf_scom_symbol;
3277 static asymbol *mips_elf_scom_symbol_ptr;
3279 /* MIPS ELF also uses an acommon section, which represents an
3280 allocated common symbol which may be overridden by a
3281 definition in a shared library. */
3282 static asection mips_elf_acom_section;
3283 static asymbol mips_elf_acom_symbol;
3284 static asymbol *mips_elf_acom_symbol_ptr;
3286 /* Handle the special MIPS section numbers that a symbol may use.
3287 This is used for both the 32-bit and the 64-bit ABI. */
3289 void
3290 _bfd_mips_elf_symbol_processing (abfd, asym)
3291 bfd *abfd;
3292 asymbol *asym;
3294 elf_symbol_type *elfsym;
3296 elfsym = (elf_symbol_type *) asym;
3297 switch (elfsym->internal_elf_sym.st_shndx)
3299 case SHN_MIPS_ACOMMON:
3300 /* This section is used in a dynamically linked executable file.
3301 It is an allocated common section. The dynamic linker can
3302 either resolve these symbols to something in a shared
3303 library, or it can just leave them here. For our purposes,
3304 we can consider these symbols to be in a new section. */
3305 if (mips_elf_acom_section.name == NULL)
3307 /* Initialize the acommon section. */
3308 mips_elf_acom_section.name = ".acommon";
3309 mips_elf_acom_section.flags = SEC_ALLOC;
3310 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3311 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3312 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3313 mips_elf_acom_symbol.name = ".acommon";
3314 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3315 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3316 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3318 asym->section = &mips_elf_acom_section;
3319 break;
3321 case SHN_COMMON:
3322 /* Common symbols less than the GP size are automatically
3323 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3324 if (asym->value > elf_gp_size (abfd)
3325 || IRIX_COMPAT (abfd) == ict_irix6)
3326 break;
3327 /* Fall through. */
3328 case SHN_MIPS_SCOMMON:
3329 if (mips_elf_scom_section.name == NULL)
3331 /* Initialize the small common section. */
3332 mips_elf_scom_section.name = ".scommon";
3333 mips_elf_scom_section.flags = SEC_IS_COMMON;
3334 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3335 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3336 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3337 mips_elf_scom_symbol.name = ".scommon";
3338 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3339 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3340 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3342 asym->section = &mips_elf_scom_section;
3343 asym->value = elfsym->internal_elf_sym.st_size;
3344 break;
3346 case SHN_MIPS_SUNDEFINED:
3347 asym->section = bfd_und_section_ptr;
3348 break;
3350 #if 0 /* for SGI_COMPAT */
3351 case SHN_MIPS_TEXT:
3352 asym->section = mips_elf_text_section_ptr;
3353 break;
3355 case SHN_MIPS_DATA:
3356 asym->section = mips_elf_data_section_ptr;
3357 break;
3358 #endif
3362 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3363 segments. */
3366 _bfd_mips_elf_additional_program_headers (abfd)
3367 bfd *abfd;
3369 asection *s;
3370 int ret = 0;
3372 /* See if we need a PT_MIPS_REGINFO segment. */
3373 s = bfd_get_section_by_name (abfd, ".reginfo");
3374 if (s && (s->flags & SEC_LOAD))
3375 ++ret;
3377 /* See if we need a PT_MIPS_OPTIONS segment. */
3378 if (IRIX_COMPAT (abfd) == ict_irix6
3379 && bfd_get_section_by_name (abfd,
3380 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3381 ++ret;
3383 /* See if we need a PT_MIPS_RTPROC segment. */
3384 if (IRIX_COMPAT (abfd) == ict_irix5
3385 && bfd_get_section_by_name (abfd, ".dynamic")
3386 && bfd_get_section_by_name (abfd, ".mdebug"))
3387 ++ret;
3389 return ret;
3392 /* Modify the segment map for an Irix 5 executable. */
3394 boolean
3395 _bfd_mips_elf_modify_segment_map (abfd)
3396 bfd *abfd;
3398 asection *s;
3399 struct elf_segment_map *m, **pm;
3401 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3402 segment. */
3403 s = bfd_get_section_by_name (abfd, ".reginfo");
3404 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3406 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3407 if (m->p_type == PT_MIPS_REGINFO)
3408 break;
3409 if (m == NULL)
3411 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3412 if (m == NULL)
3413 return false;
3415 m->p_type = PT_MIPS_REGINFO;
3416 m->count = 1;
3417 m->sections[0] = s;
3419 /* We want to put it after the PHDR and INTERP segments. */
3420 pm = &elf_tdata (abfd)->segment_map;
3421 while (*pm != NULL
3422 && ((*pm)->p_type == PT_PHDR
3423 || (*pm)->p_type == PT_INTERP))
3424 pm = &(*pm)->next;
3426 m->next = *pm;
3427 *pm = m;
3431 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3432 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3433 PT_OPTIONS segement immediately following the program header
3434 table. */
3435 if (IRIX_COMPAT (abfd) == ict_irix6)
3437 asection *s;
3439 for (s = abfd->sections; s; s = s->next)
3440 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3441 break;
3443 if (s)
3445 struct elf_segment_map *options_segment;
3447 /* Usually, there's a program header table. But, sometimes
3448 there's not (like when running the `ld' testsuite). So,
3449 if there's no program header table, we just put the
3450 options segement at the end. */
3451 for (pm = &elf_tdata (abfd)->segment_map;
3452 *pm != NULL;
3453 pm = &(*pm)->next)
3454 if ((*pm)->p_type == PT_PHDR)
3455 break;
3457 options_segment = bfd_zalloc (abfd,
3458 sizeof (struct elf_segment_map));
3459 options_segment->next = *pm;
3460 options_segment->p_type = PT_MIPS_OPTIONS;
3461 options_segment->p_flags = PF_R;
3462 options_segment->p_flags_valid = true;
3463 options_segment->count = 1;
3464 options_segment->sections[0] = s;
3465 *pm = options_segment;
3468 else
3470 if (IRIX_COMPAT (abfd) == ict_irix5)
3472 /* If there are .dynamic and .mdebug sections, we make a room
3473 for the RTPROC header. FIXME: Rewrite without section names. */
3474 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3475 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3476 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3478 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3479 if (m->p_type == PT_MIPS_RTPROC)
3480 break;
3481 if (m == NULL)
3483 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3484 if (m == NULL)
3485 return false;
3487 m->p_type = PT_MIPS_RTPROC;
3489 s = bfd_get_section_by_name (abfd, ".rtproc");
3490 if (s == NULL)
3492 m->count = 0;
3493 m->p_flags = 0;
3494 m->p_flags_valid = 1;
3496 else
3498 m->count = 1;
3499 m->sections[0] = s;
3502 /* We want to put it after the DYNAMIC segment. */
3503 pm = &elf_tdata (abfd)->segment_map;
3504 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3505 pm = &(*pm)->next;
3506 if (*pm != NULL)
3507 pm = &(*pm)->next;
3509 m->next = *pm;
3510 *pm = m;
3514 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3515 .dynstr, .dynsym, and .hash sections, and everything in
3516 between. */
3517 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3518 pm = &(*pm)->next)
3519 if ((*pm)->p_type == PT_DYNAMIC)
3520 break;
3521 m = *pm;
3522 if (IRIX_COMPAT (abfd) == ict_none)
3524 /* For a normal mips executable the permissions for the PT_DYNAMIC
3525 segment are read, write and execute. We do that here since
3526 the code in elf.c sets only the read permission. This matters
3527 sometimes for the dynamic linker. */
3528 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3530 m->p_flags = PF_R | PF_W | PF_X;
3531 m->p_flags_valid = 1;
3534 if (m != NULL
3535 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3537 static const char *sec_names[] =
3539 ".dynamic", ".dynstr", ".dynsym", ".hash"
3541 bfd_vma low, high;
3542 unsigned int i, c;
3543 struct elf_segment_map *n;
3545 low = 0xffffffff;
3546 high = 0;
3547 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3549 s = bfd_get_section_by_name (abfd, sec_names[i]);
3550 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3552 bfd_size_type sz;
3554 if (low > s->vma)
3555 low = s->vma;
3556 sz = s->_cooked_size;
3557 if (sz == 0)
3558 sz = s->_raw_size;
3559 if (high < s->vma + sz)
3560 high = s->vma + sz;
3564 c = 0;
3565 for (s = abfd->sections; s != NULL; s = s->next)
3566 if ((s->flags & SEC_LOAD) != 0
3567 && s->vma >= low
3568 && ((s->vma
3569 + (s->_cooked_size !=
3570 0 ? s->_cooked_size : s->_raw_size)) <= high))
3571 ++c;
3573 n = ((struct elf_segment_map *)
3574 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3575 if (n == NULL)
3576 return false;
3577 *n = *m;
3578 n->count = c;
3580 i = 0;
3581 for (s = abfd->sections; s != NULL; s = s->next)
3583 if ((s->flags & SEC_LOAD) != 0
3584 && s->vma >= low
3585 && ((s->vma
3586 + (s->_cooked_size != 0 ?
3587 s->_cooked_size : s->_raw_size)) <= high))
3589 n->sections[i] = s;
3590 ++i;
3594 *pm = n;
3598 return true;
3601 /* The structure of the runtime procedure descriptor created by the
3602 loader for use by the static exception system. */
3604 typedef struct runtime_pdr {
3605 bfd_vma adr; /* memory address of start of procedure */
3606 long regmask; /* save register mask */
3607 long regoffset; /* save register offset */
3608 long fregmask; /* save floating point register mask */
3609 long fregoffset; /* save floating point register offset */
3610 long frameoffset; /* frame size */
3611 short framereg; /* frame pointer register */
3612 short pcreg; /* offset or reg of return pc */
3613 long irpss; /* index into the runtime string table */
3614 long reserved;
3615 struct exception_info *exception_info;/* pointer to exception array */
3616 } RPDR, *pRPDR;
3617 #define cbRPDR sizeof (RPDR)
3618 #define rpdNil ((pRPDR) 0)
3620 /* Swap RPDR (runtime procedure table entry) for output. */
3622 static void ecoff_swap_rpdr_out
3623 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3625 static void
3626 ecoff_swap_rpdr_out (abfd, in, ex)
3627 bfd *abfd;
3628 const RPDR *in;
3629 struct rpdr_ext *ex;
3631 /* ecoff_put_off was defined in ecoffswap.h. */
3632 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3633 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3634 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3635 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3636 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3637 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3639 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3640 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3642 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3643 #if 0 /* FIXME */
3644 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3645 #endif
3648 /* Read ECOFF debugging information from a .mdebug section into a
3649 ecoff_debug_info structure. */
3651 boolean
3652 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3653 bfd *abfd;
3654 asection *section;
3655 struct ecoff_debug_info *debug;
3657 HDRR *symhdr;
3658 const struct ecoff_debug_swap *swap;
3659 char *ext_hdr = NULL;
3661 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3662 memset (debug, 0, sizeof (*debug));
3664 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3665 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3666 goto error_return;
3668 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3669 swap->external_hdr_size)
3670 == false)
3671 goto error_return;
3673 symhdr = &debug->symbolic_header;
3674 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3676 /* The symbolic header contains absolute file offsets and sizes to
3677 read. */
3678 #define READ(ptr, offset, count, size, type) \
3679 if (symhdr->count == 0) \
3680 debug->ptr = NULL; \
3681 else \
3683 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3684 if (debug->ptr == NULL) \
3685 goto error_return; \
3686 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3687 || (bfd_read (debug->ptr, size, symhdr->count, \
3688 abfd) != size * symhdr->count)) \
3689 goto error_return; \
3692 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3693 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3694 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3695 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3696 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3697 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3698 union aux_ext *);
3699 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3700 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3701 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3702 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3703 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3704 #undef READ
3706 debug->fdr = NULL;
3707 debug->adjust = NULL;
3709 return true;
3711 error_return:
3712 if (ext_hdr != NULL)
3713 free (ext_hdr);
3714 if (debug->line != NULL)
3715 free (debug->line);
3716 if (debug->external_dnr != NULL)
3717 free (debug->external_dnr);
3718 if (debug->external_pdr != NULL)
3719 free (debug->external_pdr);
3720 if (debug->external_sym != NULL)
3721 free (debug->external_sym);
3722 if (debug->external_opt != NULL)
3723 free (debug->external_opt);
3724 if (debug->external_aux != NULL)
3725 free (debug->external_aux);
3726 if (debug->ss != NULL)
3727 free (debug->ss);
3728 if (debug->ssext != NULL)
3729 free (debug->ssext);
3730 if (debug->external_fdr != NULL)
3731 free (debug->external_fdr);
3732 if (debug->external_rfd != NULL)
3733 free (debug->external_rfd);
3734 if (debug->external_ext != NULL)
3735 free (debug->external_ext);
3736 return false;
3739 /* MIPS ELF local labels start with '$', not 'L'. */
3741 static boolean
3742 mips_elf_is_local_label_name (abfd, name)
3743 bfd *abfd;
3744 const char *name;
3746 if (name[0] == '$')
3747 return true;
3749 /* On Irix 6, the labels go back to starting with '.', so we accept
3750 the generic ELF local label syntax as well. */
3751 return _bfd_elf_is_local_label_name (abfd, name);
3754 /* MIPS ELF uses a special find_nearest_line routine in order the
3755 handle the ECOFF debugging information. */
3757 struct mips_elf_find_line
3759 struct ecoff_debug_info d;
3760 struct ecoff_find_line i;
3763 boolean
3764 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3765 functionname_ptr, line_ptr)
3766 bfd *abfd;
3767 asection *section;
3768 asymbol **symbols;
3769 bfd_vma offset;
3770 const char **filename_ptr;
3771 const char **functionname_ptr;
3772 unsigned int *line_ptr;
3774 asection *msec;
3776 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3777 filename_ptr, functionname_ptr,
3778 line_ptr))
3779 return true;
3781 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3782 filename_ptr, functionname_ptr,
3783 line_ptr,
3784 ABI_64_P (abfd) ? 8 : 0,
3785 &elf_tdata (abfd)->dwarf2_find_line_info))
3786 return true;
3788 msec = bfd_get_section_by_name (abfd, ".mdebug");
3789 if (msec != NULL)
3791 flagword origflags;
3792 struct mips_elf_find_line *fi;
3793 const struct ecoff_debug_swap * const swap =
3794 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3796 /* If we are called during a link, mips_elf_final_link may have
3797 cleared the SEC_HAS_CONTENTS field. We force it back on here
3798 if appropriate (which it normally will be). */
3799 origflags = msec->flags;
3800 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3801 msec->flags |= SEC_HAS_CONTENTS;
3803 fi = elf_tdata (abfd)->find_line_info;
3804 if (fi == NULL)
3806 bfd_size_type external_fdr_size;
3807 char *fraw_src;
3808 char *fraw_end;
3809 struct fdr *fdr_ptr;
3811 fi = ((struct mips_elf_find_line *)
3812 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3813 if (fi == NULL)
3815 msec->flags = origflags;
3816 return false;
3819 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3821 msec->flags = origflags;
3822 return false;
3825 /* Swap in the FDR information. */
3826 fi->d.fdr = ((struct fdr *)
3827 bfd_alloc (abfd,
3828 (fi->d.symbolic_header.ifdMax *
3829 sizeof (struct fdr))));
3830 if (fi->d.fdr == NULL)
3832 msec->flags = origflags;
3833 return false;
3835 external_fdr_size = swap->external_fdr_size;
3836 fdr_ptr = fi->d.fdr;
3837 fraw_src = (char *) fi->d.external_fdr;
3838 fraw_end = (fraw_src
3839 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3840 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3841 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3843 elf_tdata (abfd)->find_line_info = fi;
3845 /* Note that we don't bother to ever free this information.
3846 find_nearest_line is either called all the time, as in
3847 objdump -l, so the information should be saved, or it is
3848 rarely called, as in ld error messages, so the memory
3849 wasted is unimportant. Still, it would probably be a
3850 good idea for free_cached_info to throw it away. */
3853 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3854 &fi->i, filename_ptr, functionname_ptr,
3855 line_ptr))
3857 msec->flags = origflags;
3858 return true;
3861 msec->flags = origflags;
3864 /* Fall back on the generic ELF find_nearest_line routine. */
3866 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3867 filename_ptr, functionname_ptr,
3868 line_ptr);
3871 /* The mips16 compiler uses a couple of special sections to handle
3872 floating point arguments.
3874 Section names that look like .mips16.fn.FNNAME contain stubs that
3875 copy floating point arguments from the fp regs to the gp regs and
3876 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3877 call should be redirected to the stub instead. If no 32 bit
3878 function calls FNNAME, the stub should be discarded. We need to
3879 consider any reference to the function, not just a call, because
3880 if the address of the function is taken we will need the stub,
3881 since the address might be passed to a 32 bit function.
3883 Section names that look like .mips16.call.FNNAME contain stubs
3884 that copy floating point arguments from the gp regs to the fp
3885 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3886 then any 16 bit function that calls FNNAME should be redirected
3887 to the stub instead. If FNNAME is not a 32 bit function, the
3888 stub should be discarded.
3890 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3891 which call FNNAME and then copy the return value from the fp regs
3892 to the gp regs. These stubs store the return value in $18 while
3893 calling FNNAME; any function which might call one of these stubs
3894 must arrange to save $18 around the call. (This case is not
3895 needed for 32 bit functions that call 16 bit functions, because
3896 16 bit functions always return floating point values in both
3897 $f0/$f1 and $2/$3.)
3899 Note that in all cases FNNAME might be defined statically.
3900 Therefore, FNNAME is not used literally. Instead, the relocation
3901 information will indicate which symbol the section is for.
3903 We record any stubs that we find in the symbol table. */
3905 #define FN_STUB ".mips16.fn."
3906 #define CALL_STUB ".mips16.call."
3907 #define CALL_FP_STUB ".mips16.call.fp."
3909 /* MIPS ELF linker hash table. */
3911 struct mips_elf_link_hash_table
3913 struct elf_link_hash_table root;
3914 #if 0
3915 /* We no longer use this. */
3916 /* String section indices for the dynamic section symbols. */
3917 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3918 #endif
3919 /* The number of .rtproc entries. */
3920 bfd_size_type procedure_count;
3921 /* The size of the .compact_rel section (if SGI_COMPAT). */
3922 bfd_size_type compact_rel_size;
3923 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3924 entry is set to the address of __rld_obj_head as in Irix 5. */
3925 boolean use_rld_obj_head;
3926 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3927 bfd_vma rld_value;
3928 /* This is set if we see any mips16 stub sections. */
3929 boolean mips16_stubs_seen;
3932 /* Look up an entry in a MIPS ELF linker hash table. */
3934 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3935 ((struct mips_elf_link_hash_entry *) \
3936 elf_link_hash_lookup (&(table)->root, (string), (create), \
3937 (copy), (follow)))
3939 /* Traverse a MIPS ELF linker hash table. */
3941 #define mips_elf_link_hash_traverse(table, func, info) \
3942 (elf_link_hash_traverse \
3943 (&(table)->root, \
3944 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3945 (info)))
3947 /* Get the MIPS ELF linker hash table from a link_info structure. */
3949 #define mips_elf_hash_table(p) \
3950 ((struct mips_elf_link_hash_table *) ((p)->hash))
3952 static boolean mips_elf_output_extsym
3953 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3955 /* Create an entry in a MIPS ELF linker hash table. */
3957 static struct bfd_hash_entry *
3958 mips_elf_link_hash_newfunc (entry, table, string)
3959 struct bfd_hash_entry *entry;
3960 struct bfd_hash_table *table;
3961 const char *string;
3963 struct mips_elf_link_hash_entry *ret =
3964 (struct mips_elf_link_hash_entry *) entry;
3966 /* Allocate the structure if it has not already been allocated by a
3967 subclass. */
3968 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3969 ret = ((struct mips_elf_link_hash_entry *)
3970 bfd_hash_allocate (table,
3971 sizeof (struct mips_elf_link_hash_entry)));
3972 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3973 return (struct bfd_hash_entry *) ret;
3975 /* Call the allocation method of the superclass. */
3976 ret = ((struct mips_elf_link_hash_entry *)
3977 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3978 table, string));
3979 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3981 /* Set local fields. */
3982 memset (&ret->esym, 0, sizeof (EXTR));
3983 /* We use -2 as a marker to indicate that the information has
3984 not been set. -1 means there is no associated ifd. */
3985 ret->esym.ifd = -2;
3986 ret->possibly_dynamic_relocs = 0;
3987 ret->readonly_reloc = false;
3988 ret->min_dyn_reloc_index = 0;
3989 ret->no_fn_stub = false;
3990 ret->fn_stub = NULL;
3991 ret->need_fn_stub = false;
3992 ret->call_stub = NULL;
3993 ret->call_fp_stub = NULL;
3996 return (struct bfd_hash_entry *) ret;
3999 void
4000 _bfd_mips_elf_hide_symbol (info, h)
4001 struct bfd_link_info *info;
4002 struct mips_elf_link_hash_entry *h;
4004 bfd *dynobj;
4005 asection *got;
4006 struct mips_got_info *g;
4007 dynobj = elf_hash_table (info)->dynobj;
4008 got = bfd_get_section_by_name (dynobj, ".got");
4009 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4011 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4012 h->root.plt.offset = (bfd_vma) -1;
4013 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4014 h->root.dynindx = -1;
4016 /* FIXME: Do we allocate too much GOT space here? */
4017 g->local_gotno++;
4018 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4021 /* Create a MIPS ELF linker hash table. */
4023 struct bfd_link_hash_table *
4024 _bfd_mips_elf_link_hash_table_create (abfd)
4025 bfd *abfd;
4027 struct mips_elf_link_hash_table *ret;
4029 ret = ((struct mips_elf_link_hash_table *)
4030 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
4031 if (ret == (struct mips_elf_link_hash_table *) NULL)
4032 return NULL;
4034 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4035 mips_elf_link_hash_newfunc))
4037 bfd_release (abfd, ret);
4038 return NULL;
4041 #if 0
4042 /* We no longer use this. */
4043 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4044 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4045 #endif
4046 ret->procedure_count = 0;
4047 ret->compact_rel_size = 0;
4048 ret->use_rld_obj_head = false;
4049 ret->rld_value = 0;
4050 ret->mips16_stubs_seen = false;
4052 return &ret->root.root;
4055 /* Hook called by the linker routine which adds symbols from an object
4056 file. We must handle the special MIPS section numbers here. */
4058 boolean
4059 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4060 bfd *abfd;
4061 struct bfd_link_info *info;
4062 const Elf_Internal_Sym *sym;
4063 const char **namep;
4064 flagword *flagsp ATTRIBUTE_UNUSED;
4065 asection **secp;
4066 bfd_vma *valp;
4068 if (SGI_COMPAT (abfd)
4069 && (abfd->flags & DYNAMIC) != 0
4070 && strcmp (*namep, "_rld_new_interface") == 0)
4072 /* Skip Irix 5 rld entry name. */
4073 *namep = NULL;
4074 return true;
4077 switch (sym->st_shndx)
4079 case SHN_COMMON:
4080 /* Common symbols less than the GP size are automatically
4081 treated as SHN_MIPS_SCOMMON symbols. */
4082 if (sym->st_size > elf_gp_size (abfd)
4083 || IRIX_COMPAT (abfd) == ict_irix6)
4084 break;
4085 /* Fall through. */
4086 case SHN_MIPS_SCOMMON:
4087 *secp = bfd_make_section_old_way (abfd, ".scommon");
4088 (*secp)->flags |= SEC_IS_COMMON;
4089 *valp = sym->st_size;
4090 break;
4092 case SHN_MIPS_TEXT:
4093 /* This section is used in a shared object. */
4094 if (elf_tdata (abfd)->elf_text_section == NULL)
4096 asymbol *elf_text_symbol;
4097 asection *elf_text_section;
4099 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
4100 if (elf_text_section == NULL)
4101 return false;
4103 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4104 if (elf_text_symbol == NULL)
4105 return false;
4107 /* Initialize the section. */
4109 elf_tdata (abfd)->elf_text_section = elf_text_section;
4110 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4112 elf_text_section->symbol = elf_text_symbol;
4113 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4115 elf_text_section->name = ".text";
4116 elf_text_section->flags = SEC_NO_FLAGS;
4117 elf_text_section->output_section = NULL;
4118 elf_text_section->owner = abfd;
4119 elf_text_symbol->name = ".text";
4120 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4121 elf_text_symbol->section = elf_text_section;
4123 /* This code used to do *secp = bfd_und_section_ptr if
4124 info->shared. I don't know why, and that doesn't make sense,
4125 so I took it out. */
4126 *secp = elf_tdata (abfd)->elf_text_section;
4127 break;
4129 case SHN_MIPS_ACOMMON:
4130 /* Fall through. XXX Can we treat this as allocated data? */
4131 case SHN_MIPS_DATA:
4132 /* This section is used in a shared object. */
4133 if (elf_tdata (abfd)->elf_data_section == NULL)
4135 asymbol *elf_data_symbol;
4136 asection *elf_data_section;
4138 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4139 if (elf_data_section == NULL)
4140 return false;
4142 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4143 if (elf_data_symbol == NULL)
4144 return false;
4146 /* Initialize the section. */
4148 elf_tdata (abfd)->elf_data_section = elf_data_section;
4149 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4151 elf_data_section->symbol = elf_data_symbol;
4152 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4154 elf_data_section->name = ".data";
4155 elf_data_section->flags = SEC_NO_FLAGS;
4156 elf_data_section->output_section = NULL;
4157 elf_data_section->owner = abfd;
4158 elf_data_symbol->name = ".data";
4159 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4160 elf_data_symbol->section = elf_data_section;
4162 /* This code used to do *secp = bfd_und_section_ptr if
4163 info->shared. I don't know why, and that doesn't make sense,
4164 so I took it out. */
4165 *secp = elf_tdata (abfd)->elf_data_section;
4166 break;
4168 case SHN_MIPS_SUNDEFINED:
4169 *secp = bfd_und_section_ptr;
4170 break;
4173 if (SGI_COMPAT (abfd)
4174 && ! info->shared
4175 && info->hash->creator == abfd->xvec
4176 && strcmp (*namep, "__rld_obj_head") == 0)
4178 struct elf_link_hash_entry *h;
4180 /* Mark __rld_obj_head as dynamic. */
4181 h = NULL;
4182 if (! (_bfd_generic_link_add_one_symbol
4183 (info, abfd, *namep, BSF_GLOBAL, *secp,
4184 (bfd_vma) *valp, (const char *) NULL, false,
4185 get_elf_backend_data (abfd)->collect,
4186 (struct bfd_link_hash_entry **) &h)))
4187 return false;
4188 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4189 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4190 h->type = STT_OBJECT;
4192 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4193 return false;
4195 mips_elf_hash_table (info)->use_rld_obj_head = true;
4198 /* If this is a mips16 text symbol, add 1 to the value to make it
4199 odd. This will cause something like .word SYM to come up with
4200 the right value when it is loaded into the PC. */
4201 if (sym->st_other == STO_MIPS16)
4202 ++*valp;
4204 return true;
4207 /* Structure used to pass information to mips_elf_output_extsym. */
4209 struct extsym_info
4211 bfd *abfd;
4212 struct bfd_link_info *info;
4213 struct ecoff_debug_info *debug;
4214 const struct ecoff_debug_swap *swap;
4215 boolean failed;
4218 /* This routine is used to write out ECOFF debugging external symbol
4219 information. It is called via mips_elf_link_hash_traverse. The
4220 ECOFF external symbol information must match the ELF external
4221 symbol information. Unfortunately, at this point we don't know
4222 whether a symbol is required by reloc information, so the two
4223 tables may wind up being different. We must sort out the external
4224 symbol information before we can set the final size of the .mdebug
4225 section, and we must set the size of the .mdebug section before we
4226 can relocate any sections, and we can't know which symbols are
4227 required by relocation until we relocate the sections.
4228 Fortunately, it is relatively unlikely that any symbol will be
4229 stripped but required by a reloc. In particular, it can not happen
4230 when generating a final executable. */
4232 static boolean
4233 mips_elf_output_extsym (h, data)
4234 struct mips_elf_link_hash_entry *h;
4235 PTR data;
4237 struct extsym_info *einfo = (struct extsym_info *) data;
4238 boolean strip;
4239 asection *sec, *output_section;
4241 if (h->root.indx == -2)
4242 strip = false;
4243 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4244 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4245 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4246 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4247 strip = true;
4248 else if (einfo->info->strip == strip_all
4249 || (einfo->info->strip == strip_some
4250 && bfd_hash_lookup (einfo->info->keep_hash,
4251 h->root.root.root.string,
4252 false, false) == NULL))
4253 strip = true;
4254 else
4255 strip = false;
4257 if (strip)
4258 return true;
4260 if (h->esym.ifd == -2)
4262 h->esym.jmptbl = 0;
4263 h->esym.cobol_main = 0;
4264 h->esym.weakext = 0;
4265 h->esym.reserved = 0;
4266 h->esym.ifd = ifdNil;
4267 h->esym.asym.value = 0;
4268 h->esym.asym.st = stGlobal;
4270 if (h->root.root.type == bfd_link_hash_undefined
4271 || h->root.root.type == bfd_link_hash_undefweak)
4273 const char *name;
4275 /* Use undefined class. Also, set class and type for some
4276 special symbols. */
4277 name = h->root.root.root.string;
4278 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4279 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4281 h->esym.asym.sc = scData;
4282 h->esym.asym.st = stLabel;
4283 h->esym.asym.value = 0;
4285 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4287 h->esym.asym.sc = scAbs;
4288 h->esym.asym.st = stLabel;
4289 h->esym.asym.value =
4290 mips_elf_hash_table (einfo->info)->procedure_count;
4292 else if (strcmp (name, "_gp_disp") == 0)
4294 h->esym.asym.sc = scAbs;
4295 h->esym.asym.st = stLabel;
4296 h->esym.asym.value = elf_gp (einfo->abfd);
4298 else
4299 h->esym.asym.sc = scUndefined;
4301 else if (h->root.root.type != bfd_link_hash_defined
4302 && h->root.root.type != bfd_link_hash_defweak)
4303 h->esym.asym.sc = scAbs;
4304 else
4306 const char *name;
4308 sec = h->root.root.u.def.section;
4309 output_section = sec->output_section;
4311 /* When making a shared library and symbol h is the one from
4312 the another shared library, OUTPUT_SECTION may be null. */
4313 if (output_section == NULL)
4314 h->esym.asym.sc = scUndefined;
4315 else
4317 name = bfd_section_name (output_section->owner, output_section);
4319 if (strcmp (name, ".text") == 0)
4320 h->esym.asym.sc = scText;
4321 else if (strcmp (name, ".data") == 0)
4322 h->esym.asym.sc = scData;
4323 else if (strcmp (name, ".sdata") == 0)
4324 h->esym.asym.sc = scSData;
4325 else if (strcmp (name, ".rodata") == 0
4326 || strcmp (name, ".rdata") == 0)
4327 h->esym.asym.sc = scRData;
4328 else if (strcmp (name, ".bss") == 0)
4329 h->esym.asym.sc = scBss;
4330 else if (strcmp (name, ".sbss") == 0)
4331 h->esym.asym.sc = scSBss;
4332 else if (strcmp (name, ".init") == 0)
4333 h->esym.asym.sc = scInit;
4334 else if (strcmp (name, ".fini") == 0)
4335 h->esym.asym.sc = scFini;
4336 else
4337 h->esym.asym.sc = scAbs;
4341 h->esym.asym.reserved = 0;
4342 h->esym.asym.index = indexNil;
4345 if (h->root.root.type == bfd_link_hash_common)
4346 h->esym.asym.value = h->root.root.u.c.size;
4347 else if (h->root.root.type == bfd_link_hash_defined
4348 || h->root.root.type == bfd_link_hash_defweak)
4350 if (h->esym.asym.sc == scCommon)
4351 h->esym.asym.sc = scBss;
4352 else if (h->esym.asym.sc == scSCommon)
4353 h->esym.asym.sc = scSBss;
4355 sec = h->root.root.u.def.section;
4356 output_section = sec->output_section;
4357 if (output_section != NULL)
4358 h->esym.asym.value = (h->root.root.u.def.value
4359 + sec->output_offset
4360 + output_section->vma);
4361 else
4362 h->esym.asym.value = 0;
4364 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4366 struct mips_elf_link_hash_entry *hd = h;
4367 boolean no_fn_stub = h->no_fn_stub;
4369 while (hd->root.root.type == bfd_link_hash_indirect)
4371 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4372 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4375 if (!no_fn_stub)
4377 /* Set type and value for a symbol with a function stub. */
4378 h->esym.asym.st = stProc;
4379 sec = hd->root.root.u.def.section;
4380 if (sec == NULL)
4381 h->esym.asym.value = 0;
4382 else
4384 output_section = sec->output_section;
4385 if (output_section != NULL)
4386 h->esym.asym.value = (hd->root.plt.offset
4387 + sec->output_offset
4388 + output_section->vma);
4389 else
4390 h->esym.asym.value = 0;
4392 #if 0 /* FIXME? */
4393 h->esym.ifd = 0;
4394 #endif
4398 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4399 h->root.root.root.string,
4400 &h->esym))
4402 einfo->failed = true;
4403 return false;
4406 return true;
4409 /* Create a runtime procedure table from the .mdebug section. */
4411 static boolean
4412 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4413 PTR handle;
4414 bfd *abfd;
4415 struct bfd_link_info *info;
4416 asection *s;
4417 struct ecoff_debug_info *debug;
4419 const struct ecoff_debug_swap *swap;
4420 HDRR *hdr = &debug->symbolic_header;
4421 RPDR *rpdr, *rp;
4422 struct rpdr_ext *erp;
4423 PTR rtproc;
4424 struct pdr_ext *epdr;
4425 struct sym_ext *esym;
4426 char *ss, **sv;
4427 char *str;
4428 unsigned long size, count;
4429 unsigned long sindex;
4430 unsigned long i;
4431 PDR pdr;
4432 SYMR sym;
4433 const char *no_name_func = _("static procedure (no name)");
4435 epdr = NULL;
4436 rpdr = NULL;
4437 esym = NULL;
4438 ss = NULL;
4439 sv = NULL;
4441 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4443 sindex = strlen (no_name_func) + 1;
4444 count = hdr->ipdMax;
4445 if (count > 0)
4447 size = swap->external_pdr_size;
4449 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4450 if (epdr == NULL)
4451 goto error_return;
4453 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4454 goto error_return;
4456 size = sizeof (RPDR);
4457 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4458 if (rpdr == NULL)
4459 goto error_return;
4461 sv = (char **) bfd_malloc (sizeof (char *) * count);
4462 if (sv == NULL)
4463 goto error_return;
4465 count = hdr->isymMax;
4466 size = swap->external_sym_size;
4467 esym = (struct sym_ext *) bfd_malloc (size * count);
4468 if (esym == NULL)
4469 goto error_return;
4471 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4472 goto error_return;
4474 count = hdr->issMax;
4475 ss = (char *) bfd_malloc (count);
4476 if (ss == NULL)
4477 goto error_return;
4478 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4479 goto error_return;
4481 count = hdr->ipdMax;
4482 for (i = 0; i < count; i++, rp++)
4484 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4485 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4486 rp->adr = sym.value;
4487 rp->regmask = pdr.regmask;
4488 rp->regoffset = pdr.regoffset;
4489 rp->fregmask = pdr.fregmask;
4490 rp->fregoffset = pdr.fregoffset;
4491 rp->frameoffset = pdr.frameoffset;
4492 rp->framereg = pdr.framereg;
4493 rp->pcreg = pdr.pcreg;
4494 rp->irpss = sindex;
4495 sv[i] = ss + sym.iss;
4496 sindex += strlen (sv[i]) + 1;
4500 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4501 size = BFD_ALIGN (size, 16);
4502 rtproc = (PTR) bfd_alloc (abfd, size);
4503 if (rtproc == NULL)
4505 mips_elf_hash_table (info)->procedure_count = 0;
4506 goto error_return;
4509 mips_elf_hash_table (info)->procedure_count = count + 2;
4511 erp = (struct rpdr_ext *) rtproc;
4512 memset (erp, 0, sizeof (struct rpdr_ext));
4513 erp++;
4514 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4515 strcpy (str, no_name_func);
4516 str += strlen (no_name_func) + 1;
4517 for (i = 0; i < count; i++)
4519 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4520 strcpy (str, sv[i]);
4521 str += strlen (sv[i]) + 1;
4523 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4525 /* Set the size and contents of .rtproc section. */
4526 s->_raw_size = size;
4527 s->contents = (bfd_byte *) rtproc;
4529 /* Skip this section later on (I don't think this currently
4530 matters, but someday it might). */
4531 s->link_order_head = (struct bfd_link_order *) NULL;
4533 if (epdr != NULL)
4534 free (epdr);
4535 if (rpdr != NULL)
4536 free (rpdr);
4537 if (esym != NULL)
4538 free (esym);
4539 if (ss != NULL)
4540 free (ss);
4541 if (sv != NULL)
4542 free (sv);
4544 return true;
4546 error_return:
4547 if (epdr != NULL)
4548 free (epdr);
4549 if (rpdr != NULL)
4550 free (rpdr);
4551 if (esym != NULL)
4552 free (esym);
4553 if (ss != NULL)
4554 free (ss);
4555 if (sv != NULL)
4556 free (sv);
4557 return false;
4560 /* A comparison routine used to sort .gptab entries. */
4562 static int
4563 gptab_compare (p1, p2)
4564 const PTR p1;
4565 const PTR p2;
4567 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4568 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4570 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4573 /* We need to use a special link routine to handle the .reginfo and
4574 the .mdebug sections. We need to merge all instances of these
4575 sections together, not write them all out sequentially. */
4577 boolean
4578 _bfd_mips_elf_final_link (abfd, info)
4579 bfd *abfd;
4580 struct bfd_link_info *info;
4582 asection **secpp;
4583 asection *o;
4584 struct bfd_link_order *p;
4585 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4586 asection *rtproc_sec;
4587 Elf32_RegInfo reginfo;
4588 struct ecoff_debug_info debug;
4589 const struct ecoff_debug_swap *swap
4590 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4591 HDRR *symhdr = &debug.symbolic_header;
4592 PTR mdebug_handle = NULL;
4593 asection *s;
4594 EXTR esym;
4595 bfd_vma last;
4596 unsigned int i;
4597 static const char * const name[] =
4599 ".text", ".init", ".fini", ".data",
4600 ".rodata", ".sdata", ".sbss", ".bss"
4602 static const int sc[] =
4604 scText, scInit, scFini, scData,
4605 scRData, scSData, scSBss, scBss
4608 /* If all the things we linked together were PIC, but we're
4609 producing an executable (rather than a shared object), then the
4610 resulting file is CPIC (i.e., it calls PIC code.) */
4611 if (!info->shared
4612 && !info->relocateable
4613 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4615 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4616 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4619 /* We'd carefully arranged the dynamic symbol indices, and then the
4620 generic size_dynamic_sections renumbered them out from under us.
4621 Rather than trying somehow to prevent the renumbering, just do
4622 the sort again. */
4623 if (elf_hash_table (info)->dynamic_sections_created)
4625 bfd *dynobj;
4626 asection *got;
4627 struct mips_got_info *g;
4629 /* When we resort, we must tell mips_elf_sort_hash_table what
4630 the lowest index it may use is. That's the number of section
4631 symbols we're going to add. The generic ELF linker only
4632 adds these symbols when building a shared object. Note that
4633 we count the sections after (possibly) removing the .options
4634 section above. */
4635 if (!mips_elf_sort_hash_table (info, (info->shared
4636 ? bfd_count_sections (abfd) + 1
4637 : 1)))
4638 return false;
4640 /* Make sure we didn't grow the global .got region. */
4641 dynobj = elf_hash_table (info)->dynobj;
4642 got = bfd_get_section_by_name (dynobj, ".got");
4643 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4645 if (g->global_gotsym != NULL)
4646 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4647 - g->global_gotsym->dynindx)
4648 <= g->global_gotno);
4651 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4652 include it, even though we don't process it quite right. (Some
4653 entries are supposed to be merged.) Empirically, we seem to be
4654 better off including it then not. */
4655 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4656 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4658 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4660 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4661 if (p->type == bfd_indirect_link_order)
4662 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
4663 (*secpp)->link_order_head = NULL;
4664 *secpp = (*secpp)->next;
4665 --abfd->section_count;
4667 break;
4671 /* Get a value for the GP register. */
4672 if (elf_gp (abfd) == 0)
4674 struct bfd_link_hash_entry *h;
4676 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4677 if (h != (struct bfd_link_hash_entry *) NULL
4678 && h->type == bfd_link_hash_defined)
4679 elf_gp (abfd) = (h->u.def.value
4680 + h->u.def.section->output_section->vma
4681 + h->u.def.section->output_offset);
4682 else if (info->relocateable)
4684 bfd_vma lo;
4686 /* Find the GP-relative section with the lowest offset. */
4687 lo = (bfd_vma) -1;
4688 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4689 if (o->vma < lo
4690 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4691 lo = o->vma;
4693 /* And calculate GP relative to that. */
4694 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4696 else
4698 /* If the relocate_section function needs to do a reloc
4699 involving the GP value, it should make a reloc_dangerous
4700 callback to warn that GP is not defined. */
4704 /* Go through the sections and collect the .reginfo and .mdebug
4705 information. */
4706 reginfo_sec = NULL;
4707 mdebug_sec = NULL;
4708 gptab_data_sec = NULL;
4709 gptab_bss_sec = NULL;
4710 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4712 if (strcmp (o->name, ".reginfo") == 0)
4714 memset (&reginfo, 0, sizeof reginfo);
4716 /* We have found the .reginfo section in the output file.
4717 Look through all the link_orders comprising it and merge
4718 the information together. */
4719 for (p = o->link_order_head;
4720 p != (struct bfd_link_order *) NULL;
4721 p = p->next)
4723 asection *input_section;
4724 bfd *input_bfd;
4725 Elf32_External_RegInfo ext;
4726 Elf32_RegInfo sub;
4728 if (p->type != bfd_indirect_link_order)
4730 if (p->type == bfd_fill_link_order)
4731 continue;
4732 abort ();
4735 input_section = p->u.indirect.section;
4736 input_bfd = input_section->owner;
4738 /* The linker emulation code has probably clobbered the
4739 size to be zero bytes. */
4740 if (input_section->_raw_size == 0)
4741 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4743 if (! bfd_get_section_contents (input_bfd, input_section,
4744 (PTR) &ext,
4745 (file_ptr) 0,
4746 sizeof ext))
4747 return false;
4749 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4751 reginfo.ri_gprmask |= sub.ri_gprmask;
4752 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4753 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4754 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4755 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4757 /* ri_gp_value is set by the function
4758 mips_elf32_section_processing when the section is
4759 finally written out. */
4761 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4762 elf_link_input_bfd ignores this section. */
4763 input_section->flags &= ~SEC_HAS_CONTENTS;
4766 /* Size has been set in mips_elf_always_size_sections */
4767 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4769 /* Skip this section later on (I don't think this currently
4770 matters, but someday it might). */
4771 o->link_order_head = (struct bfd_link_order *) NULL;
4773 reginfo_sec = o;
4776 if (strcmp (o->name, ".mdebug") == 0)
4778 struct extsym_info einfo;
4780 /* We have found the .mdebug section in the output file.
4781 Look through all the link_orders comprising it and merge
4782 the information together. */
4783 symhdr->magic = swap->sym_magic;
4784 /* FIXME: What should the version stamp be? */
4785 symhdr->vstamp = 0;
4786 symhdr->ilineMax = 0;
4787 symhdr->cbLine = 0;
4788 symhdr->idnMax = 0;
4789 symhdr->ipdMax = 0;
4790 symhdr->isymMax = 0;
4791 symhdr->ioptMax = 0;
4792 symhdr->iauxMax = 0;
4793 symhdr->issMax = 0;
4794 symhdr->issExtMax = 0;
4795 symhdr->ifdMax = 0;
4796 symhdr->crfd = 0;
4797 symhdr->iextMax = 0;
4799 /* We accumulate the debugging information itself in the
4800 debug_info structure. */
4801 debug.line = NULL;
4802 debug.external_dnr = NULL;
4803 debug.external_pdr = NULL;
4804 debug.external_sym = NULL;
4805 debug.external_opt = NULL;
4806 debug.external_aux = NULL;
4807 debug.ss = NULL;
4808 debug.ssext = debug.ssext_end = NULL;
4809 debug.external_fdr = NULL;
4810 debug.external_rfd = NULL;
4811 debug.external_ext = debug.external_ext_end = NULL;
4813 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4814 if (mdebug_handle == (PTR) NULL)
4815 return false;
4817 esym.jmptbl = 0;
4818 esym.cobol_main = 0;
4819 esym.weakext = 0;
4820 esym.reserved = 0;
4821 esym.ifd = ifdNil;
4822 esym.asym.iss = issNil;
4823 esym.asym.st = stLocal;
4824 esym.asym.reserved = 0;
4825 esym.asym.index = indexNil;
4826 last = 0;
4827 for (i = 0; i < 8; i++)
4829 esym.asym.sc = sc[i];
4830 s = bfd_get_section_by_name (abfd, name[i]);
4831 if (s != NULL)
4833 esym.asym.value = s->vma;
4834 last = s->vma + s->_raw_size;
4836 else
4837 esym.asym.value = last;
4838 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4839 name[i], &esym))
4840 return false;
4843 for (p = o->link_order_head;
4844 p != (struct bfd_link_order *) NULL;
4845 p = p->next)
4847 asection *input_section;
4848 bfd *input_bfd;
4849 const struct ecoff_debug_swap *input_swap;
4850 struct ecoff_debug_info input_debug;
4851 char *eraw_src;
4852 char *eraw_end;
4854 if (p->type != bfd_indirect_link_order)
4856 if (p->type == bfd_fill_link_order)
4857 continue;
4858 abort ();
4861 input_section = p->u.indirect.section;
4862 input_bfd = input_section->owner;
4864 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4865 || (get_elf_backend_data (input_bfd)
4866 ->elf_backend_ecoff_debug_swap) == NULL)
4868 /* I don't know what a non MIPS ELF bfd would be
4869 doing with a .mdebug section, but I don't really
4870 want to deal with it. */
4871 continue;
4874 input_swap = (get_elf_backend_data (input_bfd)
4875 ->elf_backend_ecoff_debug_swap);
4877 BFD_ASSERT (p->size == input_section->_raw_size);
4879 /* The ECOFF linking code expects that we have already
4880 read in the debugging information and set up an
4881 ecoff_debug_info structure, so we do that now. */
4882 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4883 &input_debug))
4884 return false;
4886 if (! (bfd_ecoff_debug_accumulate
4887 (mdebug_handle, abfd, &debug, swap, input_bfd,
4888 &input_debug, input_swap, info)))
4889 return false;
4891 /* Loop through the external symbols. For each one with
4892 interesting information, try to find the symbol in
4893 the linker global hash table and save the information
4894 for the output external symbols. */
4895 eraw_src = input_debug.external_ext;
4896 eraw_end = (eraw_src
4897 + (input_debug.symbolic_header.iextMax
4898 * input_swap->external_ext_size));
4899 for (;
4900 eraw_src < eraw_end;
4901 eraw_src += input_swap->external_ext_size)
4903 EXTR ext;
4904 const char *name;
4905 struct mips_elf_link_hash_entry *h;
4907 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4908 if (ext.asym.sc == scNil
4909 || ext.asym.sc == scUndefined
4910 || ext.asym.sc == scSUndefined)
4911 continue;
4913 name = input_debug.ssext + ext.asym.iss;
4914 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4915 name, false, false, true);
4916 if (h == NULL || h->esym.ifd != -2)
4917 continue;
4919 if (ext.ifd != -1)
4921 BFD_ASSERT (ext.ifd
4922 < input_debug.symbolic_header.ifdMax);
4923 ext.ifd = input_debug.ifdmap[ext.ifd];
4926 h->esym = ext;
4929 /* Free up the information we just read. */
4930 free (input_debug.line);
4931 free (input_debug.external_dnr);
4932 free (input_debug.external_pdr);
4933 free (input_debug.external_sym);
4934 free (input_debug.external_opt);
4935 free (input_debug.external_aux);
4936 free (input_debug.ss);
4937 free (input_debug.ssext);
4938 free (input_debug.external_fdr);
4939 free (input_debug.external_rfd);
4940 free (input_debug.external_ext);
4942 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4943 elf_link_input_bfd ignores this section. */
4944 input_section->flags &= ~SEC_HAS_CONTENTS;
4947 if (SGI_COMPAT (abfd) && info->shared)
4949 /* Create .rtproc section. */
4950 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4951 if (rtproc_sec == NULL)
4953 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4954 | SEC_LINKER_CREATED | SEC_READONLY);
4956 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4957 if (rtproc_sec == NULL
4958 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4959 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4960 return false;
4963 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4964 info, rtproc_sec, &debug))
4965 return false;
4968 /* Build the external symbol information. */
4969 einfo.abfd = abfd;
4970 einfo.info = info;
4971 einfo.debug = &debug;
4972 einfo.swap = swap;
4973 einfo.failed = false;
4974 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4975 mips_elf_output_extsym,
4976 (PTR) &einfo);
4977 if (einfo.failed)
4978 return false;
4980 /* Set the size of the .mdebug section. */
4981 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4983 /* Skip this section later on (I don't think this currently
4984 matters, but someday it might). */
4985 o->link_order_head = (struct bfd_link_order *) NULL;
4987 mdebug_sec = o;
4990 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4992 const char *subname;
4993 unsigned int c;
4994 Elf32_gptab *tab;
4995 Elf32_External_gptab *ext_tab;
4996 unsigned int i;
4998 /* The .gptab.sdata and .gptab.sbss sections hold
4999 information describing how the small data area would
5000 change depending upon the -G switch. These sections
5001 not used in executables files. */
5002 if (! info->relocateable)
5004 asection **secpp;
5006 for (p = o->link_order_head;
5007 p != (struct bfd_link_order *) NULL;
5008 p = p->next)
5010 asection *input_section;
5012 if (p->type != bfd_indirect_link_order)
5014 if (p->type == bfd_fill_link_order)
5015 continue;
5016 abort ();
5019 input_section = p->u.indirect.section;
5021 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5022 elf_link_input_bfd ignores this section. */
5023 input_section->flags &= ~SEC_HAS_CONTENTS;
5026 /* Skip this section later on (I don't think this
5027 currently matters, but someday it might). */
5028 o->link_order_head = (struct bfd_link_order *) NULL;
5030 /* Really remove the section. */
5031 for (secpp = &abfd->sections;
5032 *secpp != o;
5033 secpp = &(*secpp)->next)
5035 *secpp = (*secpp)->next;
5036 --abfd->section_count;
5038 continue;
5041 /* There is one gptab for initialized data, and one for
5042 uninitialized data. */
5043 if (strcmp (o->name, ".gptab.sdata") == 0)
5044 gptab_data_sec = o;
5045 else if (strcmp (o->name, ".gptab.sbss") == 0)
5046 gptab_bss_sec = o;
5047 else
5049 (*_bfd_error_handler)
5050 (_("%s: illegal section name `%s'"),
5051 bfd_get_filename (abfd), o->name);
5052 bfd_set_error (bfd_error_nonrepresentable_section);
5053 return false;
5056 /* The linker script always combines .gptab.data and
5057 .gptab.sdata into .gptab.sdata, and likewise for
5058 .gptab.bss and .gptab.sbss. It is possible that there is
5059 no .sdata or .sbss section in the output file, in which
5060 case we must change the name of the output section. */
5061 subname = o->name + sizeof ".gptab" - 1;
5062 if (bfd_get_section_by_name (abfd, subname) == NULL)
5064 if (o == gptab_data_sec)
5065 o->name = ".gptab.data";
5066 else
5067 o->name = ".gptab.bss";
5068 subname = o->name + sizeof ".gptab" - 1;
5069 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5072 /* Set up the first entry. */
5073 c = 1;
5074 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
5075 if (tab == NULL)
5076 return false;
5077 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5078 tab[0].gt_header.gt_unused = 0;
5080 /* Combine the input sections. */
5081 for (p = o->link_order_head;
5082 p != (struct bfd_link_order *) NULL;
5083 p = p->next)
5085 asection *input_section;
5086 bfd *input_bfd;
5087 bfd_size_type size;
5088 unsigned long last;
5089 bfd_size_type gpentry;
5091 if (p->type != bfd_indirect_link_order)
5093 if (p->type == bfd_fill_link_order)
5094 continue;
5095 abort ();
5098 input_section = p->u.indirect.section;
5099 input_bfd = input_section->owner;
5101 /* Combine the gptab entries for this input section one
5102 by one. We know that the input gptab entries are
5103 sorted by ascending -G value. */
5104 size = bfd_section_size (input_bfd, input_section);
5105 last = 0;
5106 for (gpentry = sizeof (Elf32_External_gptab);
5107 gpentry < size;
5108 gpentry += sizeof (Elf32_External_gptab))
5110 Elf32_External_gptab ext_gptab;
5111 Elf32_gptab int_gptab;
5112 unsigned long val;
5113 unsigned long add;
5114 boolean exact;
5115 unsigned int look;
5117 if (! (bfd_get_section_contents
5118 (input_bfd, input_section, (PTR) &ext_gptab,
5119 gpentry, sizeof (Elf32_External_gptab))))
5121 free (tab);
5122 return false;
5125 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5126 &int_gptab);
5127 val = int_gptab.gt_entry.gt_g_value;
5128 add = int_gptab.gt_entry.gt_bytes - last;
5130 exact = false;
5131 for (look = 1; look < c; look++)
5133 if (tab[look].gt_entry.gt_g_value >= val)
5134 tab[look].gt_entry.gt_bytes += add;
5136 if (tab[look].gt_entry.gt_g_value == val)
5137 exact = true;
5140 if (! exact)
5142 Elf32_gptab *new_tab;
5143 unsigned int max;
5145 /* We need a new table entry. */
5146 new_tab = ((Elf32_gptab *)
5147 bfd_realloc ((PTR) tab,
5148 (c + 1) * sizeof (Elf32_gptab)));
5149 if (new_tab == NULL)
5151 free (tab);
5152 return false;
5154 tab = new_tab;
5155 tab[c].gt_entry.gt_g_value = val;
5156 tab[c].gt_entry.gt_bytes = add;
5158 /* Merge in the size for the next smallest -G
5159 value, since that will be implied by this new
5160 value. */
5161 max = 0;
5162 for (look = 1; look < c; look++)
5164 if (tab[look].gt_entry.gt_g_value < val
5165 && (max == 0
5166 || (tab[look].gt_entry.gt_g_value
5167 > tab[max].gt_entry.gt_g_value)))
5168 max = look;
5170 if (max != 0)
5171 tab[c].gt_entry.gt_bytes +=
5172 tab[max].gt_entry.gt_bytes;
5174 ++c;
5177 last = int_gptab.gt_entry.gt_bytes;
5180 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5181 elf_link_input_bfd ignores this section. */
5182 input_section->flags &= ~SEC_HAS_CONTENTS;
5185 /* The table must be sorted by -G value. */
5186 if (c > 2)
5187 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5189 /* Swap out the table. */
5190 ext_tab = ((Elf32_External_gptab *)
5191 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5192 if (ext_tab == NULL)
5194 free (tab);
5195 return false;
5198 for (i = 0; i < c; i++)
5199 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5200 free (tab);
5202 o->_raw_size = c * sizeof (Elf32_External_gptab);
5203 o->contents = (bfd_byte *) ext_tab;
5205 /* Skip this section later on (I don't think this currently
5206 matters, but someday it might). */
5207 o->link_order_head = (struct bfd_link_order *) NULL;
5211 /* Invoke the regular ELF backend linker to do all the work. */
5212 if (ABI_64_P (abfd))
5214 #ifdef BFD64
5215 if (!bfd_elf64_bfd_final_link (abfd, info))
5216 return false;
5217 #else
5218 abort ();
5219 return false;
5220 #endif /* BFD64 */
5222 else if (!bfd_elf32_bfd_final_link (abfd, info))
5223 return false;
5225 /* Now write out the computed sections. */
5227 if (reginfo_sec != (asection *) NULL)
5229 Elf32_External_RegInfo ext;
5231 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5232 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5233 (file_ptr) 0, sizeof ext))
5234 return false;
5237 if (mdebug_sec != (asection *) NULL)
5239 BFD_ASSERT (abfd->output_has_begun);
5240 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5241 swap, info,
5242 mdebug_sec->filepos))
5243 return false;
5245 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5248 if (gptab_data_sec != (asection *) NULL)
5250 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5251 gptab_data_sec->contents,
5252 (file_ptr) 0,
5253 gptab_data_sec->_raw_size))
5254 return false;
5257 if (gptab_bss_sec != (asection *) NULL)
5259 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5260 gptab_bss_sec->contents,
5261 (file_ptr) 0,
5262 gptab_bss_sec->_raw_size))
5263 return false;
5266 if (SGI_COMPAT (abfd))
5268 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5269 if (rtproc_sec != NULL)
5271 if (! bfd_set_section_contents (abfd, rtproc_sec,
5272 rtproc_sec->contents,
5273 (file_ptr) 0,
5274 rtproc_sec->_raw_size))
5275 return false;
5279 return true;
5282 /* This function is called via qsort() to sort the dynamic relocation
5283 entries by increasing r_symndx value. */
5285 static int
5286 sort_dynamic_relocs (arg1, arg2)
5287 const PTR arg1;
5288 const PTR arg2;
5290 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5291 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5293 Elf_Internal_Rel int_reloc1;
5294 Elf_Internal_Rel int_reloc2;
5296 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5297 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5299 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5302 /* Returns the GOT section for ABFD. */
5304 static asection *
5305 mips_elf_got_section (abfd)
5306 bfd *abfd;
5308 return bfd_get_section_by_name (abfd, ".got");
5311 /* Returns the GOT information associated with the link indicated by
5312 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5313 section. */
5315 static struct mips_got_info *
5316 mips_elf_got_info (abfd, sgotp)
5317 bfd *abfd;
5318 asection **sgotp;
5320 asection *sgot;
5321 struct mips_got_info *g;
5323 sgot = mips_elf_got_section (abfd);
5324 BFD_ASSERT (sgot != NULL);
5325 BFD_ASSERT (elf_section_data (sgot) != NULL);
5326 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5327 BFD_ASSERT (g != NULL);
5329 if (sgotp)
5330 *sgotp = sgot;
5331 return g;
5334 /* Return whether a relocation is against a local symbol. */
5336 static boolean
5337 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5338 check_forced)
5339 bfd *input_bfd;
5340 const Elf_Internal_Rela *relocation;
5341 asection **local_sections;
5342 boolean check_forced;
5344 unsigned long r_symndx;
5345 Elf_Internal_Shdr *symtab_hdr;
5346 struct mips_elf_link_hash_entry *h;
5347 size_t extsymoff;
5349 r_symndx = ELF32_R_SYM (relocation->r_info);
5350 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5351 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5353 if (r_symndx < extsymoff)
5354 return true;
5355 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5356 return true;
5358 if (check_forced)
5360 /* Look up the hash table to check whether the symbol
5361 was forced local. */
5362 h = (struct mips_elf_link_hash_entry *)
5363 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5364 /* Find the real hash-table entry for this symbol. */
5365 while (h->root.root.type == bfd_link_hash_indirect
5366 || h->root.root.type == bfd_link_hash_warning)
5367 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5368 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5369 return true;
5372 return false;
5375 /* Sign-extend VALUE, which has the indicated number of BITS. */
5377 static bfd_vma
5378 mips_elf_sign_extend (value, bits)
5379 bfd_vma value;
5380 int bits;
5382 if (value & ((bfd_vma) 1 << (bits - 1)))
5383 /* VALUE is negative. */
5384 value |= ((bfd_vma) - 1) << bits;
5386 return value;
5389 /* Return non-zero if the indicated VALUE has overflowed the maximum
5390 range expressable by a signed number with the indicated number of
5391 BITS. */
5393 static boolean
5394 mips_elf_overflow_p (value, bits)
5395 bfd_vma value;
5396 int bits;
5398 bfd_signed_vma svalue = (bfd_signed_vma) value;
5400 if (svalue > (1 << (bits - 1)) - 1)
5401 /* The value is too big. */
5402 return true;
5403 else if (svalue < -(1 << (bits - 1)))
5404 /* The value is too small. */
5405 return true;
5407 /* All is well. */
5408 return false;
5411 /* Calculate the %high function. */
5413 static bfd_vma
5414 mips_elf_high (value)
5415 bfd_vma value;
5417 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5420 /* Calculate the %higher function. */
5422 static bfd_vma
5423 mips_elf_higher (value)
5424 bfd_vma value ATTRIBUTE_UNUSED;
5426 #ifdef BFD64
5427 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5428 #else
5429 abort ();
5430 return (bfd_vma) -1;
5431 #endif
5434 /* Calculate the %highest function. */
5436 static bfd_vma
5437 mips_elf_highest (value)
5438 bfd_vma value ATTRIBUTE_UNUSED;
5440 #ifdef BFD64
5441 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5442 #else
5443 abort ();
5444 return (bfd_vma) -1;
5445 #endif
5448 /* Returns the GOT index for the global symbol indicated by H. */
5450 static bfd_vma
5451 mips_elf_global_got_index (abfd, h)
5452 bfd *abfd;
5453 struct elf_link_hash_entry *h;
5455 bfd_vma index;
5456 asection *sgot;
5457 struct mips_got_info *g;
5459 g = mips_elf_got_info (abfd, &sgot);
5461 /* Once we determine the global GOT entry with the lowest dynamic
5462 symbol table index, we must put all dynamic symbols with greater
5463 indices into the GOT. That makes it easy to calculate the GOT
5464 offset. */
5465 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5466 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5467 * MIPS_ELF_GOT_SIZE (abfd));
5468 BFD_ASSERT (index < sgot->_raw_size);
5470 return index;
5473 /* Returns the offset for the entry at the INDEXth position
5474 in the GOT. */
5476 static bfd_vma
5477 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5478 bfd *dynobj;
5479 bfd *output_bfd;
5480 bfd_vma index;
5482 asection *sgot;
5483 bfd_vma gp;
5485 sgot = mips_elf_got_section (dynobj);
5486 gp = _bfd_get_gp_value (output_bfd);
5487 return (sgot->output_section->vma + sgot->output_offset + index -
5488 gp);
5491 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5492 symbol table index lower than any we've seen to date, record it for
5493 posterity. */
5495 static boolean
5496 mips_elf_record_global_got_symbol (h, info, g)
5497 struct elf_link_hash_entry *h;
5498 struct bfd_link_info *info;
5499 struct mips_got_info *g ATTRIBUTE_UNUSED;
5501 /* A global symbol in the GOT must also be in the dynamic symbol
5502 table. */
5503 if (h->dynindx == -1
5504 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5505 return false;
5507 /* If we've already marked this entry as need GOT space, we don't
5508 need to do it again. */
5509 if (h->got.offset != (bfd_vma) - 1)
5510 return true;
5512 /* By setting this to a value other than -1, we are indicating that
5513 there needs to be a GOT entry for H. */
5514 h->got.offset = 0;
5516 return true;
5519 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5520 the dynamic symbols. */
5522 struct mips_elf_hash_sort_data
5524 /* The symbol in the global GOT with the lowest dynamic symbol table
5525 index. */
5526 struct elf_link_hash_entry *low;
5527 /* The least dynamic symbol table index corresponding to a symbol
5528 with a GOT entry. */
5529 long min_got_dynindx;
5530 /* The greatest dynamic symbol table index not corresponding to a
5531 symbol without a GOT entry. */
5532 long max_non_got_dynindx;
5535 /* If H needs a GOT entry, assign it the highest available dynamic
5536 index. Otherwise, assign it the lowest available dynamic
5537 index. */
5539 static boolean
5540 mips_elf_sort_hash_table_f (h, data)
5541 struct mips_elf_link_hash_entry *h;
5542 PTR data;
5544 struct mips_elf_hash_sort_data *hsd
5545 = (struct mips_elf_hash_sort_data *) data;
5547 /* Symbols without dynamic symbol table entries aren't interesting
5548 at all. */
5549 if (h->root.dynindx == -1)
5550 return true;
5552 if (h->root.got.offset != 0)
5553 h->root.dynindx = hsd->max_non_got_dynindx++;
5554 else
5556 h->root.dynindx = --hsd->min_got_dynindx;
5557 hsd->low = (struct elf_link_hash_entry *) h;
5560 return true;
5563 /* Sort the dynamic symbol table so that symbols that need GOT entries
5564 appear towards the end. This reduces the amount of GOT space
5565 required. MAX_LOCAL is used to set the number of local symbols
5566 known to be in the dynamic symbol table. During
5567 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5568 section symbols are added and the count is higher. */
5570 static boolean
5571 mips_elf_sort_hash_table (info, max_local)
5572 struct bfd_link_info *info;
5573 unsigned long max_local;
5575 struct mips_elf_hash_sort_data hsd;
5576 struct mips_got_info *g;
5577 bfd *dynobj;
5579 dynobj = elf_hash_table (info)->dynobj;
5581 hsd.low = NULL;
5582 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5583 hsd.max_non_got_dynindx = max_local;
5584 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5585 elf_hash_table (info)),
5586 mips_elf_sort_hash_table_f,
5587 &hsd);
5589 /* There shoud have been enough room in the symbol table to
5590 accomodate both the GOT and non-GOT symbols. */
5591 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5593 /* Now we know which dynamic symbol has the lowest dynamic symbol
5594 table index in the GOT. */
5595 g = mips_elf_got_info (dynobj, NULL);
5596 g->global_gotsym = hsd.low;
5598 return true;
5601 /* Create a local GOT entry for VALUE. Return the index of the entry,
5602 or -1 if it could not be created. */
5604 static bfd_vma
5605 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5606 bfd *abfd;
5607 struct mips_got_info *g;
5608 asection *sgot;
5609 bfd_vma value;
5611 if (g->assigned_gotno >= g->local_gotno)
5613 /* We didn't allocate enough space in the GOT. */
5614 (*_bfd_error_handler)
5615 (_("not enough GOT space for local GOT entries"));
5616 bfd_set_error (bfd_error_bad_value);
5617 return (bfd_vma) -1;
5620 MIPS_ELF_PUT_WORD (abfd, value,
5621 (sgot->contents
5622 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5623 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5626 /* Returns the GOT offset at which the indicated address can be found.
5627 If there is not yet a GOT entry for this value, create one. Returns
5628 -1 if no satisfactory GOT offset can be found. */
5630 static bfd_vma
5631 mips_elf_local_got_index (abfd, info, value)
5632 bfd *abfd;
5633 struct bfd_link_info *info;
5634 bfd_vma value;
5636 asection *sgot;
5637 struct mips_got_info *g;
5638 bfd_byte *entry;
5640 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5642 /* Look to see if we already have an appropriate entry. */
5643 for (entry = (sgot->contents
5644 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5645 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5646 entry += MIPS_ELF_GOT_SIZE (abfd))
5648 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5649 if (address == value)
5650 return entry - sgot->contents;
5653 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5656 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5657 are supposed to be placed at small offsets in the GOT, i.e.,
5658 within 32KB of GP. Return the index into the GOT for this page,
5659 and store the offset from this entry to the desired address in
5660 OFFSETP, if it is non-NULL. */
5662 static bfd_vma
5663 mips_elf_got_page (abfd, info, value, offsetp)
5664 bfd *abfd;
5665 struct bfd_link_info *info;
5666 bfd_vma value;
5667 bfd_vma *offsetp;
5669 asection *sgot;
5670 struct mips_got_info *g;
5671 bfd_byte *entry;
5672 bfd_byte *last_entry;
5673 bfd_vma index = 0;
5674 bfd_vma address;
5676 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5678 /* Look to see if we aleady have an appropriate entry. */
5679 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5680 for (entry = (sgot->contents
5681 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5682 entry != last_entry;
5683 entry += MIPS_ELF_GOT_SIZE (abfd))
5685 address = MIPS_ELF_GET_WORD (abfd, entry);
5687 if (!mips_elf_overflow_p (value - address, 16))
5689 /* This entry will serve as the page pointer. We can add a
5690 16-bit number to it to get the actual address. */
5691 index = entry - sgot->contents;
5692 break;
5696 /* If we didn't have an appropriate entry, we create one now. */
5697 if (entry == last_entry)
5698 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5700 if (offsetp)
5702 address = MIPS_ELF_GET_WORD (abfd, entry);
5703 *offsetp = value - address;
5706 return index;
5709 /* Find a GOT entry whose higher-order 16 bits are the same as those
5710 for value. Return the index into the GOT for this entry. */
5712 static bfd_vma
5713 mips_elf_got16_entry (abfd, info, value, external)
5714 bfd *abfd;
5715 struct bfd_link_info *info;
5716 bfd_vma value;
5717 boolean external;
5719 asection *sgot;
5720 struct mips_got_info *g;
5721 bfd_byte *entry;
5722 bfd_byte *last_entry;
5723 bfd_vma index = 0;
5724 bfd_vma address;
5726 if (! external)
5728 /* Although the ABI says that it is "the high-order 16 bits" that we
5729 want, it is really the %high value. The complete value is
5730 calculated with a `addiu' of a LO16 relocation, just as with a
5731 HI16/LO16 pair. */
5732 value = mips_elf_high (value) << 16;
5735 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5737 /* Look to see if we already have an appropriate entry. */
5738 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5739 for (entry = (sgot->contents
5740 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5741 entry != last_entry;
5742 entry += MIPS_ELF_GOT_SIZE (abfd))
5744 address = MIPS_ELF_GET_WORD (abfd, entry);
5745 if (address == value)
5747 /* This entry has the right high-order 16 bits, and the low-order
5748 16 bits are set to zero. */
5749 index = entry - sgot->contents;
5750 break;
5754 /* If we didn't have an appropriate entry, we create one now. */
5755 if (entry == last_entry)
5756 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5758 return index;
5761 /* Returns the first relocation of type r_type found, beginning with
5762 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5764 static const Elf_Internal_Rela *
5765 mips_elf_next_relocation (r_type, relocation, relend)
5766 unsigned int r_type;
5767 const Elf_Internal_Rela *relocation;
5768 const Elf_Internal_Rela *relend;
5770 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5771 immediately following. However, for the IRIX6 ABI, the next
5772 relocation may be a composed relocation consisting of several
5773 relocations for the same address. In that case, the R_MIPS_LO16
5774 relocation may occur as one of these. We permit a similar
5775 extension in general, as that is useful for GCC. */
5776 while (relocation < relend)
5778 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5779 return relocation;
5781 ++relocation;
5784 /* We didn't find it. */
5785 bfd_set_error (bfd_error_bad_value);
5786 return NULL;
5789 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5790 is the original relocation, which is now being transformed into a
5791 dynamic relocation. The ADDENDP is adjusted if necessary; the
5792 caller should store the result in place of the original addend. */
5794 static boolean
5795 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5796 symbol, addendp, input_section)
5797 bfd *output_bfd;
5798 struct bfd_link_info *info;
5799 const Elf_Internal_Rela *rel;
5800 struct mips_elf_link_hash_entry *h;
5801 asection *sec;
5802 bfd_vma symbol;
5803 bfd_vma *addendp;
5804 asection *input_section;
5806 Elf_Internal_Rel outrel;
5807 boolean skip;
5808 asection *sreloc;
5809 bfd *dynobj;
5810 int r_type;
5812 r_type = ELF32_R_TYPE (rel->r_info);
5813 dynobj = elf_hash_table (info)->dynobj;
5814 sreloc
5815 = bfd_get_section_by_name (dynobj,
5816 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5817 BFD_ASSERT (sreloc != NULL);
5818 BFD_ASSERT (sreloc->contents != NULL);
5820 skip = false;
5822 /* We begin by assuming that the offset for the dynamic relocation
5823 is the same as for the original relocation. We'll adjust this
5824 later to reflect the correct output offsets. */
5825 if (elf_section_data (input_section)->stab_info == NULL)
5826 outrel.r_offset = rel->r_offset;
5827 else
5829 /* Except that in a stab section things are more complex.
5830 Because we compress stab information, the offset given in the
5831 relocation may not be the one we want; we must let the stabs
5832 machinery tell us the offset. */
5833 outrel.r_offset
5834 = (_bfd_stab_section_offset
5835 (output_bfd, &elf_hash_table (info)->stab_info,
5836 input_section,
5837 &elf_section_data (input_section)->stab_info,
5838 rel->r_offset));
5839 /* If we didn't need the relocation at all, this value will be
5840 -1. */
5841 if (outrel.r_offset == (bfd_vma) -1)
5842 skip = true;
5845 /* If we've decided to skip this relocation, just output an empty
5846 record. Note that R_MIPS_NONE == 0, so that this call to memset
5847 is a way of setting R_TYPE to R_MIPS_NONE. */
5848 if (skip)
5849 memset (&outrel, 0, sizeof (outrel));
5850 else
5852 long indx;
5853 bfd_vma section_offset;
5855 /* We must now calculate the dynamic symbol table index to use
5856 in the relocation. */
5857 if (h != NULL
5858 && (! info->symbolic || (h->root.elf_link_hash_flags
5859 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5861 indx = h->root.dynindx;
5862 /* h->root.dynindx may be -1 if this symbol was marked to
5863 become local. */
5864 if (indx == -1)
5865 indx = 0;
5867 else
5869 if (sec != NULL && bfd_is_abs_section (sec))
5870 indx = 0;
5871 else if (sec == NULL || sec->owner == NULL)
5873 bfd_set_error (bfd_error_bad_value);
5874 return false;
5876 else
5878 indx = elf_section_data (sec->output_section)->dynindx;
5879 if (indx == 0)
5880 abort ();
5883 /* Figure out how far the target of the relocation is from
5884 the beginning of its section. */
5885 section_offset = symbol - sec->output_section->vma;
5886 /* The relocation we're building is section-relative.
5887 Therefore, the original addend must be adjusted by the
5888 section offset. */
5889 *addendp += section_offset;
5890 /* Now, the relocation is just against the section. */
5891 symbol = sec->output_section->vma;
5894 /* If the relocation was previously an absolute relocation and
5895 this symbol will not be referred to by the relocation, we must
5896 adjust it by the value we give it in the dynamic symbol table.
5897 Otherwise leave the job up to the dynamic linker. */
5898 if (!indx && r_type != R_MIPS_REL32)
5899 *addendp += symbol;
5901 /* The relocation is always an REL32 relocation because we don't
5902 know where the shared library will wind up at load-time. */
5903 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5905 /* Adjust the output offset of the relocation to reference the
5906 correct location in the output file. */
5907 outrel.r_offset += (input_section->output_section->vma
5908 + input_section->output_offset);
5911 /* Put the relocation back out. We have to use the special
5912 relocation outputter in the 64-bit case since the 64-bit
5913 relocation format is non-standard. */
5914 if (ABI_64_P (output_bfd))
5916 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5917 (output_bfd, &outrel,
5918 (sreloc->contents
5919 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5921 else
5922 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5923 (((Elf32_External_Rel *)
5924 sreloc->contents)
5925 + sreloc->reloc_count));
5927 /* Record the index of the first relocation referencing H. This
5928 information is later emitted in the .msym section. */
5929 if (h != NULL
5930 && (h->min_dyn_reloc_index == 0
5931 || sreloc->reloc_count < h->min_dyn_reloc_index))
5932 h->min_dyn_reloc_index = sreloc->reloc_count;
5934 /* We've now added another relocation. */
5935 ++sreloc->reloc_count;
5937 /* Make sure the output section is writable. The dynamic linker
5938 will be writing to it. */
5939 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5940 |= SHF_WRITE;
5942 /* On IRIX5, make an entry of compact relocation info. */
5943 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5945 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5946 bfd_byte *cr;
5948 if (scpt)
5950 Elf32_crinfo cptrel;
5952 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5953 cptrel.vaddr = (rel->r_offset
5954 + input_section->output_section->vma
5955 + input_section->output_offset);
5956 if (r_type == R_MIPS_REL32)
5957 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5958 else
5959 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5960 mips_elf_set_cr_dist2to (cptrel, 0);
5961 cptrel.konst = *addendp;
5963 cr = (scpt->contents
5964 + sizeof (Elf32_External_compact_rel));
5965 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5966 ((Elf32_External_crinfo *) cr
5967 + scpt->reloc_count));
5968 ++scpt->reloc_count;
5972 return true;
5975 /* Calculate the value produced by the RELOCATION (which comes from
5976 the INPUT_BFD). The ADDEND is the addend to use for this
5977 RELOCATION; RELOCATION->R_ADDEND is ignored.
5979 The result of the relocation calculation is stored in VALUEP.
5980 REQUIRE_JALXP indicates whether or not the opcode used with this
5981 relocation must be JALX.
5983 This function returns bfd_reloc_continue if the caller need take no
5984 further action regarding this relocation, bfd_reloc_notsupported if
5985 something goes dramatically wrong, bfd_reloc_overflow if an
5986 overflow occurs, and bfd_reloc_ok to indicate success. */
5988 static bfd_reloc_status_type
5989 mips_elf_calculate_relocation (abfd,
5990 input_bfd,
5991 input_section,
5992 info,
5993 relocation,
5994 addend,
5995 howto,
5996 local_syms,
5997 local_sections,
5998 valuep,
5999 namep,
6000 require_jalxp)
6001 bfd *abfd;
6002 bfd *input_bfd;
6003 asection *input_section;
6004 struct bfd_link_info *info;
6005 const Elf_Internal_Rela *relocation;
6006 bfd_vma addend;
6007 reloc_howto_type *howto;
6008 Elf_Internal_Sym *local_syms;
6009 asection **local_sections;
6010 bfd_vma *valuep;
6011 const char **namep;
6012 boolean *require_jalxp;
6014 /* The eventual value we will return. */
6015 bfd_vma value;
6016 /* The address of the symbol against which the relocation is
6017 occurring. */
6018 bfd_vma symbol = 0;
6019 /* The final GP value to be used for the relocatable, executable, or
6020 shared object file being produced. */
6021 bfd_vma gp = (bfd_vma) - 1;
6022 /* The place (section offset or address) of the storage unit being
6023 relocated. */
6024 bfd_vma p;
6025 /* The value of GP used to create the relocatable object. */
6026 bfd_vma gp0 = (bfd_vma) - 1;
6027 /* The offset into the global offset table at which the address of
6028 the relocation entry symbol, adjusted by the addend, resides
6029 during execution. */
6030 bfd_vma g = (bfd_vma) - 1;
6031 /* The section in which the symbol referenced by the relocation is
6032 located. */
6033 asection *sec = NULL;
6034 struct mips_elf_link_hash_entry *h = NULL;
6035 /* True if the symbol referred to by this relocation is a local
6036 symbol. */
6037 boolean local_p;
6038 /* True if the symbol referred to by this relocation is "_gp_disp". */
6039 boolean gp_disp_p = false;
6040 Elf_Internal_Shdr *symtab_hdr;
6041 size_t extsymoff;
6042 unsigned long r_symndx;
6043 int r_type;
6044 /* True if overflow occurred during the calculation of the
6045 relocation value. */
6046 boolean overflowed_p;
6047 /* True if this relocation refers to a MIPS16 function. */
6048 boolean target_is_16_bit_code_p = false;
6050 /* Parse the relocation. */
6051 r_symndx = ELF32_R_SYM (relocation->r_info);
6052 r_type = ELF32_R_TYPE (relocation->r_info);
6053 p = (input_section->output_section->vma
6054 + input_section->output_offset
6055 + relocation->r_offset);
6057 /* Assume that there will be no overflow. */
6058 overflowed_p = false;
6060 /* Figure out whether or not the symbol is local, and get the offset
6061 used in the array of hash table entries. */
6062 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6063 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6064 local_sections, false);
6065 if (! elf_bad_symtab (input_bfd))
6066 extsymoff = symtab_hdr->sh_info;
6067 else
6069 /* The symbol table does not follow the rule that local symbols
6070 must come before globals. */
6071 extsymoff = 0;
6074 /* Figure out the value of the symbol. */
6075 if (local_p)
6077 Elf_Internal_Sym *sym;
6079 sym = local_syms + r_symndx;
6080 sec = local_sections[r_symndx];
6082 symbol = sec->output_section->vma + sec->output_offset;
6083 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6084 symbol += sym->st_value;
6086 /* MIPS16 text labels should be treated as odd. */
6087 if (sym->st_other == STO_MIPS16)
6088 ++symbol;
6090 /* Record the name of this symbol, for our caller. */
6091 *namep = bfd_elf_string_from_elf_section (input_bfd,
6092 symtab_hdr->sh_link,
6093 sym->st_name);
6094 if (*namep == '\0')
6095 *namep = bfd_section_name (input_bfd, sec);
6097 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6099 else
6101 /* For global symbols we look up the symbol in the hash-table. */
6102 h = ((struct mips_elf_link_hash_entry *)
6103 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6104 /* Find the real hash-table entry for this symbol. */
6105 while (h->root.root.type == bfd_link_hash_indirect
6106 || h->root.root.type == bfd_link_hash_warning)
6107 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6109 /* Record the name of this symbol, for our caller. */
6110 *namep = h->root.root.root.string;
6112 /* See if this is the special _gp_disp symbol. Note that such a
6113 symbol must always be a global symbol. */
6114 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6116 /* Relocations against _gp_disp are permitted only with
6117 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6118 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6119 return bfd_reloc_notsupported;
6121 gp_disp_p = true;
6123 /* If this symbol is defined, calculate its address. Note that
6124 _gp_disp is a magic symbol, always implicitly defined by the
6125 linker, so it's inappropriate to check to see whether or not
6126 its defined. */
6127 else if ((h->root.root.type == bfd_link_hash_defined
6128 || h->root.root.type == bfd_link_hash_defweak)
6129 && h->root.root.u.def.section)
6131 sec = h->root.root.u.def.section;
6132 if (sec->output_section)
6133 symbol = (h->root.root.u.def.value
6134 + sec->output_section->vma
6135 + sec->output_offset);
6136 else
6137 symbol = h->root.root.u.def.value;
6139 else if (h->root.root.type == bfd_link_hash_undefweak)
6140 /* We allow relocations against undefined weak symbols, giving
6141 it the value zero, so that you can undefined weak functions
6142 and check to see if they exist by looking at their
6143 addresses. */
6144 symbol = 0;
6145 else if (info->shared && !info->symbolic && !info->no_undefined
6146 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6147 symbol = 0;
6148 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6149 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6151 /* If this is a dynamic link, we should have created a
6152 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6153 in in mips_elf_create_dynamic_sections.
6154 Otherwise, we should define the symbol with a value of 0.
6155 FIXME: It should probably get into the symbol table
6156 somehow as well. */
6157 BFD_ASSERT (! info->shared);
6158 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6159 symbol = 0;
6161 else
6163 if (! ((*info->callbacks->undefined_symbol)
6164 (info, h->root.root.root.string, input_bfd,
6165 input_section, relocation->r_offset,
6166 (!info->shared || info->no_undefined
6167 || ELF_ST_VISIBILITY (h->root.other)))))
6168 return bfd_reloc_undefined;
6169 symbol = 0;
6172 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6175 /* If this is a 32-bit call to a 16-bit function with a stub, we
6176 need to redirect the call to the stub, unless we're already *in*
6177 a stub. */
6178 if (r_type != R_MIPS16_26 && !info->relocateable
6179 && ((h != NULL && h->fn_stub != NULL)
6180 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6181 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6182 && !mips_elf_stub_section_p (input_bfd, input_section))
6184 /* This is a 32-bit call to a 16-bit function. We should
6185 have already noticed that we were going to need the
6186 stub. */
6187 if (local_p)
6188 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6189 else
6191 BFD_ASSERT (h->need_fn_stub);
6192 sec = h->fn_stub;
6195 symbol = sec->output_section->vma + sec->output_offset;
6197 /* If this is a 16-bit call to a 32-bit function with a stub, we
6198 need to redirect the call to the stub. */
6199 else if (r_type == R_MIPS16_26 && !info->relocateable
6200 && h != NULL
6201 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6202 && !target_is_16_bit_code_p)
6204 /* If both call_stub and call_fp_stub are defined, we can figure
6205 out which one to use by seeing which one appears in the input
6206 file. */
6207 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6209 asection *o;
6211 sec = NULL;
6212 for (o = input_bfd->sections; o != NULL; o = o->next)
6214 if (strncmp (bfd_get_section_name (input_bfd, o),
6215 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6217 sec = h->call_fp_stub;
6218 break;
6221 if (sec == NULL)
6222 sec = h->call_stub;
6224 else if (h->call_stub != NULL)
6225 sec = h->call_stub;
6226 else
6227 sec = h->call_fp_stub;
6229 BFD_ASSERT (sec->_raw_size > 0);
6230 symbol = sec->output_section->vma + sec->output_offset;
6233 /* Calls from 16-bit code to 32-bit code and vice versa require the
6234 special jalx instruction. */
6235 *require_jalxp = (!info->relocateable
6236 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6238 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6239 local_sections, true);
6241 /* If we haven't already determined the GOT offset, or the GP value,
6242 and we're going to need it, get it now. */
6243 switch (r_type)
6245 case R_MIPS_CALL16:
6246 case R_MIPS_GOT16:
6247 case R_MIPS_GOT_DISP:
6248 case R_MIPS_GOT_HI16:
6249 case R_MIPS_CALL_HI16:
6250 case R_MIPS_GOT_LO16:
6251 case R_MIPS_CALL_LO16:
6252 /* Find the index into the GOT where this value is located. */
6253 if (!local_p)
6255 BFD_ASSERT (addend == 0);
6256 g = mips_elf_global_got_index
6257 (elf_hash_table (info)->dynobj,
6258 (struct elf_link_hash_entry *) h);
6259 if (! elf_hash_table(info)->dynamic_sections_created
6260 || (info->shared
6261 && (info->symbolic || h->root.dynindx == -1)
6262 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6264 /* This is a static link or a -Bsymbolic link. The
6265 symbol is defined locally, or was forced to be local.
6266 We must initialize this entry in the GOT. */
6267 asection *sgot = mips_elf_got_section(elf_hash_table
6268 (info)->dynobj);
6269 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6270 symbol + addend, sgot->contents + g);
6273 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6274 /* There's no need to create a local GOT entry here; the
6275 calculation for a local GOT16 entry does not involve G. */
6276 break;
6277 else
6279 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6280 if (g == (bfd_vma) -1)
6281 return false;
6284 /* Convert GOT indices to actual offsets. */
6285 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6286 abfd, g);
6287 break;
6289 case R_MIPS_HI16:
6290 case R_MIPS_LO16:
6291 case R_MIPS_GPREL16:
6292 case R_MIPS_GPREL32:
6293 case R_MIPS_LITERAL:
6294 gp0 = _bfd_get_gp_value (input_bfd);
6295 gp = _bfd_get_gp_value (abfd);
6296 break;
6298 default:
6299 break;
6302 /* Figure out what kind of relocation is being performed. */
6303 switch (r_type)
6305 case R_MIPS_NONE:
6306 return bfd_reloc_continue;
6308 case R_MIPS_16:
6309 value = symbol + mips_elf_sign_extend (addend, 16);
6310 overflowed_p = mips_elf_overflow_p (value, 16);
6311 break;
6313 case R_MIPS_32:
6314 case R_MIPS_REL32:
6315 case R_MIPS_64:
6316 if ((info->shared
6317 || (elf_hash_table (info)->dynamic_sections_created
6318 && h != NULL
6319 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6320 != 0)))
6321 && (input_section->flags & SEC_ALLOC) != 0)
6323 /* If we're creating a shared library, or this relocation is
6324 against a symbol in a shared library, then we can't know
6325 where the symbol will end up. So, we create a relocation
6326 record in the output, and leave the job up to the dynamic
6327 linker. */
6328 value = addend;
6329 if (!mips_elf_create_dynamic_relocation (abfd,
6330 info,
6331 relocation,
6333 sec,
6334 symbol,
6335 &value,
6336 input_section))
6337 return false;
6339 else
6341 if (r_type != R_MIPS_REL32)
6342 value = symbol + addend;
6343 else
6344 value = addend;
6346 value &= howto->dst_mask;
6347 break;
6349 case R_MIPS_PC32:
6350 case R_MIPS_PC64:
6351 case R_MIPS_GNU_REL_LO16:
6352 value = symbol + addend - p;
6353 value &= howto->dst_mask;
6354 break;
6356 case R_MIPS_GNU_REL16_S2:
6357 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6358 overflowed_p = mips_elf_overflow_p (value, 18);
6359 value = (value >> 2) & howto->dst_mask;
6360 break;
6362 case R_MIPS_GNU_REL_HI16:
6363 value = mips_elf_high (addend + symbol - p);
6364 value &= howto->dst_mask;
6365 break;
6367 case R_MIPS16_26:
6368 /* The calculation for R_MIPS16_26 is just the same as for an
6369 R_MIPS_26. It's only the storage of the relocated field into
6370 the output file that's different. That's handled in
6371 mips_elf_perform_relocation. So, we just fall through to the
6372 R_MIPS_26 case here. */
6373 case R_MIPS_26:
6374 if (local_p)
6375 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6376 else
6377 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6378 value &= howto->dst_mask;
6379 break;
6381 case R_MIPS_HI16:
6382 if (!gp_disp_p)
6384 value = mips_elf_high (addend + symbol);
6385 value &= howto->dst_mask;
6387 else
6389 value = mips_elf_high (addend + gp - p);
6390 overflowed_p = mips_elf_overflow_p (value, 16);
6392 break;
6394 case R_MIPS_LO16:
6395 if (!gp_disp_p)
6396 value = (symbol + addend) & howto->dst_mask;
6397 else
6399 value = addend + gp - p + 4;
6400 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6401 for overflow. But, on, say, Irix 5, relocations against
6402 _gp_disp are normally generated from the .cpload
6403 pseudo-op. It generates code that normally looks like
6404 this:
6406 lui $gp,%hi(_gp_disp)
6407 addiu $gp,$gp,%lo(_gp_disp)
6408 addu $gp,$gp,$t9
6410 Here $t9 holds the address of the function being called,
6411 as required by the MIPS ELF ABI. The R_MIPS_LO16
6412 relocation can easily overflow in this situation, but the
6413 R_MIPS_HI16 relocation will handle the overflow.
6414 Therefore, we consider this a bug in the MIPS ABI, and do
6415 not check for overflow here. */
6417 break;
6419 case R_MIPS_LITERAL:
6420 /* Because we don't merge literal sections, we can handle this
6421 just like R_MIPS_GPREL16. In the long run, we should merge
6422 shared literals, and then we will need to additional work
6423 here. */
6425 /* Fall through. */
6427 case R_MIPS16_GPREL:
6428 /* The R_MIPS16_GPREL performs the same calculation as
6429 R_MIPS_GPREL16, but stores the relocated bits in a different
6430 order. We don't need to do anything special here; the
6431 differences are handled in mips_elf_perform_relocation. */
6432 case R_MIPS_GPREL16:
6433 if (local_p)
6434 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6435 else
6436 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6437 overflowed_p = mips_elf_overflow_p (value, 16);
6438 break;
6440 case R_MIPS_GOT16:
6441 case R_MIPS_CALL16:
6442 if (local_p)
6444 boolean forced;
6446 /* The special case is when the symbol is forced to be local. We
6447 need the full address in the GOT since no R_MIPS_LO16 relocation
6448 follows. */
6449 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6450 local_sections, false);
6451 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6452 if (value == (bfd_vma) -1)
6453 return false;
6454 value
6455 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6456 abfd,
6457 value);
6458 overflowed_p = mips_elf_overflow_p (value, 16);
6459 break;
6462 /* Fall through. */
6464 case R_MIPS_GOT_DISP:
6465 value = g;
6466 overflowed_p = mips_elf_overflow_p (value, 16);
6467 break;
6469 case R_MIPS_GPREL32:
6470 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6471 break;
6473 case R_MIPS_PC16:
6474 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6475 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6476 overflowed_p = mips_elf_overflow_p (value, 16);
6477 break;
6479 case R_MIPS_GOT_HI16:
6480 case R_MIPS_CALL_HI16:
6481 /* We're allowed to handle these two relocations identically.
6482 The dynamic linker is allowed to handle the CALL relocations
6483 differently by creating a lazy evaluation stub. */
6484 value = g;
6485 value = mips_elf_high (value);
6486 value &= howto->dst_mask;
6487 break;
6489 case R_MIPS_GOT_LO16:
6490 case R_MIPS_CALL_LO16:
6491 value = g & howto->dst_mask;
6492 break;
6494 case R_MIPS_GOT_PAGE:
6495 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6496 if (value == (bfd_vma) -1)
6497 return false;
6498 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6499 abfd,
6500 value);
6501 overflowed_p = mips_elf_overflow_p (value, 16);
6502 break;
6504 case R_MIPS_GOT_OFST:
6505 mips_elf_got_page (abfd, info, symbol + addend, &value);
6506 overflowed_p = mips_elf_overflow_p (value, 16);
6507 break;
6509 case R_MIPS_SUB:
6510 value = symbol - addend;
6511 value &= howto->dst_mask;
6512 break;
6514 case R_MIPS_HIGHER:
6515 value = mips_elf_higher (addend + symbol);
6516 value &= howto->dst_mask;
6517 break;
6519 case R_MIPS_HIGHEST:
6520 value = mips_elf_highest (addend + symbol);
6521 value &= howto->dst_mask;
6522 break;
6524 case R_MIPS_SCN_DISP:
6525 value = symbol + addend - sec->output_offset;
6526 value &= howto->dst_mask;
6527 break;
6529 case R_MIPS_PJUMP:
6530 case R_MIPS_JALR:
6531 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6532 hint; we could improve performance by honoring that hint. */
6533 return bfd_reloc_continue;
6535 case R_MIPS_GNU_VTINHERIT:
6536 case R_MIPS_GNU_VTENTRY:
6537 /* We don't do anything with these at present. */
6538 return bfd_reloc_continue;
6540 default:
6541 /* An unrecognized relocation type. */
6542 return bfd_reloc_notsupported;
6545 /* Store the VALUE for our caller. */
6546 *valuep = value;
6547 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6550 /* Obtain the field relocated by RELOCATION. */
6552 static bfd_vma
6553 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6554 reloc_howto_type *howto;
6555 const Elf_Internal_Rela *relocation;
6556 bfd *input_bfd;
6557 bfd_byte *contents;
6559 bfd_vma x;
6560 bfd_byte *location = contents + relocation->r_offset;
6562 /* Obtain the bytes. */
6563 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6565 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6566 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6567 && bfd_little_endian (input_bfd))
6568 /* The two 16-bit words will be reversed on a little-endian
6569 system. See mips_elf_perform_relocation for more details. */
6570 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6572 return x;
6575 /* It has been determined that the result of the RELOCATION is the
6576 VALUE. Use HOWTO to place VALUE into the output file at the
6577 appropriate position. The SECTION is the section to which the
6578 relocation applies. If REQUIRE_JALX is true, then the opcode used
6579 for the relocation must be either JAL or JALX, and it is
6580 unconditionally converted to JALX.
6582 Returns false if anything goes wrong. */
6584 static boolean
6585 mips_elf_perform_relocation (info, howto, relocation, value,
6586 input_bfd, input_section,
6587 contents, require_jalx)
6588 struct bfd_link_info *info;
6589 reloc_howto_type *howto;
6590 const Elf_Internal_Rela *relocation;
6591 bfd_vma value;
6592 bfd *input_bfd;
6593 asection *input_section;
6594 bfd_byte *contents;
6595 boolean require_jalx;
6597 bfd_vma x;
6598 bfd_byte *location;
6599 int r_type = ELF32_R_TYPE (relocation->r_info);
6601 /* Figure out where the relocation is occurring. */
6602 location = contents + relocation->r_offset;
6604 /* Obtain the current value. */
6605 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6607 /* Clear the field we are setting. */
6608 x &= ~howto->dst_mask;
6610 /* If this is the R_MIPS16_26 relocation, we must store the
6611 value in a funny way. */
6612 if (r_type == R_MIPS16_26)
6614 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6615 Most mips16 instructions are 16 bits, but these instructions
6616 are 32 bits.
6618 The format of these instructions is:
6620 +--------------+--------------------------------+
6621 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6622 +--------------+--------------------------------+
6623 ! Immediate 15:0 !
6624 +-----------------------------------------------+
6626 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6627 Note that the immediate value in the first word is swapped.
6629 When producing a relocateable object file, R_MIPS16_26 is
6630 handled mostly like R_MIPS_26. In particular, the addend is
6631 stored as a straight 26-bit value in a 32-bit instruction.
6632 (gas makes life simpler for itself by never adjusting a
6633 R_MIPS16_26 reloc to be against a section, so the addend is
6634 always zero). However, the 32 bit instruction is stored as 2
6635 16-bit values, rather than a single 32-bit value. In a
6636 big-endian file, the result is the same; in a little-endian
6637 file, the two 16-bit halves of the 32 bit value are swapped.
6638 This is so that a disassembler can recognize the jal
6639 instruction.
6641 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6642 instruction stored as two 16-bit values. The addend A is the
6643 contents of the targ26 field. The calculation is the same as
6644 R_MIPS_26. When storing the calculated value, reorder the
6645 immediate value as shown above, and don't forget to store the
6646 value as two 16-bit values.
6648 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6649 defined as
6651 big-endian:
6652 +--------+----------------------+
6653 | | |
6654 | | targ26-16 |
6655 |31 26|25 0|
6656 +--------+----------------------+
6658 little-endian:
6659 +----------+------+-------------+
6660 | | | |
6661 | sub1 | | sub2 |
6662 |0 9|10 15|16 31|
6663 +----------+--------------------+
6664 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6665 ((sub1 << 16) | sub2)).
6667 When producing a relocateable object file, the calculation is
6668 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6669 When producing a fully linked file, the calculation is
6670 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6671 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6673 if (!info->relocateable)
6674 /* Shuffle the bits according to the formula above. */
6675 value = (((value & 0x1f0000) << 5)
6676 | ((value & 0x3e00000) >> 5)
6677 | (value & 0xffff));
6679 else if (r_type == R_MIPS16_GPREL)
6681 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6682 mode. A typical instruction will have a format like this:
6684 +--------------+--------------------------------+
6685 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6686 +--------------+--------------------------------+
6687 ! Major ! rx ! ry ! Imm 4:0 !
6688 +--------------+--------------------------------+
6690 EXTEND is the five bit value 11110. Major is the instruction
6691 opcode.
6693 This is handled exactly like R_MIPS_GPREL16, except that the
6694 addend is retrieved and stored as shown in this diagram; that
6695 is, the Imm fields above replace the V-rel16 field.
6697 All we need to do here is shuffle the bits appropriately. As
6698 above, the two 16-bit halves must be swapped on a
6699 little-endian system. */
6700 value = (((value & 0x7e0) << 16)
6701 | ((value & 0xf800) << 5)
6702 | (value & 0x1f));
6705 /* Set the field. */
6706 x |= (value & howto->dst_mask);
6708 /* If required, turn JAL into JALX. */
6709 if (require_jalx)
6711 boolean ok;
6712 bfd_vma opcode = x >> 26;
6713 bfd_vma jalx_opcode;
6715 /* Check to see if the opcode is already JAL or JALX. */
6716 if (r_type == R_MIPS16_26)
6718 ok = ((opcode == 0x6) || (opcode == 0x7));
6719 jalx_opcode = 0x7;
6721 else
6723 ok = ((opcode == 0x3) || (opcode == 0x1d));
6724 jalx_opcode = 0x1d;
6727 /* If the opcode is not JAL or JALX, there's a problem. */
6728 if (!ok)
6730 (*_bfd_error_handler)
6731 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6732 bfd_get_filename (input_bfd),
6733 input_section->name,
6734 (unsigned long) relocation->r_offset);
6735 bfd_set_error (bfd_error_bad_value);
6736 return false;
6739 /* Make this the JALX opcode. */
6740 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6743 /* Swap the high- and low-order 16 bits on little-endian systems
6744 when doing a MIPS16 relocation. */
6745 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6746 && bfd_little_endian (input_bfd))
6747 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6749 /* Put the value into the output. */
6750 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6751 return true;
6754 /* Returns true if SECTION is a MIPS16 stub section. */
6756 static boolean
6757 mips_elf_stub_section_p (abfd, section)
6758 bfd *abfd ATTRIBUTE_UNUSED;
6759 asection *section;
6761 const char *name = bfd_get_section_name (abfd, section);
6763 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6764 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6765 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6768 /* Relocate a MIPS ELF section. */
6770 boolean
6771 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6772 contents, relocs, local_syms, local_sections)
6773 bfd *output_bfd;
6774 struct bfd_link_info *info;
6775 bfd *input_bfd;
6776 asection *input_section;
6777 bfd_byte *contents;
6778 Elf_Internal_Rela *relocs;
6779 Elf_Internal_Sym *local_syms;
6780 asection **local_sections;
6782 Elf_Internal_Rela *rel;
6783 const Elf_Internal_Rela *relend;
6784 bfd_vma addend = 0;
6785 boolean use_saved_addend_p = false;
6786 struct elf_backend_data *bed;
6788 bed = get_elf_backend_data (output_bfd);
6789 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6790 for (rel = relocs; rel < relend; ++rel)
6792 const char *name;
6793 bfd_vma value;
6794 reloc_howto_type *howto;
6795 boolean require_jalx;
6796 /* True if the relocation is a RELA relocation, rather than a
6797 REL relocation. */
6798 boolean rela_relocation_p = true;
6799 int r_type = ELF32_R_TYPE (rel->r_info);
6800 const char * msg = (const char *) NULL;
6802 /* Find the relocation howto for this relocation. */
6803 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6805 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6806 64-bit code, but make sure all their addresses are in the
6807 lowermost or uppermost 32-bit section of the 64-bit address
6808 space. Thus, when they use an R_MIPS_64 they mean what is
6809 usually meant by R_MIPS_32, with the exception that the
6810 stored value is sign-extended to 64 bits. */
6811 howto = elf_mips_howto_table + R_MIPS_32;
6813 /* On big-endian systems, we need to lie about the position
6814 of the reloc. */
6815 if (bfd_big_endian (input_bfd))
6816 rel->r_offset += 4;
6818 else
6819 howto = mips_rtype_to_howto (r_type);
6821 if (!use_saved_addend_p)
6823 Elf_Internal_Shdr *rel_hdr;
6825 /* If these relocations were originally of the REL variety,
6826 we must pull the addend out of the field that will be
6827 relocated. Otherwise, we simply use the contents of the
6828 RELA relocation. To determine which flavor or relocation
6829 this is, we depend on the fact that the INPUT_SECTION's
6830 REL_HDR is read before its REL_HDR2. */
6831 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6832 if ((size_t) (rel - relocs)
6833 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6834 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6835 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6837 /* Note that this is a REL relocation. */
6838 rela_relocation_p = false;
6840 /* Get the addend, which is stored in the input file. */
6841 addend = mips_elf_obtain_contents (howto,
6842 rel,
6843 input_bfd,
6844 contents);
6845 addend &= howto->src_mask;
6847 /* For some kinds of relocations, the ADDEND is a
6848 combination of the addend stored in two different
6849 relocations. */
6850 if (r_type == R_MIPS_HI16
6851 || r_type == R_MIPS_GNU_REL_HI16
6852 || (r_type == R_MIPS_GOT16
6853 && mips_elf_local_relocation_p (input_bfd, rel,
6854 local_sections, false)))
6856 bfd_vma l;
6857 const Elf_Internal_Rela *lo16_relocation;
6858 reloc_howto_type *lo16_howto;
6859 int lo;
6861 /* The combined value is the sum of the HI16 addend,
6862 left-shifted by sixteen bits, and the LO16
6863 addend, sign extended. (Usually, the code does
6864 a `lui' of the HI16 value, and then an `addiu' of
6865 the LO16 value.)
6867 Scan ahead to find a matching LO16 relocation. */
6868 if (r_type == R_MIPS_GNU_REL_HI16)
6869 lo = R_MIPS_GNU_REL_LO16;
6870 else
6871 lo = R_MIPS_LO16;
6872 lo16_relocation
6873 = mips_elf_next_relocation (lo, rel, relend);
6874 if (lo16_relocation == NULL)
6875 return false;
6877 /* Obtain the addend kept there. */
6878 lo16_howto = mips_rtype_to_howto (lo);
6879 l = mips_elf_obtain_contents (lo16_howto,
6880 lo16_relocation,
6881 input_bfd, contents);
6882 l &= lo16_howto->src_mask;
6883 l = mips_elf_sign_extend (l, 16);
6885 addend <<= 16;
6887 /* Compute the combined addend. */
6888 addend += l;
6890 else if (r_type == R_MIPS16_GPREL)
6892 /* The addend is scrambled in the object file. See
6893 mips_elf_perform_relocation for details on the
6894 format. */
6895 addend = (((addend & 0x1f0000) >> 5)
6896 | ((addend & 0x7e00000) >> 16)
6897 | (addend & 0x1f));
6900 else
6901 addend = rel->r_addend;
6904 if (info->relocateable)
6906 Elf_Internal_Sym *sym;
6907 unsigned long r_symndx;
6909 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6910 && bfd_big_endian (input_bfd))
6911 rel->r_offset -= 4;
6913 /* Since we're just relocating, all we need to do is copy
6914 the relocations back out to the object file, unless
6915 they're against a section symbol, in which case we need
6916 to adjust by the section offset, or unless they're GP
6917 relative in which case we need to adjust by the amount
6918 that we're adjusting GP in this relocateable object. */
6920 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6921 false))
6922 /* There's nothing to do for non-local relocations. */
6923 continue;
6925 if (r_type == R_MIPS16_GPREL
6926 || r_type == R_MIPS_GPREL16
6927 || r_type == R_MIPS_GPREL32
6928 || r_type == R_MIPS_LITERAL)
6929 addend -= (_bfd_get_gp_value (output_bfd)
6930 - _bfd_get_gp_value (input_bfd));
6931 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6932 || r_type == R_MIPS_GNU_REL16_S2)
6933 /* The addend is stored without its two least
6934 significant bits (which are always zero.) In a
6935 non-relocateable link, calculate_relocation will do
6936 this shift; here, we must do it ourselves. */
6937 addend <<= 2;
6939 r_symndx = ELF32_R_SYM (rel->r_info);
6940 sym = local_syms + r_symndx;
6941 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6942 /* Adjust the addend appropriately. */
6943 addend += local_sections[r_symndx]->output_offset;
6945 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6946 then we only want to write out the high-order 16 bits.
6947 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6948 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6949 || r_type == R_MIPS_GNU_REL_HI16)
6950 addend = mips_elf_high (addend);
6951 /* If the relocation is for an R_MIPS_26 relocation, then
6952 the two low-order bits are not stored in the object file;
6953 they are implicitly zero. */
6954 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6955 || r_type == R_MIPS_GNU_REL16_S2)
6956 addend >>= 2;
6958 if (rela_relocation_p)
6959 /* If this is a RELA relocation, just update the addend.
6960 We have to cast away constness for REL. */
6961 rel->r_addend = addend;
6962 else
6964 /* Otherwise, we have to write the value back out. Note
6965 that we use the source mask, rather than the
6966 destination mask because the place to which we are
6967 writing will be source of the addend in the final
6968 link. */
6969 addend &= howto->src_mask;
6971 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6972 /* See the comment above about using R_MIPS_64 in the 32-bit
6973 ABI. Here, we need to update the addend. It would be
6974 possible to get away with just using the R_MIPS_32 reloc
6975 but for endianness. */
6977 bfd_vma sign_bits;
6978 bfd_vma low_bits;
6979 bfd_vma high_bits;
6981 if (addend & ((bfd_vma) 1 << 31))
6982 sign_bits = ((bfd_vma) 1 << 32) - 1;
6983 else
6984 sign_bits = 0;
6986 /* If we don't know that we have a 64-bit type,
6987 do two separate stores. */
6988 if (bfd_big_endian (input_bfd))
6990 /* Store the sign-bits (which are most significant)
6991 first. */
6992 low_bits = sign_bits;
6993 high_bits = addend;
6995 else
6997 low_bits = addend;
6998 high_bits = sign_bits;
7000 bfd_put_32 (input_bfd, low_bits,
7001 contents + rel->r_offset);
7002 bfd_put_32 (input_bfd, high_bits,
7003 contents + rel->r_offset + 4);
7004 continue;
7007 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7008 input_bfd, input_section,
7009 contents, false))
7010 return false;
7013 /* Go on to the next relocation. */
7014 continue;
7017 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7018 relocations for the same offset. In that case we are
7019 supposed to treat the output of each relocation as the addend
7020 for the next. */
7021 if (rel + 1 < relend
7022 && rel->r_offset == rel[1].r_offset
7023 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7024 use_saved_addend_p = true;
7025 else
7026 use_saved_addend_p = false;
7028 /* Figure out what value we are supposed to relocate. */
7029 switch (mips_elf_calculate_relocation (output_bfd,
7030 input_bfd,
7031 input_section,
7032 info,
7033 rel,
7034 addend,
7035 howto,
7036 local_syms,
7037 local_sections,
7038 &value,
7039 &name,
7040 &require_jalx))
7042 case bfd_reloc_continue:
7043 /* There's nothing to do. */
7044 continue;
7046 case bfd_reloc_undefined:
7047 /* mips_elf_calculate_relocation already called the
7048 undefined_symbol callback. There's no real point in
7049 trying to perform the relocation at this point, so we
7050 just skip ahead to the next relocation. */
7051 continue;
7053 case bfd_reloc_notsupported:
7054 msg = _("internal error: unsupported relocation error");
7055 info->callbacks->warning
7056 (info, msg, name, input_bfd, input_section, rel->r_offset);
7057 return false;
7059 case bfd_reloc_overflow:
7060 if (use_saved_addend_p)
7061 /* Ignore overflow until we reach the last relocation for
7062 a given location. */
7064 else
7066 BFD_ASSERT (name != NULL);
7067 if (! ((*info->callbacks->reloc_overflow)
7068 (info, name, howto->name, (bfd_vma) 0,
7069 input_bfd, input_section, rel->r_offset)))
7070 return false;
7072 break;
7074 case bfd_reloc_ok:
7075 break;
7077 default:
7078 abort ();
7079 break;
7082 /* If we've got another relocation for the address, keep going
7083 until we reach the last one. */
7084 if (use_saved_addend_p)
7086 addend = value;
7087 continue;
7090 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7091 /* See the comment above about using R_MIPS_64 in the 32-bit
7092 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7093 that calculated the right value. Now, however, we
7094 sign-extend the 32-bit result to 64-bits, and store it as a
7095 64-bit value. We are especially generous here in that we
7096 go to extreme lengths to support this usage on systems with
7097 only a 32-bit VMA. */
7099 bfd_vma sign_bits;
7100 bfd_vma low_bits;
7101 bfd_vma high_bits;
7103 if (value & ((bfd_vma) 1 << 31))
7104 sign_bits = ((bfd_vma) 1 << 32) - 1;
7105 else
7106 sign_bits = 0;
7108 /* If we don't know that we have a 64-bit type,
7109 do two separate stores. */
7110 if (bfd_big_endian (input_bfd))
7112 /* Undo what we did above. */
7113 rel->r_offset -= 4;
7114 /* Store the sign-bits (which are most significant)
7115 first. */
7116 low_bits = sign_bits;
7117 high_bits = value;
7119 else
7121 low_bits = value;
7122 high_bits = sign_bits;
7124 bfd_put_32 (input_bfd, low_bits,
7125 contents + rel->r_offset);
7126 bfd_put_32 (input_bfd, high_bits,
7127 contents + rel->r_offset + 4);
7128 continue;
7131 /* Actually perform the relocation. */
7132 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7133 input_section, contents,
7134 require_jalx))
7135 return false;
7138 return true;
7141 /* This hook function is called before the linker writes out a global
7142 symbol. We mark symbols as small common if appropriate. This is
7143 also where we undo the increment of the value for a mips16 symbol. */
7145 boolean
7146 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7147 bfd *abfd ATTRIBUTE_UNUSED;
7148 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7149 const char *name ATTRIBUTE_UNUSED;
7150 Elf_Internal_Sym *sym;
7151 asection *input_sec;
7153 /* If we see a common symbol, which implies a relocatable link, then
7154 if a symbol was small common in an input file, mark it as small
7155 common in the output file. */
7156 if (sym->st_shndx == SHN_COMMON
7157 && strcmp (input_sec->name, ".scommon") == 0)
7158 sym->st_shndx = SHN_MIPS_SCOMMON;
7160 if (sym->st_other == STO_MIPS16
7161 && (sym->st_value & 1) != 0)
7162 --sym->st_value;
7164 return true;
7167 /* Functions for the dynamic linker. */
7169 /* The name of the dynamic interpreter. This is put in the .interp
7170 section. */
7172 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7173 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7174 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7175 : "/usr/lib/libc.so.1")
7177 /* Create dynamic sections when linking against a dynamic object. */
7179 boolean
7180 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7181 bfd *abfd;
7182 struct bfd_link_info *info;
7184 struct elf_link_hash_entry *h;
7185 flagword flags;
7186 register asection *s;
7187 const char * const *namep;
7189 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7190 | SEC_LINKER_CREATED | SEC_READONLY);
7192 /* Mips ABI requests the .dynamic section to be read only. */
7193 s = bfd_get_section_by_name (abfd, ".dynamic");
7194 if (s != NULL)
7196 if (! bfd_set_section_flags (abfd, s, flags))
7197 return false;
7200 /* We need to create .got section. */
7201 if (! mips_elf_create_got_section (abfd, info))
7202 return false;
7204 /* Create the .msym section on IRIX6. It is used by the dynamic
7205 linker to speed up dynamic relocations, and to avoid computing
7206 the ELF hash for symbols. */
7207 if (IRIX_COMPAT (abfd) == ict_irix6
7208 && !mips_elf_create_msym_section (abfd))
7209 return false;
7211 /* Create .stub section. */
7212 if (bfd_get_section_by_name (abfd,
7213 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7215 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7216 if (s == NULL
7217 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7218 || ! bfd_set_section_alignment (abfd, s,
7219 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7220 return false;
7223 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7224 && !info->shared
7225 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7227 s = bfd_make_section (abfd, ".rld_map");
7228 if (s == NULL
7229 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7230 || ! bfd_set_section_alignment (abfd, s,
7231 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7232 return false;
7235 /* On IRIX5, we adjust add some additional symbols and change the
7236 alignments of several sections. There is no ABI documentation
7237 indicating that this is necessary on IRIX6, nor any evidence that
7238 the linker takes such action. */
7239 if (IRIX_COMPAT (abfd) == ict_irix5)
7241 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7243 h = NULL;
7244 if (! (_bfd_generic_link_add_one_symbol
7245 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7246 (bfd_vma) 0, (const char *) NULL, false,
7247 get_elf_backend_data (abfd)->collect,
7248 (struct bfd_link_hash_entry **) &h)))
7249 return false;
7250 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7251 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7252 h->type = STT_SECTION;
7254 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7255 return false;
7258 /* We need to create a .compact_rel section. */
7259 if (SGI_COMPAT (abfd))
7261 if (!mips_elf_create_compact_rel_section (abfd, info))
7262 return false;
7265 /* Change aligments of some sections. */
7266 s = bfd_get_section_by_name (abfd, ".hash");
7267 if (s != NULL)
7268 bfd_set_section_alignment (abfd, s, 4);
7269 s = bfd_get_section_by_name (abfd, ".dynsym");
7270 if (s != NULL)
7271 bfd_set_section_alignment (abfd, s, 4);
7272 s = bfd_get_section_by_name (abfd, ".dynstr");
7273 if (s != NULL)
7274 bfd_set_section_alignment (abfd, s, 4);
7275 s = bfd_get_section_by_name (abfd, ".reginfo");
7276 if (s != NULL)
7277 bfd_set_section_alignment (abfd, s, 4);
7278 s = bfd_get_section_by_name (abfd, ".dynamic");
7279 if (s != NULL)
7280 bfd_set_section_alignment (abfd, s, 4);
7283 if (!info->shared)
7285 h = NULL;
7286 if (SGI_COMPAT (abfd))
7288 if (!(_bfd_generic_link_add_one_symbol
7289 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7290 (bfd_vma) 0, (const char *) NULL, false,
7291 get_elf_backend_data (abfd)->collect,
7292 (struct bfd_link_hash_entry **) &h)))
7293 return false;
7295 else
7297 /* For normal mips it is _DYNAMIC_LINKING. */
7298 if (!(_bfd_generic_link_add_one_symbol
7299 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7300 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7301 get_elf_backend_data (abfd)->collect,
7302 (struct bfd_link_hash_entry **) &h)))
7303 return false;
7305 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7306 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7307 h->type = STT_SECTION;
7309 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7310 return false;
7312 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7314 /* __rld_map is a four byte word located in the .data section
7315 and is filled in by the rtld to contain a pointer to
7316 the _r_debug structure. Its symbol value will be set in
7317 mips_elf_finish_dynamic_symbol. */
7318 s = bfd_get_section_by_name (abfd, ".rld_map");
7319 BFD_ASSERT (s != NULL);
7321 h = NULL;
7322 if (SGI_COMPAT (abfd))
7324 if (!(_bfd_generic_link_add_one_symbol
7325 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7326 (bfd_vma) 0, (const char *) NULL, false,
7327 get_elf_backend_data (abfd)->collect,
7328 (struct bfd_link_hash_entry **) &h)))
7329 return false;
7331 else
7333 /* For normal mips the symbol is __RLD_MAP. */
7334 if (!(_bfd_generic_link_add_one_symbol
7335 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7336 (bfd_vma) 0, (const char *) NULL, false,
7337 get_elf_backend_data (abfd)->collect,
7338 (struct bfd_link_hash_entry **) &h)))
7339 return false;
7341 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7342 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7343 h->type = STT_OBJECT;
7345 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7346 return false;
7350 return true;
7353 /* Create the .compact_rel section. */
7355 static boolean
7356 mips_elf_create_compact_rel_section (abfd, info)
7357 bfd *abfd;
7358 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7360 flagword flags;
7361 register asection *s;
7363 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7365 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7366 | SEC_READONLY);
7368 s = bfd_make_section (abfd, ".compact_rel");
7369 if (s == NULL
7370 || ! bfd_set_section_flags (abfd, s, flags)
7371 || ! bfd_set_section_alignment (abfd, s,
7372 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7373 return false;
7375 s->_raw_size = sizeof (Elf32_External_compact_rel);
7378 return true;
7381 /* Create the .got section to hold the global offset table. */
7383 static boolean
7384 mips_elf_create_got_section (abfd, info)
7385 bfd *abfd;
7386 struct bfd_link_info *info;
7388 flagword flags;
7389 register asection *s;
7390 struct elf_link_hash_entry *h;
7391 struct mips_got_info *g;
7393 /* This function may be called more than once. */
7394 if (mips_elf_got_section (abfd))
7395 return true;
7397 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7398 | SEC_LINKER_CREATED);
7400 s = bfd_make_section (abfd, ".got");
7401 if (s == NULL
7402 || ! bfd_set_section_flags (abfd, s, flags)
7403 || ! bfd_set_section_alignment (abfd, s, 4))
7404 return false;
7406 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7407 linker script because we don't want to define the symbol if we
7408 are not creating a global offset table. */
7409 h = NULL;
7410 if (! (_bfd_generic_link_add_one_symbol
7411 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7412 (bfd_vma) 0, (const char *) NULL, false,
7413 get_elf_backend_data (abfd)->collect,
7414 (struct bfd_link_hash_entry **) &h)))
7415 return false;
7416 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7417 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7418 h->type = STT_OBJECT;
7420 if (info->shared
7421 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7422 return false;
7424 /* The first several global offset table entries are reserved. */
7425 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7427 g = (struct mips_got_info *) bfd_alloc (abfd,
7428 sizeof (struct mips_got_info));
7429 if (g == NULL)
7430 return false;
7431 g->global_gotsym = NULL;
7432 g->local_gotno = MIPS_RESERVED_GOTNO;
7433 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7434 if (elf_section_data (s) == NULL)
7436 s->used_by_bfd =
7437 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7438 if (elf_section_data (s) == NULL)
7439 return false;
7441 elf_section_data (s)->tdata = (PTR) g;
7442 elf_section_data (s)->this_hdr.sh_flags
7443 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7445 return true;
7448 /* Returns the .msym section for ABFD, creating it if it does not
7449 already exist. Returns NULL to indicate error. */
7451 static asection *
7452 mips_elf_create_msym_section (abfd)
7453 bfd *abfd;
7455 asection *s;
7457 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7458 if (!s)
7460 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7461 if (!s
7462 || !bfd_set_section_flags (abfd, s,
7463 SEC_ALLOC
7464 | SEC_LOAD
7465 | SEC_HAS_CONTENTS
7466 | SEC_LINKER_CREATED
7467 | SEC_READONLY)
7468 || !bfd_set_section_alignment (abfd, s,
7469 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7470 return NULL;
7473 return s;
7476 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7478 static void
7479 mips_elf_allocate_dynamic_relocations (abfd, n)
7480 bfd *abfd;
7481 unsigned int n;
7483 asection *s;
7485 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7486 BFD_ASSERT (s != NULL);
7488 if (s->_raw_size == 0)
7490 /* Make room for a null element. */
7491 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7492 ++s->reloc_count;
7494 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7497 /* Look through the relocs for a section during the first phase, and
7498 allocate space in the global offset table. */
7500 boolean
7501 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7502 bfd *abfd;
7503 struct bfd_link_info *info;
7504 asection *sec;
7505 const Elf_Internal_Rela *relocs;
7507 const char *name;
7508 bfd *dynobj;
7509 Elf_Internal_Shdr *symtab_hdr;
7510 struct elf_link_hash_entry **sym_hashes;
7511 struct mips_got_info *g;
7512 size_t extsymoff;
7513 const Elf_Internal_Rela *rel;
7514 const Elf_Internal_Rela *rel_end;
7515 asection *sgot;
7516 asection *sreloc;
7517 struct elf_backend_data *bed;
7519 if (info->relocateable)
7520 return true;
7522 dynobj = elf_hash_table (info)->dynobj;
7523 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7524 sym_hashes = elf_sym_hashes (abfd);
7525 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7527 /* Check for the mips16 stub sections. */
7529 name = bfd_get_section_name (abfd, sec);
7530 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7532 unsigned long r_symndx;
7534 /* Look at the relocation information to figure out which symbol
7535 this is for. */
7537 r_symndx = ELF32_R_SYM (relocs->r_info);
7539 if (r_symndx < extsymoff
7540 || sym_hashes[r_symndx - extsymoff] == NULL)
7542 asection *o;
7544 /* This stub is for a local symbol. This stub will only be
7545 needed if there is some relocation in this BFD, other
7546 than a 16 bit function call, which refers to this symbol. */
7547 for (o = abfd->sections; o != NULL; o = o->next)
7549 Elf_Internal_Rela *sec_relocs;
7550 const Elf_Internal_Rela *r, *rend;
7552 /* We can ignore stub sections when looking for relocs. */
7553 if ((o->flags & SEC_RELOC) == 0
7554 || o->reloc_count == 0
7555 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7556 sizeof FN_STUB - 1) == 0
7557 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7558 sizeof CALL_STUB - 1) == 0
7559 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7560 sizeof CALL_FP_STUB - 1) == 0)
7561 continue;
7563 sec_relocs = (_bfd_elf32_link_read_relocs
7564 (abfd, o, (PTR) NULL,
7565 (Elf_Internal_Rela *) NULL,
7566 info->keep_memory));
7567 if (sec_relocs == NULL)
7568 return false;
7570 rend = sec_relocs + o->reloc_count;
7571 for (r = sec_relocs; r < rend; r++)
7572 if (ELF32_R_SYM (r->r_info) == r_symndx
7573 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7574 break;
7576 if (! info->keep_memory)
7577 free (sec_relocs);
7579 if (r < rend)
7580 break;
7583 if (o == NULL)
7585 /* There is no non-call reloc for this stub, so we do
7586 not need it. Since this function is called before
7587 the linker maps input sections to output sections, we
7588 can easily discard it by setting the SEC_EXCLUDE
7589 flag. */
7590 sec->flags |= SEC_EXCLUDE;
7591 return true;
7594 /* Record this stub in an array of local symbol stubs for
7595 this BFD. */
7596 if (elf_tdata (abfd)->local_stubs == NULL)
7598 unsigned long symcount;
7599 asection **n;
7601 if (elf_bad_symtab (abfd))
7602 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7603 else
7604 symcount = symtab_hdr->sh_info;
7605 n = (asection **) bfd_zalloc (abfd,
7606 symcount * sizeof (asection *));
7607 if (n == NULL)
7608 return false;
7609 elf_tdata (abfd)->local_stubs = n;
7612 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7614 /* We don't need to set mips16_stubs_seen in this case.
7615 That flag is used to see whether we need to look through
7616 the global symbol table for stubs. We don't need to set
7617 it here, because we just have a local stub. */
7619 else
7621 struct mips_elf_link_hash_entry *h;
7623 h = ((struct mips_elf_link_hash_entry *)
7624 sym_hashes[r_symndx - extsymoff]);
7626 /* H is the symbol this stub is for. */
7628 h->fn_stub = sec;
7629 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7632 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7633 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7635 unsigned long r_symndx;
7636 struct mips_elf_link_hash_entry *h;
7637 asection **loc;
7639 /* Look at the relocation information to figure out which symbol
7640 this is for. */
7642 r_symndx = ELF32_R_SYM (relocs->r_info);
7644 if (r_symndx < extsymoff
7645 || sym_hashes[r_symndx - extsymoff] == NULL)
7647 /* This stub was actually built for a static symbol defined
7648 in the same file. We assume that all static symbols in
7649 mips16 code are themselves mips16, so we can simply
7650 discard this stub. Since this function is called before
7651 the linker maps input sections to output sections, we can
7652 easily discard it by setting the SEC_EXCLUDE flag. */
7653 sec->flags |= SEC_EXCLUDE;
7654 return true;
7657 h = ((struct mips_elf_link_hash_entry *)
7658 sym_hashes[r_symndx - extsymoff]);
7660 /* H is the symbol this stub is for. */
7662 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7663 loc = &h->call_fp_stub;
7664 else
7665 loc = &h->call_stub;
7667 /* If we already have an appropriate stub for this function, we
7668 don't need another one, so we can discard this one. Since
7669 this function is called before the linker maps input sections
7670 to output sections, we can easily discard it by setting the
7671 SEC_EXCLUDE flag. We can also discard this section if we
7672 happen to already know that this is a mips16 function; it is
7673 not necessary to check this here, as it is checked later, but
7674 it is slightly faster to check now. */
7675 if (*loc != NULL || h->root.other == STO_MIPS16)
7677 sec->flags |= SEC_EXCLUDE;
7678 return true;
7681 *loc = sec;
7682 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7685 if (dynobj == NULL)
7687 sgot = NULL;
7688 g = NULL;
7690 else
7692 sgot = mips_elf_got_section (dynobj);
7693 if (sgot == NULL)
7694 g = NULL;
7695 else
7697 BFD_ASSERT (elf_section_data (sgot) != NULL);
7698 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7699 BFD_ASSERT (g != NULL);
7703 sreloc = NULL;
7704 bed = get_elf_backend_data (abfd);
7705 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7706 for (rel = relocs; rel < rel_end; ++rel)
7708 unsigned long r_symndx;
7709 int r_type;
7710 struct elf_link_hash_entry *h;
7712 r_symndx = ELF32_R_SYM (rel->r_info);
7713 r_type = ELF32_R_TYPE (rel->r_info);
7715 if (r_symndx < extsymoff)
7716 h = NULL;
7717 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7719 (*_bfd_error_handler)
7720 (_("Malformed reloc detected for section %s"), name);
7721 bfd_set_error (bfd_error_bad_value);
7722 return false;
7724 else
7726 h = sym_hashes[r_symndx - extsymoff];
7728 /* This may be an indirect symbol created because of a version. */
7729 if (h != NULL)
7731 while (h->root.type == bfd_link_hash_indirect)
7732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7736 /* Some relocs require a global offset table. */
7737 if (dynobj == NULL || sgot == NULL)
7739 switch (r_type)
7741 case R_MIPS_GOT16:
7742 case R_MIPS_CALL16:
7743 case R_MIPS_CALL_HI16:
7744 case R_MIPS_CALL_LO16:
7745 case R_MIPS_GOT_HI16:
7746 case R_MIPS_GOT_LO16:
7747 case R_MIPS_GOT_PAGE:
7748 case R_MIPS_GOT_OFST:
7749 case R_MIPS_GOT_DISP:
7750 if (dynobj == NULL)
7751 elf_hash_table (info)->dynobj = dynobj = abfd;
7752 if (! mips_elf_create_got_section (dynobj, info))
7753 return false;
7754 g = mips_elf_got_info (dynobj, &sgot);
7755 break;
7757 case R_MIPS_32:
7758 case R_MIPS_REL32:
7759 case R_MIPS_64:
7760 if (dynobj == NULL
7761 && (info->shared || h != NULL)
7762 && (sec->flags & SEC_ALLOC) != 0)
7763 elf_hash_table (info)->dynobj = dynobj = abfd;
7764 break;
7766 default:
7767 break;
7771 if (!h && (r_type == R_MIPS_CALL_LO16
7772 || r_type == R_MIPS_GOT_LO16
7773 || r_type == R_MIPS_GOT_DISP))
7775 /* We may need a local GOT entry for this relocation. We
7776 don't count R_MIPS_GOT_PAGE because we can estimate the
7777 maximum number of pages needed by looking at the size of
7778 the segment. Similar comments apply to R_MIPS_GOT16 and
7779 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
7780 R_MIPS_CALL_HI16 because these are always followed by an
7781 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7783 This estimation is very conservative since we can merge
7784 duplicate entries in the GOT. In order to be less
7785 conservative, we could actually build the GOT here,
7786 rather than in relocate_section. */
7787 g->local_gotno++;
7788 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7791 switch (r_type)
7793 case R_MIPS_CALL16:
7794 if (h == NULL)
7796 (*_bfd_error_handler)
7797 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7798 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7799 bfd_set_error (bfd_error_bad_value);
7800 return false;
7802 /* Fall through. */
7804 case R_MIPS_CALL_HI16:
7805 case R_MIPS_CALL_LO16:
7806 if (h != NULL)
7808 /* This symbol requires a global offset table entry. */
7809 if (!mips_elf_record_global_got_symbol (h, info, g))
7810 return false;
7812 /* We need a stub, not a plt entry for the undefined
7813 function. But we record it as if it needs plt. See
7814 elf_adjust_dynamic_symbol in elflink.h. */
7815 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7816 h->type = STT_FUNC;
7818 break;
7820 case R_MIPS_GOT16:
7821 case R_MIPS_GOT_HI16:
7822 case R_MIPS_GOT_LO16:
7823 case R_MIPS_GOT_DISP:
7824 /* This symbol requires a global offset table entry. */
7825 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7826 return false;
7827 break;
7829 case R_MIPS_32:
7830 case R_MIPS_REL32:
7831 case R_MIPS_64:
7832 if ((info->shared || h != NULL)
7833 && (sec->flags & SEC_ALLOC) != 0)
7835 if (sreloc == NULL)
7837 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7839 sreloc = bfd_get_section_by_name (dynobj, name);
7840 if (sreloc == NULL)
7842 sreloc = bfd_make_section (dynobj, name);
7843 if (sreloc == NULL
7844 || ! bfd_set_section_flags (dynobj, sreloc,
7845 (SEC_ALLOC
7846 | SEC_LOAD
7847 | SEC_HAS_CONTENTS
7848 | SEC_IN_MEMORY
7849 | SEC_LINKER_CREATED
7850 | SEC_READONLY))
7851 || ! bfd_set_section_alignment (dynobj, sreloc,
7853 return false;
7856 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
7857 if (info->shared)
7859 /* When creating a shared object, we must copy these
7860 reloc types into the output file as R_MIPS_REL32
7861 relocs. We make room for this reloc in the
7862 .rel.dyn reloc section. */
7863 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7864 if ((sec->flags & MIPS_READONLY_SECTION)
7865 == MIPS_READONLY_SECTION)
7866 /* We tell the dynamic linker that there are
7867 relocations against the text segment. */
7868 info->flags |= DF_TEXTREL;
7870 else
7872 struct mips_elf_link_hash_entry *hmips;
7874 /* We only need to copy this reloc if the symbol is
7875 defined in a dynamic object. */
7876 hmips = (struct mips_elf_link_hash_entry *) h;
7877 ++hmips->possibly_dynamic_relocs;
7878 if ((sec->flags & MIPS_READONLY_SECTION)
7879 == MIPS_READONLY_SECTION)
7880 /* We need it to tell the dynamic linker if there
7881 are relocations against the text segment. */
7882 hmips->readonly_reloc = true;
7885 /* Even though we don't directly need a GOT entry for
7886 this symbol, a symbol must have a dynamic symbol
7887 table index greater that DT_MIPS_GOTSYM if there are
7888 dynamic relocations against it. */
7889 if (h != NULL
7890 && !mips_elf_record_global_got_symbol (h, info, g))
7891 return false;
7894 if (SGI_COMPAT (abfd))
7895 mips_elf_hash_table (info)->compact_rel_size +=
7896 sizeof (Elf32_External_crinfo);
7897 break;
7899 case R_MIPS_26:
7900 case R_MIPS_GPREL16:
7901 case R_MIPS_LITERAL:
7902 case R_MIPS_GPREL32:
7903 if (SGI_COMPAT (abfd))
7904 mips_elf_hash_table (info)->compact_rel_size +=
7905 sizeof (Elf32_External_crinfo);
7906 break;
7908 /* This relocation describes the C++ object vtable hierarchy.
7909 Reconstruct it for later use during GC. */
7910 case R_MIPS_GNU_VTINHERIT:
7911 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7912 return false;
7913 break;
7915 /* This relocation describes which C++ vtable entries are actually
7916 used. Record for later use during GC. */
7917 case R_MIPS_GNU_VTENTRY:
7918 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7919 return false;
7920 break;
7922 default:
7923 break;
7926 /* We must not create a stub for a symbol that has relocations
7927 related to taking the function's address. */
7928 switch (r_type)
7930 default:
7931 if (h != NULL)
7933 struct mips_elf_link_hash_entry *mh;
7935 mh = (struct mips_elf_link_hash_entry *) h;
7936 mh->no_fn_stub = true;
7938 break;
7939 case R_MIPS_CALL16:
7940 case R_MIPS_CALL_HI16:
7941 case R_MIPS_CALL_LO16:
7942 break;
7945 /* If this reloc is not a 16 bit call, and it has a global
7946 symbol, then we will need the fn_stub if there is one.
7947 References from a stub section do not count. */
7948 if (h != NULL
7949 && r_type != R_MIPS16_26
7950 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7951 sizeof FN_STUB - 1) != 0
7952 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7953 sizeof CALL_STUB - 1) != 0
7954 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7955 sizeof CALL_FP_STUB - 1) != 0)
7957 struct mips_elf_link_hash_entry *mh;
7959 mh = (struct mips_elf_link_hash_entry *) h;
7960 mh->need_fn_stub = true;
7964 return true;
7967 /* Return the section that should be marked against GC for a given
7968 relocation. */
7970 asection *
7971 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7972 bfd *abfd;
7973 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7974 Elf_Internal_Rela *rel;
7975 struct elf_link_hash_entry *h;
7976 Elf_Internal_Sym *sym;
7978 /* ??? Do mips16 stub sections need to be handled special? */
7980 if (h != NULL)
7982 switch (ELF32_R_TYPE (rel->r_info))
7984 case R_MIPS_GNU_VTINHERIT:
7985 case R_MIPS_GNU_VTENTRY:
7986 break;
7988 default:
7989 switch (h->root.type)
7991 case bfd_link_hash_defined:
7992 case bfd_link_hash_defweak:
7993 return h->root.u.def.section;
7995 case bfd_link_hash_common:
7996 return h->root.u.c.p->section;
7998 default:
7999 break;
8003 else
8005 if (!(elf_bad_symtab (abfd)
8006 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8007 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
8008 && sym->st_shndx != SHN_COMMON))
8010 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8014 return NULL;
8017 /* Update the got entry reference counts for the section being removed. */
8019 boolean
8020 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8021 bfd *abfd ATTRIBUTE_UNUSED;
8022 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8023 asection *sec ATTRIBUTE_UNUSED;
8024 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8026 #if 0
8027 Elf_Internal_Shdr *symtab_hdr;
8028 struct elf_link_hash_entry **sym_hashes;
8029 bfd_signed_vma *local_got_refcounts;
8030 const Elf_Internal_Rela *rel, *relend;
8031 unsigned long r_symndx;
8032 struct elf_link_hash_entry *h;
8034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8035 sym_hashes = elf_sym_hashes (abfd);
8036 local_got_refcounts = elf_local_got_refcounts (abfd);
8038 relend = relocs + sec->reloc_count;
8039 for (rel = relocs; rel < relend; rel++)
8040 switch (ELF32_R_TYPE (rel->r_info))
8042 case R_MIPS_GOT16:
8043 case R_MIPS_CALL16:
8044 case R_MIPS_CALL_HI16:
8045 case R_MIPS_CALL_LO16:
8046 case R_MIPS_GOT_HI16:
8047 case R_MIPS_GOT_LO16:
8048 /* ??? It would seem that the existing MIPS code does no sort
8049 of reference counting or whatnot on its GOT and PLT entries,
8050 so it is not possible to garbage collect them at this time. */
8051 break;
8053 default:
8054 break;
8056 #endif
8058 return true;
8061 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8062 hiding the old indirect symbol. Process additional relocation
8063 information. */
8065 void
8066 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8067 struct elf_link_hash_entry *dir, *ind;
8069 struct mips_elf_link_hash_entry *dirmips, *indmips;
8071 _bfd_elf_link_hash_copy_indirect (dir, ind);
8073 dirmips = (struct mips_elf_link_hash_entry *) dir;
8074 indmips = (struct mips_elf_link_hash_entry *) ind;
8075 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8076 if (indmips->readonly_reloc)
8077 dirmips->readonly_reloc = true;
8078 if (dirmips->min_dyn_reloc_index == 0
8079 || (indmips->min_dyn_reloc_index != 0
8080 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8081 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8082 if (indmips->no_fn_stub)
8083 dirmips->no_fn_stub = true;
8086 /* Adjust a symbol defined by a dynamic object and referenced by a
8087 regular object. The current definition is in some section of the
8088 dynamic object, but we're not including those sections. We have to
8089 change the definition to something the rest of the link can
8090 understand. */
8092 boolean
8093 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8094 struct bfd_link_info *info;
8095 struct elf_link_hash_entry *h;
8097 bfd *dynobj;
8098 struct mips_elf_link_hash_entry *hmips;
8099 asection *s;
8101 dynobj = elf_hash_table (info)->dynobj;
8103 /* Make sure we know what is going on here. */
8104 BFD_ASSERT (dynobj != NULL
8105 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8106 || h->weakdef != NULL
8107 || ((h->elf_link_hash_flags
8108 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8109 && (h->elf_link_hash_flags
8110 & ELF_LINK_HASH_REF_REGULAR) != 0
8111 && (h->elf_link_hash_flags
8112 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8114 /* If this symbol is defined in a dynamic object, we need to copy
8115 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8116 file. */
8117 hmips = (struct mips_elf_link_hash_entry *) h;
8118 if (! info->relocateable
8119 && hmips->possibly_dynamic_relocs != 0
8120 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8122 mips_elf_allocate_dynamic_relocations (dynobj,
8123 hmips->possibly_dynamic_relocs);
8124 if (hmips->readonly_reloc)
8125 /* We tell the dynamic linker that there are relocations
8126 against the text segment. */
8127 info->flags |= DF_TEXTREL;
8130 /* For a function, create a stub, if allowed. */
8131 if (! hmips->no_fn_stub
8132 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8134 if (! elf_hash_table (info)->dynamic_sections_created)
8135 return true;
8137 /* If this symbol is not defined in a regular file, then set
8138 the symbol to the stub location. This is required to make
8139 function pointers compare as equal between the normal
8140 executable and the shared library. */
8141 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8143 /* We need .stub section. */
8144 s = bfd_get_section_by_name (dynobj,
8145 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8146 BFD_ASSERT (s != NULL);
8148 h->root.u.def.section = s;
8149 h->root.u.def.value = s->_raw_size;
8151 /* XXX Write this stub address somewhere. */
8152 h->plt.offset = s->_raw_size;
8154 /* Make room for this stub code. */
8155 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8157 /* The last half word of the stub will be filled with the index
8158 of this symbol in .dynsym section. */
8159 return true;
8162 else if ((h->type == STT_FUNC)
8163 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8165 /* This will set the entry for this symbol in the GOT to 0, and
8166 the dynamic linker will take care of this. */
8167 h->root.u.def.value = 0;
8168 return true;
8171 /* If this is a weak symbol, and there is a real definition, the
8172 processor independent code will have arranged for us to see the
8173 real definition first, and we can just use the same value. */
8174 if (h->weakdef != NULL)
8176 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8177 || h->weakdef->root.type == bfd_link_hash_defweak);
8178 h->root.u.def.section = h->weakdef->root.u.def.section;
8179 h->root.u.def.value = h->weakdef->root.u.def.value;
8180 return true;
8183 /* This is a reference to a symbol defined by a dynamic object which
8184 is not a function. */
8186 return true;
8189 /* This function is called after all the input files have been read,
8190 and the input sections have been assigned to output sections. We
8191 check for any mips16 stub sections that we can discard. */
8193 static boolean mips_elf_check_mips16_stubs
8194 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8196 boolean
8197 _bfd_mips_elf_always_size_sections (output_bfd, info)
8198 bfd *output_bfd;
8199 struct bfd_link_info *info;
8201 asection *ri;
8203 /* The .reginfo section has a fixed size. */
8204 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8205 if (ri != NULL)
8206 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8208 if (info->relocateable
8209 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8210 return true;
8212 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8213 mips_elf_check_mips16_stubs,
8214 (PTR) NULL);
8216 return true;
8219 /* Check the mips16 stubs for a particular symbol, and see if we can
8220 discard them. */
8222 static boolean
8223 mips_elf_check_mips16_stubs (h, data)
8224 struct mips_elf_link_hash_entry *h;
8225 PTR data ATTRIBUTE_UNUSED;
8227 if (h->fn_stub != NULL
8228 && ! h->need_fn_stub)
8230 /* We don't need the fn_stub; the only references to this symbol
8231 are 16 bit calls. Clobber the size to 0 to prevent it from
8232 being included in the link. */
8233 h->fn_stub->_raw_size = 0;
8234 h->fn_stub->_cooked_size = 0;
8235 h->fn_stub->flags &= ~SEC_RELOC;
8236 h->fn_stub->reloc_count = 0;
8237 h->fn_stub->flags |= SEC_EXCLUDE;
8240 if (h->call_stub != NULL
8241 && h->root.other == STO_MIPS16)
8243 /* We don't need the call_stub; this is a 16 bit function, so
8244 calls from other 16 bit functions are OK. Clobber the size
8245 to 0 to prevent it from being included in the link. */
8246 h->call_stub->_raw_size = 0;
8247 h->call_stub->_cooked_size = 0;
8248 h->call_stub->flags &= ~SEC_RELOC;
8249 h->call_stub->reloc_count = 0;
8250 h->call_stub->flags |= SEC_EXCLUDE;
8253 if (h->call_fp_stub != NULL
8254 && h->root.other == STO_MIPS16)
8256 /* We don't need the call_stub; this is a 16 bit function, so
8257 calls from other 16 bit functions are OK. Clobber the size
8258 to 0 to prevent it from being included in the link. */
8259 h->call_fp_stub->_raw_size = 0;
8260 h->call_fp_stub->_cooked_size = 0;
8261 h->call_fp_stub->flags &= ~SEC_RELOC;
8262 h->call_fp_stub->reloc_count = 0;
8263 h->call_fp_stub->flags |= SEC_EXCLUDE;
8266 return true;
8269 /* Set the sizes of the dynamic sections. */
8271 boolean
8272 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8273 bfd *output_bfd;
8274 struct bfd_link_info *info;
8276 bfd *dynobj;
8277 asection *s;
8278 boolean reltext;
8279 struct mips_got_info *g = NULL;
8281 dynobj = elf_hash_table (info)->dynobj;
8282 BFD_ASSERT (dynobj != NULL);
8284 if (elf_hash_table (info)->dynamic_sections_created)
8286 /* Set the contents of the .interp section to the interpreter. */
8287 if (! info->shared)
8289 s = bfd_get_section_by_name (dynobj, ".interp");
8290 BFD_ASSERT (s != NULL);
8291 s->_raw_size
8292 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8293 s->contents
8294 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8298 /* The check_relocs and adjust_dynamic_symbol entry points have
8299 determined the sizes of the various dynamic sections. Allocate
8300 memory for them. */
8301 reltext = false;
8302 for (s = dynobj->sections; s != NULL; s = s->next)
8304 const char *name;
8305 boolean strip;
8307 /* It's OK to base decisions on the section name, because none
8308 of the dynobj section names depend upon the input files. */
8309 name = bfd_get_section_name (dynobj, s);
8311 if ((s->flags & SEC_LINKER_CREATED) == 0)
8312 continue;
8314 strip = false;
8316 if (strncmp (name, ".rel", 4) == 0)
8318 if (s->_raw_size == 0)
8320 /* We only strip the section if the output section name
8321 has the same name. Otherwise, there might be several
8322 input sections for this output section. FIXME: This
8323 code is probably not needed these days anyhow, since
8324 the linker now does not create empty output sections. */
8325 if (s->output_section != NULL
8326 && strcmp (name,
8327 bfd_get_section_name (s->output_section->owner,
8328 s->output_section)) == 0)
8329 strip = true;
8331 else
8333 const char *outname;
8334 asection *target;
8336 /* If this relocation section applies to a read only
8337 section, then we probably need a DT_TEXTREL entry.
8338 If the relocation section is .rel.dyn, we always
8339 assert a DT_TEXTREL entry rather than testing whether
8340 there exists a relocation to a read only section or
8341 not. */
8342 outname = bfd_get_section_name (output_bfd,
8343 s->output_section);
8344 target = bfd_get_section_by_name (output_bfd, outname + 4);
8345 if ((target != NULL
8346 && (target->flags & SEC_READONLY) != 0
8347 && (target->flags & SEC_ALLOC) != 0)
8348 || strcmp (outname,
8349 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8350 reltext = true;
8352 /* We use the reloc_count field as a counter if we need
8353 to copy relocs into the output file. */
8354 if (strcmp (name,
8355 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8356 s->reloc_count = 0;
8359 else if (strncmp (name, ".got", 4) == 0)
8361 int i;
8362 bfd_size_type loadable_size = 0;
8363 bfd_size_type local_gotno;
8364 bfd *sub;
8366 BFD_ASSERT (elf_section_data (s) != NULL);
8367 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8368 BFD_ASSERT (g != NULL);
8370 /* Calculate the total loadable size of the output. That
8371 will give us the maximum number of GOT_PAGE entries
8372 required. */
8373 for (sub = info->input_bfds; sub; sub = sub->link_next)
8375 asection *subsection;
8377 for (subsection = sub->sections;
8378 subsection;
8379 subsection = subsection->next)
8381 if ((subsection->flags & SEC_ALLOC) == 0)
8382 continue;
8383 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8386 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8388 /* Assume there are two loadable segments consisting of
8389 contiguous sections. Is 5 enough? */
8390 local_gotno = (loadable_size >> 16) + 5;
8391 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8392 /* It's possible we will need GOT_PAGE entries as well as
8393 GOT16 entries. Often, these will be able to share GOT
8394 entries, but not always. */
8395 local_gotno *= 2;
8397 g->local_gotno += local_gotno;
8398 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8400 /* There has to be a global GOT entry for every symbol with
8401 a dynamic symbol table index of DT_MIPS_GOTSYM or
8402 higher. Therefore, it make sense to put those symbols
8403 that need GOT entries at the end of the symbol table. We
8404 do that here. */
8405 if (!mips_elf_sort_hash_table (info, 1))
8406 return false;
8408 if (g->global_gotsym != NULL)
8409 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8410 else
8411 /* If there are no global symbols, or none requiring
8412 relocations, then GLOBAL_GOTSYM will be NULL. */
8413 i = 0;
8414 g->global_gotno = i;
8415 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8417 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8419 /* Irix rld assumes that the function stub isn't at the end
8420 of .text section. So put a dummy. XXX */
8421 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8423 else if (! info->shared
8424 && ! mips_elf_hash_table (info)->use_rld_obj_head
8425 && strncmp (name, ".rld_map", 8) == 0)
8427 /* We add a room for __rld_map. It will be filled in by the
8428 rtld to contain a pointer to the _r_debug structure. */
8429 s->_raw_size += 4;
8431 else if (SGI_COMPAT (output_bfd)
8432 && strncmp (name, ".compact_rel", 12) == 0)
8433 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8434 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8435 == 0)
8436 s->_raw_size = (sizeof (Elf32_External_Msym)
8437 * (elf_hash_table (info)->dynsymcount
8438 + bfd_count_sections (output_bfd)));
8439 else if (strncmp (name, ".init", 5) != 0)
8441 /* It's not one of our sections, so don't allocate space. */
8442 continue;
8445 if (strip)
8447 _bfd_strip_section_from_output (info, s);
8448 continue;
8451 /* Allocate memory for the section contents. */
8452 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8453 if (s->contents == NULL && s->_raw_size != 0)
8455 bfd_set_error (bfd_error_no_memory);
8456 return false;
8460 if (elf_hash_table (info)->dynamic_sections_created)
8462 /* Add some entries to the .dynamic section. We fill in the
8463 values later, in elf_mips_finish_dynamic_sections, but we
8464 must add the entries now so that we get the correct size for
8465 the .dynamic section. The DT_DEBUG entry is filled in by the
8466 dynamic linker and used by the debugger. */
8467 if (! info->shared)
8469 /* SGI object has the equivalence of DT_DEBUG in the
8470 DT_MIPS_RLD_MAP entry. */
8471 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8472 return false;
8473 if (!SGI_COMPAT (output_bfd))
8475 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8476 return false;
8479 else
8481 /* Shared libraries on traditional mips have DT_DEBUG. */
8482 if (!SGI_COMPAT (output_bfd))
8484 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8485 return false;
8489 if (reltext && SGI_COMPAT (output_bfd))
8490 info->flags |= DF_TEXTREL;
8492 if ((info->flags & DF_TEXTREL) != 0)
8494 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8495 return false;
8498 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8499 return false;
8501 if (bfd_get_section_by_name (dynobj,
8502 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8504 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8505 return false;
8507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8508 return false;
8510 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8511 return false;
8514 if (SGI_COMPAT (output_bfd))
8516 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8517 return false;
8520 if (SGI_COMPAT (output_bfd))
8522 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8523 return false;
8526 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8528 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8529 return false;
8531 s = bfd_get_section_by_name (dynobj, ".liblist");
8532 BFD_ASSERT (s != NULL);
8534 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8535 return false;
8538 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8539 return false;
8541 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8542 return false;
8544 #if 0
8545 /* Time stamps in executable files are a bad idea. */
8546 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8547 return false;
8548 #endif
8550 #if 0 /* FIXME */
8551 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8552 return false;
8553 #endif
8555 #if 0 /* FIXME */
8556 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8557 return false;
8558 #endif
8560 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8561 return false;
8563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8564 return false;
8566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8567 return false;
8569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8570 return false;
8572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8573 return false;
8575 if (IRIX_COMPAT (dynobj) == ict_irix5
8576 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8577 return false;
8579 if (IRIX_COMPAT (dynobj) == ict_irix6
8580 && (bfd_get_section_by_name
8581 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8582 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8583 return false;
8585 if (bfd_get_section_by_name (dynobj,
8586 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8587 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8588 return false;
8591 return true;
8594 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8595 adjust it appropriately now. */
8597 static void
8598 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8599 bfd *abfd ATTRIBUTE_UNUSED;
8600 const char *name;
8601 Elf_Internal_Sym *sym;
8603 /* The linker script takes care of providing names and values for
8604 these, but we must place them into the right sections. */
8605 static const char* const text_section_symbols[] = {
8606 "_ftext",
8607 "_etext",
8608 "__dso_displacement",
8609 "__elf_header",
8610 "__program_header_table",
8611 NULL
8614 static const char* const data_section_symbols[] = {
8615 "_fdata",
8616 "_edata",
8617 "_end",
8618 "_fbss",
8619 NULL
8622 const char* const *p;
8623 int i;
8625 for (i = 0; i < 2; ++i)
8626 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8628 ++p)
8629 if (strcmp (*p, name) == 0)
8631 /* All of these symbols are given type STT_SECTION by the
8632 IRIX6 linker. */
8633 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8635 /* The IRIX linker puts these symbols in special sections. */
8636 if (i == 0)
8637 sym->st_shndx = SHN_MIPS_TEXT;
8638 else
8639 sym->st_shndx = SHN_MIPS_DATA;
8641 break;
8645 /* Finish up dynamic symbol handling. We set the contents of various
8646 dynamic sections here. */
8648 boolean
8649 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8650 bfd *output_bfd;
8651 struct bfd_link_info *info;
8652 struct elf_link_hash_entry *h;
8653 Elf_Internal_Sym *sym;
8655 bfd *dynobj;
8656 bfd_vma gval;
8657 asection *sgot;
8658 asection *smsym;
8659 struct mips_got_info *g;
8660 const char *name;
8661 struct mips_elf_link_hash_entry *mh;
8663 dynobj = elf_hash_table (info)->dynobj;
8664 gval = sym->st_value;
8665 mh = (struct mips_elf_link_hash_entry *) h;
8667 if (h->plt.offset != (bfd_vma) -1)
8669 asection *s;
8670 bfd_byte *p;
8671 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8673 /* This symbol has a stub. Set it up. */
8675 BFD_ASSERT (h->dynindx != -1);
8677 s = bfd_get_section_by_name (dynobj,
8678 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8679 BFD_ASSERT (s != NULL);
8681 /* Fill the stub. */
8682 p = stub;
8683 bfd_put_32 (output_bfd, STUB_LW (output_bfd), p);
8684 p += 4;
8685 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), p);
8686 p += 4;
8688 /* FIXME: Can h->dynindex be more than 64K? */
8689 if (h->dynindx & 0xffff0000)
8690 return false;
8692 bfd_put_32 (output_bfd, STUB_JALR, p);
8693 p += 4;
8694 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, p);
8696 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8697 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8699 /* Mark the symbol as undefined. plt.offset != -1 occurs
8700 only for the referenced symbol. */
8701 sym->st_shndx = SHN_UNDEF;
8703 /* The run-time linker uses the st_value field of the symbol
8704 to reset the global offset table entry for this external
8705 to its stub address when unlinking a shared object. */
8706 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8707 sym->st_value = gval;
8710 BFD_ASSERT (h->dynindx != -1
8711 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8713 sgot = mips_elf_got_section (dynobj);
8714 BFD_ASSERT (sgot != NULL);
8715 BFD_ASSERT (elf_section_data (sgot) != NULL);
8716 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8717 BFD_ASSERT (g != NULL);
8719 /* Run through the global symbol table, creating GOT entries for all
8720 the symbols that need them. */
8721 if (g->global_gotsym != NULL
8722 && h->dynindx >= g->global_gotsym->dynindx)
8724 bfd_vma offset;
8725 bfd_vma value;
8727 if (sym->st_value)
8728 value = sym->st_value;
8729 else
8731 /* For an entity defined in a shared object, this will be
8732 NULL. (For functions in shared objects for
8733 which we have created stubs, ST_VALUE will be non-NULL.
8734 That's because such the functions are now no longer defined
8735 in a shared object.) */
8737 if (info->shared && h->root.type == bfd_link_hash_undefined)
8738 value = 0;
8739 else
8740 value = h->root.u.def.value;
8742 offset = mips_elf_global_got_index (dynobj, h);
8743 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8746 /* Create a .msym entry, if appropriate. */
8747 smsym = bfd_get_section_by_name (dynobj,
8748 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8749 if (smsym)
8751 Elf32_Internal_Msym msym;
8753 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8754 /* It is undocumented what the `1' indicates, but IRIX6 uses
8755 this value. */
8756 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8757 bfd_mips_elf_swap_msym_out
8758 (dynobj, &msym,
8759 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8762 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8763 name = h->root.root.string;
8764 if (strcmp (name, "_DYNAMIC") == 0
8765 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8766 sym->st_shndx = SHN_ABS;
8767 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8768 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8770 sym->st_shndx = SHN_ABS;
8771 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8772 sym->st_value = 1;
8774 else if (strcmp (name, "_gp_disp") == 0)
8776 sym->st_shndx = SHN_ABS;
8777 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8778 sym->st_value = elf_gp (output_bfd);
8780 else if (SGI_COMPAT (output_bfd))
8782 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8783 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8785 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8786 sym->st_other = STO_PROTECTED;
8787 sym->st_value = 0;
8788 sym->st_shndx = SHN_MIPS_DATA;
8790 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8792 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8793 sym->st_other = STO_PROTECTED;
8794 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8795 sym->st_shndx = SHN_ABS;
8797 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8799 if (h->type == STT_FUNC)
8800 sym->st_shndx = SHN_MIPS_TEXT;
8801 else if (h->type == STT_OBJECT)
8802 sym->st_shndx = SHN_MIPS_DATA;
8806 /* Handle the IRIX6-specific symbols. */
8807 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8808 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8810 if (! info->shared)
8812 if (! mips_elf_hash_table (info)->use_rld_obj_head
8813 && (strcmp (name, "__rld_map") == 0
8814 || strcmp (name, "__RLD_MAP") == 0))
8816 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8817 BFD_ASSERT (s != NULL);
8818 sym->st_value = s->output_section->vma + s->output_offset;
8819 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8820 if (mips_elf_hash_table (info)->rld_value == 0)
8821 mips_elf_hash_table (info)->rld_value = sym->st_value;
8823 else if (mips_elf_hash_table (info)->use_rld_obj_head
8824 && strcmp (name, "__rld_obj_head") == 0)
8826 /* IRIX6 does not use a .rld_map section. */
8827 if (IRIX_COMPAT (output_bfd) == ict_irix5
8828 || IRIX_COMPAT (output_bfd) == ict_none)
8829 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8830 != NULL);
8831 mips_elf_hash_table (info)->rld_value = sym->st_value;
8835 /* If this is a mips16 symbol, force the value to be even. */
8836 if (sym->st_other == STO_MIPS16
8837 && (sym->st_value & 1) != 0)
8838 --sym->st_value;
8840 return true;
8843 /* Finish up the dynamic sections. */
8845 boolean
8846 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8847 bfd *output_bfd;
8848 struct bfd_link_info *info;
8850 bfd *dynobj;
8851 asection *sdyn;
8852 asection *sgot;
8853 struct mips_got_info *g;
8855 dynobj = elf_hash_table (info)->dynobj;
8857 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8859 sgot = mips_elf_got_section (dynobj);
8860 if (sgot == NULL)
8861 g = NULL;
8862 else
8864 BFD_ASSERT (elf_section_data (sgot) != NULL);
8865 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8866 BFD_ASSERT (g != NULL);
8869 if (elf_hash_table (info)->dynamic_sections_created)
8871 bfd_byte *b;
8873 BFD_ASSERT (sdyn != NULL);
8874 BFD_ASSERT (g != NULL);
8876 for (b = sdyn->contents;
8877 b < sdyn->contents + sdyn->_raw_size;
8878 b += MIPS_ELF_DYN_SIZE (dynobj))
8880 Elf_Internal_Dyn dyn;
8881 const char *name;
8882 size_t elemsize;
8883 asection *s;
8884 boolean swap_out_p;
8886 /* Read in the current dynamic entry. */
8887 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8889 /* Assume that we're going to modify it and write it out. */
8890 swap_out_p = true;
8892 switch (dyn.d_tag)
8894 case DT_RELENT:
8895 s = (bfd_get_section_by_name
8896 (dynobj,
8897 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8898 BFD_ASSERT (s != NULL);
8899 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8900 break;
8902 case DT_STRSZ:
8903 /* Rewrite DT_STRSZ. */
8904 dyn.d_un.d_val =
8905 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8906 break;
8908 case DT_PLTGOT:
8909 name = ".got";
8910 goto get_vma;
8911 case DT_MIPS_CONFLICT:
8912 name = ".conflict";
8913 goto get_vma;
8914 case DT_MIPS_LIBLIST:
8915 name = ".liblist";
8916 get_vma:
8917 s = bfd_get_section_by_name (output_bfd, name);
8918 BFD_ASSERT (s != NULL);
8919 dyn.d_un.d_ptr = s->vma;
8920 break;
8922 case DT_MIPS_RLD_VERSION:
8923 dyn.d_un.d_val = 1; /* XXX */
8924 break;
8926 case DT_MIPS_FLAGS:
8927 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8928 break;
8930 case DT_MIPS_CONFLICTNO:
8931 name = ".conflict";
8932 elemsize = sizeof (Elf32_Conflict);
8933 goto set_elemno;
8935 case DT_MIPS_LIBLISTNO:
8936 name = ".liblist";
8937 elemsize = sizeof (Elf32_Lib);
8938 set_elemno:
8939 s = bfd_get_section_by_name (output_bfd, name);
8940 if (s != NULL)
8942 if (s->_cooked_size != 0)
8943 dyn.d_un.d_val = s->_cooked_size / elemsize;
8944 else
8945 dyn.d_un.d_val = s->_raw_size / elemsize;
8947 else
8948 dyn.d_un.d_val = 0;
8949 break;
8951 case DT_MIPS_TIME_STAMP:
8952 time ((time_t *) &dyn.d_un.d_val);
8953 break;
8955 case DT_MIPS_ICHECKSUM:
8956 /* XXX FIXME: */
8957 swap_out_p = false;
8958 break;
8960 case DT_MIPS_IVERSION:
8961 /* XXX FIXME: */
8962 swap_out_p = false;
8963 break;
8965 case DT_MIPS_BASE_ADDRESS:
8966 s = output_bfd->sections;
8967 BFD_ASSERT (s != NULL);
8968 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8969 break;
8971 case DT_MIPS_LOCAL_GOTNO:
8972 dyn.d_un.d_val = g->local_gotno;
8973 break;
8975 case DT_MIPS_UNREFEXTNO:
8976 /* The index into the dynamic symbol table which is the
8977 entry of the first external symbol that is not
8978 referenced within the same object. */
8979 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8980 break;
8982 case DT_MIPS_GOTSYM:
8983 if (g->global_gotsym)
8985 dyn.d_un.d_val = g->global_gotsym->dynindx;
8986 break;
8988 /* In case if we don't have global got symbols we default
8989 to setting DT_MIPS_GOTSYM to the same value as
8990 DT_MIPS_SYMTABNO, so we just fall through. */
8992 case DT_MIPS_SYMTABNO:
8993 name = ".dynsym";
8994 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8995 s = bfd_get_section_by_name (output_bfd, name);
8996 BFD_ASSERT (s != NULL);
8998 if (s->_cooked_size != 0)
8999 dyn.d_un.d_val = s->_cooked_size / elemsize;
9000 else
9001 dyn.d_un.d_val = s->_raw_size / elemsize;
9002 break;
9004 case DT_MIPS_HIPAGENO:
9005 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
9006 break;
9008 case DT_MIPS_RLD_MAP:
9009 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9010 break;
9012 case DT_MIPS_OPTIONS:
9013 s = (bfd_get_section_by_name
9014 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9015 dyn.d_un.d_ptr = s->vma;
9016 break;
9018 case DT_MIPS_MSYM:
9019 s = (bfd_get_section_by_name
9020 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9021 dyn.d_un.d_ptr = s->vma;
9022 break;
9024 default:
9025 swap_out_p = false;
9026 break;
9029 if (swap_out_p)
9030 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9031 (dynobj, &dyn, b);
9035 /* The first entry of the global offset table will be filled at
9036 runtime. The second entry will be used by some runtime loaders.
9037 This isn't the case of Irix rld. */
9038 if (sgot != NULL && sgot->_raw_size > 0)
9040 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9041 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9042 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9045 if (sgot != NULL)
9046 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9047 = MIPS_ELF_GOT_SIZE (output_bfd);
9050 asection *smsym;
9051 asection *s;
9052 Elf32_compact_rel cpt;
9054 /* ??? The section symbols for the output sections were set up in
9055 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9056 symbols. Should we do so? */
9058 smsym = bfd_get_section_by_name (dynobj,
9059 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9060 if (smsym != NULL)
9062 Elf32_Internal_Msym msym;
9064 msym.ms_hash_value = 0;
9065 msym.ms_info = ELF32_MS_INFO (0, 1);
9067 for (s = output_bfd->sections; s != NULL; s = s->next)
9069 long dynindx = elf_section_data (s)->dynindx;
9071 bfd_mips_elf_swap_msym_out
9072 (output_bfd, &msym,
9073 (((Elf32_External_Msym *) smsym->contents)
9074 + dynindx));
9078 if (SGI_COMPAT (output_bfd))
9080 /* Write .compact_rel section out. */
9081 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9082 if (s != NULL)
9084 cpt.id1 = 1;
9085 cpt.num = s->reloc_count;
9086 cpt.id2 = 2;
9087 cpt.offset = (s->output_section->filepos
9088 + sizeof (Elf32_External_compact_rel));
9089 cpt.reserved0 = 0;
9090 cpt.reserved1 = 0;
9091 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9092 ((Elf32_External_compact_rel *)
9093 s->contents));
9095 /* Clean up a dummy stub function entry in .text. */
9096 s = bfd_get_section_by_name (dynobj,
9097 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9098 if (s != NULL)
9100 file_ptr dummy_offset;
9102 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9103 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9104 memset (s->contents + dummy_offset, 0,
9105 MIPS_FUNCTION_STUB_SIZE);
9110 /* We need to sort the entries of the dynamic relocation section. */
9112 if (!ABI_64_P (output_bfd))
9114 asection *reldyn;
9116 reldyn = bfd_get_section_by_name (dynobj,
9117 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9118 if (reldyn != NULL && reldyn->reloc_count > 2)
9120 reldyn_sorting_bfd = output_bfd;
9121 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9122 (size_t) reldyn->reloc_count - 1,
9123 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9127 /* Clean up a first relocation in .rel.dyn. */
9128 s = bfd_get_section_by_name (dynobj,
9129 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9130 if (s != NULL && s->_raw_size > 0)
9131 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9134 return true;
9137 /* Support for core dump NOTE sections */
9138 static boolean
9139 _bfd_elf32_mips_grok_prstatus (abfd, note)
9140 bfd *abfd;
9141 Elf_Internal_Note *note;
9143 int offset;
9144 int raw_size;
9146 switch (note->descsz)
9148 default:
9149 return false;
9151 case 256: /* Linux/MIPS */
9152 /* pr_cursig */
9153 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9155 /* pr_pid */
9156 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9158 /* pr_reg */
9159 offset = 72;
9160 raw_size = 180;
9162 break;
9165 /* Make a ".reg/999" section. */
9166 if (! _bfd_elfcore_make_pseudosection (abfd, ".reg",
9167 raw_size, note->descpos + offset))
9168 return false;
9170 return true;
9173 static boolean _bfd_elf32_mips_grok_psinfo (abfd, note)
9174 bfd *abfd;
9175 Elf_Internal_Note *note;
9177 switch (note->descsz)
9179 default:
9180 return false;
9182 case 128: /* Linux/MIPS elf_prpsinfo */
9183 elf_tdata (abfd)->core_program
9184 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9185 elf_tdata (abfd)->core_command
9186 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9189 /* Note that for some reason, a spurious space is tacked
9190 onto the end of the args in some (at least one anyway)
9191 implementations, so strip it off if it exists. */
9194 char *command = elf_tdata (abfd)->core_command;
9195 int n = strlen (command);
9197 if (0 < n && command[n - 1] == ' ')
9198 command[n - 1] = '\0';
9201 return true;
9204 /* This is almost identical to bfd_generic_get_... except that some
9205 MIPS relocations need to be handled specially. Sigh. */
9207 static bfd_byte *
9208 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9209 relocateable, symbols)
9210 bfd *abfd;
9211 struct bfd_link_info *link_info;
9212 struct bfd_link_order *link_order;
9213 bfd_byte *data;
9214 boolean relocateable;
9215 asymbol **symbols;
9217 /* Get enough memory to hold the stuff */
9218 bfd *input_bfd = link_order->u.indirect.section->owner;
9219 asection *input_section = link_order->u.indirect.section;
9221 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9222 arelent **reloc_vector = NULL;
9223 long reloc_count;
9225 if (reloc_size < 0)
9226 goto error_return;
9228 reloc_vector = (arelent **) bfd_malloc (reloc_size);
9229 if (reloc_vector == NULL && reloc_size != 0)
9230 goto error_return;
9232 /* read in the section */
9233 if (!bfd_get_section_contents (input_bfd,
9234 input_section,
9235 (PTR) data,
9237 input_section->_raw_size))
9238 goto error_return;
9240 /* We're not relaxing the section, so just copy the size info */
9241 input_section->_cooked_size = input_section->_raw_size;
9242 input_section->reloc_done = true;
9244 reloc_count = bfd_canonicalize_reloc (input_bfd,
9245 input_section,
9246 reloc_vector,
9247 symbols);
9248 if (reloc_count < 0)
9249 goto error_return;
9251 if (reloc_count > 0)
9253 arelent **parent;
9254 /* for mips */
9255 int gp_found;
9256 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9259 struct bfd_hash_entry *h;
9260 struct bfd_link_hash_entry *lh;
9261 /* Skip all this stuff if we aren't mixing formats. */
9262 if (abfd && input_bfd
9263 && abfd->xvec == input_bfd->xvec)
9264 lh = 0;
9265 else
9267 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9268 lh = (struct bfd_link_hash_entry *) h;
9270 lookup:
9271 if (lh)
9273 switch (lh->type)
9275 case bfd_link_hash_undefined:
9276 case bfd_link_hash_undefweak:
9277 case bfd_link_hash_common:
9278 gp_found = 0;
9279 break;
9280 case bfd_link_hash_defined:
9281 case bfd_link_hash_defweak:
9282 gp_found = 1;
9283 gp = lh->u.def.value;
9284 break;
9285 case bfd_link_hash_indirect:
9286 case bfd_link_hash_warning:
9287 lh = lh->u.i.link;
9288 /* @@FIXME ignoring warning for now */
9289 goto lookup;
9290 case bfd_link_hash_new:
9291 default:
9292 abort ();
9295 else
9296 gp_found = 0;
9298 /* end mips */
9299 for (parent = reloc_vector; *parent != (arelent *) NULL;
9300 parent++)
9302 char *error_message = (char *) NULL;
9303 bfd_reloc_status_type r;
9305 /* Specific to MIPS: Deal with relocation types that require
9306 knowing the gp of the output bfd. */
9307 asymbol *sym = *(*parent)->sym_ptr_ptr;
9308 if (bfd_is_abs_section (sym->section) && abfd)
9310 /* The special_function wouldn't get called anyways. */
9312 else if (!gp_found)
9314 /* The gp isn't there; let the special function code
9315 fall over on its own. */
9317 else if ((*parent)->howto->special_function
9318 == _bfd_mips_elf_gprel16_reloc)
9320 /* bypass special_function call */
9321 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9322 relocateable, (PTR) data, gp);
9323 goto skip_bfd_perform_relocation;
9325 /* end mips specific stuff */
9327 r = bfd_perform_relocation (input_bfd,
9328 *parent,
9329 (PTR) data,
9330 input_section,
9331 relocateable ? abfd : (bfd *) NULL,
9332 &error_message);
9333 skip_bfd_perform_relocation:
9335 if (relocateable)
9337 asection *os = input_section->output_section;
9339 /* A partial link, so keep the relocs */
9340 os->orelocation[os->reloc_count] = *parent;
9341 os->reloc_count++;
9344 if (r != bfd_reloc_ok)
9346 switch (r)
9348 case bfd_reloc_undefined:
9349 if (!((*link_info->callbacks->undefined_symbol)
9350 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9351 input_bfd, input_section, (*parent)->address,
9352 true)))
9353 goto error_return;
9354 break;
9355 case bfd_reloc_dangerous:
9356 BFD_ASSERT (error_message != (char *) NULL);
9357 if (!((*link_info->callbacks->reloc_dangerous)
9358 (link_info, error_message, input_bfd, input_section,
9359 (*parent)->address)))
9360 goto error_return;
9361 break;
9362 case bfd_reloc_overflow:
9363 if (!((*link_info->callbacks->reloc_overflow)
9364 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9365 (*parent)->howto->name, (*parent)->addend,
9366 input_bfd, input_section, (*parent)->address)))
9367 goto error_return;
9368 break;
9369 case bfd_reloc_outofrange:
9370 default:
9371 abort ();
9372 break;
9378 if (reloc_vector != NULL)
9379 free (reloc_vector);
9380 return data;
9382 error_return:
9383 if (reloc_vector != NULL)
9384 free (reloc_vector);
9385 return NULL;
9388 #define bfd_elf32_bfd_get_relocated_section_contents \
9389 elf32_mips_get_relocated_section_contents
9391 /* ECOFF swapping routines. These are used when dealing with the
9392 .mdebug section, which is in the ECOFF debugging format. */
9393 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
9394 /* Symbol table magic number. */
9395 magicSym,
9396 /* Alignment of debugging information. E.g., 4. */
9398 /* Sizes of external symbolic information. */
9399 sizeof (struct hdr_ext),
9400 sizeof (struct dnr_ext),
9401 sizeof (struct pdr_ext),
9402 sizeof (struct sym_ext),
9403 sizeof (struct opt_ext),
9404 sizeof (struct fdr_ext),
9405 sizeof (struct rfd_ext),
9406 sizeof (struct ext_ext),
9407 /* Functions to swap in external symbolic data. */
9408 ecoff_swap_hdr_in,
9409 ecoff_swap_dnr_in,
9410 ecoff_swap_pdr_in,
9411 ecoff_swap_sym_in,
9412 ecoff_swap_opt_in,
9413 ecoff_swap_fdr_in,
9414 ecoff_swap_rfd_in,
9415 ecoff_swap_ext_in,
9416 _bfd_ecoff_swap_tir_in,
9417 _bfd_ecoff_swap_rndx_in,
9418 /* Functions to swap out external symbolic data. */
9419 ecoff_swap_hdr_out,
9420 ecoff_swap_dnr_out,
9421 ecoff_swap_pdr_out,
9422 ecoff_swap_sym_out,
9423 ecoff_swap_opt_out,
9424 ecoff_swap_fdr_out,
9425 ecoff_swap_rfd_out,
9426 ecoff_swap_ext_out,
9427 _bfd_ecoff_swap_tir_out,
9428 _bfd_ecoff_swap_rndx_out,
9429 /* Function to read in symbolic data. */
9430 _bfd_mips_elf_read_ecoff_info
9433 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9434 #define TARGET_LITTLE_NAME "elf32-littlemips"
9435 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9436 #define TARGET_BIG_NAME "elf32-bigmips"
9437 #define ELF_ARCH bfd_arch_mips
9438 #define ELF_MACHINE_CODE EM_MIPS
9440 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9441 a value of 0x1000, and we are compatible. */
9442 #define ELF_MAXPAGESIZE 0x1000
9444 #define elf_backend_collect true
9445 #define elf_backend_type_change_ok true
9446 #define elf_backend_can_gc_sections true
9447 #define elf_backend_sign_extend_vma true
9448 #define elf_info_to_howto mips_info_to_howto_rela
9449 #define elf_info_to_howto_rel mips_info_to_howto_rel
9450 #define elf_backend_sym_is_global mips_elf_sym_is_global
9451 #define elf_backend_object_p _bfd_mips_elf_object_p
9452 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9453 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9454 #define elf_backend_section_from_bfd_section \
9455 _bfd_mips_elf_section_from_bfd_section
9456 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9457 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9458 #define elf_backend_additional_program_headers \
9459 _bfd_mips_elf_additional_program_headers
9460 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9461 #define elf_backend_final_write_processing \
9462 _bfd_mips_elf_final_write_processing
9463 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9464 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9465 #define elf_backend_create_dynamic_sections \
9466 _bfd_mips_elf_create_dynamic_sections
9467 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9468 #define elf_backend_adjust_dynamic_symbol \
9469 _bfd_mips_elf_adjust_dynamic_symbol
9470 #define elf_backend_always_size_sections \
9471 _bfd_mips_elf_always_size_sections
9472 #define elf_backend_size_dynamic_sections \
9473 _bfd_mips_elf_size_dynamic_sections
9474 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9475 #define elf_backend_link_output_symbol_hook \
9476 _bfd_mips_elf_link_output_symbol_hook
9477 #define elf_backend_finish_dynamic_symbol \
9478 _bfd_mips_elf_finish_dynamic_symbol
9479 #define elf_backend_finish_dynamic_sections \
9480 _bfd_mips_elf_finish_dynamic_sections
9481 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9482 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9484 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9485 #define elf_backend_plt_header_size 0
9487 #define elf_backend_copy_indirect_symbol \
9488 _bfd_mips_elf_copy_indirect_symbol
9490 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9491 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
9492 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
9494 #define bfd_elf32_bfd_is_local_label_name \
9495 mips_elf_is_local_label_name
9496 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9497 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9498 #define bfd_elf32_bfd_link_hash_table_create \
9499 _bfd_mips_elf_link_hash_table_create
9500 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9501 #define bfd_elf32_bfd_copy_private_bfd_data \
9502 _bfd_mips_elf_copy_private_bfd_data
9503 #define bfd_elf32_bfd_merge_private_bfd_data \
9504 _bfd_mips_elf_merge_private_bfd_data
9505 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9506 #define bfd_elf32_bfd_print_private_bfd_data \
9507 _bfd_mips_elf_print_private_bfd_data
9508 #include "elf32-target.h"
9510 /* Support for traditional mips targets */
9512 #define INCLUDED_TARGET_FILE /* More a type of flag */
9514 #undef TARGET_LITTLE_SYM
9515 #undef TARGET_LITTLE_NAME
9516 #undef TARGET_BIG_SYM
9517 #undef TARGET_BIG_NAME
9519 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9520 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9521 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9522 #define TARGET_BIG_NAME "elf32-tradbigmips"
9524 /* Include the target file again for this target */
9525 #include "elf32-target.h"