1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "dwarf_reader.h"
38 #include "workqueue.h"
46 // Initialize fields in Symbol. This initializes everything except u_
50 Symbol::init_fields(const char* name
, const char* version
,
51 elfcpp::STT type
, elfcpp::STB binding
,
52 elfcpp::STV visibility
, unsigned char nonvis
)
55 this->version_
= version
;
56 this->symtab_index_
= 0;
57 this->dynsym_index_
= 0;
58 this->got_offsets_
.init();
59 this->plt_offset_
= 0;
61 this->binding_
= binding
;
62 this->visibility_
= visibility
;
63 this->nonvis_
= nonvis
;
64 this->is_target_special_
= false;
65 this->is_def_
= false;
66 this->is_forwarder_
= false;
67 this->has_alias_
= false;
68 this->needs_dynsym_entry_
= false;
69 this->in_reg_
= false;
70 this->in_dyn_
= false;
71 this->has_plt_offset_
= false;
72 this->has_warning_
= false;
73 this->is_copied_from_dynobj_
= false;
74 this->is_forced_local_
= false;
75 this->is_ordinary_shndx_
= false;
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
82 demangle(const char* name
)
84 if (!parameters
->options().do_demangle())
87 // cplus_demangle allocates memory for the result it returns,
88 // and returns NULL if the name is already demangled.
89 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
90 if (demangled_name
== NULL
)
93 std::string
retval(demangled_name
);
99 Symbol::demangled_name() const
101 return demangle(this->name());
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
106 template<int size
, bool big_endian
>
108 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
109 const elfcpp::Sym
<size
, big_endian
>& sym
,
110 unsigned int st_shndx
, bool is_ordinary
)
112 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
113 sym
.get_st_visibility(), sym
.get_st_nonvis());
114 this->u_
.from_object
.object
= object
;
115 this->u_
.from_object
.shndx
= st_shndx
;
116 this->is_ordinary_shndx_
= is_ordinary
;
117 this->source_
= FROM_OBJECT
;
118 this->in_reg_
= !object
->is_dynamic();
119 this->in_dyn_
= object
->is_dynamic();
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
126 Symbol::init_base_output_data(const char* name
, const char* version
,
127 Output_data
* od
, elfcpp::STT type
,
128 elfcpp::STB binding
, elfcpp::STV visibility
,
129 unsigned char nonvis
, bool offset_is_from_end
)
131 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
132 this->u_
.in_output_data
.output_data
= od
;
133 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
134 this->source_
= IN_OUTPUT_DATA
;
135 this->in_reg_
= true;
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
142 Symbol::init_base_output_segment(const char* name
, const char* version
,
143 Output_segment
* os
, elfcpp::STT type
,
144 elfcpp::STB binding
, elfcpp::STV visibility
,
145 unsigned char nonvis
,
146 Segment_offset_base offset_base
)
148 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
149 this->u_
.in_output_segment
.output_segment
= os
;
150 this->u_
.in_output_segment
.offset_base
= offset_base
;
151 this->source_
= IN_OUTPUT_SEGMENT
;
152 this->in_reg_
= true;
155 // Initialize the fields in the base class Symbol for a symbol defined
159 Symbol::init_base_constant(const char* name
, const char* version
,
160 elfcpp::STT type
, elfcpp::STB binding
,
161 elfcpp::STV visibility
, unsigned char nonvis
)
163 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
164 this->source_
= IS_CONSTANT
;
165 this->in_reg_
= true;
168 // Initialize the fields in the base class Symbol for an undefined
172 Symbol::init_base_undefined(const char* name
, const char* version
,
173 elfcpp::STT type
, elfcpp::STB binding
,
174 elfcpp::STV visibility
, unsigned char nonvis
)
176 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
177 this->source_
= IS_UNDEFINED
;
178 this->in_reg_
= true;
181 // Allocate a common symbol in the base.
184 Symbol::allocate_base_common(Output_data
* od
)
186 gold_assert(this->is_common());
187 this->source_
= IN_OUTPUT_DATA
;
188 this->u_
.in_output_data
.output_data
= od
;
189 this->u_
.in_output_data
.offset_is_from_end
= false;
192 // Initialize the fields in Sized_symbol for SYM in OBJECT.
195 template<bool big_endian
>
197 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
199 const elfcpp::Sym
<size
, big_endian
>& sym
,
200 unsigned int st_shndx
, bool is_ordinary
)
202 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
203 this->value_
= sym
.get_st_value();
204 this->symsize_
= sym
.get_st_size();
207 // Initialize the fields in Sized_symbol for a symbol defined in an
212 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
213 Output_data
* od
, Value_type value
,
214 Size_type symsize
, elfcpp::STT type
,
216 elfcpp::STV visibility
,
217 unsigned char nonvis
,
218 bool offset_is_from_end
)
220 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
221 nonvis
, offset_is_from_end
);
222 this->value_
= value
;
223 this->symsize_
= symsize
;
226 // Initialize the fields in Sized_symbol for a symbol defined in an
231 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
232 Output_segment
* os
, Value_type value
,
233 Size_type symsize
, elfcpp::STT type
,
235 elfcpp::STV visibility
,
236 unsigned char nonvis
,
237 Segment_offset_base offset_base
)
239 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
240 nonvis
, offset_base
);
241 this->value_
= value
;
242 this->symsize_
= symsize
;
245 // Initialize the fields in Sized_symbol for a symbol defined as a
250 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
251 Value_type value
, Size_type symsize
,
252 elfcpp::STT type
, elfcpp::STB binding
,
253 elfcpp::STV visibility
, unsigned char nonvis
)
255 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
256 this->value_
= value
;
257 this->symsize_
= symsize
;
260 // Initialize the fields in Sized_symbol for an undefined symbol.
264 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
265 elfcpp::STT type
, elfcpp::STB binding
,
266 elfcpp::STV visibility
, unsigned char nonvis
)
268 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
273 // Allocate a common symbol.
277 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
279 this->allocate_base_common(od
);
280 this->value_
= value
;
283 // Return true if this symbol should be added to the dynamic symbol
287 Symbol::should_add_dynsym_entry() const
289 // If the symbol is used by a dynamic relocation, we need to add it.
290 if (this->needs_dynsym_entry())
293 // If the symbol was forced local in a version script, do not add it.
294 if (this->is_forced_local())
297 // If exporting all symbols or building a shared library,
298 // and the symbol is defined in a regular object and is
299 // externally visible, we need to add it.
300 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
301 && !this->is_from_dynobj()
302 && this->is_externally_visible())
308 // Return true if the final value of this symbol is known at link
312 Symbol::final_value_is_known() const
314 // If we are not generating an executable, then no final values are
315 // known, since they will change at runtime.
316 if (parameters
->options().shared() || parameters
->options().relocatable())
319 // If the symbol is not from an object file, and is not undefined,
320 // then it is defined, and known.
321 if (this->source_
!= FROM_OBJECT
)
323 if (this->source_
!= IS_UNDEFINED
)
328 // If the symbol is from a dynamic object, then the final value
330 if (this->object()->is_dynamic())
333 // If the symbol is not undefined (it is defined or common),
334 // then the final value is known.
335 if (!this->is_undefined())
339 // If the symbol is undefined, then whether the final value is known
340 // depends on whether we are doing a static link. If we are doing a
341 // dynamic link, then the final value could be filled in at runtime.
342 // This could reasonably be the case for a weak undefined symbol.
343 return parameters
->doing_static_link();
346 // Return the output section where this symbol is defined.
349 Symbol::output_section() const
351 switch (this->source_
)
355 unsigned int shndx
= this->u_
.from_object
.shndx
;
356 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
358 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
359 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
360 section_offset_type dummy
;
361 return relobj
->output_section(shndx
, &dummy
);
367 return this->u_
.in_output_data
.output_data
->output_section();
369 case IN_OUTPUT_SEGMENT
:
379 // Set the symbol's output section. This is used for symbols defined
380 // in scripts. This should only be called after the symbol table has
384 Symbol::set_output_section(Output_section
* os
)
386 switch (this->source_
)
390 gold_assert(this->output_section() == os
);
393 this->source_
= IN_OUTPUT_DATA
;
394 this->u_
.in_output_data
.output_data
= os
;
395 this->u_
.in_output_data
.offset_is_from_end
= false;
397 case IN_OUTPUT_SEGMENT
:
404 // Class Symbol_table.
406 Symbol_table::Symbol_table(unsigned int count
,
407 const Version_script_info
& version_script
)
408 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
409 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
410 version_script_(version_script
)
412 namepool_
.reserve(count
);
415 Symbol_table::~Symbol_table()
419 // The hash function. The key values are Stringpool keys.
422 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
424 return key
.first
^ key
.second
;
427 // The symbol table key equality function. This is called with
431 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
432 const Symbol_table_key
& k2
) const
434 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
437 // Make TO a symbol which forwards to FROM.
440 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
442 gold_assert(from
!= to
);
443 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
444 this->forwarders_
[from
] = to
;
445 from
->set_forwarder();
448 // Resolve the forwards from FROM, returning the real symbol.
451 Symbol_table::resolve_forwards(const Symbol
* from
) const
453 gold_assert(from
->is_forwarder());
454 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
455 this->forwarders_
.find(from
);
456 gold_assert(p
!= this->forwarders_
.end());
460 // Look up a symbol by name.
463 Symbol_table::lookup(const char* name
, const char* version
) const
465 Stringpool::Key name_key
;
466 name
= this->namepool_
.find(name
, &name_key
);
470 Stringpool::Key version_key
= 0;
473 version
= this->namepool_
.find(version
, &version_key
);
478 Symbol_table_key
key(name_key
, version_key
);
479 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
480 if (p
== this->table_
.end())
485 // Resolve a Symbol with another Symbol. This is only used in the
486 // unusual case where there are references to both an unversioned
487 // symbol and a symbol with a version, and we then discover that that
488 // version is the default version. Because this is unusual, we do
489 // this the slow way, by converting back to an ELF symbol.
491 template<int size
, bool big_endian
>
493 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
,
496 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
497 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
498 // We don't bother to set the st_name or the st_shndx field.
499 esym
.put_st_value(from
->value());
500 esym
.put_st_size(from
->symsize());
501 esym
.put_st_info(from
->binding(), from
->type());
502 esym
.put_st_other(from
->visibility(), from
->nonvis());
504 unsigned int shndx
= from
->shndx(&is_ordinary
);
505 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
513 // Record that a symbol is forced to be local by a version script.
516 Symbol_table::force_local(Symbol
* sym
)
518 if (!sym
->is_defined() && !sym
->is_common())
520 if (sym
->is_forced_local())
522 // We already got this one.
525 sym
->set_is_forced_local();
526 this->forced_locals_
.push_back(sym
);
529 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
530 // is only called for undefined symbols, when at least one --wrap
534 Symbol_table::wrap_symbol(Object
* object
, const char* name
,
535 Stringpool::Key
* name_key
)
537 // For some targets, we need to ignore a specific character when
538 // wrapping, and add it back later.
540 if (name
[0] == object
->target()->wrap_char())
546 if (parameters
->options().is_wrap(name
))
548 // Turn NAME into __wrap_NAME.
555 // This will give us both the old and new name in NAMEPOOL_, but
556 // that is OK. Only the versions we need will wind up in the
557 // real string table in the output file.
558 return this->namepool_
.add(s
.c_str(), true, name_key
);
561 const char* const real_prefix
= "__real_";
562 const size_t real_prefix_length
= strlen(real_prefix
);
563 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
564 && parameters
->options().is_wrap(name
+ real_prefix_length
))
566 // Turn __real_NAME into NAME.
570 s
+= name
+ real_prefix_length
;
571 return this->namepool_
.add(s
.c_str(), true, name_key
);
577 // Add one symbol from OBJECT to the symbol table. NAME is symbol
578 // name and VERSION is the version; both are canonicalized. DEF is
579 // whether this is the default version. ST_SHNDX is the symbol's
580 // section index; IS_ORDINARY is whether this is a normal section
581 // rather than a special code.
583 // If DEF is true, then this is the definition of a default version of
584 // a symbol. That means that any lookup of NAME/NULL and any lookup
585 // of NAME/VERSION should always return the same symbol. This is
586 // obvious for references, but in particular we want to do this for
587 // definitions: overriding NAME/NULL should also override
588 // NAME/VERSION. If we don't do that, it would be very hard to
589 // override functions in a shared library which uses versioning.
591 // We implement this by simply making both entries in the hash table
592 // point to the same Symbol structure. That is easy enough if this is
593 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
594 // that we have seen both already, in which case they will both have
595 // independent entries in the symbol table. We can't simply change
596 // the symbol table entry, because we have pointers to the entries
597 // attached to the object files. So we mark the entry attached to the
598 // object file as a forwarder, and record it in the forwarders_ map.
599 // Note that entries in the hash table will never be marked as
602 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
603 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
604 // for a special section code. ST_SHNDX may be modified if the symbol
605 // is defined in a section being discarded.
607 template<int size
, bool big_endian
>
609 Symbol_table::add_from_object(Object
* object
,
611 Stringpool::Key name_key
,
613 Stringpool::Key version_key
,
615 const elfcpp::Sym
<size
, big_endian
>& sym
,
616 unsigned int st_shndx
,
618 unsigned int orig_st_shndx
)
620 // Print a message if this symbol is being traced.
621 if (parameters
->options().is_trace_symbol(name
))
623 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
624 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
626 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
629 // For an undefined symbol, we may need to adjust the name using
631 if (orig_st_shndx
== elfcpp::SHN_UNDEF
632 && parameters
->options().any_wrap())
634 const char* wrap_name
= this->wrap_symbol(object
, name
, &name_key
);
635 if (wrap_name
!= name
)
637 // If we see a reference to malloc with version GLIBC_2.0,
638 // and we turn it into a reference to __wrap_malloc, then we
639 // discard the version number. Otherwise the user would be
640 // required to specify the correct version for
648 Symbol
* const snull
= NULL
;
649 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
650 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
653 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
654 std::make_pair(this->table_
.end(), false);
657 const Stringpool::Key vnull_key
= 0;
658 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
663 // ins.first: an iterator, which is a pointer to a pair.
664 // ins.first->first: the key (a pair of name and version).
665 // ins.first->second: the value (Symbol*).
666 // ins.second: true if new entry was inserted, false if not.
668 Sized_symbol
<size
>* ret
;
673 // We already have an entry for NAME/VERSION.
674 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
675 gold_assert(ret
!= NULL
);
677 was_undefined
= ret
->is_undefined();
678 was_common
= ret
->is_common();
680 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
687 // This is the first time we have seen NAME/NULL. Make
688 // NAME/NULL point to NAME/VERSION.
689 insdef
.first
->second
= ret
;
691 else if (insdef
.first
->second
!= ret
692 && insdef
.first
->second
->is_undefined())
694 // This is the unfortunate case where we already have
695 // entries for both NAME/VERSION and NAME/NULL. Note
696 // that we don't want to combine them if the existing
697 // symbol is going to override the new one. FIXME: We
698 // currently just test is_undefined, but this may not do
699 // the right thing if the existing symbol is from a
700 // shared library and the new one is from a regular
703 const Sized_symbol
<size
>* sym2
;
704 sym2
= this->get_sized_symbol
<size
>(insdef
.first
->second
);
705 Symbol_table::resolve
<size
, big_endian
>(ret
, sym2
, version
);
706 this->make_forwarder(insdef
.first
->second
, ret
);
707 insdef
.first
->second
= ret
;
715 // This is the first time we have seen NAME/VERSION.
716 gold_assert(ins
.first
->second
== NULL
);
718 if (def
&& !insdef
.second
)
720 // We already have an entry for NAME/NULL. If we override
721 // it, then change it to NAME/VERSION.
722 ret
= this->get_sized_symbol
<size
>(insdef
.first
->second
);
724 was_undefined
= ret
->is_undefined();
725 was_common
= ret
->is_common();
727 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
729 ins
.first
->second
= ret
;
733 was_undefined
= false;
736 Sized_target
<size
, big_endian
>* target
=
737 object
->sized_target
<size
, big_endian
>();
738 if (!target
->has_make_symbol())
739 ret
= new Sized_symbol
<size
>();
742 ret
= target
->make_symbol();
745 // This means that we don't want a symbol table
748 this->table_
.erase(ins
.first
);
751 this->table_
.erase(insdef
.first
);
752 // Inserting insdef invalidated ins.
753 this->table_
.erase(std::make_pair(name_key
,
760 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
762 ins
.first
->second
= ret
;
765 // This is the first time we have seen NAME/NULL. Point
766 // it at the new entry for NAME/VERSION.
767 gold_assert(insdef
.second
);
768 insdef
.first
->second
= ret
;
773 // Record every time we see a new undefined symbol, to speed up
775 if (!was_undefined
&& ret
->is_undefined())
776 ++this->saw_undefined_
;
778 // Keep track of common symbols, to speed up common symbol
780 if (!was_common
&& ret
->is_common())
782 if (ret
->type() != elfcpp::STT_TLS
)
783 this->commons_
.push_back(ret
);
785 this->tls_commons_
.push_back(ret
);
789 ret
->set_is_default();
793 // Add all the symbols in a relocatable object to the hash table.
795 template<int size
, bool big_endian
>
797 Symbol_table::add_from_relobj(
798 Sized_relobj
<size
, big_endian
>* relobj
,
799 const unsigned char* syms
,
801 size_t symndx_offset
,
802 const char* sym_names
,
803 size_t sym_name_size
,
804 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
)
806 gold_assert(size
== relobj
->target()->get_size());
807 gold_assert(size
== parameters
->target().get_size());
809 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
811 const bool just_symbols
= relobj
->just_symbols();
813 const unsigned char* p
= syms
;
814 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
816 elfcpp::Sym
<size
, big_endian
> sym(p
);
818 unsigned int st_name
= sym
.get_st_name();
819 if (st_name
>= sym_name_size
)
821 relobj
->error(_("bad global symbol name offset %u at %zu"),
826 const char* name
= sym_names
+ st_name
;
829 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
832 unsigned int orig_st_shndx
= st_shndx
;
834 orig_st_shndx
= elfcpp::SHN_UNDEF
;
836 // A symbol defined in a section which we are not including must
837 // be treated as an undefined symbol.
838 if (st_shndx
!= elfcpp::SHN_UNDEF
840 && !relobj
->is_section_included(st_shndx
))
841 st_shndx
= elfcpp::SHN_UNDEF
;
843 // In an object file, an '@' in the name separates the symbol
844 // name from the version name. If there are two '@' characters,
845 // this is the default version.
846 const char* ver
= strchr(name
, '@');
848 // DEF: is the version default? LOCAL: is the symbol forced local?
854 // The symbol name is of the form foo@VERSION or foo@@VERSION
855 namelen
= ver
- name
;
863 // We don't want to assign a version to an undefined symbol,
864 // even if it is listed in the version script. FIXME: What
865 // about a common symbol?
866 else if (!version_script_
.empty()
867 && st_shndx
!= elfcpp::SHN_UNDEF
)
869 // The symbol name did not have a version, but
870 // the version script may assign a version anyway.
871 namelen
= strlen(name
);
873 // Check the global: entries from the version script.
874 const std::string
& version
=
875 version_script_
.get_symbol_version(name
);
876 if (!version
.empty())
877 ver
= version
.c_str();
878 // Check the local: entries from the version script
879 if (version_script_
.symbol_is_local(name
))
883 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
884 unsigned char symbuf
[sym_size
];
885 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
888 memcpy(symbuf
, p
, sym_size
);
889 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
890 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
892 // Symbol values in object files are section relative.
893 // This is normally what we want, but since here we are
894 // converting the symbol to absolute we need to add the
895 // section address. The section address in an object
896 // file is normally zero, but people can use a linker
897 // script to change it.
898 sw
.put_st_value(sym
.get_st_value()
899 + relobj
->section_address(orig_st_shndx
));
901 st_shndx
= elfcpp::SHN_ABS
;
906 Sized_symbol
<size
>* res
;
909 Stringpool::Key name_key
;
910 name
= this->namepool_
.add(name
, true, &name_key
);
911 res
= this->add_from_object(relobj
, name
, name_key
, NULL
, 0,
912 false, *psym
, st_shndx
, is_ordinary
,
915 this->force_local(res
);
919 Stringpool::Key name_key
;
920 name
= this->namepool_
.add_with_length(name
, namelen
, true,
922 Stringpool::Key ver_key
;
923 ver
= this->namepool_
.add(ver
, true, &ver_key
);
925 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
926 def
, *psym
, st_shndx
, is_ordinary
,
930 (*sympointers
)[i
] = res
;
934 // Add all the symbols in a dynamic object to the hash table.
936 template<int size
, bool big_endian
>
938 Symbol_table::add_from_dynobj(
939 Sized_dynobj
<size
, big_endian
>* dynobj
,
940 const unsigned char* syms
,
942 const char* sym_names
,
943 size_t sym_name_size
,
944 const unsigned char* versym
,
946 const std::vector
<const char*>* version_map
)
948 gold_assert(size
== dynobj
->target()->get_size());
949 gold_assert(size
== parameters
->target().get_size());
951 if (dynobj
->just_symbols())
953 gold_error(_("--just-symbols does not make sense with a shared object"));
957 if (versym
!= NULL
&& versym_size
/ 2 < count
)
959 dynobj
->error(_("too few symbol versions"));
963 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
965 // We keep a list of all STT_OBJECT symbols, so that we can resolve
966 // weak aliases. This is necessary because if the dynamic object
967 // provides the same variable under two names, one of which is a
968 // weak definition, and the regular object refers to the weak
969 // definition, we have to put both the weak definition and the
970 // strong definition into the dynamic symbol table. Given a weak
971 // definition, the only way that we can find the corresponding
972 // strong definition, if any, is to search the symbol table.
973 std::vector
<Sized_symbol
<size
>*> object_symbols
;
975 const unsigned char* p
= syms
;
976 const unsigned char* vs
= versym
;
977 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
979 elfcpp::Sym
<size
, big_endian
> sym(p
);
981 // Ignore symbols with local binding or that have
982 // internal or hidden visibility.
983 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
984 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
985 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
988 // A protected symbol in a shared library must be treated as a
989 // normal symbol when viewed from outside the shared library.
990 // Implement this by overriding the visibility here.
991 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
992 unsigned char symbuf
[sym_size
];
993 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
994 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
996 memcpy(symbuf
, p
, sym_size
);
997 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
998 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1002 unsigned int st_name
= psym
->get_st_name();
1003 if (st_name
>= sym_name_size
)
1005 dynobj
->error(_("bad symbol name offset %u at %zu"),
1010 const char* name
= sym_names
+ st_name
;
1013 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1016 Sized_symbol
<size
>* res
;
1020 Stringpool::Key name_key
;
1021 name
= this->namepool_
.add(name
, true, &name_key
);
1022 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1023 false, *psym
, st_shndx
, is_ordinary
,
1028 // Read the version information.
1030 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1032 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1033 v
&= elfcpp::VERSYM_VERSION
;
1035 // The Sun documentation says that V can be VER_NDX_LOCAL,
1036 // or VER_NDX_GLOBAL, or a version index. The meaning of
1037 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1038 // The old GNU linker will happily generate VER_NDX_LOCAL
1039 // for an undefined symbol. I don't know what the Sun
1040 // linker will generate.
1042 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1043 && st_shndx
!= elfcpp::SHN_UNDEF
)
1045 // This symbol should not be visible outside the object.
1049 // At this point we are definitely going to add this symbol.
1050 Stringpool::Key name_key
;
1051 name
= this->namepool_
.add(name
, true, &name_key
);
1053 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1054 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1056 // This symbol does not have a version.
1057 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1058 false, *psym
, st_shndx
, is_ordinary
,
1063 if (v
>= version_map
->size())
1065 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1070 const char* version
= (*version_map
)[v
];
1071 if (version
== NULL
)
1073 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1078 Stringpool::Key version_key
;
1079 version
= this->namepool_
.add(version
, true, &version_key
);
1081 // If this is an absolute symbol, and the version name
1082 // and symbol name are the same, then this is the
1083 // version definition symbol. These symbols exist to
1084 // support using -u to pull in particular versions. We
1085 // do not want to record a version for them.
1086 if (st_shndx
== elfcpp::SHN_ABS
1088 && name_key
== version_key
)
1089 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1090 false, *psym
, st_shndx
, is_ordinary
,
1094 const bool def
= (!hidden
1095 && st_shndx
!= elfcpp::SHN_UNDEF
);
1096 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1097 version_key
, def
, *psym
, st_shndx
,
1098 is_ordinary
, st_shndx
);
1103 // Note that it is possible that RES was overridden by an
1104 // earlier object, in which case it can't be aliased here.
1105 if (st_shndx
!= elfcpp::SHN_UNDEF
1107 && psym
->get_st_type() == elfcpp::STT_OBJECT
1108 && res
->source() == Symbol::FROM_OBJECT
1109 && res
->object() == dynobj
)
1110 object_symbols
.push_back(res
);
1113 this->record_weak_aliases(&object_symbols
);
1116 // This is used to sort weak aliases. We sort them first by section
1117 // index, then by offset, then by weak ahead of strong.
1120 class Weak_alias_sorter
1123 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1128 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1129 const Sized_symbol
<size
>* s2
) const
1132 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1133 gold_assert(is_ordinary
);
1134 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1135 gold_assert(is_ordinary
);
1136 if (s1_shndx
!= s2_shndx
)
1137 return s1_shndx
< s2_shndx
;
1139 if (s1
->value() != s2
->value())
1140 return s1
->value() < s2
->value();
1141 if (s1
->binding() != s2
->binding())
1143 if (s1
->binding() == elfcpp::STB_WEAK
)
1145 if (s2
->binding() == elfcpp::STB_WEAK
)
1148 return std::string(s1
->name()) < std::string(s2
->name());
1151 // SYMBOLS is a list of object symbols from a dynamic object. Look
1152 // for any weak aliases, and record them so that if we add the weak
1153 // alias to the dynamic symbol table, we also add the corresponding
1158 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1160 // Sort the vector by section index, then by offset, then by weak
1162 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1164 // Walk through the vector. For each weak definition, record
1166 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1168 p
!= symbols
->end();
1171 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1174 // Build a circular list of weak aliases. Each symbol points to
1175 // the next one in the circular list.
1177 Sized_symbol
<size
>* from_sym
= *p
;
1178 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1179 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1182 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1183 || (*q
)->value() != from_sym
->value())
1186 this->weak_aliases_
[from_sym
] = *q
;
1187 from_sym
->set_has_alias();
1193 this->weak_aliases_
[from_sym
] = *p
;
1194 from_sym
->set_has_alias();
1201 // Create and return a specially defined symbol. If ONLY_IF_REF is
1202 // true, then only create the symbol if there is a reference to it.
1203 // If this does not return NULL, it sets *POLDSYM to the existing
1204 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1206 template<int size
, bool big_endian
>
1208 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1210 Sized_symbol
<size
>** poldsym
)
1213 Sized_symbol
<size
>* sym
;
1214 bool add_to_table
= false;
1215 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1217 // If the caller didn't give us a version, see if we get one from
1218 // the version script.
1219 if (*pversion
== NULL
)
1221 const std::string
& v(this->version_script_
.get_symbol_version(*pname
));
1223 *pversion
= v
.c_str();
1228 oldsym
= this->lookup(*pname
, *pversion
);
1229 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1232 *pname
= oldsym
->name();
1233 *pversion
= oldsym
->version();
1237 // Canonicalize NAME and VERSION.
1238 Stringpool::Key name_key
;
1239 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1241 Stringpool::Key version_key
= 0;
1242 if (*pversion
!= NULL
)
1243 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1245 Symbol
* const snull
= NULL
;
1246 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1247 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1253 // We already have a symbol table entry for NAME/VERSION.
1254 oldsym
= ins
.first
->second
;
1255 gold_assert(oldsym
!= NULL
);
1259 // We haven't seen this symbol before.
1260 gold_assert(ins
.first
->second
== NULL
);
1261 add_to_table
= true;
1262 add_loc
= ins
.first
;
1267 const Target
& target
= parameters
->target();
1268 if (!target
.has_make_symbol())
1269 sym
= new Sized_symbol
<size
>();
1272 gold_assert(target
.get_size() == size
);
1273 gold_assert(target
.is_big_endian() ? big_endian
: !big_endian
);
1274 typedef Sized_target
<size
, big_endian
> My_target
;
1275 const My_target
* sized_target
=
1276 static_cast<const My_target
*>(&target
);
1277 sym
= sized_target
->make_symbol();
1283 add_loc
->second
= sym
;
1285 gold_assert(oldsym
!= NULL
);
1287 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1292 // Define a symbol based on an Output_data.
1295 Symbol_table::define_in_output_data(const char* name
,
1296 const char* version
,
1301 elfcpp::STB binding
,
1302 elfcpp::STV visibility
,
1303 unsigned char nonvis
,
1304 bool offset_is_from_end
,
1307 if (parameters
->target().get_size() == 32)
1309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1310 return this->do_define_in_output_data
<32>(name
, version
, od
,
1311 value
, symsize
, type
, binding
,
1319 else if (parameters
->target().get_size() == 64)
1321 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1322 return this->do_define_in_output_data
<64>(name
, version
, od
,
1323 value
, symsize
, type
, binding
,
1335 // Define a symbol in an Output_data, sized version.
1339 Symbol_table::do_define_in_output_data(
1341 const char* version
,
1343 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1344 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1346 elfcpp::STB binding
,
1347 elfcpp::STV visibility
,
1348 unsigned char nonvis
,
1349 bool offset_is_from_end
,
1352 Sized_symbol
<size
>* sym
;
1353 Sized_symbol
<size
>* oldsym
;
1355 if (parameters
->target().is_big_endian())
1357 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1358 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1359 only_if_ref
, &oldsym
);
1366 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1367 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1368 only_if_ref
, &oldsym
);
1377 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1378 visibility
, nonvis
, offset_is_from_end
);
1382 if (binding
== elfcpp::STB_LOCAL
1383 || this->version_script_
.symbol_is_local(name
))
1384 this->force_local(sym
);
1385 else if (version
!= NULL
)
1386 sym
->set_is_default();
1390 if (Symbol_table::should_override_with_special(oldsym
))
1391 this->override_with_special(oldsym
, sym
);
1396 // Define a symbol based on an Output_segment.
1399 Symbol_table::define_in_output_segment(const char* name
,
1400 const char* version
, Output_segment
* os
,
1404 elfcpp::STB binding
,
1405 elfcpp::STV visibility
,
1406 unsigned char nonvis
,
1407 Symbol::Segment_offset_base offset_base
,
1410 if (parameters
->target().get_size() == 32)
1412 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1413 return this->do_define_in_output_segment
<32>(name
, version
, os
,
1414 value
, symsize
, type
,
1415 binding
, visibility
, nonvis
,
1416 offset_base
, only_if_ref
);
1421 else if (parameters
->target().get_size() == 64)
1423 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1424 return this->do_define_in_output_segment
<64>(name
, version
, os
,
1425 value
, symsize
, type
,
1426 binding
, visibility
, nonvis
,
1427 offset_base
, only_if_ref
);
1436 // Define a symbol in an Output_segment, sized version.
1440 Symbol_table::do_define_in_output_segment(
1442 const char* version
,
1444 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1445 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1447 elfcpp::STB binding
,
1448 elfcpp::STV visibility
,
1449 unsigned char nonvis
,
1450 Symbol::Segment_offset_base offset_base
,
1453 Sized_symbol
<size
>* sym
;
1454 Sized_symbol
<size
>* oldsym
;
1456 if (parameters
->target().is_big_endian())
1458 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1459 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1460 only_if_ref
, &oldsym
);
1467 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1468 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1469 only_if_ref
, &oldsym
);
1478 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1479 visibility
, nonvis
, offset_base
);
1483 if (binding
== elfcpp::STB_LOCAL
1484 || this->version_script_
.symbol_is_local(name
))
1485 this->force_local(sym
);
1486 else if (version
!= NULL
)
1487 sym
->set_is_default();
1491 if (Symbol_table::should_override_with_special(oldsym
))
1492 this->override_with_special(oldsym
, sym
);
1497 // Define a special symbol with a constant value. It is a multiple
1498 // definition error if this symbol is already defined.
1501 Symbol_table::define_as_constant(const char* name
,
1502 const char* version
,
1506 elfcpp::STB binding
,
1507 elfcpp::STV visibility
,
1508 unsigned char nonvis
,
1510 bool force_override
)
1512 if (parameters
->target().get_size() == 32)
1514 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1515 return this->do_define_as_constant
<32>(name
, version
, value
,
1516 symsize
, type
, binding
,
1517 visibility
, nonvis
, only_if_ref
,
1523 else if (parameters
->target().get_size() == 64)
1525 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1526 return this->do_define_as_constant
<64>(name
, version
, value
,
1527 symsize
, type
, binding
,
1528 visibility
, nonvis
, only_if_ref
,
1538 // Define a symbol as a constant, sized version.
1542 Symbol_table::do_define_as_constant(
1544 const char* version
,
1545 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1546 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1548 elfcpp::STB binding
,
1549 elfcpp::STV visibility
,
1550 unsigned char nonvis
,
1552 bool force_override
)
1554 Sized_symbol
<size
>* sym
;
1555 Sized_symbol
<size
>* oldsym
;
1557 if (parameters
->target().is_big_endian())
1559 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1560 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1561 only_if_ref
, &oldsym
);
1568 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1569 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1570 only_if_ref
, &oldsym
);
1579 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
1584 // Version symbols are absolute symbols with name == version.
1585 // We don't want to force them to be local.
1586 if ((version
== NULL
1589 && (binding
== elfcpp::STB_LOCAL
1590 || this->version_script_
.symbol_is_local(name
)))
1591 this->force_local(sym
);
1592 else if (version
!= NULL
1593 && (name
!= version
|| value
!= 0))
1594 sym
->set_is_default();
1598 if (force_override
|| Symbol_table::should_override_with_special(oldsym
))
1599 this->override_with_special(oldsym
, sym
);
1604 // Define a set of symbols in output sections.
1607 Symbol_table::define_symbols(const Layout
* layout
, int count
,
1608 const Define_symbol_in_section
* p
,
1611 for (int i
= 0; i
< count
; ++i
, ++p
)
1613 Output_section
* os
= layout
->find_output_section(p
->output_section
);
1615 this->define_in_output_data(p
->name
, NULL
, os
, p
->value
,
1616 p
->size
, p
->type
, p
->binding
,
1617 p
->visibility
, p
->nonvis
,
1618 p
->offset_is_from_end
,
1619 only_if_ref
|| p
->only_if_ref
);
1621 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
1622 p
->binding
, p
->visibility
, p
->nonvis
,
1623 only_if_ref
|| p
->only_if_ref
,
1628 // Define a set of symbols in output segments.
1631 Symbol_table::define_symbols(const Layout
* layout
, int count
,
1632 const Define_symbol_in_segment
* p
,
1635 for (int i
= 0; i
< count
; ++i
, ++p
)
1637 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
1638 p
->segment_flags_set
,
1639 p
->segment_flags_clear
);
1641 this->define_in_output_segment(p
->name
, NULL
, os
, p
->value
,
1642 p
->size
, p
->type
, p
->binding
,
1643 p
->visibility
, p
->nonvis
,
1645 only_if_ref
|| p
->only_if_ref
);
1647 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
1648 p
->binding
, p
->visibility
, p
->nonvis
,
1649 only_if_ref
|| p
->only_if_ref
,
1654 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1655 // symbol should be defined--typically a .dyn.bss section. VALUE is
1656 // the offset within POSD.
1660 Symbol_table::define_with_copy_reloc(
1661 Sized_symbol
<size
>* csym
,
1663 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
1665 gold_assert(csym
->is_from_dynobj());
1666 gold_assert(!csym
->is_copied_from_dynobj());
1667 Object
* object
= csym
->object();
1668 gold_assert(object
->is_dynamic());
1669 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
1671 // Our copied variable has to override any variable in a shared
1673 elfcpp::STB binding
= csym
->binding();
1674 if (binding
== elfcpp::STB_WEAK
)
1675 binding
= elfcpp::STB_GLOBAL
;
1677 this->define_in_output_data(csym
->name(), csym
->version(),
1678 posd
, value
, csym
->symsize(),
1679 csym
->type(), binding
,
1680 csym
->visibility(), csym
->nonvis(),
1683 csym
->set_is_copied_from_dynobj();
1684 csym
->set_needs_dynsym_entry();
1686 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
1688 // We have now defined all aliases, but we have not entered them all
1689 // in the copied_symbol_dynobjs_ map.
1690 if (csym
->has_alias())
1695 sym
= this->weak_aliases_
[sym
];
1698 gold_assert(sym
->output_data() == posd
);
1700 sym
->set_is_copied_from_dynobj();
1701 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
1706 // SYM is defined using a COPY reloc. Return the dynamic object where
1707 // the original definition was found.
1710 Symbol_table::get_copy_source(const Symbol
* sym
) const
1712 gold_assert(sym
->is_copied_from_dynobj());
1713 Copied_symbol_dynobjs::const_iterator p
=
1714 this->copied_symbol_dynobjs_
.find(sym
);
1715 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
1719 // Add any undefined symbols named on the command line.
1722 Symbol_table::add_undefined_symbols_from_command_line()
1724 if (parameters
->options().any_undefined())
1726 if (parameters
->target().get_size() == 32)
1728 #if defined(HAVE_TARGET_32_LITTL) || defined(HAVE_TARGET_32_BIG)
1729 this->do_add_undefined_symbols_from_command_line
<32>();
1734 else if (parameters
->target().get_size() == 64)
1736 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1737 this->do_add_undefined_symbols_from_command_line
<64>();
1749 Symbol_table::do_add_undefined_symbols_from_command_line()
1751 for (options::String_set::const_iterator p
=
1752 parameters
->options().undefined_begin();
1753 p
!= parameters
->options().undefined_end();
1756 const char* name
= p
->c_str();
1758 if (this->lookup(name
) != NULL
)
1761 const char* version
= NULL
;
1763 Sized_symbol
<size
>* sym
;
1764 Sized_symbol
<size
>* oldsym
;
1765 if (parameters
->target().is_big_endian())
1767 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1768 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1776 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1777 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1784 gold_assert(oldsym
== NULL
);
1786 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
1787 elfcpp::STV_DEFAULT
, 0);
1788 ++this->saw_undefined_
;
1792 // Set the dynamic symbol indexes. INDEX is the index of the first
1793 // global dynamic symbol. Pointers to the symbols are stored into the
1794 // vector SYMS. The names are added to DYNPOOL. This returns an
1795 // updated dynamic symbol index.
1798 Symbol_table::set_dynsym_indexes(unsigned int index
,
1799 std::vector
<Symbol
*>* syms
,
1800 Stringpool
* dynpool
,
1803 for (Symbol_table_type::iterator p
= this->table_
.begin();
1804 p
!= this->table_
.end();
1807 Symbol
* sym
= p
->second
;
1809 // Note that SYM may already have a dynamic symbol index, since
1810 // some symbols appear more than once in the symbol table, with
1811 // and without a version.
1813 if (!sym
->should_add_dynsym_entry())
1814 sym
->set_dynsym_index(-1U);
1815 else if (!sym
->has_dynsym_index())
1817 sym
->set_dynsym_index(index
);
1819 syms
->push_back(sym
);
1820 dynpool
->add(sym
->name(), false, NULL
);
1822 // Record any version information.
1823 if (sym
->version() != NULL
)
1824 versions
->record_version(this, dynpool
, sym
);
1828 // Finish up the versions. In some cases this may add new dynamic
1830 index
= versions
->finalize(this, index
, syms
);
1835 // Set the final values for all the symbols. The index of the first
1836 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1837 // file offset OFF. Add their names to POOL. Return the new file
1838 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1841 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
1842 size_t dyncount
, Stringpool
* pool
,
1843 unsigned int *plocal_symcount
)
1847 gold_assert(*plocal_symcount
!= 0);
1848 this->first_global_index_
= *plocal_symcount
;
1850 this->dynamic_offset_
= dynoff
;
1851 this->first_dynamic_global_index_
= dyn_global_index
;
1852 this->dynamic_count_
= dyncount
;
1854 if (parameters
->target().get_size() == 32)
1856 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1857 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
1862 else if (parameters
->target().get_size() == 64)
1864 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1865 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
1873 // Now that we have the final symbol table, we can reliably note
1874 // which symbols should get warnings.
1875 this->warnings_
.note_warnings(this);
1880 // SYM is going into the symbol table at *PINDEX. Add the name to
1881 // POOL, update *PINDEX and *POFF.
1885 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
1886 unsigned int* pindex
, off_t
* poff
)
1888 sym
->set_symtab_index(*pindex
);
1889 pool
->add(sym
->name(), false, NULL
);
1891 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
1894 // Set the final value for all the symbols. This is called after
1895 // Layout::finalize, so all the output sections have their final
1900 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
1901 unsigned int* plocal_symcount
)
1903 off
= align_address(off
, size
>> 3);
1904 this->offset_
= off
;
1906 unsigned int index
= *plocal_symcount
;
1907 const unsigned int orig_index
= index
;
1909 // First do all the symbols which have been forced to be local, as
1910 // they must appear before all global symbols.
1911 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
1912 p
!= this->forced_locals_
.end();
1916 gold_assert(sym
->is_forced_local());
1917 if (this->sized_finalize_symbol
<size
>(sym
))
1919 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
1924 // Now do all the remaining symbols.
1925 for (Symbol_table_type::iterator p
= this->table_
.begin();
1926 p
!= this->table_
.end();
1929 Symbol
* sym
= p
->second
;
1930 if (this->sized_finalize_symbol
<size
>(sym
))
1931 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
1934 this->output_count_
= index
- orig_index
;
1939 // Finalize the symbol SYM. This returns true if the symbol should be
1940 // added to the symbol table, false otherwise.
1944 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
1946 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
1948 // The default version of a symbol may appear twice in the symbol
1949 // table. We only need to finalize it once.
1950 if (sym
->has_symtab_index())
1955 gold_assert(!sym
->has_symtab_index());
1956 sym
->set_symtab_index(-1U);
1957 gold_assert(sym
->dynsym_index() == -1U);
1961 typename Sized_symbol
<size
>::Value_type value
;
1963 switch (sym
->source())
1965 case Symbol::FROM_OBJECT
:
1968 unsigned int shndx
= sym
->shndx(&is_ordinary
);
1970 // FIXME: We need some target specific support here.
1972 && shndx
!= elfcpp::SHN_ABS
1973 && shndx
!= elfcpp::SHN_COMMON
)
1975 gold_error(_("%s: unsupported symbol section 0x%x"),
1976 sym
->demangled_name().c_str(), shndx
);
1977 shndx
= elfcpp::SHN_UNDEF
;
1980 Object
* symobj
= sym
->object();
1981 if (symobj
->is_dynamic())
1984 shndx
= elfcpp::SHN_UNDEF
;
1986 else if (shndx
== elfcpp::SHN_UNDEF
)
1988 else if (!is_ordinary
1989 && (shndx
== elfcpp::SHN_ABS
|| shndx
== elfcpp::SHN_COMMON
))
1990 value
= sym
->value();
1993 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1994 section_offset_type secoff
;
1995 Output_section
* os
= relobj
->output_section(shndx
, &secoff
);
1999 sym
->set_symtab_index(-1U);
2000 gold_assert(sym
->dynsym_index() == -1U);
2004 if (sym
->type() == elfcpp::STT_TLS
)
2005 value
= sym
->value() + os
->tls_offset() + secoff
;
2007 value
= sym
->value() + os
->address() + secoff
;
2012 case Symbol::IN_OUTPUT_DATA
:
2014 Output_data
* od
= sym
->output_data();
2015 value
= sym
->value();
2016 if (sym
->type() != elfcpp::STT_TLS
)
2017 value
+= od
->address();
2020 Output_section
* os
= od
->output_section();
2021 gold_assert(os
!= NULL
);
2022 value
+= os
->tls_offset() + (od
->address() - os
->address());
2024 if (sym
->offset_is_from_end())
2025 value
+= od
->data_size();
2029 case Symbol::IN_OUTPUT_SEGMENT
:
2031 Output_segment
* os
= sym
->output_segment();
2032 value
= sym
->value();
2033 if (sym
->type() != elfcpp::STT_TLS
)
2034 value
+= os
->vaddr();
2035 switch (sym
->offset_base())
2037 case Symbol::SEGMENT_START
:
2039 case Symbol::SEGMENT_END
:
2040 value
+= os
->memsz();
2042 case Symbol::SEGMENT_BSS
:
2043 value
+= os
->filesz();
2051 case Symbol::IS_CONSTANT
:
2052 value
= sym
->value();
2055 case Symbol::IS_UNDEFINED
:
2063 sym
->set_value(value
);
2065 if (parameters
->options().strip_all())
2067 sym
->set_symtab_index(-1U);
2074 // Write out the global symbols.
2077 Symbol_table::write_globals(const Input_objects
* input_objects
,
2078 const Stringpool
* sympool
,
2079 const Stringpool
* dynpool
,
2080 Output_symtab_xindex
* symtab_xindex
,
2081 Output_symtab_xindex
* dynsym_xindex
,
2082 Output_file
* of
) const
2084 switch (parameters
->size_and_endianness())
2086 #ifdef HAVE_TARGET_32_LITTLE
2087 case Parameters::TARGET_32_LITTLE
:
2088 this->sized_write_globals
<32, false>(input_objects
, sympool
,
2089 dynpool
, symtab_xindex
,
2093 #ifdef HAVE_TARGET_32_BIG
2094 case Parameters::TARGET_32_BIG
:
2095 this->sized_write_globals
<32, true>(input_objects
, sympool
,
2096 dynpool
, symtab_xindex
,
2100 #ifdef HAVE_TARGET_64_LITTLE
2101 case Parameters::TARGET_64_LITTLE
:
2102 this->sized_write_globals
<64, false>(input_objects
, sympool
,
2103 dynpool
, symtab_xindex
,
2107 #ifdef HAVE_TARGET_64_BIG
2108 case Parameters::TARGET_64_BIG
:
2109 this->sized_write_globals
<64, true>(input_objects
, sympool
,
2110 dynpool
, symtab_xindex
,
2119 // Write out the global symbols.
2121 template<int size
, bool big_endian
>
2123 Symbol_table::sized_write_globals(const Input_objects
* input_objects
,
2124 const Stringpool
* sympool
,
2125 const Stringpool
* dynpool
,
2126 Output_symtab_xindex
* symtab_xindex
,
2127 Output_symtab_xindex
* dynsym_xindex
,
2128 Output_file
* of
) const
2130 const Target
& target
= parameters
->target();
2132 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2134 const unsigned int output_count
= this->output_count_
;
2135 const section_size_type oview_size
= output_count
* sym_size
;
2136 const unsigned int first_global_index
= this->first_global_index_
;
2137 unsigned char* psyms
;
2138 if (this->offset_
== 0 || output_count
== 0)
2141 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2143 const unsigned int dynamic_count
= this->dynamic_count_
;
2144 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2145 const unsigned int first_dynamic_global_index
=
2146 this->first_dynamic_global_index_
;
2147 unsigned char* dynamic_view
;
2148 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2149 dynamic_view
= NULL
;
2151 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2153 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2154 p
!= this->table_
.end();
2157 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2159 // Possibly warn about unresolved symbols in shared libraries.
2160 this->warn_about_undefined_dynobj_symbol(input_objects
, sym
);
2162 unsigned int sym_index
= sym
->symtab_index();
2163 unsigned int dynsym_index
;
2164 if (dynamic_view
== NULL
)
2167 dynsym_index
= sym
->dynsym_index();
2169 if (sym_index
== -1U && dynsym_index
== -1U)
2171 // This symbol is not included in the output file.
2176 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2177 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2178 switch (sym
->source())
2180 case Symbol::FROM_OBJECT
:
2183 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2185 // FIXME: We need some target specific support here.
2187 && in_shndx
!= elfcpp::SHN_ABS
2188 && in_shndx
!= elfcpp::SHN_COMMON
)
2190 gold_error(_("%s: unsupported symbol section 0x%x"),
2191 sym
->demangled_name().c_str(), in_shndx
);
2196 Object
* symobj
= sym
->object();
2197 if (symobj
->is_dynamic())
2199 if (sym
->needs_dynsym_value())
2200 dynsym_value
= target
.dynsym_value(sym
);
2201 shndx
= elfcpp::SHN_UNDEF
;
2203 else if (in_shndx
== elfcpp::SHN_UNDEF
2205 && (in_shndx
== elfcpp::SHN_ABS
2206 || in_shndx
== elfcpp::SHN_COMMON
)))
2210 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2211 section_offset_type secoff
;
2212 Output_section
* os
= relobj
->output_section(in_shndx
,
2214 gold_assert(os
!= NULL
);
2215 shndx
= os
->out_shndx();
2217 if (shndx
>= elfcpp::SHN_LORESERVE
)
2219 if (sym_index
!= -1U)
2220 symtab_xindex
->add(sym_index
, shndx
);
2221 if (dynsym_index
!= -1U)
2222 dynsym_xindex
->add(dynsym_index
, shndx
);
2223 shndx
= elfcpp::SHN_XINDEX
;
2226 // In object files symbol values are section
2228 if (parameters
->options().relocatable())
2229 sym_value
-= os
->address();
2235 case Symbol::IN_OUTPUT_DATA
:
2236 shndx
= sym
->output_data()->out_shndx();
2237 if (shndx
>= elfcpp::SHN_LORESERVE
)
2239 if (sym_index
!= -1U)
2240 symtab_xindex
->add(sym_index
, shndx
);
2241 if (dynsym_index
!= -1U)
2242 dynsym_xindex
->add(dynsym_index
, shndx
);
2243 shndx
= elfcpp::SHN_XINDEX
;
2247 case Symbol::IN_OUTPUT_SEGMENT
:
2248 shndx
= elfcpp::SHN_ABS
;
2251 case Symbol::IS_CONSTANT
:
2252 shndx
= elfcpp::SHN_ABS
;
2255 case Symbol::IS_UNDEFINED
:
2256 shndx
= elfcpp::SHN_UNDEF
;
2263 if (sym_index
!= -1U)
2265 sym_index
-= first_global_index
;
2266 gold_assert(sym_index
< output_count
);
2267 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2268 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2272 if (dynsym_index
!= -1U)
2274 dynsym_index
-= first_dynamic_global_index
;
2275 gold_assert(dynsym_index
< dynamic_count
);
2276 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2277 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2282 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2283 if (dynamic_view
!= NULL
)
2284 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2287 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2288 // strtab holding the name.
2290 template<int size
, bool big_endian
>
2292 Symbol_table::sized_write_symbol(
2293 Sized_symbol
<size
>* sym
,
2294 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2296 const Stringpool
* pool
,
2297 unsigned char* p
) const
2299 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2300 osym
.put_st_name(pool
->get_offset(sym
->name()));
2301 osym
.put_st_value(value
);
2302 osym
.put_st_size(sym
->symsize());
2303 // A version script may have overridden the default binding.
2304 if (sym
->is_forced_local())
2305 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, sym
->type()));
2307 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
2308 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2309 osym
.put_st_shndx(shndx
);
2312 // Check for unresolved symbols in shared libraries. This is
2313 // controlled by the --allow-shlib-undefined option.
2315 // We only warn about libraries for which we have seen all the
2316 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2317 // which were not seen in this link. If we didn't see a DT_NEEDED
2318 // entry, we aren't going to be able to reliably report whether the
2319 // symbol is undefined.
2321 // We also don't warn about libraries found in the system library
2322 // directory (the directory were we find libc.so); we assume that
2323 // those libraries are OK. This heuristic avoids problems in
2324 // GNU/Linux, in which -ldl can have undefined references satisfied by
2328 Symbol_table::warn_about_undefined_dynobj_symbol(
2329 const Input_objects
* input_objects
,
2333 if (sym
->source() == Symbol::FROM_OBJECT
2334 && sym
->object()->is_dynamic()
2335 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2336 && sym
->binding() != elfcpp::STB_WEAK
2337 && !parameters
->options().allow_shlib_undefined()
2338 && !parameters
->target().is_defined_by_abi(sym
)
2339 && !input_objects
->found_in_system_library_directory(sym
->object()))
2341 // A very ugly cast.
2342 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2343 if (!dynobj
->has_unknown_needed_entries())
2344 gold_error(_("%s: undefined reference to '%s'"),
2345 sym
->object()->name().c_str(),
2346 sym
->demangled_name().c_str());
2350 // Write out a section symbol. Return the update offset.
2353 Symbol_table::write_section_symbol(const Output_section
*os
,
2354 Output_symtab_xindex
* symtab_xindex
,
2358 switch (parameters
->size_and_endianness())
2360 #ifdef HAVE_TARGET_32_LITTLE
2361 case Parameters::TARGET_32_LITTLE
:
2362 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2366 #ifdef HAVE_TARGET_32_BIG
2367 case Parameters::TARGET_32_BIG
:
2368 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2372 #ifdef HAVE_TARGET_64_LITTLE
2373 case Parameters::TARGET_64_LITTLE
:
2374 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2378 #ifdef HAVE_TARGET_64_BIG
2379 case Parameters::TARGET_64_BIG
:
2380 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2389 // Write out a section symbol, specialized for size and endianness.
2391 template<int size
, bool big_endian
>
2393 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2394 Output_symtab_xindex
* symtab_xindex
,
2398 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2400 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2402 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2403 osym
.put_st_name(0);
2404 osym
.put_st_value(os
->address());
2405 osym
.put_st_size(0);
2406 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2407 elfcpp::STT_SECTION
));
2408 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2410 unsigned int shndx
= os
->out_shndx();
2411 if (shndx
>= elfcpp::SHN_LORESERVE
)
2413 symtab_xindex
->add(os
->symtab_index(), shndx
);
2414 shndx
= elfcpp::SHN_XINDEX
;
2416 osym
.put_st_shndx(shndx
);
2418 of
->write_output_view(offset
, sym_size
, pov
);
2421 // Print statistical information to stderr. This is used for --stats.
2424 Symbol_table::print_stats() const
2426 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2427 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2428 program_name
, this->table_
.size(), this->table_
.bucket_count());
2430 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2431 program_name
, this->table_
.size());
2433 this->namepool_
.print_stats("symbol table stringpool");
2436 // We check for ODR violations by looking for symbols with the same
2437 // name for which the debugging information reports that they were
2438 // defined in different source locations. When comparing the source
2439 // location, we consider instances with the same base filename and
2440 // line number to be the same. This is because different object
2441 // files/shared libraries can include the same header file using
2442 // different paths, and we don't want to report an ODR violation in
2445 // This struct is used to compare line information, as returned by
2446 // Dwarf_line_info::one_addr2line. It implements a < comparison
2447 // operator used with std::set.
2449 struct Odr_violation_compare
2452 operator()(const std::string
& s1
, const std::string
& s2
) const
2454 std::string::size_type pos1
= s1
.rfind('/');
2455 std::string::size_type pos2
= s2
.rfind('/');
2456 if (pos1
== std::string::npos
2457 || pos2
== std::string::npos
)
2459 return s1
.compare(pos1
, std::string::npos
,
2460 s2
, pos2
, std::string::npos
) < 0;
2464 // Check candidate_odr_violations_ to find symbols with the same name
2465 // but apparently different definitions (different source-file/line-no).
2468 Symbol_table::detect_odr_violations(const Task
* task
,
2469 const char* output_file_name
) const
2471 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
2472 it
!= candidate_odr_violations_
.end();
2475 const char* symbol_name
= it
->first
;
2476 // We use a sorted set so the output is deterministic.
2477 std::set
<std::string
, Odr_violation_compare
> line_nums
;
2479 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
2480 locs
= it
->second
.begin();
2481 locs
!= it
->second
.end();
2484 // We need to lock the object in order to read it. This
2485 // means that we have to run in a singleton Task. If we
2486 // want to run this in a general Task for better
2487 // performance, we will need one Task for object, plus
2488 // appropriate locking to ensure that we don't conflict with
2489 // other uses of the object. Also note, one_addr2line is not
2490 // currently thread-safe.
2491 Task_lock_obj
<Object
> tl(task
, locs
->object
);
2492 // 16 is the size of the object-cache that one_addr2line should use.
2493 std::string lineno
= Dwarf_line_info::one_addr2line(
2494 locs
->object
, locs
->shndx
, locs
->offset
, 16);
2495 if (!lineno
.empty())
2496 line_nums
.insert(lineno
);
2499 if (line_nums
.size() > 1)
2501 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2502 "places (possible ODR violation):"),
2503 output_file_name
, demangle(symbol_name
).c_str());
2504 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
2505 it2
!= line_nums
.end();
2507 fprintf(stderr
, " %s\n", it2
->c_str());
2510 // We only call one_addr2line() in this function, so we can clear its cache.
2511 Dwarf_line_info::clear_addr2line_cache();
2514 // Warnings functions.
2516 // Add a new warning.
2519 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
2520 const std::string
& warning
)
2522 name
= symtab
->canonicalize_name(name
);
2523 this->warnings_
[name
].set(obj
, warning
);
2526 // Look through the warnings and mark the symbols for which we should
2527 // warn. This is called during Layout::finalize when we know the
2528 // sources for all the symbols.
2531 Warnings::note_warnings(Symbol_table
* symtab
)
2533 for (Warning_table::iterator p
= this->warnings_
.begin();
2534 p
!= this->warnings_
.end();
2537 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
2539 && sym
->source() == Symbol::FROM_OBJECT
2540 && sym
->object() == p
->second
.object
)
2541 sym
->set_has_warning();
2545 // Issue a warning. This is called when we see a relocation against a
2546 // symbol for which has a warning.
2548 template<int size
, bool big_endian
>
2550 Warnings::issue_warning(const Symbol
* sym
,
2551 const Relocate_info
<size
, big_endian
>* relinfo
,
2552 size_t relnum
, off_t reloffset
) const
2554 gold_assert(sym
->has_warning());
2555 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
2556 gold_assert(p
!= this->warnings_
.end());
2557 gold_warning_at_location(relinfo
, relnum
, reloffset
,
2558 "%s", p
->second
.text
.c_str());
2561 // Instantiate the templates we need. We could use the configure
2562 // script to restrict this to only the ones needed for implemented
2565 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2568 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
2571 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2574 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
2577 #ifdef HAVE_TARGET_32_LITTLE
2580 Symbol_table::add_from_relobj
<32, false>(
2581 Sized_relobj
<32, false>* relobj
,
2582 const unsigned char* syms
,
2584 size_t symndx_offset
,
2585 const char* sym_names
,
2586 size_t sym_name_size
,
2587 Sized_relobj
<32, true>::Symbols
* sympointers
);
2590 #ifdef HAVE_TARGET_32_BIG
2593 Symbol_table::add_from_relobj
<32, true>(
2594 Sized_relobj
<32, true>* relobj
,
2595 const unsigned char* syms
,
2597 size_t symndx_offset
,
2598 const char* sym_names
,
2599 size_t sym_name_size
,
2600 Sized_relobj
<32, false>::Symbols
* sympointers
);
2603 #ifdef HAVE_TARGET_64_LITTLE
2606 Symbol_table::add_from_relobj
<64, false>(
2607 Sized_relobj
<64, false>* relobj
,
2608 const unsigned char* syms
,
2610 size_t symndx_offset
,
2611 const char* sym_names
,
2612 size_t sym_name_size
,
2613 Sized_relobj
<64, true>::Symbols
* sympointers
);
2616 #ifdef HAVE_TARGET_64_BIG
2619 Symbol_table::add_from_relobj
<64, true>(
2620 Sized_relobj
<64, true>* relobj
,
2621 const unsigned char* syms
,
2623 size_t symndx_offset
,
2624 const char* sym_names
,
2625 size_t sym_name_size
,
2626 Sized_relobj
<64, false>::Symbols
* sympointers
);
2629 #ifdef HAVE_TARGET_32_LITTLE
2632 Symbol_table::add_from_dynobj
<32, false>(
2633 Sized_dynobj
<32, false>* dynobj
,
2634 const unsigned char* syms
,
2636 const char* sym_names
,
2637 size_t sym_name_size
,
2638 const unsigned char* versym
,
2640 const std::vector
<const char*>* version_map
);
2643 #ifdef HAVE_TARGET_32_BIG
2646 Symbol_table::add_from_dynobj
<32, true>(
2647 Sized_dynobj
<32, true>* dynobj
,
2648 const unsigned char* syms
,
2650 const char* sym_names
,
2651 size_t sym_name_size
,
2652 const unsigned char* versym
,
2654 const std::vector
<const char*>* version_map
);
2657 #ifdef HAVE_TARGET_64_LITTLE
2660 Symbol_table::add_from_dynobj
<64, false>(
2661 Sized_dynobj
<64, false>* dynobj
,
2662 const unsigned char* syms
,
2664 const char* sym_names
,
2665 size_t sym_name_size
,
2666 const unsigned char* versym
,
2668 const std::vector
<const char*>* version_map
);
2671 #ifdef HAVE_TARGET_64_BIG
2674 Symbol_table::add_from_dynobj
<64, true>(
2675 Sized_dynobj
<64, true>* dynobj
,
2676 const unsigned char* syms
,
2678 const char* sym_names
,
2679 size_t sym_name_size
,
2680 const unsigned char* versym
,
2682 const std::vector
<const char*>* version_map
);
2685 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2688 Symbol_table::define_with_copy_reloc
<32>(
2689 Sized_symbol
<32>* sym
,
2691 elfcpp::Elf_types
<32>::Elf_Addr value
);
2694 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2697 Symbol_table::define_with_copy_reloc
<64>(
2698 Sized_symbol
<64>* sym
,
2700 elfcpp::Elf_types
<64>::Elf_Addr value
);
2703 #ifdef HAVE_TARGET_32_LITTLE
2706 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
2707 const Relocate_info
<32, false>* relinfo
,
2708 size_t relnum
, off_t reloffset
) const;
2711 #ifdef HAVE_TARGET_32_BIG
2714 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
2715 const Relocate_info
<32, true>* relinfo
,
2716 size_t relnum
, off_t reloffset
) const;
2719 #ifdef HAVE_TARGET_64_LITTLE
2722 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
2723 const Relocate_info
<64, false>* relinfo
,
2724 size_t relnum
, off_t reloffset
) const;
2727 #ifdef HAVE_TARGET_64_BIG
2730 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
2731 const Relocate_info
<64, true>* relinfo
,
2732 size_t relnum
, off_t reloffset
) const;
2735 } // End namespace gold.