1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry
*h
;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type
;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
118 struct mips_got_page_range
120 struct mips_got_page_range
*next
;
121 bfd_signed_vma min_addend
;
122 bfd_signed_vma max_addend
;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
131 /* The index of the symbol, as stored in the relocation r_info. */
133 /* The ranges for this page entry. */
134 struct mips_got_page_range
*ranges
;
135 /* The maximum number of page entries needed for RANGES. */
139 /* This structure is used to hold .got information when linking. */
143 /* The global symbol in the GOT with the lowest index in the dynamic
145 struct elf_link_hash_entry
*global_gotsym
;
146 /* The number of global .got entries. */
147 unsigned int global_gotno
;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno
;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno
;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno
;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno
;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno
;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno
;
161 /* A hash table holding members of the got. */
162 struct htab
*got_entries
;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab
*got_page_entries
;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab
*bfd2got
;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info
*next
;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset
;
178 /* Map an input bfd to a got in a multi-got link. */
180 struct mips_elf_bfd2got_hash
{
182 struct mips_got_info
*g
;
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
188 struct mips_elf_got_per_bfd_arg
190 /* A hashtable that maps bfds to gots. */
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* Another structure used to pass arguments for got entries traversal. */
217 struct mips_elf_set_global_got_offset_arg
219 struct mips_got_info
*g
;
221 unsigned int needed_relocs
;
222 struct bfd_link_info
*info
;
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
228 struct mips_elf_count_tls_arg
230 struct bfd_link_info
*info
;
234 struct _mips_elf_section_data
236 struct bfd_elf_section_data elf
;
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
269 #define GGA_RELOC_ONLY 1
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
276 addiu $25,$25,%lo(func)
278 immediately before a PIC function "func". The second is to add:
282 addiu $25,$25,%lo(func)
284 to a separate trampoline section.
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub
{
290 /* The generated section that contains this stub. */
291 asection
*stub_section
;
293 /* The offset of the stub from the start of STUB_SECTION. */
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry
*h
;
301 /* Macros for populating a mips_elf_la25_stub. */
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
310 struct mips_elf_hash_sort_data
312 /* The symbol in the global GOT with the lowest dynamic symbol table
314 struct elf_link_hash_entry
*low
;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx
;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx
;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx
;
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
330 struct mips_elf_link_hash_entry
332 struct elf_link_hash_entry root
;
334 /* External symbol information. */
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub
*la25_stub
;
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
342 unsigned int possibly_dynamic_relocs
;
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection
*call_fp_stub
;
358 #define GOT_TLS_LDM 2
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type
;
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset
;
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area
: 2;
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc
: 1;
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs
: 1;
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub
: 1;
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub
: 1;
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches
: 1;
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub
: 1;
404 /* MIPS ELF linker hash table. */
406 struct mips_elf_link_hash_table
408 struct elf_link_hash_table root
;
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count
;
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size
;
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head
;
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen
;
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs
;
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks
;
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported
;
440 /* Shortcuts to some dynamic sections, or NULL if they are not
451 /* The master GOT information. */
452 struct mips_got_info
*got_info
;
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size
;
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size
;
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count
;
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size
;
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno
;
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection
*strampoline
;
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
482 The function returns the new section on success, otherwise it
484 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info
{
489 /* The usual link-wide information. */
490 struct bfd_link_info
*info
;
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
512 /* Structure used to pass information to mips_elf_output_extsym. */
517 struct bfd_link_info
*info
;
518 struct ecoff_debug_info
*debug
;
519 const struct ecoff_debug_swap
*swap
;
523 /* The names of the runtime procedure table symbols used on IRIX5. */
525 static const char * const mips_elf_dynsym_rtproc_names
[] =
528 "_procedure_string_table",
529 "_procedure_table_size",
533 /* These structures are used to generate the .compact_rel section on
538 unsigned long id1
; /* Always one? */
539 unsigned long num
; /* Number of compact relocation entries. */
540 unsigned long id2
; /* Always two? */
541 unsigned long offset
; /* The file offset of the first relocation. */
542 unsigned long reserved0
; /* Zero? */
543 unsigned long reserved1
; /* Zero? */
552 bfd_byte reserved0
[4];
553 bfd_byte reserved1
[4];
554 } Elf32_External_compact_rel
;
558 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype
: 4; /* Relocation types. See below. */
560 unsigned int dist2to
: 8;
561 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst
; /* KONST field. See below. */
563 unsigned long vaddr
; /* VADDR to be relocated. */
568 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype
: 4; /* Relocation types. See below. */
570 unsigned int dist2to
: 8;
571 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst
; /* KONST field. See below. */
580 } Elf32_External_crinfo
;
586 } Elf32_External_crinfo2
;
588 /* These are the constants used to swap the bitfields in a crinfo. */
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
628 typedef struct runtime_pdr
{
629 bfd_vma adr
; /* Memory address of start of procedure. */
630 long regmask
; /* Save register mask. */
631 long regoffset
; /* Save register offset. */
632 long fregmask
; /* Save floating point register mask. */
633 long fregoffset
; /* Save floating point register offset. */
634 long frameoffset
; /* Frame size. */
635 short framereg
; /* Frame pointer register. */
636 short pcreg
; /* Offset or reg of return pc. */
637 long irpss
; /* Index into the runtime string table. */
639 struct exception_info
*exception_info
;/* Pointer to exception array. */
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
644 static struct mips_got_entry
*mips_elf_create_local_got_entry
645 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
646 struct mips_elf_link_hash_entry
*, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry
*, void *);
649 static bfd_vma mips_elf_high
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
653 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
654 bfd_vma
*, asection
*);
655 static hashval_t mips_elf_got_entry_hash
657 static bfd_vma mips_elf_adjust_gp
658 (bfd
*, struct mips_got_info
*, bfd
*);
659 static struct mips_got_info
*mips_elf_got_for_ibfd
660 (struct mips_got_info
*, bfd
*);
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd
*reldyn_sorting_bfd
;
665 /* True if ABFD is for CPUs with load interlocking that include
666 non-MIPS1 CPUs and R3900. */
667 #define LOAD_INTERLOCKS_P(abfd) \
668 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
669 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
671 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
672 This should be safe for all architectures. We enable this predicate
673 for RM9000 for now. */
674 #define JAL_TO_BAL_P(abfd) \
675 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
677 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
678 This should be safe for all architectures. We enable this predicate for
680 #define JALR_TO_BAL_P(abfd) 1
682 /* True if ABFD is a PIC object. */
683 #define PIC_OBJECT_P(abfd) \
684 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
686 /* Nonzero if ABFD is using the N32 ABI. */
687 #define ABI_N32_P(abfd) \
688 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
690 /* Nonzero if ABFD is using the N64 ABI. */
691 #define ABI_64_P(abfd) \
692 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
694 /* Nonzero if ABFD is using NewABI conventions. */
695 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
697 /* The IRIX compatibility level we are striving for. */
698 #define IRIX_COMPAT(abfd) \
699 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
701 /* Whether we are trying to be compatible with IRIX at all. */
702 #define SGI_COMPAT(abfd) \
703 (IRIX_COMPAT (abfd) != ict_none)
705 /* The name of the options section. */
706 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
707 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
709 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
710 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
711 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
712 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
714 /* Whether the section is readonly. */
715 #define MIPS_ELF_READONLY_SECTION(sec) \
716 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
717 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
719 /* The name of the stub section. */
720 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
722 /* The size of an external REL relocation. */
723 #define MIPS_ELF_REL_SIZE(abfd) \
724 (get_elf_backend_data (abfd)->s->sizeof_rel)
726 /* The size of an external RELA relocation. */
727 #define MIPS_ELF_RELA_SIZE(abfd) \
728 (get_elf_backend_data (abfd)->s->sizeof_rela)
730 /* The size of an external dynamic table entry. */
731 #define MIPS_ELF_DYN_SIZE(abfd) \
732 (get_elf_backend_data (abfd)->s->sizeof_dyn)
734 /* The size of a GOT entry. */
735 #define MIPS_ELF_GOT_SIZE(abfd) \
736 (get_elf_backend_data (abfd)->s->arch_size / 8)
738 /* The size of a symbol-table entry. */
739 #define MIPS_ELF_SYM_SIZE(abfd) \
740 (get_elf_backend_data (abfd)->s->sizeof_sym)
742 /* The default alignment for sections, as a power of two. */
743 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
744 (get_elf_backend_data (abfd)->s->log_file_align)
746 /* Get word-sized data. */
747 #define MIPS_ELF_GET_WORD(abfd, ptr) \
748 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
750 /* Put out word-sized data. */
751 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
753 ? bfd_put_64 (abfd, val, ptr) \
754 : bfd_put_32 (abfd, val, ptr))
756 /* The opcode for word-sized loads (LW or LD). */
757 #define MIPS_ELF_LOAD_WORD(abfd) \
758 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
760 /* Add a dynamic symbol table-entry. */
761 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
762 _bfd_elf_add_dynamic_entry (info, tag, val)
764 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
765 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
767 /* Determine whether the internal relocation of index REL_IDX is REL
768 (zero) or RELA (non-zero). The assumption is that, if there are
769 two relocation sections for this section, one of them is REL and
770 the other is RELA. If the index of the relocation we're testing is
771 in range for the first relocation section, check that the external
772 relocation size is that for RELA. It is also assumed that, if
773 rel_idx is not in range for the first section, and this first
774 section contains REL relocs, then the relocation is in the second
775 section, that is RELA. */
776 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
777 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
778 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
779 > (bfd_vma)(rel_idx)) \
780 == (elf_section_data (sec)->rel_hdr.sh_entsize \
781 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
782 : sizeof (Elf32_External_Rela))))
784 /* The name of the dynamic relocation section. */
785 #define MIPS_ELF_REL_DYN_NAME(INFO) \
786 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
788 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
789 from smaller values. Start with zero, widen, *then* decrement. */
790 #define MINUS_ONE (((bfd_vma)0) - 1)
791 #define MINUS_TWO (((bfd_vma)0) - 2)
793 /* The value to write into got[1] for SVR4 targets, to identify it is
794 a GNU object. The dynamic linker can then use got[1] to store the
796 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
797 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
799 /* The offset of $gp from the beginning of the .got section. */
800 #define ELF_MIPS_GP_OFFSET(INFO) \
801 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
803 /* The maximum size of the GOT for it to be addressable using 16-bit
805 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
807 /* Instructions which appear in a stub. */
808 #define STUB_LW(abfd) \
810 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
811 : 0x8f998010)) /* lw t9,0x8010(gp) */
812 #define STUB_MOVE(abfd) \
814 ? 0x03e0782d /* daddu t7,ra */ \
815 : 0x03e07821)) /* addu t7,ra */
816 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
817 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
818 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
819 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
820 #define STUB_LI16S(abfd, VAL) \
822 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
823 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
825 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
826 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
828 /* The name of the dynamic interpreter. This is put in the .interp
831 #define ELF_DYNAMIC_INTERPRETER(abfd) \
832 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
833 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
834 : "/usr/lib/libc.so.1")
837 #define MNAME(bfd,pre,pos) \
838 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
839 #define ELF_R_SYM(bfd, i) \
840 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
841 #define ELF_R_TYPE(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
843 #define ELF_R_INFO(bfd, s, t) \
844 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
846 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
847 #define ELF_R_SYM(bfd, i) \
849 #define ELF_R_TYPE(bfd, i) \
851 #define ELF_R_INFO(bfd, s, t) \
852 (ELF32_R_INFO (s, t))
855 /* The mips16 compiler uses a couple of special sections to handle
856 floating point arguments.
858 Section names that look like .mips16.fn.FNNAME contain stubs that
859 copy floating point arguments from the fp regs to the gp regs and
860 then jump to FNNAME. If any 32 bit function calls FNNAME, the
861 call should be redirected to the stub instead. If no 32 bit
862 function calls FNNAME, the stub should be discarded. We need to
863 consider any reference to the function, not just a call, because
864 if the address of the function is taken we will need the stub,
865 since the address might be passed to a 32 bit function.
867 Section names that look like .mips16.call.FNNAME contain stubs
868 that copy floating point arguments from the gp regs to the fp
869 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
870 then any 16 bit function that calls FNNAME should be redirected
871 to the stub instead. If FNNAME is not a 32 bit function, the
872 stub should be discarded.
874 .mips16.call.fp.FNNAME sections are similar, but contain stubs
875 which call FNNAME and then copy the return value from the fp regs
876 to the gp regs. These stubs store the return value in $18 while
877 calling FNNAME; any function which might call one of these stubs
878 must arrange to save $18 around the call. (This case is not
879 needed for 32 bit functions that call 16 bit functions, because
880 16 bit functions always return floating point values in both
883 Note that in all cases FNNAME might be defined statically.
884 Therefore, FNNAME is not used literally. Instead, the relocation
885 information will indicate which symbol the section is for.
887 We record any stubs that we find in the symbol table. */
889 #define FN_STUB ".mips16.fn."
890 #define CALL_STUB ".mips16.call."
891 #define CALL_FP_STUB ".mips16.call.fp."
893 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
894 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
895 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
897 /* The format of the first PLT entry in an O32 executable. */
898 static const bfd_vma mips_o32_exec_plt0_entry
[] =
900 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
901 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
902 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
903 0x031cc023, /* subu $24, $24, $28 */
904 0x03e07821, /* move $15, $31 */
905 0x0018c082, /* srl $24, $24, 2 */
906 0x0320f809, /* jalr $25 */
907 0x2718fffe /* subu $24, $24, 2 */
910 /* The format of the first PLT entry in an N32 executable. Different
911 because gp ($28) is not available; we use t2 ($14) instead. */
912 static const bfd_vma mips_n32_exec_plt0_entry
[] =
914 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
915 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
916 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
917 0x030ec023, /* subu $24, $24, $14 */
918 0x03e07821, /* move $15, $31 */
919 0x0018c082, /* srl $24, $24, 2 */
920 0x0320f809, /* jalr $25 */
921 0x2718fffe /* subu $24, $24, 2 */
924 /* The format of the first PLT entry in an N64 executable. Different
925 from N32 because of the increased size of GOT entries. */
926 static const bfd_vma mips_n64_exec_plt0_entry
[] =
928 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
929 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
930 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
931 0x030ec023, /* subu $24, $24, $14 */
932 0x03e07821, /* move $15, $31 */
933 0x0018c0c2, /* srl $24, $24, 3 */
934 0x0320f809, /* jalr $25 */
935 0x2718fffe /* subu $24, $24, 2 */
938 /* The format of subsequent PLT entries. */
939 static const bfd_vma mips_exec_plt_entry
[] =
941 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
942 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
943 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
944 0x03200008 /* jr $25 */
947 /* The format of the first PLT entry in a VxWorks executable. */
948 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
950 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
951 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
952 0x8f390008, /* lw t9, 8(t9) */
953 0x00000000, /* nop */
954 0x03200008, /* jr t9 */
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
961 0x10000000, /* b .PLT_resolver */
962 0x24180000, /* li t8, <pltindex> */
963 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
964 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
965 0x8f390000, /* lw t9, 0(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
971 /* The format of the first PLT entry in a VxWorks shared object. */
972 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
974 0x8f990008, /* lw t9, 8(gp) */
975 0x00000000, /* nop */
976 0x03200008, /* jr t9 */
977 0x00000000, /* nop */
978 0x00000000, /* nop */
982 /* The format of subsequent PLT entries. */
983 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
985 0x10000000, /* b .PLT_resolver */
986 0x24180000 /* li t8, <pltindex> */
989 /* Look up an entry in a MIPS ELF linker hash table. */
991 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
992 ((struct mips_elf_link_hash_entry *) \
993 elf_link_hash_lookup (&(table)->root, (string), (create), \
996 /* Traverse a MIPS ELF linker hash table. */
998 #define mips_elf_link_hash_traverse(table, func, info) \
999 (elf_link_hash_traverse \
1001 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1004 /* Get the MIPS ELF linker hash table from a link_info structure. */
1006 #define mips_elf_hash_table(p) \
1007 ((struct mips_elf_link_hash_table *) ((p)->hash))
1009 /* Find the base offsets for thread-local storage in this object,
1010 for GD/LD and IE/LE respectively. */
1012 #define TP_OFFSET 0x7000
1013 #define DTP_OFFSET 0x8000
1016 dtprel_base (struct bfd_link_info
*info
)
1018 /* If tls_sec is NULL, we should have signalled an error already. */
1019 if (elf_hash_table (info
)->tls_sec
== NULL
)
1021 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1025 tprel_base (struct bfd_link_info
*info
)
1027 /* If tls_sec is NULL, we should have signalled an error already. */
1028 if (elf_hash_table (info
)->tls_sec
== NULL
)
1030 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1033 /* Create an entry in a MIPS ELF linker hash table. */
1035 static struct bfd_hash_entry
*
1036 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1037 struct bfd_hash_table
*table
, const char *string
)
1039 struct mips_elf_link_hash_entry
*ret
=
1040 (struct mips_elf_link_hash_entry
*) entry
;
1042 /* Allocate the structure if it has not already been allocated by a
1045 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1047 return (struct bfd_hash_entry
*) ret
;
1049 /* Call the allocation method of the superclass. */
1050 ret
= ((struct mips_elf_link_hash_entry
*)
1051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1055 /* Set local fields. */
1056 memset (&ret
->esym
, 0, sizeof (EXTR
));
1057 /* We use -2 as a marker to indicate that the information has
1058 not been set. -1 means there is no associated ifd. */
1061 ret
->possibly_dynamic_relocs
= 0;
1062 ret
->fn_stub
= NULL
;
1063 ret
->call_stub
= NULL
;
1064 ret
->call_fp_stub
= NULL
;
1065 ret
->tls_type
= GOT_NORMAL
;
1066 ret
->global_got_area
= GGA_NONE
;
1067 ret
->readonly_reloc
= FALSE
;
1068 ret
->has_static_relocs
= FALSE
;
1069 ret
->no_fn_stub
= FALSE
;
1070 ret
->need_fn_stub
= FALSE
;
1071 ret
->has_nonpic_branches
= FALSE
;
1072 ret
->needs_lazy_stub
= FALSE
;
1075 return (struct bfd_hash_entry
*) ret
;
1079 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1081 if (!sec
->used_by_bfd
)
1083 struct _mips_elf_section_data
*sdata
;
1084 bfd_size_type amt
= sizeof (*sdata
);
1086 sdata
= bfd_zalloc (abfd
, amt
);
1089 sec
->used_by_bfd
= sdata
;
1092 return _bfd_elf_new_section_hook (abfd
, sec
);
1095 /* Read ECOFF debugging information from a .mdebug section into a
1096 ecoff_debug_info structure. */
1099 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1100 struct ecoff_debug_info
*debug
)
1103 const struct ecoff_debug_swap
*swap
;
1106 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1107 memset (debug
, 0, sizeof (*debug
));
1109 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1110 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1113 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1114 swap
->external_hdr_size
))
1117 symhdr
= &debug
->symbolic_header
;
1118 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1120 /* The symbolic header contains absolute file offsets and sizes to
1122 #define READ(ptr, offset, count, size, type) \
1123 if (symhdr->count == 0) \
1124 debug->ptr = NULL; \
1127 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1128 debug->ptr = bfd_malloc (amt); \
1129 if (debug->ptr == NULL) \
1130 goto error_return; \
1131 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1132 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1133 goto error_return; \
1136 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1137 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1138 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1139 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1140 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1141 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1143 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1144 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1145 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1146 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1147 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1155 if (ext_hdr
!= NULL
)
1157 if (debug
->line
!= NULL
)
1159 if (debug
->external_dnr
!= NULL
)
1160 free (debug
->external_dnr
);
1161 if (debug
->external_pdr
!= NULL
)
1162 free (debug
->external_pdr
);
1163 if (debug
->external_sym
!= NULL
)
1164 free (debug
->external_sym
);
1165 if (debug
->external_opt
!= NULL
)
1166 free (debug
->external_opt
);
1167 if (debug
->external_aux
!= NULL
)
1168 free (debug
->external_aux
);
1169 if (debug
->ss
!= NULL
)
1171 if (debug
->ssext
!= NULL
)
1172 free (debug
->ssext
);
1173 if (debug
->external_fdr
!= NULL
)
1174 free (debug
->external_fdr
);
1175 if (debug
->external_rfd
!= NULL
)
1176 free (debug
->external_rfd
);
1177 if (debug
->external_ext
!= NULL
)
1178 free (debug
->external_ext
);
1182 /* Swap RPDR (runtime procedure table entry) for output. */
1185 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1187 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1188 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1189 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1190 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1191 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1192 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1194 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1195 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1197 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1200 /* Create a runtime procedure table from the .mdebug section. */
1203 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1204 struct bfd_link_info
*info
, asection
*s
,
1205 struct ecoff_debug_info
*debug
)
1207 const struct ecoff_debug_swap
*swap
;
1208 HDRR
*hdr
= &debug
->symbolic_header
;
1210 struct rpdr_ext
*erp
;
1212 struct pdr_ext
*epdr
;
1213 struct sym_ext
*esym
;
1217 bfd_size_type count
;
1218 unsigned long sindex
;
1222 const char *no_name_func
= _("static procedure (no name)");
1230 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1232 sindex
= strlen (no_name_func
) + 1;
1233 count
= hdr
->ipdMax
;
1236 size
= swap
->external_pdr_size
;
1238 epdr
= bfd_malloc (size
* count
);
1242 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1245 size
= sizeof (RPDR
);
1246 rp
= rpdr
= bfd_malloc (size
* count
);
1250 size
= sizeof (char *);
1251 sv
= bfd_malloc (size
* count
);
1255 count
= hdr
->isymMax
;
1256 size
= swap
->external_sym_size
;
1257 esym
= bfd_malloc (size
* count
);
1261 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1264 count
= hdr
->issMax
;
1265 ss
= bfd_malloc (count
);
1268 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1271 count
= hdr
->ipdMax
;
1272 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1274 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1275 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1276 rp
->adr
= sym
.value
;
1277 rp
->regmask
= pdr
.regmask
;
1278 rp
->regoffset
= pdr
.regoffset
;
1279 rp
->fregmask
= pdr
.fregmask
;
1280 rp
->fregoffset
= pdr
.fregoffset
;
1281 rp
->frameoffset
= pdr
.frameoffset
;
1282 rp
->framereg
= pdr
.framereg
;
1283 rp
->pcreg
= pdr
.pcreg
;
1285 sv
[i
] = ss
+ sym
.iss
;
1286 sindex
+= strlen (sv
[i
]) + 1;
1290 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1291 size
= BFD_ALIGN (size
, 16);
1292 rtproc
= bfd_alloc (abfd
, size
);
1295 mips_elf_hash_table (info
)->procedure_count
= 0;
1299 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1302 memset (erp
, 0, sizeof (struct rpdr_ext
));
1304 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1305 strcpy (str
, no_name_func
);
1306 str
+= strlen (no_name_func
) + 1;
1307 for (i
= 0; i
< count
; i
++)
1309 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1310 strcpy (str
, sv
[i
]);
1311 str
+= strlen (sv
[i
]) + 1;
1313 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1315 /* Set the size and contents of .rtproc section. */
1317 s
->contents
= rtproc
;
1319 /* Skip this section later on (I don't think this currently
1320 matters, but someday it might). */
1321 s
->map_head
.link_order
= NULL
;
1350 /* We're going to create a stub for H. Create a symbol for the stub's
1351 value and size, to help make the disassembly easier to read. */
1354 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1355 struct mips_elf_link_hash_entry
*h
,
1356 const char *prefix
, asection
*s
, bfd_vma value
,
1359 struct bfd_link_hash_entry
*bh
;
1360 struct elf_link_hash_entry
*elfh
;
1363 /* Create a new symbol. */
1364 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1366 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1367 BSF_LOCAL
, s
, value
, NULL
,
1371 /* Make it a local function. */
1372 elfh
= (struct elf_link_hash_entry
*) bh
;
1373 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1375 elfh
->forced_local
= 1;
1379 /* We're about to redefine H. Create a symbol to represent H's
1380 current value and size, to help make the disassembly easier
1384 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1385 struct mips_elf_link_hash_entry
*h
,
1388 struct bfd_link_hash_entry
*bh
;
1389 struct elf_link_hash_entry
*elfh
;
1394 /* Read the symbol's value. */
1395 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1396 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1397 s
= h
->root
.root
.u
.def
.section
;
1398 value
= h
->root
.root
.u
.def
.value
;
1400 /* Create a new symbol. */
1401 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1403 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1404 BSF_LOCAL
, s
, value
, NULL
,
1408 /* Make it local and copy the other attributes from H. */
1409 elfh
= (struct elf_link_hash_entry
*) bh
;
1410 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1411 elfh
->other
= h
->root
.other
;
1412 elfh
->size
= h
->root
.size
;
1413 elfh
->forced_local
= 1;
1417 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1418 function rather than to a hard-float stub. */
1421 section_allows_mips16_refs_p (asection
*section
)
1425 name
= bfd_get_section_name (section
->owner
, section
);
1426 return (FN_STUB_P (name
)
1427 || CALL_STUB_P (name
)
1428 || CALL_FP_STUB_P (name
)
1429 || strcmp (name
, ".pdr") == 0);
1432 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1433 stub section of some kind. Return the R_SYMNDX of the target
1434 function, or 0 if we can't decide which function that is. */
1436 static unsigned long
1437 mips16_stub_symndx (asection
*sec ATTRIBUTE_UNUSED
,
1438 const Elf_Internal_Rela
*relocs
,
1439 const Elf_Internal_Rela
*relend
)
1441 const Elf_Internal_Rela
*rel
;
1443 /* Trust the first R_MIPS_NONE relocation, if any. */
1444 for (rel
= relocs
; rel
< relend
; rel
++)
1445 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1446 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1448 /* Otherwise trust the first relocation, whatever its kind. This is
1449 the traditional behavior. */
1450 if (relocs
< relend
)
1451 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1456 /* Check the mips16 stubs for a particular symbol, and see if we can
1460 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1461 struct mips_elf_link_hash_entry
*h
)
1463 /* Dynamic symbols must use the standard call interface, in case other
1464 objects try to call them. */
1465 if (h
->fn_stub
!= NULL
1466 && h
->root
.dynindx
!= -1)
1468 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1469 h
->need_fn_stub
= TRUE
;
1472 if (h
->fn_stub
!= NULL
1473 && ! h
->need_fn_stub
)
1475 /* We don't need the fn_stub; the only references to this symbol
1476 are 16 bit calls. Clobber the size to 0 to prevent it from
1477 being included in the link. */
1478 h
->fn_stub
->size
= 0;
1479 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1480 h
->fn_stub
->reloc_count
= 0;
1481 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1484 if (h
->call_stub
!= NULL
1485 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1487 /* We don't need the call_stub; this is a 16 bit function, so
1488 calls from other 16 bit functions are OK. Clobber the size
1489 to 0 to prevent it from being included in the link. */
1490 h
->call_stub
->size
= 0;
1491 h
->call_stub
->flags
&= ~SEC_RELOC
;
1492 h
->call_stub
->reloc_count
= 0;
1493 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1496 if (h
->call_fp_stub
!= NULL
1497 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1499 /* We don't need the call_stub; this is a 16 bit function, so
1500 calls from other 16 bit functions are OK. Clobber the size
1501 to 0 to prevent it from being included in the link. */
1502 h
->call_fp_stub
->size
= 0;
1503 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1504 h
->call_fp_stub
->reloc_count
= 0;
1505 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1509 /* Hashtable callbacks for mips_elf_la25_stubs. */
1512 mips_elf_la25_stub_hash (const void *entry_
)
1514 const struct mips_elf_la25_stub
*entry
;
1516 entry
= (struct mips_elf_la25_stub
*) entry_
;
1517 return entry
->h
->root
.root
.u
.def
.section
->id
1518 + entry
->h
->root
.root
.u
.def
.value
;
1522 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1524 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1526 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1527 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1528 return ((entry1
->h
->root
.root
.u
.def
.section
1529 == entry2
->h
->root
.root
.u
.def
.section
)
1530 && (entry1
->h
->root
.root
.u
.def
.value
1531 == entry2
->h
->root
.root
.u
.def
.value
));
1534 /* Called by the linker to set up the la25 stub-creation code. FN is
1535 the linker's implementation of add_stub_function. Return true on
1539 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1540 asection
*(*fn
) (const char *, asection
*,
1543 struct mips_elf_link_hash_table
*htab
;
1545 htab
= mips_elf_hash_table (info
);
1546 htab
->add_stub_section
= fn
;
1547 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1548 mips_elf_la25_stub_eq
, NULL
);
1549 if (htab
->la25_stubs
== NULL
)
1555 /* Return true if H is a locally-defined PIC function, in the sense
1556 that it might need $25 to be valid on entry. Note that MIPS16
1557 functions never need $25 to be valid on entry; they set up $gp
1558 using PC-relative instructions instead. */
1561 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1563 return ((h
->root
.root
.type
== bfd_link_hash_defined
1564 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1565 && h
->root
.def_regular
1566 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1567 && !ELF_ST_IS_MIPS16 (h
->root
.other
)
1568 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1569 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1572 /* STUB describes an la25 stub that we have decided to implement
1573 by inserting an LUI/ADDIU pair before the target function.
1574 Create the section and redirect the function symbol to it. */
1577 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1578 struct bfd_link_info
*info
)
1580 struct mips_elf_link_hash_table
*htab
;
1582 asection
*s
, *input_section
;
1585 htab
= mips_elf_hash_table (info
);
1587 /* Create a unique name for the new section. */
1588 name
= bfd_malloc (11 + sizeof (".text.stub."));
1591 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1593 /* Create the section. */
1594 input_section
= stub
->h
->root
.root
.u
.def
.section
;
1595 s
= htab
->add_stub_section (name
, input_section
,
1596 input_section
->output_section
);
1600 /* Make sure that any padding goes before the stub. */
1601 align
= input_section
->alignment_power
;
1602 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1605 s
->size
= (1 << align
) - 8;
1607 /* Create a symbol for the stub. */
1608 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1609 stub
->stub_section
= s
;
1610 stub
->offset
= s
->size
;
1612 /* Allocate room for it. */
1617 /* STUB describes an la25 stub that we have decided to implement
1618 with a separate trampoline. Allocate room for it and redirect
1619 the function symbol to it. */
1622 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1623 struct bfd_link_info
*info
)
1625 struct mips_elf_link_hash_table
*htab
;
1628 htab
= mips_elf_hash_table (info
);
1630 /* Create a trampoline section, if we haven't already. */
1631 s
= htab
->strampoline
;
1634 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1635 s
= htab
->add_stub_section (".text", NULL
,
1636 input_section
->output_section
);
1637 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1639 htab
->strampoline
= s
;
1642 /* Create a symbol for the stub. */
1643 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1644 stub
->stub_section
= s
;
1645 stub
->offset
= s
->size
;
1647 /* Allocate room for it. */
1652 /* H describes a symbol that needs an la25 stub. Make sure that an
1653 appropriate stub exists and point H at it. */
1656 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1657 struct mips_elf_link_hash_entry
*h
)
1659 struct mips_elf_link_hash_table
*htab
;
1660 struct mips_elf_la25_stub search
, *stub
;
1661 bfd_boolean use_trampoline_p
;
1666 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1667 of the section and if we would need no more than 2 nops. */
1668 s
= h
->root
.root
.u
.def
.section
;
1669 value
= h
->root
.root
.u
.def
.value
;
1670 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1672 /* Describe the stub we want. */
1673 search
.stub_section
= NULL
;
1677 /* See if we've already created an equivalent stub. */
1678 htab
= mips_elf_hash_table (info
);
1679 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1683 stub
= (struct mips_elf_la25_stub
*) *slot
;
1686 /* We can reuse the existing stub. */
1687 h
->la25_stub
= stub
;
1691 /* Create a permanent copy of ENTRY and add it to the hash table. */
1692 stub
= bfd_malloc (sizeof (search
));
1698 h
->la25_stub
= stub
;
1699 return (use_trampoline_p
1700 ? mips_elf_add_la25_trampoline (stub
, info
)
1701 : mips_elf_add_la25_intro (stub
, info
));
1704 /* A mips_elf_link_hash_traverse callback that is called before sizing
1705 sections. DATA points to a mips_htab_traverse_info structure. */
1708 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1710 struct mips_htab_traverse_info
*hti
;
1712 hti
= (struct mips_htab_traverse_info
*) data
;
1713 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1714 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1716 if (!hti
->info
->relocatable
)
1717 mips_elf_check_mips16_stubs (hti
->info
, h
);
1719 if (mips_elf_local_pic_function_p (h
))
1721 /* H is a function that might need $25 to be valid on entry.
1722 If we're creating a non-PIC relocatable object, mark H as
1723 being PIC. If we're creating a non-relocatable object with
1724 non-PIC branches and jumps to H, make sure that H has an la25
1726 if (hti
->info
->relocatable
)
1728 if (!PIC_OBJECT_P (hti
->output_bfd
))
1729 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
1731 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
1740 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1741 Most mips16 instructions are 16 bits, but these instructions
1744 The format of these instructions is:
1746 +--------------+--------------------------------+
1747 | JALX | X| Imm 20:16 | Imm 25:21 |
1748 +--------------+--------------------------------+
1750 +-----------------------------------------------+
1752 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1753 Note that the immediate value in the first word is swapped.
1755 When producing a relocatable object file, R_MIPS16_26 is
1756 handled mostly like R_MIPS_26. In particular, the addend is
1757 stored as a straight 26-bit value in a 32-bit instruction.
1758 (gas makes life simpler for itself by never adjusting a
1759 R_MIPS16_26 reloc to be against a section, so the addend is
1760 always zero). However, the 32 bit instruction is stored as 2
1761 16-bit values, rather than a single 32-bit value. In a
1762 big-endian file, the result is the same; in a little-endian
1763 file, the two 16-bit halves of the 32 bit value are swapped.
1764 This is so that a disassembler can recognize the jal
1767 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1768 instruction stored as two 16-bit values. The addend A is the
1769 contents of the targ26 field. The calculation is the same as
1770 R_MIPS_26. When storing the calculated value, reorder the
1771 immediate value as shown above, and don't forget to store the
1772 value as two 16-bit values.
1774 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1778 +--------+----------------------+
1782 +--------+----------------------+
1785 +----------+------+-------------+
1789 +----------+--------------------+
1790 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1791 ((sub1 << 16) | sub2)).
1793 When producing a relocatable object file, the calculation is
1794 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1795 When producing a fully linked file, the calculation is
1796 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1797 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1799 The table below lists the other MIPS16 instruction relocations.
1800 Each one is calculated in the same way as the non-MIPS16 relocation
1801 given on the right, but using the extended MIPS16 layout of 16-bit
1804 R_MIPS16_GPREL R_MIPS_GPREL16
1805 R_MIPS16_GOT16 R_MIPS_GOT16
1806 R_MIPS16_CALL16 R_MIPS_CALL16
1807 R_MIPS16_HI16 R_MIPS_HI16
1808 R_MIPS16_LO16 R_MIPS_LO16
1810 A typical instruction will have a format like this:
1812 +--------------+--------------------------------+
1813 | EXTEND | Imm 10:5 | Imm 15:11 |
1814 +--------------+--------------------------------+
1815 | Major | rx | ry | Imm 4:0 |
1816 +--------------+--------------------------------+
1818 EXTEND is the five bit value 11110. Major is the instruction
1821 All we need to do here is shuffle the bits appropriately.
1822 As above, the two 16-bit halves must be swapped on a
1823 little-endian system. */
1825 static inline bfd_boolean
1826 mips16_reloc_p (int r_type
)
1831 case R_MIPS16_GPREL
:
1832 case R_MIPS16_GOT16
:
1833 case R_MIPS16_CALL16
:
1843 static inline bfd_boolean
1844 got16_reloc_p (int r_type
)
1846 return r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS16_GOT16
;
1849 static inline bfd_boolean
1850 call16_reloc_p (int r_type
)
1852 return r_type
== R_MIPS_CALL16
|| r_type
== R_MIPS16_CALL16
;
1855 static inline bfd_boolean
1856 hi16_reloc_p (int r_type
)
1858 return r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
;
1861 static inline bfd_boolean
1862 lo16_reloc_p (int r_type
)
1864 return r_type
== R_MIPS_LO16
|| r_type
== R_MIPS16_LO16
;
1867 static inline bfd_boolean
1868 mips16_call_reloc_p (int r_type
)
1870 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
1874 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1875 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1877 bfd_vma extend
, insn
, val
;
1879 if (!mips16_reloc_p (r_type
))
1882 /* Pick up the mips16 extend instruction and the real instruction. */
1883 extend
= bfd_get_16 (abfd
, data
);
1884 insn
= bfd_get_16 (abfd
, data
+ 2);
1885 if (r_type
== R_MIPS16_26
)
1888 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1889 | ((extend
& 0x1f) << 21) | insn
;
1891 val
= extend
<< 16 | insn
;
1894 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1895 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1896 bfd_put_32 (abfd
, val
, data
);
1900 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1901 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1903 bfd_vma extend
, insn
, val
;
1905 if (!mips16_reloc_p (r_type
))
1908 val
= bfd_get_32 (abfd
, data
);
1909 if (r_type
== R_MIPS16_26
)
1913 insn
= val
& 0xffff;
1914 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1915 | ((val
>> 21) & 0x1f);
1919 insn
= val
& 0xffff;
1925 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1926 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1928 bfd_put_16 (abfd
, insn
, data
+ 2);
1929 bfd_put_16 (abfd
, extend
, data
);
1932 bfd_reloc_status_type
1933 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1934 arelent
*reloc_entry
, asection
*input_section
,
1935 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1939 bfd_reloc_status_type status
;
1941 if (bfd_is_com_section (symbol
->section
))
1944 relocation
= symbol
->value
;
1946 relocation
+= symbol
->section
->output_section
->vma
;
1947 relocation
+= symbol
->section
->output_offset
;
1949 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1950 return bfd_reloc_outofrange
;
1952 /* Set val to the offset into the section or symbol. */
1953 val
= reloc_entry
->addend
;
1955 _bfd_mips_elf_sign_extend (val
, 16);
1957 /* Adjust val for the final section location and GP value. If we
1958 are producing relocatable output, we don't want to do this for
1959 an external symbol. */
1961 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1962 val
+= relocation
- gp
;
1964 if (reloc_entry
->howto
->partial_inplace
)
1966 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1968 + reloc_entry
->address
);
1969 if (status
!= bfd_reloc_ok
)
1973 reloc_entry
->addend
= val
;
1976 reloc_entry
->address
+= input_section
->output_offset
;
1978 return bfd_reloc_ok
;
1981 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1982 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1983 that contains the relocation field and DATA points to the start of
1988 struct mips_hi16
*next
;
1990 asection
*input_section
;
1994 /* FIXME: This should not be a static variable. */
1996 static struct mips_hi16
*mips_hi16_list
;
1998 /* A howto special_function for REL *HI16 relocations. We can only
1999 calculate the correct value once we've seen the partnering
2000 *LO16 relocation, so just save the information for later.
2002 The ABI requires that the *LO16 immediately follow the *HI16.
2003 However, as a GNU extension, we permit an arbitrary number of
2004 *HI16s to be associated with a single *LO16. This significantly
2005 simplies the relocation handling in gcc. */
2007 bfd_reloc_status_type
2008 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2009 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2010 asection
*input_section
, bfd
*output_bfd
,
2011 char **error_message ATTRIBUTE_UNUSED
)
2013 struct mips_hi16
*n
;
2015 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2016 return bfd_reloc_outofrange
;
2018 n
= bfd_malloc (sizeof *n
);
2020 return bfd_reloc_outofrange
;
2022 n
->next
= mips_hi16_list
;
2024 n
->input_section
= input_section
;
2025 n
->rel
= *reloc_entry
;
2028 if (output_bfd
!= NULL
)
2029 reloc_entry
->address
+= input_section
->output_offset
;
2031 return bfd_reloc_ok
;
2034 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2035 like any other 16-bit relocation when applied to global symbols, but is
2036 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2038 bfd_reloc_status_type
2039 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2040 void *data
, asection
*input_section
,
2041 bfd
*output_bfd
, char **error_message
)
2043 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2044 || bfd_is_und_section (bfd_get_section (symbol
))
2045 || bfd_is_com_section (bfd_get_section (symbol
)))
2046 /* The relocation is against a global symbol. */
2047 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2048 input_section
, output_bfd
,
2051 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2052 input_section
, output_bfd
, error_message
);
2055 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2056 is a straightforward 16 bit inplace relocation, but we must deal with
2057 any partnering high-part relocations as well. */
2059 bfd_reloc_status_type
2060 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2061 void *data
, asection
*input_section
,
2062 bfd
*output_bfd
, char **error_message
)
2065 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2067 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2068 return bfd_reloc_outofrange
;
2070 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2072 vallo
= bfd_get_32 (abfd
, location
);
2073 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2076 while (mips_hi16_list
!= NULL
)
2078 bfd_reloc_status_type ret
;
2079 struct mips_hi16
*hi
;
2081 hi
= mips_hi16_list
;
2083 /* R_MIPS*_GOT16 relocations are something of a special case. We
2084 want to install the addend in the same way as for a R_MIPS*_HI16
2085 relocation (with a rightshift of 16). However, since GOT16
2086 relocations can also be used with global symbols, their howto
2087 has a rightshift of 0. */
2088 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2089 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2090 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2091 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2093 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2094 carry or borrow will induce a change of +1 or -1 in the high part. */
2095 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2097 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2098 hi
->input_section
, output_bfd
,
2100 if (ret
!= bfd_reloc_ok
)
2103 mips_hi16_list
= hi
->next
;
2107 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2108 input_section
, output_bfd
,
2112 /* A generic howto special_function. This calculates and installs the
2113 relocation itself, thus avoiding the oft-discussed problems in
2114 bfd_perform_relocation and bfd_install_relocation. */
2116 bfd_reloc_status_type
2117 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2118 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2119 asection
*input_section
, bfd
*output_bfd
,
2120 char **error_message ATTRIBUTE_UNUSED
)
2123 bfd_reloc_status_type status
;
2124 bfd_boolean relocatable
;
2126 relocatable
= (output_bfd
!= NULL
);
2128 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2129 return bfd_reloc_outofrange
;
2131 /* Build up the field adjustment in VAL. */
2133 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2135 /* Either we're calculating the final field value or we have a
2136 relocation against a section symbol. Add in the section's
2137 offset or address. */
2138 val
+= symbol
->section
->output_section
->vma
;
2139 val
+= symbol
->section
->output_offset
;
2144 /* We're calculating the final field value. Add in the symbol's value
2145 and, if pc-relative, subtract the address of the field itself. */
2146 val
+= symbol
->value
;
2147 if (reloc_entry
->howto
->pc_relative
)
2149 val
-= input_section
->output_section
->vma
;
2150 val
-= input_section
->output_offset
;
2151 val
-= reloc_entry
->address
;
2155 /* VAL is now the final adjustment. If we're keeping this relocation
2156 in the output file, and if the relocation uses a separate addend,
2157 we just need to add VAL to that addend. Otherwise we need to add
2158 VAL to the relocation field itself. */
2159 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2160 reloc_entry
->addend
+= val
;
2163 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2165 /* Add in the separate addend, if any. */
2166 val
+= reloc_entry
->addend
;
2168 /* Add VAL to the relocation field. */
2169 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2171 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2173 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2176 if (status
!= bfd_reloc_ok
)
2181 reloc_entry
->address
+= input_section
->output_offset
;
2183 return bfd_reloc_ok
;
2186 /* Swap an entry in a .gptab section. Note that these routines rely
2187 on the equivalence of the two elements of the union. */
2190 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2193 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2194 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2198 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2199 Elf32_External_gptab
*ex
)
2201 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2202 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2206 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2207 Elf32_External_compact_rel
*ex
)
2209 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2210 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2211 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2212 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2213 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2214 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2218 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2219 Elf32_External_crinfo
*ex
)
2223 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2224 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2225 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2226 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2227 H_PUT_32 (abfd
, l
, ex
->info
);
2228 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2229 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2232 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2233 routines swap this structure in and out. They are used outside of
2234 BFD, so they are globally visible. */
2237 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2240 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2241 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2242 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2243 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2244 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2245 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2249 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2250 Elf32_External_RegInfo
*ex
)
2252 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2253 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2254 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2255 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2256 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2257 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2260 /* In the 64 bit ABI, the .MIPS.options section holds register
2261 information in an Elf64_Reginfo structure. These routines swap
2262 them in and out. They are globally visible because they are used
2263 outside of BFD. These routines are here so that gas can call them
2264 without worrying about whether the 64 bit ABI has been included. */
2267 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2268 Elf64_Internal_RegInfo
*in
)
2270 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2271 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2272 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2273 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2274 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2275 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2276 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2280 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2281 Elf64_External_RegInfo
*ex
)
2283 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2284 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2285 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2286 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2287 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2288 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2289 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2292 /* Swap in an options header. */
2295 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2296 Elf_Internal_Options
*in
)
2298 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2299 in
->size
= H_GET_8 (abfd
, ex
->size
);
2300 in
->section
= H_GET_16 (abfd
, ex
->section
);
2301 in
->info
= H_GET_32 (abfd
, ex
->info
);
2304 /* Swap out an options header. */
2307 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2308 Elf_External_Options
*ex
)
2310 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2311 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2312 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2313 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2316 /* This function is called via qsort() to sort the dynamic relocation
2317 entries by increasing r_symndx value. */
2320 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2322 Elf_Internal_Rela int_reloc1
;
2323 Elf_Internal_Rela int_reloc2
;
2326 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2327 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2329 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2333 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2335 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2340 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2343 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2344 const void *arg2 ATTRIBUTE_UNUSED
)
2347 Elf_Internal_Rela int_reloc1
[3];
2348 Elf_Internal_Rela int_reloc2
[3];
2350 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2351 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2352 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2353 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2355 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2357 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2360 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2362 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2371 /* This routine is used to write out ECOFF debugging external symbol
2372 information. It is called via mips_elf_link_hash_traverse. The
2373 ECOFF external symbol information must match the ELF external
2374 symbol information. Unfortunately, at this point we don't know
2375 whether a symbol is required by reloc information, so the two
2376 tables may wind up being different. We must sort out the external
2377 symbol information before we can set the final size of the .mdebug
2378 section, and we must set the size of the .mdebug section before we
2379 can relocate any sections, and we can't know which symbols are
2380 required by relocation until we relocate the sections.
2381 Fortunately, it is relatively unlikely that any symbol will be
2382 stripped but required by a reloc. In particular, it can not happen
2383 when generating a final executable. */
2386 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2388 struct extsym_info
*einfo
= data
;
2390 asection
*sec
, *output_section
;
2392 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2393 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2395 if (h
->root
.indx
== -2)
2397 else if ((h
->root
.def_dynamic
2398 || h
->root
.ref_dynamic
2399 || h
->root
.type
== bfd_link_hash_new
)
2400 && !h
->root
.def_regular
2401 && !h
->root
.ref_regular
)
2403 else if (einfo
->info
->strip
== strip_all
2404 || (einfo
->info
->strip
== strip_some
2405 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2406 h
->root
.root
.root
.string
,
2407 FALSE
, FALSE
) == NULL
))
2415 if (h
->esym
.ifd
== -2)
2418 h
->esym
.cobol_main
= 0;
2419 h
->esym
.weakext
= 0;
2420 h
->esym
.reserved
= 0;
2421 h
->esym
.ifd
= ifdNil
;
2422 h
->esym
.asym
.value
= 0;
2423 h
->esym
.asym
.st
= stGlobal
;
2425 if (h
->root
.root
.type
== bfd_link_hash_undefined
2426 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2430 /* Use undefined class. Also, set class and type for some
2432 name
= h
->root
.root
.root
.string
;
2433 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2434 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2436 h
->esym
.asym
.sc
= scData
;
2437 h
->esym
.asym
.st
= stLabel
;
2438 h
->esym
.asym
.value
= 0;
2440 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2442 h
->esym
.asym
.sc
= scAbs
;
2443 h
->esym
.asym
.st
= stLabel
;
2444 h
->esym
.asym
.value
=
2445 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2447 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
2449 h
->esym
.asym
.sc
= scAbs
;
2450 h
->esym
.asym
.st
= stLabel
;
2451 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
2454 h
->esym
.asym
.sc
= scUndefined
;
2456 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2457 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2458 h
->esym
.asym
.sc
= scAbs
;
2463 sec
= h
->root
.root
.u
.def
.section
;
2464 output_section
= sec
->output_section
;
2466 /* When making a shared library and symbol h is the one from
2467 the another shared library, OUTPUT_SECTION may be null. */
2468 if (output_section
== NULL
)
2469 h
->esym
.asym
.sc
= scUndefined
;
2472 name
= bfd_section_name (output_section
->owner
, output_section
);
2474 if (strcmp (name
, ".text") == 0)
2475 h
->esym
.asym
.sc
= scText
;
2476 else if (strcmp (name
, ".data") == 0)
2477 h
->esym
.asym
.sc
= scData
;
2478 else if (strcmp (name
, ".sdata") == 0)
2479 h
->esym
.asym
.sc
= scSData
;
2480 else if (strcmp (name
, ".rodata") == 0
2481 || strcmp (name
, ".rdata") == 0)
2482 h
->esym
.asym
.sc
= scRData
;
2483 else if (strcmp (name
, ".bss") == 0)
2484 h
->esym
.asym
.sc
= scBss
;
2485 else if (strcmp (name
, ".sbss") == 0)
2486 h
->esym
.asym
.sc
= scSBss
;
2487 else if (strcmp (name
, ".init") == 0)
2488 h
->esym
.asym
.sc
= scInit
;
2489 else if (strcmp (name
, ".fini") == 0)
2490 h
->esym
.asym
.sc
= scFini
;
2492 h
->esym
.asym
.sc
= scAbs
;
2496 h
->esym
.asym
.reserved
= 0;
2497 h
->esym
.asym
.index
= indexNil
;
2500 if (h
->root
.root
.type
== bfd_link_hash_common
)
2501 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2502 else if (h
->root
.root
.type
== bfd_link_hash_defined
2503 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2505 if (h
->esym
.asym
.sc
== scCommon
)
2506 h
->esym
.asym
.sc
= scBss
;
2507 else if (h
->esym
.asym
.sc
== scSCommon
)
2508 h
->esym
.asym
.sc
= scSBss
;
2510 sec
= h
->root
.root
.u
.def
.section
;
2511 output_section
= sec
->output_section
;
2512 if (output_section
!= NULL
)
2513 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2514 + sec
->output_offset
2515 + output_section
->vma
);
2517 h
->esym
.asym
.value
= 0;
2521 struct mips_elf_link_hash_entry
*hd
= h
;
2523 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2524 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2526 if (hd
->needs_lazy_stub
)
2528 /* Set type and value for a symbol with a function stub. */
2529 h
->esym
.asym
.st
= stProc
;
2530 sec
= hd
->root
.root
.u
.def
.section
;
2532 h
->esym
.asym
.value
= 0;
2535 output_section
= sec
->output_section
;
2536 if (output_section
!= NULL
)
2537 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
2538 + sec
->output_offset
2539 + output_section
->vma
);
2541 h
->esym
.asym
.value
= 0;
2546 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
2547 h
->root
.root
.root
.string
,
2550 einfo
->failed
= TRUE
;
2557 /* A comparison routine used to sort .gptab entries. */
2560 gptab_compare (const void *p1
, const void *p2
)
2562 const Elf32_gptab
*a1
= p1
;
2563 const Elf32_gptab
*a2
= p2
;
2565 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
2568 /* Functions to manage the got entry hash table. */
2570 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2573 static INLINE hashval_t
2574 mips_elf_hash_bfd_vma (bfd_vma addr
)
2577 return addr
+ (addr
>> 32);
2583 /* got_entries only match if they're identical, except for gotidx, so
2584 use all fields to compute the hash, and compare the appropriate
2588 mips_elf_got_entry_hash (const void *entry_
)
2590 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2592 return entry
->symndx
2593 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
2594 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
2596 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
2597 : entry
->d
.h
->root
.root
.root
.hash
));
2601 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
2603 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2604 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2606 /* An LDM entry can only match another LDM entry. */
2607 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2610 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
2611 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
2612 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
2613 : e1
->d
.h
== e2
->d
.h
);
2616 /* multi_got_entries are still a match in the case of global objects,
2617 even if the input bfd in which they're referenced differs, so the
2618 hash computation and compare functions are adjusted
2622 mips_elf_multi_got_entry_hash (const void *entry_
)
2624 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2626 return entry
->symndx
2628 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2629 : entry
->symndx
>= 0
2630 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2631 ? (GOT_TLS_LDM
<< 17)
2633 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2634 : entry
->d
.h
->root
.root
.root
.hash
);
2638 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2640 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2641 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2643 /* Any two LDM entries match. */
2644 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2647 /* Nothing else matches an LDM entry. */
2648 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2651 return e1
->symndx
== e2
->symndx
2652 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2653 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2654 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2655 : e1
->d
.h
== e2
->d
.h
);
2659 mips_got_page_entry_hash (const void *entry_
)
2661 const struct mips_got_page_entry
*entry
;
2663 entry
= (const struct mips_got_page_entry
*) entry_
;
2664 return entry
->abfd
->id
+ entry
->symndx
;
2668 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
2670 const struct mips_got_page_entry
*entry1
, *entry2
;
2672 entry1
= (const struct mips_got_page_entry
*) entry1_
;
2673 entry2
= (const struct mips_got_page_entry
*) entry2_
;
2674 return entry1
->abfd
== entry2
->abfd
&& entry1
->symndx
== entry2
->symndx
;
2677 /* Return the dynamic relocation section. If it doesn't exist, try to
2678 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2679 if creation fails. */
2682 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2688 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2689 dynobj
= elf_hash_table (info
)->dynobj
;
2690 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2691 if (sreloc
== NULL
&& create_p
)
2693 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2698 | SEC_LINKER_CREATED
2701 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2702 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2708 /* Count the number of relocations needed for a TLS GOT entry, with
2709 access types from TLS_TYPE, and symbol H (or a local symbol if H
2713 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2714 struct elf_link_hash_entry
*h
)
2718 bfd_boolean need_relocs
= FALSE
;
2719 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2721 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2722 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2725 if ((info
->shared
|| indx
!= 0)
2727 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2728 || h
->root
.type
!= bfd_link_hash_undefweak
))
2734 if (tls_type
& GOT_TLS_GD
)
2741 if (tls_type
& GOT_TLS_IE
)
2744 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2750 /* Count the number of TLS relocations required for the GOT entry in
2751 ARG1, if it describes a local symbol. */
2754 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2756 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2757 struct mips_elf_count_tls_arg
*arg
= arg2
;
2759 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2760 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2765 /* Count the number of TLS GOT entries required for the global (or
2766 forced-local) symbol in ARG1. */
2769 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2771 struct mips_elf_link_hash_entry
*hm
2772 = (struct mips_elf_link_hash_entry
*) arg1
;
2773 struct mips_elf_count_tls_arg
*arg
= arg2
;
2775 if (hm
->tls_type
& GOT_TLS_GD
)
2777 if (hm
->tls_type
& GOT_TLS_IE
)
2783 /* Count the number of TLS relocations required for the global (or
2784 forced-local) symbol in ARG1. */
2787 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2789 struct mips_elf_link_hash_entry
*hm
2790 = (struct mips_elf_link_hash_entry
*) arg1
;
2791 struct mips_elf_count_tls_arg
*arg
= arg2
;
2793 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2798 /* Output a simple dynamic relocation into SRELOC. */
2801 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2803 unsigned long reloc_index
,
2808 Elf_Internal_Rela rel
[3];
2810 memset (rel
, 0, sizeof (rel
));
2812 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2813 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2815 if (ABI_64_P (output_bfd
))
2817 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2818 (output_bfd
, &rel
[0],
2820 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
2823 bfd_elf32_swap_reloc_out
2824 (output_bfd
, &rel
[0],
2826 + reloc_index
* sizeof (Elf32_External_Rel
)));
2829 /* Initialize a set of TLS GOT entries for one symbol. */
2832 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2833 unsigned char *tls_type_p
,
2834 struct bfd_link_info
*info
,
2835 struct mips_elf_link_hash_entry
*h
,
2838 struct mips_elf_link_hash_table
*htab
;
2840 asection
*sreloc
, *sgot
;
2841 bfd_vma offset
, offset2
;
2842 bfd_boolean need_relocs
= FALSE
;
2844 htab
= mips_elf_hash_table (info
);
2850 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2852 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2853 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2854 indx
= h
->root
.dynindx
;
2857 if (*tls_type_p
& GOT_TLS_DONE
)
2860 if ((info
->shared
|| indx
!= 0)
2862 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2863 || h
->root
.type
!= bfd_link_hash_undefweak
))
2866 /* MINUS_ONE means the symbol is not defined in this object. It may not
2867 be defined at all; assume that the value doesn't matter in that
2868 case. Otherwise complain if we would use the value. */
2869 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2870 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2872 /* Emit necessary relocations. */
2873 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2875 /* General Dynamic. */
2876 if (*tls_type_p
& GOT_TLS_GD
)
2878 offset
= got_offset
;
2879 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2883 mips_elf_output_dynamic_relocation
2884 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2885 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2886 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2889 mips_elf_output_dynamic_relocation
2890 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2891 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2892 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2894 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2895 sgot
->contents
+ offset2
);
2899 MIPS_ELF_PUT_WORD (abfd
, 1,
2900 sgot
->contents
+ offset
);
2901 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2902 sgot
->contents
+ offset2
);
2905 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2908 /* Initial Exec model. */
2909 if (*tls_type_p
& GOT_TLS_IE
)
2911 offset
= got_offset
;
2916 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2917 sgot
->contents
+ offset
);
2919 MIPS_ELF_PUT_WORD (abfd
, 0,
2920 sgot
->contents
+ offset
);
2922 mips_elf_output_dynamic_relocation
2923 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2924 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2925 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2928 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2929 sgot
->contents
+ offset
);
2932 if (*tls_type_p
& GOT_TLS_LDM
)
2934 /* The initial offset is zero, and the LD offsets will include the
2935 bias by DTP_OFFSET. */
2936 MIPS_ELF_PUT_WORD (abfd
, 0,
2937 sgot
->contents
+ got_offset
2938 + MIPS_ELF_GOT_SIZE (abfd
));
2941 MIPS_ELF_PUT_WORD (abfd
, 1,
2942 sgot
->contents
+ got_offset
);
2944 mips_elf_output_dynamic_relocation
2945 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2946 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2947 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2950 *tls_type_p
|= GOT_TLS_DONE
;
2953 /* Return the GOT index to use for a relocation of type R_TYPE against
2954 a symbol accessed using TLS_TYPE models. The GOT entries for this
2955 symbol in this GOT start at GOT_INDEX. This function initializes the
2956 GOT entries and corresponding relocations. */
2959 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2960 int r_type
, struct bfd_link_info
*info
,
2961 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2963 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2964 || r_type
== R_MIPS_TLS_LDM
);
2966 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2968 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2970 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2971 if (*tls_type
& GOT_TLS_GD
)
2972 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2977 if (r_type
== R_MIPS_TLS_GD
)
2979 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2983 if (r_type
== R_MIPS_TLS_LDM
)
2985 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2992 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2993 for global symbol H. .got.plt comes before the GOT, so the offset
2994 will be negative. */
2997 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2998 struct elf_link_hash_entry
*h
)
3000 bfd_vma plt_index
, got_address
, got_value
;
3001 struct mips_elf_link_hash_table
*htab
;
3003 htab
= mips_elf_hash_table (info
);
3004 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
3006 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3007 section starts with reserved entries. */
3008 BFD_ASSERT (htab
->is_vxworks
);
3010 /* Calculate the index of the symbol's PLT entry. */
3011 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
3013 /* Calculate the address of the associated .got.plt entry. */
3014 got_address
= (htab
->sgotplt
->output_section
->vma
3015 + htab
->sgotplt
->output_offset
3018 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3019 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3020 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3021 + htab
->root
.hgot
->root
.u
.def
.value
);
3023 return got_address
- got_value
;
3026 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3027 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3028 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3029 offset can be found. */
3032 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3033 bfd_vma value
, unsigned long r_symndx
,
3034 struct mips_elf_link_hash_entry
*h
, int r_type
)
3036 struct mips_elf_link_hash_table
*htab
;
3037 struct mips_got_entry
*entry
;
3039 htab
= mips_elf_hash_table (info
);
3040 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3041 r_symndx
, h
, r_type
);
3045 if (TLS_RELOC_P (r_type
))
3047 if (entry
->symndx
== -1 && htab
->got_info
->next
== NULL
)
3048 /* A type (3) entry in the single-GOT case. We use the symbol's
3049 hash table entry to track the index. */
3050 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
3051 r_type
, info
, h
, value
);
3053 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
3054 r_type
, info
, h
, value
);
3057 return entry
->gotidx
;
3060 /* Returns the GOT index for the global symbol indicated by H. */
3063 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
3064 int r_type
, struct bfd_link_info
*info
)
3066 struct mips_elf_link_hash_table
*htab
;
3068 struct mips_got_info
*g
, *gg
;
3069 long global_got_dynindx
= 0;
3071 htab
= mips_elf_hash_table (info
);
3072 gg
= g
= htab
->got_info
;
3073 if (g
->bfd2got
&& ibfd
)
3075 struct mips_got_entry e
, *p
;
3077 BFD_ASSERT (h
->dynindx
>= 0);
3079 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3080 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
3084 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
3087 p
= htab_find (g
->got_entries
, &e
);
3089 BFD_ASSERT (p
->gotidx
> 0);
3091 if (TLS_RELOC_P (r_type
))
3093 bfd_vma value
= MINUS_ONE
;
3094 if ((h
->root
.type
== bfd_link_hash_defined
3095 || h
->root
.type
== bfd_link_hash_defweak
)
3096 && h
->root
.u
.def
.section
->output_section
)
3097 value
= (h
->root
.u
.def
.value
3098 + h
->root
.u
.def
.section
->output_offset
3099 + h
->root
.u
.def
.section
->output_section
->vma
);
3101 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
3102 info
, e
.d
.h
, value
);
3109 if (gg
->global_gotsym
!= NULL
)
3110 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
3112 if (TLS_RELOC_P (r_type
))
3114 struct mips_elf_link_hash_entry
*hm
3115 = (struct mips_elf_link_hash_entry
*) h
;
3116 bfd_vma value
= MINUS_ONE
;
3118 if ((h
->root
.type
== bfd_link_hash_defined
3119 || h
->root
.type
== bfd_link_hash_defweak
)
3120 && h
->root
.u
.def
.section
->output_section
)
3121 value
= (h
->root
.u
.def
.value
3122 + h
->root
.u
.def
.section
->output_offset
3123 + h
->root
.u
.def
.section
->output_section
->vma
);
3125 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
3126 r_type
, info
, hm
, value
);
3130 /* Once we determine the global GOT entry with the lowest dynamic
3131 symbol table index, we must put all dynamic symbols with greater
3132 indices into the GOT. That makes it easy to calculate the GOT
3134 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3135 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3136 * MIPS_ELF_GOT_SIZE (abfd
));
3138 BFD_ASSERT (index
< htab
->sgot
->size
);
3143 /* Find a GOT page entry that points to within 32KB of VALUE. These
3144 entries are supposed to be placed at small offsets in the GOT, i.e.,
3145 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3146 entry could be created. If OFFSETP is nonnull, use it to return the
3147 offset of the GOT entry from VALUE. */
3150 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3151 bfd_vma value
, bfd_vma
*offsetp
)
3153 bfd_vma page
, index
;
3154 struct mips_got_entry
*entry
;
3156 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3157 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3158 NULL
, R_MIPS_GOT_PAGE
);
3163 index
= entry
->gotidx
;
3166 *offsetp
= value
- entry
->d
.address
;
3171 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3172 EXTERNAL is true if the relocation was against a global symbol
3173 that has been forced local. */
3176 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3177 bfd_vma value
, bfd_boolean external
)
3179 struct mips_got_entry
*entry
;
3181 /* GOT16 relocations against local symbols are followed by a LO16
3182 relocation; those against global symbols are not. Thus if the
3183 symbol was originally local, the GOT16 relocation should load the
3184 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3186 value
= mips_elf_high (value
) << 16;
3188 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3189 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3190 same in all cases. */
3191 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3192 NULL
, R_MIPS_GOT16
);
3194 return entry
->gotidx
;
3199 /* Returns the offset for the entry at the INDEXth position
3203 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3204 bfd
*input_bfd
, bfd_vma index
)
3206 struct mips_elf_link_hash_table
*htab
;
3210 htab
= mips_elf_hash_table (info
);
3212 gp
= _bfd_get_gp_value (output_bfd
)
3213 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3215 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
3218 /* Create and return a local GOT entry for VALUE, which was calculated
3219 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3220 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3223 static struct mips_got_entry
*
3224 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3225 bfd
*ibfd
, bfd_vma value
,
3226 unsigned long r_symndx
,
3227 struct mips_elf_link_hash_entry
*h
,
3230 struct mips_got_entry entry
, **loc
;
3231 struct mips_got_info
*g
;
3232 struct mips_elf_link_hash_table
*htab
;
3234 htab
= mips_elf_hash_table (info
);
3238 entry
.d
.address
= value
;
3241 g
= mips_elf_got_for_ibfd (htab
->got_info
, ibfd
);
3244 g
= mips_elf_got_for_ibfd (htab
->got_info
, abfd
);
3245 BFD_ASSERT (g
!= NULL
);
3248 /* We might have a symbol, H, if it has been forced local. Use the
3249 global entry then. It doesn't matter whether an entry is local
3250 or global for TLS, since the dynamic linker does not
3251 automatically relocate TLS GOT entries. */
3252 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
3253 if (TLS_RELOC_P (r_type
))
3255 struct mips_got_entry
*p
;
3258 if (r_type
== R_MIPS_TLS_LDM
)
3260 entry
.tls_type
= GOT_TLS_LDM
;
3266 entry
.symndx
= r_symndx
;
3272 p
= (struct mips_got_entry
*)
3273 htab_find (g
->got_entries
, &entry
);
3279 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3284 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
3287 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3292 memcpy (*loc
, &entry
, sizeof entry
);
3294 if (g
->assigned_gotno
> g
->local_gotno
)
3296 (*loc
)->gotidx
= -1;
3297 /* We didn't allocate enough space in the GOT. */
3298 (*_bfd_error_handler
)
3299 (_("not enough GOT space for local GOT entries"));
3300 bfd_set_error (bfd_error_bad_value
);
3304 MIPS_ELF_PUT_WORD (abfd
, value
,
3305 (htab
->sgot
->contents
+ entry
.gotidx
));
3307 /* These GOT entries need a dynamic relocation on VxWorks. */
3308 if (htab
->is_vxworks
)
3310 Elf_Internal_Rela outrel
;
3313 bfd_vma got_address
;
3315 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3316 got_address
= (htab
->sgot
->output_section
->vma
3317 + htab
->sgot
->output_offset
3320 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3321 outrel
.r_offset
= got_address
;
3322 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3323 outrel
.r_addend
= value
;
3324 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
3330 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3331 The number might be exact or a worst-case estimate, depending on how
3332 much information is available to elf_backend_omit_section_dynsym at
3333 the current linking stage. */
3335 static bfd_size_type
3336 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3338 bfd_size_type count
;
3341 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
3344 const struct elf_backend_data
*bed
;
3346 bed
= get_elf_backend_data (output_bfd
);
3347 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3348 if ((p
->flags
& SEC_EXCLUDE
) == 0
3349 && (p
->flags
& SEC_ALLOC
) != 0
3350 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3356 /* Sort the dynamic symbol table so that symbols that need GOT entries
3357 appear towards the end. */
3360 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3362 struct mips_elf_link_hash_table
*htab
;
3363 struct mips_elf_hash_sort_data hsd
;
3364 struct mips_got_info
*g
;
3366 if (elf_hash_table (info
)->dynsymcount
== 0)
3369 htab
= mips_elf_hash_table (info
);
3375 hsd
.max_unref_got_dynindx
3376 = hsd
.min_got_dynindx
3377 = (elf_hash_table (info
)->dynsymcount
- g
->reloc_only_gotno
);
3378 hsd
.max_non_got_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3379 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
3380 elf_hash_table (info
)),
3381 mips_elf_sort_hash_table_f
,
3384 /* There should have been enough room in the symbol table to
3385 accommodate both the GOT and non-GOT symbols. */
3386 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3387 BFD_ASSERT ((unsigned long) hsd
.max_unref_got_dynindx
3388 == elf_hash_table (info
)->dynsymcount
);
3389 BFD_ASSERT (elf_hash_table (info
)->dynsymcount
- hsd
.min_got_dynindx
3390 == g
->global_gotno
);
3392 /* Now we know which dynamic symbol has the lowest dynamic symbol
3393 table index in the GOT. */
3394 g
->global_gotsym
= hsd
.low
;
3399 /* If H needs a GOT entry, assign it the highest available dynamic
3400 index. Otherwise, assign it the lowest available dynamic
3404 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3406 struct mips_elf_hash_sort_data
*hsd
= data
;
3408 if (h
->root
.root
.type
== bfd_link_hash_warning
)
3409 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3411 /* Symbols without dynamic symbol table entries aren't interesting
3413 if (h
->root
.dynindx
== -1)
3416 switch (h
->global_got_area
)
3419 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3423 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3425 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3426 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3429 case GGA_RELOC_ONLY
:
3430 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3432 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3433 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3434 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3441 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3442 symbol table index lower than any we've seen to date, record it for
3446 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3447 bfd
*abfd
, struct bfd_link_info
*info
,
3448 unsigned char tls_flag
)
3450 struct mips_elf_link_hash_table
*htab
;
3451 struct mips_elf_link_hash_entry
*hmips
;
3452 struct mips_got_entry entry
, **loc
;
3453 struct mips_got_info
*g
;
3455 htab
= mips_elf_hash_table (info
);
3456 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3458 /* A global symbol in the GOT must also be in the dynamic symbol
3460 if (h
->dynindx
== -1)
3462 switch (ELF_ST_VISIBILITY (h
->other
))
3466 _bfd_elf_link_hash_hide_symbol (info
, h
, TRUE
);
3469 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3473 /* Make sure we have a GOT to put this entry into. */
3475 BFD_ASSERT (g
!= NULL
);
3479 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3482 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3485 /* If we've already marked this entry as needing GOT space, we don't
3486 need to do it again. */
3489 (*loc
)->tls_type
|= tls_flag
;
3493 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3499 entry
.tls_type
= tls_flag
;
3501 memcpy (*loc
, &entry
, sizeof entry
);
3504 hmips
->global_got_area
= GGA_NORMAL
;
3509 /* Reserve space in G for a GOT entry containing the value of symbol
3510 SYMNDX in input bfd ABDF, plus ADDEND. */
3513 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
3514 struct bfd_link_info
*info
,
3515 unsigned char tls_flag
)
3517 struct mips_elf_link_hash_table
*htab
;
3518 struct mips_got_info
*g
;
3519 struct mips_got_entry entry
, **loc
;
3521 htab
= mips_elf_hash_table (info
);
3523 BFD_ASSERT (g
!= NULL
);
3526 entry
.symndx
= symndx
;
3527 entry
.d
.addend
= addend
;
3528 entry
.tls_type
= tls_flag
;
3529 loc
= (struct mips_got_entry
**)
3530 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
3534 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
3537 (*loc
)->tls_type
|= tls_flag
;
3539 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
3542 (*loc
)->tls_type
|= tls_flag
;
3550 entry
.tls_type
= tls_flag
;
3551 if (tls_flag
== GOT_TLS_IE
)
3553 else if (tls_flag
== GOT_TLS_GD
)
3555 else if (g
->tls_ldm_offset
== MINUS_ONE
)
3557 g
->tls_ldm_offset
= MINUS_TWO
;
3563 entry
.gotidx
= g
->local_gotno
++;
3567 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3572 memcpy (*loc
, &entry
, sizeof entry
);
3577 /* Return the maximum number of GOT page entries required for RANGE. */
3580 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
3582 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
3585 /* Record that ABFD has a page relocation against symbol SYMNDX and
3586 that ADDEND is the addend for that relocation.
3588 This function creates an upper bound on the number of GOT slots
3589 required; no attempt is made to combine references to non-overridable
3590 global symbols across multiple input files. */
3593 mips_elf_record_got_page_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3594 long symndx
, bfd_signed_vma addend
)
3596 struct mips_elf_link_hash_table
*htab
;
3597 struct mips_got_info
*g
;
3598 struct mips_got_page_entry lookup
, *entry
;
3599 struct mips_got_page_range
**range_ptr
, *range
;
3600 bfd_vma old_pages
, new_pages
;
3603 htab
= mips_elf_hash_table (info
);
3605 BFD_ASSERT (g
!= NULL
);
3607 /* Find the mips_got_page_entry hash table entry for this symbol. */
3609 lookup
.symndx
= symndx
;
3610 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
3614 /* Create a mips_got_page_entry if this is the first time we've
3616 entry
= (struct mips_got_page_entry
*) *loc
;
3619 entry
= bfd_alloc (abfd
, sizeof (*entry
));
3624 entry
->symndx
= symndx
;
3625 entry
->ranges
= NULL
;
3626 entry
->num_pages
= 0;
3630 /* Skip over ranges whose maximum extent cannot share a page entry
3632 range_ptr
= &entry
->ranges
;
3633 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
3634 range_ptr
= &(*range_ptr
)->next
;
3636 /* If we scanned to the end of the list, or found a range whose
3637 minimum extent cannot share a page entry with ADDEND, create
3638 a new singleton range. */
3640 if (!range
|| addend
< range
->min_addend
- 0xffff)
3642 range
= bfd_alloc (abfd
, sizeof (*range
));
3646 range
->next
= *range_ptr
;
3647 range
->min_addend
= addend
;
3648 range
->max_addend
= addend
;
3656 /* Remember how many pages the old range contributed. */
3657 old_pages
= mips_elf_pages_for_range (range
);
3659 /* Update the ranges. */
3660 if (addend
< range
->min_addend
)
3661 range
->min_addend
= addend
;
3662 else if (addend
> range
->max_addend
)
3664 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
3666 old_pages
+= mips_elf_pages_for_range (range
->next
);
3667 range
->max_addend
= range
->next
->max_addend
;
3668 range
->next
= range
->next
->next
;
3671 range
->max_addend
= addend
;
3674 /* Record any change in the total estimate. */
3675 new_pages
= mips_elf_pages_for_range (range
);
3676 if (old_pages
!= new_pages
)
3678 entry
->num_pages
+= new_pages
- old_pages
;
3679 g
->page_gotno
+= new_pages
- old_pages
;
3685 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3688 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
3692 struct mips_elf_link_hash_table
*htab
;
3694 htab
= mips_elf_hash_table (info
);
3695 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3696 BFD_ASSERT (s
!= NULL
);
3698 if (htab
->is_vxworks
)
3699 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
3704 /* Make room for a null element. */
3705 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
3708 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3712 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3713 if the GOT entry is for an indirect or warning symbol. */
3716 mips_elf_check_recreate_got (void **entryp
, void *data
)
3718 struct mips_got_entry
*entry
;
3719 bfd_boolean
*must_recreate
;
3721 entry
= (struct mips_got_entry
*) *entryp
;
3722 must_recreate
= (bfd_boolean
*) data
;
3723 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3725 struct mips_elf_link_hash_entry
*h
;
3728 if (h
->root
.root
.type
== bfd_link_hash_indirect
3729 || h
->root
.root
.type
== bfd_link_hash_warning
)
3731 *must_recreate
= TRUE
;
3738 /* A htab_traverse callback for GOT entries. Add all entries to
3739 hash table *DATA, converting entries for indirect and warning
3740 symbols into entries for the target symbol. Set *DATA to null
3744 mips_elf_recreate_got (void **entryp
, void *data
)
3747 struct mips_got_entry
*entry
;
3750 new_got
= (htab_t
*) data
;
3751 entry
= (struct mips_got_entry
*) *entryp
;
3752 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3754 struct mips_elf_link_hash_entry
*h
;
3757 while (h
->root
.root
.type
== bfd_link_hash_indirect
3758 || h
->root
.root
.type
== bfd_link_hash_warning
)
3760 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
3761 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3765 slot
= htab_find_slot (*new_got
, entry
, INSERT
);
3778 /* If any entries in G->got_entries are for indirect or warning symbols,
3779 replace them with entries for the target symbol. */
3782 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3784 bfd_boolean must_recreate
;
3787 must_recreate
= FALSE
;
3788 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &must_recreate
);
3791 new_got
= htab_create (htab_size (g
->got_entries
),
3792 mips_elf_got_entry_hash
,
3793 mips_elf_got_entry_eq
, NULL
);
3794 htab_traverse (g
->got_entries
, mips_elf_recreate_got
, &new_got
);
3795 if (new_got
== NULL
)
3798 /* Each entry in g->got_entries has either been copied to new_got
3799 or freed. Now delete the hash table itself. */
3800 htab_delete (g
->got_entries
);
3801 g
->got_entries
= new_got
;
3806 /* A mips_elf_link_hash_traverse callback for which DATA points
3807 to a mips_got_info. Count the number of type (3) entries. */
3810 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
3812 struct mips_got_info
*g
;
3814 g
= (struct mips_got_info
*) data
;
3815 if (h
->global_got_area
!= GGA_NONE
)
3817 if (h
->root
.forced_local
|| h
->root
.dynindx
== -1)
3819 /* We no longer need this entry if it was only used for
3820 relocations; those relocations will be against the
3821 null or section symbol instead of H. */
3822 if (h
->global_got_area
!= GGA_RELOC_ONLY
)
3824 h
->global_got_area
= GGA_NONE
;
3829 if (h
->global_got_area
== GGA_RELOC_ONLY
)
3830 g
->reloc_only_gotno
++;
3836 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3839 mips_elf_bfd2got_entry_hash (const void *entry_
)
3841 const struct mips_elf_bfd2got_hash
*entry
3842 = (struct mips_elf_bfd2got_hash
*)entry_
;
3844 return entry
->bfd
->id
;
3847 /* Check whether two hash entries have the same bfd. */
3850 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
3852 const struct mips_elf_bfd2got_hash
*e1
3853 = (const struct mips_elf_bfd2got_hash
*)entry1
;
3854 const struct mips_elf_bfd2got_hash
*e2
3855 = (const struct mips_elf_bfd2got_hash
*)entry2
;
3857 return e1
->bfd
== e2
->bfd
;
3860 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3861 be the master GOT data. */
3863 static struct mips_got_info
*
3864 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
3866 struct mips_elf_bfd2got_hash e
, *p
;
3872 p
= htab_find (g
->bfd2got
, &e
);
3873 return p
? p
->g
: NULL
;
3876 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3877 Return NULL if an error occured. */
3879 static struct mips_got_info
*
3880 mips_elf_get_got_for_bfd (struct htab
*bfd2got
, bfd
*output_bfd
,
3883 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3884 struct mips_got_info
*g
;
3887 bfdgot_entry
.bfd
= input_bfd
;
3888 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3889 bfdgot
= (struct mips_elf_bfd2got_hash
*) *bfdgotp
;
3893 bfdgot
= ((struct mips_elf_bfd2got_hash
*)
3894 bfd_alloc (output_bfd
, sizeof (struct mips_elf_bfd2got_hash
)));
3900 g
= ((struct mips_got_info
*)
3901 bfd_alloc (output_bfd
, sizeof (struct mips_got_info
)));
3905 bfdgot
->bfd
= input_bfd
;
3908 g
->global_gotsym
= NULL
;
3909 g
->global_gotno
= 0;
3910 g
->reloc_only_gotno
= 0;
3913 g
->assigned_gotno
= -1;
3915 g
->tls_assigned_gotno
= 0;
3916 g
->tls_ldm_offset
= MINUS_ONE
;
3917 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3918 mips_elf_multi_got_entry_eq
, NULL
);
3919 if (g
->got_entries
== NULL
)
3922 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
3923 mips_got_page_entry_eq
, NULL
);
3924 if (g
->got_page_entries
== NULL
)
3934 /* A htab_traverse callback for the entries in the master got.
3935 Create one separate got for each bfd that has entries in the global
3936 got, such that we can tell how many local and global entries each
3940 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
3942 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3943 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3944 struct mips_got_info
*g
;
3946 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3953 /* Insert the GOT entry in the bfd's got entry hash table. */
3954 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3955 if (*entryp
!= NULL
)
3960 if (entry
->tls_type
)
3962 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3964 if (entry
->tls_type
& GOT_TLS_IE
)
3967 else if (entry
->symndx
>= 0 || entry
->d
.h
->root
.forced_local
)
3975 /* A htab_traverse callback for the page entries in the master got.
3976 Associate each page entry with the bfd's got. */
3979 mips_elf_make_got_pages_per_bfd (void **entryp
, void *p
)
3981 struct mips_got_page_entry
*entry
= (struct mips_got_page_entry
*) *entryp
;
3982 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*) p
;
3983 struct mips_got_info
*g
;
3985 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3992 /* Insert the GOT entry in the bfd's got entry hash table. */
3993 entryp
= htab_find_slot (g
->got_page_entries
, entry
, INSERT
);
3994 if (*entryp
!= NULL
)
3998 g
->page_gotno
+= entry
->num_pages
;
4002 /* Consider merging the got described by BFD2GOT with TO, using the
4003 information given by ARG. Return -1 if this would lead to overflow,
4004 1 if they were merged successfully, and 0 if a merge failed due to
4005 lack of memory. (These values are chosen so that nonnegative return
4006 values can be returned by a htab_traverse callback.) */
4009 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash
*bfd2got
,
4010 struct mips_got_info
*to
,
4011 struct mips_elf_got_per_bfd_arg
*arg
)
4013 struct mips_got_info
*from
= bfd2got
->g
;
4014 unsigned int estimate
;
4016 /* Work out how many page entries we would need for the combined GOT. */
4017 estimate
= arg
->max_pages
;
4018 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4019 estimate
= from
->page_gotno
+ to
->page_gotno
;
4021 /* And conservatively estimate how many local, global and TLS entries
4023 estimate
+= (from
->local_gotno
4024 + from
->global_gotno
4030 /* Bail out if the combined GOT might be too big. */
4031 if (estimate
> arg
->max_count
)
4034 /* Commit to the merge. Record that TO is now the bfd for this got. */
4037 /* Transfer the bfd's got information from FROM to TO. */
4038 htab_traverse (from
->got_entries
, mips_elf_make_got_per_bfd
, arg
);
4039 if (arg
->obfd
== NULL
)
4042 htab_traverse (from
->got_page_entries
, mips_elf_make_got_pages_per_bfd
, arg
);
4043 if (arg
->obfd
== NULL
)
4046 /* We don't have to worry about releasing memory of the actual
4047 got entries, since they're all in the master got_entries hash
4049 htab_delete (from
->got_entries
);
4050 htab_delete (from
->got_page_entries
);
4054 /* Attempt to merge gots of different input bfds. Try to use as much
4055 as possible of the primary got, since it doesn't require explicit
4056 dynamic relocations, but don't use bfds that would reference global
4057 symbols out of the addressable range. Failing the primary got,
4058 attempt to merge with the current got, or finish the current got
4059 and then make make the new got current. */
4062 mips_elf_merge_gots (void **bfd2got_
, void *p
)
4064 struct mips_elf_bfd2got_hash
*bfd2got
4065 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
4066 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4067 struct mips_got_info
*g
;
4068 unsigned int estimate
;
4073 /* Work out the number of page, local and TLS entries. */
4074 estimate
= arg
->max_pages
;
4075 if (estimate
> g
->page_gotno
)
4076 estimate
= g
->page_gotno
;
4077 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4079 /* We place TLS GOT entries after both locals and globals. The globals
4080 for the primary GOT may overflow the normal GOT size limit, so be
4081 sure not to merge a GOT which requires TLS with the primary GOT in that
4082 case. This doesn't affect non-primary GOTs. */
4083 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4085 if (estimate
<= arg
->max_count
)
4087 /* If we don't have a primary GOT, use it as
4088 a starting point for the primary GOT. */
4091 arg
->primary
= bfd2got
->g
;
4095 /* Try merging with the primary GOT. */
4096 result
= mips_elf_merge_got_with (bfd2got
, arg
->primary
, arg
);
4101 /* If we can merge with the last-created got, do it. */
4104 result
= mips_elf_merge_got_with (bfd2got
, arg
->current
, arg
);
4109 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4110 fits; if it turns out that it doesn't, we'll get relocation
4111 overflows anyway. */
4112 g
->next
= arg
->current
;
4118 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4119 is null iff there is just a single GOT. */
4122 mips_elf_initialize_tls_index (void **entryp
, void *p
)
4124 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4125 struct mips_got_info
*g
= p
;
4127 unsigned char tls_type
;
4129 /* We're only interested in TLS symbols. */
4130 if (entry
->tls_type
== 0)
4133 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
4135 if (entry
->symndx
== -1 && g
->next
== NULL
)
4137 /* A type (3) got entry in the single-GOT case. We use the symbol's
4138 hash table entry to track its index. */
4139 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
4141 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
4142 entry
->d
.h
->tls_got_offset
= next_index
;
4143 tls_type
= entry
->d
.h
->tls_type
;
4147 if (entry
->tls_type
& GOT_TLS_LDM
)
4149 /* There are separate mips_got_entry objects for each input bfd
4150 that requires an LDM entry. Make sure that all LDM entries in
4151 a GOT resolve to the same index. */
4152 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
4154 entry
->gotidx
= g
->tls_ldm_offset
;
4157 g
->tls_ldm_offset
= next_index
;
4159 entry
->gotidx
= next_index
;
4160 tls_type
= entry
->tls_type
;
4163 /* Account for the entries we've just allocated. */
4164 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4165 g
->tls_assigned_gotno
+= 2;
4166 if (tls_type
& GOT_TLS_IE
)
4167 g
->tls_assigned_gotno
+= 1;
4172 /* If passed a NULL mips_got_info in the argument, set the marker used
4173 to tell whether a global symbol needs a got entry (in the primary
4174 got) to the given VALUE.
4176 If passed a pointer G to a mips_got_info in the argument (it must
4177 not be the primary GOT), compute the offset from the beginning of
4178 the (primary) GOT section to the entry in G corresponding to the
4179 global symbol. G's assigned_gotno must contain the index of the
4180 first available global GOT entry in G. VALUE must contain the size
4181 of a GOT entry in bytes. For each global GOT entry that requires a
4182 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4183 marked as not eligible for lazy resolution through a function
4186 mips_elf_set_global_got_offset (void **entryp
, void *p
)
4188 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4189 struct mips_elf_set_global_got_offset_arg
*arg
4190 = (struct mips_elf_set_global_got_offset_arg
*)p
;
4191 struct mips_got_info
*g
= arg
->g
;
4193 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
4194 arg
->needed_relocs
+=
4195 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
4196 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
4198 if (entry
->abfd
!= NULL
4199 && entry
->symndx
== -1
4200 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4204 BFD_ASSERT (g
->global_gotsym
== NULL
);
4206 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
4207 if (arg
->info
->shared
4208 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4209 && entry
->d
.h
->root
.def_dynamic
4210 && !entry
->d
.h
->root
.def_regular
))
4211 ++arg
->needed_relocs
;
4214 entry
->d
.h
->global_got_area
= arg
->value
;
4220 /* A htab_traverse callback for GOT entries for which DATA is the
4221 bfd_link_info. Forbid any global symbols from having traditional
4222 lazy-binding stubs. */
4225 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4227 struct bfd_link_info
*info
;
4228 struct mips_elf_link_hash_table
*htab
;
4229 struct mips_got_entry
*entry
;
4231 entry
= (struct mips_got_entry
*) *entryp
;
4232 info
= (struct bfd_link_info
*) data
;
4233 htab
= mips_elf_hash_table (info
);
4234 if (entry
->abfd
!= NULL
4235 && entry
->symndx
== -1
4236 && entry
->d
.h
->needs_lazy_stub
)
4238 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4239 htab
->lazy_stub_count
--;
4245 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4248 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4250 if (g
->bfd2got
== NULL
)
4253 g
= mips_elf_got_for_ibfd (g
, ibfd
);
4257 BFD_ASSERT (g
->next
);
4261 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4262 * MIPS_ELF_GOT_SIZE (abfd
);
4265 /* Turn a single GOT that is too big for 16-bit addressing into
4266 a sequence of GOTs, each one 16-bit addressable. */
4269 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4270 asection
*got
, bfd_size_type pages
)
4272 struct mips_elf_link_hash_table
*htab
;
4273 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4274 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
4275 struct mips_got_info
*g
, *gg
;
4276 unsigned int assign
, needed_relocs
;
4279 dynobj
= elf_hash_table (info
)->dynobj
;
4280 htab
= mips_elf_hash_table (info
);
4282 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
4283 mips_elf_bfd2got_entry_eq
, NULL
);
4284 if (g
->bfd2got
== NULL
)
4287 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
4288 got_per_bfd_arg
.obfd
= abfd
;
4289 got_per_bfd_arg
.info
= info
;
4291 /* Count how many GOT entries each input bfd requires, creating a
4292 map from bfd to got info while at that. */
4293 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
4294 if (got_per_bfd_arg
.obfd
== NULL
)
4297 /* Also count how many page entries each input bfd requires. */
4298 htab_traverse (g
->got_page_entries
, mips_elf_make_got_pages_per_bfd
,
4300 if (got_per_bfd_arg
.obfd
== NULL
)
4303 got_per_bfd_arg
.current
= NULL
;
4304 got_per_bfd_arg
.primary
= NULL
;
4305 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4306 / MIPS_ELF_GOT_SIZE (abfd
))
4307 - htab
->reserved_gotno
);
4308 got_per_bfd_arg
.max_pages
= pages
;
4309 /* The number of globals that will be included in the primary GOT.
4310 See the calls to mips_elf_set_global_got_offset below for more
4312 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4314 /* Try to merge the GOTs of input bfds together, as long as they
4315 don't seem to exceed the maximum GOT size, choosing one of them
4316 to be the primary GOT. */
4317 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
4318 if (got_per_bfd_arg
.obfd
== NULL
)
4321 /* If we do not find any suitable primary GOT, create an empty one. */
4322 if (got_per_bfd_arg
.primary
== NULL
)
4324 g
->next
= (struct mips_got_info
*)
4325 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
4326 if (g
->next
== NULL
)
4329 g
->next
->global_gotsym
= NULL
;
4330 g
->next
->global_gotno
= 0;
4331 g
->next
->reloc_only_gotno
= 0;
4332 g
->next
->local_gotno
= 0;
4333 g
->next
->page_gotno
= 0;
4334 g
->next
->tls_gotno
= 0;
4335 g
->next
->assigned_gotno
= 0;
4336 g
->next
->tls_assigned_gotno
= 0;
4337 g
->next
->tls_ldm_offset
= MINUS_ONE
;
4338 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4339 mips_elf_multi_got_entry_eq
,
4341 if (g
->next
->got_entries
== NULL
)
4343 g
->next
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4344 mips_got_page_entry_eq
,
4346 if (g
->next
->got_page_entries
== NULL
)
4348 g
->next
->bfd2got
= NULL
;
4351 g
->next
= got_per_bfd_arg
.primary
;
4352 g
->next
->next
= got_per_bfd_arg
.current
;
4354 /* GG is now the master GOT, and G is the primary GOT. */
4358 /* Map the output bfd to the primary got. That's what we're going
4359 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4360 didn't mark in check_relocs, and we want a quick way to find it.
4361 We can't just use gg->next because we're going to reverse the
4364 struct mips_elf_bfd2got_hash
*bfdgot
;
4367 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
4368 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
4375 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
4377 BFD_ASSERT (*bfdgotp
== NULL
);
4381 /* Every symbol that is referenced in a dynamic relocation must be
4382 present in the primary GOT, so arrange for them to appear after
4383 those that are actually referenced. */
4384 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4385 g
->global_gotno
= gg
->global_gotno
;
4387 set_got_offset_arg
.g
= NULL
;
4388 set_got_offset_arg
.value
= GGA_RELOC_ONLY
;
4389 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
4390 &set_got_offset_arg
);
4391 set_got_offset_arg
.value
= GGA_NORMAL
;
4392 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
4393 &set_got_offset_arg
);
4395 /* Now go through the GOTs assigning them offset ranges.
4396 [assigned_gotno, local_gotno[ will be set to the range of local
4397 entries in each GOT. We can then compute the end of a GOT by
4398 adding local_gotno to global_gotno. We reverse the list and make
4399 it circular since then we'll be able to quickly compute the
4400 beginning of a GOT, by computing the end of its predecessor. To
4401 avoid special cases for the primary GOT, while still preserving
4402 assertions that are valid for both single- and multi-got links,
4403 we arrange for the main got struct to have the right number of
4404 global entries, but set its local_gotno such that the initial
4405 offset of the primary GOT is zero. Remember that the primary GOT
4406 will become the last item in the circular linked list, so it
4407 points back to the master GOT. */
4408 gg
->local_gotno
= -g
->global_gotno
;
4409 gg
->global_gotno
= g
->global_gotno
;
4416 struct mips_got_info
*gn
;
4418 assign
+= htab
->reserved_gotno
;
4419 g
->assigned_gotno
= assign
;
4420 g
->local_gotno
+= assign
;
4421 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4422 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4424 /* Take g out of the direct list, and push it onto the reversed
4425 list that gg points to. g->next is guaranteed to be nonnull after
4426 this operation, as required by mips_elf_initialize_tls_index. */
4431 /* Set up any TLS entries. We always place the TLS entries after
4432 all non-TLS entries. */
4433 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4434 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
4436 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4439 /* Forbid global symbols in every non-primary GOT from having
4440 lazy-binding stubs. */
4442 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4446 got
->size
= (gg
->next
->local_gotno
4447 + gg
->next
->global_gotno
4448 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
4451 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4452 set_got_offset_arg
.info
= info
;
4453 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4455 unsigned int save_assign
;
4457 /* Assign offsets to global GOT entries. */
4458 save_assign
= g
->assigned_gotno
;
4459 g
->assigned_gotno
= g
->local_gotno
;
4460 set_got_offset_arg
.g
= g
;
4461 set_got_offset_arg
.needed_relocs
= 0;
4462 htab_traverse (g
->got_entries
,
4463 mips_elf_set_global_got_offset
,
4464 &set_got_offset_arg
);
4465 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
4466 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
<= g
->global_gotno
);
4468 g
->assigned_gotno
= save_assign
;
4471 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
4472 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
4473 + g
->next
->global_gotno
4474 + g
->next
->tls_gotno
4475 + htab
->reserved_gotno
);
4480 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4487 /* Returns the first relocation of type r_type found, beginning with
4488 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4490 static const Elf_Internal_Rela
*
4491 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4492 const Elf_Internal_Rela
*relocation
,
4493 const Elf_Internal_Rela
*relend
)
4495 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
4497 while (relocation
< relend
)
4499 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
4500 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
4506 /* We didn't find it. */
4510 /* Return whether a relocation is against a local symbol. */
4513 mips_elf_local_relocation_p (bfd
*input_bfd
,
4514 const Elf_Internal_Rela
*relocation
,
4515 asection
**local_sections
,
4516 bfd_boolean check_forced
)
4518 unsigned long r_symndx
;
4519 Elf_Internal_Shdr
*symtab_hdr
;
4520 struct mips_elf_link_hash_entry
*h
;
4523 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4524 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4525 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
4527 if (r_symndx
< extsymoff
)
4529 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
4534 /* Look up the hash table to check whether the symbol
4535 was forced local. */
4536 h
= (struct mips_elf_link_hash_entry
*)
4537 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
4538 /* Find the real hash-table entry for this symbol. */
4539 while (h
->root
.root
.type
== bfd_link_hash_indirect
4540 || h
->root
.root
.type
== bfd_link_hash_warning
)
4541 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4542 if (h
->root
.forced_local
)
4549 /* Sign-extend VALUE, which has the indicated number of BITS. */
4552 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
4554 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
4555 /* VALUE is negative. */
4556 value
|= ((bfd_vma
) - 1) << bits
;
4561 /* Return non-zero if the indicated VALUE has overflowed the maximum
4562 range expressible by a signed number with the indicated number of
4566 mips_elf_overflow_p (bfd_vma value
, int bits
)
4568 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
4570 if (svalue
> (1 << (bits
- 1)) - 1)
4571 /* The value is too big. */
4573 else if (svalue
< -(1 << (bits
- 1)))
4574 /* The value is too small. */
4581 /* Calculate the %high function. */
4584 mips_elf_high (bfd_vma value
)
4586 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
4589 /* Calculate the %higher function. */
4592 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
4595 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
4602 /* Calculate the %highest function. */
4605 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
4608 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4615 /* Create the .compact_rel section. */
4618 mips_elf_create_compact_rel_section
4619 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4622 register asection
*s
;
4624 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
4626 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
4629 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
4631 || ! bfd_set_section_alignment (abfd
, s
,
4632 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4635 s
->size
= sizeof (Elf32_External_compact_rel
);
4641 /* Create the .got section to hold the global offset table. */
4644 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4647 register asection
*s
;
4648 struct elf_link_hash_entry
*h
;
4649 struct bfd_link_hash_entry
*bh
;
4650 struct mips_got_info
*g
;
4652 struct mips_elf_link_hash_table
*htab
;
4654 htab
= mips_elf_hash_table (info
);
4656 /* This function may be called more than once. */
4660 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4661 | SEC_LINKER_CREATED
);
4663 /* We have to use an alignment of 2**4 here because this is hardcoded
4664 in the function stub generation and in the linker script. */
4665 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
4667 || ! bfd_set_section_alignment (abfd
, s
, 4))
4671 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4672 linker script because we don't want to define the symbol if we
4673 are not creating a global offset table. */
4675 if (! (_bfd_generic_link_add_one_symbol
4676 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
4677 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
4680 h
= (struct elf_link_hash_entry
*) bh
;
4683 h
->type
= STT_OBJECT
;
4684 elf_hash_table (info
)->hgot
= h
;
4687 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
4690 amt
= sizeof (struct mips_got_info
);
4691 g
= bfd_alloc (abfd
, amt
);
4694 g
->global_gotsym
= NULL
;
4695 g
->global_gotno
= 0;
4696 g
->reloc_only_gotno
= 0;
4700 g
->assigned_gotno
= 0;
4703 g
->tls_ldm_offset
= MINUS_ONE
;
4704 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
4705 mips_elf_got_entry_eq
, NULL
);
4706 if (g
->got_entries
== NULL
)
4708 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4709 mips_got_page_entry_eq
, NULL
);
4710 if (g
->got_page_entries
== NULL
)
4713 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
4714 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4716 /* We also need a .got.plt section when generating PLTs. */
4717 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
4718 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
4719 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
4727 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4728 __GOTT_INDEX__ symbols. These symbols are only special for
4729 shared objects; they are not used in executables. */
4732 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
4734 return (mips_elf_hash_table (info
)->is_vxworks
4736 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
4737 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
4740 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4741 require an la25 stub. See also mips_elf_local_pic_function_p,
4742 which determines whether the destination function ever requires a
4746 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
)
4748 /* We specifically ignore branches and jumps from EF_PIC objects,
4749 where the onus is on the compiler or programmer to perform any
4750 necessary initialization of $25. Sometimes such initialization
4751 is unnecessary; for example, -mno-shared functions do not use
4752 the incoming value of $25, and may therefore be called directly. */
4753 if (PIC_OBJECT_P (input_bfd
))
4768 /* Calculate the value produced by the RELOCATION (which comes from
4769 the INPUT_BFD). The ADDEND is the addend to use for this
4770 RELOCATION; RELOCATION->R_ADDEND is ignored.
4772 The result of the relocation calculation is stored in VALUEP.
4773 REQUIRE_JALXP indicates whether or not the opcode used with this
4774 relocation must be JALX.
4776 This function returns bfd_reloc_continue if the caller need take no
4777 further action regarding this relocation, bfd_reloc_notsupported if
4778 something goes dramatically wrong, bfd_reloc_overflow if an
4779 overflow occurs, and bfd_reloc_ok to indicate success. */
4781 static bfd_reloc_status_type
4782 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
4783 asection
*input_section
,
4784 struct bfd_link_info
*info
,
4785 const Elf_Internal_Rela
*relocation
,
4786 bfd_vma addend
, reloc_howto_type
*howto
,
4787 Elf_Internal_Sym
*local_syms
,
4788 asection
**local_sections
, bfd_vma
*valuep
,
4789 const char **namep
, bfd_boolean
*require_jalxp
,
4790 bfd_boolean save_addend
)
4792 /* The eventual value we will return. */
4794 /* The address of the symbol against which the relocation is
4797 /* The final GP value to be used for the relocatable, executable, or
4798 shared object file being produced. */
4800 /* The place (section offset or address) of the storage unit being
4803 /* The value of GP used to create the relocatable object. */
4805 /* The offset into the global offset table at which the address of
4806 the relocation entry symbol, adjusted by the addend, resides
4807 during execution. */
4808 bfd_vma g
= MINUS_ONE
;
4809 /* The section in which the symbol referenced by the relocation is
4811 asection
*sec
= NULL
;
4812 struct mips_elf_link_hash_entry
*h
= NULL
;
4813 /* TRUE if the symbol referred to by this relocation is a local
4815 bfd_boolean local_p
, was_local_p
;
4816 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4817 bfd_boolean gp_disp_p
= FALSE
;
4818 /* TRUE if the symbol referred to by this relocation is
4819 "__gnu_local_gp". */
4820 bfd_boolean gnu_local_gp_p
= FALSE
;
4821 Elf_Internal_Shdr
*symtab_hdr
;
4823 unsigned long r_symndx
;
4825 /* TRUE if overflow occurred during the calculation of the
4826 relocation value. */
4827 bfd_boolean overflowed_p
;
4828 /* TRUE if this relocation refers to a MIPS16 function. */
4829 bfd_boolean target_is_16_bit_code_p
= FALSE
;
4830 struct mips_elf_link_hash_table
*htab
;
4833 dynobj
= elf_hash_table (info
)->dynobj
;
4834 htab
= mips_elf_hash_table (info
);
4836 /* Parse the relocation. */
4837 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4838 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4839 p
= (input_section
->output_section
->vma
4840 + input_section
->output_offset
4841 + relocation
->r_offset
);
4843 /* Assume that there will be no overflow. */
4844 overflowed_p
= FALSE
;
4846 /* Figure out whether or not the symbol is local, and get the offset
4847 used in the array of hash table entries. */
4848 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4849 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4850 local_sections
, FALSE
);
4851 was_local_p
= local_p
;
4852 if (! elf_bad_symtab (input_bfd
))
4853 extsymoff
= symtab_hdr
->sh_info
;
4856 /* The symbol table does not follow the rule that local symbols
4857 must come before globals. */
4861 /* Figure out the value of the symbol. */
4864 Elf_Internal_Sym
*sym
;
4866 sym
= local_syms
+ r_symndx
;
4867 sec
= local_sections
[r_symndx
];
4869 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4870 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
4871 || (sec
->flags
& SEC_MERGE
))
4872 symbol
+= sym
->st_value
;
4873 if ((sec
->flags
& SEC_MERGE
)
4874 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4876 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
4878 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
4881 /* MIPS16 text labels should be treated as odd. */
4882 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
4885 /* Record the name of this symbol, for our caller. */
4886 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
4887 symtab_hdr
->sh_link
,
4890 *namep
= bfd_section_name (input_bfd
, sec
);
4892 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
4896 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4898 /* For global symbols we look up the symbol in the hash-table. */
4899 h
= ((struct mips_elf_link_hash_entry
*)
4900 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
4901 /* Find the real hash-table entry for this symbol. */
4902 while (h
->root
.root
.type
== bfd_link_hash_indirect
4903 || h
->root
.root
.type
== bfd_link_hash_warning
)
4904 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4906 /* Record the name of this symbol, for our caller. */
4907 *namep
= h
->root
.root
.root
.string
;
4909 /* See if this is the special _gp_disp symbol. Note that such a
4910 symbol must always be a global symbol. */
4911 if (strcmp (*namep
, "_gp_disp") == 0
4912 && ! NEWABI_P (input_bfd
))
4914 /* Relocations against _gp_disp are permitted only with
4915 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4916 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
4917 return bfd_reloc_notsupported
;
4921 /* See if this is the special _gp symbol. Note that such a
4922 symbol must always be a global symbol. */
4923 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4924 gnu_local_gp_p
= TRUE
;
4927 /* If this symbol is defined, calculate its address. Note that
4928 _gp_disp is a magic symbol, always implicitly defined by the
4929 linker, so it's inappropriate to check to see whether or not
4931 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4932 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4933 && h
->root
.root
.u
.def
.section
)
4935 sec
= h
->root
.root
.u
.def
.section
;
4936 if (sec
->output_section
)
4937 symbol
= (h
->root
.root
.u
.def
.value
4938 + sec
->output_section
->vma
4939 + sec
->output_offset
);
4941 symbol
= h
->root
.root
.u
.def
.value
;
4943 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4944 /* We allow relocations against undefined weak symbols, giving
4945 it the value zero, so that you can undefined weak functions
4946 and check to see if they exist by looking at their
4949 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4950 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4952 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4953 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4955 /* If this is a dynamic link, we should have created a
4956 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4957 in in _bfd_mips_elf_create_dynamic_sections.
4958 Otherwise, we should define the symbol with a value of 0.
4959 FIXME: It should probably get into the symbol table
4961 BFD_ASSERT (! info
->shared
);
4962 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4965 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4967 /* This is an optional symbol - an Irix specific extension to the
4968 ELF spec. Ignore it for now.
4969 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4970 than simply ignoring them, but we do not handle this for now.
4971 For information see the "64-bit ELF Object File Specification"
4972 which is available from here:
4973 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4976 else if ((*info
->callbacks
->undefined_symbol
)
4977 (info
, h
->root
.root
.root
.string
, input_bfd
,
4978 input_section
, relocation
->r_offset
,
4979 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4980 || ELF_ST_VISIBILITY (h
->root
.other
)))
4982 return bfd_reloc_undefined
;
4986 return bfd_reloc_notsupported
;
4989 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
4992 /* If this is a reference to a 16-bit function with a stub, we need
4993 to redirect the relocation to the stub unless:
4995 (a) the relocation is for a MIPS16 JAL;
4997 (b) the relocation is for a MIPS16 PIC call, and there are no
4998 non-MIPS16 uses of the GOT slot; or
5000 (c) the section allows direct references to MIPS16 functions. */
5001 if (r_type
!= R_MIPS16_26
5002 && !info
->relocatable
5004 && h
->fn_stub
!= NULL
5005 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5007 && elf_tdata (input_bfd
)->local_stubs
!= NULL
5008 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5009 && !section_allows_mips16_refs_p (input_section
))
5011 /* This is a 32- or 64-bit call to a 16-bit function. We should
5012 have already noticed that we were going to need the
5015 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5018 BFD_ASSERT (h
->need_fn_stub
);
5022 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5023 /* The target is 16-bit, but the stub isn't. */
5024 target_is_16_bit_code_p
= FALSE
;
5026 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5027 need to redirect the call to the stub. Note that we specifically
5028 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5029 use an indirect stub instead. */
5030 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
5031 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5033 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5034 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5035 && !target_is_16_bit_code_p
)
5038 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5041 /* If both call_stub and call_fp_stub are defined, we can figure
5042 out which one to use by checking which one appears in the input
5044 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5049 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5051 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5053 sec
= h
->call_fp_stub
;
5060 else if (h
->call_stub
!= NULL
)
5063 sec
= h
->call_fp_stub
;
5066 BFD_ASSERT (sec
->size
> 0);
5067 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5069 /* If this is a direct call to a PIC function, redirect to the
5071 else if (h
!= NULL
&& h
->la25_stub
5072 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
))
5073 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5074 + h
->la25_stub
->stub_section
->output_offset
5075 + h
->la25_stub
->offset
);
5077 /* Calls from 16-bit code to 32-bit code and vice versa require the
5078 special jalx instruction. */
5079 *require_jalxp
= (!info
->relocatable
5080 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
5081 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
5083 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5084 local_sections
, TRUE
);
5086 gp0
= _bfd_get_gp_value (input_bfd
);
5087 gp
= _bfd_get_gp_value (abfd
);
5089 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5094 /* If we haven't already determined the GOT offset, oand we're going
5095 to need it, get it now. */
5098 case R_MIPS_GOT_PAGE
:
5099 case R_MIPS_GOT_OFST
:
5100 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5102 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
5103 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
5107 case R_MIPS16_CALL16
:
5108 case R_MIPS16_GOT16
:
5111 case R_MIPS_GOT_DISP
:
5112 case R_MIPS_GOT_HI16
:
5113 case R_MIPS_CALL_HI16
:
5114 case R_MIPS_GOT_LO16
:
5115 case R_MIPS_CALL_LO16
:
5117 case R_MIPS_TLS_GOTTPREL
:
5118 case R_MIPS_TLS_LDM
:
5119 /* Find the index into the GOT where this value is located. */
5120 if (r_type
== R_MIPS_TLS_LDM
)
5122 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5123 0, 0, NULL
, r_type
);
5125 return bfd_reloc_outofrange
;
5129 /* On VxWorks, CALL relocations should refer to the .got.plt
5130 entry, which is initialized to point at the PLT stub. */
5131 if (htab
->is_vxworks
5132 && (r_type
== R_MIPS_CALL_HI16
5133 || r_type
== R_MIPS_CALL_LO16
5134 || call16_reloc_p (r_type
)))
5136 BFD_ASSERT (addend
== 0);
5137 BFD_ASSERT (h
->root
.needs_plt
);
5138 g
= mips_elf_gotplt_index (info
, &h
->root
);
5142 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5143 GOT_PAGE relocation that decays to GOT_DISP because the
5144 symbol turns out to be global. The addend is then added
5146 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
5147 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
5148 &h
->root
, r_type
, info
);
5149 if (h
->tls_type
== GOT_NORMAL
5150 && (! elf_hash_table(info
)->dynamic_sections_created
5152 && (info
->symbolic
|| h
->root
.forced_local
)
5153 && h
->root
.def_regular
)))
5154 /* This is a static link or a -Bsymbolic link. The
5155 symbol is defined locally, or was forced to be local.
5156 We must initialize this entry in the GOT. */
5157 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->sgot
->contents
+ g
);
5160 else if (!htab
->is_vxworks
5161 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5162 /* The calculation below does not involve "g". */
5166 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5167 symbol
+ addend
, r_symndx
, h
, r_type
);
5169 return bfd_reloc_outofrange
;
5172 /* Convert GOT indices to actual offsets. */
5173 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5177 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5178 symbols are resolved by the loader. Add them to .rela.dyn. */
5179 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5181 Elf_Internal_Rela outrel
;
5185 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5186 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5188 outrel
.r_offset
= (input_section
->output_section
->vma
5189 + input_section
->output_offset
5190 + relocation
->r_offset
);
5191 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5192 outrel
.r_addend
= addend
;
5193 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5195 /* If we've written this relocation for a readonly section,
5196 we need to set DF_TEXTREL again, so that we do not delete the
5198 if (MIPS_ELF_READONLY_SECTION (input_section
))
5199 info
->flags
|= DF_TEXTREL
;
5202 return bfd_reloc_ok
;
5205 /* Figure out what kind of relocation is being performed. */
5209 return bfd_reloc_continue
;
5212 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
5213 overflowed_p
= mips_elf_overflow_p (value
, 16);
5220 || (htab
->root
.dynamic_sections_created
5222 && h
->root
.def_dynamic
5223 && !h
->root
.def_regular
5224 && !h
->has_static_relocs
))
5227 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5228 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5229 && (input_section
->flags
& SEC_ALLOC
) != 0)
5231 /* If we're creating a shared library, then we can't know
5232 where the symbol will end up. So, we create a relocation
5233 record in the output, and leave the job up to the dynamic
5234 linker. We must do the same for executable references to
5235 shared library symbols, unless we've decided to use copy
5236 relocs or PLTs instead. */
5238 if (!mips_elf_create_dynamic_relocation (abfd
,
5246 return bfd_reloc_undefined
;
5250 if (r_type
!= R_MIPS_REL32
)
5251 value
= symbol
+ addend
;
5255 value
&= howto
->dst_mask
;
5259 value
= symbol
+ addend
- p
;
5260 value
&= howto
->dst_mask
;
5264 /* The calculation for R_MIPS16_26 is just the same as for an
5265 R_MIPS_26. It's only the storage of the relocated field into
5266 the output file that's different. That's handled in
5267 mips_elf_perform_relocation. So, we just fall through to the
5268 R_MIPS_26 case here. */
5271 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
5274 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
5275 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5276 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
5278 value
&= howto
->dst_mask
;
5281 case R_MIPS_TLS_DTPREL_HI16
:
5282 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
5286 case R_MIPS_TLS_DTPREL_LO16
:
5287 case R_MIPS_TLS_DTPREL32
:
5288 case R_MIPS_TLS_DTPREL64
:
5289 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
5292 case R_MIPS_TLS_TPREL_HI16
:
5293 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
5297 case R_MIPS_TLS_TPREL_LO16
:
5298 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
5305 value
= mips_elf_high (addend
+ symbol
);
5306 value
&= howto
->dst_mask
;
5310 /* For MIPS16 ABI code we generate this sequence
5311 0: li $v0,%hi(_gp_disp)
5312 4: addiupc $v1,%lo(_gp_disp)
5316 So the offsets of hi and lo relocs are the same, but the
5317 $pc is four higher than $t9 would be, so reduce
5318 both reloc addends by 4. */
5319 if (r_type
== R_MIPS16_HI16
)
5320 value
= mips_elf_high (addend
+ gp
- p
- 4);
5322 value
= mips_elf_high (addend
+ gp
- p
);
5323 overflowed_p
= mips_elf_overflow_p (value
, 16);
5330 value
= (symbol
+ addend
) & howto
->dst_mask
;
5333 /* See the comment for R_MIPS16_HI16 above for the reason
5334 for this conditional. */
5335 if (r_type
== R_MIPS16_LO16
)
5336 value
= addend
+ gp
- p
;
5338 value
= addend
+ gp
- p
+ 4;
5339 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5340 for overflow. But, on, say, IRIX5, relocations against
5341 _gp_disp are normally generated from the .cpload
5342 pseudo-op. It generates code that normally looks like
5345 lui $gp,%hi(_gp_disp)
5346 addiu $gp,$gp,%lo(_gp_disp)
5349 Here $t9 holds the address of the function being called,
5350 as required by the MIPS ELF ABI. The R_MIPS_LO16
5351 relocation can easily overflow in this situation, but the
5352 R_MIPS_HI16 relocation will handle the overflow.
5353 Therefore, we consider this a bug in the MIPS ABI, and do
5354 not check for overflow here. */
5358 case R_MIPS_LITERAL
:
5359 /* Because we don't merge literal sections, we can handle this
5360 just like R_MIPS_GPREL16. In the long run, we should merge
5361 shared literals, and then we will need to additional work
5366 case R_MIPS16_GPREL
:
5367 /* The R_MIPS16_GPREL performs the same calculation as
5368 R_MIPS_GPREL16, but stores the relocated bits in a different
5369 order. We don't need to do anything special here; the
5370 differences are handled in mips_elf_perform_relocation. */
5371 case R_MIPS_GPREL16
:
5372 /* Only sign-extend the addend if it was extracted from the
5373 instruction. If the addend was separate, leave it alone,
5374 otherwise we may lose significant bits. */
5375 if (howto
->partial_inplace
)
5376 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5377 value
= symbol
+ addend
- gp
;
5378 /* If the symbol was local, any earlier relocatable links will
5379 have adjusted its addend with the gp offset, so compensate
5380 for that now. Don't do it for symbols forced local in this
5381 link, though, since they won't have had the gp offset applied
5385 overflowed_p
= mips_elf_overflow_p (value
, 16);
5388 case R_MIPS16_GOT16
:
5389 case R_MIPS16_CALL16
:
5392 /* VxWorks does not have separate local and global semantics for
5393 R_MIPS*_GOT16; every relocation evaluates to "G". */
5394 if (!htab
->is_vxworks
&& local_p
)
5398 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
5399 local_sections
, FALSE
);
5400 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
5401 symbol
+ addend
, forced
);
5402 if (value
== MINUS_ONE
)
5403 return bfd_reloc_outofrange
;
5405 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5406 overflowed_p
= mips_elf_overflow_p (value
, 16);
5413 case R_MIPS_TLS_GOTTPREL
:
5414 case R_MIPS_TLS_LDM
:
5415 case R_MIPS_GOT_DISP
:
5418 overflowed_p
= mips_elf_overflow_p (value
, 16);
5421 case R_MIPS_GPREL32
:
5422 value
= (addend
+ symbol
+ gp0
- gp
);
5424 value
&= howto
->dst_mask
;
5428 case R_MIPS_GNU_REL16_S2
:
5429 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
5430 overflowed_p
= mips_elf_overflow_p (value
, 18);
5431 value
>>= howto
->rightshift
;
5432 value
&= howto
->dst_mask
;
5435 case R_MIPS_GOT_HI16
:
5436 case R_MIPS_CALL_HI16
:
5437 /* We're allowed to handle these two relocations identically.
5438 The dynamic linker is allowed to handle the CALL relocations
5439 differently by creating a lazy evaluation stub. */
5441 value
= mips_elf_high (value
);
5442 value
&= howto
->dst_mask
;
5445 case R_MIPS_GOT_LO16
:
5446 case R_MIPS_CALL_LO16
:
5447 value
= g
& howto
->dst_mask
;
5450 case R_MIPS_GOT_PAGE
:
5451 /* GOT_PAGE relocations that reference non-local symbols decay
5452 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5456 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
5457 if (value
== MINUS_ONE
)
5458 return bfd_reloc_outofrange
;
5459 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5460 overflowed_p
= mips_elf_overflow_p (value
, 16);
5463 case R_MIPS_GOT_OFST
:
5465 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
5468 overflowed_p
= mips_elf_overflow_p (value
, 16);
5472 value
= symbol
- addend
;
5473 value
&= howto
->dst_mask
;
5477 value
= mips_elf_higher (addend
+ symbol
);
5478 value
&= howto
->dst_mask
;
5481 case R_MIPS_HIGHEST
:
5482 value
= mips_elf_highest (addend
+ symbol
);
5483 value
&= howto
->dst_mask
;
5486 case R_MIPS_SCN_DISP
:
5487 value
= symbol
+ addend
- sec
->output_offset
;
5488 value
&= howto
->dst_mask
;
5492 /* This relocation is only a hint. In some cases, we optimize
5493 it into a bal instruction. But we don't try to optimize
5494 when the symbol does not resolve locally. */
5495 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
5496 return bfd_reloc_continue
;
5497 value
= symbol
+ addend
;
5501 case R_MIPS_GNU_VTINHERIT
:
5502 case R_MIPS_GNU_VTENTRY
:
5503 /* We don't do anything with these at present. */
5504 return bfd_reloc_continue
;
5507 /* An unrecognized relocation type. */
5508 return bfd_reloc_notsupported
;
5511 /* Store the VALUE for our caller. */
5513 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
5516 /* Obtain the field relocated by RELOCATION. */
5519 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5520 const Elf_Internal_Rela
*relocation
,
5521 bfd
*input_bfd
, bfd_byte
*contents
)
5524 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5526 /* Obtain the bytes. */
5527 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
5532 /* It has been determined that the result of the RELOCATION is the
5533 VALUE. Use HOWTO to place VALUE into the output file at the
5534 appropriate position. The SECTION is the section to which the
5535 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5536 for the relocation must be either JAL or JALX, and it is
5537 unconditionally converted to JALX.
5539 Returns FALSE if anything goes wrong. */
5542 mips_elf_perform_relocation (struct bfd_link_info
*info
,
5543 reloc_howto_type
*howto
,
5544 const Elf_Internal_Rela
*relocation
,
5545 bfd_vma value
, bfd
*input_bfd
,
5546 asection
*input_section
, bfd_byte
*contents
,
5547 bfd_boolean require_jalx
)
5551 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5553 /* Figure out where the relocation is occurring. */
5554 location
= contents
+ relocation
->r_offset
;
5556 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5558 /* Obtain the current value. */
5559 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5561 /* Clear the field we are setting. */
5562 x
&= ~howto
->dst_mask
;
5564 /* Set the field. */
5565 x
|= (value
& howto
->dst_mask
);
5567 /* If required, turn JAL into JALX. */
5571 bfd_vma opcode
= x
>> 26;
5572 bfd_vma jalx_opcode
;
5574 /* Check to see if the opcode is already JAL or JALX. */
5575 if (r_type
== R_MIPS16_26
)
5577 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
5582 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
5586 /* If the opcode is not JAL or JALX, there's a problem. */
5589 (*_bfd_error_handler
)
5590 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5593 (unsigned long) relocation
->r_offset
);
5594 bfd_set_error (bfd_error_bad_value
);
5598 /* Make this the JALX opcode. */
5599 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
5602 /* Try converting JAL and JALR to BAL, if the target is in range. */
5603 if (!info
->relocatable
5605 && ((JAL_TO_BAL_P (input_bfd
)
5606 && r_type
== R_MIPS_26
5607 && (x
>> 26) == 0x3) /* jal addr */
5608 || (JALR_TO_BAL_P (input_bfd
)
5609 && r_type
== R_MIPS_JALR
5610 && x
== 0x0320f809))) /* jalr t9 */
5616 addr
= (input_section
->output_section
->vma
5617 + input_section
->output_offset
5618 + relocation
->r_offset
5620 if (r_type
== R_MIPS_26
)
5621 dest
= (value
<< 2) | ((addr
>> 28) << 28);
5625 if (off
<= 0x1ffff && off
>= -0x20000)
5626 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
5629 /* Put the value into the output. */
5630 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
5632 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
5638 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5639 is the original relocation, which is now being transformed into a
5640 dynamic relocation. The ADDENDP is adjusted if necessary; the
5641 caller should store the result in place of the original addend. */
5644 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
5645 struct bfd_link_info
*info
,
5646 const Elf_Internal_Rela
*rel
,
5647 struct mips_elf_link_hash_entry
*h
,
5648 asection
*sec
, bfd_vma symbol
,
5649 bfd_vma
*addendp
, asection
*input_section
)
5651 Elf_Internal_Rela outrel
[3];
5656 bfd_boolean defined_p
;
5657 struct mips_elf_link_hash_table
*htab
;
5659 htab
= mips_elf_hash_table (info
);
5660 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5661 dynobj
= elf_hash_table (info
)->dynobj
;
5662 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
5663 BFD_ASSERT (sreloc
!= NULL
);
5664 BFD_ASSERT (sreloc
->contents
!= NULL
);
5665 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
5668 outrel
[0].r_offset
=
5669 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
5670 if (ABI_64_P (output_bfd
))
5672 outrel
[1].r_offset
=
5673 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
5674 outrel
[2].r_offset
=
5675 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
5678 if (outrel
[0].r_offset
== MINUS_ONE
)
5679 /* The relocation field has been deleted. */
5682 if (outrel
[0].r_offset
== MINUS_TWO
)
5684 /* The relocation field has been converted into a relative value of
5685 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5686 the field to be fully relocated, so add in the symbol's value. */
5691 /* We must now calculate the dynamic symbol table index to use
5692 in the relocation. */
5694 && (!h
->root
.def_regular
5695 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
5697 indx
= h
->root
.dynindx
;
5698 if (SGI_COMPAT (output_bfd
))
5699 defined_p
= h
->root
.def_regular
;
5701 /* ??? glibc's ld.so just adds the final GOT entry to the
5702 relocation field. It therefore treats relocs against
5703 defined symbols in the same way as relocs against
5704 undefined symbols. */
5709 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5711 else if (sec
== NULL
|| sec
->owner
== NULL
)
5713 bfd_set_error (bfd_error_bad_value
);
5718 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5721 asection
*osec
= htab
->root
.text_index_section
;
5722 indx
= elf_section_data (osec
)->dynindx
;
5728 /* Instead of generating a relocation using the section
5729 symbol, we may as well make it a fully relative
5730 relocation. We want to avoid generating relocations to
5731 local symbols because we used to generate them
5732 incorrectly, without adding the original symbol value,
5733 which is mandated by the ABI for section symbols. In
5734 order to give dynamic loaders and applications time to
5735 phase out the incorrect use, we refrain from emitting
5736 section-relative relocations. It's not like they're
5737 useful, after all. This should be a bit more efficient
5739 /* ??? Although this behavior is compatible with glibc's ld.so,
5740 the ABI says that relocations against STN_UNDEF should have
5741 a symbol value of 0. Irix rld honors this, so relocations
5742 against STN_UNDEF have no effect. */
5743 if (!SGI_COMPAT (output_bfd
))
5748 /* If the relocation was previously an absolute relocation and
5749 this symbol will not be referred to by the relocation, we must
5750 adjust it by the value we give it in the dynamic symbol table.
5751 Otherwise leave the job up to the dynamic linker. */
5752 if (defined_p
&& r_type
!= R_MIPS_REL32
)
5755 if (htab
->is_vxworks
)
5756 /* VxWorks uses non-relative relocations for this. */
5757 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
5759 /* The relocation is always an REL32 relocation because we don't
5760 know where the shared library will wind up at load-time. */
5761 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
5764 /* For strict adherence to the ABI specification, we should
5765 generate a R_MIPS_64 relocation record by itself before the
5766 _REL32/_64 record as well, such that the addend is read in as
5767 a 64-bit value (REL32 is a 32-bit relocation, after all).
5768 However, since none of the existing ELF64 MIPS dynamic
5769 loaders seems to care, we don't waste space with these
5770 artificial relocations. If this turns out to not be true,
5771 mips_elf_allocate_dynamic_relocation() should be tweaked so
5772 as to make room for a pair of dynamic relocations per
5773 invocation if ABI_64_P, and here we should generate an
5774 additional relocation record with R_MIPS_64 by itself for a
5775 NULL symbol before this relocation record. */
5776 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
5777 ABI_64_P (output_bfd
)
5780 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
5782 /* Adjust the output offset of the relocation to reference the
5783 correct location in the output file. */
5784 outrel
[0].r_offset
+= (input_section
->output_section
->vma
5785 + input_section
->output_offset
);
5786 outrel
[1].r_offset
+= (input_section
->output_section
->vma
5787 + input_section
->output_offset
);
5788 outrel
[2].r_offset
+= (input_section
->output_section
->vma
5789 + input_section
->output_offset
);
5791 /* Put the relocation back out. We have to use the special
5792 relocation outputter in the 64-bit case since the 64-bit
5793 relocation format is non-standard. */
5794 if (ABI_64_P (output_bfd
))
5796 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5797 (output_bfd
, &outrel
[0],
5799 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5801 else if (htab
->is_vxworks
)
5803 /* VxWorks uses RELA rather than REL dynamic relocations. */
5804 outrel
[0].r_addend
= *addendp
;
5805 bfd_elf32_swap_reloca_out
5806 (output_bfd
, &outrel
[0],
5808 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
5811 bfd_elf32_swap_reloc_out
5812 (output_bfd
, &outrel
[0],
5813 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
5815 /* We've now added another relocation. */
5816 ++sreloc
->reloc_count
;
5818 /* Make sure the output section is writable. The dynamic linker
5819 will be writing to it. */
5820 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5823 /* On IRIX5, make an entry of compact relocation info. */
5824 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
5826 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5831 Elf32_crinfo cptrel
;
5833 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5834 cptrel
.vaddr
= (rel
->r_offset
5835 + input_section
->output_section
->vma
5836 + input_section
->output_offset
);
5837 if (r_type
== R_MIPS_REL32
)
5838 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5840 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5841 mips_elf_set_cr_dist2to (cptrel
, 0);
5842 cptrel
.konst
= *addendp
;
5844 cr
= (scpt
->contents
5845 + sizeof (Elf32_External_compact_rel
));
5846 mips_elf_set_cr_relvaddr (cptrel
, 0);
5847 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5848 ((Elf32_External_crinfo
*) cr
5849 + scpt
->reloc_count
));
5850 ++scpt
->reloc_count
;
5854 /* If we've written this relocation for a readonly section,
5855 we need to set DF_TEXTREL again, so that we do not delete the
5857 if (MIPS_ELF_READONLY_SECTION (input_section
))
5858 info
->flags
|= DF_TEXTREL
;
5863 /* Return the MACH for a MIPS e_flags value. */
5866 _bfd_elf_mips_mach (flagword flags
)
5868 switch (flags
& EF_MIPS_MACH
)
5870 case E_MIPS_MACH_3900
:
5871 return bfd_mach_mips3900
;
5873 case E_MIPS_MACH_4010
:
5874 return bfd_mach_mips4010
;
5876 case E_MIPS_MACH_4100
:
5877 return bfd_mach_mips4100
;
5879 case E_MIPS_MACH_4111
:
5880 return bfd_mach_mips4111
;
5882 case E_MIPS_MACH_4120
:
5883 return bfd_mach_mips4120
;
5885 case E_MIPS_MACH_4650
:
5886 return bfd_mach_mips4650
;
5888 case E_MIPS_MACH_5400
:
5889 return bfd_mach_mips5400
;
5891 case E_MIPS_MACH_5500
:
5892 return bfd_mach_mips5500
;
5894 case E_MIPS_MACH_9000
:
5895 return bfd_mach_mips9000
;
5897 case E_MIPS_MACH_SB1
:
5898 return bfd_mach_mips_sb1
;
5900 case E_MIPS_MACH_LS2E
:
5901 return bfd_mach_mips_loongson_2e
;
5903 case E_MIPS_MACH_LS2F
:
5904 return bfd_mach_mips_loongson_2f
;
5906 case E_MIPS_MACH_OCTEON
:
5907 return bfd_mach_mips_octeon
;
5909 case E_MIPS_MACH_XLR
:
5910 return bfd_mach_mips_xlr
;
5913 switch (flags
& EF_MIPS_ARCH
)
5917 return bfd_mach_mips3000
;
5920 return bfd_mach_mips6000
;
5923 return bfd_mach_mips4000
;
5926 return bfd_mach_mips8000
;
5929 return bfd_mach_mips5
;
5931 case E_MIPS_ARCH_32
:
5932 return bfd_mach_mipsisa32
;
5934 case E_MIPS_ARCH_64
:
5935 return bfd_mach_mipsisa64
;
5937 case E_MIPS_ARCH_32R2
:
5938 return bfd_mach_mipsisa32r2
;
5940 case E_MIPS_ARCH_64R2
:
5941 return bfd_mach_mipsisa64r2
;
5948 /* Return printable name for ABI. */
5950 static INLINE
char *
5951 elf_mips_abi_name (bfd
*abfd
)
5955 flags
= elf_elfheader (abfd
)->e_flags
;
5956 switch (flags
& EF_MIPS_ABI
)
5959 if (ABI_N32_P (abfd
))
5961 else if (ABI_64_P (abfd
))
5965 case E_MIPS_ABI_O32
:
5967 case E_MIPS_ABI_O64
:
5969 case E_MIPS_ABI_EABI32
:
5971 case E_MIPS_ABI_EABI64
:
5974 return "unknown abi";
5978 /* MIPS ELF uses two common sections. One is the usual one, and the
5979 other is for small objects. All the small objects are kept
5980 together, and then referenced via the gp pointer, which yields
5981 faster assembler code. This is what we use for the small common
5982 section. This approach is copied from ecoff.c. */
5983 static asection mips_elf_scom_section
;
5984 static asymbol mips_elf_scom_symbol
;
5985 static asymbol
*mips_elf_scom_symbol_ptr
;
5987 /* MIPS ELF also uses an acommon section, which represents an
5988 allocated common symbol which may be overridden by a
5989 definition in a shared library. */
5990 static asection mips_elf_acom_section
;
5991 static asymbol mips_elf_acom_symbol
;
5992 static asymbol
*mips_elf_acom_symbol_ptr
;
5994 /* This is used for both the 32-bit and the 64-bit ABI. */
5997 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5999 elf_symbol_type
*elfsym
;
6001 /* Handle the special MIPS section numbers that a symbol may use. */
6002 elfsym
= (elf_symbol_type
*) asym
;
6003 switch (elfsym
->internal_elf_sym
.st_shndx
)
6005 case SHN_MIPS_ACOMMON
:
6006 /* This section is used in a dynamically linked executable file.
6007 It is an allocated common section. The dynamic linker can
6008 either resolve these symbols to something in a shared
6009 library, or it can just leave them here. For our purposes,
6010 we can consider these symbols to be in a new section. */
6011 if (mips_elf_acom_section
.name
== NULL
)
6013 /* Initialize the acommon section. */
6014 mips_elf_acom_section
.name
= ".acommon";
6015 mips_elf_acom_section
.flags
= SEC_ALLOC
;
6016 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
6017 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
6018 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
6019 mips_elf_acom_symbol
.name
= ".acommon";
6020 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
6021 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
6022 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
6024 asym
->section
= &mips_elf_acom_section
;
6028 /* Common symbols less than the GP size are automatically
6029 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6030 if (asym
->value
> elf_gp_size (abfd
)
6031 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
6032 || IRIX_COMPAT (abfd
) == ict_irix6
)
6035 case SHN_MIPS_SCOMMON
:
6036 if (mips_elf_scom_section
.name
== NULL
)
6038 /* Initialize the small common section. */
6039 mips_elf_scom_section
.name
= ".scommon";
6040 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
6041 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
6042 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
6043 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
6044 mips_elf_scom_symbol
.name
= ".scommon";
6045 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
6046 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
6047 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
6049 asym
->section
= &mips_elf_scom_section
;
6050 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
6053 case SHN_MIPS_SUNDEFINED
:
6054 asym
->section
= bfd_und_section_ptr
;
6059 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
6061 BFD_ASSERT (SGI_COMPAT (abfd
));
6062 if (section
!= NULL
)
6064 asym
->section
= section
;
6065 /* MIPS_TEXT is a bit special, the address is not an offset
6066 to the base of the .text section. So substract the section
6067 base address to make it an offset. */
6068 asym
->value
-= section
->vma
;
6075 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
6077 BFD_ASSERT (SGI_COMPAT (abfd
));
6078 if (section
!= NULL
)
6080 asym
->section
= section
;
6081 /* MIPS_DATA is a bit special, the address is not an offset
6082 to the base of the .data section. So substract the section
6083 base address to make it an offset. */
6084 asym
->value
-= section
->vma
;
6090 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6091 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
6092 && (asym
->value
& 1) != 0)
6095 elfsym
->internal_elf_sym
.st_other
6096 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
6100 /* Implement elf_backend_eh_frame_address_size. This differs from
6101 the default in the way it handles EABI64.
6103 EABI64 was originally specified as an LP64 ABI, and that is what
6104 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6105 historically accepted the combination of -mabi=eabi and -mlong32,
6106 and this ILP32 variation has become semi-official over time.
6107 Both forms use elf32 and have pointer-sized FDE addresses.
6109 If an EABI object was generated by GCC 4.0 or above, it will have
6110 an empty .gcc_compiled_longXX section, where XX is the size of longs
6111 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6112 have no special marking to distinguish them from LP64 objects.
6114 We don't want users of the official LP64 ABI to be punished for the
6115 existence of the ILP32 variant, but at the same time, we don't want
6116 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6117 We therefore take the following approach:
6119 - If ABFD contains a .gcc_compiled_longXX section, use it to
6120 determine the pointer size.
6122 - Otherwise check the type of the first relocation. Assume that
6123 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6127 The second check is enough to detect LP64 objects generated by pre-4.0
6128 compilers because, in the kind of output generated by those compilers,
6129 the first relocation will be associated with either a CIE personality
6130 routine or an FDE start address. Furthermore, the compilers never
6131 used a special (non-pointer) encoding for this ABI.
6133 Checking the relocation type should also be safe because there is no
6134 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6138 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
6140 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
6142 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
6144 bfd_boolean long32_p
, long64_p
;
6146 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
6147 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
6148 if (long32_p
&& long64_p
)
6155 if (sec
->reloc_count
> 0
6156 && elf_section_data (sec
)->relocs
!= NULL
6157 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
6166 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6167 relocations against two unnamed section symbols to resolve to the
6168 same address. For example, if we have code like:
6170 lw $4,%got_disp(.data)($gp)
6171 lw $25,%got_disp(.text)($gp)
6174 then the linker will resolve both relocations to .data and the program
6175 will jump there rather than to .text.
6177 We can work around this problem by giving names to local section symbols.
6178 This is also what the MIPSpro tools do. */
6181 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
6183 return SGI_COMPAT (abfd
);
6186 /* Work over a section just before writing it out. This routine is
6187 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6188 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6192 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
6194 if (hdr
->sh_type
== SHT_MIPS_REGINFO
6195 && hdr
->sh_size
> 0)
6199 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
6200 BFD_ASSERT (hdr
->contents
== NULL
);
6203 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
6206 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6207 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6211 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
6212 && hdr
->bfd_section
!= NULL
6213 && mips_elf_section_data (hdr
->bfd_section
) != NULL
6214 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
6216 bfd_byte
*contents
, *l
, *lend
;
6218 /* We stored the section contents in the tdata field in the
6219 set_section_contents routine. We save the section contents
6220 so that we don't have to read them again.
6221 At this point we know that elf_gp is set, so we can look
6222 through the section contents to see if there is an
6223 ODK_REGINFO structure. */
6225 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
6227 lend
= contents
+ hdr
->sh_size
;
6228 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6230 Elf_Internal_Options intopt
;
6232 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6234 if (intopt
.size
< sizeof (Elf_External_Options
))
6236 (*_bfd_error_handler
)
6237 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6238 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6241 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6248 + sizeof (Elf_External_Options
)
6249 + (sizeof (Elf64_External_RegInfo
) - 8)),
6252 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
6253 if (bfd_bwrite (buf
, 8, abfd
) != 8)
6256 else if (intopt
.kind
== ODK_REGINFO
)
6263 + sizeof (Elf_External_Options
)
6264 + (sizeof (Elf32_External_RegInfo
) - 4)),
6267 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6268 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6275 if (hdr
->bfd_section
!= NULL
)
6277 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
6279 /* .sbss is not handled specially here because the GNU/Linux
6280 prelinker can convert .sbss from NOBITS to PROGBITS and
6281 changing it back to NOBITS breaks the binary. The entry in
6282 _bfd_mips_elf_special_sections will ensure the correct flags
6283 are set on .sbss if BFD creates it without reading it from an
6284 input file, and without special handling here the flags set
6285 on it in an input file will be followed. */
6286 if (strcmp (name
, ".sdata") == 0
6287 || strcmp (name
, ".lit8") == 0
6288 || strcmp (name
, ".lit4") == 0)
6290 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6291 hdr
->sh_type
= SHT_PROGBITS
;
6293 else if (strcmp (name
, ".srdata") == 0)
6295 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
6296 hdr
->sh_type
= SHT_PROGBITS
;
6298 else if (strcmp (name
, ".compact_rel") == 0)
6301 hdr
->sh_type
= SHT_PROGBITS
;
6303 else if (strcmp (name
, ".rtproc") == 0)
6305 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
6307 unsigned int adjust
;
6309 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
6311 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
6319 /* Handle a MIPS specific section when reading an object file. This
6320 is called when elfcode.h finds a section with an unknown type.
6321 This routine supports both the 32-bit and 64-bit ELF ABI.
6323 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6327 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
6328 Elf_Internal_Shdr
*hdr
,
6334 /* There ought to be a place to keep ELF backend specific flags, but
6335 at the moment there isn't one. We just keep track of the
6336 sections by their name, instead. Fortunately, the ABI gives
6337 suggested names for all the MIPS specific sections, so we will
6338 probably get away with this. */
6339 switch (hdr
->sh_type
)
6341 case SHT_MIPS_LIBLIST
:
6342 if (strcmp (name
, ".liblist") != 0)
6346 if (strcmp (name
, ".msym") != 0)
6349 case SHT_MIPS_CONFLICT
:
6350 if (strcmp (name
, ".conflict") != 0)
6353 case SHT_MIPS_GPTAB
:
6354 if (! CONST_STRNEQ (name
, ".gptab."))
6357 case SHT_MIPS_UCODE
:
6358 if (strcmp (name
, ".ucode") != 0)
6361 case SHT_MIPS_DEBUG
:
6362 if (strcmp (name
, ".mdebug") != 0)
6364 flags
= SEC_DEBUGGING
;
6366 case SHT_MIPS_REGINFO
:
6367 if (strcmp (name
, ".reginfo") != 0
6368 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
6370 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
6372 case SHT_MIPS_IFACE
:
6373 if (strcmp (name
, ".MIPS.interfaces") != 0)
6376 case SHT_MIPS_CONTENT
:
6377 if (! CONST_STRNEQ (name
, ".MIPS.content"))
6380 case SHT_MIPS_OPTIONS
:
6381 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6384 case SHT_MIPS_DWARF
:
6385 if (! CONST_STRNEQ (name
, ".debug_")
6386 && ! CONST_STRNEQ (name
, ".zdebug_"))
6389 case SHT_MIPS_SYMBOL_LIB
:
6390 if (strcmp (name
, ".MIPS.symlib") != 0)
6393 case SHT_MIPS_EVENTS
:
6394 if (! CONST_STRNEQ (name
, ".MIPS.events")
6395 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
6402 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
6407 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
6408 (bfd_get_section_flags (abfd
,
6414 /* FIXME: We should record sh_info for a .gptab section. */
6416 /* For a .reginfo section, set the gp value in the tdata information
6417 from the contents of this section. We need the gp value while
6418 processing relocs, so we just get it now. The .reginfo section
6419 is not used in the 64-bit MIPS ELF ABI. */
6420 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
6422 Elf32_External_RegInfo ext
;
6425 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
6426 &ext
, 0, sizeof ext
))
6428 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
6429 elf_gp (abfd
) = s
.ri_gp_value
;
6432 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6433 set the gp value based on what we find. We may see both
6434 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6435 they should agree. */
6436 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
6438 bfd_byte
*contents
, *l
, *lend
;
6440 contents
= bfd_malloc (hdr
->sh_size
);
6441 if (contents
== NULL
)
6443 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
6450 lend
= contents
+ hdr
->sh_size
;
6451 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6453 Elf_Internal_Options intopt
;
6455 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6457 if (intopt
.size
< sizeof (Elf_External_Options
))
6459 (*_bfd_error_handler
)
6460 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6461 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6464 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6466 Elf64_Internal_RegInfo intreg
;
6468 bfd_mips_elf64_swap_reginfo_in
6470 ((Elf64_External_RegInfo
*)
6471 (l
+ sizeof (Elf_External_Options
))),
6473 elf_gp (abfd
) = intreg
.ri_gp_value
;
6475 else if (intopt
.kind
== ODK_REGINFO
)
6477 Elf32_RegInfo intreg
;
6479 bfd_mips_elf32_swap_reginfo_in
6481 ((Elf32_External_RegInfo
*)
6482 (l
+ sizeof (Elf_External_Options
))),
6484 elf_gp (abfd
) = intreg
.ri_gp_value
;
6494 /* Set the correct type for a MIPS ELF section. We do this by the
6495 section name, which is a hack, but ought to work. This routine is
6496 used by both the 32-bit and the 64-bit ABI. */
6499 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
6501 const char *name
= bfd_get_section_name (abfd
, sec
);
6503 if (strcmp (name
, ".liblist") == 0)
6505 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
6506 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
6507 /* The sh_link field is set in final_write_processing. */
6509 else if (strcmp (name
, ".conflict") == 0)
6510 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
6511 else if (CONST_STRNEQ (name
, ".gptab."))
6513 hdr
->sh_type
= SHT_MIPS_GPTAB
;
6514 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
6515 /* The sh_info field is set in final_write_processing. */
6517 else if (strcmp (name
, ".ucode") == 0)
6518 hdr
->sh_type
= SHT_MIPS_UCODE
;
6519 else if (strcmp (name
, ".mdebug") == 0)
6521 hdr
->sh_type
= SHT_MIPS_DEBUG
;
6522 /* In a shared object on IRIX 5.3, the .mdebug section has an
6523 entsize of 0. FIXME: Does this matter? */
6524 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
6525 hdr
->sh_entsize
= 0;
6527 hdr
->sh_entsize
= 1;
6529 else if (strcmp (name
, ".reginfo") == 0)
6531 hdr
->sh_type
= SHT_MIPS_REGINFO
;
6532 /* In a shared object on IRIX 5.3, the .reginfo section has an
6533 entsize of 0x18. FIXME: Does this matter? */
6534 if (SGI_COMPAT (abfd
))
6536 if ((abfd
->flags
& DYNAMIC
) != 0)
6537 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6539 hdr
->sh_entsize
= 1;
6542 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6544 else if (SGI_COMPAT (abfd
)
6545 && (strcmp (name
, ".hash") == 0
6546 || strcmp (name
, ".dynamic") == 0
6547 || strcmp (name
, ".dynstr") == 0))
6549 if (SGI_COMPAT (abfd
))
6550 hdr
->sh_entsize
= 0;
6552 /* This isn't how the IRIX6 linker behaves. */
6553 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
6556 else if (strcmp (name
, ".got") == 0
6557 || strcmp (name
, ".srdata") == 0
6558 || strcmp (name
, ".sdata") == 0
6559 || strcmp (name
, ".sbss") == 0
6560 || strcmp (name
, ".lit4") == 0
6561 || strcmp (name
, ".lit8") == 0)
6562 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
6563 else if (strcmp (name
, ".MIPS.interfaces") == 0)
6565 hdr
->sh_type
= SHT_MIPS_IFACE
;
6566 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6568 else if (CONST_STRNEQ (name
, ".MIPS.content"))
6570 hdr
->sh_type
= SHT_MIPS_CONTENT
;
6571 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6572 /* The sh_info field is set in final_write_processing. */
6574 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6576 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
6577 hdr
->sh_entsize
= 1;
6578 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6580 else if (CONST_STRNEQ (name
, ".debug_")
6581 || CONST_STRNEQ (name
, ".zdebug_"))
6583 hdr
->sh_type
= SHT_MIPS_DWARF
;
6585 /* Irix facilities such as libexc expect a single .debug_frame
6586 per executable, the system ones have NOSTRIP set and the linker
6587 doesn't merge sections with different flags so ... */
6588 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
6589 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6591 else if (strcmp (name
, ".MIPS.symlib") == 0)
6593 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
6594 /* The sh_link and sh_info fields are set in
6595 final_write_processing. */
6597 else if (CONST_STRNEQ (name
, ".MIPS.events")
6598 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
6600 hdr
->sh_type
= SHT_MIPS_EVENTS
;
6601 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6602 /* The sh_link field is set in final_write_processing. */
6604 else if (strcmp (name
, ".msym") == 0)
6606 hdr
->sh_type
= SHT_MIPS_MSYM
;
6607 hdr
->sh_flags
|= SHF_ALLOC
;
6608 hdr
->sh_entsize
= 8;
6611 /* The generic elf_fake_sections will set up REL_HDR using the default
6612 kind of relocations. We used to set up a second header for the
6613 non-default kind of relocations here, but only NewABI would use
6614 these, and the IRIX ld doesn't like resulting empty RELA sections.
6615 Thus we create those header only on demand now. */
6620 /* Given a BFD section, try to locate the corresponding ELF section
6621 index. This is used by both the 32-bit and the 64-bit ABI.
6622 Actually, it's not clear to me that the 64-bit ABI supports these,
6623 but for non-PIC objects we will certainly want support for at least
6624 the .scommon section. */
6627 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
6628 asection
*sec
, int *retval
)
6630 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
6632 *retval
= SHN_MIPS_SCOMMON
;
6635 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
6637 *retval
= SHN_MIPS_ACOMMON
;
6643 /* Hook called by the linker routine which adds symbols from an object
6644 file. We must handle the special MIPS section numbers here. */
6647 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
6648 Elf_Internal_Sym
*sym
, const char **namep
,
6649 flagword
*flagsp ATTRIBUTE_UNUSED
,
6650 asection
**secp
, bfd_vma
*valp
)
6652 if (SGI_COMPAT (abfd
)
6653 && (abfd
->flags
& DYNAMIC
) != 0
6654 && strcmp (*namep
, "_rld_new_interface") == 0)
6656 /* Skip IRIX5 rld entry name. */
6661 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6662 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6663 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6664 a magic symbol resolved by the linker, we ignore this bogus definition
6665 of _gp_disp. New ABI objects do not suffer from this problem so this
6666 is not done for them. */
6668 && (sym
->st_shndx
== SHN_ABS
)
6669 && (strcmp (*namep
, "_gp_disp") == 0))
6675 switch (sym
->st_shndx
)
6678 /* Common symbols less than the GP size are automatically
6679 treated as SHN_MIPS_SCOMMON symbols. */
6680 if (sym
->st_size
> elf_gp_size (abfd
)
6681 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
6682 || IRIX_COMPAT (abfd
) == ict_irix6
)
6685 case SHN_MIPS_SCOMMON
:
6686 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
6687 (*secp
)->flags
|= SEC_IS_COMMON
;
6688 *valp
= sym
->st_size
;
6692 /* This section is used in a shared object. */
6693 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
6695 asymbol
*elf_text_symbol
;
6696 asection
*elf_text_section
;
6697 bfd_size_type amt
= sizeof (asection
);
6699 elf_text_section
= bfd_zalloc (abfd
, amt
);
6700 if (elf_text_section
== NULL
)
6703 amt
= sizeof (asymbol
);
6704 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
6705 if (elf_text_symbol
== NULL
)
6708 /* Initialize the section. */
6710 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
6711 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
6713 elf_text_section
->symbol
= elf_text_symbol
;
6714 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
6716 elf_text_section
->name
= ".text";
6717 elf_text_section
->flags
= SEC_NO_FLAGS
;
6718 elf_text_section
->output_section
= NULL
;
6719 elf_text_section
->owner
= abfd
;
6720 elf_text_symbol
->name
= ".text";
6721 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6722 elf_text_symbol
->section
= elf_text_section
;
6724 /* This code used to do *secp = bfd_und_section_ptr if
6725 info->shared. I don't know why, and that doesn't make sense,
6726 so I took it out. */
6727 *secp
= elf_tdata (abfd
)->elf_text_section
;
6730 case SHN_MIPS_ACOMMON
:
6731 /* Fall through. XXX Can we treat this as allocated data? */
6733 /* This section is used in a shared object. */
6734 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
6736 asymbol
*elf_data_symbol
;
6737 asection
*elf_data_section
;
6738 bfd_size_type amt
= sizeof (asection
);
6740 elf_data_section
= bfd_zalloc (abfd
, amt
);
6741 if (elf_data_section
== NULL
)
6744 amt
= sizeof (asymbol
);
6745 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
6746 if (elf_data_symbol
== NULL
)
6749 /* Initialize the section. */
6751 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
6752 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
6754 elf_data_section
->symbol
= elf_data_symbol
;
6755 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
6757 elf_data_section
->name
= ".data";
6758 elf_data_section
->flags
= SEC_NO_FLAGS
;
6759 elf_data_section
->output_section
= NULL
;
6760 elf_data_section
->owner
= abfd
;
6761 elf_data_symbol
->name
= ".data";
6762 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6763 elf_data_symbol
->section
= elf_data_section
;
6765 /* This code used to do *secp = bfd_und_section_ptr if
6766 info->shared. I don't know why, and that doesn't make sense,
6767 so I took it out. */
6768 *secp
= elf_tdata (abfd
)->elf_data_section
;
6771 case SHN_MIPS_SUNDEFINED
:
6772 *secp
= bfd_und_section_ptr
;
6776 if (SGI_COMPAT (abfd
)
6778 && info
->output_bfd
->xvec
== abfd
->xvec
6779 && strcmp (*namep
, "__rld_obj_head") == 0)
6781 struct elf_link_hash_entry
*h
;
6782 struct bfd_link_hash_entry
*bh
;
6784 /* Mark __rld_obj_head as dynamic. */
6786 if (! (_bfd_generic_link_add_one_symbol
6787 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
6788 get_elf_backend_data (abfd
)->collect
, &bh
)))
6791 h
= (struct elf_link_hash_entry
*) bh
;
6794 h
->type
= STT_OBJECT
;
6796 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6799 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
6802 /* If this is a mips16 text symbol, add 1 to the value to make it
6803 odd. This will cause something like .word SYM to come up with
6804 the right value when it is loaded into the PC. */
6805 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6811 /* This hook function is called before the linker writes out a global
6812 symbol. We mark symbols as small common if appropriate. This is
6813 also where we undo the increment of the value for a mips16 symbol. */
6816 _bfd_mips_elf_link_output_symbol_hook
6817 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
6818 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
6819 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
6821 /* If we see a common symbol, which implies a relocatable link, then
6822 if a symbol was small common in an input file, mark it as small
6823 common in the output file. */
6824 if (sym
->st_shndx
== SHN_COMMON
6825 && strcmp (input_sec
->name
, ".scommon") == 0)
6826 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
6828 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6829 sym
->st_value
&= ~1;
6834 /* Functions for the dynamic linker. */
6836 /* Create dynamic sections when linking against a dynamic object. */
6839 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6841 struct elf_link_hash_entry
*h
;
6842 struct bfd_link_hash_entry
*bh
;
6844 register asection
*s
;
6845 const char * const *namep
;
6846 struct mips_elf_link_hash_table
*htab
;
6848 htab
= mips_elf_hash_table (info
);
6849 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6850 | SEC_LINKER_CREATED
| SEC_READONLY
);
6852 /* The psABI requires a read-only .dynamic section, but the VxWorks
6854 if (!htab
->is_vxworks
)
6856 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6859 if (! bfd_set_section_flags (abfd
, s
, flags
))
6864 /* We need to create .got section. */
6865 if (!mips_elf_create_got_section (abfd
, info
))
6868 if (! mips_elf_rel_dyn_section (info
, TRUE
))
6871 /* Create .stub section. */
6872 s
= bfd_make_section_with_flags (abfd
,
6873 MIPS_ELF_STUB_SECTION_NAME (abfd
),
6876 || ! bfd_set_section_alignment (abfd
, s
,
6877 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6881 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
6883 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
6885 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
6886 flags
&~ (flagword
) SEC_READONLY
);
6888 || ! bfd_set_section_alignment (abfd
, s
,
6889 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6893 /* On IRIX5, we adjust add some additional symbols and change the
6894 alignments of several sections. There is no ABI documentation
6895 indicating that this is necessary on IRIX6, nor any evidence that
6896 the linker takes such action. */
6897 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6899 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
6902 if (! (_bfd_generic_link_add_one_symbol
6903 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
6904 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6907 h
= (struct elf_link_hash_entry
*) bh
;
6910 h
->type
= STT_SECTION
;
6912 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6916 /* We need to create a .compact_rel section. */
6917 if (SGI_COMPAT (abfd
))
6919 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6923 /* Change alignments of some sections. */
6924 s
= bfd_get_section_by_name (abfd
, ".hash");
6926 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6927 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6929 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6930 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6932 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6933 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6935 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6936 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6938 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6945 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6947 if (!(_bfd_generic_link_add_one_symbol
6948 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6949 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6952 h
= (struct elf_link_hash_entry
*) bh
;
6955 h
->type
= STT_SECTION
;
6957 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6960 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6962 /* __rld_map is a four byte word located in the .data section
6963 and is filled in by the rtld to contain a pointer to
6964 the _r_debug structure. Its symbol value will be set in
6965 _bfd_mips_elf_finish_dynamic_symbol. */
6966 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6967 BFD_ASSERT (s
!= NULL
);
6969 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6971 if (!(_bfd_generic_link_add_one_symbol
6972 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6973 get_elf_backend_data (abfd
)->collect
, &bh
)))
6976 h
= (struct elf_link_hash_entry
*) bh
;
6979 h
->type
= STT_OBJECT
;
6981 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6986 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6987 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6988 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6991 /* Cache the sections created above. */
6992 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6993 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6994 if (htab
->is_vxworks
)
6996 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6997 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
7000 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
7002 || (htab
->is_vxworks
&& !htab
->srelbss
&& !info
->shared
)
7007 if (htab
->is_vxworks
)
7009 /* Do the usual VxWorks handling. */
7010 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
7013 /* Work out the PLT sizes. */
7016 htab
->plt_header_size
7017 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
7018 htab
->plt_entry_size
7019 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
7023 htab
->plt_header_size
7024 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
7025 htab
->plt_entry_size
7026 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
7029 else if (!info
->shared
)
7031 /* All variants of the plt0 entry are the same size. */
7032 htab
->plt_header_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
7033 htab
->plt_entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
7039 /* Return true if relocation REL against section SEC is a REL rather than
7040 RELA relocation. RELOCS is the first relocation in the section and
7041 ABFD is the bfd that contains SEC. */
7044 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
7045 const Elf_Internal_Rela
*relocs
,
7046 const Elf_Internal_Rela
*rel
)
7048 Elf_Internal_Shdr
*rel_hdr
;
7049 const struct elf_backend_data
*bed
;
7051 /* To determine which flavor or relocation this is, we depend on the
7052 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7053 rel_hdr
= &elf_section_data (sec
)->rel_hdr
;
7054 bed
= get_elf_backend_data (abfd
);
7055 if ((size_t) (rel
- relocs
)
7056 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7057 rel_hdr
= elf_section_data (sec
)->rel_hdr2
;
7058 return rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (abfd
);
7061 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7062 HOWTO is the relocation's howto and CONTENTS points to the contents
7063 of the section that REL is against. */
7066 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
7067 reloc_howto_type
*howto
, bfd_byte
*contents
)
7070 unsigned int r_type
;
7073 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7074 location
= contents
+ rel
->r_offset
;
7076 /* Get the addend, which is stored in the input file. */
7077 _bfd_mips16_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
7078 addend
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
7079 _bfd_mips16_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
7081 return addend
& howto
->src_mask
;
7084 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7085 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7086 and update *ADDEND with the final addend. Return true on success
7087 or false if the LO16 could not be found. RELEND is the exclusive
7088 upper bound on the relocations for REL's section. */
7091 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
7092 const Elf_Internal_Rela
*rel
,
7093 const Elf_Internal_Rela
*relend
,
7094 bfd_byte
*contents
, bfd_vma
*addend
)
7096 unsigned int r_type
, lo16_type
;
7097 const Elf_Internal_Rela
*lo16_relocation
;
7098 reloc_howto_type
*lo16_howto
;
7101 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7102 if (mips16_reloc_p (r_type
))
7103 lo16_type
= R_MIPS16_LO16
;
7105 lo16_type
= R_MIPS_LO16
;
7107 /* The combined value is the sum of the HI16 addend, left-shifted by
7108 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7109 code does a `lui' of the HI16 value, and then an `addiu' of the
7112 Scan ahead to find a matching LO16 relocation.
7114 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7115 be immediately following. However, for the IRIX6 ABI, the next
7116 relocation may be a composed relocation consisting of several
7117 relocations for the same address. In that case, the R_MIPS_LO16
7118 relocation may occur as one of these. We permit a similar
7119 extension in general, as that is useful for GCC.
7121 In some cases GCC dead code elimination removes the LO16 but keeps
7122 the corresponding HI16. This is strictly speaking a violation of
7123 the ABI but not immediately harmful. */
7124 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
7125 if (lo16_relocation
== NULL
)
7128 /* Obtain the addend kept there. */
7129 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
7130 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
7132 l
<<= lo16_howto
->rightshift
;
7133 l
= _bfd_mips_elf_sign_extend (l
, 16);
7140 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7141 store the contents in *CONTENTS on success. Assume that *CONTENTS
7142 already holds the contents if it is nonull on entry. */
7145 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
7150 /* Get cached copy if it exists. */
7151 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7153 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
7157 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
7160 /* Look through the relocs for a section during the first phase, and
7161 allocate space in the global offset table. */
7164 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7165 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7169 Elf_Internal_Shdr
*symtab_hdr
;
7170 struct elf_link_hash_entry
**sym_hashes
;
7172 const Elf_Internal_Rela
*rel
;
7173 const Elf_Internal_Rela
*rel_end
;
7175 const struct elf_backend_data
*bed
;
7176 struct mips_elf_link_hash_table
*htab
;
7179 reloc_howto_type
*howto
;
7181 if (info
->relocatable
)
7184 htab
= mips_elf_hash_table (info
);
7185 dynobj
= elf_hash_table (info
)->dynobj
;
7186 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7187 sym_hashes
= elf_sym_hashes (abfd
);
7188 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7190 bed
= get_elf_backend_data (abfd
);
7191 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7193 /* Check for the mips16 stub sections. */
7195 name
= bfd_get_section_name (abfd
, sec
);
7196 if (FN_STUB_P (name
))
7198 unsigned long r_symndx
;
7200 /* Look at the relocation information to figure out which symbol
7203 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7206 (*_bfd_error_handler
)
7207 (_("%B: Warning: cannot determine the target function for"
7208 " stub section `%s'"),
7210 bfd_set_error (bfd_error_bad_value
);
7214 if (r_symndx
< extsymoff
7215 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7219 /* This stub is for a local symbol. This stub will only be
7220 needed if there is some relocation in this BFD, other
7221 than a 16 bit function call, which refers to this symbol. */
7222 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7224 Elf_Internal_Rela
*sec_relocs
;
7225 const Elf_Internal_Rela
*r
, *rend
;
7227 /* We can ignore stub sections when looking for relocs. */
7228 if ((o
->flags
& SEC_RELOC
) == 0
7229 || o
->reloc_count
== 0
7230 || section_allows_mips16_refs_p (o
))
7234 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7236 if (sec_relocs
== NULL
)
7239 rend
= sec_relocs
+ o
->reloc_count
;
7240 for (r
= sec_relocs
; r
< rend
; r
++)
7241 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7242 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
7245 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7254 /* There is no non-call reloc for this stub, so we do
7255 not need it. Since this function is called before
7256 the linker maps input sections to output sections, we
7257 can easily discard it by setting the SEC_EXCLUDE
7259 sec
->flags
|= SEC_EXCLUDE
;
7263 /* Record this stub in an array of local symbol stubs for
7265 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7267 unsigned long symcount
;
7271 if (elf_bad_symtab (abfd
))
7272 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7274 symcount
= symtab_hdr
->sh_info
;
7275 amt
= symcount
* sizeof (asection
*);
7276 n
= bfd_zalloc (abfd
, amt
);
7279 elf_tdata (abfd
)->local_stubs
= n
;
7282 sec
->flags
|= SEC_KEEP
;
7283 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7285 /* We don't need to set mips16_stubs_seen in this case.
7286 That flag is used to see whether we need to look through
7287 the global symbol table for stubs. We don't need to set
7288 it here, because we just have a local stub. */
7292 struct mips_elf_link_hash_entry
*h
;
7294 h
= ((struct mips_elf_link_hash_entry
*)
7295 sym_hashes
[r_symndx
- extsymoff
]);
7297 while (h
->root
.root
.type
== bfd_link_hash_indirect
7298 || h
->root
.root
.type
== bfd_link_hash_warning
)
7299 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7301 /* H is the symbol this stub is for. */
7303 /* If we already have an appropriate stub for this function, we
7304 don't need another one, so we can discard this one. Since
7305 this function is called before the linker maps input sections
7306 to output sections, we can easily discard it by setting the
7307 SEC_EXCLUDE flag. */
7308 if (h
->fn_stub
!= NULL
)
7310 sec
->flags
|= SEC_EXCLUDE
;
7314 sec
->flags
|= SEC_KEEP
;
7316 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7319 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
7321 unsigned long r_symndx
;
7322 struct mips_elf_link_hash_entry
*h
;
7325 /* Look at the relocation information to figure out which symbol
7328 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7331 (*_bfd_error_handler
)
7332 (_("%B: Warning: cannot determine the target function for"
7333 " stub section `%s'"),
7335 bfd_set_error (bfd_error_bad_value
);
7339 if (r_symndx
< extsymoff
7340 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7344 /* This stub is for a local symbol. This stub will only be
7345 needed if there is some relocation (R_MIPS16_26) in this BFD
7346 that refers to this symbol. */
7347 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7349 Elf_Internal_Rela
*sec_relocs
;
7350 const Elf_Internal_Rela
*r
, *rend
;
7352 /* We can ignore stub sections when looking for relocs. */
7353 if ((o
->flags
& SEC_RELOC
) == 0
7354 || o
->reloc_count
== 0
7355 || section_allows_mips16_refs_p (o
))
7359 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7361 if (sec_relocs
== NULL
)
7364 rend
= sec_relocs
+ o
->reloc_count
;
7365 for (r
= sec_relocs
; r
< rend
; r
++)
7366 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7367 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
7370 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7379 /* There is no non-call reloc for this stub, so we do
7380 not need it. Since this function is called before
7381 the linker maps input sections to output sections, we
7382 can easily discard it by setting the SEC_EXCLUDE
7384 sec
->flags
|= SEC_EXCLUDE
;
7388 /* Record this stub in an array of local symbol call_stubs for
7390 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
7392 unsigned long symcount
;
7396 if (elf_bad_symtab (abfd
))
7397 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7399 symcount
= symtab_hdr
->sh_info
;
7400 amt
= symcount
* sizeof (asection
*);
7401 n
= bfd_zalloc (abfd
, amt
);
7404 elf_tdata (abfd
)->local_call_stubs
= n
;
7407 sec
->flags
|= SEC_KEEP
;
7408 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
7410 /* We don't need to set mips16_stubs_seen in this case.
7411 That flag is used to see whether we need to look through
7412 the global symbol table for stubs. We don't need to set
7413 it here, because we just have a local stub. */
7417 h
= ((struct mips_elf_link_hash_entry
*)
7418 sym_hashes
[r_symndx
- extsymoff
]);
7420 /* H is the symbol this stub is for. */
7422 if (CALL_FP_STUB_P (name
))
7423 loc
= &h
->call_fp_stub
;
7425 loc
= &h
->call_stub
;
7427 /* If we already have an appropriate stub for this function, we
7428 don't need another one, so we can discard this one. Since
7429 this function is called before the linker maps input sections
7430 to output sections, we can easily discard it by setting the
7431 SEC_EXCLUDE flag. */
7434 sec
->flags
|= SEC_EXCLUDE
;
7438 sec
->flags
|= SEC_KEEP
;
7440 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7446 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7448 unsigned long r_symndx
;
7449 unsigned int r_type
;
7450 struct elf_link_hash_entry
*h
;
7451 bfd_boolean can_make_dynamic_p
;
7453 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
7454 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7456 if (r_symndx
< extsymoff
)
7458 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
7460 (*_bfd_error_handler
)
7461 (_("%B: Malformed reloc detected for section %s"),
7463 bfd_set_error (bfd_error_bad_value
);
7468 h
= sym_hashes
[r_symndx
- extsymoff
];
7470 && (h
->root
.type
== bfd_link_hash_indirect
7471 || h
->root
.type
== bfd_link_hash_warning
))
7472 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7475 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7476 relocation into a dynamic one. */
7477 can_make_dynamic_p
= FALSE
;
7480 case R_MIPS16_GOT16
:
7481 case R_MIPS16_CALL16
:
7484 case R_MIPS_CALL_HI16
:
7485 case R_MIPS_CALL_LO16
:
7486 case R_MIPS_GOT_HI16
:
7487 case R_MIPS_GOT_LO16
:
7488 case R_MIPS_GOT_PAGE
:
7489 case R_MIPS_GOT_OFST
:
7490 case R_MIPS_GOT_DISP
:
7491 case R_MIPS_TLS_GOTTPREL
:
7493 case R_MIPS_TLS_LDM
:
7495 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7496 if (!mips_elf_create_got_section (dynobj
, info
))
7498 if (htab
->is_vxworks
&& !info
->shared
)
7500 (*_bfd_error_handler
)
7501 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7502 abfd
, (unsigned long) rel
->r_offset
);
7503 bfd_set_error (bfd_error_bad_value
);
7508 /* This is just a hint; it can safely be ignored. Don't set
7509 has_static_relocs for the corresponding symbol. */
7516 /* In VxWorks executables, references to external symbols
7517 must be handled using copy relocs or PLT entries; it is not
7518 possible to convert this relocation into a dynamic one.
7520 For executables that use PLTs and copy-relocs, we have a
7521 choice between converting the relocation into a dynamic
7522 one or using copy relocations or PLT entries. It is
7523 usually better to do the former, unless the relocation is
7524 against a read-only section. */
7527 && !htab
->is_vxworks
7528 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
7529 && !(!info
->nocopyreloc
7530 && !PIC_OBJECT_P (abfd
)
7531 && MIPS_ELF_READONLY_SECTION (sec
))))
7532 && (sec
->flags
& SEC_ALLOC
) != 0)
7534 can_make_dynamic_p
= TRUE
;
7536 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7542 /* Most static relocations require pointer equality, except
7545 h
->pointer_equality_needed
= TRUE
;
7552 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= TRUE
;
7558 /* Relocations against the special VxWorks __GOTT_BASE__ and
7559 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7560 room for them in .rela.dyn. */
7561 if (is_gott_symbol (info
, h
))
7565 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7569 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7570 if (MIPS_ELF_READONLY_SECTION (sec
))
7571 /* We tell the dynamic linker that there are
7572 relocations against the text segment. */
7573 info
->flags
|= DF_TEXTREL
;
7576 else if (r_type
== R_MIPS_CALL_LO16
7577 || r_type
== R_MIPS_GOT_LO16
7578 || r_type
== R_MIPS_GOT_DISP
7579 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
7581 /* We may need a local GOT entry for this relocation. We
7582 don't count R_MIPS_GOT_PAGE because we can estimate the
7583 maximum number of pages needed by looking at the size of
7584 the segment. Similar comments apply to R_MIPS*_GOT16 and
7585 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7586 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7587 R_MIPS_CALL_HI16 because these are always followed by an
7588 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7589 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7590 rel
->r_addend
, info
, 0))
7594 if (h
!= NULL
&& mips_elf_relocation_needs_la25_stub (abfd
, r_type
))
7595 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
7600 case R_MIPS16_CALL16
:
7603 (*_bfd_error_handler
)
7604 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7605 abfd
, (unsigned long) rel
->r_offset
);
7606 bfd_set_error (bfd_error_bad_value
);
7611 case R_MIPS_CALL_HI16
:
7612 case R_MIPS_CALL_LO16
:
7615 /* VxWorks call relocations point at the function's .got.plt
7616 entry, which will be allocated by adjust_dynamic_symbol.
7617 Otherwise, this symbol requires a global GOT entry. */
7618 if ((!htab
->is_vxworks
|| h
->forced_local
)
7619 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7622 /* We need a stub, not a plt entry for the undefined
7623 function. But we record it as if it needs plt. See
7624 _bfd_elf_adjust_dynamic_symbol. */
7630 case R_MIPS_GOT_PAGE
:
7631 /* If this is a global, overridable symbol, GOT_PAGE will
7632 decay to GOT_DISP, so we'll need a GOT entry for it. */
7635 struct mips_elf_link_hash_entry
*hmips
=
7636 (struct mips_elf_link_hash_entry
*) h
;
7638 /* This symbol is definitely not overridable. */
7639 if (hmips
->root
.def_regular
7640 && ! (info
->shared
&& ! info
->symbolic
7641 && ! hmips
->root
.forced_local
))
7646 case R_MIPS16_GOT16
:
7648 case R_MIPS_GOT_HI16
:
7649 case R_MIPS_GOT_LO16
:
7650 if (!h
|| r_type
== R_MIPS_GOT_PAGE
)
7652 /* This relocation needs (or may need, if h != NULL) a
7653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7654 know for sure until we know whether the symbol is
7656 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
7658 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7660 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7661 addend
= mips_elf_read_rel_addend (abfd
, rel
,
7663 if (r_type
== R_MIPS_GOT16
)
7664 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
7667 addend
<<= howto
->rightshift
;
7670 addend
= rel
->r_addend
;
7671 if (!mips_elf_record_got_page_entry (info
, abfd
, r_symndx
,
7678 case R_MIPS_GOT_DISP
:
7679 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7683 case R_MIPS_TLS_GOTTPREL
:
7685 info
->flags
|= DF_STATIC_TLS
;
7688 case R_MIPS_TLS_LDM
:
7689 if (r_type
== R_MIPS_TLS_LDM
)
7697 /* This symbol requires a global offset table entry, or two
7698 for TLS GD relocations. */
7700 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
7702 : r_type
== R_MIPS_TLS_LDM
7707 struct mips_elf_link_hash_entry
*hmips
=
7708 (struct mips_elf_link_hash_entry
*) h
;
7709 hmips
->tls_type
|= flag
;
7711 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
,
7717 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
7719 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7730 /* In VxWorks executables, references to external symbols
7731 are handled using copy relocs or PLT stubs, so there's
7732 no need to add a .rela.dyn entry for this relocation. */
7733 if (can_make_dynamic_p
)
7737 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7741 if (info
->shared
&& h
== NULL
)
7743 /* When creating a shared object, we must copy these
7744 reloc types into the output file as R_MIPS_REL32
7745 relocs. Make room for this reloc in .rel(a).dyn. */
7746 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7747 if (MIPS_ELF_READONLY_SECTION (sec
))
7748 /* We tell the dynamic linker that there are
7749 relocations against the text segment. */
7750 info
->flags
|= DF_TEXTREL
;
7754 struct mips_elf_link_hash_entry
*hmips
;
7756 /* For a shared object, we must copy this relocation
7757 unless the symbol turns out to be undefined and
7758 weak with non-default visibility, in which case
7759 it will be left as zero.
7761 We could elide R_MIPS_REL32 for locally binding symbols
7762 in shared libraries, but do not yet do so.
7764 For an executable, we only need to copy this
7765 reloc if the symbol is defined in a dynamic
7767 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7768 ++hmips
->possibly_dynamic_relocs
;
7769 if (MIPS_ELF_READONLY_SECTION (sec
))
7770 /* We need it to tell the dynamic linker if there
7771 are relocations against the text segment. */
7772 hmips
->readonly_reloc
= TRUE
;
7776 if (SGI_COMPAT (abfd
))
7777 mips_elf_hash_table (info
)->compact_rel_size
+=
7778 sizeof (Elf32_External_crinfo
);
7782 case R_MIPS_GPREL16
:
7783 case R_MIPS_LITERAL
:
7784 case R_MIPS_GPREL32
:
7785 if (SGI_COMPAT (abfd
))
7786 mips_elf_hash_table (info
)->compact_rel_size
+=
7787 sizeof (Elf32_External_crinfo
);
7790 /* This relocation describes the C++ object vtable hierarchy.
7791 Reconstruct it for later use during GC. */
7792 case R_MIPS_GNU_VTINHERIT
:
7793 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7797 /* This relocation describes which C++ vtable entries are actually
7798 used. Record for later use during GC. */
7799 case R_MIPS_GNU_VTENTRY
:
7800 BFD_ASSERT (h
!= NULL
);
7802 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7810 /* We must not create a stub for a symbol that has relocations
7811 related to taking the function's address. This doesn't apply to
7812 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7813 a normal .got entry. */
7814 if (!htab
->is_vxworks
&& h
!= NULL
)
7818 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
7820 case R_MIPS16_CALL16
:
7822 case R_MIPS_CALL_HI16
:
7823 case R_MIPS_CALL_LO16
:
7828 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7829 if there is one. We only need to handle global symbols here;
7830 we decide whether to keep or delete stubs for local symbols
7831 when processing the stub's relocations. */
7833 && !mips16_call_reloc_p (r_type
)
7834 && !section_allows_mips16_refs_p (sec
))
7836 struct mips_elf_link_hash_entry
*mh
;
7838 mh
= (struct mips_elf_link_hash_entry
*) h
;
7839 mh
->need_fn_stub
= TRUE
;
7842 /* Refuse some position-dependent relocations when creating a
7843 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7844 not PIC, but we can create dynamic relocations and the result
7845 will be fine. Also do not refuse R_MIPS_LO16, which can be
7846 combined with R_MIPS_GOT16. */
7854 case R_MIPS_HIGHEST
:
7855 /* Don't refuse a high part relocation if it's against
7856 no symbol (e.g. part of a compound relocation). */
7860 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7861 and has a special meaning. */
7862 if (!NEWABI_P (abfd
) && h
!= NULL
7863 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
7870 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7871 (*_bfd_error_handler
)
7872 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7874 (h
) ? h
->root
.root
.string
: "a local symbol");
7875 bfd_set_error (bfd_error_bad_value
);
7887 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
7888 struct bfd_link_info
*link_info
,
7891 Elf_Internal_Rela
*internal_relocs
;
7892 Elf_Internal_Rela
*irel
, *irelend
;
7893 Elf_Internal_Shdr
*symtab_hdr
;
7894 bfd_byte
*contents
= NULL
;
7896 bfd_boolean changed_contents
= FALSE
;
7897 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
7898 Elf_Internal_Sym
*isymbuf
= NULL
;
7900 /* We are not currently changing any sizes, so only one pass. */
7903 if (link_info
->relocatable
)
7906 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7907 link_info
->keep_memory
);
7908 if (internal_relocs
== NULL
)
7911 irelend
= internal_relocs
+ sec
->reloc_count
7912 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
7913 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7914 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7916 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7919 bfd_signed_vma sym_offset
;
7920 unsigned int r_type
;
7921 unsigned long r_symndx
;
7923 unsigned long instruction
;
7925 /* Turn jalr into bgezal, and jr into beq, if they're marked
7926 with a JALR relocation, that indicate where they jump to.
7927 This saves some pipeline bubbles. */
7928 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
7929 if (r_type
!= R_MIPS_JALR
)
7932 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
7933 /* Compute the address of the jump target. */
7934 if (r_symndx
>= extsymoff
)
7936 struct mips_elf_link_hash_entry
*h
7937 = ((struct mips_elf_link_hash_entry
*)
7938 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
7940 while (h
->root
.root
.type
== bfd_link_hash_indirect
7941 || h
->root
.root
.type
== bfd_link_hash_warning
)
7942 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7944 /* If a symbol is undefined, or if it may be overridden,
7946 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
7947 || h
->root
.root
.type
== bfd_link_hash_defweak
)
7948 && h
->root
.root
.u
.def
.section
)
7949 || (link_info
->shared
&& ! link_info
->symbolic
7950 && !h
->root
.forced_local
))
7953 sym_sec
= h
->root
.root
.u
.def
.section
;
7954 if (sym_sec
->output_section
)
7955 symval
= (h
->root
.root
.u
.def
.value
7956 + sym_sec
->output_section
->vma
7957 + sym_sec
->output_offset
);
7959 symval
= h
->root
.root
.u
.def
.value
;
7963 Elf_Internal_Sym
*isym
;
7965 /* Read this BFD's symbols if we haven't done so already. */
7966 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
7968 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
7969 if (isymbuf
== NULL
)
7970 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
7971 symtab_hdr
->sh_info
, 0,
7973 if (isymbuf
== NULL
)
7977 isym
= isymbuf
+ r_symndx
;
7978 if (isym
->st_shndx
== SHN_UNDEF
)
7980 else if (isym
->st_shndx
== SHN_ABS
)
7981 sym_sec
= bfd_abs_section_ptr
;
7982 else if (isym
->st_shndx
== SHN_COMMON
)
7983 sym_sec
= bfd_com_section_ptr
;
7986 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
7987 symval
= isym
->st_value
7988 + sym_sec
->output_section
->vma
7989 + sym_sec
->output_offset
;
7992 /* Compute branch offset, from delay slot of the jump to the
7994 sym_offset
= (symval
+ irel
->r_addend
)
7995 - (sec_start
+ irel
->r_offset
+ 4);
7997 /* Branch offset must be properly aligned. */
7998 if ((sym_offset
& 3) != 0)
8003 /* Check that it's in range. */
8004 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
8007 /* Get the section contents if we haven't done so already. */
8008 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8011 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
8013 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8014 if ((instruction
& 0xfc1fffff) == 0x0000f809)
8015 instruction
= 0x04110000;
8016 /* If it was jr <reg>, turn it into b <target>. */
8017 else if ((instruction
& 0xfc1fffff) == 0x00000008)
8018 instruction
= 0x10000000;
8022 instruction
|= (sym_offset
& 0xffff);
8023 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
8024 changed_contents
= TRUE
;
8027 if (contents
!= NULL
8028 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8030 if (!changed_contents
&& !link_info
->keep_memory
)
8034 /* Cache the section contents for elf_link_input_bfd. */
8035 elf_section_data (sec
)->this_hdr
.contents
= contents
;
8041 if (contents
!= NULL
8042 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8047 /* Allocate space for global sym dynamic relocs. */
8050 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8052 struct bfd_link_info
*info
= inf
;
8054 struct mips_elf_link_hash_entry
*hmips
;
8055 struct mips_elf_link_hash_table
*htab
;
8057 htab
= mips_elf_hash_table (info
);
8058 dynobj
= elf_hash_table (info
)->dynobj
;
8059 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8061 /* VxWorks executables are handled elsewhere; we only need to
8062 allocate relocations in shared objects. */
8063 if (htab
->is_vxworks
&& !info
->shared
)
8066 /* Ignore indirect and warning symbols. All relocations against
8067 such symbols will be redirected to the target symbol. */
8068 if (h
->root
.type
== bfd_link_hash_indirect
8069 || h
->root
.type
== bfd_link_hash_warning
)
8072 /* If this symbol is defined in a dynamic object, or we are creating
8073 a shared library, we will need to copy any R_MIPS_32 or
8074 R_MIPS_REL32 relocs against it into the output file. */
8075 if (! info
->relocatable
8076 && hmips
->possibly_dynamic_relocs
!= 0
8077 && (h
->root
.type
== bfd_link_hash_defweak
8081 bfd_boolean do_copy
= TRUE
;
8083 if (h
->root
.type
== bfd_link_hash_undefweak
)
8085 /* Do not copy relocations for undefined weak symbols with
8086 non-default visibility. */
8087 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8090 /* Make sure undefined weak symbols are output as a dynamic
8092 else if (h
->dynindx
== -1 && !h
->forced_local
)
8094 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8101 /* Even though we don't directly need a GOT entry for this symbol,
8102 a symbol must have a dynamic symbol table index greater that
8103 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8104 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
8105 hmips
->global_got_area
= GGA_RELOC_ONLY
;
8107 mips_elf_allocate_dynamic_relocations
8108 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
8109 if (hmips
->readonly_reloc
)
8110 /* We tell the dynamic linker that there are relocations
8111 against the text segment. */
8112 info
->flags
|= DF_TEXTREL
;
8119 /* Adjust a symbol defined by a dynamic object and referenced by a
8120 regular object. The current definition is in some section of the
8121 dynamic object, but we're not including those sections. We have to
8122 change the definition to something the rest of the link can
8126 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
8127 struct elf_link_hash_entry
*h
)
8130 struct mips_elf_link_hash_entry
*hmips
;
8131 struct mips_elf_link_hash_table
*htab
;
8133 htab
= mips_elf_hash_table (info
);
8134 dynobj
= elf_hash_table (info
)->dynobj
;
8135 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8137 /* Make sure we know what is going on here. */
8138 BFD_ASSERT (dynobj
!= NULL
8140 || h
->u
.weakdef
!= NULL
8143 && !h
->def_regular
)));
8145 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8147 /* If there are call relocations against an externally-defined symbol,
8148 see whether we can create a MIPS lazy-binding stub for it. We can
8149 only do this if all references to the function are through call
8150 relocations, and in that case, the traditional lazy-binding stubs
8151 are much more efficient than PLT entries.
8153 Traditional stubs are only available on SVR4 psABI-based systems;
8154 VxWorks always uses PLTs instead. */
8155 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
8157 if (! elf_hash_table (info
)->dynamic_sections_created
)
8160 /* If this symbol is not defined in a regular file, then set
8161 the symbol to the stub location. This is required to make
8162 function pointers compare as equal between the normal
8163 executable and the shared library. */
8164 if (!h
->def_regular
)
8166 hmips
->needs_lazy_stub
= TRUE
;
8167 htab
->lazy_stub_count
++;
8171 /* As above, VxWorks requires PLT entries for externally-defined
8172 functions that are only accessed through call relocations.
8174 Both VxWorks and non-VxWorks targets also need PLT entries if there
8175 are static-only relocations against an externally-defined function.
8176 This can technically occur for shared libraries if there are
8177 branches to the symbol, although it is unlikely that this will be
8178 used in practice due to the short ranges involved. It can occur
8179 for any relative or absolute relocation in executables; in that
8180 case, the PLT entry becomes the function's canonical address. */
8181 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
8182 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
8183 && htab
->use_plts_and_copy_relocs
8184 && !SYMBOL_CALLS_LOCAL (info
, h
)
8185 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8186 && h
->root
.type
== bfd_link_hash_undefweak
))
8188 /* If this is the first symbol to need a PLT entry, allocate room
8190 if (htab
->splt
->size
== 0)
8192 BFD_ASSERT (htab
->sgotplt
->size
== 0);
8194 /* If we're using the PLT additions to the psABI, each PLT
8195 entry is 16 bytes and the PLT0 entry is 32 bytes.
8196 Encourage better cache usage by aligning. We do this
8197 lazily to avoid pessimizing traditional objects. */
8198 if (!htab
->is_vxworks
8199 && !bfd_set_section_alignment (dynobj
, htab
->splt
, 5))
8202 /* Make sure that .got.plt is word-aligned. We do this lazily
8203 for the same reason as above. */
8204 if (!bfd_set_section_alignment (dynobj
, htab
->sgotplt
,
8205 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
8208 htab
->splt
->size
+= htab
->plt_header_size
;
8210 /* On non-VxWorks targets, the first two entries in .got.plt
8212 if (!htab
->is_vxworks
)
8213 htab
->sgotplt
->size
+= 2 * MIPS_ELF_GOT_SIZE (dynobj
);
8215 /* On VxWorks, also allocate room for the header's
8216 .rela.plt.unloaded entries. */
8217 if (htab
->is_vxworks
&& !info
->shared
)
8218 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
8221 /* Assign the next .plt entry to this symbol. */
8222 h
->plt
.offset
= htab
->splt
->size
;
8223 htab
->splt
->size
+= htab
->plt_entry_size
;
8225 /* If the output file has no definition of the symbol, set the
8226 symbol's value to the address of the stub. */
8227 if (!info
->shared
&& !h
->def_regular
)
8229 h
->root
.u
.def
.section
= htab
->splt
;
8230 h
->root
.u
.def
.value
= h
->plt
.offset
;
8231 /* For VxWorks, point at the PLT load stub rather than the
8232 lazy resolution stub; this stub will become the canonical
8233 function address. */
8234 if (htab
->is_vxworks
)
8235 h
->root
.u
.def
.value
+= 8;
8238 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8240 htab
->sgotplt
->size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8241 htab
->srelplt
->size
+= (htab
->is_vxworks
8242 ? MIPS_ELF_RELA_SIZE (dynobj
)
8243 : MIPS_ELF_REL_SIZE (dynobj
));
8245 /* Make room for the .rela.plt.unloaded relocations. */
8246 if (htab
->is_vxworks
&& !info
->shared
)
8247 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
8249 /* All relocations against this symbol that could have been made
8250 dynamic will now refer to the PLT entry instead. */
8251 hmips
->possibly_dynamic_relocs
= 0;
8256 /* If this is a weak symbol, and there is a real definition, the
8257 processor independent code will have arranged for us to see the
8258 real definition first, and we can just use the same value. */
8259 if (h
->u
.weakdef
!= NULL
)
8261 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
8262 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
8263 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
8264 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
8268 /* Otherwise, there is nothing further to do for symbols defined
8269 in regular objects. */
8273 /* There's also nothing more to do if we'll convert all relocations
8274 against this symbol into dynamic relocations. */
8275 if (!hmips
->has_static_relocs
)
8278 /* We're now relying on copy relocations. Complain if we have
8279 some that we can't convert. */
8280 if (!htab
->use_plts_and_copy_relocs
|| info
->shared
)
8282 (*_bfd_error_handler
) (_("non-dynamic relocations refer to "
8283 "dynamic symbol %s"),
8284 h
->root
.root
.string
);
8285 bfd_set_error (bfd_error_bad_value
);
8289 /* We must allocate the symbol in our .dynbss section, which will
8290 become part of the .bss section of the executable. There will be
8291 an entry for this symbol in the .dynsym section. The dynamic
8292 object will contain position independent code, so all references
8293 from the dynamic object to this symbol will go through the global
8294 offset table. The dynamic linker will use the .dynsym entry to
8295 determine the address it must put in the global offset table, so
8296 both the dynamic object and the regular object will refer to the
8297 same memory location for the variable. */
8299 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
8301 if (htab
->is_vxworks
)
8302 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
8304 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8308 /* All relocations against this symbol that could have been made
8309 dynamic will now refer to the local copy instead. */
8310 hmips
->possibly_dynamic_relocs
= 0;
8312 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
8315 /* This function is called after all the input files have been read,
8316 and the input sections have been assigned to output sections. We
8317 check for any mips16 stub sections that we can discard. */
8320 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
8321 struct bfd_link_info
*info
)
8324 struct mips_elf_link_hash_table
*htab
;
8325 struct mips_htab_traverse_info hti
;
8327 htab
= mips_elf_hash_table (info
);
8329 /* The .reginfo section has a fixed size. */
8330 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8332 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8335 hti
.output_bfd
= output_bfd
;
8337 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8338 mips_elf_check_symbols
, &hti
);
8345 /* If the link uses a GOT, lay it out and work out its size. */
8348 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
8352 struct mips_got_info
*g
;
8353 bfd_size_type loadable_size
= 0;
8354 bfd_size_type page_gotno
;
8356 struct mips_elf_count_tls_arg count_tls_arg
;
8357 struct mips_elf_link_hash_table
*htab
;
8359 htab
= mips_elf_hash_table (info
);
8364 dynobj
= elf_hash_table (info
)->dynobj
;
8367 /* Allocate room for the reserved entries. VxWorks always reserves
8368 3 entries; other objects only reserve 2 entries. */
8369 BFD_ASSERT (g
->assigned_gotno
== 0);
8370 if (htab
->is_vxworks
)
8371 htab
->reserved_gotno
= 3;
8373 htab
->reserved_gotno
= 2;
8374 g
->local_gotno
+= htab
->reserved_gotno
;
8375 g
->assigned_gotno
= htab
->reserved_gotno
;
8377 /* Replace entries for indirect and warning symbols with entries for
8378 the target symbol. */
8379 if (!mips_elf_resolve_final_got_entries (g
))
8382 /* Count the number of GOT symbols. */
8383 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, g
);
8385 /* Calculate the total loadable size of the output. That
8386 will give us the maximum number of GOT_PAGE entries
8388 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8390 asection
*subsection
;
8392 for (subsection
= sub
->sections
;
8394 subsection
= subsection
->next
)
8396 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8398 loadable_size
+= ((subsection
->size
+ 0xf)
8399 &~ (bfd_size_type
) 0xf);
8403 if (htab
->is_vxworks
)
8404 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8405 relocations against local symbols evaluate to "G", and the EABI does
8406 not include R_MIPS_GOT_PAGE. */
8409 /* Assume there are two loadable segments consisting of contiguous
8410 sections. Is 5 enough? */
8411 page_gotno
= (loadable_size
>> 16) + 5;
8413 /* Choose the smaller of the two estimates; both are intended to be
8415 if (page_gotno
> g
->page_gotno
)
8416 page_gotno
= g
->page_gotno
;
8418 g
->local_gotno
+= page_gotno
;
8419 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8420 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8422 /* We need to calculate tls_gotno for global symbols at this point
8423 instead of building it up earlier, to avoid doublecounting
8424 entries for one global symbol from multiple input files. */
8425 count_tls_arg
.info
= info
;
8426 count_tls_arg
.needed
= 0;
8427 elf_link_hash_traverse (elf_hash_table (info
),
8428 mips_elf_count_global_tls_entries
,
8430 g
->tls_gotno
+= count_tls_arg
.needed
;
8431 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8433 /* VxWorks does not support multiple GOTs. It initializes $gp to
8434 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8436 if (htab
->is_vxworks
)
8438 /* VxWorks executables do not need a GOT. */
8441 /* Each VxWorks GOT entry needs an explicit relocation. */
8444 count
= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
8446 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
8449 else if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
8451 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
8456 struct mips_elf_count_tls_arg arg
;
8458 /* Set up TLS entries. */
8459 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
8460 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
8462 /* Allocate room for the TLS relocations. */
8465 htab_traverse (g
->got_entries
, mips_elf_count_local_tls_relocs
, &arg
);
8466 elf_link_hash_traverse (elf_hash_table (info
),
8467 mips_elf_count_global_tls_relocs
,
8470 mips_elf_allocate_dynamic_relocations (dynobj
, info
, arg
.needed
);
8476 /* Estimate the size of the .MIPS.stubs section. */
8479 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
8481 struct mips_elf_link_hash_table
*htab
;
8482 bfd_size_type dynsymcount
;
8484 htab
= mips_elf_hash_table (info
);
8485 if (htab
->lazy_stub_count
== 0)
8488 /* IRIX rld assumes that a function stub isn't at the end of the .text
8489 section, so add a dummy entry to the end. */
8490 htab
->lazy_stub_count
++;
8492 /* Get a worst-case estimate of the number of dynamic symbols needed.
8493 At this point, dynsymcount does not account for section symbols
8494 and count_section_dynsyms may overestimate the number that will
8496 dynsymcount
= (elf_hash_table (info
)->dynsymcount
8497 + count_section_dynsyms (output_bfd
, info
));
8499 /* Determine the size of one stub entry. */
8500 htab
->function_stub_size
= (dynsymcount
> 0x10000
8501 ? MIPS_FUNCTION_STUB_BIG_SIZE
8502 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
8504 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
8507 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8508 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8509 allocate an entry in the stubs section. */
8512 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void **data
)
8514 struct mips_elf_link_hash_table
*htab
;
8516 htab
= (struct mips_elf_link_hash_table
*) data
;
8517 if (h
->needs_lazy_stub
)
8519 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
8520 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
;
8521 h
->root
.plt
.offset
= htab
->sstubs
->size
;
8522 htab
->sstubs
->size
+= htab
->function_stub_size
;
8527 /* Allocate offsets in the stubs section to each symbol that needs one.
8528 Set the final size of the .MIPS.stub section. */
8531 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
8533 struct mips_elf_link_hash_table
*htab
;
8535 htab
= mips_elf_hash_table (info
);
8536 if (htab
->lazy_stub_count
== 0)
8539 htab
->sstubs
->size
= 0;
8540 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8541 mips_elf_allocate_lazy_stub
, htab
);
8542 htab
->sstubs
->size
+= htab
->function_stub_size
;
8543 BFD_ASSERT (htab
->sstubs
->size
8544 == htab
->lazy_stub_count
* htab
->function_stub_size
);
8547 /* Set the sizes of the dynamic sections. */
8550 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
8551 struct bfd_link_info
*info
)
8554 asection
*s
, *sreldyn
;
8555 bfd_boolean reltext
;
8556 struct mips_elf_link_hash_table
*htab
;
8558 htab
= mips_elf_hash_table (info
);
8559 dynobj
= elf_hash_table (info
)->dynobj
;
8560 BFD_ASSERT (dynobj
!= NULL
);
8562 if (elf_hash_table (info
)->dynamic_sections_created
)
8564 /* Set the contents of the .interp section to the interpreter. */
8565 if (info
->executable
)
8567 s
= bfd_get_section_by_name (dynobj
, ".interp");
8568 BFD_ASSERT (s
!= NULL
);
8570 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8572 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8575 /* Create a symbol for the PLT, if we know that we are using it. */
8576 if (htab
->splt
&& htab
->splt
->size
> 0 && htab
->root
.hplt
== NULL
)
8578 struct elf_link_hash_entry
*h
;
8580 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
8582 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->splt
,
8583 "_PROCEDURE_LINKAGE_TABLE_");
8584 htab
->root
.hplt
= h
;
8591 /* Allocate space for global sym dynamic relocs. */
8592 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, (PTR
) info
);
8594 mips_elf_estimate_stub_size (output_bfd
, info
);
8596 if (!mips_elf_lay_out_got (output_bfd
, info
))
8599 mips_elf_lay_out_lazy_stubs (info
);
8601 /* The check_relocs and adjust_dynamic_symbol entry points have
8602 determined the sizes of the various dynamic sections. Allocate
8605 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8609 /* It's OK to base decisions on the section name, because none
8610 of the dynobj section names depend upon the input files. */
8611 name
= bfd_get_section_name (dynobj
, s
);
8613 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8616 if (CONST_STRNEQ (name
, ".rel"))
8620 const char *outname
;
8623 /* If this relocation section applies to a read only
8624 section, then we probably need a DT_TEXTREL entry.
8625 If the relocation section is .rel(a).dyn, we always
8626 assert a DT_TEXTREL entry rather than testing whether
8627 there exists a relocation to a read only section or
8629 outname
= bfd_get_section_name (output_bfd
,
8631 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8633 && (target
->flags
& SEC_READONLY
) != 0
8634 && (target
->flags
& SEC_ALLOC
) != 0)
8635 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
8638 /* We use the reloc_count field as a counter if we need
8639 to copy relocs into the output file. */
8640 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
8643 /* If combreloc is enabled, elf_link_sort_relocs() will
8644 sort relocations, but in a different way than we do,
8645 and before we're done creating relocations. Also, it
8646 will move them around between input sections'
8647 relocation's contents, so our sorting would be
8648 broken, so don't let it run. */
8649 info
->combreloc
= 0;
8652 else if (! info
->shared
8653 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8654 && CONST_STRNEQ (name
, ".rld_map"))
8656 /* We add a room for __rld_map. It will be filled in by the
8657 rtld to contain a pointer to the _r_debug structure. */
8660 else if (SGI_COMPAT (output_bfd
)
8661 && CONST_STRNEQ (name
, ".compact_rel"))
8662 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8663 else if (s
== htab
->splt
)
8665 /* If the last PLT entry has a branch delay slot, allocate
8666 room for an extra nop to fill the delay slot. This is
8667 for CPUs without load interlocking. */
8668 if (! LOAD_INTERLOCKS_P (output_bfd
)
8669 && ! htab
->is_vxworks
&& s
->size
> 0)
8672 else if (! CONST_STRNEQ (name
, ".init")
8674 && s
!= htab
->sgotplt
8675 && s
!= htab
->sstubs
8676 && s
!= htab
->sdynbss
)
8678 /* It's not one of our sections, so don't allocate space. */
8684 s
->flags
|= SEC_EXCLUDE
;
8688 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
8691 /* Allocate memory for the section contents. */
8692 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
8693 if (s
->contents
== NULL
)
8695 bfd_set_error (bfd_error_no_memory
);
8700 if (elf_hash_table (info
)->dynamic_sections_created
)
8702 /* Add some entries to the .dynamic section. We fill in the
8703 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8704 must add the entries now so that we get the correct size for
8705 the .dynamic section. */
8707 /* SGI object has the equivalence of DT_DEBUG in the
8708 DT_MIPS_RLD_MAP entry. This must come first because glibc
8709 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8710 looks at the first one it sees. */
8712 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8715 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8716 used by the debugger. */
8717 if (info
->executable
8718 && !SGI_COMPAT (output_bfd
)
8719 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8722 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
8723 info
->flags
|= DF_TEXTREL
;
8725 if ((info
->flags
& DF_TEXTREL
) != 0)
8727 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
8730 /* Clear the DF_TEXTREL flag. It will be set again if we
8731 write out an actual text relocation; we may not, because
8732 at this point we do not know whether e.g. any .eh_frame
8733 absolute relocations have been converted to PC-relative. */
8734 info
->flags
&= ~DF_TEXTREL
;
8737 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
8740 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
8741 if (htab
->is_vxworks
)
8743 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8744 use any of the DT_MIPS_* tags. */
8745 if (sreldyn
&& sreldyn
->size
> 0)
8747 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
8750 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
8753 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
8759 if (sreldyn
&& sreldyn
->size
> 0)
8761 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
8764 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
8767 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
8771 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8774 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8777 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8780 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8783 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8786 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8789 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8792 if (IRIX_COMPAT (dynobj
) == ict_irix5
8793 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8796 if (IRIX_COMPAT (dynobj
) == ict_irix6
8797 && (bfd_get_section_by_name
8798 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8799 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8802 if (htab
->splt
->size
> 0)
8804 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
8807 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
8810 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
8813 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
8816 if (htab
->is_vxworks
8817 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
8824 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8825 Adjust its R_ADDEND field so that it is correct for the output file.
8826 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8827 and sections respectively; both use symbol indexes. */
8830 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
8831 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
8832 asection
**local_sections
, Elf_Internal_Rela
*rel
)
8834 unsigned int r_type
, r_symndx
;
8835 Elf_Internal_Sym
*sym
;
8838 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8840 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8841 if (r_type
== R_MIPS16_GPREL
8842 || r_type
== R_MIPS_GPREL16
8843 || r_type
== R_MIPS_GPREL32
8844 || r_type
== R_MIPS_LITERAL
)
8846 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
8847 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
8850 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
8851 sym
= local_syms
+ r_symndx
;
8853 /* Adjust REL's addend to account for section merging. */
8854 if (!info
->relocatable
)
8856 sec
= local_sections
[r_symndx
];
8857 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8860 /* This would normally be done by the rela_normal code in elflink.c. */
8861 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8862 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
8866 /* Relocate a MIPS ELF section. */
8869 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
8870 bfd
*input_bfd
, asection
*input_section
,
8871 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
8872 Elf_Internal_Sym
*local_syms
,
8873 asection
**local_sections
)
8875 Elf_Internal_Rela
*rel
;
8876 const Elf_Internal_Rela
*relend
;
8878 bfd_boolean use_saved_addend_p
= FALSE
;
8879 const struct elf_backend_data
*bed
;
8881 bed
= get_elf_backend_data (output_bfd
);
8882 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8883 for (rel
= relocs
; rel
< relend
; ++rel
)
8887 reloc_howto_type
*howto
;
8888 bfd_boolean require_jalx
;
8889 /* TRUE if the relocation is a RELA relocation, rather than a
8891 bfd_boolean rela_relocation_p
= TRUE
;
8892 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8894 unsigned long r_symndx
;
8896 Elf_Internal_Shdr
*symtab_hdr
;
8897 struct elf_link_hash_entry
*h
;
8899 /* Find the relocation howto for this relocation. */
8900 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
8901 NEWABI_P (input_bfd
)
8902 && (MIPS_RELOC_RELA_P
8903 (input_bfd
, input_section
,
8906 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
8907 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8908 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8910 sec
= local_sections
[r_symndx
];
8915 unsigned long extsymoff
;
8918 if (!elf_bad_symtab (input_bfd
))
8919 extsymoff
= symtab_hdr
->sh_info
;
8920 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
8921 while (h
->root
.type
== bfd_link_hash_indirect
8922 || h
->root
.type
== bfd_link_hash_warning
)
8923 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8926 if (h
->root
.type
== bfd_link_hash_defined
8927 || h
->root
.type
== bfd_link_hash_defweak
)
8928 sec
= h
->root
.u
.def
.section
;
8931 if (sec
!= NULL
&& elf_discarded_section (sec
))
8933 /* For relocs against symbols from removed linkonce sections,
8934 or sections discarded by a linker script, we just want the
8935 section contents zeroed. Avoid any special processing. */
8936 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8942 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
8944 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8945 64-bit code, but make sure all their addresses are in the
8946 lowermost or uppermost 32-bit section of the 64-bit address
8947 space. Thus, when they use an R_MIPS_64 they mean what is
8948 usually meant by R_MIPS_32, with the exception that the
8949 stored value is sign-extended to 64 bits. */
8950 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
8952 /* On big-endian systems, we need to lie about the position
8954 if (bfd_big_endian (input_bfd
))
8958 if (!use_saved_addend_p
)
8960 /* If these relocations were originally of the REL variety,
8961 we must pull the addend out of the field that will be
8962 relocated. Otherwise, we simply use the contents of the
8964 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
8967 rela_relocation_p
= FALSE
;
8968 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
8970 if (hi16_reloc_p (r_type
)
8971 || (got16_reloc_p (r_type
)
8972 && mips_elf_local_relocation_p (input_bfd
, rel
,
8973 local_sections
, FALSE
)))
8975 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
8981 name
= h
->root
.root
.string
;
8983 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
8984 local_syms
+ r_symndx
,
8986 (*_bfd_error_handler
)
8987 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8988 input_bfd
, input_section
, name
, howto
->name
,
8993 addend
<<= howto
->rightshift
;
8996 addend
= rel
->r_addend
;
8997 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
8998 local_syms
, local_sections
, rel
);
9001 if (info
->relocatable
)
9003 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
9004 && bfd_big_endian (input_bfd
))
9007 if (!rela_relocation_p
&& rel
->r_addend
)
9009 addend
+= rel
->r_addend
;
9010 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
9011 addend
= mips_elf_high (addend
);
9012 else if (r_type
== R_MIPS_HIGHER
)
9013 addend
= mips_elf_higher (addend
);
9014 else if (r_type
== R_MIPS_HIGHEST
)
9015 addend
= mips_elf_highest (addend
);
9017 addend
>>= howto
->rightshift
;
9019 /* We use the source mask, rather than the destination
9020 mask because the place to which we are writing will be
9021 source of the addend in the final link. */
9022 addend
&= howto
->src_mask
;
9024 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9025 /* See the comment above about using R_MIPS_64 in the 32-bit
9026 ABI. Here, we need to update the addend. It would be
9027 possible to get away with just using the R_MIPS_32 reloc
9028 but for endianness. */
9034 if (addend
& ((bfd_vma
) 1 << 31))
9036 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9043 /* If we don't know that we have a 64-bit type,
9044 do two separate stores. */
9045 if (bfd_big_endian (input_bfd
))
9047 /* Store the sign-bits (which are most significant)
9049 low_bits
= sign_bits
;
9055 high_bits
= sign_bits
;
9057 bfd_put_32 (input_bfd
, low_bits
,
9058 contents
+ rel
->r_offset
);
9059 bfd_put_32 (input_bfd
, high_bits
,
9060 contents
+ rel
->r_offset
+ 4);
9064 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
9065 input_bfd
, input_section
,
9070 /* Go on to the next relocation. */
9074 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9075 relocations for the same offset. In that case we are
9076 supposed to treat the output of each relocation as the addend
9078 if (rel
+ 1 < relend
9079 && rel
->r_offset
== rel
[1].r_offset
9080 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
9081 use_saved_addend_p
= TRUE
;
9083 use_saved_addend_p
= FALSE
;
9085 /* Figure out what value we are supposed to relocate. */
9086 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
9087 input_section
, info
, rel
,
9088 addend
, howto
, local_syms
,
9089 local_sections
, &value
,
9090 &name
, &require_jalx
,
9091 use_saved_addend_p
))
9093 case bfd_reloc_continue
:
9094 /* There's nothing to do. */
9097 case bfd_reloc_undefined
:
9098 /* mips_elf_calculate_relocation already called the
9099 undefined_symbol callback. There's no real point in
9100 trying to perform the relocation at this point, so we
9101 just skip ahead to the next relocation. */
9104 case bfd_reloc_notsupported
:
9105 msg
= _("internal error: unsupported relocation error");
9106 info
->callbacks
->warning
9107 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9110 case bfd_reloc_overflow
:
9111 if (use_saved_addend_p
)
9112 /* Ignore overflow until we reach the last relocation for
9113 a given location. */
9117 struct mips_elf_link_hash_table
*htab
;
9119 htab
= mips_elf_hash_table (info
);
9120 BFD_ASSERT (name
!= NULL
);
9121 if (!htab
->small_data_overflow_reported
9122 && (howto
->type
== R_MIPS_GPREL16
9123 || howto
->type
== R_MIPS_LITERAL
))
9126 _("small-data section exceeds 64KB;"
9127 " lower small-data size limit (see option -G)");
9129 htab
->small_data_overflow_reported
= TRUE
;
9130 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
9132 if (! ((*info
->callbacks
->reloc_overflow
)
9133 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
9134 input_bfd
, input_section
, rel
->r_offset
)))
9147 /* If we've got another relocation for the address, keep going
9148 until we reach the last one. */
9149 if (use_saved_addend_p
)
9155 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9156 /* See the comment above about using R_MIPS_64 in the 32-bit
9157 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9158 that calculated the right value. Now, however, we
9159 sign-extend the 32-bit result to 64-bits, and store it as a
9160 64-bit value. We are especially generous here in that we
9161 go to extreme lengths to support this usage on systems with
9162 only a 32-bit VMA. */
9168 if (value
& ((bfd_vma
) 1 << 31))
9170 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9177 /* If we don't know that we have a 64-bit type,
9178 do two separate stores. */
9179 if (bfd_big_endian (input_bfd
))
9181 /* Undo what we did above. */
9183 /* Store the sign-bits (which are most significant)
9185 low_bits
= sign_bits
;
9191 high_bits
= sign_bits
;
9193 bfd_put_32 (input_bfd
, low_bits
,
9194 contents
+ rel
->r_offset
);
9195 bfd_put_32 (input_bfd
, high_bits
,
9196 contents
+ rel
->r_offset
+ 4);
9200 /* Actually perform the relocation. */
9201 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
9202 input_bfd
, input_section
,
9203 contents
, require_jalx
))
9210 /* A function that iterates over each entry in la25_stubs and fills
9211 in the code for each one. DATA points to a mips_htab_traverse_info. */
9214 mips_elf_create_la25_stub (void **slot
, void *data
)
9216 struct mips_htab_traverse_info
*hti
;
9217 struct mips_elf_link_hash_table
*htab
;
9218 struct mips_elf_la25_stub
*stub
;
9221 bfd_vma offset
, target
, target_high
, target_low
;
9223 stub
= (struct mips_elf_la25_stub
*) *slot
;
9224 hti
= (struct mips_htab_traverse_info
*) data
;
9225 htab
= mips_elf_hash_table (hti
->info
);
9227 /* Create the section contents, if we haven't already. */
9228 s
= stub
->stub_section
;
9232 loc
= bfd_malloc (s
->size
);
9241 /* Work out where in the section this stub should go. */
9242 offset
= stub
->offset
;
9244 /* Work out the target address. */
9245 target
= (stub
->h
->root
.root
.u
.def
.section
->output_section
->vma
9246 + stub
->h
->root
.root
.u
.def
.section
->output_offset
9247 + stub
->h
->root
.root
.u
.def
.value
);
9248 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
9249 target_low
= (target
& 0xffff);
9251 if (stub
->stub_section
!= htab
->strampoline
)
9253 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9254 of the section and write the two instructions at the end. */
9255 memset (loc
, 0, offset
);
9257 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9258 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
9262 /* This is trampoline. */
9264 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9265 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
9266 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
9267 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9272 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9273 adjust it appropriately now. */
9276 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
9277 const char *name
, Elf_Internal_Sym
*sym
)
9279 /* The linker script takes care of providing names and values for
9280 these, but we must place them into the right sections. */
9281 static const char* const text_section_symbols
[] = {
9284 "__dso_displacement",
9286 "__program_header_table",
9290 static const char* const data_section_symbols
[] = {
9298 const char* const *p
;
9301 for (i
= 0; i
< 2; ++i
)
9302 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9305 if (strcmp (*p
, name
) == 0)
9307 /* All of these symbols are given type STT_SECTION by the
9309 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9310 sym
->st_other
= STO_PROTECTED
;
9312 /* The IRIX linker puts these symbols in special sections. */
9314 sym
->st_shndx
= SHN_MIPS_TEXT
;
9316 sym
->st_shndx
= SHN_MIPS_DATA
;
9322 /* Finish up dynamic symbol handling. We set the contents of various
9323 dynamic sections here. */
9326 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
9327 struct bfd_link_info
*info
,
9328 struct elf_link_hash_entry
*h
,
9329 Elf_Internal_Sym
*sym
)
9333 struct mips_got_info
*g
, *gg
;
9336 struct mips_elf_link_hash_table
*htab
;
9337 struct mips_elf_link_hash_entry
*hmips
;
9339 htab
= mips_elf_hash_table (info
);
9340 dynobj
= elf_hash_table (info
)->dynobj
;
9341 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9343 BFD_ASSERT (!htab
->is_vxworks
);
9345 if (h
->plt
.offset
!= MINUS_ONE
&& hmips
->no_fn_stub
)
9347 /* We've decided to create a PLT entry for this symbol. */
9349 bfd_vma header_address
, plt_index
, got_address
;
9350 bfd_vma got_address_high
, got_address_low
, load
;
9351 const bfd_vma
*plt_entry
;
9353 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9354 BFD_ASSERT (h
->dynindx
!= -1);
9355 BFD_ASSERT (htab
->splt
!= NULL
);
9356 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9357 BFD_ASSERT (!h
->def_regular
);
9359 /* Calculate the address of the PLT header. */
9360 header_address
= (htab
->splt
->output_section
->vma
9361 + htab
->splt
->output_offset
);
9363 /* Calculate the index of the entry. */
9364 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9365 / htab
->plt_entry_size
);
9367 /* Calculate the address of the .got.plt entry. */
9368 got_address
= (htab
->sgotplt
->output_section
->vma
9369 + htab
->sgotplt
->output_offset
9370 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9371 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9372 got_address_low
= got_address
& 0xffff;
9374 /* Initially point the .got.plt entry at the PLT header. */
9375 loc
= (htab
->sgotplt
->contents
9376 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9377 if (ABI_64_P (output_bfd
))
9378 bfd_put_64 (output_bfd
, header_address
, loc
);
9380 bfd_put_32 (output_bfd
, header_address
, loc
);
9382 /* Find out where the .plt entry should go. */
9383 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9385 /* Pick the load opcode. */
9386 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
9388 /* Fill in the PLT entry itself. */
9389 plt_entry
= mips_exec_plt_entry
;
9390 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
9391 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
, loc
+ 4);
9393 if (! LOAD_INTERLOCKS_P (output_bfd
))
9395 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
9396 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9400 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
9401 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 12);
9404 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9405 mips_elf_output_dynamic_relocation (output_bfd
, htab
->srelplt
,
9406 plt_index
, h
->dynindx
,
9407 R_MIPS_JUMP_SLOT
, got_address
);
9409 /* We distinguish between PLT entries and lazy-binding stubs by
9410 giving the former an st_other value of STO_MIPS_PLT. Set the
9411 flag and leave the value if there are any relocations in the
9412 binary where pointer equality matters. */
9413 sym
->st_shndx
= SHN_UNDEF
;
9414 if (h
->pointer_equality_needed
)
9415 sym
->st_other
= STO_MIPS_PLT
;
9419 else if (h
->plt
.offset
!= MINUS_ONE
)
9421 /* We've decided to create a lazy-binding stub. */
9422 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
9424 /* This symbol has a stub. Set it up. */
9426 BFD_ASSERT (h
->dynindx
!= -1);
9428 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9429 || (h
->dynindx
<= 0xffff));
9431 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9432 sign extension at runtime in the stub, resulting in a negative
9434 if (h
->dynindx
& ~0x7fffffff)
9437 /* Fill the stub. */
9439 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
9441 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
9443 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9445 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
9449 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
9452 /* If a large stub is not required and sign extension is not a
9453 problem, then use legacy code in the stub. */
9454 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9455 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
9456 else if (h
->dynindx
& ~0x7fff)
9457 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
9459 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
9462 BFD_ASSERT (h
->plt
.offset
<= htab
->sstubs
->size
);
9463 memcpy (htab
->sstubs
->contents
+ h
->plt
.offset
,
9464 stub
, htab
->function_stub_size
);
9466 /* Mark the symbol as undefined. plt.offset != -1 occurs
9467 only for the referenced symbol. */
9468 sym
->st_shndx
= SHN_UNDEF
;
9470 /* The run-time linker uses the st_value field of the symbol
9471 to reset the global offset table entry for this external
9472 to its stub address when unlinking a shared object. */
9473 sym
->st_value
= (htab
->sstubs
->output_section
->vma
9474 + htab
->sstubs
->output_offset
9478 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9479 refer to the stub, since only the stub uses the standard calling
9481 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
9483 BFD_ASSERT (hmips
->need_fn_stub
);
9484 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
9485 + hmips
->fn_stub
->output_offset
);
9486 sym
->st_size
= hmips
->fn_stub
->size
;
9487 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
9490 BFD_ASSERT (h
->dynindx
!= -1
9491 || h
->forced_local
);
9495 BFD_ASSERT (g
!= NULL
);
9497 /* Run through the global symbol table, creating GOT entries for all
9498 the symbols that need them. */
9499 if (g
->global_gotsym
!= NULL
9500 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9505 value
= sym
->st_value
;
9506 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9507 R_MIPS_GOT16
, info
);
9508 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
9511 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
9513 struct mips_got_entry e
, *p
;
9519 e
.abfd
= output_bfd
;
9524 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
9527 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
9532 || (elf_hash_table (info
)->dynamic_sections_created
9534 && p
->d
.h
->root
.def_dynamic
9535 && !p
->d
.h
->root
.def_regular
))
9537 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9538 the various compatibility problems, it's easier to mock
9539 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9540 mips_elf_create_dynamic_relocation to calculate the
9541 appropriate addend. */
9542 Elf_Internal_Rela rel
[3];
9544 memset (rel
, 0, sizeof (rel
));
9545 if (ABI_64_P (output_bfd
))
9546 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
9548 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
9549 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
9552 if (! (mips_elf_create_dynamic_relocation
9553 (output_bfd
, info
, rel
,
9554 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
9558 entry
= sym
->st_value
;
9559 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
9564 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9565 name
= h
->root
.root
.string
;
9566 if (strcmp (name
, "_DYNAMIC") == 0
9567 || h
== elf_hash_table (info
)->hgot
)
9568 sym
->st_shndx
= SHN_ABS
;
9569 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
9570 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
9572 sym
->st_shndx
= SHN_ABS
;
9573 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9576 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
9578 sym
->st_shndx
= SHN_ABS
;
9579 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9580 sym
->st_value
= elf_gp (output_bfd
);
9582 else if (SGI_COMPAT (output_bfd
))
9584 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
9585 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
9587 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9588 sym
->st_other
= STO_PROTECTED
;
9590 sym
->st_shndx
= SHN_MIPS_DATA
;
9592 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
9594 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9595 sym
->st_other
= STO_PROTECTED
;
9596 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
9597 sym
->st_shndx
= SHN_ABS
;
9599 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
9601 if (h
->type
== STT_FUNC
)
9602 sym
->st_shndx
= SHN_MIPS_TEXT
;
9603 else if (h
->type
== STT_OBJECT
)
9604 sym
->st_shndx
= SHN_MIPS_DATA
;
9608 /* Emit a copy reloc, if needed. */
9614 BFD_ASSERT (h
->dynindx
!= -1);
9615 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9617 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9618 symval
= (h
->root
.u
.def
.section
->output_section
->vma
9619 + h
->root
.u
.def
.section
->output_offset
9620 + h
->root
.u
.def
.value
);
9621 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
9622 h
->dynindx
, R_MIPS_COPY
, symval
);
9625 /* Handle the IRIX6-specific symbols. */
9626 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
9627 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
9631 if (! mips_elf_hash_table (info
)->use_rld_obj_head
9632 && (strcmp (name
, "__rld_map") == 0
9633 || strcmp (name
, "__RLD_MAP") == 0))
9635 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
9636 BFD_ASSERT (s
!= NULL
);
9637 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
9638 bfd_put_32 (output_bfd
, 0, s
->contents
);
9639 if (mips_elf_hash_table (info
)->rld_value
== 0)
9640 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9642 else if (mips_elf_hash_table (info
)->use_rld_obj_head
9643 && strcmp (name
, "__rld_obj_head") == 0)
9645 /* IRIX6 does not use a .rld_map section. */
9646 if (IRIX_COMPAT (output_bfd
) == ict_irix5
9647 || IRIX_COMPAT (output_bfd
) == ict_none
)
9648 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
9650 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9654 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9655 treat MIPS16 symbols like any other. */
9656 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9658 BFD_ASSERT (sym
->st_value
& 1);
9659 sym
->st_other
-= STO_MIPS16
;
9665 /* Likewise, for VxWorks. */
9668 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
9669 struct bfd_link_info
*info
,
9670 struct elf_link_hash_entry
*h
,
9671 Elf_Internal_Sym
*sym
)
9675 struct mips_got_info
*g
;
9676 struct mips_elf_link_hash_table
*htab
;
9678 htab
= mips_elf_hash_table (info
);
9679 dynobj
= elf_hash_table (info
)->dynobj
;
9681 if (h
->plt
.offset
!= (bfd_vma
) -1)
9684 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
9685 Elf_Internal_Rela rel
;
9686 static const bfd_vma
*plt_entry
;
9688 BFD_ASSERT (h
->dynindx
!= -1);
9689 BFD_ASSERT (htab
->splt
!= NULL
);
9690 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9692 /* Calculate the address of the .plt entry. */
9693 plt_address
= (htab
->splt
->output_section
->vma
9694 + htab
->splt
->output_offset
9697 /* Calculate the index of the entry. */
9698 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9699 / htab
->plt_entry_size
);
9701 /* Calculate the address of the .got.plt entry. */
9702 got_address
= (htab
->sgotplt
->output_section
->vma
9703 + htab
->sgotplt
->output_offset
9706 /* Calculate the offset of the .got.plt entry from
9707 _GLOBAL_OFFSET_TABLE_. */
9708 got_offset
= mips_elf_gotplt_index (info
, h
);
9710 /* Calculate the offset for the branch at the start of the PLT
9711 entry. The branch jumps to the beginning of .plt. */
9712 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
9714 /* Fill in the initial value of the .got.plt entry. */
9715 bfd_put_32 (output_bfd
, plt_address
,
9716 htab
->sgotplt
->contents
+ plt_index
* 4);
9718 /* Find out where the .plt entry should go. */
9719 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9723 plt_entry
= mips_vxworks_shared_plt_entry
;
9724 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9725 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9729 bfd_vma got_address_high
, got_address_low
;
9731 plt_entry
= mips_vxworks_exec_plt_entry
;
9732 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9733 got_address_low
= got_address
& 0xffff;
9735 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9736 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9737 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
9738 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
9739 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9740 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9741 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9742 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9744 loc
= (htab
->srelplt2
->contents
9745 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
9747 /* Emit a relocation for the .got.plt entry. */
9748 rel
.r_offset
= got_address
;
9749 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9750 rel
.r_addend
= h
->plt
.offset
;
9751 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9753 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9754 loc
+= sizeof (Elf32_External_Rela
);
9755 rel
.r_offset
= plt_address
+ 8;
9756 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9757 rel
.r_addend
= got_offset
;
9758 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9760 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9761 loc
+= sizeof (Elf32_External_Rela
);
9763 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9764 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9767 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9768 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
9769 rel
.r_offset
= got_address
;
9770 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
9772 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9774 if (!h
->def_regular
)
9775 sym
->st_shndx
= SHN_UNDEF
;
9778 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
9782 BFD_ASSERT (g
!= NULL
);
9784 /* See if this symbol has an entry in the GOT. */
9785 if (g
->global_gotsym
!= NULL
9786 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9789 Elf_Internal_Rela outrel
;
9793 /* Install the symbol value in the GOT. */
9794 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9795 R_MIPS_GOT16
, info
);
9796 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
9798 /* Add a dynamic relocation for it. */
9799 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9800 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
9801 outrel
.r_offset
= (sgot
->output_section
->vma
9802 + sgot
->output_offset
9804 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
9805 outrel
.r_addend
= 0;
9806 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
9809 /* Emit a copy reloc, if needed. */
9812 Elf_Internal_Rela rel
;
9814 BFD_ASSERT (h
->dynindx
!= -1);
9816 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
9817 + h
->root
.u
.def
.section
->output_offset
9818 + h
->root
.u
.def
.value
);
9819 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
9821 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
9822 htab
->srelbss
->contents
9823 + (htab
->srelbss
->reloc_count
9824 * sizeof (Elf32_External_Rela
)));
9825 ++htab
->srelbss
->reloc_count
;
9828 /* If this is a mips16 symbol, force the value to be even. */
9829 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9830 sym
->st_value
&= ~1;
9835 /* Write out a plt0 entry to the beginning of .plt. */
9838 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9841 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
9842 static const bfd_vma
*plt_entry
;
9843 struct mips_elf_link_hash_table
*htab
;
9845 htab
= mips_elf_hash_table (info
);
9846 if (ABI_64_P (output_bfd
))
9847 plt_entry
= mips_n64_exec_plt0_entry
;
9848 else if (ABI_N32_P (output_bfd
))
9849 plt_entry
= mips_n32_exec_plt0_entry
;
9851 plt_entry
= mips_o32_exec_plt0_entry
;
9853 /* Calculate the value of .got.plt. */
9854 gotplt_value
= (htab
->sgotplt
->output_section
->vma
9855 + htab
->sgotplt
->output_offset
);
9856 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
9857 gotplt_value_low
= gotplt_value
& 0xffff;
9859 /* The PLT sequence is not safe for N64 if .got.plt's address can
9860 not be loaded in two instructions. */
9861 BFD_ASSERT ((gotplt_value
& ~(bfd_vma
) 0x7fffffff) == 0
9862 || ~(gotplt_value
| 0x7fffffff) == 0);
9864 /* Install the PLT header. */
9865 loc
= htab
->splt
->contents
;
9866 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
9867 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
9868 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
9869 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9870 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9871 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9872 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9873 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9876 /* Install the PLT header for a VxWorks executable and finalize the
9877 contents of .rela.plt.unloaded. */
9880 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9882 Elf_Internal_Rela rela
;
9884 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
9885 static const bfd_vma
*plt_entry
;
9886 struct mips_elf_link_hash_table
*htab
;
9888 htab
= mips_elf_hash_table (info
);
9889 plt_entry
= mips_vxworks_exec_plt0_entry
;
9891 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9892 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
9893 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
9894 + htab
->root
.hgot
->root
.u
.def
.value
);
9896 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
9897 got_value_low
= got_value
& 0xffff;
9899 /* Calculate the address of the PLT header. */
9900 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
9902 /* Install the PLT header. */
9903 loc
= htab
->splt
->contents
;
9904 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
9905 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
9906 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
9907 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9908 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9909 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9911 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9912 loc
= htab
->srelplt2
->contents
;
9913 rela
.r_offset
= plt_address
;
9914 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9916 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9917 loc
+= sizeof (Elf32_External_Rela
);
9919 /* Output the relocation for the following addiu of
9920 %lo(_GLOBAL_OFFSET_TABLE_). */
9922 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9923 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9924 loc
+= sizeof (Elf32_External_Rela
);
9926 /* Fix up the remaining relocations. They may have the wrong
9927 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9928 in which symbols were output. */
9929 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
9931 Elf_Internal_Rela rel
;
9933 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9934 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9935 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9936 loc
+= sizeof (Elf32_External_Rela
);
9938 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9939 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9940 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9941 loc
+= sizeof (Elf32_External_Rela
);
9943 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9944 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9945 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9946 loc
+= sizeof (Elf32_External_Rela
);
9950 /* Install the PLT header for a VxWorks shared library. */
9953 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9956 struct mips_elf_link_hash_table
*htab
;
9958 htab
= mips_elf_hash_table (info
);
9960 /* We just need to copy the entry byte-by-byte. */
9961 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
9962 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
9963 htab
->splt
->contents
+ i
* 4);
9966 /* Finish up the dynamic sections. */
9969 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
9970 struct bfd_link_info
*info
)
9975 struct mips_got_info
*gg
, *g
;
9976 struct mips_elf_link_hash_table
*htab
;
9978 htab
= mips_elf_hash_table (info
);
9979 dynobj
= elf_hash_table (info
)->dynobj
;
9981 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
9984 gg
= htab
->got_info
;
9986 if (elf_hash_table (info
)->dynamic_sections_created
)
9989 int dyn_to_skip
= 0, dyn_skipped
= 0;
9991 BFD_ASSERT (sdyn
!= NULL
);
9992 BFD_ASSERT (gg
!= NULL
);
9994 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
9995 BFD_ASSERT (g
!= NULL
);
9997 for (b
= sdyn
->contents
;
9998 b
< sdyn
->contents
+ sdyn
->size
;
9999 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10001 Elf_Internal_Dyn dyn
;
10005 bfd_boolean swap_out_p
;
10007 /* Read in the current dynamic entry. */
10008 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10010 /* Assume that we're going to modify it and write it out. */
10016 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
10020 BFD_ASSERT (htab
->is_vxworks
);
10021 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
10025 /* Rewrite DT_STRSZ. */
10027 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
10032 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10035 case DT_MIPS_PLTGOT
:
10037 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10040 case DT_MIPS_RLD_VERSION
:
10041 dyn
.d_un
.d_val
= 1; /* XXX */
10044 case DT_MIPS_FLAGS
:
10045 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
10048 case DT_MIPS_TIME_STAMP
:
10052 dyn
.d_un
.d_val
= t
;
10056 case DT_MIPS_ICHECKSUM
:
10058 swap_out_p
= FALSE
;
10061 case DT_MIPS_IVERSION
:
10063 swap_out_p
= FALSE
;
10066 case DT_MIPS_BASE_ADDRESS
:
10067 s
= output_bfd
->sections
;
10068 BFD_ASSERT (s
!= NULL
);
10069 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
10072 case DT_MIPS_LOCAL_GOTNO
:
10073 dyn
.d_un
.d_val
= g
->local_gotno
;
10076 case DT_MIPS_UNREFEXTNO
:
10077 /* The index into the dynamic symbol table which is the
10078 entry of the first external symbol that is not
10079 referenced within the same object. */
10080 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
10083 case DT_MIPS_GOTSYM
:
10084 if (gg
->global_gotsym
)
10086 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
10089 /* In case if we don't have global got symbols we default
10090 to setting DT_MIPS_GOTSYM to the same value as
10091 DT_MIPS_SYMTABNO, so we just fall through. */
10093 case DT_MIPS_SYMTABNO
:
10095 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
10096 s
= bfd_get_section_by_name (output_bfd
, name
);
10097 BFD_ASSERT (s
!= NULL
);
10099 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
10102 case DT_MIPS_HIPAGENO
:
10103 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
10106 case DT_MIPS_RLD_MAP
:
10107 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
10110 case DT_MIPS_OPTIONS
:
10111 s
= (bfd_get_section_by_name
10112 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
10113 dyn
.d_un
.d_ptr
= s
->vma
;
10117 BFD_ASSERT (htab
->is_vxworks
);
10118 /* The count does not include the JUMP_SLOT relocations. */
10120 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
10124 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10125 if (htab
->is_vxworks
)
10126 dyn
.d_un
.d_val
= DT_RELA
;
10128 dyn
.d_un
.d_val
= DT_REL
;
10132 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10133 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
10137 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10138 dyn
.d_un
.d_ptr
= (htab
->srelplt
->output_section
->vma
10139 + htab
->srelplt
->output_offset
);
10143 /* If we didn't need any text relocations after all, delete
10144 the dynamic tag. */
10145 if (!(info
->flags
& DF_TEXTREL
))
10147 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10148 swap_out_p
= FALSE
;
10153 /* If we didn't need any text relocations after all, clear
10154 DF_TEXTREL from DT_FLAGS. */
10155 if (!(info
->flags
& DF_TEXTREL
))
10156 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
10158 swap_out_p
= FALSE
;
10162 swap_out_p
= FALSE
;
10163 if (htab
->is_vxworks
10164 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10169 if (swap_out_p
|| dyn_skipped
)
10170 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10171 (dynobj
, &dyn
, b
- dyn_skipped
);
10175 dyn_skipped
+= dyn_to_skip
;
10180 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10181 if (dyn_skipped
> 0)
10182 memset (b
- dyn_skipped
, 0, dyn_skipped
);
10185 if (sgot
!= NULL
&& sgot
->size
> 0
10186 && !bfd_is_abs_section (sgot
->output_section
))
10188 if (htab
->is_vxworks
)
10190 /* The first entry of the global offset table points to the
10191 ".dynamic" section. The second is initialized by the
10192 loader and contains the shared library identifier.
10193 The third is also initialized by the loader and points
10194 to the lazy resolution stub. */
10195 MIPS_ELF_PUT_WORD (output_bfd
,
10196 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
10198 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10199 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10200 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10202 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
10206 /* The first entry of the global offset table will be filled at
10207 runtime. The second entry will be used by some runtime loaders.
10208 This isn't the case of IRIX rld. */
10209 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10210 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10211 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10214 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
10215 = MIPS_ELF_GOT_SIZE (output_bfd
);
10218 /* Generate dynamic relocations for the non-primary gots. */
10219 if (gg
!= NULL
&& gg
->next
)
10221 Elf_Internal_Rela rel
[3];
10222 bfd_vma addend
= 0;
10224 memset (rel
, 0, sizeof (rel
));
10225 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
10227 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
10229 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
10230 + g
->next
->tls_gotno
;
10232 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
10233 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10234 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10236 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10238 if (! info
->shared
)
10241 while (index
< g
->assigned_gotno
)
10243 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
10244 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
10245 if (!(mips_elf_create_dynamic_relocation
10246 (output_bfd
, info
, rel
, NULL
,
10247 bfd_abs_section_ptr
,
10248 0, &addend
, sgot
)))
10250 BFD_ASSERT (addend
== 0);
10255 /* The generation of dynamic relocations for the non-primary gots
10256 adds more dynamic relocations. We cannot count them until
10259 if (elf_hash_table (info
)->dynamic_sections_created
)
10262 bfd_boolean swap_out_p
;
10264 BFD_ASSERT (sdyn
!= NULL
);
10266 for (b
= sdyn
->contents
;
10267 b
< sdyn
->contents
+ sdyn
->size
;
10268 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10270 Elf_Internal_Dyn dyn
;
10273 /* Read in the current dynamic entry. */
10274 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10276 /* Assume that we're going to modify it and write it out. */
10282 /* Reduce DT_RELSZ to account for any relocations we
10283 decided not to make. This is for the n64 irix rld,
10284 which doesn't seem to apply any relocations if there
10285 are trailing null entries. */
10286 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10287 dyn
.d_un
.d_val
= (s
->reloc_count
10288 * (ABI_64_P (output_bfd
)
10289 ? sizeof (Elf64_Mips_External_Rel
)
10290 : sizeof (Elf32_External_Rel
)));
10291 /* Adjust the section size too. Tools like the prelinker
10292 can reasonably expect the values to the same. */
10293 elf_section_data (s
->output_section
)->this_hdr
.sh_size
10298 swap_out_p
= FALSE
;
10303 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10310 Elf32_compact_rel cpt
;
10312 if (SGI_COMPAT (output_bfd
))
10314 /* Write .compact_rel section out. */
10315 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
10319 cpt
.num
= s
->reloc_count
;
10321 cpt
.offset
= (s
->output_section
->filepos
10322 + sizeof (Elf32_External_compact_rel
));
10325 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
10326 ((Elf32_External_compact_rel
*)
10329 /* Clean up a dummy stub function entry in .text. */
10330 if (htab
->sstubs
!= NULL
)
10332 file_ptr dummy_offset
;
10334 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
10335 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
10336 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
10337 htab
->function_stub_size
);
10342 /* The psABI says that the dynamic relocations must be sorted in
10343 increasing order of r_symndx. The VxWorks EABI doesn't require
10344 this, and because the code below handles REL rather than RELA
10345 relocations, using it for VxWorks would be outright harmful. */
10346 if (!htab
->is_vxworks
)
10348 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10350 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
10352 reldyn_sorting_bfd
= output_bfd
;
10354 if (ABI_64_P (output_bfd
))
10355 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
10356 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
10357 sort_dynamic_relocs_64
);
10359 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
10360 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
10361 sort_dynamic_relocs
);
10366 if (htab
->splt
&& htab
->splt
->size
> 0)
10368 if (htab
->is_vxworks
)
10371 mips_vxworks_finish_shared_plt (output_bfd
, info
);
10373 mips_vxworks_finish_exec_plt (output_bfd
, info
);
10377 BFD_ASSERT (!info
->shared
);
10378 mips_finish_exec_plt (output_bfd
, info
);
10385 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10388 mips_set_isa_flags (bfd
*abfd
)
10392 switch (bfd_get_mach (abfd
))
10395 case bfd_mach_mips3000
:
10396 val
= E_MIPS_ARCH_1
;
10399 case bfd_mach_mips3900
:
10400 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
10403 case bfd_mach_mips6000
:
10404 val
= E_MIPS_ARCH_2
;
10407 case bfd_mach_mips4000
:
10408 case bfd_mach_mips4300
:
10409 case bfd_mach_mips4400
:
10410 case bfd_mach_mips4600
:
10411 val
= E_MIPS_ARCH_3
;
10414 case bfd_mach_mips4010
:
10415 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
10418 case bfd_mach_mips4100
:
10419 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
10422 case bfd_mach_mips4111
:
10423 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
10426 case bfd_mach_mips4120
:
10427 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
10430 case bfd_mach_mips4650
:
10431 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
10434 case bfd_mach_mips5400
:
10435 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
10438 case bfd_mach_mips5500
:
10439 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
10442 case bfd_mach_mips9000
:
10443 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
10446 case bfd_mach_mips5000
:
10447 case bfd_mach_mips7000
:
10448 case bfd_mach_mips8000
:
10449 case bfd_mach_mips10000
:
10450 case bfd_mach_mips12000
:
10451 case bfd_mach_mips14000
:
10452 case bfd_mach_mips16000
:
10453 val
= E_MIPS_ARCH_4
;
10456 case bfd_mach_mips5
:
10457 val
= E_MIPS_ARCH_5
;
10460 case bfd_mach_mips_loongson_2e
:
10461 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
10464 case bfd_mach_mips_loongson_2f
:
10465 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
10468 case bfd_mach_mips_sb1
:
10469 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
10472 case bfd_mach_mips_octeon
:
10473 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
10476 case bfd_mach_mips_xlr
:
10477 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
10480 case bfd_mach_mipsisa32
:
10481 val
= E_MIPS_ARCH_32
;
10484 case bfd_mach_mipsisa64
:
10485 val
= E_MIPS_ARCH_64
;
10488 case bfd_mach_mipsisa32r2
:
10489 val
= E_MIPS_ARCH_32R2
;
10492 case bfd_mach_mipsisa64r2
:
10493 val
= E_MIPS_ARCH_64R2
;
10496 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10497 elf_elfheader (abfd
)->e_flags
|= val
;
10502 /* The final processing done just before writing out a MIPS ELF object
10503 file. This gets the MIPS architecture right based on the machine
10504 number. This is used by both the 32-bit and the 64-bit ABI. */
10507 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
10508 bfd_boolean linker ATTRIBUTE_UNUSED
)
10511 Elf_Internal_Shdr
**hdrpp
;
10515 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10516 is nonzero. This is for compatibility with old objects, which used
10517 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10518 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
10519 mips_set_isa_flags (abfd
);
10521 /* Set the sh_info field for .gptab sections and other appropriate
10522 info for each special section. */
10523 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
10524 i
< elf_numsections (abfd
);
10527 switch ((*hdrpp
)->sh_type
)
10529 case SHT_MIPS_MSYM
:
10530 case SHT_MIPS_LIBLIST
:
10531 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
10533 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10536 case SHT_MIPS_GPTAB
:
10537 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10538 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10539 BFD_ASSERT (name
!= NULL
10540 && CONST_STRNEQ (name
, ".gptab."));
10541 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
10542 BFD_ASSERT (sec
!= NULL
);
10543 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10546 case SHT_MIPS_CONTENT
:
10547 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10548 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10549 BFD_ASSERT (name
!= NULL
10550 && CONST_STRNEQ (name
, ".MIPS.content"));
10551 sec
= bfd_get_section_by_name (abfd
,
10552 name
+ sizeof ".MIPS.content" - 1);
10553 BFD_ASSERT (sec
!= NULL
);
10554 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10557 case SHT_MIPS_SYMBOL_LIB
:
10558 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
10560 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10561 sec
= bfd_get_section_by_name (abfd
, ".liblist");
10563 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10566 case SHT_MIPS_EVENTS
:
10567 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10568 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10569 BFD_ASSERT (name
!= NULL
);
10570 if (CONST_STRNEQ (name
, ".MIPS.events"))
10571 sec
= bfd_get_section_by_name (abfd
,
10572 name
+ sizeof ".MIPS.events" - 1);
10575 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
10576 sec
= bfd_get_section_by_name (abfd
,
10578 + sizeof ".MIPS.post_rel" - 1));
10580 BFD_ASSERT (sec
!= NULL
);
10581 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10588 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10592 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
10593 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
10598 /* See if we need a PT_MIPS_REGINFO segment. */
10599 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10600 if (s
&& (s
->flags
& SEC_LOAD
))
10603 /* See if we need a PT_MIPS_OPTIONS segment. */
10604 if (IRIX_COMPAT (abfd
) == ict_irix6
10605 && bfd_get_section_by_name (abfd
,
10606 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
10609 /* See if we need a PT_MIPS_RTPROC segment. */
10610 if (IRIX_COMPAT (abfd
) == ict_irix5
10611 && bfd_get_section_by_name (abfd
, ".dynamic")
10612 && bfd_get_section_by_name (abfd
, ".mdebug"))
10615 /* Allocate a PT_NULL header in dynamic objects. See
10616 _bfd_mips_elf_modify_segment_map for details. */
10617 if (!SGI_COMPAT (abfd
)
10618 && bfd_get_section_by_name (abfd
, ".dynamic"))
10624 /* Modify the segment map for an IRIX5 executable. */
10627 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
10628 struct bfd_link_info
*info
)
10631 struct elf_segment_map
*m
, **pm
;
10634 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10636 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10637 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10639 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10640 if (m
->p_type
== PT_MIPS_REGINFO
)
10645 m
= bfd_zalloc (abfd
, amt
);
10649 m
->p_type
= PT_MIPS_REGINFO
;
10651 m
->sections
[0] = s
;
10653 /* We want to put it after the PHDR and INTERP segments. */
10654 pm
= &elf_tdata (abfd
)->segment_map
;
10656 && ((*pm
)->p_type
== PT_PHDR
10657 || (*pm
)->p_type
== PT_INTERP
))
10665 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10666 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10667 PT_MIPS_OPTIONS segment immediately following the program header
10669 if (NEWABI_P (abfd
)
10670 /* On non-IRIX6 new abi, we'll have already created a segment
10671 for this section, so don't create another. I'm not sure this
10672 is not also the case for IRIX 6, but I can't test it right
10674 && IRIX_COMPAT (abfd
) == ict_irix6
)
10676 for (s
= abfd
->sections
; s
; s
= s
->next
)
10677 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
10682 struct elf_segment_map
*options_segment
;
10684 pm
= &elf_tdata (abfd
)->segment_map
;
10686 && ((*pm
)->p_type
== PT_PHDR
10687 || (*pm
)->p_type
== PT_INTERP
))
10690 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
10692 amt
= sizeof (struct elf_segment_map
);
10693 options_segment
= bfd_zalloc (abfd
, amt
);
10694 options_segment
->next
= *pm
;
10695 options_segment
->p_type
= PT_MIPS_OPTIONS
;
10696 options_segment
->p_flags
= PF_R
;
10697 options_segment
->p_flags_valid
= TRUE
;
10698 options_segment
->count
= 1;
10699 options_segment
->sections
[0] = s
;
10700 *pm
= options_segment
;
10706 if (IRIX_COMPAT (abfd
) == ict_irix5
)
10708 /* If there are .dynamic and .mdebug sections, we make a room
10709 for the RTPROC header. FIXME: Rewrite without section names. */
10710 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
10711 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
10712 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
10714 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10715 if (m
->p_type
== PT_MIPS_RTPROC
)
10720 m
= bfd_zalloc (abfd
, amt
);
10724 m
->p_type
= PT_MIPS_RTPROC
;
10726 s
= bfd_get_section_by_name (abfd
, ".rtproc");
10731 m
->p_flags_valid
= 1;
10736 m
->sections
[0] = s
;
10739 /* We want to put it after the DYNAMIC segment. */
10740 pm
= &elf_tdata (abfd
)->segment_map
;
10741 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
10751 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10752 .dynstr, .dynsym, and .hash sections, and everything in
10754 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
10756 if ((*pm
)->p_type
== PT_DYNAMIC
)
10759 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
10761 /* For a normal mips executable the permissions for the PT_DYNAMIC
10762 segment are read, write and execute. We do that here since
10763 the code in elf.c sets only the read permission. This matters
10764 sometimes for the dynamic linker. */
10765 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
10767 m
->p_flags
= PF_R
| PF_W
| PF_X
;
10768 m
->p_flags_valid
= 1;
10771 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10772 glibc's dynamic linker has traditionally derived the number of
10773 tags from the p_filesz field, and sometimes allocates stack
10774 arrays of that size. An overly-big PT_DYNAMIC segment can
10775 be actively harmful in such cases. Making PT_DYNAMIC contain
10776 other sections can also make life hard for the prelinker,
10777 which might move one of the other sections to a different
10778 PT_LOAD segment. */
10779 if (SGI_COMPAT (abfd
)
10782 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
10784 static const char *sec_names
[] =
10786 ".dynamic", ".dynstr", ".dynsym", ".hash"
10790 struct elf_segment_map
*n
;
10792 low
= ~(bfd_vma
) 0;
10794 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
10796 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
10797 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10804 if (high
< s
->vma
+ sz
)
10805 high
= s
->vma
+ sz
;
10810 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10811 if ((s
->flags
& SEC_LOAD
) != 0
10813 && s
->vma
+ s
->size
<= high
)
10816 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
10817 n
= bfd_zalloc (abfd
, amt
);
10824 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10826 if ((s
->flags
& SEC_LOAD
) != 0
10828 && s
->vma
+ s
->size
<= high
)
10830 n
->sections
[i
] = s
;
10839 /* Allocate a spare program header in dynamic objects so that tools
10840 like the prelinker can add an extra PT_LOAD entry.
10842 If the prelinker needs to make room for a new PT_LOAD entry, its
10843 standard procedure is to move the first (read-only) sections into
10844 the new (writable) segment. However, the MIPS ABI requires
10845 .dynamic to be in a read-only segment, and the section will often
10846 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10848 Although the prelinker could in principle move .dynamic to a
10849 writable segment, it seems better to allocate a spare program
10850 header instead, and avoid the need to move any sections.
10851 There is a long tradition of allocating spare dynamic tags,
10852 so allocating a spare program header seems like a natural
10855 If INFO is NULL, we may be copying an already prelinked binary
10856 with objcopy or strip, so do not add this header. */
10858 && !SGI_COMPAT (abfd
)
10859 && bfd_get_section_by_name (abfd
, ".dynamic"))
10861 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
10862 if ((*pm
)->p_type
== PT_NULL
)
10866 m
= bfd_zalloc (abfd
, sizeof (*m
));
10870 m
->p_type
= PT_NULL
;
10878 /* Return the section that should be marked against GC for a given
10882 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
10883 struct bfd_link_info
*info
,
10884 Elf_Internal_Rela
*rel
,
10885 struct elf_link_hash_entry
*h
,
10886 Elf_Internal_Sym
*sym
)
10888 /* ??? Do mips16 stub sections need to be handled special? */
10891 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
10893 case R_MIPS_GNU_VTINHERIT
:
10894 case R_MIPS_GNU_VTENTRY
:
10898 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10901 /* Update the got entry reference counts for the section being removed. */
10904 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
10905 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
10906 asection
*sec ATTRIBUTE_UNUSED
,
10907 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
10910 Elf_Internal_Shdr
*symtab_hdr
;
10911 struct elf_link_hash_entry
**sym_hashes
;
10912 bfd_signed_vma
*local_got_refcounts
;
10913 const Elf_Internal_Rela
*rel
, *relend
;
10914 unsigned long r_symndx
;
10915 struct elf_link_hash_entry
*h
;
10917 if (info
->relocatable
)
10920 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10921 sym_hashes
= elf_sym_hashes (abfd
);
10922 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10924 relend
= relocs
+ sec
->reloc_count
;
10925 for (rel
= relocs
; rel
< relend
; rel
++)
10926 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
10928 case R_MIPS16_GOT16
:
10929 case R_MIPS16_CALL16
:
10931 case R_MIPS_CALL16
:
10932 case R_MIPS_CALL_HI16
:
10933 case R_MIPS_CALL_LO16
:
10934 case R_MIPS_GOT_HI16
:
10935 case R_MIPS_GOT_LO16
:
10936 case R_MIPS_GOT_DISP
:
10937 case R_MIPS_GOT_PAGE
:
10938 case R_MIPS_GOT_OFST
:
10939 /* ??? It would seem that the existing MIPS code does no sort
10940 of reference counting or whatnot on its GOT and PLT entries,
10941 so it is not possible to garbage collect them at this time. */
10952 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10953 hiding the old indirect symbol. Process additional relocation
10954 information. Also called for weakdefs, in which case we just let
10955 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10958 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
10959 struct elf_link_hash_entry
*dir
,
10960 struct elf_link_hash_entry
*ind
)
10962 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
10964 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
10966 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
10967 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
10968 /* Any absolute non-dynamic relocations against an indirect or weak
10969 definition will be against the target symbol. */
10970 if (indmips
->has_static_relocs
)
10971 dirmips
->has_static_relocs
= TRUE
;
10973 if (ind
->root
.type
!= bfd_link_hash_indirect
)
10976 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
10977 if (indmips
->readonly_reloc
)
10978 dirmips
->readonly_reloc
= TRUE
;
10979 if (indmips
->no_fn_stub
)
10980 dirmips
->no_fn_stub
= TRUE
;
10981 if (indmips
->fn_stub
)
10983 dirmips
->fn_stub
= indmips
->fn_stub
;
10984 indmips
->fn_stub
= NULL
;
10986 if (indmips
->need_fn_stub
)
10988 dirmips
->need_fn_stub
= TRUE
;
10989 indmips
->need_fn_stub
= FALSE
;
10991 if (indmips
->call_stub
)
10993 dirmips
->call_stub
= indmips
->call_stub
;
10994 indmips
->call_stub
= NULL
;
10996 if (indmips
->call_fp_stub
)
10998 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
10999 indmips
->call_fp_stub
= NULL
;
11001 if (indmips
->global_got_area
< dirmips
->global_got_area
)
11002 dirmips
->global_got_area
= indmips
->global_got_area
;
11003 if (indmips
->global_got_area
< GGA_NONE
)
11004 indmips
->global_got_area
= GGA_NONE
;
11005 if (indmips
->has_nonpic_branches
)
11006 dirmips
->has_nonpic_branches
= TRUE
;
11008 if (dirmips
->tls_type
== 0)
11009 dirmips
->tls_type
= indmips
->tls_type
;
11012 #define PDR_SIZE 32
11015 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
11016 struct bfd_link_info
*info
)
11019 bfd_boolean ret
= FALSE
;
11020 unsigned char *tdata
;
11023 o
= bfd_get_section_by_name (abfd
, ".pdr");
11028 if (o
->size
% PDR_SIZE
!= 0)
11030 if (o
->output_section
!= NULL
11031 && bfd_is_abs_section (o
->output_section
))
11034 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
11038 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
11039 info
->keep_memory
);
11046 cookie
->rel
= cookie
->rels
;
11047 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
11049 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
11051 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
11060 mips_elf_section_data (o
)->u
.tdata
= tdata
;
11061 o
->size
-= skip
* PDR_SIZE
;
11067 if (! info
->keep_memory
)
11068 free (cookie
->rels
);
11074 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
11076 if (strcmp (sec
->name
, ".pdr") == 0)
11082 _bfd_mips_elf_write_section (bfd
*output_bfd
,
11083 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
11084 asection
*sec
, bfd_byte
*contents
)
11086 bfd_byte
*to
, *from
, *end
;
11089 if (strcmp (sec
->name
, ".pdr") != 0)
11092 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
11096 end
= contents
+ sec
->size
;
11097 for (from
= contents
, i
= 0;
11099 from
+= PDR_SIZE
, i
++)
11101 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
11104 memcpy (to
, from
, PDR_SIZE
);
11107 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
11108 sec
->output_offset
, sec
->size
);
11112 /* MIPS ELF uses a special find_nearest_line routine in order the
11113 handle the ECOFF debugging information. */
11115 struct mips_elf_find_line
11117 struct ecoff_debug_info d
;
11118 struct ecoff_find_line i
;
11122 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
11123 asymbol
**symbols
, bfd_vma offset
,
11124 const char **filename_ptr
,
11125 const char **functionname_ptr
,
11126 unsigned int *line_ptr
)
11130 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
11131 filename_ptr
, functionname_ptr
,
11135 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11136 filename_ptr
, functionname_ptr
,
11137 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
11138 &elf_tdata (abfd
)->dwarf2_find_line_info
))
11141 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
11144 flagword origflags
;
11145 struct mips_elf_find_line
*fi
;
11146 const struct ecoff_debug_swap
* const swap
=
11147 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
11149 /* If we are called during a link, mips_elf_final_link may have
11150 cleared the SEC_HAS_CONTENTS field. We force it back on here
11151 if appropriate (which it normally will be). */
11152 origflags
= msec
->flags
;
11153 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
11154 msec
->flags
|= SEC_HAS_CONTENTS
;
11156 fi
= elf_tdata (abfd
)->find_line_info
;
11159 bfd_size_type external_fdr_size
;
11162 struct fdr
*fdr_ptr
;
11163 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
11165 fi
= bfd_zalloc (abfd
, amt
);
11168 msec
->flags
= origflags
;
11172 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
11174 msec
->flags
= origflags
;
11178 /* Swap in the FDR information. */
11179 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
11180 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
11181 if (fi
->d
.fdr
== NULL
)
11183 msec
->flags
= origflags
;
11186 external_fdr_size
= swap
->external_fdr_size
;
11187 fdr_ptr
= fi
->d
.fdr
;
11188 fraw_src
= (char *) fi
->d
.external_fdr
;
11189 fraw_end
= (fraw_src
11190 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
11191 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
11192 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
11194 elf_tdata (abfd
)->find_line_info
= fi
;
11196 /* Note that we don't bother to ever free this information.
11197 find_nearest_line is either called all the time, as in
11198 objdump -l, so the information should be saved, or it is
11199 rarely called, as in ld error messages, so the memory
11200 wasted is unimportant. Still, it would probably be a
11201 good idea for free_cached_info to throw it away. */
11204 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
11205 &fi
->i
, filename_ptr
, functionname_ptr
,
11208 msec
->flags
= origflags
;
11212 msec
->flags
= origflags
;
11215 /* Fall back on the generic ELF find_nearest_line routine. */
11217 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
11218 filename_ptr
, functionname_ptr
,
11223 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
11224 const char **filename_ptr
,
11225 const char **functionname_ptr
,
11226 unsigned int *line_ptr
)
11229 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11230 functionname_ptr
, line_ptr
,
11231 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11236 /* When are writing out the .options or .MIPS.options section,
11237 remember the bytes we are writing out, so that we can install the
11238 GP value in the section_processing routine. */
11241 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
11242 const void *location
,
11243 file_ptr offset
, bfd_size_type count
)
11245 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
11249 if (elf_section_data (section
) == NULL
)
11251 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
11252 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
11253 if (elf_section_data (section
) == NULL
)
11256 c
= mips_elf_section_data (section
)->u
.tdata
;
11259 c
= bfd_zalloc (abfd
, section
->size
);
11262 mips_elf_section_data (section
)->u
.tdata
= c
;
11265 memcpy (c
+ offset
, location
, count
);
11268 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
11272 /* This is almost identical to bfd_generic_get_... except that some
11273 MIPS relocations need to be handled specially. Sigh. */
11276 _bfd_elf_mips_get_relocated_section_contents
11278 struct bfd_link_info
*link_info
,
11279 struct bfd_link_order
*link_order
,
11281 bfd_boolean relocatable
,
11284 /* Get enough memory to hold the stuff */
11285 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
11286 asection
*input_section
= link_order
->u
.indirect
.section
;
11289 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
11290 arelent
**reloc_vector
= NULL
;
11293 if (reloc_size
< 0)
11296 reloc_vector
= bfd_malloc (reloc_size
);
11297 if (reloc_vector
== NULL
&& reloc_size
!= 0)
11300 /* read in the section */
11301 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
11302 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
11305 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
11309 if (reloc_count
< 0)
11312 if (reloc_count
> 0)
11317 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
11320 struct bfd_hash_entry
*h
;
11321 struct bfd_link_hash_entry
*lh
;
11322 /* Skip all this stuff if we aren't mixing formats. */
11323 if (abfd
&& input_bfd
11324 && abfd
->xvec
== input_bfd
->xvec
)
11328 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
11329 lh
= (struct bfd_link_hash_entry
*) h
;
11336 case bfd_link_hash_undefined
:
11337 case bfd_link_hash_undefweak
:
11338 case bfd_link_hash_common
:
11341 case bfd_link_hash_defined
:
11342 case bfd_link_hash_defweak
:
11344 gp
= lh
->u
.def
.value
;
11346 case bfd_link_hash_indirect
:
11347 case bfd_link_hash_warning
:
11349 /* @@FIXME ignoring warning for now */
11351 case bfd_link_hash_new
:
11360 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
11362 char *error_message
= NULL
;
11363 bfd_reloc_status_type r
;
11365 /* Specific to MIPS: Deal with relocation types that require
11366 knowing the gp of the output bfd. */
11367 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
11369 /* If we've managed to find the gp and have a special
11370 function for the relocation then go ahead, else default
11371 to the generic handling. */
11373 && (*parent
)->howto
->special_function
11374 == _bfd_mips_elf32_gprel16_reloc
)
11375 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
11376 input_section
, relocatable
,
11379 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
11381 relocatable
? abfd
: NULL
,
11386 asection
*os
= input_section
->output_section
;
11388 /* A partial link, so keep the relocs */
11389 os
->orelocation
[os
->reloc_count
] = *parent
;
11393 if (r
!= bfd_reloc_ok
)
11397 case bfd_reloc_undefined
:
11398 if (!((*link_info
->callbacks
->undefined_symbol
)
11399 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11400 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
11403 case bfd_reloc_dangerous
:
11404 BFD_ASSERT (error_message
!= NULL
);
11405 if (!((*link_info
->callbacks
->reloc_dangerous
)
11406 (link_info
, error_message
, input_bfd
, input_section
,
11407 (*parent
)->address
)))
11410 case bfd_reloc_overflow
:
11411 if (!((*link_info
->callbacks
->reloc_overflow
)
11413 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11414 (*parent
)->howto
->name
, (*parent
)->addend
,
11415 input_bfd
, input_section
, (*parent
)->address
)))
11418 case bfd_reloc_outofrange
:
11427 if (reloc_vector
!= NULL
)
11428 free (reloc_vector
);
11432 if (reloc_vector
!= NULL
)
11433 free (reloc_vector
);
11437 /* Allocate ABFD's target-dependent data. */
11440 _bfd_mips_elf_mkobject (bfd
*abfd
)
11442 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
11446 /* Create a MIPS ELF linker hash table. */
11448 struct bfd_link_hash_table
*
11449 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
11451 struct mips_elf_link_hash_table
*ret
;
11452 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
11454 ret
= bfd_malloc (amt
);
11458 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
11459 mips_elf_link_hash_newfunc
,
11460 sizeof (struct mips_elf_link_hash_entry
)))
11467 /* We no longer use this. */
11468 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
11469 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
11471 ret
->procedure_count
= 0;
11472 ret
->compact_rel_size
= 0;
11473 ret
->use_rld_obj_head
= FALSE
;
11474 ret
->rld_value
= 0;
11475 ret
->mips16_stubs_seen
= FALSE
;
11476 ret
->use_plts_and_copy_relocs
= FALSE
;
11477 ret
->is_vxworks
= FALSE
;
11478 ret
->small_data_overflow_reported
= FALSE
;
11479 ret
->srelbss
= NULL
;
11480 ret
->sdynbss
= NULL
;
11481 ret
->srelplt
= NULL
;
11482 ret
->srelplt2
= NULL
;
11483 ret
->sgotplt
= NULL
;
11485 ret
->sstubs
= NULL
;
11487 ret
->got_info
= NULL
;
11488 ret
->plt_header_size
= 0;
11489 ret
->plt_entry_size
= 0;
11490 ret
->lazy_stub_count
= 0;
11491 ret
->function_stub_size
= 0;
11492 ret
->strampoline
= NULL
;
11493 ret
->la25_stubs
= NULL
;
11494 ret
->add_stub_section
= NULL
;
11496 return &ret
->root
.root
;
11499 /* Likewise, but indicate that the target is VxWorks. */
11501 struct bfd_link_hash_table
*
11502 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
11504 struct bfd_link_hash_table
*ret
;
11506 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
11509 struct mips_elf_link_hash_table
*htab
;
11511 htab
= (struct mips_elf_link_hash_table
*) ret
;
11512 htab
->use_plts_and_copy_relocs
= TRUE
;
11513 htab
->is_vxworks
= TRUE
;
11518 /* A function that the linker calls if we are allowed to use PLTs
11519 and copy relocs. */
11522 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
11524 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
11527 /* We need to use a special link routine to handle the .reginfo and
11528 the .mdebug sections. We need to merge all instances of these
11529 sections together, not write them all out sequentially. */
11532 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11535 struct bfd_link_order
*p
;
11536 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
11537 asection
*rtproc_sec
;
11538 Elf32_RegInfo reginfo
;
11539 struct ecoff_debug_info debug
;
11540 struct mips_htab_traverse_info hti
;
11541 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11542 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
11543 HDRR
*symhdr
= &debug
.symbolic_header
;
11544 void *mdebug_handle
= NULL
;
11549 struct mips_elf_link_hash_table
*htab
;
11551 static const char * const secname
[] =
11553 ".text", ".init", ".fini", ".data",
11554 ".rodata", ".sdata", ".sbss", ".bss"
11556 static const int sc
[] =
11558 scText
, scInit
, scFini
, scData
,
11559 scRData
, scSData
, scSBss
, scBss
11562 /* Sort the dynamic symbols so that those with GOT entries come after
11564 htab
= mips_elf_hash_table (info
);
11565 if (!mips_elf_sort_hash_table (abfd
, info
))
11568 /* Create any scheduled LA25 stubs. */
11570 hti
.output_bfd
= abfd
;
11572 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
11576 /* Get a value for the GP register. */
11577 if (elf_gp (abfd
) == 0)
11579 struct bfd_link_hash_entry
*h
;
11581 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
11582 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
11583 elf_gp (abfd
) = (h
->u
.def
.value
11584 + h
->u
.def
.section
->output_section
->vma
11585 + h
->u
.def
.section
->output_offset
);
11586 else if (htab
->is_vxworks
11587 && (h
= bfd_link_hash_lookup (info
->hash
,
11588 "_GLOBAL_OFFSET_TABLE_",
11589 FALSE
, FALSE
, TRUE
))
11590 && h
->type
== bfd_link_hash_defined
)
11591 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
11592 + h
->u
.def
.section
->output_offset
11594 else if (info
->relocatable
)
11596 bfd_vma lo
= MINUS_ONE
;
11598 /* Find the GP-relative section with the lowest offset. */
11599 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11601 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
11604 /* And calculate GP relative to that. */
11605 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
11609 /* If the relocate_section function needs to do a reloc
11610 involving the GP value, it should make a reloc_dangerous
11611 callback to warn that GP is not defined. */
11615 /* Go through the sections and collect the .reginfo and .mdebug
11617 reginfo_sec
= NULL
;
11619 gptab_data_sec
= NULL
;
11620 gptab_bss_sec
= NULL
;
11621 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11623 if (strcmp (o
->name
, ".reginfo") == 0)
11625 memset (®info
, 0, sizeof reginfo
);
11627 /* We have found the .reginfo section in the output file.
11628 Look through all the link_orders comprising it and merge
11629 the information together. */
11630 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11632 asection
*input_section
;
11634 Elf32_External_RegInfo ext
;
11637 if (p
->type
!= bfd_indirect_link_order
)
11639 if (p
->type
== bfd_data_link_order
)
11644 input_section
= p
->u
.indirect
.section
;
11645 input_bfd
= input_section
->owner
;
11647 if (! bfd_get_section_contents (input_bfd
, input_section
,
11648 &ext
, 0, sizeof ext
))
11651 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
11653 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
11654 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
11655 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
11656 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
11657 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
11659 /* ri_gp_value is set by the function
11660 mips_elf32_section_processing when the section is
11661 finally written out. */
11663 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11664 elf_link_input_bfd ignores this section. */
11665 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11668 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11669 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
11671 /* Skip this section later on (I don't think this currently
11672 matters, but someday it might). */
11673 o
->map_head
.link_order
= NULL
;
11678 if (strcmp (o
->name
, ".mdebug") == 0)
11680 struct extsym_info einfo
;
11683 /* We have found the .mdebug section in the output file.
11684 Look through all the link_orders comprising it and merge
11685 the information together. */
11686 symhdr
->magic
= swap
->sym_magic
;
11687 /* FIXME: What should the version stamp be? */
11688 symhdr
->vstamp
= 0;
11689 symhdr
->ilineMax
= 0;
11690 symhdr
->cbLine
= 0;
11691 symhdr
->idnMax
= 0;
11692 symhdr
->ipdMax
= 0;
11693 symhdr
->isymMax
= 0;
11694 symhdr
->ioptMax
= 0;
11695 symhdr
->iauxMax
= 0;
11696 symhdr
->issMax
= 0;
11697 symhdr
->issExtMax
= 0;
11698 symhdr
->ifdMax
= 0;
11700 symhdr
->iextMax
= 0;
11702 /* We accumulate the debugging information itself in the
11703 debug_info structure. */
11705 debug
.external_dnr
= NULL
;
11706 debug
.external_pdr
= NULL
;
11707 debug
.external_sym
= NULL
;
11708 debug
.external_opt
= NULL
;
11709 debug
.external_aux
= NULL
;
11711 debug
.ssext
= debug
.ssext_end
= NULL
;
11712 debug
.external_fdr
= NULL
;
11713 debug
.external_rfd
= NULL
;
11714 debug
.external_ext
= debug
.external_ext_end
= NULL
;
11716 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
11717 if (mdebug_handle
== NULL
)
11721 esym
.cobol_main
= 0;
11725 esym
.asym
.iss
= issNil
;
11726 esym
.asym
.st
= stLocal
;
11727 esym
.asym
.reserved
= 0;
11728 esym
.asym
.index
= indexNil
;
11730 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
11732 esym
.asym
.sc
= sc
[i
];
11733 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
11736 esym
.asym
.value
= s
->vma
;
11737 last
= s
->vma
+ s
->size
;
11740 esym
.asym
.value
= last
;
11741 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
11742 secname
[i
], &esym
))
11746 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11748 asection
*input_section
;
11750 const struct ecoff_debug_swap
*input_swap
;
11751 struct ecoff_debug_info input_debug
;
11755 if (p
->type
!= bfd_indirect_link_order
)
11757 if (p
->type
== bfd_data_link_order
)
11762 input_section
= p
->u
.indirect
.section
;
11763 input_bfd
= input_section
->owner
;
11765 if (!is_mips_elf (input_bfd
))
11767 /* I don't know what a non MIPS ELF bfd would be
11768 doing with a .mdebug section, but I don't really
11769 want to deal with it. */
11773 input_swap
= (get_elf_backend_data (input_bfd
)
11774 ->elf_backend_ecoff_debug_swap
);
11776 BFD_ASSERT (p
->size
== input_section
->size
);
11778 /* The ECOFF linking code expects that we have already
11779 read in the debugging information and set up an
11780 ecoff_debug_info structure, so we do that now. */
11781 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
11785 if (! (bfd_ecoff_debug_accumulate
11786 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
11787 &input_debug
, input_swap
, info
)))
11790 /* Loop through the external symbols. For each one with
11791 interesting information, try to find the symbol in
11792 the linker global hash table and save the information
11793 for the output external symbols. */
11794 eraw_src
= input_debug
.external_ext
;
11795 eraw_end
= (eraw_src
11796 + (input_debug
.symbolic_header
.iextMax
11797 * input_swap
->external_ext_size
));
11799 eraw_src
< eraw_end
;
11800 eraw_src
+= input_swap
->external_ext_size
)
11804 struct mips_elf_link_hash_entry
*h
;
11806 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
11807 if (ext
.asym
.sc
== scNil
11808 || ext
.asym
.sc
== scUndefined
11809 || ext
.asym
.sc
== scSUndefined
)
11812 name
= input_debug
.ssext
+ ext
.asym
.iss
;
11813 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
11814 name
, FALSE
, FALSE
, TRUE
);
11815 if (h
== NULL
|| h
->esym
.ifd
!= -2)
11820 BFD_ASSERT (ext
.ifd
11821 < input_debug
.symbolic_header
.ifdMax
);
11822 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
11828 /* Free up the information we just read. */
11829 free (input_debug
.line
);
11830 free (input_debug
.external_dnr
);
11831 free (input_debug
.external_pdr
);
11832 free (input_debug
.external_sym
);
11833 free (input_debug
.external_opt
);
11834 free (input_debug
.external_aux
);
11835 free (input_debug
.ss
);
11836 free (input_debug
.ssext
);
11837 free (input_debug
.external_fdr
);
11838 free (input_debug
.external_rfd
);
11839 free (input_debug
.external_ext
);
11841 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11842 elf_link_input_bfd ignores this section. */
11843 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11846 if (SGI_COMPAT (abfd
) && info
->shared
)
11848 /* Create .rtproc section. */
11849 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
11850 if (rtproc_sec
== NULL
)
11852 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
11853 | SEC_LINKER_CREATED
| SEC_READONLY
);
11855 rtproc_sec
= bfd_make_section_with_flags (abfd
,
11858 if (rtproc_sec
== NULL
11859 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
11863 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
11869 /* Build the external symbol information. */
11872 einfo
.debug
= &debug
;
11874 einfo
.failed
= FALSE
;
11875 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
11876 mips_elf_output_extsym
, &einfo
);
11880 /* Set the size of the .mdebug section. */
11881 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
11883 /* Skip this section later on (I don't think this currently
11884 matters, but someday it might). */
11885 o
->map_head
.link_order
= NULL
;
11890 if (CONST_STRNEQ (o
->name
, ".gptab."))
11892 const char *subname
;
11895 Elf32_External_gptab
*ext_tab
;
11898 /* The .gptab.sdata and .gptab.sbss sections hold
11899 information describing how the small data area would
11900 change depending upon the -G switch. These sections
11901 not used in executables files. */
11902 if (! info
->relocatable
)
11904 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11906 asection
*input_section
;
11908 if (p
->type
!= bfd_indirect_link_order
)
11910 if (p
->type
== bfd_data_link_order
)
11915 input_section
= p
->u
.indirect
.section
;
11917 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11918 elf_link_input_bfd ignores this section. */
11919 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11922 /* Skip this section later on (I don't think this
11923 currently matters, but someday it might). */
11924 o
->map_head
.link_order
= NULL
;
11926 /* Really remove the section. */
11927 bfd_section_list_remove (abfd
, o
);
11928 --abfd
->section_count
;
11933 /* There is one gptab for initialized data, and one for
11934 uninitialized data. */
11935 if (strcmp (o
->name
, ".gptab.sdata") == 0)
11936 gptab_data_sec
= o
;
11937 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
11941 (*_bfd_error_handler
)
11942 (_("%s: illegal section name `%s'"),
11943 bfd_get_filename (abfd
), o
->name
);
11944 bfd_set_error (bfd_error_nonrepresentable_section
);
11948 /* The linker script always combines .gptab.data and
11949 .gptab.sdata into .gptab.sdata, and likewise for
11950 .gptab.bss and .gptab.sbss. It is possible that there is
11951 no .sdata or .sbss section in the output file, in which
11952 case we must change the name of the output section. */
11953 subname
= o
->name
+ sizeof ".gptab" - 1;
11954 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
11956 if (o
== gptab_data_sec
)
11957 o
->name
= ".gptab.data";
11959 o
->name
= ".gptab.bss";
11960 subname
= o
->name
+ sizeof ".gptab" - 1;
11961 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
11964 /* Set up the first entry. */
11966 amt
= c
* sizeof (Elf32_gptab
);
11967 tab
= bfd_malloc (amt
);
11970 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
11971 tab
[0].gt_header
.gt_unused
= 0;
11973 /* Combine the input sections. */
11974 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11976 asection
*input_section
;
11978 bfd_size_type size
;
11979 unsigned long last
;
11980 bfd_size_type gpentry
;
11982 if (p
->type
!= bfd_indirect_link_order
)
11984 if (p
->type
== bfd_data_link_order
)
11989 input_section
= p
->u
.indirect
.section
;
11990 input_bfd
= input_section
->owner
;
11992 /* Combine the gptab entries for this input section one
11993 by one. We know that the input gptab entries are
11994 sorted by ascending -G value. */
11995 size
= input_section
->size
;
11997 for (gpentry
= sizeof (Elf32_External_gptab
);
11999 gpentry
+= sizeof (Elf32_External_gptab
))
12001 Elf32_External_gptab ext_gptab
;
12002 Elf32_gptab int_gptab
;
12008 if (! (bfd_get_section_contents
12009 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
12010 sizeof (Elf32_External_gptab
))))
12016 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
12018 val
= int_gptab
.gt_entry
.gt_g_value
;
12019 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
12022 for (look
= 1; look
< c
; look
++)
12024 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
12025 tab
[look
].gt_entry
.gt_bytes
+= add
;
12027 if (tab
[look
].gt_entry
.gt_g_value
== val
)
12033 Elf32_gptab
*new_tab
;
12036 /* We need a new table entry. */
12037 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
12038 new_tab
= bfd_realloc (tab
, amt
);
12039 if (new_tab
== NULL
)
12045 tab
[c
].gt_entry
.gt_g_value
= val
;
12046 tab
[c
].gt_entry
.gt_bytes
= add
;
12048 /* Merge in the size for the next smallest -G
12049 value, since that will be implied by this new
12052 for (look
= 1; look
< c
; look
++)
12054 if (tab
[look
].gt_entry
.gt_g_value
< val
12056 || (tab
[look
].gt_entry
.gt_g_value
12057 > tab
[max
].gt_entry
.gt_g_value
)))
12061 tab
[c
].gt_entry
.gt_bytes
+=
12062 tab
[max
].gt_entry
.gt_bytes
;
12067 last
= int_gptab
.gt_entry
.gt_bytes
;
12070 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12071 elf_link_input_bfd ignores this section. */
12072 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12075 /* The table must be sorted by -G value. */
12077 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
12079 /* Swap out the table. */
12080 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
12081 ext_tab
= bfd_alloc (abfd
, amt
);
12082 if (ext_tab
== NULL
)
12088 for (j
= 0; j
< c
; j
++)
12089 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
12092 o
->size
= c
* sizeof (Elf32_External_gptab
);
12093 o
->contents
= (bfd_byte
*) ext_tab
;
12095 /* Skip this section later on (I don't think this currently
12096 matters, but someday it might). */
12097 o
->map_head
.link_order
= NULL
;
12101 /* Invoke the regular ELF backend linker to do all the work. */
12102 if (!bfd_elf_final_link (abfd
, info
))
12105 /* Now write out the computed sections. */
12107 if (reginfo_sec
!= NULL
)
12109 Elf32_External_RegInfo ext
;
12111 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
12112 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
12116 if (mdebug_sec
!= NULL
)
12118 BFD_ASSERT (abfd
->output_has_begun
);
12119 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
12121 mdebug_sec
->filepos
))
12124 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
12127 if (gptab_data_sec
!= NULL
)
12129 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
12130 gptab_data_sec
->contents
,
12131 0, gptab_data_sec
->size
))
12135 if (gptab_bss_sec
!= NULL
)
12137 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
12138 gptab_bss_sec
->contents
,
12139 0, gptab_bss_sec
->size
))
12143 if (SGI_COMPAT (abfd
))
12145 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
12146 if (rtproc_sec
!= NULL
)
12148 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
12149 rtproc_sec
->contents
,
12150 0, rtproc_sec
->size
))
12158 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12160 struct mips_mach_extension
{
12161 unsigned long extension
, base
;
12165 /* An array describing how BFD machines relate to one another. The entries
12166 are ordered topologically with MIPS I extensions listed last. */
12168 static const struct mips_mach_extension mips_mach_extensions
[] = {
12169 /* MIPS64r2 extensions. */
12170 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
12172 /* MIPS64 extensions. */
12173 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
12174 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
12175 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
12177 /* MIPS V extensions. */
12178 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
12180 /* R10000 extensions. */
12181 { bfd_mach_mips12000
, bfd_mach_mips10000
},
12182 { bfd_mach_mips14000
, bfd_mach_mips10000
},
12183 { bfd_mach_mips16000
, bfd_mach_mips10000
},
12185 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12186 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12187 better to allow vr5400 and vr5500 code to be merged anyway, since
12188 many libraries will just use the core ISA. Perhaps we could add
12189 some sort of ASE flag if this ever proves a problem. */
12190 { bfd_mach_mips5500
, bfd_mach_mips5400
},
12191 { bfd_mach_mips5400
, bfd_mach_mips5000
},
12193 /* MIPS IV extensions. */
12194 { bfd_mach_mips5
, bfd_mach_mips8000
},
12195 { bfd_mach_mips10000
, bfd_mach_mips8000
},
12196 { bfd_mach_mips5000
, bfd_mach_mips8000
},
12197 { bfd_mach_mips7000
, bfd_mach_mips8000
},
12198 { bfd_mach_mips9000
, bfd_mach_mips8000
},
12200 /* VR4100 extensions. */
12201 { bfd_mach_mips4120
, bfd_mach_mips4100
},
12202 { bfd_mach_mips4111
, bfd_mach_mips4100
},
12204 /* MIPS III extensions. */
12205 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
12206 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
12207 { bfd_mach_mips8000
, bfd_mach_mips4000
},
12208 { bfd_mach_mips4650
, bfd_mach_mips4000
},
12209 { bfd_mach_mips4600
, bfd_mach_mips4000
},
12210 { bfd_mach_mips4400
, bfd_mach_mips4000
},
12211 { bfd_mach_mips4300
, bfd_mach_mips4000
},
12212 { bfd_mach_mips4100
, bfd_mach_mips4000
},
12213 { bfd_mach_mips4010
, bfd_mach_mips4000
},
12215 /* MIPS32 extensions. */
12216 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
12218 /* MIPS II extensions. */
12219 { bfd_mach_mips4000
, bfd_mach_mips6000
},
12220 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
12222 /* MIPS I extensions. */
12223 { bfd_mach_mips6000
, bfd_mach_mips3000
},
12224 { bfd_mach_mips3900
, bfd_mach_mips3000
}
12228 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12231 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
12235 if (extension
== base
)
12238 if (base
== bfd_mach_mipsisa32
12239 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
12242 if (base
== bfd_mach_mipsisa32r2
12243 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
12246 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
12247 if (extension
== mips_mach_extensions
[i
].extension
)
12249 extension
= mips_mach_extensions
[i
].base
;
12250 if (extension
== base
)
12258 /* Return true if the given ELF header flags describe a 32-bit binary. */
12261 mips_32bit_flags_p (flagword flags
)
12263 return ((flags
& EF_MIPS_32BITMODE
) != 0
12264 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
12265 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
12266 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
12267 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
12268 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
12269 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
12273 /* Merge object attributes from IBFD into OBFD. Raise an error if
12274 there are conflicting attributes. */
12276 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
12278 obj_attribute
*in_attr
;
12279 obj_attribute
*out_attr
;
12281 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
12283 /* This is the first object. Copy the attributes. */
12284 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
12286 /* Use the Tag_null value to indicate the attributes have been
12288 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
12293 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12294 non-conflicting ones. */
12295 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
12296 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
12297 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12299 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
12300 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12301 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
12302 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12304 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12306 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
12307 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12308 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12310 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
12311 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12313 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12316 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12320 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12326 (_("Warning: %B uses hard float, %B uses soft float"),
12332 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12342 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12346 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12352 (_("Warning: %B uses hard float, %B uses soft float"),
12358 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12368 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12374 (_("Warning: %B uses hard float, %B uses soft float"),
12384 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12388 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12394 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12400 (_("Warning: %B uses hard float, %B uses soft float"),
12414 /* Merge Tag_compatibility attributes and any common GNU ones. */
12415 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
12420 /* Merge backend specific data from an object file to the output
12421 object file when linking. */
12424 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
12426 flagword old_flags
;
12427 flagword new_flags
;
12429 bfd_boolean null_input_bfd
= TRUE
;
12432 /* Check if we have the same endianess */
12433 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
12435 (*_bfd_error_handler
)
12436 (_("%B: endianness incompatible with that of the selected emulation"),
12441 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
12444 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
12446 (*_bfd_error_handler
)
12447 (_("%B: ABI is incompatible with that of the selected emulation"),
12452 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
12455 new_flags
= elf_elfheader (ibfd
)->e_flags
;
12456 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
12457 old_flags
= elf_elfheader (obfd
)->e_flags
;
12459 if (! elf_flags_init (obfd
))
12461 elf_flags_init (obfd
) = TRUE
;
12462 elf_elfheader (obfd
)->e_flags
= new_flags
;
12463 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
12464 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
12466 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
12467 && (bfd_get_arch_info (obfd
)->the_default
12468 || mips_mach_extends_p (bfd_get_mach (obfd
),
12469 bfd_get_mach (ibfd
))))
12471 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
12472 bfd_get_mach (ibfd
)))
12479 /* Check flag compatibility. */
12481 new_flags
&= ~EF_MIPS_NOREORDER
;
12482 old_flags
&= ~EF_MIPS_NOREORDER
;
12484 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12485 doesn't seem to matter. */
12486 new_flags
&= ~EF_MIPS_XGOT
;
12487 old_flags
&= ~EF_MIPS_XGOT
;
12489 /* MIPSpro generates ucode info in n64 objects. Again, we should
12490 just be able to ignore this. */
12491 new_flags
&= ~EF_MIPS_UCODE
;
12492 old_flags
&= ~EF_MIPS_UCODE
;
12494 /* DSOs should only be linked with CPIC code. */
12495 if ((ibfd
->flags
& DYNAMIC
) != 0)
12496 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
12498 if (new_flags
== old_flags
)
12501 /* Check to see if the input BFD actually contains any sections.
12502 If not, its flags may not have been initialised either, but it cannot
12503 actually cause any incompatibility. */
12504 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
12506 /* Ignore synthetic sections and empty .text, .data and .bss sections
12507 which are automatically generated by gas. */
12508 if (strcmp (sec
->name
, ".reginfo")
12509 && strcmp (sec
->name
, ".mdebug")
12511 || (strcmp (sec
->name
, ".text")
12512 && strcmp (sec
->name
, ".data")
12513 && strcmp (sec
->name
, ".bss"))))
12515 null_input_bfd
= FALSE
;
12519 if (null_input_bfd
)
12524 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
12525 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
12527 (*_bfd_error_handler
)
12528 (_("%B: warning: linking abicalls files with non-abicalls files"),
12533 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
12534 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
12535 if (! (new_flags
& EF_MIPS_PIC
))
12536 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
12538 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12539 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12541 /* Compare the ISAs. */
12542 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
12544 (*_bfd_error_handler
)
12545 (_("%B: linking 32-bit code with 64-bit code"),
12549 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
12551 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12552 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
12554 /* Copy the architecture info from IBFD to OBFD. Also copy
12555 the 32-bit flag (if set) so that we continue to recognise
12556 OBFD as a 32-bit binary. */
12557 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
12558 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12559 elf_elfheader (obfd
)->e_flags
12560 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12562 /* Copy across the ABI flags if OBFD doesn't use them
12563 and if that was what caused us to treat IBFD as 32-bit. */
12564 if ((old_flags
& EF_MIPS_ABI
) == 0
12565 && mips_32bit_flags_p (new_flags
)
12566 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
12567 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
12571 /* The ISAs aren't compatible. */
12572 (*_bfd_error_handler
)
12573 (_("%B: linking %s module with previous %s modules"),
12575 bfd_printable_name (ibfd
),
12576 bfd_printable_name (obfd
));
12581 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12582 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12584 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12585 does set EI_CLASS differently from any 32-bit ABI. */
12586 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
12587 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12588 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12590 /* Only error if both are set (to different values). */
12591 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
12592 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12593 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12595 (*_bfd_error_handler
)
12596 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12598 elf_mips_abi_name (ibfd
),
12599 elf_mips_abi_name (obfd
));
12602 new_flags
&= ~EF_MIPS_ABI
;
12603 old_flags
&= ~EF_MIPS_ABI
;
12606 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12607 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
12609 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
12611 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
12612 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
12615 /* Warn about any other mismatches */
12616 if (new_flags
!= old_flags
)
12618 (*_bfd_error_handler
)
12619 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12620 ibfd
, (unsigned long) new_flags
,
12621 (unsigned long) old_flags
);
12627 bfd_set_error (bfd_error_bad_value
);
12634 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12637 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
12639 BFD_ASSERT (!elf_flags_init (abfd
)
12640 || elf_elfheader (abfd
)->e_flags
== flags
);
12642 elf_elfheader (abfd
)->e_flags
= flags
;
12643 elf_flags_init (abfd
) = TRUE
;
12648 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
12652 default: return "";
12653 case DT_MIPS_RLD_VERSION
:
12654 return "MIPS_RLD_VERSION";
12655 case DT_MIPS_TIME_STAMP
:
12656 return "MIPS_TIME_STAMP";
12657 case DT_MIPS_ICHECKSUM
:
12658 return "MIPS_ICHECKSUM";
12659 case DT_MIPS_IVERSION
:
12660 return "MIPS_IVERSION";
12661 case DT_MIPS_FLAGS
:
12662 return "MIPS_FLAGS";
12663 case DT_MIPS_BASE_ADDRESS
:
12664 return "MIPS_BASE_ADDRESS";
12666 return "MIPS_MSYM";
12667 case DT_MIPS_CONFLICT
:
12668 return "MIPS_CONFLICT";
12669 case DT_MIPS_LIBLIST
:
12670 return "MIPS_LIBLIST";
12671 case DT_MIPS_LOCAL_GOTNO
:
12672 return "MIPS_LOCAL_GOTNO";
12673 case DT_MIPS_CONFLICTNO
:
12674 return "MIPS_CONFLICTNO";
12675 case DT_MIPS_LIBLISTNO
:
12676 return "MIPS_LIBLISTNO";
12677 case DT_MIPS_SYMTABNO
:
12678 return "MIPS_SYMTABNO";
12679 case DT_MIPS_UNREFEXTNO
:
12680 return "MIPS_UNREFEXTNO";
12681 case DT_MIPS_GOTSYM
:
12682 return "MIPS_GOTSYM";
12683 case DT_MIPS_HIPAGENO
:
12684 return "MIPS_HIPAGENO";
12685 case DT_MIPS_RLD_MAP
:
12686 return "MIPS_RLD_MAP";
12687 case DT_MIPS_DELTA_CLASS
:
12688 return "MIPS_DELTA_CLASS";
12689 case DT_MIPS_DELTA_CLASS_NO
:
12690 return "MIPS_DELTA_CLASS_NO";
12691 case DT_MIPS_DELTA_INSTANCE
:
12692 return "MIPS_DELTA_INSTANCE";
12693 case DT_MIPS_DELTA_INSTANCE_NO
:
12694 return "MIPS_DELTA_INSTANCE_NO";
12695 case DT_MIPS_DELTA_RELOC
:
12696 return "MIPS_DELTA_RELOC";
12697 case DT_MIPS_DELTA_RELOC_NO
:
12698 return "MIPS_DELTA_RELOC_NO";
12699 case DT_MIPS_DELTA_SYM
:
12700 return "MIPS_DELTA_SYM";
12701 case DT_MIPS_DELTA_SYM_NO
:
12702 return "MIPS_DELTA_SYM_NO";
12703 case DT_MIPS_DELTA_CLASSSYM
:
12704 return "MIPS_DELTA_CLASSSYM";
12705 case DT_MIPS_DELTA_CLASSSYM_NO
:
12706 return "MIPS_DELTA_CLASSSYM_NO";
12707 case DT_MIPS_CXX_FLAGS
:
12708 return "MIPS_CXX_FLAGS";
12709 case DT_MIPS_PIXIE_INIT
:
12710 return "MIPS_PIXIE_INIT";
12711 case DT_MIPS_SYMBOL_LIB
:
12712 return "MIPS_SYMBOL_LIB";
12713 case DT_MIPS_LOCALPAGE_GOTIDX
:
12714 return "MIPS_LOCALPAGE_GOTIDX";
12715 case DT_MIPS_LOCAL_GOTIDX
:
12716 return "MIPS_LOCAL_GOTIDX";
12717 case DT_MIPS_HIDDEN_GOTIDX
:
12718 return "MIPS_HIDDEN_GOTIDX";
12719 case DT_MIPS_PROTECTED_GOTIDX
:
12720 return "MIPS_PROTECTED_GOT_IDX";
12721 case DT_MIPS_OPTIONS
:
12722 return "MIPS_OPTIONS";
12723 case DT_MIPS_INTERFACE
:
12724 return "MIPS_INTERFACE";
12725 case DT_MIPS_DYNSTR_ALIGN
:
12726 return "DT_MIPS_DYNSTR_ALIGN";
12727 case DT_MIPS_INTERFACE_SIZE
:
12728 return "DT_MIPS_INTERFACE_SIZE";
12729 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
12730 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12731 case DT_MIPS_PERF_SUFFIX
:
12732 return "DT_MIPS_PERF_SUFFIX";
12733 case DT_MIPS_COMPACT_SIZE
:
12734 return "DT_MIPS_COMPACT_SIZE";
12735 case DT_MIPS_GP_VALUE
:
12736 return "DT_MIPS_GP_VALUE";
12737 case DT_MIPS_AUX_DYNAMIC
:
12738 return "DT_MIPS_AUX_DYNAMIC";
12739 case DT_MIPS_PLTGOT
:
12740 return "DT_MIPS_PLTGOT";
12741 case DT_MIPS_RWPLT
:
12742 return "DT_MIPS_RWPLT";
12747 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
12751 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
12753 /* Print normal ELF private data. */
12754 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
12756 /* xgettext:c-format */
12757 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12759 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
12760 fprintf (file
, _(" [abi=O32]"));
12761 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
12762 fprintf (file
, _(" [abi=O64]"));
12763 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
12764 fprintf (file
, _(" [abi=EABI32]"));
12765 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
12766 fprintf (file
, _(" [abi=EABI64]"));
12767 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
12768 fprintf (file
, _(" [abi unknown]"));
12769 else if (ABI_N32_P (abfd
))
12770 fprintf (file
, _(" [abi=N32]"));
12771 else if (ABI_64_P (abfd
))
12772 fprintf (file
, _(" [abi=64]"));
12774 fprintf (file
, _(" [no abi set]"));
12776 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
12777 fprintf (file
, " [mips1]");
12778 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
12779 fprintf (file
, " [mips2]");
12780 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
12781 fprintf (file
, " [mips3]");
12782 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
12783 fprintf (file
, " [mips4]");
12784 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
12785 fprintf (file
, " [mips5]");
12786 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
12787 fprintf (file
, " [mips32]");
12788 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
12789 fprintf (file
, " [mips64]");
12790 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
12791 fprintf (file
, " [mips32r2]");
12792 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
12793 fprintf (file
, " [mips64r2]");
12795 fprintf (file
, _(" [unknown ISA]"));
12797 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
12798 fprintf (file
, " [mdmx]");
12800 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
12801 fprintf (file
, " [mips16]");
12803 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
12804 fprintf (file
, " [32bitmode]");
12806 fprintf (file
, _(" [not 32bitmode]"));
12808 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
12809 fprintf (file
, " [noreorder]");
12811 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
12812 fprintf (file
, " [PIC]");
12814 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
12815 fprintf (file
, " [CPIC]");
12817 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
12818 fprintf (file
, " [XGOT]");
12820 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
12821 fprintf (file
, " [UCODE]");
12823 fputc ('\n', file
);
12828 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
12830 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12831 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12832 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
12833 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12834 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12835 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
12836 { NULL
, 0, 0, 0, 0 }
12839 /* Merge non visibility st_other attributes. Ensure that the
12840 STO_OPTIONAL flag is copied into h->other, even if this is not a
12841 definiton of the symbol. */
12843 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
12844 const Elf_Internal_Sym
*isym
,
12845 bfd_boolean definition
,
12846 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
12848 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
12850 unsigned char other
;
12852 other
= (definition
? isym
->st_other
: h
->other
);
12853 other
&= ~ELF_ST_VISIBILITY (-1);
12854 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
12858 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
12859 h
->other
|= STO_OPTIONAL
;
12862 /* Decide whether an undefined symbol is special and can be ignored.
12863 This is the case for OPTIONAL symbols on IRIX. */
12865 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
12867 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
12871 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
12873 return (sym
->st_shndx
== SHN_COMMON
12874 || sym
->st_shndx
== SHN_MIPS_ACOMMON
12875 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
12878 /* Return address for Ith PLT stub in section PLT, for relocation REL
12879 or (bfd_vma) -1 if it should not be included. */
12882 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
12883 const arelent
*rel ATTRIBUTE_UNUSED
)
12886 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
12887 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
12891 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
12893 struct mips_elf_link_hash_table
*htab
;
12894 Elf_Internal_Ehdr
*i_ehdrp
;
12896 i_ehdrp
= elf_elfheader (abfd
);
12899 htab
= mips_elf_hash_table (link_info
);
12900 if (htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
12901 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;