1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
84 // Return the demangled version of the symbol's name, but only
85 // if the --demangle flag was set.
88 demangle(const char* name
)
90 if (!parameters
->options().do_demangle())
93 // cplus_demangle allocates memory for the result it returns,
94 // and returns NULL if the name is already demangled.
95 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
96 if (demangled_name
== NULL
)
99 std::string
retval(demangled_name
);
100 free(demangled_name
);
105 Symbol::demangled_name() const
107 return demangle(this->name());
110 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112 template<int size
, bool big_endian
>
114 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
115 const elfcpp::Sym
<size
, big_endian
>& sym
,
116 unsigned int st_shndx
, bool is_ordinary
)
118 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
119 sym
.get_st_visibility(), sym
.get_st_nonvis());
120 this->u_
.from_object
.object
= object
;
121 this->u_
.from_object
.shndx
= st_shndx
;
122 this->is_ordinary_shndx_
= is_ordinary
;
123 this->source_
= FROM_OBJECT
;
124 this->in_reg_
= !object
->is_dynamic();
125 this->in_dyn_
= object
->is_dynamic();
126 this->in_real_elf_
= object
->pluginobj() == NULL
;
129 // Initialize the fields in the base class Symbol for a symbol defined
130 // in an Output_data.
133 Symbol::init_base_output_data(const char* name
, const char* version
,
134 Output_data
* od
, elfcpp::STT type
,
135 elfcpp::STB binding
, elfcpp::STV visibility
,
136 unsigned char nonvis
, bool offset_is_from_end
)
138 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
139 this->u_
.in_output_data
.output_data
= od
;
140 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
141 this->source_
= IN_OUTPUT_DATA
;
142 this->in_reg_
= true;
143 this->in_real_elf_
= true;
146 // Initialize the fields in the base class Symbol for a symbol defined
147 // in an Output_segment.
150 Symbol::init_base_output_segment(const char* name
, const char* version
,
151 Output_segment
* os
, elfcpp::STT type
,
152 elfcpp::STB binding
, elfcpp::STV visibility
,
153 unsigned char nonvis
,
154 Segment_offset_base offset_base
)
156 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
157 this->u_
.in_output_segment
.output_segment
= os
;
158 this->u_
.in_output_segment
.offset_base
= offset_base
;
159 this->source_
= IN_OUTPUT_SEGMENT
;
160 this->in_reg_
= true;
161 this->in_real_elf_
= true;
164 // Initialize the fields in the base class Symbol for a symbol defined
168 Symbol::init_base_constant(const char* name
, const char* version
,
169 elfcpp::STT type
, elfcpp::STB binding
,
170 elfcpp::STV visibility
, unsigned char nonvis
)
172 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
173 this->source_
= IS_CONSTANT
;
174 this->in_reg_
= true;
175 this->in_real_elf_
= true;
178 // Initialize the fields in the base class Symbol for an undefined
182 Symbol::init_base_undefined(const char* name
, const char* version
,
183 elfcpp::STT type
, elfcpp::STB binding
,
184 elfcpp::STV visibility
, unsigned char nonvis
)
186 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
187 this->dynsym_index_
= -1U;
188 this->source_
= IS_UNDEFINED
;
189 this->in_reg_
= true;
190 this->in_real_elf_
= true;
193 // Allocate a common symbol in the base.
196 Symbol::allocate_base_common(Output_data
* od
)
198 gold_assert(this->is_common());
199 this->source_
= IN_OUTPUT_DATA
;
200 this->u_
.in_output_data
.output_data
= od
;
201 this->u_
.in_output_data
.offset_is_from_end
= false;
204 // Initialize the fields in Sized_symbol for SYM in OBJECT.
207 template<bool big_endian
>
209 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
211 const elfcpp::Sym
<size
, big_endian
>& sym
,
212 unsigned int st_shndx
, bool is_ordinary
)
214 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
215 this->value_
= sym
.get_st_value();
216 this->symsize_
= sym
.get_st_size();
219 // Initialize the fields in Sized_symbol for a symbol defined in an
224 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
225 Output_data
* od
, Value_type value
,
226 Size_type symsize
, elfcpp::STT type
,
228 elfcpp::STV visibility
,
229 unsigned char nonvis
,
230 bool offset_is_from_end
)
232 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
233 nonvis
, offset_is_from_end
);
234 this->value_
= value
;
235 this->symsize_
= symsize
;
238 // Initialize the fields in Sized_symbol for a symbol defined in an
243 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
244 Output_segment
* os
, Value_type value
,
245 Size_type symsize
, elfcpp::STT type
,
247 elfcpp::STV visibility
,
248 unsigned char nonvis
,
249 Segment_offset_base offset_base
)
251 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
252 nonvis
, offset_base
);
253 this->value_
= value
;
254 this->symsize_
= symsize
;
257 // Initialize the fields in Sized_symbol for a symbol defined as a
262 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
263 Value_type value
, Size_type symsize
,
264 elfcpp::STT type
, elfcpp::STB binding
,
265 elfcpp::STV visibility
, unsigned char nonvis
)
267 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
268 this->value_
= value
;
269 this->symsize_
= symsize
;
272 // Initialize the fields in Sized_symbol for an undefined symbol.
276 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
277 elfcpp::STT type
, elfcpp::STB binding
,
278 elfcpp::STV visibility
, unsigned char nonvis
)
280 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
285 // Return true if SHNDX represents a common symbol.
288 Symbol::is_common_shndx(unsigned int shndx
)
290 return (shndx
== elfcpp::SHN_COMMON
291 || shndx
== parameters
->target().small_common_shndx()
292 || shndx
== parameters
->target().large_common_shndx());
295 // Allocate a common symbol.
299 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
301 this->allocate_base_common(od
);
302 this->value_
= value
;
305 // The ""'s around str ensure str is a string literal, so sizeof works.
306 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
308 // Return true if this symbol should be added to the dynamic symbol
312 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
314 // If the symbol is only present on plugin files, the plugin decided we
316 if (!this->in_real_elf())
319 // If the symbol is used by a dynamic relocation, we need to add it.
320 if (this->needs_dynsym_entry())
323 // If this symbol's section is not added, the symbol need not be added.
324 // The section may have been GCed. Note that export_dynamic is being
325 // overridden here. This should not be done for shared objects.
326 if (parameters
->options().gc_sections()
327 && !parameters
->options().shared()
328 && this->source() == Symbol::FROM_OBJECT
329 && !this->object()->is_dynamic())
331 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
333 unsigned int shndx
= this->shndx(&is_ordinary
);
334 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
335 && !relobj
->is_section_included(shndx
)
336 && !symtab
->is_section_folded(relobj
, shndx
))
340 // If the symbol was forced local in a version script, do not add it.
341 if (this->is_forced_local())
344 // If the symbol was forced dynamic in a --dynamic-list file, add it.
345 if (parameters
->options().in_dynamic_list(this->name()))
348 // If dynamic-list-data was specified, add any STT_OBJECT.
349 if (parameters
->options().dynamic_list_data()
350 && !this->is_from_dynobj()
351 && this->type() == elfcpp::STT_OBJECT
)
354 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
355 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
356 if ((parameters
->options().dynamic_list_cpp_new()
357 || parameters
->options().dynamic_list_cpp_typeinfo())
358 && !this->is_from_dynobj())
360 // TODO(csilvers): We could probably figure out if we're an operator
361 // new/delete or typeinfo without the need to demangle.
362 char* demangled_name
= cplus_demangle(this->name(),
363 DMGL_ANSI
| DMGL_PARAMS
);
364 if (demangled_name
== NULL
)
366 // Not a C++ symbol, so it can't satisfy these flags
368 else if (parameters
->options().dynamic_list_cpp_new()
369 && (strprefix(demangled_name
, "operator new")
370 || strprefix(demangled_name
, "operator delete")))
372 free(demangled_name
);
375 else if (parameters
->options().dynamic_list_cpp_typeinfo()
376 && (strprefix(demangled_name
, "typeinfo name for")
377 || strprefix(demangled_name
, "typeinfo for")))
379 free(demangled_name
);
383 free(demangled_name
);
386 // If exporting all symbols or building a shared library,
387 // and the symbol is defined in a regular object and is
388 // externally visible, we need to add it.
389 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
390 && !this->is_from_dynobj()
391 && this->is_externally_visible())
397 // Return true if the final value of this symbol is known at link
401 Symbol::final_value_is_known() const
403 // If we are not generating an executable, then no final values are
404 // known, since they will change at runtime.
405 if (parameters
->options().output_is_position_independent()
406 || parameters
->options().relocatable())
409 // If the symbol is not from an object file, and is not undefined,
410 // then it is defined, and known.
411 if (this->source_
!= FROM_OBJECT
)
413 if (this->source_
!= IS_UNDEFINED
)
418 // If the symbol is from a dynamic object, then the final value
420 if (this->object()->is_dynamic())
423 // If the symbol is not undefined (it is defined or common),
424 // then the final value is known.
425 if (!this->is_undefined())
429 // If the symbol is undefined, then whether the final value is known
430 // depends on whether we are doing a static link. If we are doing a
431 // dynamic link, then the final value could be filled in at runtime.
432 // This could reasonably be the case for a weak undefined symbol.
433 return parameters
->doing_static_link();
436 // Return the output section where this symbol is defined.
439 Symbol::output_section() const
441 switch (this->source_
)
445 unsigned int shndx
= this->u_
.from_object
.shndx
;
446 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
448 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
449 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
450 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
451 return relobj
->output_section(shndx
);
457 return this->u_
.in_output_data
.output_data
->output_section();
459 case IN_OUTPUT_SEGMENT
:
469 // Set the symbol's output section. This is used for symbols defined
470 // in scripts. This should only be called after the symbol table has
474 Symbol::set_output_section(Output_section
* os
)
476 switch (this->source_
)
480 gold_assert(this->output_section() == os
);
483 this->source_
= IN_OUTPUT_DATA
;
484 this->u_
.in_output_data
.output_data
= os
;
485 this->u_
.in_output_data
.offset_is_from_end
= false;
487 case IN_OUTPUT_SEGMENT
:
494 // Class Symbol_table.
496 Symbol_table::Symbol_table(unsigned int count
,
497 const Version_script_info
& version_script
)
498 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
499 forwarders_(), commons_(), tls_commons_(), small_commons_(),
500 large_commons_(), forced_locals_(), warnings_(),
501 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
503 namepool_
.reserve(count
);
506 Symbol_table::~Symbol_table()
510 // The symbol table key equality function. This is called with
514 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
515 const Symbol_table_key
& k2
) const
517 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
521 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
523 return (parameters
->options().icf_enabled()
524 && this->icf_
->is_section_folded(obj
, shndx
));
527 // For symbols that have been listed with -u option, add them to the
528 // work list to avoid gc'ing them.
531 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
533 for (options::String_set::const_iterator p
=
534 parameters
->options().undefined_begin();
535 p
!= parameters
->options().undefined_end();
538 const char* name
= p
->c_str();
539 Symbol
* sym
= this->lookup(name
);
540 gold_assert(sym
!= NULL
);
541 if (sym
->source() == Symbol::FROM_OBJECT
542 && !sym
->object()->is_dynamic())
544 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
546 unsigned int shndx
= sym
->shndx(&is_ordinary
);
549 gold_assert(this->gc_
!= NULL
);
550 this->gc_
->worklist().push(Section_id(obj
, shndx
));
555 for (Script_options::referenced_const_iterator p
=
556 layout
->script_options()->referenced_begin();
557 p
!= layout
->script_options()->referenced_end();
560 Symbol
* sym
= this->lookup(p
->c_str());
561 gold_assert(sym
!= NULL
);
562 if (sym
->source() == Symbol::FROM_OBJECT
563 && !sym
->object()->is_dynamic())
565 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
567 unsigned int shndx
= sym
->shndx(&is_ordinary
);
570 gold_assert(this->gc_
!= NULL
);
571 this->gc_
->worklist().push(Section_id(obj
, shndx
));
578 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
580 if (!sym
->is_from_dynobj()
581 && sym
->is_externally_visible())
583 //Add the object and section to the work list.
584 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
586 unsigned int shndx
= sym
->shndx(&is_ordinary
);
587 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
589 gold_assert(this->gc_
!= NULL
);
590 this->gc_
->worklist().push(Section_id(obj
, shndx
));
595 // When doing garbage collection, keep symbols that have been seen in
598 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
600 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
601 && !sym
->object()->is_dynamic())
603 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
605 unsigned int shndx
= sym
->shndx(&is_ordinary
);
606 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
608 gold_assert(this->gc_
!= NULL
);
609 this->gc_
->worklist().push(Section_id(obj
, shndx
));
614 // Make TO a symbol which forwards to FROM.
617 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
619 gold_assert(from
!= to
);
620 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
621 this->forwarders_
[from
] = to
;
622 from
->set_forwarder();
625 // Resolve the forwards from FROM, returning the real symbol.
628 Symbol_table::resolve_forwards(const Symbol
* from
) const
630 gold_assert(from
->is_forwarder());
631 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
632 this->forwarders_
.find(from
);
633 gold_assert(p
!= this->forwarders_
.end());
637 // Look up a symbol by name.
640 Symbol_table::lookup(const char* name
, const char* version
) const
642 Stringpool::Key name_key
;
643 name
= this->namepool_
.find(name
, &name_key
);
647 Stringpool::Key version_key
= 0;
650 version
= this->namepool_
.find(version
, &version_key
);
655 Symbol_table_key
key(name_key
, version_key
);
656 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
657 if (p
== this->table_
.end())
662 // Resolve a Symbol with another Symbol. This is only used in the
663 // unusual case where there are references to both an unversioned
664 // symbol and a symbol with a version, and we then discover that that
665 // version is the default version. Because this is unusual, we do
666 // this the slow way, by converting back to an ELF symbol.
668 template<int size
, bool big_endian
>
670 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
672 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
673 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
674 // We don't bother to set the st_name or the st_shndx field.
675 esym
.put_st_value(from
->value());
676 esym
.put_st_size(from
->symsize());
677 esym
.put_st_info(from
->binding(), from
->type());
678 esym
.put_st_other(from
->visibility(), from
->nonvis());
680 unsigned int shndx
= from
->shndx(&is_ordinary
);
681 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
687 if (parameters
->options().gc_sections())
688 this->gc_mark_dyn_syms(to
);
691 // Record that a symbol is forced to be local by a version script or
695 Symbol_table::force_local(Symbol
* sym
)
697 if (!sym
->is_defined() && !sym
->is_common())
699 if (sym
->is_forced_local())
701 // We already got this one.
704 sym
->set_is_forced_local();
705 this->forced_locals_
.push_back(sym
);
708 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
709 // is only called for undefined symbols, when at least one --wrap
713 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
715 // For some targets, we need to ignore a specific character when
716 // wrapping, and add it back later.
718 if (name
[0] == parameters
->target().wrap_char())
724 if (parameters
->options().is_wrap(name
))
726 // Turn NAME into __wrap_NAME.
733 // This will give us both the old and new name in NAMEPOOL_, but
734 // that is OK. Only the versions we need will wind up in the
735 // real string table in the output file.
736 return this->namepool_
.add(s
.c_str(), true, name_key
);
739 const char* const real_prefix
= "__real_";
740 const size_t real_prefix_length
= strlen(real_prefix
);
741 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
742 && parameters
->options().is_wrap(name
+ real_prefix_length
))
744 // Turn __real_NAME into NAME.
748 s
+= name
+ real_prefix_length
;
749 return this->namepool_
.add(s
.c_str(), true, name_key
);
755 // This is called when we see a symbol NAME/VERSION, and the symbol
756 // already exists in the symbol table, and VERSION is marked as being
757 // the default version. SYM is the NAME/VERSION symbol we just added.
758 // DEFAULT_IS_NEW is true if this is the first time we have seen the
759 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
761 template<int size
, bool big_endian
>
763 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
765 Symbol_table_type::iterator pdef
)
769 // This is the first time we have seen NAME/NULL. Make
770 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
773 sym
->set_is_default();
775 else if (pdef
->second
== sym
)
777 // NAME/NULL already points to NAME/VERSION. Don't mark the
778 // symbol as the default if it is not already the default.
782 // This is the unfortunate case where we already have entries
783 // for both NAME/VERSION and NAME/NULL. We now see a symbol
784 // NAME/VERSION where VERSION is the default version. We have
785 // already resolved this new symbol with the existing
786 // NAME/VERSION symbol.
788 // It's possible that NAME/NULL and NAME/VERSION are both
789 // defined in regular objects. This can only happen if one
790 // object file defines foo and another defines foo@@ver. This
791 // is somewhat obscure, but we call it a multiple definition
794 // It's possible that NAME/NULL actually has a version, in which
795 // case it won't be the same as VERSION. This happens with
796 // ver_test_7.so in the testsuite for the symbol t2_2. We see
797 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
798 // then see an unadorned t2_2 in an object file and give it
799 // version VER1 from the version script. This looks like a
800 // default definition for VER1, so it looks like we should merge
801 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
802 // not obvious that this is an error, either. So we just punt.
804 // If one of the symbols has non-default visibility, and the
805 // other is defined in a shared object, then they are different
808 // Otherwise, we just resolve the symbols as though they were
811 if (pdef
->second
->version() != NULL
)
812 gold_assert(pdef
->second
->version() != sym
->version());
813 else if (sym
->visibility() != elfcpp::STV_DEFAULT
814 && pdef
->second
->is_from_dynobj())
816 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
817 && sym
->is_from_dynobj())
821 const Sized_symbol
<size
>* symdef
;
822 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
823 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
824 this->make_forwarder(pdef
->second
, sym
);
826 sym
->set_is_default();
831 // Add one symbol from OBJECT to the symbol table. NAME is symbol
832 // name and VERSION is the version; both are canonicalized. DEF is
833 // whether this is the default version. ST_SHNDX is the symbol's
834 // section index; IS_ORDINARY is whether this is a normal section
835 // rather than a special code.
837 // If IS_DEFAULT_VERSION is true, then this is the definition of a
838 // default version of a symbol. That means that any lookup of
839 // NAME/NULL and any lookup of NAME/VERSION should always return the
840 // same symbol. This is obvious for references, but in particular we
841 // want to do this for definitions: overriding NAME/NULL should also
842 // override NAME/VERSION. If we don't do that, it would be very hard
843 // to override functions in a shared library which uses versioning.
845 // We implement this by simply making both entries in the hash table
846 // point to the same Symbol structure. That is easy enough if this is
847 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
848 // that we have seen both already, in which case they will both have
849 // independent entries in the symbol table. We can't simply change
850 // the symbol table entry, because we have pointers to the entries
851 // attached to the object files. So we mark the entry attached to the
852 // object file as a forwarder, and record it in the forwarders_ map.
853 // Note that entries in the hash table will never be marked as
856 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
857 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
858 // for a special section code. ST_SHNDX may be modified if the symbol
859 // is defined in a section being discarded.
861 template<int size
, bool big_endian
>
863 Symbol_table::add_from_object(Object
* object
,
865 Stringpool::Key name_key
,
867 Stringpool::Key version_key
,
868 bool is_default_version
,
869 const elfcpp::Sym
<size
, big_endian
>& sym
,
870 unsigned int st_shndx
,
872 unsigned int orig_st_shndx
)
874 // Print a message if this symbol is being traced.
875 if (parameters
->options().is_trace_symbol(name
))
877 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
878 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
880 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
883 // For an undefined symbol, we may need to adjust the name using
885 if (orig_st_shndx
== elfcpp::SHN_UNDEF
886 && parameters
->options().any_wrap())
888 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
889 if (wrap_name
!= name
)
891 // If we see a reference to malloc with version GLIBC_2.0,
892 // and we turn it into a reference to __wrap_malloc, then we
893 // discard the version number. Otherwise the user would be
894 // required to specify the correct version for
902 Symbol
* const snull
= NULL
;
903 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
904 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
907 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
908 std::make_pair(this->table_
.end(), false);
909 if (is_default_version
)
911 const Stringpool::Key vnull_key
= 0;
912 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
917 // ins.first: an iterator, which is a pointer to a pair.
918 // ins.first->first: the key (a pair of name and version).
919 // ins.first->second: the value (Symbol*).
920 // ins.second: true if new entry was inserted, false if not.
922 Sized_symbol
<size
>* ret
;
927 // We already have an entry for NAME/VERSION.
928 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
929 gold_assert(ret
!= NULL
);
931 was_undefined
= ret
->is_undefined();
932 was_common
= ret
->is_common();
934 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
936 if (parameters
->options().gc_sections())
937 this->gc_mark_dyn_syms(ret
);
939 if (is_default_version
)
940 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
945 // This is the first time we have seen NAME/VERSION.
946 gold_assert(ins
.first
->second
== NULL
);
948 if (is_default_version
&& !insdefault
.second
)
950 // We already have an entry for NAME/NULL. If we override
951 // it, then change it to NAME/VERSION.
952 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
954 was_undefined
= ret
->is_undefined();
955 was_common
= ret
->is_common();
957 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
959 if (parameters
->options().gc_sections())
960 this->gc_mark_dyn_syms(ret
);
961 ins
.first
->second
= ret
;
965 was_undefined
= false;
968 Sized_target
<size
, big_endian
>* target
=
969 parameters
->sized_target
<size
, big_endian
>();
970 if (!target
->has_make_symbol())
971 ret
= new Sized_symbol
<size
>();
974 ret
= target
->make_symbol();
977 // This means that we don't want a symbol table
979 if (!is_default_version
)
980 this->table_
.erase(ins
.first
);
983 this->table_
.erase(insdefault
.first
);
984 // Inserting INSDEFAULT invalidated INS.
985 this->table_
.erase(std::make_pair(name_key
,
992 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
994 ins
.first
->second
= ret
;
995 if (is_default_version
)
997 // This is the first time we have seen NAME/NULL. Point
998 // it at the new entry for NAME/VERSION.
999 gold_assert(insdefault
.second
);
1000 insdefault
.first
->second
= ret
;
1004 if (is_default_version
)
1005 ret
->set_is_default();
1008 // Record every time we see a new undefined symbol, to speed up
1010 if (!was_undefined
&& ret
->is_undefined())
1012 ++this->saw_undefined_
;
1013 if (parameters
->options().has_plugins())
1014 parameters
->options().plugins()->new_undefined_symbol(ret
);
1017 // Keep track of common symbols, to speed up common symbol
1019 if (!was_common
&& ret
->is_common())
1021 if (ret
->type() == elfcpp::STT_TLS
)
1022 this->tls_commons_
.push_back(ret
);
1023 else if (!is_ordinary
1024 && st_shndx
== parameters
->target().small_common_shndx())
1025 this->small_commons_
.push_back(ret
);
1026 else if (!is_ordinary
1027 && st_shndx
== parameters
->target().large_common_shndx())
1028 this->large_commons_
.push_back(ret
);
1030 this->commons_
.push_back(ret
);
1033 // If we're not doing a relocatable link, then any symbol with
1034 // hidden or internal visibility is local.
1035 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1036 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1037 && (ret
->binding() == elfcpp::STB_GLOBAL
1038 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1039 || ret
->binding() == elfcpp::STB_WEAK
)
1040 && !parameters
->options().relocatable())
1041 this->force_local(ret
);
1046 // Add all the symbols in a relocatable object to the hash table.
1048 template<int size
, bool big_endian
>
1050 Symbol_table::add_from_relobj(
1051 Sized_relobj_file
<size
, big_endian
>* relobj
,
1052 const unsigned char* syms
,
1054 size_t symndx_offset
,
1055 const char* sym_names
,
1056 size_t sym_name_size
,
1057 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1062 gold_assert(size
== parameters
->target().get_size());
1064 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1066 const bool just_symbols
= relobj
->just_symbols();
1068 const unsigned char* p
= syms
;
1069 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1071 (*sympointers
)[i
] = NULL
;
1073 elfcpp::Sym
<size
, big_endian
> sym(p
);
1075 unsigned int st_name
= sym
.get_st_name();
1076 if (st_name
>= sym_name_size
)
1078 relobj
->error(_("bad global symbol name offset %u at %zu"),
1083 const char* name
= sym_names
+ st_name
;
1086 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1089 unsigned int orig_st_shndx
= st_shndx
;
1091 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1093 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1096 // A symbol defined in a section which we are not including must
1097 // be treated as an undefined symbol.
1098 bool is_defined_in_discarded_section
= false;
1099 if (st_shndx
!= elfcpp::SHN_UNDEF
1101 && !relobj
->is_section_included(st_shndx
)
1102 && !this->is_section_folded(relobj
, st_shndx
))
1104 st_shndx
= elfcpp::SHN_UNDEF
;
1105 is_defined_in_discarded_section
= true;
1108 // In an object file, an '@' in the name separates the symbol
1109 // name from the version name. If there are two '@' characters,
1110 // this is the default version.
1111 const char* ver
= strchr(name
, '@');
1112 Stringpool::Key ver_key
= 0;
1114 // IS_DEFAULT_VERSION: is the version default?
1115 // IS_FORCED_LOCAL: is the symbol forced local?
1116 bool is_default_version
= false;
1117 bool is_forced_local
= false;
1121 // The symbol name is of the form foo@VERSION or foo@@VERSION
1122 namelen
= ver
- name
;
1126 is_default_version
= true;
1129 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1131 // We don't want to assign a version to an undefined symbol,
1132 // even if it is listed in the version script. FIXME: What
1133 // about a common symbol?
1136 namelen
= strlen(name
);
1137 if (!this->version_script_
.empty()
1138 && st_shndx
!= elfcpp::SHN_UNDEF
)
1140 // The symbol name did not have a version, but the
1141 // version script may assign a version anyway.
1142 std::string version
;
1144 if (this->version_script_
.get_symbol_version(name
, &version
,
1148 is_forced_local
= true;
1149 else if (!version
.empty())
1151 ver
= this->namepool_
.add_with_length(version
.c_str(),
1155 is_default_version
= true;
1161 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1162 unsigned char symbuf
[sym_size
];
1163 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1166 memcpy(symbuf
, p
, sym_size
);
1167 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1168 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1170 // Symbol values in object files are section relative.
1171 // This is normally what we want, but since here we are
1172 // converting the symbol to absolute we need to add the
1173 // section address. The section address in an object
1174 // file is normally zero, but people can use a linker
1175 // script to change it.
1176 sw
.put_st_value(sym
.get_st_value()
1177 + relobj
->section_address(orig_st_shndx
));
1179 st_shndx
= elfcpp::SHN_ABS
;
1180 is_ordinary
= false;
1184 // Fix up visibility if object has no-export set.
1185 if (relobj
->no_export()
1186 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1188 // We may have copied symbol already above.
1191 memcpy(symbuf
, p
, sym_size
);
1195 elfcpp::STV visibility
= sym2
.get_st_visibility();
1196 if (visibility
== elfcpp::STV_DEFAULT
1197 || visibility
== elfcpp::STV_PROTECTED
)
1199 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1200 unsigned char nonvis
= sym2
.get_st_nonvis();
1201 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1205 Stringpool::Key name_key
;
1206 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1209 Sized_symbol
<size
>* res
;
1210 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1211 is_default_version
, *psym
, st_shndx
,
1212 is_ordinary
, orig_st_shndx
);
1214 // If building a shared library using garbage collection, do not
1215 // treat externally visible symbols as garbage.
1216 if (parameters
->options().gc_sections()
1217 && parameters
->options().shared())
1218 this->gc_mark_symbol_for_shlib(res
);
1220 if (is_forced_local
)
1221 this->force_local(res
);
1223 if (is_defined_in_discarded_section
)
1224 res
->set_is_defined_in_discarded_section();
1226 (*sympointers
)[i
] = res
;
1230 // Add a symbol from a plugin-claimed file.
1232 template<int size
, bool big_endian
>
1234 Symbol_table::add_from_pluginobj(
1235 Sized_pluginobj
<size
, big_endian
>* obj
,
1238 elfcpp::Sym
<size
, big_endian
>* sym
)
1240 unsigned int st_shndx
= sym
->get_st_shndx();
1241 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1243 Stringpool::Key ver_key
= 0;
1244 bool is_default_version
= false;
1245 bool is_forced_local
= false;
1249 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1251 // We don't want to assign a version to an undefined symbol,
1252 // even if it is listed in the version script. FIXME: What
1253 // about a common symbol?
1256 if (!this->version_script_
.empty()
1257 && st_shndx
!= elfcpp::SHN_UNDEF
)
1259 // The symbol name did not have a version, but the
1260 // version script may assign a version anyway.
1261 std::string version
;
1263 if (this->version_script_
.get_symbol_version(name
, &version
,
1267 is_forced_local
= true;
1268 else if (!version
.empty())
1270 ver
= this->namepool_
.add_with_length(version
.c_str(),
1274 is_default_version
= true;
1280 Stringpool::Key name_key
;
1281 name
= this->namepool_
.add(name
, true, &name_key
);
1283 Sized_symbol
<size
>* res
;
1284 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1285 is_default_version
, *sym
, st_shndx
,
1286 is_ordinary
, st_shndx
);
1288 if (is_forced_local
)
1289 this->force_local(res
);
1294 // Add all the symbols in a dynamic object to the hash table.
1296 template<int size
, bool big_endian
>
1298 Symbol_table::add_from_dynobj(
1299 Sized_dynobj
<size
, big_endian
>* dynobj
,
1300 const unsigned char* syms
,
1302 const char* sym_names
,
1303 size_t sym_name_size
,
1304 const unsigned char* versym
,
1306 const std::vector
<const char*>* version_map
,
1307 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1312 gold_assert(size
== parameters
->target().get_size());
1314 if (dynobj
->just_symbols())
1316 gold_error(_("--just-symbols does not make sense with a shared object"));
1320 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1322 dynobj
->error(_("too few symbol versions"));
1326 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1328 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1329 // weak aliases. This is necessary because if the dynamic object
1330 // provides the same variable under two names, one of which is a
1331 // weak definition, and the regular object refers to the weak
1332 // definition, we have to put both the weak definition and the
1333 // strong definition into the dynamic symbol table. Given a weak
1334 // definition, the only way that we can find the corresponding
1335 // strong definition, if any, is to search the symbol table.
1336 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1338 const unsigned char* p
= syms
;
1339 const unsigned char* vs
= versym
;
1340 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1342 elfcpp::Sym
<size
, big_endian
> sym(p
);
1344 if (sympointers
!= NULL
)
1345 (*sympointers
)[i
] = NULL
;
1347 // Ignore symbols with local binding or that have
1348 // internal or hidden visibility.
1349 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1350 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1351 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1354 // A protected symbol in a shared library must be treated as a
1355 // normal symbol when viewed from outside the shared library.
1356 // Implement this by overriding the visibility here.
1357 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1358 unsigned char symbuf
[sym_size
];
1359 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1360 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1362 memcpy(symbuf
, p
, sym_size
);
1363 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1364 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1368 unsigned int st_name
= psym
->get_st_name();
1369 if (st_name
>= sym_name_size
)
1371 dynobj
->error(_("bad symbol name offset %u at %zu"),
1376 const char* name
= sym_names
+ st_name
;
1379 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1382 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1385 Sized_symbol
<size
>* res
;
1389 Stringpool::Key name_key
;
1390 name
= this->namepool_
.add(name
, true, &name_key
);
1391 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1392 false, *psym
, st_shndx
, is_ordinary
,
1397 // Read the version information.
1399 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1401 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1402 v
&= elfcpp::VERSYM_VERSION
;
1404 // The Sun documentation says that V can be VER_NDX_LOCAL,
1405 // or VER_NDX_GLOBAL, or a version index. The meaning of
1406 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1407 // The old GNU linker will happily generate VER_NDX_LOCAL
1408 // for an undefined symbol. I don't know what the Sun
1409 // linker will generate.
1411 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1412 && st_shndx
!= elfcpp::SHN_UNDEF
)
1414 // This symbol should not be visible outside the object.
1418 // At this point we are definitely going to add this symbol.
1419 Stringpool::Key name_key
;
1420 name
= this->namepool_
.add(name
, true, &name_key
);
1422 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1423 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1425 // This symbol does not have a version.
1426 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1427 false, *psym
, st_shndx
, is_ordinary
,
1432 if (v
>= version_map
->size())
1434 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1439 const char* version
= (*version_map
)[v
];
1440 if (version
== NULL
)
1442 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1447 Stringpool::Key version_key
;
1448 version
= this->namepool_
.add(version
, true, &version_key
);
1450 // If this is an absolute symbol, and the version name
1451 // and symbol name are the same, then this is the
1452 // version definition symbol. These symbols exist to
1453 // support using -u to pull in particular versions. We
1454 // do not want to record a version for them.
1455 if (st_shndx
== elfcpp::SHN_ABS
1457 && name_key
== version_key
)
1458 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1459 false, *psym
, st_shndx
, is_ordinary
,
1463 const bool is_default_version
=
1464 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1465 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1466 version_key
, is_default_version
,
1468 is_ordinary
, st_shndx
);
1473 // Note that it is possible that RES was overridden by an
1474 // earlier object, in which case it can't be aliased here.
1475 if (st_shndx
!= elfcpp::SHN_UNDEF
1477 && psym
->get_st_type() == elfcpp::STT_OBJECT
1478 && res
->source() == Symbol::FROM_OBJECT
1479 && res
->object() == dynobj
)
1480 object_symbols
.push_back(res
);
1482 if (sympointers
!= NULL
)
1483 (*sympointers
)[i
] = res
;
1486 this->record_weak_aliases(&object_symbols
);
1489 // Add a symbol from a incremental object file.
1491 template<int size
, bool big_endian
>
1493 Symbol_table::add_from_incrobj(
1497 elfcpp::Sym
<size
, big_endian
>* sym
)
1499 unsigned int st_shndx
= sym
->get_st_shndx();
1500 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1502 Stringpool::Key ver_key
= 0;
1503 bool is_default_version
= false;
1504 bool is_forced_local
= false;
1506 Stringpool::Key name_key
;
1507 name
= this->namepool_
.add(name
, true, &name_key
);
1509 Sized_symbol
<size
>* res
;
1510 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1511 is_default_version
, *sym
, st_shndx
,
1512 is_ordinary
, st_shndx
);
1514 if (is_forced_local
)
1515 this->force_local(res
);
1520 // This is used to sort weak aliases. We sort them first by section
1521 // index, then by offset, then by weak ahead of strong.
1524 class Weak_alias_sorter
1527 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1532 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1533 const Sized_symbol
<size
>* s2
) const
1536 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1537 gold_assert(is_ordinary
);
1538 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1539 gold_assert(is_ordinary
);
1540 if (s1_shndx
!= s2_shndx
)
1541 return s1_shndx
< s2_shndx
;
1543 if (s1
->value() != s2
->value())
1544 return s1
->value() < s2
->value();
1545 if (s1
->binding() != s2
->binding())
1547 if (s1
->binding() == elfcpp::STB_WEAK
)
1549 if (s2
->binding() == elfcpp::STB_WEAK
)
1552 return std::string(s1
->name()) < std::string(s2
->name());
1555 // SYMBOLS is a list of object symbols from a dynamic object. Look
1556 // for any weak aliases, and record them so that if we add the weak
1557 // alias to the dynamic symbol table, we also add the corresponding
1562 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1564 // Sort the vector by section index, then by offset, then by weak
1566 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1568 // Walk through the vector. For each weak definition, record
1570 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1572 p
!= symbols
->end();
1575 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1578 // Build a circular list of weak aliases. Each symbol points to
1579 // the next one in the circular list.
1581 Sized_symbol
<size
>* from_sym
= *p
;
1582 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1583 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1586 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1587 || (*q
)->value() != from_sym
->value())
1590 this->weak_aliases_
[from_sym
] = *q
;
1591 from_sym
->set_has_alias();
1597 this->weak_aliases_
[from_sym
] = *p
;
1598 from_sym
->set_has_alias();
1605 // Create and return a specially defined symbol. If ONLY_IF_REF is
1606 // true, then only create the symbol if there is a reference to it.
1607 // If this does not return NULL, it sets *POLDSYM to the existing
1608 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1609 // resolve the newly created symbol to the old one. This
1610 // canonicalizes *PNAME and *PVERSION.
1612 template<int size
, bool big_endian
>
1614 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1616 Sized_symbol
<size
>** poldsym
,
1617 bool* resolve_oldsym
)
1619 *resolve_oldsym
= false;
1621 // If the caller didn't give us a version, see if we get one from
1622 // the version script.
1624 bool is_default_version
= false;
1625 if (*pversion
== NULL
)
1628 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1630 if (is_global
&& !v
.empty())
1632 *pversion
= v
.c_str();
1633 // If we get the version from a version script, then we
1634 // are also the default version.
1635 is_default_version
= true;
1641 Sized_symbol
<size
>* sym
;
1643 bool add_to_table
= false;
1644 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1645 bool add_def_to_table
= false;
1646 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1650 oldsym
= this->lookup(*pname
, *pversion
);
1651 if (oldsym
== NULL
&& is_default_version
)
1652 oldsym
= this->lookup(*pname
, NULL
);
1653 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1656 *pname
= oldsym
->name();
1657 if (!is_default_version
)
1658 *pversion
= oldsym
->version();
1662 // Canonicalize NAME and VERSION.
1663 Stringpool::Key name_key
;
1664 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1666 Stringpool::Key version_key
= 0;
1667 if (*pversion
!= NULL
)
1668 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1670 Symbol
* const snull
= NULL
;
1671 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1672 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1676 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1677 std::make_pair(this->table_
.end(), false);
1678 if (is_default_version
)
1680 const Stringpool::Key vnull
= 0;
1682 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1689 // We already have a symbol table entry for NAME/VERSION.
1690 oldsym
= ins
.first
->second
;
1691 gold_assert(oldsym
!= NULL
);
1693 if (is_default_version
)
1695 Sized_symbol
<size
>* soldsym
=
1696 this->get_sized_symbol
<size
>(oldsym
);
1697 this->define_default_version
<size
, big_endian
>(soldsym
,
1704 // We haven't seen this symbol before.
1705 gold_assert(ins
.first
->second
== NULL
);
1707 add_to_table
= true;
1708 add_loc
= ins
.first
;
1710 if (is_default_version
&& !insdefault
.second
)
1712 // We are adding NAME/VERSION, and it is the default
1713 // version. We already have an entry for NAME/NULL.
1714 oldsym
= insdefault
.first
->second
;
1715 *resolve_oldsym
= true;
1721 if (is_default_version
)
1723 add_def_to_table
= true;
1724 add_def_loc
= insdefault
.first
;
1730 const Target
& target
= parameters
->target();
1731 if (!target
.has_make_symbol())
1732 sym
= new Sized_symbol
<size
>();
1735 Sized_target
<size
, big_endian
>* sized_target
=
1736 parameters
->sized_target
<size
, big_endian
>();
1737 sym
= sized_target
->make_symbol();
1743 add_loc
->second
= sym
;
1745 gold_assert(oldsym
!= NULL
);
1747 if (add_def_to_table
)
1748 add_def_loc
->second
= sym
;
1750 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1755 // Define a symbol based on an Output_data.
1758 Symbol_table::define_in_output_data(const char* name
,
1759 const char* version
,
1765 elfcpp::STB binding
,
1766 elfcpp::STV visibility
,
1767 unsigned char nonvis
,
1768 bool offset_is_from_end
,
1771 if (parameters
->target().get_size() == 32)
1773 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1774 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1775 value
, symsize
, type
, binding
,
1783 else if (parameters
->target().get_size() == 64)
1785 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1786 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1787 value
, symsize
, type
, binding
,
1799 // Define a symbol in an Output_data, sized version.
1803 Symbol_table::do_define_in_output_data(
1805 const char* version
,
1808 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1809 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1811 elfcpp::STB binding
,
1812 elfcpp::STV visibility
,
1813 unsigned char nonvis
,
1814 bool offset_is_from_end
,
1817 Sized_symbol
<size
>* sym
;
1818 Sized_symbol
<size
>* oldsym
;
1819 bool resolve_oldsym
;
1821 if (parameters
->target().is_big_endian())
1823 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1824 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1825 only_if_ref
, &oldsym
,
1833 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1834 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1835 only_if_ref
, &oldsym
,
1845 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1846 visibility
, nonvis
, offset_is_from_end
);
1850 if (binding
== elfcpp::STB_LOCAL
1851 || this->version_script_
.symbol_is_local(name
))
1852 this->force_local(sym
);
1853 else if (version
!= NULL
)
1854 sym
->set_is_default();
1858 if (Symbol_table::should_override_with_special(oldsym
, defined
))
1859 this->override_with_special(oldsym
, sym
);
1870 // Define a symbol based on an Output_segment.
1873 Symbol_table::define_in_output_segment(const char* name
,
1874 const char* version
,
1880 elfcpp::STB binding
,
1881 elfcpp::STV visibility
,
1882 unsigned char nonvis
,
1883 Symbol::Segment_offset_base offset_base
,
1886 if (parameters
->target().get_size() == 32)
1888 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1889 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1890 value
, symsize
, type
,
1891 binding
, visibility
, nonvis
,
1892 offset_base
, only_if_ref
);
1897 else if (parameters
->target().get_size() == 64)
1899 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1900 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1901 value
, symsize
, type
,
1902 binding
, visibility
, nonvis
,
1903 offset_base
, only_if_ref
);
1912 // Define a symbol in an Output_segment, sized version.
1916 Symbol_table::do_define_in_output_segment(
1918 const char* version
,
1921 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1922 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1924 elfcpp::STB binding
,
1925 elfcpp::STV visibility
,
1926 unsigned char nonvis
,
1927 Symbol::Segment_offset_base offset_base
,
1930 Sized_symbol
<size
>* sym
;
1931 Sized_symbol
<size
>* oldsym
;
1932 bool resolve_oldsym
;
1934 if (parameters
->target().is_big_endian())
1936 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1937 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1938 only_if_ref
, &oldsym
,
1946 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1947 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1948 only_if_ref
, &oldsym
,
1958 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1959 visibility
, nonvis
, offset_base
);
1963 if (binding
== elfcpp::STB_LOCAL
1964 || this->version_script_
.symbol_is_local(name
))
1965 this->force_local(sym
);
1966 else if (version
!= NULL
)
1967 sym
->set_is_default();
1971 if (Symbol_table::should_override_with_special(oldsym
, defined
))
1972 this->override_with_special(oldsym
, sym
);
1983 // Define a special symbol with a constant value. It is a multiple
1984 // definition error if this symbol is already defined.
1987 Symbol_table::define_as_constant(const char* name
,
1988 const char* version
,
1993 elfcpp::STB binding
,
1994 elfcpp::STV visibility
,
1995 unsigned char nonvis
,
1997 bool force_override
)
1999 if (parameters
->target().get_size() == 32)
2001 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2002 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2003 symsize
, type
, binding
,
2004 visibility
, nonvis
, only_if_ref
,
2010 else if (parameters
->target().get_size() == 64)
2012 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2013 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2014 symsize
, type
, binding
,
2015 visibility
, nonvis
, only_if_ref
,
2025 // Define a symbol as a constant, sized version.
2029 Symbol_table::do_define_as_constant(
2031 const char* version
,
2033 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2034 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2036 elfcpp::STB binding
,
2037 elfcpp::STV visibility
,
2038 unsigned char nonvis
,
2040 bool force_override
)
2042 Sized_symbol
<size
>* sym
;
2043 Sized_symbol
<size
>* oldsym
;
2044 bool resolve_oldsym
;
2046 if (parameters
->target().is_big_endian())
2048 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2049 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2050 only_if_ref
, &oldsym
,
2058 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2059 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2060 only_if_ref
, &oldsym
,
2070 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2075 // Version symbols are absolute symbols with name == version.
2076 // We don't want to force them to be local.
2077 if ((version
== NULL
2080 && (binding
== elfcpp::STB_LOCAL
2081 || this->version_script_
.symbol_is_local(name
)))
2082 this->force_local(sym
);
2083 else if (version
!= NULL
2084 && (name
!= version
|| value
!= 0))
2085 sym
->set_is_default();
2090 || Symbol_table::should_override_with_special(oldsym
, defined
))
2091 this->override_with_special(oldsym
, sym
);
2102 // Define a set of symbols in output sections.
2105 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2106 const Define_symbol_in_section
* p
,
2109 for (int i
= 0; i
< count
; ++i
, ++p
)
2111 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2113 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2114 p
->size
, p
->type
, p
->binding
,
2115 p
->visibility
, p
->nonvis
,
2116 p
->offset_is_from_end
,
2117 only_if_ref
|| p
->only_if_ref
);
2119 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2120 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2121 only_if_ref
|| p
->only_if_ref
,
2126 // Define a set of symbols in output segments.
2129 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2130 const Define_symbol_in_segment
* p
,
2133 for (int i
= 0; i
< count
; ++i
, ++p
)
2135 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2136 p
->segment_flags_set
,
2137 p
->segment_flags_clear
);
2139 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2140 p
->size
, p
->type
, p
->binding
,
2141 p
->visibility
, p
->nonvis
,
2143 only_if_ref
|| p
->only_if_ref
);
2145 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2146 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2147 only_if_ref
|| p
->only_if_ref
,
2152 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2153 // symbol should be defined--typically a .dyn.bss section. VALUE is
2154 // the offset within POSD.
2158 Symbol_table::define_with_copy_reloc(
2159 Sized_symbol
<size
>* csym
,
2161 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2163 gold_assert(csym
->is_from_dynobj());
2164 gold_assert(!csym
->is_copied_from_dynobj());
2165 Object
* object
= csym
->object();
2166 gold_assert(object
->is_dynamic());
2167 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2169 // Our copied variable has to override any variable in a shared
2171 elfcpp::STB binding
= csym
->binding();
2172 if (binding
== elfcpp::STB_WEAK
)
2173 binding
= elfcpp::STB_GLOBAL
;
2175 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2176 posd
, value
, csym
->symsize(),
2177 csym
->type(), binding
,
2178 csym
->visibility(), csym
->nonvis(),
2181 csym
->set_is_copied_from_dynobj();
2182 csym
->set_needs_dynsym_entry();
2184 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2186 // We have now defined all aliases, but we have not entered them all
2187 // in the copied_symbol_dynobjs_ map.
2188 if (csym
->has_alias())
2193 sym
= this->weak_aliases_
[sym
];
2196 gold_assert(sym
->output_data() == posd
);
2198 sym
->set_is_copied_from_dynobj();
2199 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2204 // SYM is defined using a COPY reloc. Return the dynamic object where
2205 // the original definition was found.
2208 Symbol_table::get_copy_source(const Symbol
* sym
) const
2210 gold_assert(sym
->is_copied_from_dynobj());
2211 Copied_symbol_dynobjs::const_iterator p
=
2212 this->copied_symbol_dynobjs_
.find(sym
);
2213 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2217 // Add any undefined symbols named on the command line.
2220 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2222 if (parameters
->options().any_undefined()
2223 || layout
->script_options()->any_unreferenced())
2225 if (parameters
->target().get_size() == 32)
2227 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2228 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2233 else if (parameters
->target().get_size() == 64)
2235 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2236 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2248 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2250 for (options::String_set::const_iterator p
=
2251 parameters
->options().undefined_begin();
2252 p
!= parameters
->options().undefined_end();
2254 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2256 for (Script_options::referenced_const_iterator p
=
2257 layout
->script_options()->referenced_begin();
2258 p
!= layout
->script_options()->referenced_end();
2260 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2265 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2267 if (this->lookup(name
) != NULL
)
2270 const char* version
= NULL
;
2272 Sized_symbol
<size
>* sym
;
2273 Sized_symbol
<size
>* oldsym
;
2274 bool resolve_oldsym
;
2275 if (parameters
->target().is_big_endian())
2277 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2278 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2287 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2288 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2296 gold_assert(oldsym
== NULL
);
2298 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2299 elfcpp::STV_DEFAULT
, 0);
2300 ++this->saw_undefined_
;
2303 // Set the dynamic symbol indexes. INDEX is the index of the first
2304 // global dynamic symbol. Pointers to the symbols are stored into the
2305 // vector SYMS. The names are added to DYNPOOL. This returns an
2306 // updated dynamic symbol index.
2309 Symbol_table::set_dynsym_indexes(unsigned int index
,
2310 std::vector
<Symbol
*>* syms
,
2311 Stringpool
* dynpool
,
2314 for (Symbol_table_type::iterator p
= this->table_
.begin();
2315 p
!= this->table_
.end();
2318 Symbol
* sym
= p
->second
;
2320 // Note that SYM may already have a dynamic symbol index, since
2321 // some symbols appear more than once in the symbol table, with
2322 // and without a version.
2324 if (!sym
->should_add_dynsym_entry(this))
2325 sym
->set_dynsym_index(-1U);
2326 else if (!sym
->has_dynsym_index())
2328 sym
->set_dynsym_index(index
);
2330 syms
->push_back(sym
);
2331 dynpool
->add(sym
->name(), false, NULL
);
2333 // Record any version information.
2334 if (sym
->version() != NULL
)
2335 versions
->record_version(this, dynpool
, sym
);
2337 // If the symbol is defined in a dynamic object and is
2338 // referenced in a regular object, then mark the dynamic
2339 // object as needed. This is used to implement --as-needed.
2340 if (sym
->is_from_dynobj() && sym
->in_reg())
2341 sym
->object()->set_is_needed();
2345 // Finish up the versions. In some cases this may add new dynamic
2347 index
= versions
->finalize(this, index
, syms
);
2352 // Set the final values for all the symbols. The index of the first
2353 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2354 // file offset OFF. Add their names to POOL. Return the new file
2355 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2358 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2359 size_t dyncount
, Stringpool
* pool
,
2360 unsigned int* plocal_symcount
)
2364 gold_assert(*plocal_symcount
!= 0);
2365 this->first_global_index_
= *plocal_symcount
;
2367 this->dynamic_offset_
= dynoff
;
2368 this->first_dynamic_global_index_
= dyn_global_index
;
2369 this->dynamic_count_
= dyncount
;
2371 if (parameters
->target().get_size() == 32)
2373 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2374 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2379 else if (parameters
->target().get_size() == 64)
2381 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2382 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2390 // Now that we have the final symbol table, we can reliably note
2391 // which symbols should get warnings.
2392 this->warnings_
.note_warnings(this);
2397 // SYM is going into the symbol table at *PINDEX. Add the name to
2398 // POOL, update *PINDEX and *POFF.
2402 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2403 unsigned int* pindex
, off_t
* poff
)
2405 sym
->set_symtab_index(*pindex
);
2406 pool
->add(sym
->name(), false, NULL
);
2408 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2411 // Set the final value for all the symbols. This is called after
2412 // Layout::finalize, so all the output sections have their final
2417 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2418 unsigned int* plocal_symcount
)
2420 off
= align_address(off
, size
>> 3);
2421 this->offset_
= off
;
2423 unsigned int index
= *plocal_symcount
;
2424 const unsigned int orig_index
= index
;
2426 // First do all the symbols which have been forced to be local, as
2427 // they must appear before all global symbols.
2428 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2429 p
!= this->forced_locals_
.end();
2433 gold_assert(sym
->is_forced_local());
2434 if (this->sized_finalize_symbol
<size
>(sym
))
2436 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2441 // Now do all the remaining symbols.
2442 for (Symbol_table_type::iterator p
= this->table_
.begin();
2443 p
!= this->table_
.end();
2446 Symbol
* sym
= p
->second
;
2447 if (this->sized_finalize_symbol
<size
>(sym
))
2448 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2451 this->output_count_
= index
- orig_index
;
2456 // Compute the final value of SYM and store status in location PSTATUS.
2457 // During relaxation, this may be called multiple times for a symbol to
2458 // compute its would-be final value in each relaxation pass.
2461 typename Sized_symbol
<size
>::Value_type
2462 Symbol_table::compute_final_value(
2463 const Sized_symbol
<size
>* sym
,
2464 Compute_final_value_status
* pstatus
) const
2466 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2469 switch (sym
->source())
2471 case Symbol::FROM_OBJECT
:
2474 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2477 && shndx
!= elfcpp::SHN_ABS
2478 && !Symbol::is_common_shndx(shndx
))
2480 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2484 Object
* symobj
= sym
->object();
2485 if (symobj
->is_dynamic())
2488 shndx
= elfcpp::SHN_UNDEF
;
2490 else if (symobj
->pluginobj() != NULL
)
2493 shndx
= elfcpp::SHN_UNDEF
;
2495 else if (shndx
== elfcpp::SHN_UNDEF
)
2497 else if (!is_ordinary
2498 && (shndx
== elfcpp::SHN_ABS
2499 || Symbol::is_common_shndx(shndx
)))
2500 value
= sym
->value();
2503 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2504 Output_section
* os
= relobj
->output_section(shndx
);
2506 if (this->is_section_folded(relobj
, shndx
))
2508 gold_assert(os
== NULL
);
2509 // Get the os of the section it is folded onto.
2510 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2512 gold_assert(folded
.first
!= NULL
);
2513 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2514 unsigned folded_shndx
= folded
.second
;
2516 os
= folded_obj
->output_section(folded_shndx
);
2517 gold_assert(os
!= NULL
);
2519 // Replace (relobj, shndx) with canonical ICF input section.
2520 shndx
= folded_shndx
;
2521 relobj
= folded_obj
;
2524 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2527 bool static_or_reloc
= (parameters
->doing_static_link() ||
2528 parameters
->options().relocatable());
2529 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2531 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2535 if (secoff64
== -1ULL)
2537 // The section needs special handling (e.g., a merge section).
2539 value
= os
->output_address(relobj
, shndx
, sym
->value());
2544 convert_types
<Value_type
, uint64_t>(secoff64
);
2545 if (sym
->type() == elfcpp::STT_TLS
)
2546 value
= sym
->value() + os
->tls_offset() + secoff
;
2548 value
= sym
->value() + os
->address() + secoff
;
2554 case Symbol::IN_OUTPUT_DATA
:
2556 Output_data
* od
= sym
->output_data();
2557 value
= sym
->value();
2558 if (sym
->type() != elfcpp::STT_TLS
)
2559 value
+= od
->address();
2562 Output_section
* os
= od
->output_section();
2563 gold_assert(os
!= NULL
);
2564 value
+= os
->tls_offset() + (od
->address() - os
->address());
2566 if (sym
->offset_is_from_end())
2567 value
+= od
->data_size();
2571 case Symbol::IN_OUTPUT_SEGMENT
:
2573 Output_segment
* os
= sym
->output_segment();
2574 value
= sym
->value();
2575 if (sym
->type() != elfcpp::STT_TLS
)
2576 value
+= os
->vaddr();
2577 switch (sym
->offset_base())
2579 case Symbol::SEGMENT_START
:
2581 case Symbol::SEGMENT_END
:
2582 value
+= os
->memsz();
2584 case Symbol::SEGMENT_BSS
:
2585 value
+= os
->filesz();
2593 case Symbol::IS_CONSTANT
:
2594 value
= sym
->value();
2597 case Symbol::IS_UNDEFINED
:
2609 // Finalize the symbol SYM. This returns true if the symbol should be
2610 // added to the symbol table, false otherwise.
2614 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2616 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2618 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2620 // The default version of a symbol may appear twice in the symbol
2621 // table. We only need to finalize it once.
2622 if (sym
->has_symtab_index())
2627 gold_assert(!sym
->has_symtab_index());
2628 sym
->set_symtab_index(-1U);
2629 gold_assert(sym
->dynsym_index() == -1U);
2633 // If the symbol is only present on plugin files, the plugin decided we
2635 if (!sym
->in_real_elf())
2637 gold_assert(!sym
->has_symtab_index());
2638 sym
->set_symtab_index(-1U);
2642 // Compute final symbol value.
2643 Compute_final_value_status status
;
2644 Value_type value
= this->compute_final_value(sym
, &status
);
2650 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2653 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2654 gold_error(_("%s: unsupported symbol section 0x%x"),
2655 sym
->demangled_name().c_str(), shndx
);
2658 case CFVS_NO_OUTPUT_SECTION
:
2659 sym
->set_symtab_index(-1U);
2665 sym
->set_value(value
);
2667 if (parameters
->options().strip_all()
2668 || !parameters
->options().should_retain_symbol(sym
->name()))
2670 sym
->set_symtab_index(-1U);
2677 // Write out the global symbols.
2680 Symbol_table::write_globals(const Stringpool
* sympool
,
2681 const Stringpool
* dynpool
,
2682 Output_symtab_xindex
* symtab_xindex
,
2683 Output_symtab_xindex
* dynsym_xindex
,
2684 Output_file
* of
) const
2686 switch (parameters
->size_and_endianness())
2688 #ifdef HAVE_TARGET_32_LITTLE
2689 case Parameters::TARGET_32_LITTLE
:
2690 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2694 #ifdef HAVE_TARGET_32_BIG
2695 case Parameters::TARGET_32_BIG
:
2696 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2700 #ifdef HAVE_TARGET_64_LITTLE
2701 case Parameters::TARGET_64_LITTLE
:
2702 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2706 #ifdef HAVE_TARGET_64_BIG
2707 case Parameters::TARGET_64_BIG
:
2708 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2717 // Write out the global symbols.
2719 template<int size
, bool big_endian
>
2721 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2722 const Stringpool
* dynpool
,
2723 Output_symtab_xindex
* symtab_xindex
,
2724 Output_symtab_xindex
* dynsym_xindex
,
2725 Output_file
* of
) const
2727 const Target
& target
= parameters
->target();
2729 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2731 const unsigned int output_count
= this->output_count_
;
2732 const section_size_type oview_size
= output_count
* sym_size
;
2733 const unsigned int first_global_index
= this->first_global_index_
;
2734 unsigned char* psyms
;
2735 if (this->offset_
== 0 || output_count
== 0)
2738 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2740 const unsigned int dynamic_count
= this->dynamic_count_
;
2741 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2742 const unsigned int first_dynamic_global_index
=
2743 this->first_dynamic_global_index_
;
2744 unsigned char* dynamic_view
;
2745 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2746 dynamic_view
= NULL
;
2748 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2750 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2751 p
!= this->table_
.end();
2754 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2756 // Possibly warn about unresolved symbols in shared libraries.
2757 this->warn_about_undefined_dynobj_symbol(sym
);
2759 unsigned int sym_index
= sym
->symtab_index();
2760 unsigned int dynsym_index
;
2761 if (dynamic_view
== NULL
)
2764 dynsym_index
= sym
->dynsym_index();
2766 if (sym_index
== -1U && dynsym_index
== -1U)
2768 // This symbol is not included in the output file.
2773 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2774 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2775 elfcpp::STB binding
= sym
->binding();
2776 switch (sym
->source())
2778 case Symbol::FROM_OBJECT
:
2781 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2784 && in_shndx
!= elfcpp::SHN_ABS
2785 && !Symbol::is_common_shndx(in_shndx
))
2787 gold_error(_("%s: unsupported symbol section 0x%x"),
2788 sym
->demangled_name().c_str(), in_shndx
);
2793 Object
* symobj
= sym
->object();
2794 if (symobj
->is_dynamic())
2796 if (sym
->needs_dynsym_value())
2797 dynsym_value
= target
.dynsym_value(sym
);
2798 shndx
= elfcpp::SHN_UNDEF
;
2799 if (sym
->is_undef_binding_weak())
2800 binding
= elfcpp::STB_WEAK
;
2802 binding
= elfcpp::STB_GLOBAL
;
2804 else if (symobj
->pluginobj() != NULL
)
2805 shndx
= elfcpp::SHN_UNDEF
;
2806 else if (in_shndx
== elfcpp::SHN_UNDEF
2808 && (in_shndx
== elfcpp::SHN_ABS
2809 || Symbol::is_common_shndx(in_shndx
))))
2813 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2814 Output_section
* os
= relobj
->output_section(in_shndx
);
2815 if (this->is_section_folded(relobj
, in_shndx
))
2817 // This global symbol must be written out even though
2819 // Get the os of the section it is folded onto.
2821 this->icf_
->get_folded_section(relobj
, in_shndx
);
2822 gold_assert(folded
.first
!=NULL
);
2823 Relobj
* folded_obj
=
2824 reinterpret_cast<Relobj
*>(folded
.first
);
2825 os
= folded_obj
->output_section(folded
.second
);
2826 gold_assert(os
!= NULL
);
2828 gold_assert(os
!= NULL
);
2829 shndx
= os
->out_shndx();
2831 if (shndx
>= elfcpp::SHN_LORESERVE
)
2833 if (sym_index
!= -1U)
2834 symtab_xindex
->add(sym_index
, shndx
);
2835 if (dynsym_index
!= -1U)
2836 dynsym_xindex
->add(dynsym_index
, shndx
);
2837 shndx
= elfcpp::SHN_XINDEX
;
2840 // In object files symbol values are section
2842 if (parameters
->options().relocatable())
2843 sym_value
-= os
->address();
2849 case Symbol::IN_OUTPUT_DATA
:
2850 shndx
= sym
->output_data()->out_shndx();
2851 if (shndx
>= elfcpp::SHN_LORESERVE
)
2853 if (sym_index
!= -1U)
2854 symtab_xindex
->add(sym_index
, shndx
);
2855 if (dynsym_index
!= -1U)
2856 dynsym_xindex
->add(dynsym_index
, shndx
);
2857 shndx
= elfcpp::SHN_XINDEX
;
2861 case Symbol::IN_OUTPUT_SEGMENT
:
2862 shndx
= elfcpp::SHN_ABS
;
2865 case Symbol::IS_CONSTANT
:
2866 shndx
= elfcpp::SHN_ABS
;
2869 case Symbol::IS_UNDEFINED
:
2870 shndx
= elfcpp::SHN_UNDEF
;
2877 if (sym_index
!= -1U)
2879 sym_index
-= first_global_index
;
2880 gold_assert(sym_index
< output_count
);
2881 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2882 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2883 binding
, sympool
, ps
);
2886 if (dynsym_index
!= -1U)
2888 dynsym_index
-= first_dynamic_global_index
;
2889 gold_assert(dynsym_index
< dynamic_count
);
2890 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2891 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2892 binding
, dynpool
, pd
);
2896 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2897 if (dynamic_view
!= NULL
)
2898 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2901 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2902 // strtab holding the name.
2904 template<int size
, bool big_endian
>
2906 Symbol_table::sized_write_symbol(
2907 Sized_symbol
<size
>* sym
,
2908 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2910 elfcpp::STB binding
,
2911 const Stringpool
* pool
,
2912 unsigned char* p
) const
2914 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2915 osym
.put_st_name(pool
->get_offset(sym
->name()));
2916 osym
.put_st_value(value
);
2917 // Use a symbol size of zero for undefined symbols from shared libraries.
2918 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2919 osym
.put_st_size(0);
2921 osym
.put_st_size(sym
->symsize());
2922 elfcpp::STT type
= sym
->type();
2923 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2924 if (type
== elfcpp::STT_GNU_IFUNC
2925 && sym
->is_from_dynobj())
2926 type
= elfcpp::STT_FUNC
;
2927 // A version script may have overridden the default binding.
2928 if (sym
->is_forced_local())
2929 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
2931 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
2932 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2933 osym
.put_st_shndx(shndx
);
2936 // Check for unresolved symbols in shared libraries. This is
2937 // controlled by the --allow-shlib-undefined option.
2939 // We only warn about libraries for which we have seen all the
2940 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2941 // which were not seen in this link. If we didn't see a DT_NEEDED
2942 // entry, we aren't going to be able to reliably report whether the
2943 // symbol is undefined.
2945 // We also don't warn about libraries found in a system library
2946 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2947 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2948 // can have undefined references satisfied by ld-linux.so.
2951 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2954 if (sym
->source() == Symbol::FROM_OBJECT
2955 && sym
->object()->is_dynamic()
2956 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2957 && sym
->binding() != elfcpp::STB_WEAK
2958 && !parameters
->options().allow_shlib_undefined()
2959 && !parameters
->target().is_defined_by_abi(sym
)
2960 && !sym
->object()->is_in_system_directory())
2962 // A very ugly cast.
2963 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2964 if (!dynobj
->has_unknown_needed_entries())
2965 gold_undefined_symbol(sym
);
2969 // Write out a section symbol. Return the update offset.
2972 Symbol_table::write_section_symbol(const Output_section
* os
,
2973 Output_symtab_xindex
* symtab_xindex
,
2977 switch (parameters
->size_and_endianness())
2979 #ifdef HAVE_TARGET_32_LITTLE
2980 case Parameters::TARGET_32_LITTLE
:
2981 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2985 #ifdef HAVE_TARGET_32_BIG
2986 case Parameters::TARGET_32_BIG
:
2987 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2991 #ifdef HAVE_TARGET_64_LITTLE
2992 case Parameters::TARGET_64_LITTLE
:
2993 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2997 #ifdef HAVE_TARGET_64_BIG
2998 case Parameters::TARGET_64_BIG
:
2999 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3008 // Write out a section symbol, specialized for size and endianness.
3010 template<int size
, bool big_endian
>
3012 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3013 Output_symtab_xindex
* symtab_xindex
,
3017 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3019 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3021 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3022 osym
.put_st_name(0);
3023 if (parameters
->options().relocatable())
3024 osym
.put_st_value(0);
3026 osym
.put_st_value(os
->address());
3027 osym
.put_st_size(0);
3028 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3029 elfcpp::STT_SECTION
));
3030 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3032 unsigned int shndx
= os
->out_shndx();
3033 if (shndx
>= elfcpp::SHN_LORESERVE
)
3035 symtab_xindex
->add(os
->symtab_index(), shndx
);
3036 shndx
= elfcpp::SHN_XINDEX
;
3038 osym
.put_st_shndx(shndx
);
3040 of
->write_output_view(offset
, sym_size
, pov
);
3043 // Print statistical information to stderr. This is used for --stats.
3046 Symbol_table::print_stats() const
3048 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3049 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3050 program_name
, this->table_
.size(), this->table_
.bucket_count());
3052 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3053 program_name
, this->table_
.size());
3055 this->namepool_
.print_stats("symbol table stringpool");
3058 // We check for ODR violations by looking for symbols with the same
3059 // name for which the debugging information reports that they were
3060 // defined in disjoint source locations. When comparing the source
3061 // location, we consider instances with the same base filename to be
3062 // the same. This is because different object files/shared libraries
3063 // can include the same header file using different paths, and
3064 // different optimization settings can make the line number appear to
3065 // be a couple lines off, and we don't want to report an ODR violation
3068 // This struct is used to compare line information, as returned by
3069 // Dwarf_line_info::one_addr2line. It implements a < comparison
3070 // operator used with std::sort.
3072 struct Odr_violation_compare
3075 operator()(const std::string
& s1
, const std::string
& s2
) const
3077 // Inputs should be of the form "dirname/filename:linenum" where
3078 // "dirname/" is optional. We want to compare just the filename:linenum.
3080 // Find the last '/' in each string.
3081 std::string::size_type s1begin
= s1
.rfind('/');
3082 std::string::size_type s2begin
= s2
.rfind('/');
3083 // If there was no '/' in a string, start at the beginning.
3084 if (s1begin
== std::string::npos
)
3086 if (s2begin
== std::string::npos
)
3088 return s1
.compare(s1begin
, std::string::npos
,
3089 s2
, s2begin
, std::string::npos
) < 0;
3093 // Returns all of the lines attached to LOC, not just the one the
3094 // instruction actually came from.
3095 std::vector
<std::string
>
3096 Symbol_table::linenos_from_loc(const Task
* task
,
3097 const Symbol_location
& loc
)
3099 // We need to lock the object in order to read it. This
3100 // means that we have to run in a singleton Task. If we
3101 // want to run this in a general Task for better
3102 // performance, we will need one Task for object, plus
3103 // appropriate locking to ensure that we don't conflict with
3104 // other uses of the object. Also note, one_addr2line is not
3105 // currently thread-safe.
3106 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3108 std::vector
<std::string
> result
;
3109 // 16 is the size of the object-cache that one_addr2line should use.
3110 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3111 loc
.object
, loc
.shndx
, loc
.offset
, 16, &result
);
3112 if (!canonical_result
.empty())
3113 result
.push_back(canonical_result
);
3117 // OutputIterator that records if it was ever assigned to. This
3118 // allows it to be used with std::set_intersection() to check for
3119 // intersection rather than computing the intersection.
3120 struct Check_intersection
3122 Check_intersection()
3126 bool had_intersection() const
3127 { return this->value_
; }
3129 Check_intersection
& operator++()
3132 Check_intersection
& operator*()
3135 template<typename T
>
3136 Check_intersection
& operator=(const T
&)
3138 this->value_
= true;
3146 // Check candidate_odr_violations_ to find symbols with the same name
3147 // but apparently different definitions (different source-file/line-no
3148 // for each line assigned to the first instruction).
3151 Symbol_table::detect_odr_violations(const Task
* task
,
3152 const char* output_file_name
) const
3154 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3155 it
!= candidate_odr_violations_
.end();
3158 const char* const symbol_name
= it
->first
;
3160 std::string first_object_name
;
3161 std::vector
<std::string
> first_object_linenos
;
3163 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3164 locs
= it
->second
.begin();
3165 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3166 locs_end
= it
->second
.end();
3167 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3169 // Save the line numbers from the first definition to
3170 // compare to the other definitions. Ideally, we'd compare
3171 // every definition to every other, but we don't want to
3172 // take O(N^2) time to do this. This shortcut may cause
3173 // false negatives that appear or disappear depending on the
3174 // link order, but it won't cause false positives.
3175 first_object_name
= locs
->object
->name();
3176 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3179 // Sort by Odr_violation_compare to make std::set_intersection work.
3180 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3181 Odr_violation_compare());
3183 for (; locs
!= locs_end
; ++locs
)
3185 std::vector
<std::string
> linenos
=
3186 this->linenos_from_loc(task
, *locs
);
3187 // linenos will be empty if we couldn't parse the debug info.
3188 if (linenos
.empty())
3190 // Sort by Odr_violation_compare to make std::set_intersection work.
3191 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3193 Check_intersection intersection_result
=
3194 std::set_intersection(first_object_linenos
.begin(),
3195 first_object_linenos
.end(),
3198 Check_intersection(),
3199 Odr_violation_compare());
3200 if (!intersection_result
.had_intersection())
3202 gold_warning(_("while linking %s: symbol '%s' defined in "
3203 "multiple places (possible ODR violation):"),
3204 output_file_name
, demangle(symbol_name
).c_str());
3205 // This only prints one location from each definition,
3206 // which may not be the location we expect to intersect
3207 // with another definition. We could print the whole
3208 // set of locations, but that seems too verbose.
3209 gold_assert(!first_object_linenos
.empty());
3210 gold_assert(!linenos
.empty());
3211 fprintf(stderr
, _(" %s from %s\n"),
3212 first_object_linenos
[0].c_str(),
3213 first_object_name
.c_str());
3214 fprintf(stderr
, _(" %s from %s\n"),
3216 locs
->object
->name().c_str());
3217 // Only print one broken pair, to avoid needing to
3218 // compare against a list of the disjoint definition
3219 // locations we've found so far. (If we kept comparing
3220 // against just the first one, we'd get a lot of
3221 // redundant complaints about the second definition
3227 // We only call one_addr2line() in this function, so we can clear its cache.
3228 Dwarf_line_info::clear_addr2line_cache();
3231 // Warnings functions.
3233 // Add a new warning.
3236 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3237 const std::string
& warning
)
3239 name
= symtab
->canonicalize_name(name
);
3240 this->warnings_
[name
].set(obj
, warning
);
3243 // Look through the warnings and mark the symbols for which we should
3244 // warn. This is called during Layout::finalize when we know the
3245 // sources for all the symbols.
3248 Warnings::note_warnings(Symbol_table
* symtab
)
3250 for (Warning_table::iterator p
= this->warnings_
.begin();
3251 p
!= this->warnings_
.end();
3254 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3256 && sym
->source() == Symbol::FROM_OBJECT
3257 && sym
->object() == p
->second
.object
)
3258 sym
->set_has_warning();
3262 // Issue a warning. This is called when we see a relocation against a
3263 // symbol for which has a warning.
3265 template<int size
, bool big_endian
>
3267 Warnings::issue_warning(const Symbol
* sym
,
3268 const Relocate_info
<size
, big_endian
>* relinfo
,
3269 size_t relnum
, off_t reloffset
) const
3271 gold_assert(sym
->has_warning());
3272 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3273 gold_assert(p
!= this->warnings_
.end());
3274 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3275 "%s", p
->second
.text
.c_str());
3278 // Instantiate the templates we need. We could use the configure
3279 // script to restrict this to only the ones needed for implemented
3282 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3285 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3288 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3291 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3294 #ifdef HAVE_TARGET_32_LITTLE
3297 Symbol_table::add_from_relobj
<32, false>(
3298 Sized_relobj_file
<32, false>* relobj
,
3299 const unsigned char* syms
,
3301 size_t symndx_offset
,
3302 const char* sym_names
,
3303 size_t sym_name_size
,
3304 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3308 #ifdef HAVE_TARGET_32_BIG
3311 Symbol_table::add_from_relobj
<32, true>(
3312 Sized_relobj_file
<32, true>* relobj
,
3313 const unsigned char* syms
,
3315 size_t symndx_offset
,
3316 const char* sym_names
,
3317 size_t sym_name_size
,
3318 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3322 #ifdef HAVE_TARGET_64_LITTLE
3325 Symbol_table::add_from_relobj
<64, false>(
3326 Sized_relobj_file
<64, false>* relobj
,
3327 const unsigned char* syms
,
3329 size_t symndx_offset
,
3330 const char* sym_names
,
3331 size_t sym_name_size
,
3332 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3336 #ifdef HAVE_TARGET_64_BIG
3339 Symbol_table::add_from_relobj
<64, true>(
3340 Sized_relobj_file
<64, true>* relobj
,
3341 const unsigned char* syms
,
3343 size_t symndx_offset
,
3344 const char* sym_names
,
3345 size_t sym_name_size
,
3346 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3350 #ifdef HAVE_TARGET_32_LITTLE
3353 Symbol_table::add_from_pluginobj
<32, false>(
3354 Sized_pluginobj
<32, false>* obj
,
3357 elfcpp::Sym
<32, false>* sym
);
3360 #ifdef HAVE_TARGET_32_BIG
3363 Symbol_table::add_from_pluginobj
<32, true>(
3364 Sized_pluginobj
<32, true>* obj
,
3367 elfcpp::Sym
<32, true>* sym
);
3370 #ifdef HAVE_TARGET_64_LITTLE
3373 Symbol_table::add_from_pluginobj
<64, false>(
3374 Sized_pluginobj
<64, false>* obj
,
3377 elfcpp::Sym
<64, false>* sym
);
3380 #ifdef HAVE_TARGET_64_BIG
3383 Symbol_table::add_from_pluginobj
<64, true>(
3384 Sized_pluginobj
<64, true>* obj
,
3387 elfcpp::Sym
<64, true>* sym
);
3390 #ifdef HAVE_TARGET_32_LITTLE
3393 Symbol_table::add_from_dynobj
<32, false>(
3394 Sized_dynobj
<32, false>* dynobj
,
3395 const unsigned char* syms
,
3397 const char* sym_names
,
3398 size_t sym_name_size
,
3399 const unsigned char* versym
,
3401 const std::vector
<const char*>* version_map
,
3402 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3406 #ifdef HAVE_TARGET_32_BIG
3409 Symbol_table::add_from_dynobj
<32, true>(
3410 Sized_dynobj
<32, true>* dynobj
,
3411 const unsigned char* syms
,
3413 const char* sym_names
,
3414 size_t sym_name_size
,
3415 const unsigned char* versym
,
3417 const std::vector
<const char*>* version_map
,
3418 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3422 #ifdef HAVE_TARGET_64_LITTLE
3425 Symbol_table::add_from_dynobj
<64, false>(
3426 Sized_dynobj
<64, false>* dynobj
,
3427 const unsigned char* syms
,
3429 const char* sym_names
,
3430 size_t sym_name_size
,
3431 const unsigned char* versym
,
3433 const std::vector
<const char*>* version_map
,
3434 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3438 #ifdef HAVE_TARGET_64_BIG
3441 Symbol_table::add_from_dynobj
<64, true>(
3442 Sized_dynobj
<64, true>* dynobj
,
3443 const unsigned char* syms
,
3445 const char* sym_names
,
3446 size_t sym_name_size
,
3447 const unsigned char* versym
,
3449 const std::vector
<const char*>* version_map
,
3450 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3454 #ifdef HAVE_TARGET_32_LITTLE
3457 Symbol_table::add_from_incrobj(
3461 elfcpp::Sym
<32, false>* sym
);
3464 #ifdef HAVE_TARGET_32_BIG
3467 Symbol_table::add_from_incrobj(
3471 elfcpp::Sym
<32, true>* sym
);
3474 #ifdef HAVE_TARGET_64_LITTLE
3477 Symbol_table::add_from_incrobj(
3481 elfcpp::Sym
<64, false>* sym
);
3484 #ifdef HAVE_TARGET_64_BIG
3487 Symbol_table::add_from_incrobj(
3491 elfcpp::Sym
<64, true>* sym
);
3494 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3497 Symbol_table::define_with_copy_reloc
<32>(
3498 Sized_symbol
<32>* sym
,
3500 elfcpp::Elf_types
<32>::Elf_Addr value
);
3503 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3506 Symbol_table::define_with_copy_reloc
<64>(
3507 Sized_symbol
<64>* sym
,
3509 elfcpp::Elf_types
<64>::Elf_Addr value
);
3512 #ifdef HAVE_TARGET_32_LITTLE
3515 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3516 const Relocate_info
<32, false>* relinfo
,
3517 size_t relnum
, off_t reloffset
) const;
3520 #ifdef HAVE_TARGET_32_BIG
3523 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3524 const Relocate_info
<32, true>* relinfo
,
3525 size_t relnum
, off_t reloffset
) const;
3528 #ifdef HAVE_TARGET_64_LITTLE
3531 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3532 const Relocate_info
<64, false>* relinfo
,
3533 size_t relnum
, off_t reloffset
) const;
3536 #ifdef HAVE_TARGET_64_BIG
3539 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3540 const Relocate_info
<64, true>* relinfo
,
3541 size_t relnum
, off_t reloffset
) const;
3544 } // End namespace gold.