1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
42 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
43 : Object(name
, input_file
, true, offset
),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_
= this->input_file()->found_name();
53 if (this->offset() != 0)
55 std::string::size_type open_paren
= this->name().find('(');
56 std::string::size_type close_paren
= this->name().find(')');
57 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_
= this->name().substr(open_paren
+ 1,
61 close_paren
- (open_paren
+ 1));
66 // Class Sized_dynobj.
68 template<int size
, bool big_endian
>
69 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
70 const std::string
& name
,
71 Input_file
* input_file
,
73 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
74 : Dynobj(name
, input_file
, offset
),
75 elf_file_(this, ehdr
),
84 template<int size
, bool big_endian
>
86 Sized_dynobj
<size
, big_endian
>::setup(
87 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
89 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
90 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
91 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
93 const unsigned int shnum
= this->elf_file_
.shnum();
94 this->set_shnum(shnum
);
97 // Find the SHT_DYNSYM section and the various version sections, and
98 // the dynamic section, given the section headers.
100 template<int size
, bool big_endian
>
102 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
103 const unsigned char* pshdrs
,
104 unsigned int* pversym_shndx
,
105 unsigned int* pverdef_shndx
,
106 unsigned int* pverneed_shndx
,
107 unsigned int* pdynamic_shndx
)
109 *pversym_shndx
= -1U;
110 *pverdef_shndx
= -1U;
111 *pverneed_shndx
= -1U;
112 *pdynamic_shndx
= -1U;
114 unsigned int xindex_shndx
= 0;
115 unsigned int xindex_link
= 0;
116 const unsigned int shnum
= this->shnum();
117 const unsigned char* p
= pshdrs
;
118 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
120 typename
This::Shdr
shdr(p
);
123 switch (shdr
.get_sh_type())
125 case elfcpp::SHT_DYNSYM
:
126 this->dynsym_shndx_
= i
;
127 if (xindex_shndx
> 0 && xindex_link
== i
)
129 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
130 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
132 this->set_xindex(xindex
);
136 case elfcpp::SHT_GNU_versym
:
139 case elfcpp::SHT_GNU_verdef
:
142 case elfcpp::SHT_GNU_verneed
:
145 case elfcpp::SHT_DYNAMIC
:
148 case elfcpp::SHT_SYMTAB_SHNDX
:
150 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
151 if (xindex_link
== this->dynsym_shndx_
)
153 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
154 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
156 this->set_xindex(xindex
);
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr
.get_sh_type(), *pi
, i
);
176 // Read the contents of section SHNDX. PSHDRS points to the section
177 // headers. TYPE is the expected section type. LINK is the expected
178 // section link. Store the data in *VIEW and *VIEW_SIZE. The
179 // section's sh_info field is stored in *VIEW_INFO.
181 template<int size
, bool big_endian
>
183 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
184 const unsigned char* pshdrs
,
189 section_size_type
* view_size
,
190 unsigned int* view_info
)
200 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
202 gold_assert(shdr
.get_sh_type() == type
);
204 if (this->adjust_shndx(shdr
.get_sh_link()) != link
)
205 this->error(_("unexpected link in section %u header: %u != %u"),
206 shndx
, this->adjust_shndx(shdr
.get_sh_link()), link
);
208 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
210 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
211 *view_info
= shdr
.get_sh_info();
214 // Read the dynamic tags. Set the soname field if this shared object
215 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
216 // the section headers. DYNAMIC_SHNDX is the section index of the
217 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
218 // section index and contents of a string table which may be the one
219 // associated with the SHT_DYNAMIC section.
221 template<int size
, bool big_endian
>
223 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
224 unsigned int dynamic_shndx
,
225 unsigned int strtab_shndx
,
226 const unsigned char* strtabu
,
229 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
230 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
232 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
233 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
234 dynamic_size
, true, false);
236 const unsigned int link
= this->adjust_shndx(dynamicshdr
.get_sh_link());
237 if (link
!= strtab_shndx
)
239 if (link
>= this->shnum())
241 this->error(_("DYNAMIC section %u link out of range: %u"),
242 dynamic_shndx
, link
);
246 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
247 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
249 this->error(_("DYNAMIC section %u link %u is not a strtab"),
250 dynamic_shndx
, link
);
254 strtab_size
= strtabshdr
.get_sh_size();
255 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false,
259 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
261 for (const unsigned char* p
= pdynamic
;
262 p
< pdynamic
+ dynamic_size
;
265 typename
This::Dyn
dyn(p
);
267 switch (dyn
.get_d_tag())
269 case elfcpp::DT_NULL
:
270 // We should always see DT_NULL at the end of the dynamic
274 case elfcpp::DT_SONAME
:
276 off_t val
= dyn
.get_d_val();
277 if (val
>= strtab_size
)
278 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
279 static_cast<long long>(val
),
280 static_cast<long long>(strtab_size
));
282 this->set_soname_string(strtab
+ val
);
286 case elfcpp::DT_NEEDED
:
288 off_t val
= dyn
.get_d_val();
289 if (val
>= strtab_size
)
290 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
291 static_cast<long long>(val
),
292 static_cast<long long>(strtab_size
));
294 this->add_needed(strtab
+ val
);
303 this->error(_("missing DT_NULL in dynamic segment"));
306 // Read the symbols and sections from a dynamic object. We read the
307 // dynamic symbols, not the normal symbols.
309 template<int size
, bool big_endian
>
311 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
313 this->read_section_data(&this->elf_file_
, sd
);
315 const unsigned char* const pshdrs
= sd
->section_headers
->data();
317 unsigned int versym_shndx
;
318 unsigned int verdef_shndx
;
319 unsigned int verneed_shndx
;
320 unsigned int dynamic_shndx
;
321 this->find_dynsym_sections(pshdrs
, &versym_shndx
, &verdef_shndx
,
322 &verneed_shndx
, &dynamic_shndx
);
324 unsigned int strtab_shndx
= -1U;
327 sd
->symbols_size
= 0;
328 sd
->external_symbols_offset
= 0;
329 sd
->symbol_names
= NULL
;
330 sd
->symbol_names_size
= 0;
332 if (this->dynsym_shndx_
!= -1U)
334 // Get the dynamic symbols.
335 typename
This::Shdr
dynsymshdr(pshdrs
336 + this->dynsym_shndx_
* This::shdr_size
);
337 gold_assert(dynsymshdr
.get_sh_type() == elfcpp::SHT_DYNSYM
);
339 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
340 dynsymshdr
.get_sh_size(), true,
343 convert_to_section_size_type(dynsymshdr
.get_sh_size());
345 // Get the symbol names.
346 strtab_shndx
= this->adjust_shndx(dynsymshdr
.get_sh_link());
347 if (strtab_shndx
>= this->shnum())
349 this->error(_("invalid dynamic symbol table name index: %u"),
353 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
354 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
356 this->error(_("dynamic symbol table name section "
357 "has wrong type: %u"),
358 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
362 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
363 strtabshdr
.get_sh_size(),
365 sd
->symbol_names_size
=
366 convert_to_section_size_type(strtabshdr
.get_sh_size());
368 // Get the version information.
371 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
373 &sd
->versym
, &sd
->versym_size
, &dummy
);
375 // We require that the version definition and need section link
376 // to the same string table as the dynamic symbol table. This
377 // is not a technical requirement, but it always happens in
378 // practice. We could change this if necessary.
380 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
381 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
384 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
385 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
389 // Read the SHT_DYNAMIC section to find whether this shared object
390 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
391 // doesn't really have anything to do with reading the symbols, but
392 // this is a convenient place to do it.
393 if (dynamic_shndx
!= -1U)
394 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
395 (sd
->symbol_names
== NULL
397 : sd
->symbol_names
->data()),
398 sd
->symbol_names_size
);
401 // Return the Xindex structure to use for object with lots of
404 template<int size
, bool big_endian
>
406 Sized_dynobj
<size
, big_endian
>::do_initialize_xindex()
408 gold_assert(this->dynsym_shndx_
!= -1U);
409 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
410 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->dynsym_shndx_
);
414 // Lay out the input sections for a dynamic object. We don't want to
415 // include sections from a dynamic object, so all that we actually do
416 // here is check for .gnu.warning sections.
418 template<int size
, bool big_endian
>
420 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
422 Read_symbols_data
* sd
)
424 const unsigned int shnum
= this->shnum();
428 // Get the section headers.
429 const unsigned char* pshdrs
= sd
->section_headers
->data();
431 // Get the section names.
432 const unsigned char* pnamesu
= sd
->section_names
->data();
433 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
435 // Skip the first, dummy, section.
436 pshdrs
+= This::shdr_size
;
437 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
439 typename
This::Shdr
shdr(pshdrs
);
441 if (shdr
.get_sh_name() >= sd
->section_names_size
)
443 this->error(_("bad section name offset for section %u: %lu"),
444 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
448 const char* name
= pnames
+ shdr
.get_sh_name();
450 this->handle_gnu_warning_section(name
, i
, symtab
);
453 delete sd
->section_headers
;
454 sd
->section_headers
= NULL
;
455 delete sd
->section_names
;
456 sd
->section_names
= NULL
;
459 // Add an entry to the vector mapping version numbers to version
462 template<int size
, bool big_endian
>
464 Sized_dynobj
<size
, big_endian
>::set_version_map(
465 Version_map
* version_map
,
467 const char* name
) const
469 if (ndx
>= version_map
->size())
470 version_map
->resize(ndx
+ 1);
471 if ((*version_map
)[ndx
] != NULL
)
472 this->error(_("duplicate definition for version %u"), ndx
);
473 (*version_map
)[ndx
] = name
;
476 // Add mappings for the version definitions to VERSION_MAP.
478 template<int size
, bool big_endian
>
480 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
481 Read_symbols_data
* sd
,
482 Version_map
* version_map
) const
484 if (sd
->verdef
== NULL
)
487 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
488 section_size_type names_size
= sd
->symbol_names_size
;
490 const unsigned char* pverdef
= sd
->verdef
->data();
491 section_size_type verdef_size
= sd
->verdef_size
;
492 const unsigned int count
= sd
->verdef_info
;
494 const unsigned char* p
= pverdef
;
495 for (unsigned int i
= 0; i
< count
; ++i
)
497 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
499 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
501 this->error(_("unexpected verdef version %u"),
502 verdef
.get_vd_version());
506 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
508 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
511 // The first Verdaux holds the name of this version. Subsequent
512 // ones are versions that this one depends upon, which we don't
514 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
517 this->error(_("verdef vd_cnt field too small: %u"),
518 static_cast<unsigned int>(vd_cnt
));
522 const section_size_type vd_aux
= verdef
.get_vd_aux();
523 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
525 this->error(_("verdef vd_aux field out of range: %u"),
526 static_cast<unsigned int>(vd_aux
));
530 const unsigned char* pvda
= p
+ vd_aux
;
531 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
533 const section_size_type vda_name
= verdaux
.get_vda_name();
534 if (vda_name
>= names_size
)
536 this->error(_("verdaux vda_name field out of range: %u"),
537 static_cast<unsigned int>(vda_name
));
541 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
543 const section_size_type vd_next
= verdef
.get_vd_next();
544 if ((p
- pverdef
) + vd_next
>= verdef_size
)
546 this->error(_("verdef vd_next field out of range: %u"),
547 static_cast<unsigned int>(vd_next
));
555 // Add mappings for the required versions to VERSION_MAP.
557 template<int size
, bool big_endian
>
559 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
560 Read_symbols_data
* sd
,
561 Version_map
* version_map
) const
563 if (sd
->verneed
== NULL
)
566 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
567 section_size_type names_size
= sd
->symbol_names_size
;
569 const unsigned char* pverneed
= sd
->verneed
->data();
570 const section_size_type verneed_size
= sd
->verneed_size
;
571 const unsigned int count
= sd
->verneed_info
;
573 const unsigned char* p
= pverneed
;
574 for (unsigned int i
= 0; i
< count
; ++i
)
576 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
578 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
580 this->error(_("unexpected verneed version %u"),
581 verneed
.get_vn_version());
585 const section_size_type vn_aux
= verneed
.get_vn_aux();
587 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
589 this->error(_("verneed vn_aux field out of range: %u"),
590 static_cast<unsigned int>(vn_aux
));
594 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
595 const unsigned char* pvna
= p
+ vn_aux
;
596 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
598 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
600 const unsigned int vna_name
= vernaux
.get_vna_name();
601 if (vna_name
>= names_size
)
603 this->error(_("vernaux vna_name field out of range: %u"),
604 static_cast<unsigned int>(vna_name
));
608 this->set_version_map(version_map
, vernaux
.get_vna_other(),
611 const section_size_type vna_next
= vernaux
.get_vna_next();
612 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
614 this->error(_("verneed vna_next field out of range: %u"),
615 static_cast<unsigned int>(vna_next
));
622 const section_size_type vn_next
= verneed
.get_vn_next();
623 if ((p
- pverneed
) + vn_next
>= verneed_size
)
625 this->error(_("verneed vn_next field out of range: %u"),
626 static_cast<unsigned int>(vn_next
));
634 // Create a vector mapping version numbers to version strings.
636 template<int size
, bool big_endian
>
638 Sized_dynobj
<size
, big_endian
>::make_version_map(
639 Read_symbols_data
* sd
,
640 Version_map
* version_map
) const
642 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
645 // A guess at the maximum version number we will see. If this is
646 // wrong we will be less efficient but still correct.
647 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
649 this->make_verdef_map(sd
, version_map
);
650 this->make_verneed_map(sd
, version_map
);
653 // Add the dynamic symbols to the symbol table.
655 template<int size
, bool big_endian
>
657 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
658 Read_symbols_data
* sd
)
660 if (sd
->symbols
== NULL
)
662 gold_assert(sd
->symbol_names
== NULL
);
663 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
664 && sd
->verneed
== NULL
);
668 const int sym_size
= This::sym_size
;
669 const size_t symcount
= sd
->symbols_size
/ sym_size
;
670 gold_assert(sd
->external_symbols_offset
== 0);
671 if (symcount
* sym_size
!= sd
->symbols_size
)
673 this->error(_("size of dynamic symbols is not multiple of symbol size"));
677 Version_map version_map
;
678 this->make_version_map(sd
, &version_map
);
680 // If printing symbol counts, we want to track symbols.
682 if (parameters
->options().user_set_print_symbol_counts())
684 this->symbols_
= new Symbols();
685 this->symbols_
->resize(symcount
);
688 const char* sym_names
=
689 reinterpret_cast<const char*>(sd
->symbol_names
->data());
690 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
691 sym_names
, sd
->symbol_names_size
,
694 : sd
->versym
->data()),
698 &this->defined_count_
);
702 delete sd
->symbol_names
;
703 sd
->symbol_names
= NULL
;
704 if (sd
->versym
!= NULL
)
709 if (sd
->verdef
!= NULL
)
714 if (sd
->verneed
!= NULL
)
720 // This is normally the last time we will read any data from this
722 this->clear_view_cache_marks();
725 // Get symbol counts.
727 template<int size
, bool big_endian
>
729 Sized_dynobj
<size
, big_endian
>::do_get_global_symbol_counts(
734 *defined
= this->defined_count_
;
736 for (typename
Symbols::const_iterator p
= this->symbols_
->begin();
737 p
!= this->symbols_
->end();
740 && (*p
)->source() == Symbol::FROM_OBJECT
741 && (*p
)->object() == this
742 && (*p
)->is_defined()
743 && (*p
)->dynsym_index() != -1U)
748 // Given a vector of hash codes, compute the number of hash buckets to
752 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
753 bool for_gnu_hash_table
)
755 // FIXME: Implement optional hash table optimization.
757 // Array used to determine the number of hash table buckets to use
758 // based on the number of symbols there are. If there are fewer
759 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
760 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
761 // use more than 262147 buckets. This is straight from the old GNU
763 static const unsigned int buckets
[] =
765 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
766 16411, 32771, 65537, 131101, 262147
768 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
770 unsigned int symcount
= hashcodes
.size();
771 unsigned int ret
= 1;
772 const double full_fraction
773 = 1.0 - parameters
->options().hash_bucket_empty_fraction();
774 for (int i
= 0; i
< buckets_count
; ++i
)
776 if (symcount
< buckets
[i
] * full_fraction
)
781 if (for_gnu_hash_table
&& ret
< 2)
787 // The standard ELF hash function. This hash function must not
788 // change, as the dynamic linker uses it also.
791 Dynobj::elf_hash(const char* name
)
793 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
796 while ((c
= *nameu
++) != '\0')
799 uint32_t g
= h
& 0xf0000000;
803 // The ELF ABI says h &= ~g, but using xor is equivalent in
804 // this case (since g was set from h) and may save one
812 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
813 // DYNSYMS is a vector with all the global dynamic symbols.
814 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
818 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
819 unsigned int local_dynsym_count
,
820 unsigned char** pphash
,
821 unsigned int* phashlen
)
823 unsigned int dynsym_count
= dynsyms
.size();
825 // Get the hash values for all the symbols.
826 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
827 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
828 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
830 const unsigned int bucketcount
=
831 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
833 std::vector
<uint32_t> bucket(bucketcount
);
834 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
836 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
838 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
839 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
840 chain
[dynsym_index
] = bucket
[bucketpos
];
841 bucket
[bucketpos
] = dynsym_index
;
844 unsigned int hashlen
= ((2
849 unsigned char* phash
= new unsigned char[hashlen
];
851 if (parameters
->target().is_big_endian())
853 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
854 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
863 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
874 // Fill in an ELF hash table.
876 template<bool big_endian
>
878 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
879 const std::vector
<uint32_t>& chain
,
880 unsigned char* phash
,
881 unsigned int hashlen
)
883 unsigned char* p
= phash
;
885 const unsigned int bucketcount
= bucket
.size();
886 const unsigned int chaincount
= chain
.size();
888 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
890 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
893 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
895 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
899 for (unsigned int i
= 0; i
< chaincount
; ++i
)
901 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
905 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
908 // The hash function used for the GNU hash table. This hash function
909 // must not change, as the dynamic linker uses it also.
912 Dynobj::gnu_hash(const char* name
)
914 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
917 while ((c
= *nameu
++) != '\0')
918 h
= (h
<< 5) + h
+ c
;
922 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
923 // tables are an extension to ELF which are recognized by the GNU
924 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
925 // TARGET is the target. DYNSYMS is a vector with all the global
926 // symbols which will be going into the dynamic symbol table.
927 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
931 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
932 unsigned int local_dynsym_count
,
933 unsigned char** pphash
,
934 unsigned int* phashlen
)
936 const unsigned int count
= dynsyms
.size();
938 // Sort the dynamic symbols into two vectors. Symbols which we do
939 // not want to put into the hash table we store into
940 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
941 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
942 // and records the hash codes.
944 std::vector
<Symbol
*> unhashed_dynsyms
;
945 unhashed_dynsyms
.reserve(count
);
947 std::vector
<Symbol
*> hashed_dynsyms
;
948 hashed_dynsyms
.reserve(count
);
950 std::vector
<uint32_t> dynsym_hashvals
;
951 dynsym_hashvals
.reserve(count
);
953 for (unsigned int i
= 0; i
< count
; ++i
)
955 Symbol
* sym
= dynsyms
[i
];
957 // FIXME: Should put on unhashed_dynsyms if the symbol is
959 if (sym
->is_undefined())
960 unhashed_dynsyms
.push_back(sym
);
963 hashed_dynsyms
.push_back(sym
);
964 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
968 // Put the unhashed symbols at the start of the global portion of
969 // the dynamic symbol table.
970 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
971 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
972 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
974 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
975 ++unhashed_dynsym_index
;
978 // For the actual data generation we call out to a templatized
980 int size
= parameters
->target().get_size();
981 bool big_endian
= parameters
->target().is_big_endian();
986 #ifdef HAVE_TARGET_32_BIG
987 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
989 unhashed_dynsym_index
,
998 #ifdef HAVE_TARGET_32_LITTLE
999 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
1001 unhashed_dynsym_index
,
1009 else if (size
== 64)
1013 #ifdef HAVE_TARGET_64_BIG
1014 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
1016 unhashed_dynsym_index
,
1025 #ifdef HAVE_TARGET_64_LITTLE
1026 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
1028 unhashed_dynsym_index
,
1040 // Create the actual data for a GNU hash table. This is just a copy
1041 // of the code from the old GNU linker.
1043 template<int size
, bool big_endian
>
1045 Dynobj::sized_create_gnu_hash_table(
1046 const std::vector
<Symbol
*>& hashed_dynsyms
,
1047 const std::vector
<uint32_t>& dynsym_hashvals
,
1048 unsigned int unhashed_dynsym_count
,
1049 unsigned char** pphash
,
1050 unsigned int* phashlen
)
1052 if (hashed_dynsyms
.empty())
1054 // Special case for the empty hash table.
1055 unsigned int hashlen
= 5 * 4 + size
/ 8;
1056 unsigned char* phash
= new unsigned char[hashlen
];
1057 // One empty bucket.
1058 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
1059 // Symbol index above unhashed symbols.
1060 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
1061 // One word for bitmask.
1062 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
1063 // Only bloom filter.
1064 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
1066 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
1067 // No hashes in only bucket.
1068 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1070 *phashlen
= hashlen
;
1076 const unsigned int bucketcount
=
1077 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1079 const unsigned int nsyms
= hashed_dynsyms
.size();
1081 uint32_t maskbitslog2
= 1;
1082 uint32_t x
= nsyms
>> 1;
1088 if (maskbitslog2
< 3)
1090 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1100 if (maskbitslog2
== 5)
1104 uint32_t mask
= (1U << shift1
) - 1U;
1105 uint32_t shift2
= maskbitslog2
;
1106 uint32_t maskbits
= 1U << maskbitslog2
;
1107 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1109 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1110 std::vector
<Word
> bitmask(maskwords
);
1111 std::vector
<uint32_t> counts(bucketcount
);
1112 std::vector
<uint32_t> indx(bucketcount
);
1113 uint32_t symindx
= unhashed_dynsym_count
;
1115 // Count the number of times each hash bucket is used.
1116 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1117 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1119 unsigned int cnt
= symindx
;
1120 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1126 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1127 hashlen
+= maskbits
/ 8;
1128 unsigned char* phash
= new unsigned char[hashlen
];
1130 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1131 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1132 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1133 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1135 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1136 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1139 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1141 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1145 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1147 Symbol
* sym
= hashed_dynsyms
[i
];
1148 uint32_t hashval
= dynsym_hashvals
[i
];
1150 unsigned int bucket
= hashval
% bucketcount
;
1151 unsigned int val
= ((hashval
>> shift1
)
1152 & ((maskbits
>> shift1
) - 1));
1153 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1154 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1155 val
= hashval
& ~ 1U;
1156 if (counts
[bucket
] == 1)
1158 // Last element terminates the chain.
1161 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1165 sym
->set_dynsym_index(indx
[bucket
]);
1170 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1172 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1176 *phashlen
= hashlen
;
1182 // Write this definition to a buffer for the output section.
1184 template<int size
, bool big_endian
>
1186 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
) const
1188 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1189 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1191 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1192 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1193 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1194 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1195 vd
.set_vd_ndx(this->index());
1196 vd
.set_vd_cnt(1 + this->deps_
.size());
1197 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1198 vd
.set_vd_aux(verdef_size
);
1199 vd
.set_vd_next(is_last
1201 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1204 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1205 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1206 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1209 Deps::const_iterator p
;
1211 for (p
= this->deps_
.begin(), i
= 0;
1212 p
!= this->deps_
.end();
1215 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1216 vda
.set_vda_name(dynpool
->get_offset(*p
));
1217 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1228 for (Need_versions::iterator p
= this->need_versions_
.begin();
1229 p
!= this->need_versions_
.end();
1234 // Add a new version to this file reference.
1237 Verneed::add_name(const char* name
)
1239 Verneed_version
* vv
= new Verneed_version(name
);
1240 this->need_versions_
.push_back(vv
);
1244 // Set the version indexes starting at INDEX.
1247 Verneed::finalize(unsigned int index
)
1249 for (Need_versions::iterator p
= this->need_versions_
.begin();
1250 p
!= this->need_versions_
.end();
1253 (*p
)->set_index(index
);
1259 // Write this list of referenced versions to a buffer for the output
1262 template<int size
, bool big_endian
>
1264 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1265 unsigned char* pb
) const
1267 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1268 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1270 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1271 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1272 vn
.set_vn_cnt(this->need_versions_
.size());
1273 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1274 vn
.set_vn_aux(verneed_size
);
1275 vn
.set_vn_next(is_last
1277 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1280 Need_versions::const_iterator p
;
1282 for (p
= this->need_versions_
.begin(), i
= 0;
1283 p
!= this->need_versions_
.end();
1286 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1287 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1288 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1289 vna
.set_vna_flags(0);
1290 vna
.set_vna_other((*p
)->index());
1291 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1292 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1301 // Versions methods.
1303 Versions::Versions(const Version_script_info
& version_script
,
1304 Stringpool
* dynpool
)
1305 : defs_(), needs_(), version_table_(),
1306 is_finalized_(false), version_script_(version_script
)
1308 // We always need a base version, so define that first. Nothing
1309 // explicitly declares itself as part of base, so it doesn't need to
1310 // be in version_table_.
1311 if (parameters
->options().shared())
1313 const char* name
= parameters
->options().soname();
1315 name
= parameters
->options().output_file_name();
1316 name
= dynpool
->add(name
, false, NULL
);
1317 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1319 this->defs_
.push_back(vdbase
);
1322 if (!this->version_script_
.empty())
1324 // Parse the version script, and insert each declared version into
1325 // defs_ and version_table_.
1326 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1327 for (size_t k
= 0; k
< versions
.size(); ++k
)
1329 Stringpool::Key version_key
;
1330 const char* version
= dynpool
->add(versions
[k
].c_str(),
1331 true, &version_key
);
1332 Verdef
* const vd
= new Verdef(
1334 this->version_script_
.get_dependencies(version
),
1335 false, false, false);
1336 this->defs_
.push_back(vd
);
1337 Key
key(version_key
, 0);
1338 this->version_table_
.insert(std::make_pair(key
, vd
));
1343 Versions::~Versions()
1345 for (Defs::iterator p
= this->defs_
.begin();
1346 p
!= this->defs_
.end();
1350 for (Needs::iterator p
= this->needs_
.begin();
1351 p
!= this->needs_
.end();
1356 // Return the dynamic object which a symbol refers to.
1359 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1360 const Symbol
* sym
) const
1362 if (sym
->is_copied_from_dynobj())
1363 return symtab
->get_copy_source(sym
);
1366 Object
* object
= sym
->object();
1367 gold_assert(object
->is_dynamic());
1368 return static_cast<Dynobj
*>(object
);
1372 // Record version information for a symbol going into the dynamic
1376 Versions::record_version(const Symbol_table
* symtab
,
1377 Stringpool
* dynpool
, const Symbol
* sym
)
1379 gold_assert(!this->is_finalized_
);
1380 gold_assert(sym
->version() != NULL
);
1382 Stringpool::Key version_key
;
1383 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1385 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1387 if (parameters
->options().shared())
1388 this->add_def(sym
, version
, version_key
);
1392 // This is a version reference.
1393 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1394 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1398 // We've found a symbol SYM defined in version VERSION.
1401 Versions::add_def(const Symbol
* sym
, const char* version
,
1402 Stringpool::Key version_key
)
1404 Key
k(version_key
, 0);
1405 Version_base
* const vbnull
= NULL
;
1406 std::pair
<Version_table::iterator
, bool> ins
=
1407 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1411 // We already have an entry for this version.
1412 Version_base
* vb
= ins
.first
->second
;
1414 // We have now seen a symbol in this version, so it is not
1416 gold_assert(vb
!= NULL
);
1421 // If we are creating a shared object, it is an error to
1422 // find a definition of a symbol with a version which is not
1423 // in the version script.
1424 if (parameters
->options().shared())
1425 gold_error(_("symbol %s has undefined version %s"),
1426 sym
->demangled_name().c_str(), version
);
1428 // When creating a regular executable, automatically define
1430 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1431 false, false, false);
1432 this->defs_
.push_back(vd
);
1433 ins
.first
->second
= vd
;
1437 // Add a reference to version NAME in file FILENAME.
1440 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1441 Stringpool::Key name_key
)
1443 Stringpool::Key filename_key
;
1444 filename
= dynpool
->add(filename
, true, &filename_key
);
1446 Key
k(name_key
, filename_key
);
1447 Version_base
* const vbnull
= NULL
;
1448 std::pair
<Version_table::iterator
, bool> ins
=
1449 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1453 // We already have an entry for this filename/version.
1457 // See whether we already have this filename. We don't expect many
1458 // version references, so we just do a linear search. This could be
1459 // replaced by a hash table.
1461 for (Needs::iterator p
= this->needs_
.begin();
1462 p
!= this->needs_
.end();
1465 if ((*p
)->filename() == filename
)
1474 // We have a new filename.
1475 vn
= new Verneed(filename
);
1476 this->needs_
.push_back(vn
);
1479 ins
.first
->second
= vn
->add_name(name
);
1482 // Set the version indexes. Create a new dynamic version symbol for
1483 // each new version definition.
1486 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1487 std::vector
<Symbol
*>* syms
)
1489 gold_assert(!this->is_finalized_
);
1491 unsigned int vi
= 1;
1493 for (Defs::iterator p
= this->defs_
.begin();
1494 p
!= this->defs_
.end();
1497 (*p
)->set_index(vi
);
1500 // Create a version symbol if necessary.
1501 if (!(*p
)->is_symbol_created())
1503 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1507 elfcpp::STV_DEFAULT
, 0,
1509 vsym
->set_needs_dynsym_entry();
1510 vsym
->set_dynsym_index(dynsym_index
);
1512 syms
->push_back(vsym
);
1513 // The name is already in the dynamic pool.
1517 // Index 1 is used for global symbols.
1520 gold_assert(this->defs_
.empty());
1524 for (Needs::iterator p
= this->needs_
.begin();
1525 p
!= this->needs_
.end();
1527 vi
= (*p
)->finalize(vi
);
1529 this->is_finalized_
= true;
1531 return dynsym_index
;
1534 // Return the version index to use for a symbol. This does two hash
1535 // table lookups: one in DYNPOOL and one in this->version_table_.
1536 // Another approach alternative would be store a pointer in SYM, which
1537 // would increase the size of the symbol table. Or perhaps we could
1538 // use a hash table from dynamic symbol pointer values to Version_base
1542 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1543 const Symbol
* sym
) const
1545 Stringpool::Key version_key
;
1546 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1547 gold_assert(version
!= NULL
);
1550 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1552 if (!parameters
->options().shared())
1553 return elfcpp::VER_NDX_GLOBAL
;
1554 k
= Key(version_key
, 0);
1558 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1560 Stringpool::Key filename_key
;
1561 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1562 gold_assert(filename
!= NULL
);
1564 k
= Key(version_key
, filename_key
);
1567 Version_table::const_iterator p
= this->version_table_
.find(k
);
1568 gold_assert(p
!= this->version_table_
.end());
1570 return p
->second
->index();
1573 // Return an allocated buffer holding the contents of the symbol
1576 template<int size
, bool big_endian
>
1578 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1579 const Stringpool
* dynpool
,
1580 unsigned int local_symcount
,
1581 const std::vector
<Symbol
*>& syms
,
1583 unsigned int* psize
) const
1585 gold_assert(this->is_finalized_
);
1587 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1588 unsigned char* pbuf
= new unsigned char[sz
];
1590 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1591 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1592 elfcpp::VER_NDX_LOCAL
);
1594 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1598 unsigned int version_index
;
1599 const char* version
= (*p
)->version();
1600 if (version
== NULL
)
1601 version_index
= elfcpp::VER_NDX_GLOBAL
;
1603 version_index
= this->version_index(symtab
, dynpool
, *p
);
1604 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1606 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1607 version_index
|= elfcpp::VERSYM_HIDDEN
;
1608 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1616 // Return an allocated buffer holding the contents of the version
1617 // definition section.
1619 template<int size
, bool big_endian
>
1621 Versions::def_section_contents(const Stringpool
* dynpool
,
1622 unsigned char** pp
, unsigned int* psize
,
1623 unsigned int* pentries
) const
1625 gold_assert(this->is_finalized_
);
1626 gold_assert(!this->defs_
.empty());
1628 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1629 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1631 unsigned int sz
= 0;
1632 for (Defs::const_iterator p
= this->defs_
.begin();
1633 p
!= this->defs_
.end();
1636 sz
+= verdef_size
+ verdaux_size
;
1637 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1640 unsigned char* pbuf
= new unsigned char[sz
];
1642 unsigned char* pb
= pbuf
;
1643 Defs::const_iterator p
;
1645 for (p
= this->defs_
.begin(), i
= 0;
1646 p
!= this->defs_
.end();
1648 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1649 i
+ 1 >= this->defs_
.size(),
1652 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1656 *pentries
= this->defs_
.size();
1659 // Return an allocated buffer holding the contents of the version
1660 // reference section.
1662 template<int size
, bool big_endian
>
1664 Versions::need_section_contents(const Stringpool
* dynpool
,
1665 unsigned char** pp
, unsigned int *psize
,
1666 unsigned int *pentries
) const
1668 gold_assert(this->is_finalized_
);
1669 gold_assert(!this->needs_
.empty());
1671 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1672 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1674 unsigned int sz
= 0;
1675 for (Needs::const_iterator p
= this->needs_
.begin();
1676 p
!= this->needs_
.end();
1680 sz
+= (*p
)->count_versions() * vernaux_size
;
1683 unsigned char* pbuf
= new unsigned char[sz
];
1685 unsigned char* pb
= pbuf
;
1686 Needs::const_iterator p
;
1688 for (p
= this->needs_
.begin(), i
= 0;
1689 p
!= this->needs_
.end();
1691 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1692 i
+ 1 >= this->needs_
.size(),
1695 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1699 *pentries
= this->needs_
.size();
1702 // Instantiate the templates we need. We could use the configure
1703 // script to restrict this to only the ones for implemented targets.
1705 #ifdef HAVE_TARGET_32_LITTLE
1707 class Sized_dynobj
<32, false>;
1710 #ifdef HAVE_TARGET_32_BIG
1712 class Sized_dynobj
<32, true>;
1715 #ifdef HAVE_TARGET_64_LITTLE
1717 class Sized_dynobj
<64, false>;
1720 #ifdef HAVE_TARGET_64_BIG
1722 class Sized_dynobj
<64, true>;
1725 #ifdef HAVE_TARGET_32_LITTLE
1728 Versions::symbol_section_contents
<32, false>(
1729 const Symbol_table
*,
1732 const std::vector
<Symbol
*>&,
1734 unsigned int*) const;
1737 #ifdef HAVE_TARGET_32_BIG
1740 Versions::symbol_section_contents
<32, true>(
1741 const Symbol_table
*,
1744 const std::vector
<Symbol
*>&,
1746 unsigned int*) const;
1749 #ifdef HAVE_TARGET_64_LITTLE
1752 Versions::symbol_section_contents
<64, false>(
1753 const Symbol_table
*,
1756 const std::vector
<Symbol
*>&,
1758 unsigned int*) const;
1761 #ifdef HAVE_TARGET_64_BIG
1764 Versions::symbol_section_contents
<64, true>(
1765 const Symbol_table
*,
1768 const std::vector
<Symbol
*>&,
1770 unsigned int*) const;
1773 #ifdef HAVE_TARGET_32_LITTLE
1776 Versions::def_section_contents
<32, false>(
1780 unsigned int*) const;
1783 #ifdef HAVE_TARGET_32_BIG
1786 Versions::def_section_contents
<32, true>(
1790 unsigned int*) const;
1793 #ifdef HAVE_TARGET_64_LITTLE
1796 Versions::def_section_contents
<64, false>(
1800 unsigned int*) const;
1803 #ifdef HAVE_TARGET_64_BIG
1806 Versions::def_section_contents
<64, true>(
1810 unsigned int*) const;
1813 #ifdef HAVE_TARGET_32_LITTLE
1816 Versions::need_section_contents
<32, false>(
1820 unsigned int*) const;
1823 #ifdef HAVE_TARGET_32_BIG
1826 Versions::need_section_contents
<32, true>(
1830 unsigned int*) const;
1833 #ifdef HAVE_TARGET_64_LITTLE
1836 Versions::need_section_contents
<64, false>(
1840 unsigned int*) const;
1843 #ifdef HAVE_TARGET_64_BIG
1846 Versions::need_section_contents
<64, true>(
1850 unsigned int*) const;
1853 } // End namespace gold.