bfd/
[binutils.git] / gold / output.cc
blobe3b11714e8fb64ddfe87ca4a50201042e9cdbed0
1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
56 return ftruncate(o, offset + len);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
60 namespace gold
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
75 uint64_t
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
82 // Return the default alignment for a size--32 or 64.
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
114 // Compute the current data size.
116 off_t
117 Output_section_headers::do_size() const
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
130 else
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
139 count += this->unattached_section_list_->size();
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
150 return count * shdr_size;
153 // Write out the section headers.
155 void
156 Output_section_headers::do_write(Output_file* of)
158 switch (parameters->size_and_endianness())
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
216 oshdr.put_sh_info(0);
217 oshdr.put_sh_addralign(0);
218 oshdr.put_sh_entsize(0);
221 v += shdr_size;
223 unsigned int shndx = 1;
224 if (!parameters->options().relocatable())
226 for (Layout::Segment_list::const_iterator p =
227 this->segment_list_->begin();
228 p != this->segment_list_->end();
229 ++p)
230 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231 this->secnamepool_,
233 &shndx);
235 else
237 for (Layout::Section_list::const_iterator p =
238 this->section_list_->begin();
239 p != this->section_list_->end();
240 ++p)
242 // We do unallocated sections below, except that group
243 // sections have to come first.
244 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245 && (*p)->type() != elfcpp::SHT_GROUP)
246 continue;
247 gold_assert(shndx == (*p)->out_shndx());
248 elfcpp::Shdr_write<size, big_endian> oshdr(v);
249 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250 v += shdr_size;
251 ++shndx;
255 for (Layout::Section_list::const_iterator p =
256 this->unattached_section_list_->begin();
257 p != this->unattached_section_list_->end();
258 ++p)
260 // For a relocatable link, we did unallocated group sections
261 // above, since they have to come first.
262 if ((*p)->type() == elfcpp::SHT_GROUP
263 && parameters->options().relocatable())
264 continue;
265 gold_assert(shndx == (*p)->out_shndx());
266 elfcpp::Shdr_write<size, big_endian> oshdr(v);
267 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268 v += shdr_size;
269 ++shndx;
272 of->write_output_view(this->offset(), all_shdrs_size, view);
275 // Output_segment_header methods.
277 Output_segment_headers::Output_segment_headers(
278 const Layout::Segment_list& segment_list)
279 : segment_list_(segment_list)
283 void
284 Output_segment_headers::do_write(Output_file* of)
286 switch (parameters->size_and_endianness())
288 #ifdef HAVE_TARGET_32_LITTLE
289 case Parameters::TARGET_32_LITTLE:
290 this->do_sized_write<32, false>(of);
291 break;
292 #endif
293 #ifdef HAVE_TARGET_32_BIG
294 case Parameters::TARGET_32_BIG:
295 this->do_sized_write<32, true>(of);
296 break;
297 #endif
298 #ifdef HAVE_TARGET_64_LITTLE
299 case Parameters::TARGET_64_LITTLE:
300 this->do_sized_write<64, false>(of);
301 break;
302 #endif
303 #ifdef HAVE_TARGET_64_BIG
304 case Parameters::TARGET_64_BIG:
305 this->do_sized_write<64, true>(of);
306 break;
307 #endif
308 default:
309 gold_unreachable();
313 template<int size, bool big_endian>
314 void
315 Output_segment_headers::do_sized_write(Output_file* of)
317 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319 gold_assert(all_phdrs_size == this->data_size());
320 unsigned char* view = of->get_output_view(this->offset(),
321 all_phdrs_size);
322 unsigned char* v = view;
323 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324 p != this->segment_list_.end();
325 ++p)
327 elfcpp::Phdr_write<size, big_endian> ophdr(v);
328 (*p)->write_header(&ophdr);
329 v += phdr_size;
332 gold_assert(v - view == all_phdrs_size);
334 of->write_output_view(this->offset(), all_phdrs_size, view);
337 off_t
338 Output_segment_headers::do_size() const
340 const int size = parameters->target().get_size();
341 int phdr_size;
342 if (size == 32)
343 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344 else if (size == 64)
345 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346 else
347 gold_unreachable();
349 return this->segment_list_.size() * phdr_size;
352 // Output_file_header methods.
354 Output_file_header::Output_file_header(const Target* target,
355 const Symbol_table* symtab,
356 const Output_segment_headers* osh,
357 const char* entry)
358 : target_(target),
359 symtab_(symtab),
360 segment_header_(osh),
361 section_header_(NULL),
362 shstrtab_(NULL),
363 entry_(entry)
365 this->set_data_size(this->do_size());
368 // Set the section table information for a file header.
370 void
371 Output_file_header::set_section_info(const Output_section_headers* shdrs,
372 const Output_section* shstrtab)
374 this->section_header_ = shdrs;
375 this->shstrtab_ = shstrtab;
378 // Write out the file header.
380 void
381 Output_file_header::do_write(Output_file* of)
383 gold_assert(this->offset() == 0);
385 switch (parameters->size_and_endianness())
387 #ifdef HAVE_TARGET_32_LITTLE
388 case Parameters::TARGET_32_LITTLE:
389 this->do_sized_write<32, false>(of);
390 break;
391 #endif
392 #ifdef HAVE_TARGET_32_BIG
393 case Parameters::TARGET_32_BIG:
394 this->do_sized_write<32, true>(of);
395 break;
396 #endif
397 #ifdef HAVE_TARGET_64_LITTLE
398 case Parameters::TARGET_64_LITTLE:
399 this->do_sized_write<64, false>(of);
400 break;
401 #endif
402 #ifdef HAVE_TARGET_64_BIG
403 case Parameters::TARGET_64_BIG:
404 this->do_sized_write<64, true>(of);
405 break;
406 #endif
407 default:
408 gold_unreachable();
412 // Write out the file header with appropriate size and endianess.
414 template<int size, bool big_endian>
415 void
416 Output_file_header::do_sized_write(Output_file* of)
418 gold_assert(this->offset() == 0);
420 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421 unsigned char* view = of->get_output_view(0, ehdr_size);
422 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
424 unsigned char e_ident[elfcpp::EI_NIDENT];
425 memset(e_ident, 0, elfcpp::EI_NIDENT);
426 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430 if (size == 32)
431 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432 else if (size == 64)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434 else
435 gold_unreachable();
436 e_ident[elfcpp::EI_DATA] = (big_endian
437 ? elfcpp::ELFDATA2MSB
438 : elfcpp::ELFDATA2LSB);
439 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440 oehdr.put_e_ident(e_ident);
442 elfcpp::ET e_type;
443 if (parameters->options().relocatable())
444 e_type = elfcpp::ET_REL;
445 else if (parameters->options().shared())
446 e_type = elfcpp::ET_DYN;
447 else
448 e_type = elfcpp::ET_EXEC;
449 oehdr.put_e_type(e_type);
451 oehdr.put_e_machine(this->target_->machine_code());
452 oehdr.put_e_version(elfcpp::EV_CURRENT);
454 oehdr.put_e_entry(this->entry<size>());
456 if (this->segment_header_ == NULL)
457 oehdr.put_e_phoff(0);
458 else
459 oehdr.put_e_phoff(this->segment_header_->offset());
461 oehdr.put_e_shoff(this->section_header_->offset());
463 // FIXME: The target needs to set the flags.
464 oehdr.put_e_flags(0);
466 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
468 if (this->segment_header_ == NULL)
470 oehdr.put_e_phentsize(0);
471 oehdr.put_e_phnum(0);
473 else
475 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
476 oehdr.put_e_phnum(this->segment_header_->data_size()
477 / elfcpp::Elf_sizes<size>::phdr_size);
480 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
481 size_t section_count = (this->section_header_->data_size()
482 / elfcpp::Elf_sizes<size>::shdr_size);
484 if (section_count < elfcpp::SHN_LORESERVE)
485 oehdr.put_e_shnum(this->section_header_->data_size()
486 / elfcpp::Elf_sizes<size>::shdr_size);
487 else
488 oehdr.put_e_shnum(0);
490 unsigned int shstrndx = this->shstrtab_->out_shndx();
491 if (shstrndx < elfcpp::SHN_LORESERVE)
492 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
493 else
494 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
496 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
497 // the e_ident field.
498 parameters->target().adjust_elf_header(view, ehdr_size);
500 of->write_output_view(0, ehdr_size, view);
503 // Return the value to use for the entry address. THIS->ENTRY_ is the
504 // symbol specified on the command line, if any.
506 template<int size>
507 typename elfcpp::Elf_types<size>::Elf_Addr
508 Output_file_header::entry()
510 const bool should_issue_warning = (this->entry_ != NULL
511 && !parameters->options().relocatable()
512 && !parameters->options().shared());
514 // FIXME: Need to support target specific entry symbol.
515 const char* entry = this->entry_;
516 if (entry == NULL)
517 entry = "_start";
519 Symbol* sym = this->symtab_->lookup(entry);
521 typename Sized_symbol<size>::Value_type v;
522 if (sym != NULL)
524 Sized_symbol<size>* ssym;
525 ssym = this->symtab_->get_sized_symbol<size>(sym);
526 if (!ssym->is_defined() && should_issue_warning)
527 gold_warning("entry symbol '%s' exists but is not defined", entry);
528 v = ssym->value();
530 else
532 // We couldn't find the entry symbol. See if we can parse it as
533 // a number. This supports, e.g., -e 0x1000.
534 char* endptr;
535 v = strtoull(entry, &endptr, 0);
536 if (*endptr != '\0')
538 if (should_issue_warning)
539 gold_warning("cannot find entry symbol '%s'", entry);
540 v = 0;
544 return v;
547 // Compute the current data size.
549 off_t
550 Output_file_header::do_size() const
552 const int size = parameters->target().get_size();
553 if (size == 32)
554 return elfcpp::Elf_sizes<32>::ehdr_size;
555 else if (size == 64)
556 return elfcpp::Elf_sizes<64>::ehdr_size;
557 else
558 gold_unreachable();
561 // Output_data_const methods.
563 void
564 Output_data_const::do_write(Output_file* of)
566 of->write(this->offset(), this->data_.data(), this->data_.size());
569 // Output_data_const_buffer methods.
571 void
572 Output_data_const_buffer::do_write(Output_file* of)
574 of->write(this->offset(), this->p_, this->data_size());
577 // Output_section_data methods.
579 // Record the output section, and set the entry size and such.
581 void
582 Output_section_data::set_output_section(Output_section* os)
584 gold_assert(this->output_section_ == NULL);
585 this->output_section_ = os;
586 this->do_adjust_output_section(os);
589 // Return the section index of the output section.
591 unsigned int
592 Output_section_data::do_out_shndx() const
594 gold_assert(this->output_section_ != NULL);
595 return this->output_section_->out_shndx();
598 // Set the alignment, which means we may need to update the alignment
599 // of the output section.
601 void
602 Output_section_data::set_addralign(uint64_t addralign)
604 this->addralign_ = addralign;
605 if (this->output_section_ != NULL
606 && this->output_section_->addralign() < addralign)
607 this->output_section_->set_addralign(addralign);
610 // Output_data_strtab methods.
612 // Set the final data size.
614 void
615 Output_data_strtab::set_final_data_size()
617 this->strtab_->set_string_offsets();
618 this->set_data_size(this->strtab_->get_strtab_size());
621 // Write out a string table.
623 void
624 Output_data_strtab::do_write(Output_file* of)
626 this->strtab_->write(of, this->offset());
629 // Output_reloc methods.
631 // A reloc against a global symbol.
633 template<bool dynamic, int size, bool big_endian>
634 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
635 Symbol* gsym,
636 unsigned int type,
637 Output_data* od,
638 Address address,
639 bool is_relative)
640 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
643 // this->type_ is a bitfield; make sure TYPE fits.
644 gold_assert(this->type_ == type);
645 this->u1_.gsym = gsym;
646 this->u2_.od = od;
647 if (dynamic)
648 this->set_needs_dynsym_index();
651 template<bool dynamic, int size, bool big_endian>
652 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
653 Symbol* gsym,
654 unsigned int type,
655 Sized_relobj<size, big_endian>* relobj,
656 unsigned int shndx,
657 Address address,
658 bool is_relative)
659 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
660 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
662 gold_assert(shndx != INVALID_CODE);
663 // this->type_ is a bitfield; make sure TYPE fits.
664 gold_assert(this->type_ == type);
665 this->u1_.gsym = gsym;
666 this->u2_.relobj = relobj;
667 if (dynamic)
668 this->set_needs_dynsym_index();
671 // A reloc against a local symbol.
673 template<bool dynamic, int size, bool big_endian>
674 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
675 Sized_relobj<size, big_endian>* relobj,
676 unsigned int local_sym_index,
677 unsigned int type,
678 Output_data* od,
679 Address address,
680 bool is_relative,
681 bool is_section_symbol)
682 : address_(address), local_sym_index_(local_sym_index), type_(type),
683 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
684 shndx_(INVALID_CODE)
686 gold_assert(local_sym_index != GSYM_CODE
687 && local_sym_index != INVALID_CODE);
688 // this->type_ is a bitfield; make sure TYPE fits.
689 gold_assert(this->type_ == type);
690 this->u1_.relobj = relobj;
691 this->u2_.od = od;
692 if (dynamic)
693 this->set_needs_dynsym_index();
696 template<bool dynamic, int size, bool big_endian>
697 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
698 Sized_relobj<size, big_endian>* relobj,
699 unsigned int local_sym_index,
700 unsigned int type,
701 unsigned int shndx,
702 Address address,
703 bool is_relative,
704 bool is_section_symbol)
705 : address_(address), local_sym_index_(local_sym_index), type_(type),
706 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
707 shndx_(shndx)
709 gold_assert(local_sym_index != GSYM_CODE
710 && local_sym_index != INVALID_CODE);
711 gold_assert(shndx != INVALID_CODE);
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_ == type);
714 this->u1_.relobj = relobj;
715 this->u2_.relobj = relobj;
716 if (dynamic)
717 this->set_needs_dynsym_index();
720 // A reloc against the STT_SECTION symbol of an output section.
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Output_section* os,
725 unsigned int type,
726 Output_data* od,
727 Address address)
728 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
729 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
731 // this->type_ is a bitfield; make sure TYPE fits.
732 gold_assert(this->type_ == type);
733 this->u1_.os = os;
734 this->u2_.od = od;
735 if (dynamic)
736 this->set_needs_dynsym_index();
737 else
738 os->set_needs_symtab_index();
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Output_section* os,
744 unsigned int type,
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int shndx,
747 Address address)
748 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
749 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
751 gold_assert(shndx != INVALID_CODE);
752 // this->type_ is a bitfield; make sure TYPE fits.
753 gold_assert(this->type_ == type);
754 this->u1_.os = os;
755 this->u2_.relobj = relobj;
756 if (dynamic)
757 this->set_needs_dynsym_index();
758 else
759 os->set_needs_symtab_index();
762 // Record that we need a dynamic symbol index for this relocation.
764 template<bool dynamic, int size, bool big_endian>
765 void
766 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
767 set_needs_dynsym_index()
769 if (this->is_relative_)
770 return;
771 switch (this->local_sym_index_)
773 case INVALID_CODE:
774 gold_unreachable();
776 case GSYM_CODE:
777 this->u1_.gsym->set_needs_dynsym_entry();
778 break;
780 case SECTION_CODE:
781 this->u1_.os->set_needs_dynsym_index();
782 break;
784 case 0:
785 break;
787 default:
789 const unsigned int lsi = this->local_sym_index_;
790 if (!this->is_section_symbol_)
791 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
792 else
793 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
795 break;
799 // Get the symbol index of a relocation.
801 template<bool dynamic, int size, bool big_endian>
802 unsigned int
803 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
804 const
806 unsigned int index;
807 switch (this->local_sym_index_)
809 case INVALID_CODE:
810 gold_unreachable();
812 case GSYM_CODE:
813 if (this->u1_.gsym == NULL)
814 index = 0;
815 else if (dynamic)
816 index = this->u1_.gsym->dynsym_index();
817 else
818 index = this->u1_.gsym->symtab_index();
819 break;
821 case SECTION_CODE:
822 if (dynamic)
823 index = this->u1_.os->dynsym_index();
824 else
825 index = this->u1_.os->symtab_index();
826 break;
828 case 0:
829 // Relocations without symbols use a symbol index of 0.
830 index = 0;
831 break;
833 default:
835 const unsigned int lsi = this->local_sym_index_;
836 if (!this->is_section_symbol_)
838 if (dynamic)
839 index = this->u1_.relobj->dynsym_index(lsi);
840 else
841 index = this->u1_.relobj->symtab_index(lsi);
843 else
845 Output_section* os = this->u1_.relobj->output_section(lsi);
846 gold_assert(os != NULL);
847 if (dynamic)
848 index = os->dynsym_index();
849 else
850 index = os->symtab_index();
853 break;
855 gold_assert(index != -1U);
856 return index;
859 // For a local section symbol, get the address of the offset ADDEND
860 // within the input section.
862 template<bool dynamic, int size, bool big_endian>
863 typename elfcpp::Elf_types<size>::Elf_Addr
864 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
865 local_section_offset(Addend addend) const
867 gold_assert(this->local_sym_index_ != GSYM_CODE
868 && this->local_sym_index_ != SECTION_CODE
869 && this->local_sym_index_ != INVALID_CODE
870 && this->is_section_symbol_);
871 const unsigned int lsi = this->local_sym_index_;
872 Output_section* os = this->u1_.relobj->output_section(lsi);
873 gold_assert(os != NULL);
874 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
875 if (offset != invalid_address)
876 return offset + addend;
877 // This is a merge section.
878 offset = os->output_address(this->u1_.relobj, lsi, addend);
879 gold_assert(offset != invalid_address);
880 return offset;
883 // Get the output address of a relocation.
885 template<bool dynamic, int size, bool big_endian>
886 typename elfcpp::Elf_types<size>::Elf_Addr
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
889 Address address = this->address_;
890 if (this->shndx_ != INVALID_CODE)
892 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
893 gold_assert(os != NULL);
894 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
895 if (off != invalid_address)
896 address += os->address() + off;
897 else
899 address = os->output_address(this->u2_.relobj, this->shndx_,
900 address);
901 gold_assert(address != invalid_address);
904 else if (this->u2_.od != NULL)
905 address += this->u2_.od->address();
906 return address;
909 // Write out the offset and info fields of a Rel or Rela relocation
910 // entry.
912 template<bool dynamic, int size, bool big_endian>
913 template<typename Write_rel>
914 void
915 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
916 Write_rel* wr) const
918 wr->put_r_offset(this->get_address());
919 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
920 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
923 // Write out a Rel relocation.
925 template<bool dynamic, int size, bool big_endian>
926 void
927 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
928 unsigned char* pov) const
930 elfcpp::Rel_write<size, big_endian> orel(pov);
931 this->write_rel(&orel);
934 // Get the value of the symbol referred to by a Rel relocation.
936 template<bool dynamic, int size, bool big_endian>
937 typename elfcpp::Elf_types<size>::Elf_Addr
938 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
939 Addend addend) const
941 if (this->local_sym_index_ == GSYM_CODE)
943 const Sized_symbol<size>* sym;
944 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
945 return sym->value() + addend;
947 gold_assert(this->local_sym_index_ != SECTION_CODE
948 && this->local_sym_index_ != INVALID_CODE
949 && !this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
952 return symval->value(this->u1_.relobj, addend);
955 // Reloc comparison. This function sorts the dynamic relocs for the
956 // benefit of the dynamic linker. First we sort all relative relocs
957 // to the front. Among relative relocs, we sort by output address.
958 // Among non-relative relocs, we sort by symbol index, then by output
959 // address.
961 template<bool dynamic, int size, bool big_endian>
963 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
964 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
965 const
967 if (this->is_relative_)
969 if (!r2.is_relative_)
970 return -1;
971 // Otherwise sort by reloc address below.
973 else if (r2.is_relative_)
974 return 1;
975 else
977 unsigned int sym1 = this->get_symbol_index();
978 unsigned int sym2 = r2.get_symbol_index();
979 if (sym1 < sym2)
980 return -1;
981 else if (sym1 > sym2)
982 return 1;
983 // Otherwise sort by reloc address.
986 section_offset_type addr1 = this->get_address();
987 section_offset_type addr2 = r2.get_address();
988 if (addr1 < addr2)
989 return -1;
990 else if (addr1 > addr2)
991 return 1;
993 // Final tie breaker, in order to generate the same output on any
994 // host: reloc type.
995 unsigned int type1 = this->type_;
996 unsigned int type2 = r2.type_;
997 if (type1 < type2)
998 return -1;
999 else if (type1 > type2)
1000 return 1;
1002 // These relocs appear to be exactly the same.
1003 return 0;
1006 // Write out a Rela relocation.
1008 template<bool dynamic, int size, bool big_endian>
1009 void
1010 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1011 unsigned char* pov) const
1013 elfcpp::Rela_write<size, big_endian> orel(pov);
1014 this->rel_.write_rel(&orel);
1015 Addend addend = this->addend_;
1016 if (this->rel_.is_relative())
1017 addend = this->rel_.symbol_value(addend);
1018 else if (this->rel_.is_local_section_symbol())
1019 addend = this->rel_.local_section_offset(addend);
1020 orel.put_r_addend(addend);
1023 // Output_data_reloc_base methods.
1025 // Adjust the output section.
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1030 ::do_adjust_output_section(Output_section* os)
1032 if (sh_type == elfcpp::SHT_REL)
1033 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1034 else if (sh_type == elfcpp::SHT_RELA)
1035 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1036 else
1037 gold_unreachable();
1038 if (dynamic)
1039 os->set_should_link_to_dynsym();
1040 else
1041 os->set_should_link_to_symtab();
1044 // Write out relocation data.
1046 template<int sh_type, bool dynamic, int size, bool big_endian>
1047 void
1048 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1049 Output_file* of)
1051 const off_t off = this->offset();
1052 const off_t oview_size = this->data_size();
1053 unsigned char* const oview = of->get_output_view(off, oview_size);
1055 if (this->sort_relocs_)
1057 gold_assert(dynamic);
1058 std::sort(this->relocs_.begin(), this->relocs_.end(),
1059 Sort_relocs_comparison());
1062 unsigned char* pov = oview;
1063 for (typename Relocs::const_iterator p = this->relocs_.begin();
1064 p != this->relocs_.end();
1065 ++p)
1067 p->write(pov);
1068 pov += reloc_size;
1071 gold_assert(pov - oview == oview_size);
1073 of->write_output_view(off, oview_size, oview);
1075 // We no longer need the relocation entries.
1076 this->relocs_.clear();
1079 // Class Output_relocatable_relocs.
1081 template<int sh_type, int size, bool big_endian>
1082 void
1083 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1085 this->set_data_size(this->rr_->output_reloc_count()
1086 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1089 // class Output_data_group.
1091 template<int size, bool big_endian>
1092 Output_data_group<size, big_endian>::Output_data_group(
1093 Sized_relobj<size, big_endian>* relobj,
1094 section_size_type entry_count,
1095 elfcpp::Elf_Word flags,
1096 std::vector<unsigned int>* input_shndxes)
1097 : Output_section_data(entry_count * 4, 4, false),
1098 relobj_(relobj),
1099 flags_(flags)
1101 this->input_shndxes_.swap(*input_shndxes);
1104 // Write out the section group, which means translating the section
1105 // indexes to apply to the output file.
1107 template<int size, bool big_endian>
1108 void
1109 Output_data_group<size, big_endian>::do_write(Output_file* of)
1111 const off_t off = this->offset();
1112 const section_size_type oview_size =
1113 convert_to_section_size_type(this->data_size());
1114 unsigned char* const oview = of->get_output_view(off, oview_size);
1116 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1117 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1118 ++contents;
1120 for (std::vector<unsigned int>::const_iterator p =
1121 this->input_shndxes_.begin();
1122 p != this->input_shndxes_.end();
1123 ++p, ++contents)
1125 Output_section* os = this->relobj_->output_section(*p);
1127 unsigned int output_shndx;
1128 if (os != NULL)
1129 output_shndx = os->out_shndx();
1130 else
1132 this->relobj_->error(_("section group retained but "
1133 "group element discarded"));
1134 output_shndx = 0;
1137 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1140 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1141 gold_assert(wrote == oview_size);
1143 of->write_output_view(off, oview_size, oview);
1145 // We no longer need this information.
1146 this->input_shndxes_.clear();
1149 // Output_data_got::Got_entry methods.
1151 // Write out the entry.
1153 template<int size, bool big_endian>
1154 void
1155 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1157 Valtype val = 0;
1159 switch (this->local_sym_index_)
1161 case GSYM_CODE:
1163 // If the symbol is resolved locally, we need to write out the
1164 // link-time value, which will be relocated dynamically by a
1165 // RELATIVE relocation.
1166 Symbol* gsym = this->u_.gsym;
1167 Sized_symbol<size>* sgsym;
1168 // This cast is a bit ugly. We don't want to put a
1169 // virtual method in Symbol, because we want Symbol to be
1170 // as small as possible.
1171 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1172 val = sgsym->value();
1174 break;
1176 case CONSTANT_CODE:
1177 val = this->u_.constant;
1178 break;
1180 default:
1182 const unsigned int lsi = this->local_sym_index_;
1183 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1184 val = symval->value(this->u_.object, 0);
1186 break;
1189 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1192 // Output_data_got methods.
1194 // Add an entry for a global symbol to the GOT. This returns true if
1195 // this is a new GOT entry, false if the symbol already had a GOT
1196 // entry.
1198 template<int size, bool big_endian>
1199 bool
1200 Output_data_got<size, big_endian>::add_global(
1201 Symbol* gsym,
1202 unsigned int got_type)
1204 if (gsym->has_got_offset(got_type))
1205 return false;
1207 this->entries_.push_back(Got_entry(gsym));
1208 this->set_got_size();
1209 gsym->set_got_offset(got_type, this->last_got_offset());
1210 return true;
1213 // Add an entry for a global symbol to the GOT, and add a dynamic
1214 // relocation of type R_TYPE for the GOT entry.
1215 template<int size, bool big_endian>
1216 void
1217 Output_data_got<size, big_endian>::add_global_with_rel(
1218 Symbol* gsym,
1219 unsigned int got_type,
1220 Rel_dyn* rel_dyn,
1221 unsigned int r_type)
1223 if (gsym->has_got_offset(got_type))
1224 return;
1226 this->entries_.push_back(Got_entry());
1227 this->set_got_size();
1228 unsigned int got_offset = this->last_got_offset();
1229 gsym->set_got_offset(got_type, got_offset);
1230 rel_dyn->add_global(gsym, r_type, this, got_offset);
1233 template<int size, bool big_endian>
1234 void
1235 Output_data_got<size, big_endian>::add_global_with_rela(
1236 Symbol* gsym,
1237 unsigned int got_type,
1238 Rela_dyn* rela_dyn,
1239 unsigned int r_type)
1241 if (gsym->has_got_offset(got_type))
1242 return;
1244 this->entries_.push_back(Got_entry());
1245 this->set_got_size();
1246 unsigned int got_offset = this->last_got_offset();
1247 gsym->set_got_offset(got_type, got_offset);
1248 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1251 // Add a pair of entries for a global symbol to the GOT, and add
1252 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1253 // If R_TYPE_2 == 0, add the second entry with no relocation.
1254 template<int size, bool big_endian>
1255 void
1256 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1257 Symbol* gsym,
1258 unsigned int got_type,
1259 Rel_dyn* rel_dyn,
1260 unsigned int r_type_1,
1261 unsigned int r_type_2)
1263 if (gsym->has_got_offset(got_type))
1264 return;
1266 this->entries_.push_back(Got_entry());
1267 unsigned int got_offset = this->last_got_offset();
1268 gsym->set_got_offset(got_type, got_offset);
1269 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1271 this->entries_.push_back(Got_entry());
1272 if (r_type_2 != 0)
1274 got_offset = this->last_got_offset();
1275 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1278 this->set_got_size();
1281 template<int size, bool big_endian>
1282 void
1283 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1284 Symbol* gsym,
1285 unsigned int got_type,
1286 Rela_dyn* rela_dyn,
1287 unsigned int r_type_1,
1288 unsigned int r_type_2)
1290 if (gsym->has_got_offset(got_type))
1291 return;
1293 this->entries_.push_back(Got_entry());
1294 unsigned int got_offset = this->last_got_offset();
1295 gsym->set_got_offset(got_type, got_offset);
1296 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1298 this->entries_.push_back(Got_entry());
1299 if (r_type_2 != 0)
1301 got_offset = this->last_got_offset();
1302 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1305 this->set_got_size();
1308 // Add an entry for a local symbol to the GOT. This returns true if
1309 // this is a new GOT entry, false if the symbol already has a GOT
1310 // entry.
1312 template<int size, bool big_endian>
1313 bool
1314 Output_data_got<size, big_endian>::add_local(
1315 Sized_relobj<size, big_endian>* object,
1316 unsigned int symndx,
1317 unsigned int got_type)
1319 if (object->local_has_got_offset(symndx, got_type))
1320 return false;
1322 this->entries_.push_back(Got_entry(object, symndx));
1323 this->set_got_size();
1324 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1325 return true;
1328 // Add an entry for a local symbol to the GOT, and add a dynamic
1329 // relocation of type R_TYPE for the GOT entry.
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rel(
1333 Sized_relobj<size, big_endian>* object,
1334 unsigned int symndx,
1335 unsigned int got_type,
1336 Rel_dyn* rel_dyn,
1337 unsigned int r_type)
1339 if (object->local_has_got_offset(symndx, got_type))
1340 return;
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 object->set_local_got_offset(symndx, got_type, got_offset);
1346 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1349 template<int size, bool big_endian>
1350 void
1351 Output_data_got<size, big_endian>::add_local_with_rela(
1352 Sized_relobj<size, big_endian>* object,
1353 unsigned int symndx,
1354 unsigned int got_type,
1355 Rela_dyn* rela_dyn,
1356 unsigned int r_type)
1358 if (object->local_has_got_offset(symndx, got_type))
1359 return;
1361 this->entries_.push_back(Got_entry());
1362 this->set_got_size();
1363 unsigned int got_offset = this->last_got_offset();
1364 object->set_local_got_offset(symndx, got_type, got_offset);
1365 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1368 // Add a pair of entries for a local symbol to the GOT, and add
1369 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1370 // If R_TYPE_2 == 0, add the second entry with no relocation.
1371 template<int size, bool big_endian>
1372 void
1373 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1374 Sized_relobj<size, big_endian>* object,
1375 unsigned int symndx,
1376 unsigned int shndx,
1377 unsigned int got_type,
1378 Rel_dyn* rel_dyn,
1379 unsigned int r_type_1,
1380 unsigned int r_type_2)
1382 if (object->local_has_got_offset(symndx, got_type))
1383 return;
1385 this->entries_.push_back(Got_entry());
1386 unsigned int got_offset = this->last_got_offset();
1387 object->set_local_got_offset(symndx, got_type, got_offset);
1388 Output_section* os = object->output_section(shndx);
1389 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1391 this->entries_.push_back(Got_entry(object, symndx));
1392 if (r_type_2 != 0)
1394 got_offset = this->last_got_offset();
1395 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1398 this->set_got_size();
1401 template<int size, bool big_endian>
1402 void
1403 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1404 Sized_relobj<size, big_endian>* object,
1405 unsigned int symndx,
1406 unsigned int shndx,
1407 unsigned int got_type,
1408 Rela_dyn* rela_dyn,
1409 unsigned int r_type_1,
1410 unsigned int r_type_2)
1412 if (object->local_has_got_offset(symndx, got_type))
1413 return;
1415 this->entries_.push_back(Got_entry());
1416 unsigned int got_offset = this->last_got_offset();
1417 object->set_local_got_offset(symndx, got_type, got_offset);
1418 Output_section* os = object->output_section(shndx);
1419 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1421 this->entries_.push_back(Got_entry(object, symndx));
1422 if (r_type_2 != 0)
1424 got_offset = this->last_got_offset();
1425 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1428 this->set_got_size();
1431 // Write out the GOT.
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::do_write(Output_file* of)
1437 const int add = size / 8;
1439 const off_t off = this->offset();
1440 const off_t oview_size = this->data_size();
1441 unsigned char* const oview = of->get_output_view(off, oview_size);
1443 unsigned char* pov = oview;
1444 for (typename Got_entries::const_iterator p = this->entries_.begin();
1445 p != this->entries_.end();
1446 ++p)
1448 p->write(pov);
1449 pov += add;
1452 gold_assert(pov - oview == oview_size);
1454 of->write_output_view(off, oview_size, oview);
1456 // We no longer need the GOT entries.
1457 this->entries_.clear();
1460 // Output_data_dynamic::Dynamic_entry methods.
1462 // Write out the entry.
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_dynamic::Dynamic_entry::write(
1467 unsigned char* pov,
1468 const Stringpool* pool) const
1470 typename elfcpp::Elf_types<size>::Elf_WXword val;
1471 switch (this->offset_)
1473 case DYNAMIC_NUMBER:
1474 val = this->u_.val;
1475 break;
1477 case DYNAMIC_SECTION_SIZE:
1478 val = this->u_.od->data_size();
1479 break;
1481 case DYNAMIC_SYMBOL:
1483 const Sized_symbol<size>* s =
1484 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1485 val = s->value();
1487 break;
1489 case DYNAMIC_STRING:
1490 val = pool->get_offset(this->u_.str);
1491 break;
1493 default:
1494 val = this->u_.od->address() + this->offset_;
1495 break;
1498 elfcpp::Dyn_write<size, big_endian> dw(pov);
1499 dw.put_d_tag(this->tag_);
1500 dw.put_d_val(val);
1503 // Output_data_dynamic methods.
1505 // Adjust the output section to set the entry size.
1507 void
1508 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1510 if (parameters->target().get_size() == 32)
1511 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1512 else if (parameters->target().get_size() == 64)
1513 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1514 else
1515 gold_unreachable();
1518 // Set the final data size.
1520 void
1521 Output_data_dynamic::set_final_data_size()
1523 // Add the terminating entry if it hasn't been added.
1524 // Because of relaxation, we can run this multiple times.
1525 if (this->entries_.empty()
1526 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1527 this->add_constant(elfcpp::DT_NULL, 0);
1529 int dyn_size;
1530 if (parameters->target().get_size() == 32)
1531 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1532 else if (parameters->target().get_size() == 64)
1533 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1534 else
1535 gold_unreachable();
1536 this->set_data_size(this->entries_.size() * dyn_size);
1539 // Write out the dynamic entries.
1541 void
1542 Output_data_dynamic::do_write(Output_file* of)
1544 switch (parameters->size_and_endianness())
1546 #ifdef HAVE_TARGET_32_LITTLE
1547 case Parameters::TARGET_32_LITTLE:
1548 this->sized_write<32, false>(of);
1549 break;
1550 #endif
1551 #ifdef HAVE_TARGET_32_BIG
1552 case Parameters::TARGET_32_BIG:
1553 this->sized_write<32, true>(of);
1554 break;
1555 #endif
1556 #ifdef HAVE_TARGET_64_LITTLE
1557 case Parameters::TARGET_64_LITTLE:
1558 this->sized_write<64, false>(of);
1559 break;
1560 #endif
1561 #ifdef HAVE_TARGET_64_BIG
1562 case Parameters::TARGET_64_BIG:
1563 this->sized_write<64, true>(of);
1564 break;
1565 #endif
1566 default:
1567 gold_unreachable();
1571 template<int size, bool big_endian>
1572 void
1573 Output_data_dynamic::sized_write(Output_file* of)
1575 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1577 const off_t offset = this->offset();
1578 const off_t oview_size = this->data_size();
1579 unsigned char* const oview = of->get_output_view(offset, oview_size);
1581 unsigned char* pov = oview;
1582 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1583 p != this->entries_.end();
1584 ++p)
1586 p->write<size, big_endian>(pov, this->pool_);
1587 pov += dyn_size;
1590 gold_assert(pov - oview == oview_size);
1592 of->write_output_view(offset, oview_size, oview);
1594 // We no longer need the dynamic entries.
1595 this->entries_.clear();
1598 // Class Output_symtab_xindex.
1600 void
1601 Output_symtab_xindex::do_write(Output_file* of)
1603 const off_t offset = this->offset();
1604 const off_t oview_size = this->data_size();
1605 unsigned char* const oview = of->get_output_view(offset, oview_size);
1607 memset(oview, 0, oview_size);
1609 if (parameters->target().is_big_endian())
1610 this->endian_do_write<true>(oview);
1611 else
1612 this->endian_do_write<false>(oview);
1614 of->write_output_view(offset, oview_size, oview);
1616 // We no longer need the data.
1617 this->entries_.clear();
1620 template<bool big_endian>
1621 void
1622 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1624 for (Xindex_entries::const_iterator p = this->entries_.begin();
1625 p != this->entries_.end();
1626 ++p)
1628 unsigned int symndx = p->first;
1629 gold_assert(symndx * 4 < this->data_size());
1630 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1634 // Output_section::Input_section methods.
1636 // Return the data size. For an input section we store the size here.
1637 // For an Output_section_data, we have to ask it for the size.
1639 off_t
1640 Output_section::Input_section::data_size() const
1642 if (this->is_input_section())
1643 return this->u1_.data_size;
1644 else
1645 return this->u2_.posd->data_size();
1648 // Set the address and file offset.
1650 void
1651 Output_section::Input_section::set_address_and_file_offset(
1652 uint64_t address,
1653 off_t file_offset,
1654 off_t section_file_offset)
1656 if (this->is_input_section())
1657 this->u2_.object->set_section_offset(this->shndx_,
1658 file_offset - section_file_offset);
1659 else
1660 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1663 // Reset the address and file offset.
1665 void
1666 Output_section::Input_section::reset_address_and_file_offset()
1668 if (!this->is_input_section())
1669 this->u2_.posd->reset_address_and_file_offset();
1672 // Finalize the data size.
1674 void
1675 Output_section::Input_section::finalize_data_size()
1677 if (!this->is_input_section())
1678 this->u2_.posd->finalize_data_size();
1681 // Try to turn an input offset into an output offset. We want to
1682 // return the output offset relative to the start of this
1683 // Input_section in the output section.
1685 inline bool
1686 Output_section::Input_section::output_offset(
1687 const Relobj* object,
1688 unsigned int shndx,
1689 section_offset_type offset,
1690 section_offset_type *poutput) const
1692 if (!this->is_input_section())
1693 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1694 else
1696 if (this->shndx_ != shndx || this->u2_.object != object)
1697 return false;
1698 *poutput = offset;
1699 return true;
1703 // Return whether this is the merge section for the input section
1704 // SHNDX in OBJECT.
1706 inline bool
1707 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1708 unsigned int shndx) const
1710 if (this->is_input_section())
1711 return false;
1712 return this->u2_.posd->is_merge_section_for(object, shndx);
1715 // Write out the data. We don't have to do anything for an input
1716 // section--they are handled via Object::relocate--but this is where
1717 // we write out the data for an Output_section_data.
1719 void
1720 Output_section::Input_section::write(Output_file* of)
1722 if (!this->is_input_section())
1723 this->u2_.posd->write(of);
1726 // Write the data to a buffer. As for write(), we don't have to do
1727 // anything for an input section.
1729 void
1730 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1732 if (!this->is_input_section())
1733 this->u2_.posd->write_to_buffer(buffer);
1736 // Print to a map file.
1738 void
1739 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1741 switch (this->shndx_)
1743 case OUTPUT_SECTION_CODE:
1744 case MERGE_DATA_SECTION_CODE:
1745 case MERGE_STRING_SECTION_CODE:
1746 this->u2_.posd->print_to_mapfile(mapfile);
1747 break;
1749 case RELAXED_INPUT_SECTION_CODE:
1751 Output_relaxed_input_section* relaxed_section =
1752 this->relaxed_input_section();
1753 mapfile->print_input_section(relaxed_section->relobj(),
1754 relaxed_section->shndx());
1756 break;
1757 default:
1758 mapfile->print_input_section(this->u2_.object, this->shndx_);
1759 break;
1763 // Output_section methods.
1765 // Construct an Output_section. NAME will point into a Stringpool.
1767 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1768 elfcpp::Elf_Xword flags)
1769 : name_(name),
1770 addralign_(0),
1771 entsize_(0),
1772 load_address_(0),
1773 link_section_(NULL),
1774 link_(0),
1775 info_section_(NULL),
1776 info_symndx_(NULL),
1777 info_(0),
1778 type_(type),
1779 flags_(flags),
1780 out_shndx_(-1U),
1781 symtab_index_(0),
1782 dynsym_index_(0),
1783 input_sections_(),
1784 first_input_offset_(0),
1785 fills_(),
1786 postprocessing_buffer_(NULL),
1787 needs_symtab_index_(false),
1788 needs_dynsym_index_(false),
1789 should_link_to_symtab_(false),
1790 should_link_to_dynsym_(false),
1791 after_input_sections_(false),
1792 requires_postprocessing_(false),
1793 found_in_sections_clause_(false),
1794 has_load_address_(false),
1795 info_uses_section_index_(false),
1796 may_sort_attached_input_sections_(false),
1797 must_sort_attached_input_sections_(false),
1798 attached_input_sections_are_sorted_(false),
1799 is_relro_(false),
1800 is_relro_local_(false),
1801 is_small_section_(false),
1802 is_large_section_(false),
1803 tls_offset_(0),
1804 checkpoint_(NULL)
1806 // An unallocated section has no address. Forcing this means that
1807 // we don't need special treatment for symbols defined in debug
1808 // sections.
1809 if ((flags & elfcpp::SHF_ALLOC) == 0)
1810 this->set_address(0);
1813 Output_section::~Output_section()
1815 delete this->checkpoint_;
1818 // Set the entry size.
1820 void
1821 Output_section::set_entsize(uint64_t v)
1823 if (this->entsize_ == 0)
1824 this->entsize_ = v;
1825 else
1826 gold_assert(this->entsize_ == v);
1829 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1830 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1831 // relocation section which applies to this section, or 0 if none, or
1832 // -1U if more than one. Return the offset of the input section
1833 // within the output section. Return -1 if the input section will
1834 // receive special handling. In the normal case we don't always keep
1835 // track of input sections for an Output_section. Instead, each
1836 // Object keeps track of the Output_section for each of its input
1837 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1838 // track of input sections here; this is used when SECTIONS appears in
1839 // a linker script.
1841 template<int size, bool big_endian>
1842 off_t
1843 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1844 unsigned int shndx,
1845 const char* secname,
1846 const elfcpp::Shdr<size, big_endian>& shdr,
1847 unsigned int reloc_shndx,
1848 bool have_sections_script)
1850 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1851 if ((addralign & (addralign - 1)) != 0)
1853 object->error(_("invalid alignment %lu for section \"%s\""),
1854 static_cast<unsigned long>(addralign), secname);
1855 addralign = 1;
1858 if (addralign > this->addralign_)
1859 this->addralign_ = addralign;
1861 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1862 this->update_flags_for_input_section(sh_flags);
1864 uint64_t entsize = shdr.get_sh_entsize();
1866 // .debug_str is a mergeable string section, but is not always so
1867 // marked by compilers. Mark manually here so we can optimize.
1868 if (strcmp(secname, ".debug_str") == 0)
1870 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1871 entsize = 1;
1874 // If this is a SHF_MERGE section, we pass all the input sections to
1875 // a Output_data_merge. We don't try to handle relocations for such
1876 // a section. We don't try to handle empty merge sections--they
1877 // mess up the mappings, and are useless anyhow.
1878 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1879 && reloc_shndx == 0
1880 && shdr.get_sh_size() > 0)
1882 if (this->add_merge_input_section(object, shndx, sh_flags,
1883 entsize, addralign))
1885 // Tell the relocation routines that they need to call the
1886 // output_offset method to determine the final address.
1887 return -1;
1891 off_t offset_in_section = this->current_data_size_for_child();
1892 off_t aligned_offset_in_section = align_address(offset_in_section,
1893 addralign);
1895 if (aligned_offset_in_section > offset_in_section
1896 && !have_sections_script
1897 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1898 && parameters->target().has_code_fill())
1900 // We need to add some fill data. Using fill_list_ when
1901 // possible is an optimization, since we will often have fill
1902 // sections without input sections.
1903 off_t fill_len = aligned_offset_in_section - offset_in_section;
1904 if (this->input_sections_.empty())
1905 this->fills_.push_back(Fill(offset_in_section, fill_len));
1906 else
1908 // FIXME: When relaxing, the size needs to adjust to
1909 // maintain a constant alignment.
1910 std::string fill_data(parameters->target().code_fill(fill_len));
1911 Output_data_const* odc = new Output_data_const(fill_data, 1);
1912 this->input_sections_.push_back(Input_section(odc));
1916 this->set_current_data_size_for_child(aligned_offset_in_section
1917 + shdr.get_sh_size());
1919 // We need to keep track of this section if we are already keeping
1920 // track of sections, or if we are relaxing. Also, if this is a
1921 // section which requires sorting, or which may require sorting in
1922 // the future, we keep track of the sections.
1923 if (have_sections_script
1924 || !this->input_sections_.empty()
1925 || this->may_sort_attached_input_sections()
1926 || this->must_sort_attached_input_sections()
1927 || parameters->options().user_set_Map()
1928 || parameters->target().may_relax())
1929 this->input_sections_.push_back(Input_section(object, shndx,
1930 shdr.get_sh_size(),
1931 addralign));
1933 return aligned_offset_in_section;
1936 // Add arbitrary data to an output section.
1938 void
1939 Output_section::add_output_section_data(Output_section_data* posd)
1941 Input_section inp(posd);
1942 this->add_output_section_data(&inp);
1944 if (posd->is_data_size_valid())
1946 off_t offset_in_section = this->current_data_size_for_child();
1947 off_t aligned_offset_in_section = align_address(offset_in_section,
1948 posd->addralign());
1949 this->set_current_data_size_for_child(aligned_offset_in_section
1950 + posd->data_size());
1954 // Add arbitrary data to an output section by Input_section.
1956 void
1957 Output_section::add_output_section_data(Input_section* inp)
1959 if (this->input_sections_.empty())
1960 this->first_input_offset_ = this->current_data_size_for_child();
1962 this->input_sections_.push_back(*inp);
1964 uint64_t addralign = inp->addralign();
1965 if (addralign > this->addralign_)
1966 this->addralign_ = addralign;
1968 inp->set_output_section(this);
1971 // Add a merge section to an output section.
1973 void
1974 Output_section::add_output_merge_section(Output_section_data* posd,
1975 bool is_string, uint64_t entsize)
1977 Input_section inp(posd, is_string, entsize);
1978 this->add_output_section_data(&inp);
1981 // Add an input section to a SHF_MERGE section.
1983 bool
1984 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1985 uint64_t flags, uint64_t entsize,
1986 uint64_t addralign)
1988 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1990 // We only merge strings if the alignment is not more than the
1991 // character size. This could be handled, but it's unusual.
1992 if (is_string && addralign > entsize)
1993 return false;
1995 // We cannot restore merged input section states.
1996 gold_assert(this->checkpoint_ == NULL);
1998 Input_section_list::iterator p;
1999 for (p = this->input_sections_.begin();
2000 p != this->input_sections_.end();
2001 ++p)
2002 if (p->is_merge_section(is_string, entsize, addralign))
2004 p->add_input_section(object, shndx);
2005 return true;
2008 // We handle the actual constant merging in Output_merge_data or
2009 // Output_merge_string_data.
2010 Output_section_data* posd;
2011 if (!is_string)
2012 posd = new Output_merge_data(entsize, addralign);
2013 else
2015 switch (entsize)
2017 case 1:
2018 posd = new Output_merge_string<char>(addralign);
2019 break;
2020 case 2:
2021 posd = new Output_merge_string<uint16_t>(addralign);
2022 break;
2023 case 4:
2024 posd = new Output_merge_string<uint32_t>(addralign);
2025 break;
2026 default:
2027 return false;
2031 this->add_output_merge_section(posd, is_string, entsize);
2032 posd->add_input_section(object, shndx);
2034 return true;
2037 // Relax an existing input section.
2038 void
2039 Output_section::relax_input_section(Output_relaxed_input_section *psection)
2041 Relobj* relobj = psection->relobj();
2042 unsigned int shndx = psection->shndx();
2044 gold_assert(parameters->target().may_relax());
2046 // This is not very efficient if we a going to relax a number of sections
2047 // in an Output_section with lot of Input_sections.
2048 for (Input_section_list::iterator p = this->input_sections_.begin();
2049 p != this->input_sections_.end();
2050 ++p)
2052 if (p->is_input_section())
2054 if (p->relobj() == relobj && p->shndx() == shndx)
2056 gold_assert(p->addralign() == psection->addralign());
2057 *p = Input_section(psection);
2058 return;
2061 else if (p->is_relaxed_input_section())
2062 gold_assert(p->relobj() != relobj || p->shndx() != shndx);
2067 // Update the output section flags based on input section flags.
2069 void
2070 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2072 // If we created the section with SHF_ALLOC clear, we set the
2073 // address. If we are now setting the SHF_ALLOC flag, we need to
2074 // undo that.
2075 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2076 && (flags & elfcpp::SHF_ALLOC) != 0)
2077 this->mark_address_invalid();
2079 this->flags_ |= (flags
2080 & (elfcpp::SHF_WRITE
2081 | elfcpp::SHF_ALLOC
2082 | elfcpp::SHF_EXECINSTR));
2085 // Given an address OFFSET relative to the start of input section
2086 // SHNDX in OBJECT, return whether this address is being included in
2087 // the final link. This should only be called if SHNDX in OBJECT has
2088 // a special mapping.
2090 bool
2091 Output_section::is_input_address_mapped(const Relobj* object,
2092 unsigned int shndx,
2093 off_t offset) const
2095 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2096 p != this->input_sections_.end();
2097 ++p)
2099 section_offset_type output_offset;
2100 if (p->output_offset(object, shndx, offset, &output_offset))
2101 return output_offset != -1;
2104 // By default we assume that the address is mapped. This should
2105 // only be called after we have passed all sections to Layout. At
2106 // that point we should know what we are discarding.
2107 return true;
2110 // Given an address OFFSET relative to the start of input section
2111 // SHNDX in object OBJECT, return the output offset relative to the
2112 // start of the input section in the output section. This should only
2113 // be called if SHNDX in OBJECT has a special mapping.
2115 section_offset_type
2116 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2117 section_offset_type offset) const
2119 // This can only be called meaningfully when layout is complete.
2120 gold_assert(Output_data::is_layout_complete());
2122 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2123 p != this->input_sections_.end();
2124 ++p)
2126 section_offset_type output_offset;
2127 if (p->output_offset(object, shndx, offset, &output_offset))
2128 return output_offset;
2130 gold_unreachable();
2133 // Return the output virtual address of OFFSET relative to the start
2134 // of input section SHNDX in object OBJECT.
2136 uint64_t
2137 Output_section::output_address(const Relobj* object, unsigned int shndx,
2138 off_t offset) const
2140 uint64_t addr = this->address() + this->first_input_offset_;
2141 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2142 p != this->input_sections_.end();
2143 ++p)
2145 addr = align_address(addr, p->addralign());
2146 section_offset_type output_offset;
2147 if (p->output_offset(object, shndx, offset, &output_offset))
2149 if (output_offset == -1)
2150 return -1ULL;
2151 return addr + output_offset;
2153 addr += p->data_size();
2156 // If we get here, it means that we don't know the mapping for this
2157 // input section. This might happen in principle if
2158 // add_input_section were called before add_output_section_data.
2159 // But it should never actually happen.
2161 gold_unreachable();
2164 // Find the output address of the start of the merged section for
2165 // input section SHNDX in object OBJECT.
2167 bool
2168 Output_section::find_starting_output_address(const Relobj* object,
2169 unsigned int shndx,
2170 uint64_t* paddr) const
2172 uint64_t addr = this->address() + this->first_input_offset_;
2173 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2174 p != this->input_sections_.end();
2175 ++p)
2177 addr = align_address(addr, p->addralign());
2179 // It would be nice if we could use the existing output_offset
2180 // method to get the output offset of input offset 0.
2181 // Unfortunately we don't know for sure that input offset 0 is
2182 // mapped at all.
2183 if (p->is_merge_section_for(object, shndx))
2185 *paddr = addr;
2186 return true;
2189 addr += p->data_size();
2192 // We couldn't find a merge output section for this input section.
2193 return false;
2196 // Set the data size of an Output_section. This is where we handle
2197 // setting the addresses of any Output_section_data objects.
2199 void
2200 Output_section::set_final_data_size()
2202 if (this->input_sections_.empty())
2204 this->set_data_size(this->current_data_size_for_child());
2205 return;
2208 if (this->must_sort_attached_input_sections())
2209 this->sort_attached_input_sections();
2211 uint64_t address = this->address();
2212 off_t startoff = this->offset();
2213 off_t off = startoff + this->first_input_offset_;
2214 for (Input_section_list::iterator p = this->input_sections_.begin();
2215 p != this->input_sections_.end();
2216 ++p)
2218 off = align_address(off, p->addralign());
2219 p->set_address_and_file_offset(address + (off - startoff), off,
2220 startoff);
2221 off += p->data_size();
2224 this->set_data_size(off - startoff);
2227 // Reset the address and file offset.
2229 void
2230 Output_section::do_reset_address_and_file_offset()
2232 // An unallocated section has no address. Forcing this means that
2233 // we don't need special treatment for symbols defined in debug
2234 // sections. We do the same in the constructor.
2235 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2236 this->set_address(0);
2238 for (Input_section_list::iterator p = this->input_sections_.begin();
2239 p != this->input_sections_.end();
2240 ++p)
2241 p->reset_address_and_file_offset();
2244 // Return true if address and file offset have the values after reset.
2246 bool
2247 Output_section::do_address_and_file_offset_have_reset_values() const
2249 if (this->is_offset_valid())
2250 return false;
2252 // An unallocated section has address 0 after its construction or a reset.
2253 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2254 return this->is_address_valid() && this->address() == 0;
2255 else
2256 return !this->is_address_valid();
2259 // Set the TLS offset. Called only for SHT_TLS sections.
2261 void
2262 Output_section::do_set_tls_offset(uint64_t tls_base)
2264 this->tls_offset_ = this->address() - tls_base;
2267 // In a few cases we need to sort the input sections attached to an
2268 // output section. This is used to implement the type of constructor
2269 // priority ordering implemented by the GNU linker, in which the
2270 // priority becomes part of the section name and the sections are
2271 // sorted by name. We only do this for an output section if we see an
2272 // attached input section matching ".ctor.*", ".dtor.*",
2273 // ".init_array.*" or ".fini_array.*".
2275 class Output_section::Input_section_sort_entry
2277 public:
2278 Input_section_sort_entry()
2279 : input_section_(), index_(-1U), section_has_name_(false),
2280 section_name_()
2283 Input_section_sort_entry(const Input_section& input_section,
2284 unsigned int index)
2285 : input_section_(input_section), index_(index),
2286 section_has_name_(input_section.is_input_section()
2287 || input_section.is_relaxed_input_section())
2289 if (this->section_has_name_)
2291 // This is only called single-threaded from Layout::finalize,
2292 // so it is OK to lock. Unfortunately we have no way to pass
2293 // in a Task token.
2294 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2295 Object* obj = (input_section.is_input_section()
2296 ? input_section.relobj()
2297 : input_section.relaxed_input_section()->relobj());
2298 Task_lock_obj<Object> tl(dummy_task, obj);
2300 // This is a slow operation, which should be cached in
2301 // Layout::layout if this becomes a speed problem.
2302 this->section_name_ = obj->section_name(input_section.shndx());
2306 // Return the Input_section.
2307 const Input_section&
2308 input_section() const
2310 gold_assert(this->index_ != -1U);
2311 return this->input_section_;
2314 // The index of this entry in the original list. This is used to
2315 // make the sort stable.
2316 unsigned int
2317 index() const
2319 gold_assert(this->index_ != -1U);
2320 return this->index_;
2323 // Whether there is a section name.
2324 bool
2325 section_has_name() const
2326 { return this->section_has_name_; }
2328 // The section name.
2329 const std::string&
2330 section_name() const
2332 gold_assert(this->section_has_name_);
2333 return this->section_name_;
2336 // Return true if the section name has a priority. This is assumed
2337 // to be true if it has a dot after the initial dot.
2338 bool
2339 has_priority() const
2341 gold_assert(this->section_has_name_);
2342 return this->section_name_.find('.', 1);
2345 // Return true if this an input file whose base name matches
2346 // FILE_NAME. The base name must have an extension of ".o", and
2347 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2348 // This is to match crtbegin.o as well as crtbeginS.o without
2349 // getting confused by other possibilities. Overall matching the
2350 // file name this way is a dreadful hack, but the GNU linker does it
2351 // in order to better support gcc, and we need to be compatible.
2352 bool
2353 match_file_name(const char* match_file_name) const
2355 const std::string& file_name(this->input_section_.relobj()->name());
2356 const char* base_name = lbasename(file_name.c_str());
2357 size_t match_len = strlen(match_file_name);
2358 if (strncmp(base_name, match_file_name, match_len) != 0)
2359 return false;
2360 size_t base_len = strlen(base_name);
2361 if (base_len != match_len + 2 && base_len != match_len + 3)
2362 return false;
2363 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2366 private:
2367 // The Input_section we are sorting.
2368 Input_section input_section_;
2369 // The index of this Input_section in the original list.
2370 unsigned int index_;
2371 // Whether this Input_section has a section name--it won't if this
2372 // is some random Output_section_data.
2373 bool section_has_name_;
2374 // The section name if there is one.
2375 std::string section_name_;
2378 // Return true if S1 should come before S2 in the output section.
2380 bool
2381 Output_section::Input_section_sort_compare::operator()(
2382 const Output_section::Input_section_sort_entry& s1,
2383 const Output_section::Input_section_sort_entry& s2) const
2385 // crtbegin.o must come first.
2386 bool s1_begin = s1.match_file_name("crtbegin");
2387 bool s2_begin = s2.match_file_name("crtbegin");
2388 if (s1_begin || s2_begin)
2390 if (!s1_begin)
2391 return false;
2392 if (!s2_begin)
2393 return true;
2394 return s1.index() < s2.index();
2397 // crtend.o must come last.
2398 bool s1_end = s1.match_file_name("crtend");
2399 bool s2_end = s2.match_file_name("crtend");
2400 if (s1_end || s2_end)
2402 if (!s1_end)
2403 return true;
2404 if (!s2_end)
2405 return false;
2406 return s1.index() < s2.index();
2409 // We sort all the sections with no names to the end.
2410 if (!s1.section_has_name() || !s2.section_has_name())
2412 if (s1.section_has_name())
2413 return true;
2414 if (s2.section_has_name())
2415 return false;
2416 return s1.index() < s2.index();
2419 // A section with a priority follows a section without a priority.
2420 // The GNU linker does this for all but .init_array sections; until
2421 // further notice we'll assume that that is an mistake.
2422 bool s1_has_priority = s1.has_priority();
2423 bool s2_has_priority = s2.has_priority();
2424 if (s1_has_priority && !s2_has_priority)
2425 return false;
2426 if (!s1_has_priority && s2_has_priority)
2427 return true;
2429 // Otherwise we sort by name.
2430 int compare = s1.section_name().compare(s2.section_name());
2431 if (compare != 0)
2432 return compare < 0;
2434 // Otherwise we keep the input order.
2435 return s1.index() < s2.index();
2438 // Sort the input sections attached to an output section.
2440 void
2441 Output_section::sort_attached_input_sections()
2443 if (this->attached_input_sections_are_sorted_)
2444 return;
2446 if (this->checkpoint_ != NULL
2447 && !this->checkpoint_->input_sections_saved())
2448 this->checkpoint_->save_input_sections();
2450 // The only thing we know about an input section is the object and
2451 // the section index. We need the section name. Recomputing this
2452 // is slow but this is an unusual case. If this becomes a speed
2453 // problem we can cache the names as required in Layout::layout.
2455 // We start by building a larger vector holding a copy of each
2456 // Input_section, plus its current index in the list and its name.
2457 std::vector<Input_section_sort_entry> sort_list;
2459 unsigned int i = 0;
2460 for (Input_section_list::iterator p = this->input_sections_.begin();
2461 p != this->input_sections_.end();
2462 ++p, ++i)
2463 sort_list.push_back(Input_section_sort_entry(*p, i));
2465 // Sort the input sections.
2466 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2468 // Copy the sorted input sections back to our list.
2469 this->input_sections_.clear();
2470 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2471 p != sort_list.end();
2472 ++p)
2473 this->input_sections_.push_back(p->input_section());
2475 // Remember that we sorted the input sections, since we might get
2476 // called again.
2477 this->attached_input_sections_are_sorted_ = true;
2480 // Write the section header to *OSHDR.
2482 template<int size, bool big_endian>
2483 void
2484 Output_section::write_header(const Layout* layout,
2485 const Stringpool* secnamepool,
2486 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2488 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2489 oshdr->put_sh_type(this->type_);
2491 elfcpp::Elf_Xword flags = this->flags_;
2492 if (this->info_section_ != NULL && this->info_uses_section_index_)
2493 flags |= elfcpp::SHF_INFO_LINK;
2494 oshdr->put_sh_flags(flags);
2496 oshdr->put_sh_addr(this->address());
2497 oshdr->put_sh_offset(this->offset());
2498 oshdr->put_sh_size(this->data_size());
2499 if (this->link_section_ != NULL)
2500 oshdr->put_sh_link(this->link_section_->out_shndx());
2501 else if (this->should_link_to_symtab_)
2502 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2503 else if (this->should_link_to_dynsym_)
2504 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2505 else
2506 oshdr->put_sh_link(this->link_);
2508 elfcpp::Elf_Word info;
2509 if (this->info_section_ != NULL)
2511 if (this->info_uses_section_index_)
2512 info = this->info_section_->out_shndx();
2513 else
2514 info = this->info_section_->symtab_index();
2516 else if (this->info_symndx_ != NULL)
2517 info = this->info_symndx_->symtab_index();
2518 else
2519 info = this->info_;
2520 oshdr->put_sh_info(info);
2522 oshdr->put_sh_addralign(this->addralign_);
2523 oshdr->put_sh_entsize(this->entsize_);
2526 // Write out the data. For input sections the data is written out by
2527 // Object::relocate, but we have to handle Output_section_data objects
2528 // here.
2530 void
2531 Output_section::do_write(Output_file* of)
2533 gold_assert(!this->requires_postprocessing());
2535 off_t output_section_file_offset = this->offset();
2536 for (Fill_list::iterator p = this->fills_.begin();
2537 p != this->fills_.end();
2538 ++p)
2540 std::string fill_data(parameters->target().code_fill(p->length()));
2541 of->write(output_section_file_offset + p->section_offset(),
2542 fill_data.data(), fill_data.size());
2545 for (Input_section_list::iterator p = this->input_sections_.begin();
2546 p != this->input_sections_.end();
2547 ++p)
2548 p->write(of);
2551 // If a section requires postprocessing, create the buffer to use.
2553 void
2554 Output_section::create_postprocessing_buffer()
2556 gold_assert(this->requires_postprocessing());
2558 if (this->postprocessing_buffer_ != NULL)
2559 return;
2561 if (!this->input_sections_.empty())
2563 off_t off = this->first_input_offset_;
2564 for (Input_section_list::iterator p = this->input_sections_.begin();
2565 p != this->input_sections_.end();
2566 ++p)
2568 off = align_address(off, p->addralign());
2569 p->finalize_data_size();
2570 off += p->data_size();
2572 this->set_current_data_size_for_child(off);
2575 off_t buffer_size = this->current_data_size_for_child();
2576 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2579 // Write all the data of an Output_section into the postprocessing
2580 // buffer. This is used for sections which require postprocessing,
2581 // such as compression. Input sections are handled by
2582 // Object::Relocate.
2584 void
2585 Output_section::write_to_postprocessing_buffer()
2587 gold_assert(this->requires_postprocessing());
2589 unsigned char* buffer = this->postprocessing_buffer();
2590 for (Fill_list::iterator p = this->fills_.begin();
2591 p != this->fills_.end();
2592 ++p)
2594 std::string fill_data(parameters->target().code_fill(p->length()));
2595 memcpy(buffer + p->section_offset(), fill_data.data(),
2596 fill_data.size());
2599 off_t off = this->first_input_offset_;
2600 for (Input_section_list::iterator p = this->input_sections_.begin();
2601 p != this->input_sections_.end();
2602 ++p)
2604 off = align_address(off, p->addralign());
2605 p->write_to_buffer(buffer + off);
2606 off += p->data_size();
2610 // Get the input sections for linker script processing. We leave
2611 // behind the Output_section_data entries. Note that this may be
2612 // slightly incorrect for merge sections. We will leave them behind,
2613 // but it is possible that the script says that they should follow
2614 // some other input sections, as in:
2615 // .rodata { *(.rodata) *(.rodata.cst*) }
2616 // For that matter, we don't handle this correctly:
2617 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2618 // With luck this will never matter.
2620 uint64_t
2621 Output_section::get_input_sections(
2622 uint64_t address,
2623 const std::string& fill,
2624 std::list<Simple_input_section>* input_sections)
2626 if (this->checkpoint_ != NULL
2627 && !this->checkpoint_->input_sections_saved())
2628 this->checkpoint_->save_input_sections();
2630 uint64_t orig_address = address;
2632 address = align_address(address, this->addralign());
2634 Input_section_list remaining;
2635 for (Input_section_list::iterator p = this->input_sections_.begin();
2636 p != this->input_sections_.end();
2637 ++p)
2639 if (p->is_input_section())
2640 input_sections->push_back(Simple_input_section(p->relobj(),
2641 p->shndx()));
2642 else if (p->is_relaxed_input_section())
2643 input_sections->push_back(
2644 Simple_input_section(p->relaxed_input_section()));
2645 else
2647 uint64_t aligned_address = align_address(address, p->addralign());
2648 if (aligned_address != address && !fill.empty())
2650 section_size_type length =
2651 convert_to_section_size_type(aligned_address - address);
2652 std::string this_fill;
2653 this_fill.reserve(length);
2654 while (this_fill.length() + fill.length() <= length)
2655 this_fill += fill;
2656 if (this_fill.length() < length)
2657 this_fill.append(fill, 0, length - this_fill.length());
2659 Output_section_data* posd = new Output_data_const(this_fill, 0);
2660 remaining.push_back(Input_section(posd));
2662 address = aligned_address;
2664 remaining.push_back(*p);
2666 p->finalize_data_size();
2667 address += p->data_size();
2671 this->input_sections_.swap(remaining);
2672 this->first_input_offset_ = 0;
2674 uint64_t data_size = address - orig_address;
2675 this->set_current_data_size_for_child(data_size);
2676 return data_size;
2679 // Add an input section from a script.
2681 void
2682 Output_section::add_input_section_for_script(const Simple_input_section& sis,
2683 off_t data_size,
2684 uint64_t addralign)
2686 if (addralign > this->addralign_)
2687 this->addralign_ = addralign;
2689 off_t offset_in_section = this->current_data_size_for_child();
2690 off_t aligned_offset_in_section = align_address(offset_in_section,
2691 addralign);
2693 this->set_current_data_size_for_child(aligned_offset_in_section
2694 + data_size);
2696 Input_section is =
2697 (sis.is_relaxed_input_section()
2698 ? Input_section(sis.relaxed_input_section())
2699 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2700 this->input_sections_.push_back(is);
2705 void
2706 Output_section::save_states()
2708 gold_assert(this->checkpoint_ == NULL);
2709 Checkpoint_output_section* checkpoint =
2710 new Checkpoint_output_section(this->addralign_, this->flags_,
2711 this->input_sections_,
2712 this->first_input_offset_,
2713 this->attached_input_sections_are_sorted_);
2714 this->checkpoint_ = checkpoint;
2715 gold_assert(this->fills_.empty());
2718 void
2719 Output_section::restore_states()
2721 gold_assert(this->checkpoint_ != NULL);
2722 Checkpoint_output_section* checkpoint = this->checkpoint_;
2724 this->addralign_ = checkpoint->addralign();
2725 this->flags_ = checkpoint->flags();
2726 this->first_input_offset_ = checkpoint->first_input_offset();
2728 if (!checkpoint->input_sections_saved())
2730 // If we have not copied the input sections, just resize it.
2731 size_t old_size = checkpoint->input_sections_size();
2732 gold_assert(this->input_sections_.size() >= old_size);
2733 this->input_sections_.resize(old_size);
2735 else
2737 // We need to copy the whole list. This is not efficient for
2738 // extremely large output with hundreads of thousands of input
2739 // objects. We may need to re-think how we should pass sections
2740 // to scripts.
2741 this->input_sections_ = checkpoint->input_sections();
2744 this->attached_input_sections_are_sorted_ =
2745 checkpoint->attached_input_sections_are_sorted();
2748 // Print to the map file.
2750 void
2751 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2753 mapfile->print_output_section(this);
2755 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2756 p != this->input_sections_.end();
2757 ++p)
2758 p->print_to_mapfile(mapfile);
2761 // Print stats for merge sections to stderr.
2763 void
2764 Output_section::print_merge_stats()
2766 Input_section_list::iterator p;
2767 for (p = this->input_sections_.begin();
2768 p != this->input_sections_.end();
2769 ++p)
2770 p->print_merge_stats(this->name_);
2773 // Output segment methods.
2775 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2776 : output_data_(),
2777 output_bss_(),
2778 vaddr_(0),
2779 paddr_(0),
2780 memsz_(0),
2781 max_align_(0),
2782 min_p_align_(0),
2783 offset_(0),
2784 filesz_(0),
2785 type_(type),
2786 flags_(flags),
2787 is_max_align_known_(false),
2788 are_addresses_set_(false),
2789 is_large_data_segment_(false)
2793 // Add an Output_section to an Output_segment.
2795 void
2796 Output_segment::add_output_section(Output_section* os,
2797 elfcpp::Elf_Word seg_flags)
2799 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2800 gold_assert(!this->is_max_align_known_);
2801 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
2803 // Update the segment flags.
2804 this->flags_ |= seg_flags;
2806 Output_segment::Output_data_list* pdl;
2807 if (os->type() == elfcpp::SHT_NOBITS)
2808 pdl = &this->output_bss_;
2809 else
2810 pdl = &this->output_data_;
2812 // So that PT_NOTE segments will work correctly, we need to ensure
2813 // that all SHT_NOTE sections are adjacent. This will normally
2814 // happen automatically, because all the SHT_NOTE input sections
2815 // will wind up in the same output section. However, it is possible
2816 // for multiple SHT_NOTE input sections to have different section
2817 // flags, and thus be in different output sections, but for the
2818 // different section flags to map into the same segment flags and
2819 // thus the same output segment.
2821 // Note that while there may be many input sections in an output
2822 // section, there are normally only a few output sections in an
2823 // output segment. This loop is expected to be fast.
2825 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2827 Output_segment::Output_data_list::iterator p = pdl->end();
2830 --p;
2831 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2833 ++p;
2834 pdl->insert(p, os);
2835 return;
2838 while (p != pdl->begin());
2841 // Similarly, so that PT_TLS segments will work, we need to group
2842 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2843 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2844 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2845 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2846 // and the PT_TLS segment -- we do this grouping only for the
2847 // PT_LOAD segment.
2848 if (this->type_ != elfcpp::PT_TLS
2849 && (os->flags() & elfcpp::SHF_TLS) != 0)
2851 pdl = &this->output_data_;
2852 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2853 bool sawtls = false;
2854 Output_segment::Output_data_list::iterator p = pdl->end();
2857 --p;
2858 bool insert;
2859 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2861 sawtls = true;
2862 // Put a NOBITS section after the first TLS section.
2863 // Put a PROGBITS section after the first TLS/PROGBITS
2864 // section.
2865 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2867 else
2869 // If we've gone past the TLS sections, but we've seen a
2870 // TLS section, then we need to insert this section now.
2871 insert = sawtls;
2874 if (insert)
2876 ++p;
2877 pdl->insert(p, os);
2878 return;
2881 while (p != pdl->begin());
2883 // There are no TLS sections yet; put this one at the requested
2884 // location in the section list.
2887 // For the PT_GNU_RELRO segment, we need to group relro sections,
2888 // and we need to put them before any non-relro sections. Also,
2889 // relro local sections go before relro non-local sections.
2890 if (parameters->options().relro() && os->is_relro())
2892 gold_assert(pdl == &this->output_data_);
2893 Output_segment::Output_data_list::iterator p;
2894 for (p = pdl->begin(); p != pdl->end(); ++p)
2896 if (!(*p)->is_section())
2897 break;
2899 Output_section* pos = (*p)->output_section();
2900 if (!pos->is_relro()
2901 || (os->is_relro_local() && !pos->is_relro_local()))
2902 break;
2905 pdl->insert(p, os);
2906 return;
2909 // Small data sections go at the end of the list of data sections.
2910 // If OS is not small, and there are small sections, we have to
2911 // insert it before the first small section.
2912 if (os->type() != elfcpp::SHT_NOBITS
2913 && !os->is_small_section()
2914 && !pdl->empty()
2915 && pdl->back()->is_section()
2916 && pdl->back()->output_section()->is_small_section())
2918 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2919 p != pdl->end();
2920 ++p)
2922 if ((*p)->is_section()
2923 && (*p)->output_section()->is_small_section())
2925 pdl->insert(p, os);
2926 return;
2929 gold_unreachable();
2932 // A small BSS section goes at the start of the BSS sections, after
2933 // other small BSS sections.
2934 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
2936 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2937 p != pdl->end();
2938 ++p)
2940 if (!(*p)->is_section()
2941 || !(*p)->output_section()->is_small_section())
2943 pdl->insert(p, os);
2944 return;
2949 // A large BSS section goes at the end of the BSS sections, which
2950 // means that one that is not large must come before the first large
2951 // one.
2952 if (os->type() == elfcpp::SHT_NOBITS
2953 && !os->is_large_section()
2954 && !pdl->empty()
2955 && pdl->back()->is_section()
2956 && pdl->back()->output_section()->is_large_section())
2958 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2959 p != pdl->end();
2960 ++p)
2962 if ((*p)->is_section()
2963 && (*p)->output_section()->is_large_section())
2965 pdl->insert(p, os);
2966 return;
2969 gold_unreachable();
2972 pdl->push_back(os);
2975 // Remove an Output_section from this segment. It is an error if it
2976 // is not present.
2978 void
2979 Output_segment::remove_output_section(Output_section* os)
2981 // We only need this for SHT_PROGBITS.
2982 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2983 for (Output_data_list::iterator p = this->output_data_.begin();
2984 p != this->output_data_.end();
2985 ++p)
2987 if (*p == os)
2989 this->output_data_.erase(p);
2990 return;
2993 gold_unreachable();
2996 // Add an Output_data (which is not an Output_section) to the start of
2997 // a segment.
2999 void
3000 Output_segment::add_initial_output_data(Output_data* od)
3002 gold_assert(!this->is_max_align_known_);
3003 this->output_data_.push_front(od);
3006 // Return whether the first data section is a relro section.
3008 bool
3009 Output_segment::is_first_section_relro() const
3011 return (!this->output_data_.empty()
3012 && this->output_data_.front()->is_section()
3013 && this->output_data_.front()->output_section()->is_relro());
3016 // Return the maximum alignment of the Output_data in Output_segment.
3018 uint64_t
3019 Output_segment::maximum_alignment()
3021 if (!this->is_max_align_known_)
3023 uint64_t addralign;
3025 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3026 if (addralign > this->max_align_)
3027 this->max_align_ = addralign;
3029 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3030 if (addralign > this->max_align_)
3031 this->max_align_ = addralign;
3033 // If -z relro is in effect, and the first section in this
3034 // segment is a relro section, then the segment must be aligned
3035 // to at least the common page size. This ensures that the
3036 // PT_GNU_RELRO segment will start at a page boundary.
3037 if (this->type_ == elfcpp::PT_LOAD
3038 && parameters->options().relro()
3039 && this->is_first_section_relro())
3041 addralign = parameters->target().common_pagesize();
3042 if (addralign > this->max_align_)
3043 this->max_align_ = addralign;
3046 this->is_max_align_known_ = true;
3049 return this->max_align_;
3052 // Return the maximum alignment of a list of Output_data.
3054 uint64_t
3055 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3057 uint64_t ret = 0;
3058 for (Output_data_list::const_iterator p = pdl->begin();
3059 p != pdl->end();
3060 ++p)
3062 uint64_t addralign = (*p)->addralign();
3063 if (addralign > ret)
3064 ret = addralign;
3066 return ret;
3069 // Return the number of dynamic relocs applied to this segment.
3071 unsigned int
3072 Output_segment::dynamic_reloc_count() const
3074 return (this->dynamic_reloc_count_list(&this->output_data_)
3075 + this->dynamic_reloc_count_list(&this->output_bss_));
3078 // Return the number of dynamic relocs applied to an Output_data_list.
3080 unsigned int
3081 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3083 unsigned int count = 0;
3084 for (Output_data_list::const_iterator p = pdl->begin();
3085 p != pdl->end();
3086 ++p)
3087 count += (*p)->dynamic_reloc_count();
3088 return count;
3091 // Set the section addresses for an Output_segment. If RESET is true,
3092 // reset the addresses first. ADDR is the address and *POFF is the
3093 // file offset. Set the section indexes starting with *PSHNDX.
3094 // Return the address of the immediately following segment. Update
3095 // *POFF and *PSHNDX.
3097 uint64_t
3098 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3099 uint64_t addr, off_t* poff,
3100 unsigned int* pshndx)
3102 gold_assert(this->type_ == elfcpp::PT_LOAD);
3104 if (!reset && this->are_addresses_set_)
3106 gold_assert(this->paddr_ == addr);
3107 addr = this->vaddr_;
3109 else
3111 this->vaddr_ = addr;
3112 this->paddr_ = addr;
3113 this->are_addresses_set_ = true;
3116 bool in_tls = false;
3118 bool in_relro = (parameters->options().relro()
3119 && this->is_first_section_relro());
3121 off_t orig_off = *poff;
3122 this->offset_ = orig_off;
3124 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3125 addr, poff, pshndx, &in_tls,
3126 &in_relro);
3127 this->filesz_ = *poff - orig_off;
3129 off_t off = *poff;
3131 uint64_t ret = this->set_section_list_addresses(layout, reset,
3132 &this->output_bss_,
3133 addr, poff, pshndx,
3134 &in_tls, &in_relro);
3136 // If the last section was a TLS section, align upward to the
3137 // alignment of the TLS segment, so that the overall size of the TLS
3138 // segment is aligned.
3139 if (in_tls)
3141 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3142 *poff = align_address(*poff, segment_align);
3145 // If all the sections were relro sections, align upward to the
3146 // common page size.
3147 if (in_relro)
3149 uint64_t page_align = parameters->target().common_pagesize();
3150 *poff = align_address(*poff, page_align);
3153 this->memsz_ = *poff - orig_off;
3155 // Ignore the file offset adjustments made by the BSS Output_data
3156 // objects.
3157 *poff = off;
3159 return ret;
3162 // Set the addresses and file offsets in a list of Output_data
3163 // structures.
3165 uint64_t
3166 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3167 Output_data_list* pdl,
3168 uint64_t addr, off_t* poff,
3169 unsigned int* pshndx,
3170 bool* in_tls, bool* in_relro)
3172 off_t startoff = *poff;
3174 off_t off = startoff;
3175 for (Output_data_list::iterator p = pdl->begin();
3176 p != pdl->end();
3177 ++p)
3179 if (reset)
3180 (*p)->reset_address_and_file_offset();
3182 // When using a linker script the section will most likely
3183 // already have an address.
3184 if (!(*p)->is_address_valid())
3186 uint64_t align = (*p)->addralign();
3188 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3190 // Give the first TLS section the alignment of the
3191 // entire TLS segment. Otherwise the TLS segment as a
3192 // whole may be misaligned.
3193 if (!*in_tls)
3195 Output_segment* tls_segment = layout->tls_segment();
3196 gold_assert(tls_segment != NULL);
3197 uint64_t segment_align = tls_segment->maximum_alignment();
3198 gold_assert(segment_align >= align);
3199 align = segment_align;
3201 *in_tls = true;
3204 else
3206 // If this is the first section after the TLS segment,
3207 // align it to at least the alignment of the TLS
3208 // segment, so that the size of the overall TLS segment
3209 // is aligned.
3210 if (*in_tls)
3212 uint64_t segment_align =
3213 layout->tls_segment()->maximum_alignment();
3214 if (segment_align > align)
3215 align = segment_align;
3217 *in_tls = false;
3221 // If this is a non-relro section after a relro section,
3222 // align it to a common page boundary so that the dynamic
3223 // linker has a page to mark as read-only.
3224 if (*in_relro
3225 && (!(*p)->is_section()
3226 || !(*p)->output_section()->is_relro()))
3228 uint64_t page_align = parameters->target().common_pagesize();
3229 if (page_align > align)
3230 align = page_align;
3231 *in_relro = false;
3234 off = align_address(off, align);
3235 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3237 else
3239 // The script may have inserted a skip forward, but it
3240 // better not have moved backward.
3241 gold_assert((*p)->address() >= addr + (off - startoff));
3242 off += (*p)->address() - (addr + (off - startoff));
3243 (*p)->set_file_offset(off);
3244 (*p)->finalize_data_size();
3247 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3248 // section. Such a section does not affect the size of a
3249 // PT_LOAD segment.
3250 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3251 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3252 off += (*p)->data_size();
3254 if ((*p)->is_section())
3256 (*p)->set_out_shndx(*pshndx);
3257 ++*pshndx;
3261 *poff = off;
3262 return addr + (off - startoff);
3265 // For a non-PT_LOAD segment, set the offset from the sections, if
3266 // any.
3268 void
3269 Output_segment::set_offset()
3271 gold_assert(this->type_ != elfcpp::PT_LOAD);
3273 gold_assert(!this->are_addresses_set_);
3275 if (this->output_data_.empty() && this->output_bss_.empty())
3277 this->vaddr_ = 0;
3278 this->paddr_ = 0;
3279 this->are_addresses_set_ = true;
3280 this->memsz_ = 0;
3281 this->min_p_align_ = 0;
3282 this->offset_ = 0;
3283 this->filesz_ = 0;
3284 return;
3287 const Output_data* first;
3288 if (this->output_data_.empty())
3289 first = this->output_bss_.front();
3290 else
3291 first = this->output_data_.front();
3292 this->vaddr_ = first->address();
3293 this->paddr_ = (first->has_load_address()
3294 ? first->load_address()
3295 : this->vaddr_);
3296 this->are_addresses_set_ = true;
3297 this->offset_ = first->offset();
3299 if (this->output_data_.empty())
3300 this->filesz_ = 0;
3301 else
3303 const Output_data* last_data = this->output_data_.back();
3304 this->filesz_ = (last_data->address()
3305 + last_data->data_size()
3306 - this->vaddr_);
3309 const Output_data* last;
3310 if (this->output_bss_.empty())
3311 last = this->output_data_.back();
3312 else
3313 last = this->output_bss_.back();
3314 this->memsz_ = (last->address()
3315 + last->data_size()
3316 - this->vaddr_);
3318 // If this is a TLS segment, align the memory size. The code in
3319 // set_section_list ensures that the section after the TLS segment
3320 // is aligned to give us room.
3321 if (this->type_ == elfcpp::PT_TLS)
3323 uint64_t segment_align = this->maximum_alignment();
3324 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3325 this->memsz_ = align_address(this->memsz_, segment_align);
3328 // If this is a RELRO segment, align the memory size. The code in
3329 // set_section_list ensures that the section after the RELRO segment
3330 // is aligned to give us room.
3331 if (this->type_ == elfcpp::PT_GNU_RELRO)
3333 uint64_t page_align = parameters->target().common_pagesize();
3334 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3335 this->memsz_ = align_address(this->memsz_, page_align);
3339 // Set the TLS offsets of the sections in the PT_TLS segment.
3341 void
3342 Output_segment::set_tls_offsets()
3344 gold_assert(this->type_ == elfcpp::PT_TLS);
3346 for (Output_data_list::iterator p = this->output_data_.begin();
3347 p != this->output_data_.end();
3348 ++p)
3349 (*p)->set_tls_offset(this->vaddr_);
3351 for (Output_data_list::iterator p = this->output_bss_.begin();
3352 p != this->output_bss_.end();
3353 ++p)
3354 (*p)->set_tls_offset(this->vaddr_);
3357 // Return the address of the first section.
3359 uint64_t
3360 Output_segment::first_section_load_address() const
3362 for (Output_data_list::const_iterator p = this->output_data_.begin();
3363 p != this->output_data_.end();
3364 ++p)
3365 if ((*p)->is_section())
3366 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3368 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3369 p != this->output_bss_.end();
3370 ++p)
3371 if ((*p)->is_section())
3372 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3374 gold_unreachable();
3377 // Return the number of Output_sections in an Output_segment.
3379 unsigned int
3380 Output_segment::output_section_count() const
3382 return (this->output_section_count_list(&this->output_data_)
3383 + this->output_section_count_list(&this->output_bss_));
3386 // Return the number of Output_sections in an Output_data_list.
3388 unsigned int
3389 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3391 unsigned int count = 0;
3392 for (Output_data_list::const_iterator p = pdl->begin();
3393 p != pdl->end();
3394 ++p)
3396 if ((*p)->is_section())
3397 ++count;
3399 return count;
3402 // Return the section attached to the list segment with the lowest
3403 // load address. This is used when handling a PHDRS clause in a
3404 // linker script.
3406 Output_section*
3407 Output_segment::section_with_lowest_load_address() const
3409 Output_section* found = NULL;
3410 uint64_t found_lma = 0;
3411 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3413 Output_section* found_data = found;
3414 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3415 if (found != found_data && found_data != NULL)
3417 gold_error(_("nobits section %s may not precede progbits section %s "
3418 "in same segment"),
3419 found->name(), found_data->name());
3420 return NULL;
3423 return found;
3426 // Look through a list for a section with a lower load address.
3428 void
3429 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3430 Output_section** found,
3431 uint64_t* found_lma) const
3433 for (Output_data_list::const_iterator p = pdl->begin();
3434 p != pdl->end();
3435 ++p)
3437 if (!(*p)->is_section())
3438 continue;
3439 Output_section* os = static_cast<Output_section*>(*p);
3440 uint64_t lma = (os->has_load_address()
3441 ? os->load_address()
3442 : os->address());
3443 if (*found == NULL || lma < *found_lma)
3445 *found = os;
3446 *found_lma = lma;
3451 // Write the segment data into *OPHDR.
3453 template<int size, bool big_endian>
3454 void
3455 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3457 ophdr->put_p_type(this->type_);
3458 ophdr->put_p_offset(this->offset_);
3459 ophdr->put_p_vaddr(this->vaddr_);
3460 ophdr->put_p_paddr(this->paddr_);
3461 ophdr->put_p_filesz(this->filesz_);
3462 ophdr->put_p_memsz(this->memsz_);
3463 ophdr->put_p_flags(this->flags_);
3464 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3467 // Write the section headers into V.
3469 template<int size, bool big_endian>
3470 unsigned char*
3471 Output_segment::write_section_headers(const Layout* layout,
3472 const Stringpool* secnamepool,
3473 unsigned char* v,
3474 unsigned int *pshndx) const
3476 // Every section that is attached to a segment must be attached to a
3477 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3478 // segments.
3479 if (this->type_ != elfcpp::PT_LOAD)
3480 return v;
3482 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3483 &this->output_data_,
3484 v, pshndx);
3485 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3486 &this->output_bss_,
3487 v, pshndx);
3488 return v;
3491 template<int size, bool big_endian>
3492 unsigned char*
3493 Output_segment::write_section_headers_list(const Layout* layout,
3494 const Stringpool* secnamepool,
3495 const Output_data_list* pdl,
3496 unsigned char* v,
3497 unsigned int* pshndx) const
3499 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3500 for (Output_data_list::const_iterator p = pdl->begin();
3501 p != pdl->end();
3502 ++p)
3504 if ((*p)->is_section())
3506 const Output_section* ps = static_cast<const Output_section*>(*p);
3507 gold_assert(*pshndx == ps->out_shndx());
3508 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3509 ps->write_header(layout, secnamepool, &oshdr);
3510 v += shdr_size;
3511 ++*pshndx;
3514 return v;
3517 // Print the output sections to the map file.
3519 void
3520 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3522 if (this->type() != elfcpp::PT_LOAD)
3523 return;
3524 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3525 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3528 // Print an output section list to the map file.
3530 void
3531 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3532 const Output_data_list* pdl) const
3534 for (Output_data_list::const_iterator p = pdl->begin();
3535 p != pdl->end();
3536 ++p)
3537 (*p)->print_to_mapfile(mapfile);
3540 // Output_file methods.
3542 Output_file::Output_file(const char* name)
3543 : name_(name),
3544 o_(-1),
3545 file_size_(0),
3546 base_(NULL),
3547 map_is_anonymous_(false),
3548 is_temporary_(false)
3552 // Try to open an existing file. Returns false if the file doesn't
3553 // exist, has a size of 0 or can't be mmapped.
3555 bool
3556 Output_file::open_for_modification()
3558 // The name "-" means "stdout".
3559 if (strcmp(this->name_, "-") == 0)
3560 return false;
3562 // Don't bother opening files with a size of zero.
3563 struct stat s;
3564 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3565 return false;
3567 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3568 if (o < 0)
3569 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3570 this->o_ = o;
3571 this->file_size_ = s.st_size;
3573 // If the file can't be mmapped, copying the content to an anonymous
3574 // map will probably negate the performance benefits of incremental
3575 // linking. This could be helped by using views and loading only
3576 // the necessary parts, but this is not supported as of now.
3577 if (!this->map_no_anonymous())
3579 release_descriptor(o, true);
3580 this->o_ = -1;
3581 this->file_size_ = 0;
3582 return false;
3585 return true;
3588 // Open the output file.
3590 void
3591 Output_file::open(off_t file_size)
3593 this->file_size_ = file_size;
3595 // Unlink the file first; otherwise the open() may fail if the file
3596 // is busy (e.g. it's an executable that's currently being executed).
3598 // However, the linker may be part of a system where a zero-length
3599 // file is created for it to write to, with tight permissions (gcc
3600 // 2.95 did something like this). Unlinking the file would work
3601 // around those permission controls, so we only unlink if the file
3602 // has a non-zero size. We also unlink only regular files to avoid
3603 // trouble with directories/etc.
3605 // If we fail, continue; this command is merely a best-effort attempt
3606 // to improve the odds for open().
3608 // We let the name "-" mean "stdout"
3609 if (!this->is_temporary_)
3611 if (strcmp(this->name_, "-") == 0)
3612 this->o_ = STDOUT_FILENO;
3613 else
3615 struct stat s;
3616 if (::stat(this->name_, &s) == 0
3617 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3619 if (s.st_size != 0)
3620 ::unlink(this->name_);
3621 else if (!parameters->options().relocatable())
3623 // If we don't unlink the existing file, add execute
3624 // permission where read permissions already exist
3625 // and where the umask permits.
3626 int mask = ::umask(0);
3627 ::umask(mask);
3628 s.st_mode |= (s.st_mode & 0444) >> 2;
3629 ::chmod(this->name_, s.st_mode & ~mask);
3633 int mode = parameters->options().relocatable() ? 0666 : 0777;
3634 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3635 mode);
3636 if (o < 0)
3637 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3638 this->o_ = o;
3642 this->map();
3645 // Resize the output file.
3647 void
3648 Output_file::resize(off_t file_size)
3650 // If the mmap is mapping an anonymous memory buffer, this is easy:
3651 // just mremap to the new size. If it's mapping to a file, we want
3652 // to unmap to flush to the file, then remap after growing the file.
3653 if (this->map_is_anonymous_)
3655 void* base = ::mremap(this->base_, this->file_size_, file_size,
3656 MREMAP_MAYMOVE);
3657 if (base == MAP_FAILED)
3658 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3659 this->base_ = static_cast<unsigned char*>(base);
3660 this->file_size_ = file_size;
3662 else
3664 this->unmap();
3665 this->file_size_ = file_size;
3666 if (!this->map_no_anonymous())
3667 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3671 // Map an anonymous block of memory which will later be written to the
3672 // file. Return whether the map succeeded.
3674 bool
3675 Output_file::map_anonymous()
3677 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3678 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3679 if (base != MAP_FAILED)
3681 this->map_is_anonymous_ = true;
3682 this->base_ = static_cast<unsigned char*>(base);
3683 return true;
3685 return false;
3688 // Map the file into memory. Return whether the mapping succeeded.
3690 bool
3691 Output_file::map_no_anonymous()
3693 const int o = this->o_;
3695 // If the output file is not a regular file, don't try to mmap it;
3696 // instead, we'll mmap a block of memory (an anonymous buffer), and
3697 // then later write the buffer to the file.
3698 void* base;
3699 struct stat statbuf;
3700 if (o == STDOUT_FILENO || o == STDERR_FILENO
3701 || ::fstat(o, &statbuf) != 0
3702 || !S_ISREG(statbuf.st_mode)
3703 || this->is_temporary_)
3704 return false;
3706 // Ensure that we have disk space available for the file. If we
3707 // don't do this, it is possible that we will call munmap, close,
3708 // and exit with dirty buffers still in the cache with no assigned
3709 // disk blocks. If the disk is out of space at that point, the
3710 // output file will wind up incomplete, but we will have already
3711 // exited. The alternative to fallocate would be to use fdatasync,
3712 // but that would be a more significant performance hit.
3713 if (::posix_fallocate(o, 0, this->file_size_) < 0)
3714 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3716 // Map the file into memory.
3717 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3718 MAP_SHARED, o, 0);
3720 // The mmap call might fail because of file system issues: the file
3721 // system might not support mmap at all, or it might not support
3722 // mmap with PROT_WRITE.
3723 if (base == MAP_FAILED)
3724 return false;
3726 this->map_is_anonymous_ = false;
3727 this->base_ = static_cast<unsigned char*>(base);
3728 return true;
3731 // Map the file into memory.
3733 void
3734 Output_file::map()
3736 if (this->map_no_anonymous())
3737 return;
3739 // The mmap call might fail because of file system issues: the file
3740 // system might not support mmap at all, or it might not support
3741 // mmap with PROT_WRITE. I'm not sure which errno values we will
3742 // see in all cases, so if the mmap fails for any reason and we
3743 // don't care about file contents, try for an anonymous map.
3744 if (this->map_anonymous())
3745 return;
3747 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3748 this->name_, static_cast<unsigned long>(this->file_size_),
3749 strerror(errno));
3752 // Unmap the file from memory.
3754 void
3755 Output_file::unmap()
3757 if (::munmap(this->base_, this->file_size_) < 0)
3758 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3759 this->base_ = NULL;
3762 // Close the output file.
3764 void
3765 Output_file::close()
3767 // If the map isn't file-backed, we need to write it now.
3768 if (this->map_is_anonymous_ && !this->is_temporary_)
3770 size_t bytes_to_write = this->file_size_;
3771 size_t offset = 0;
3772 while (bytes_to_write > 0)
3774 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
3775 bytes_to_write);
3776 if (bytes_written == 0)
3777 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3778 else if (bytes_written < 0)
3779 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3780 else
3782 bytes_to_write -= bytes_written;
3783 offset += bytes_written;
3787 this->unmap();
3789 // We don't close stdout or stderr
3790 if (this->o_ != STDOUT_FILENO
3791 && this->o_ != STDERR_FILENO
3792 && !this->is_temporary_)
3793 if (::close(this->o_) < 0)
3794 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3795 this->o_ = -1;
3798 // Instantiate the templates we need. We could use the configure
3799 // script to restrict this to only the ones for implemented targets.
3801 #ifdef HAVE_TARGET_32_LITTLE
3802 template
3803 off_t
3804 Output_section::add_input_section<32, false>(
3805 Sized_relobj<32, false>* object,
3806 unsigned int shndx,
3807 const char* secname,
3808 const elfcpp::Shdr<32, false>& shdr,
3809 unsigned int reloc_shndx,
3810 bool have_sections_script);
3811 #endif
3813 #ifdef HAVE_TARGET_32_BIG
3814 template
3815 off_t
3816 Output_section::add_input_section<32, true>(
3817 Sized_relobj<32, true>* object,
3818 unsigned int shndx,
3819 const char* secname,
3820 const elfcpp::Shdr<32, true>& shdr,
3821 unsigned int reloc_shndx,
3822 bool have_sections_script);
3823 #endif
3825 #ifdef HAVE_TARGET_64_LITTLE
3826 template
3827 off_t
3828 Output_section::add_input_section<64, false>(
3829 Sized_relobj<64, false>* object,
3830 unsigned int shndx,
3831 const char* secname,
3832 const elfcpp::Shdr<64, false>& shdr,
3833 unsigned int reloc_shndx,
3834 bool have_sections_script);
3835 #endif
3837 #ifdef HAVE_TARGET_64_BIG
3838 template
3839 off_t
3840 Output_section::add_input_section<64, true>(
3841 Sized_relobj<64, true>* object,
3842 unsigned int shndx,
3843 const char* secname,
3844 const elfcpp::Shdr<64, true>& shdr,
3845 unsigned int reloc_shndx,
3846 bool have_sections_script);
3847 #endif
3849 #ifdef HAVE_TARGET_32_LITTLE
3850 template
3851 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3852 #endif
3854 #ifdef HAVE_TARGET_32_BIG
3855 template
3856 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3857 #endif
3859 #ifdef HAVE_TARGET_64_LITTLE
3860 template
3861 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3862 #endif
3864 #ifdef HAVE_TARGET_64_BIG
3865 template
3866 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3867 #endif
3869 #ifdef HAVE_TARGET_32_LITTLE
3870 template
3871 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3872 #endif
3874 #ifdef HAVE_TARGET_32_BIG
3875 template
3876 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3877 #endif
3879 #ifdef HAVE_TARGET_64_LITTLE
3880 template
3881 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3882 #endif
3884 #ifdef HAVE_TARGET_64_BIG
3885 template
3886 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3887 #endif
3889 #ifdef HAVE_TARGET_32_LITTLE
3890 template
3891 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3892 #endif
3894 #ifdef HAVE_TARGET_32_BIG
3895 template
3896 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3897 #endif
3899 #ifdef HAVE_TARGET_64_LITTLE
3900 template
3901 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3902 #endif
3904 #ifdef HAVE_TARGET_64_BIG
3905 template
3906 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3907 #endif
3909 #ifdef HAVE_TARGET_32_LITTLE
3910 template
3911 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3912 #endif
3914 #ifdef HAVE_TARGET_32_BIG
3915 template
3916 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3917 #endif
3919 #ifdef HAVE_TARGET_64_LITTLE
3920 template
3921 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3922 #endif
3924 #ifdef HAVE_TARGET_64_BIG
3925 template
3926 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3927 #endif
3929 #ifdef HAVE_TARGET_32_LITTLE
3930 template
3931 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3932 #endif
3934 #ifdef HAVE_TARGET_32_BIG
3935 template
3936 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3937 #endif
3939 #ifdef HAVE_TARGET_64_LITTLE
3940 template
3941 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3942 #endif
3944 #ifdef HAVE_TARGET_64_BIG
3945 template
3946 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3947 #endif
3949 #ifdef HAVE_TARGET_32_LITTLE
3950 template
3951 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3952 #endif
3954 #ifdef HAVE_TARGET_32_BIG
3955 template
3956 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3957 #endif
3959 #ifdef HAVE_TARGET_64_LITTLE
3960 template
3961 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3962 #endif
3964 #ifdef HAVE_TARGET_64_BIG
3965 template
3966 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3967 #endif
3969 #ifdef HAVE_TARGET_32_LITTLE
3970 template
3971 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3972 #endif
3974 #ifdef HAVE_TARGET_32_BIG
3975 template
3976 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3977 #endif
3979 #ifdef HAVE_TARGET_64_LITTLE
3980 template
3981 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3982 #endif
3984 #ifdef HAVE_TARGET_64_BIG
3985 template
3986 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3987 #endif
3989 #ifdef HAVE_TARGET_32_LITTLE
3990 template
3991 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3992 #endif
3994 #ifdef HAVE_TARGET_32_BIG
3995 template
3996 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3997 #endif
3999 #ifdef HAVE_TARGET_64_LITTLE
4000 template
4001 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4002 #endif
4004 #ifdef HAVE_TARGET_64_BIG
4005 template
4006 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4007 #endif
4009 #ifdef HAVE_TARGET_32_LITTLE
4010 template
4011 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4012 #endif
4014 #ifdef HAVE_TARGET_32_BIG
4015 template
4016 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4017 #endif
4019 #ifdef HAVE_TARGET_64_LITTLE
4020 template
4021 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4022 #endif
4024 #ifdef HAVE_TARGET_64_BIG
4025 template
4026 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4027 #endif
4029 #ifdef HAVE_TARGET_32_LITTLE
4030 template
4031 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4032 #endif
4034 #ifdef HAVE_TARGET_32_BIG
4035 template
4036 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4037 #endif
4039 #ifdef HAVE_TARGET_64_LITTLE
4040 template
4041 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4042 #endif
4044 #ifdef HAVE_TARGET_64_BIG
4045 template
4046 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4047 #endif
4049 #ifdef HAVE_TARGET_32_LITTLE
4050 template
4051 class Output_data_group<32, false>;
4052 #endif
4054 #ifdef HAVE_TARGET_32_BIG
4055 template
4056 class Output_data_group<32, true>;
4057 #endif
4059 #ifdef HAVE_TARGET_64_LITTLE
4060 template
4061 class Output_data_group<64, false>;
4062 #endif
4064 #ifdef HAVE_TARGET_64_BIG
4065 template
4066 class Output_data_group<64, true>;
4067 #endif
4069 #ifdef HAVE_TARGET_32_LITTLE
4070 template
4071 class Output_data_got<32, false>;
4072 #endif
4074 #ifdef HAVE_TARGET_32_BIG
4075 template
4076 class Output_data_got<32, true>;
4077 #endif
4079 #ifdef HAVE_TARGET_64_LITTLE
4080 template
4081 class Output_data_got<64, false>;
4082 #endif
4084 #ifdef HAVE_TARGET_64_BIG
4085 template
4086 class Output_data_got<64, true>;
4087 #endif
4089 } // End namespace gold.