1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 typedef unsigned long int insn32
;
22 typedef unsigned short int insn16
;
24 static boolean elf32_arm_set_private_flags
25 PARAMS ((bfd
*, flagword
));
26 static boolean elf32_arm_copy_private_bfd_data
27 PARAMS ((bfd
*, bfd
*));
28 static boolean elf32_arm_merge_private_bfd_data
29 PARAMS ((bfd
*, bfd
*));
30 static boolean elf32_arm_print_private_bfd_data
31 PARAMS ((bfd
*, PTR
));
32 static int elf32_arm_get_symbol_type
33 PARAMS (( Elf_Internal_Sym
*, int));
34 static struct bfd_link_hash_table
*elf32_arm_link_hash_table_create
36 static bfd_reloc_status_type elf32_arm_final_link_relocate
37 PARAMS ((reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
38 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
39 const char *, unsigned char, struct elf_link_hash_entry
*));
41 static insn32 insert_thumb_branch
42 PARAMS ((insn32
, int));
43 static struct elf_link_hash_entry
*find_thumb_glue
44 PARAMS ((struct bfd_link_info
*, CONST
char *, bfd
*));
45 static struct elf_link_hash_entry
*find_arm_glue
46 PARAMS ((struct bfd_link_info
*, CONST
char *, bfd
*));
47 static void record_arm_to_thumb_glue
48 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
49 static void record_thumb_to_arm_glue
50 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
51 static void elf32_arm_post_process_headers
52 PARAMS ((bfd
*, struct bfd_link_info
*));
53 static int elf32_arm_to_thumb_stub
54 PARAMS ((struct bfd_link_info
*, const char *, bfd
*, bfd
*, asection
*,
55 bfd_byte
*, asection
*, bfd_vma
, bfd_signed_vma
, bfd_vma
));
56 static int elf32_thumb_to_arm_stub
57 PARAMS ((struct bfd_link_info
*, const char *, bfd
*, bfd
*, asection
*,
58 bfd_byte
*, asection
*, bfd_vma
, bfd_signed_vma
, bfd_vma
));
60 /* The linker script knows the section names for placement.
61 The entry_names are used to do simple name mangling on the stubs.
62 Given a function name, and its type, the stub can be found. The
63 name can be changed. The only requirement is the %s be present.
66 #define INTERWORK_FLAG( abfd ) (elf_elfheader (abfd)->e_flags & EF_INTERWORK)
68 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
69 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
71 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
72 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
74 /* The name of the dynamic interpreter. This is put in the .interp
76 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
78 /* The size in bytes of an entry in the procedure linkage table. */
80 #define PLT_ENTRY_SIZE 16
82 /* The first entry in a procedure linkage table looks like
83 this. It is set up so that any shared library function that is
84 called before the relocation has been set up calls the dynamic
87 static const bfd_byte elf32_arm_plt0_entry
[PLT_ENTRY_SIZE
] =
89 0x04, 0xe0, 0x2d, 0xe5, /* str lr, [sp, #-4]! */
90 0x10, 0xe0, 0x9f, 0xe5, /* ldr lr, [pc, #16] */
91 0x0e, 0xe0, 0x8f, 0xe0, /* adr lr, pc, lr */
92 0x08, 0xf0, 0xbe, 0xe5 /* ldr pc, [lr, #8]! */
95 /* Subsequent entries in a procedure linkage table look like
98 static const bfd_byte elf32_arm_plt_entry
[PLT_ENTRY_SIZE
] =
100 0x04, 0xc0, 0x9f, 0xe5, /* ldr ip, [pc, #4] */
101 0x0c, 0xc0, 0x8f, 0xe0, /* add ip, pc, ip */
102 0x00, 0xf0, 0x9c, 0xe5, /* ldr pc, [ip] */
103 0x00, 0x00, 0x00, 0x00 /* offset to symbol in got */
107 /* The ARM linker needs to keep track of the number of relocs that it
108 decides to copy in check_relocs for each symbol. This is so that
109 it can discard PC relative relocs if it doesn't need them when
110 linking with -Bsymbolic. We store the information in a field
111 extending the regular ELF linker hash table. */
113 /* This structure keeps track of the number of PC relative relocs we
114 have copied for a given symbol. */
116 struct elf32_arm_pcrel_relocs_copied
119 struct elf32_arm_pcrel_relocs_copied
* next
;
120 /* A section in dynobj. */
122 /* Number of relocs copied in this section. */
126 /* Arm ELF linker hash entry. */
128 struct elf32_arm_link_hash_entry
130 struct elf_link_hash_entry root
;
132 /* Number of PC relative relocs copied for this symbol. */
133 struct elf32_arm_pcrel_relocs_copied
* pcrel_relocs_copied
;
136 /* Declare this now that the above structures are defined. */
138 static boolean elf32_arm_discard_copies
139 PARAMS ((struct elf32_arm_link_hash_entry
*, PTR
));
141 /* Traverse an arm ELF linker hash table. */
143 #define elf32_arm_link_hash_traverse(table, func, info) \
144 (elf_link_hash_traverse \
146 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
149 /* Get the ARM elf linker hash table from a link_info structure. */
150 #define elf32_arm_hash_table(info) \
151 ((struct elf32_arm_link_hash_table *) ((info)->hash))
153 /* ARM ELF linker hash table */
154 struct elf32_arm_link_hash_table
156 /* The main hash table. */
157 struct elf_link_hash_table root
;
159 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
160 long int thumb_glue_size
;
162 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
163 long int arm_glue_size
;
165 /* An arbitary input BFD chosen to hold the glue sections. */
166 bfd
* bfd_of_glue_owner
;
168 /* A boolean indicating whether knowledge of the ARM's pipeline
169 length should be applied by the linker. */
170 int no_pipeline_knowledge
;
174 /* Create an entry in an ARM ELF linker hash table. */
176 static struct bfd_hash_entry
*
177 elf32_arm_link_hash_newfunc (entry
, table
, string
)
178 struct bfd_hash_entry
* entry
;
179 struct bfd_hash_table
* table
;
182 struct elf32_arm_link_hash_entry
* ret
=
183 (struct elf32_arm_link_hash_entry
*) entry
;
185 /* Allocate the structure if it has not already been allocated by a
187 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
188 ret
= ((struct elf32_arm_link_hash_entry
*)
189 bfd_hash_allocate (table
,
190 sizeof (struct elf32_arm_link_hash_entry
)));
191 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
192 return (struct bfd_hash_entry
*) ret
;
194 /* Call the allocation method of the superclass. */
195 ret
= ((struct elf32_arm_link_hash_entry
*)
196 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
198 if (ret
!= (struct elf32_arm_link_hash_entry
*) NULL
)
199 ret
->pcrel_relocs_copied
= NULL
;
201 return (struct bfd_hash_entry
*) ret
;
204 /* Create an ARM elf linker hash table */
206 static struct bfd_link_hash_table
*
207 elf32_arm_link_hash_table_create (abfd
)
210 struct elf32_arm_link_hash_table
*ret
;
212 ret
= ((struct elf32_arm_link_hash_table
*)
213 bfd_alloc (abfd
, sizeof (struct elf32_arm_link_hash_table
)));
214 if (ret
== (struct elf32_arm_link_hash_table
*) NULL
)
217 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
218 elf32_arm_link_hash_newfunc
))
220 bfd_release (abfd
, ret
);
224 ret
->thumb_glue_size
= 0;
225 ret
->arm_glue_size
= 0;
226 ret
->bfd_of_glue_owner
= NULL
;
227 ret
->no_pipeline_knowledge
= 0;
229 return &ret
->root
.root
;
232 static struct elf_link_hash_entry
*
233 find_thumb_glue (link_info
, name
, input_bfd
)
234 struct bfd_link_info
*link_info
;
239 struct elf_link_hash_entry
*hash
;
240 struct elf32_arm_link_hash_table
*hash_table
;
242 /* We need a pointer to the armelf specific hash table. */
243 hash_table
= elf32_arm_hash_table (link_info
);
247 bfd_malloc (strlen (name
) + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1));
249 BFD_ASSERT (tmp_name
);
251 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
253 hash
= elf_link_hash_lookup
254 (&(hash_table
)->root
, tmp_name
, false, false, true);
257 /* xgettext:c-format */
258 _bfd_error_handler (_ ("%s: unable to find THUMB glue '%s' for `%s'"),
259 bfd_get_filename (input_bfd
), tmp_name
, name
);
266 static struct elf_link_hash_entry
*
267 find_arm_glue (link_info
, name
, input_bfd
)
268 struct bfd_link_info
*link_info
;
273 struct elf_link_hash_entry
*myh
;
274 struct elf32_arm_link_hash_table
*hash_table
;
276 /* We need a pointer to the elfarm specific hash table. */
277 hash_table
= elf32_arm_hash_table (link_info
);
280 bfd_malloc (strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1));
282 BFD_ASSERT (tmp_name
);
284 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
286 myh
= elf_link_hash_lookup
287 (&(hash_table
)->root
, tmp_name
, false, false, true);
290 /* xgettext:c-format */
291 _bfd_error_handler (_ ("%s: unable to find ARM glue '%s' for `%s'"),
292 bfd_get_filename (input_bfd
), tmp_name
, name
);
307 .word func @ behave as if you saw a ARM_32 reloc
310 #define ARM2THUMB_GLUE_SIZE 12
311 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
312 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
313 static const insn32 a2t3_func_addr_insn
= 0x00000001;
316 Thumb->ARM: Thumb->(non-interworking aware) ARM
320 __func_from_thumb: __func_from_thumb:
322 nop ldr r6, __func_addr
324 __func_change_to_arm: bx r6
326 __func_back_to_thumb:
333 #define THUMB2ARM_GLUE_SIZE 8
334 static const insn16 t2a1_bx_pc_insn
= 0x4778;
335 static const insn16 t2a2_noop_insn
= 0x46c0;
336 static const insn32 t2a3_b_insn
= 0xea000000;
338 static const insn16 t2a1_push_insn
= 0xb540;
339 static const insn16 t2a2_ldr_insn
= 0x4e03;
340 static const insn16 t2a3_mov_insn
= 0x46fe;
341 static const insn16 t2a4_bx_insn
= 0x4730;
342 static const insn32 t2a5_pop_insn
= 0xe8bd4040;
343 static const insn32 t2a6_bx_insn
= 0xe12fff1e;
346 bfd_elf32_arm_allocate_interworking_sections (info
)
347 struct bfd_link_info
* info
;
351 struct elf32_arm_link_hash_table
* globals
;
353 globals
= elf32_arm_hash_table (info
);
355 BFD_ASSERT (globals
!= NULL
);
357 if (globals
->arm_glue_size
!= 0)
359 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
361 s
= bfd_get_section_by_name
362 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
364 BFD_ASSERT (s
!= NULL
);
366 foo
= (bfd_byte
*) bfd_alloc
367 (globals
->bfd_of_glue_owner
, globals
->arm_glue_size
);
369 s
->_raw_size
= s
->_cooked_size
= globals
->arm_glue_size
;
373 if (globals
->thumb_glue_size
!= 0)
375 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
377 s
= bfd_get_section_by_name
378 (globals
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
380 BFD_ASSERT (s
!= NULL
);
382 foo
= (bfd_byte
*) bfd_alloc
383 (globals
->bfd_of_glue_owner
, globals
->thumb_glue_size
);
385 s
->_raw_size
= s
->_cooked_size
= globals
->thumb_glue_size
;
393 record_arm_to_thumb_glue (link_info
, h
)
394 struct bfd_link_info
* link_info
;
395 struct elf_link_hash_entry
* h
;
397 const char * name
= h
->root
.root
.string
;
398 register asection
* s
;
400 struct elf_link_hash_entry
* myh
;
401 struct elf32_arm_link_hash_table
* globals
;
403 globals
= elf32_arm_hash_table (link_info
);
405 BFD_ASSERT (globals
!= NULL
);
406 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
408 s
= bfd_get_section_by_name
409 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
412 BFD_ASSERT (s
!= NULL
);
415 bfd_malloc (strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1));
417 BFD_ASSERT (tmp_name
);
419 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
421 myh
= elf_link_hash_lookup
422 (&(globals
)->root
, tmp_name
, false, false, true);
427 return; /* we've already seen this guy */
430 /* The only trick here is using hash_table->arm_glue_size as the value. Even
431 though the section isn't allocated yet, this is where we will be putting
434 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
, tmp_name
,
436 s
, globals
->arm_glue_size
+ 1,
438 (struct bfd_link_hash_entry
**) &myh
);
442 globals
->arm_glue_size
+= ARM2THUMB_GLUE_SIZE
;
448 record_thumb_to_arm_glue (link_info
, h
)
449 struct bfd_link_info
*link_info
;
450 struct elf_link_hash_entry
*h
;
452 const char *name
= h
->root
.root
.string
;
453 register asection
*s
;
455 struct elf_link_hash_entry
*myh
;
456 struct elf32_arm_link_hash_table
*hash_table
;
459 hash_table
= elf32_arm_hash_table (link_info
);
461 BFD_ASSERT (hash_table
!= NULL
);
462 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
464 s
= bfd_get_section_by_name
465 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
467 BFD_ASSERT (s
!= NULL
);
469 tmp_name
= (char *) bfd_malloc (strlen (name
) + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
471 BFD_ASSERT (tmp_name
);
473 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
475 myh
= elf_link_hash_lookup
476 (&(hash_table
)->root
, tmp_name
, false, false, true);
481 return; /* we've already seen this guy */
484 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
, tmp_name
,
485 BSF_GLOBAL
, s
, hash_table
->thumb_glue_size
+ 1,
487 (struct bfd_link_hash_entry
**) &myh
);
489 /* If we mark it 'thumb', the disassembler will do a better job. */
490 bind
= ELF_ST_BIND (myh
->type
);
491 myh
->type
= ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
495 /* Allocate another symbol to mark where we switch to arm mode. */
497 #define CHANGE_TO_ARM "__%s_change_to_arm"
498 #define BACK_FROM_ARM "__%s_back_from_arm"
500 tmp_name
= (char *) bfd_malloc (strlen (name
) + strlen (CHANGE_TO_ARM
) + 1);
502 BFD_ASSERT (tmp_name
);
504 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
508 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
, tmp_name
,
509 BSF_LOCAL
, s
, hash_table
->thumb_glue_size
+ 4,
511 (struct bfd_link_hash_entry
**) &myh
);
515 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
520 /* Select a BFD to be used to hold the sections used by the glue code.
521 This function is called from the linker scripts in ld/emultempl/
524 bfd_elf32_arm_get_bfd_for_interworking (abfd
, info
)
526 struct bfd_link_info
*info
;
528 struct elf32_arm_link_hash_table
*globals
;
532 /* If we are only performing a partial link do not bother
533 getting a bfd to hold the glue. */
534 if (info
->relocateable
)
537 globals
= elf32_arm_hash_table (info
);
539 BFD_ASSERT (globals
!= NULL
);
541 if (globals
->bfd_of_glue_owner
!= NULL
)
544 sec
= bfd_get_section_by_name (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
548 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
549 will prevent elf_link_input_bfd() from processing the contents
551 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
553 sec
= bfd_make_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
556 || !bfd_set_section_flags (abfd
, sec
, flags
)
557 || !bfd_set_section_alignment (abfd
, sec
, 2))
560 /* Set the gc mark to prevent the section from being removed by garbage
561 collection, despite the fact that no relocs refer to this section. */
565 sec
= bfd_get_section_by_name (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
569 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
571 sec
= bfd_make_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
574 || !bfd_set_section_flags (abfd
, sec
, flags
)
575 || !bfd_set_section_alignment (abfd
, sec
, 2))
581 /* Save the bfd for later use. */
582 globals
->bfd_of_glue_owner
= abfd
;
588 bfd_elf32_arm_process_before_allocation (abfd
, link_info
, no_pipeline_knowledge
)
590 struct bfd_link_info
*link_info
;
591 int no_pipeline_knowledge
;
593 Elf_Internal_Shdr
*symtab_hdr
;
594 Elf_Internal_Rela
*free_relocs
= NULL
;
595 Elf_Internal_Rela
*irel
, *irelend
;
596 bfd_byte
*contents
= NULL
;
597 bfd_byte
*free_contents
= NULL
;
598 Elf32_External_Sym
*extsyms
= NULL
;
599 Elf32_External_Sym
*free_extsyms
= NULL
;
602 struct elf32_arm_link_hash_table
*globals
;
604 /* If we are only performing a partial link do not bother
605 to construct any glue. */
606 if (link_info
->relocateable
)
609 /* Here we have a bfd that is to be included on the link. We have a hook
610 to do reloc rummaging, before section sizes are nailed down. */
612 globals
= elf32_arm_hash_table (link_info
);
614 BFD_ASSERT (globals
!= NULL
);
615 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
617 globals
->no_pipeline_knowledge
= no_pipeline_knowledge
;
619 /* Rummage around all the relocs and map the glue vectors. */
620 sec
= abfd
->sections
;
625 for (; sec
!= NULL
; sec
= sec
->next
)
627 if (sec
->reloc_count
== 0)
630 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
631 /* Load the relocs. */
633 irel
= (_bfd_elf32_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
634 (Elf_Internal_Rela
*) NULL
, false));
636 BFD_ASSERT (irel
!= 0);
638 irelend
= irel
+ sec
->reloc_count
;
639 for (; irel
< irelend
; irel
++)
642 unsigned long r_index
;
644 struct elf_link_hash_entry
*h
;
646 r_type
= ELF32_R_TYPE (irel
->r_info
);
647 r_index
= ELF32_R_SYM (irel
->r_info
);
649 /* These are the only relocation types we care about */
650 if ( r_type
!= R_ARM_PC24
651 && r_type
!= R_ARM_THM_PC22
)
654 /* Get the section contents if we haven't done so already. */
655 if (contents
== NULL
)
657 /* Get cached copy if it exists. */
658 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
659 contents
= elf_section_data (sec
)->this_hdr
.contents
;
662 /* Go get them off disk. */
663 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
664 if (contents
== NULL
)
666 free_contents
= contents
;
668 if (!bfd_get_section_contents (abfd
, sec
, contents
,
669 (file_ptr
) 0, sec
->_raw_size
))
674 /* Read this BFD's symbols if we haven't done so already. */
677 /* Get cached copy if it exists. */
678 if (symtab_hdr
->contents
!= NULL
)
679 extsyms
= (Elf32_External_Sym
*) symtab_hdr
->contents
;
682 /* Go get them off disk. */
683 extsyms
= ((Elf32_External_Sym
*)
684 bfd_malloc (symtab_hdr
->sh_size
));
687 free_extsyms
= extsyms
;
688 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
689 || (bfd_read (extsyms
, 1, symtab_hdr
->sh_size
, abfd
)
690 != symtab_hdr
->sh_size
))
695 /* If the relocation is not against a symbol it cannot concern us. */
699 /* We don't care about local symbols */
700 if (r_index
< symtab_hdr
->sh_info
)
703 /* This is an external symbol */
704 r_index
-= symtab_hdr
->sh_info
;
705 h
= (struct elf_link_hash_entry
*)
706 elf_sym_hashes (abfd
)[r_index
];
708 /* If the relocation is against a static symbol it must be within
709 the current section and so cannot be a cross ARM/Thumb relocation. */
716 /* This one is a call from arm code. We need to look up
717 the target of the call. If it is a thumb target, we
720 if (ELF_ST_TYPE(h
->type
) == STT_ARM_TFUNC
)
721 record_arm_to_thumb_glue (link_info
, h
);
725 /* This one is a call from thumb code. We look
726 up the target of the call. If it is not a thumb
727 target, we insert glue. */
729 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
)
730 record_thumb_to_arm_glue (link_info
, h
);
742 if (free_relocs
!= NULL
)
744 if (free_contents
!= NULL
)
745 free (free_contents
);
746 if (free_extsyms
!= NULL
)
752 /* The thumb form of a long branch is a bit finicky, because the offset
753 encoding is split over two fields, each in it's own instruction. They
754 can occur in any order. So given a thumb form of long branch, and an
755 offset, insert the offset into the thumb branch and return finished
758 It takes two thumb instructions to encode the target address. Each has
759 11 bits to invest. The upper 11 bits are stored in one (identifed by
760 H-0.. see below), the lower 11 bits are stored in the other (identified
763 Combine together and shifted left by 1 (it's a half word address) and
767 H-0, upper address-0 = 000
769 H-1, lower address-0 = 800
771 They can be ordered either way, but the arm tools I've seen always put
772 the lower one first. It probably doesn't matter. krk@cygnus.com
774 XXX: Actually the order does matter. The second instruction (H-1)
775 moves the computed address into the PC, so it must be the second one
776 in the sequence. The problem, however is that whilst little endian code
777 stores the instructions in HI then LOW order, big endian code does the
778 reverse. nickc@cygnus.com */
780 #define LOW_HI_ORDER 0xF800F000
781 #define HI_LOW_ORDER 0xF000F800
784 insert_thumb_branch (br_insn
, rel_off
)
788 unsigned int low_bits
;
789 unsigned int high_bits
;
792 BFD_ASSERT ((rel_off
& 1) != 1);
794 rel_off
>>= 1; /* half word aligned address */
795 low_bits
= rel_off
& 0x000007FF; /* the bottom 11 bits */
796 high_bits
= (rel_off
>> 11) & 0x000007FF; /* the top 11 bits */
798 if ((br_insn
& LOW_HI_ORDER
) == LOW_HI_ORDER
)
799 br_insn
= LOW_HI_ORDER
| (low_bits
<< 16) | high_bits
;
800 else if ((br_insn
& HI_LOW_ORDER
) == HI_LOW_ORDER
)
801 br_insn
= HI_LOW_ORDER
| (high_bits
<< 16) | low_bits
;
803 abort (); /* error - not a valid branch instruction form */
805 /* FIXME: abort is probably not the right call. krk@cygnus.com */
810 /* Thumb code calling an ARM function */
812 elf32_thumb_to_arm_stub (info
, name
, input_bfd
, output_bfd
, input_section
,
813 hit_data
, sym_sec
, offset
, addend
, val
)
814 struct bfd_link_info
* info
;
818 asection
* input_section
;
822 bfd_signed_vma addend
;
827 unsigned long int tmp
;
829 struct elf_link_hash_entry
* myh
;
830 struct elf32_arm_link_hash_table
* globals
;
832 myh
= find_thumb_glue (info
, name
, input_bfd
);
836 globals
= elf32_arm_hash_table (info
);
838 BFD_ASSERT (globals
!= NULL
);
839 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
841 my_offset
= myh
->root
.u
.def
.value
;
843 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
844 THUMB2ARM_GLUE_SECTION_NAME
);
846 BFD_ASSERT (s
!= NULL
);
847 BFD_ASSERT (s
->contents
!= NULL
);
848 BFD_ASSERT (s
->output_section
!= NULL
);
850 if ((my_offset
& 0x01) == 0x01)
853 && sym_sec
->owner
!= NULL
854 && !INTERWORK_FLAG (sym_sec
->owner
))
857 (_ ("%s(%s): warning: interworking not enabled."),
858 bfd_get_filename (sym_sec
->owner
), name
);
860 (_ (" first occurrence: %s: thumb call to arm"),
861 bfd_get_filename (input_bfd
));
867 myh
->root
.u
.def
.value
= my_offset
;
869 bfd_put_16 (output_bfd
, t2a1_bx_pc_insn
,
870 s
->contents
+ my_offset
);
872 bfd_put_16 (output_bfd
, t2a2_noop_insn
,
873 s
->contents
+ my_offset
+ 2);
876 ((bfd_signed_vma
) val
) /* Address of destination of the stub */
878 (s
->output_offset
/* Offset from the start of the current section to the start of the stubs. */
879 + my_offset
/* Offset of the start of this stub from the start of the stubs. */
880 + s
->output_section
->vma
) /* Address of the start of the current section. */
881 + 4 /* The branch instruction is 4 bytes into the stub. */
882 + 8); /* ARM branches work from the pc of the instruction + 8. */
884 bfd_put_32 (output_bfd
,
885 t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
886 s
->contents
+ my_offset
+ 4);
889 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
891 /* Now go back and fix up the original BL insn to point
896 - (input_section
->output_offset
900 tmp
= bfd_get_32 (input_bfd
, hit_data
901 - input_section
->vma
);
903 bfd_put_32 (output_bfd
,
904 insert_thumb_branch (tmp
, ret_offset
),
905 hit_data
- input_section
->vma
);
910 /* Arm code calling a Thumb function */
912 elf32_arm_to_thumb_stub (info
, name
, input_bfd
, output_bfd
, input_section
,
913 hit_data
, sym_sec
, offset
, addend
, val
)
914 struct bfd_link_info
* info
;
918 asection
* input_section
;
922 bfd_signed_vma addend
;
925 unsigned long int tmp
;
929 struct elf_link_hash_entry
* myh
;
930 struct elf32_arm_link_hash_table
* globals
;
932 myh
= find_arm_glue (info
, name
, input_bfd
);
936 globals
= elf32_arm_hash_table (info
);
938 BFD_ASSERT (globals
!= NULL
);
939 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
941 my_offset
= myh
->root
.u
.def
.value
;
942 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
943 ARM2THUMB_GLUE_SECTION_NAME
);
944 BFD_ASSERT (s
!= NULL
);
945 BFD_ASSERT (s
->contents
!= NULL
);
946 BFD_ASSERT (s
->output_section
!= NULL
);
948 if ((my_offset
& 0x01) == 0x01)
951 && sym_sec
->owner
!= NULL
952 && !INTERWORK_FLAG (sym_sec
->owner
))
955 (_ ("%s(%s): warning: interworking not enabled."),
956 bfd_get_filename (sym_sec
->owner
), name
);
958 (_ (" first occurrence: %s: arm call to thumb"),
959 bfd_get_filename (input_bfd
));
962 myh
->root
.u
.def
.value
= my_offset
;
964 bfd_put_32 (output_bfd
, a2t1_ldr_insn
,
965 s
->contents
+ my_offset
);
967 bfd_put_32 (output_bfd
, a2t2_bx_r12_insn
,
968 s
->contents
+ my_offset
+ 4);
970 /* It's a thumb address. Add the low order bit. */
971 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
972 s
->contents
+ my_offset
+ 8);
975 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
977 tmp
= bfd_get_32 (input_bfd
, hit_data
);
978 tmp
= tmp
& 0xFF000000;
980 /* Somehow these are both 4 too far, so subtract 8. */
981 ret_offset
= s
->output_offset
983 + s
->output_section
->vma
984 - (input_section
->output_offset
985 + input_section
->output_section
->vma
989 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
991 bfd_put_32 (output_bfd
, tmp
, hit_data
992 - input_section
->vma
);
997 /* Perform a relocation as part of a final link. */
998 static bfd_reloc_status_type
999 elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
1000 input_section
, contents
, rel
, value
,
1001 info
, sym_sec
, sym_name
, sym_flags
, h
)
1002 reloc_howto_type
* howto
;
1005 asection
* input_section
;
1006 bfd_byte
* contents
;
1007 Elf_Internal_Rela
* rel
;
1009 struct bfd_link_info
* info
;
1011 const char * sym_name
;
1012 unsigned char sym_flags
;
1013 struct elf_link_hash_entry
* h
;
1015 unsigned long r_type
= howto
->type
;
1016 unsigned long r_symndx
;
1017 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
1018 bfd
* dynobj
= NULL
;
1019 Elf_Internal_Shdr
* symtab_hdr
;
1020 struct elf_link_hash_entry
** sym_hashes
;
1021 bfd_vma
* local_got_offsets
;
1022 asection
* sgot
= NULL
;
1023 asection
* splt
= NULL
;
1024 asection
* sreloc
= NULL
;
1026 bfd_signed_vma signed_addend
;
1027 struct elf32_arm_link_hash_table
* globals
;
1029 globals
= elf32_arm_hash_table (info
);
1031 dynobj
= elf_hash_table (info
)->dynobj
;
1034 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1035 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1037 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1038 sym_hashes
= elf_sym_hashes (input_bfd
);
1039 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1040 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1043 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
1045 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1048 signed_addend
&= ~ howto
->src_mask
;
1049 signed_addend
|= addend
;
1052 signed_addend
= addend
;
1054 addend
= signed_addend
= rel
->r_addend
;
1060 return bfd_reloc_ok
;
1065 /* When generating a shared object, these relocations are copied
1066 into the output file to be resolved at run time. */
1069 && (r_type
!= R_ARM_PC24
1072 && (! info
->symbolic
1073 || (h
->elf_link_hash_flags
1074 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1076 Elf_Internal_Rel outrel
;
1077 boolean skip
, relocate
;
1083 name
= (bfd_elf_string_from_elf_section
1085 elf_elfheader (input_bfd
)->e_shstrndx
,
1086 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1088 return bfd_reloc_notsupported
;
1090 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
1091 && strcmp (bfd_get_section_name (input_bfd
,
1095 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1096 BFD_ASSERT (sreloc
!= NULL
);
1101 if (elf_section_data (input_section
)->stab_info
== NULL
)
1102 outrel
.r_offset
= rel
->r_offset
;
1107 off
= (_bfd_stab_section_offset
1108 (output_bfd
, &elf_hash_table (info
)->stab_info
,
1110 & elf_section_data (input_section
)->stab_info
,
1112 if (off
== (bfd_vma
) -1)
1114 outrel
.r_offset
= off
;
1117 outrel
.r_offset
+= (input_section
->output_section
->vma
1118 + input_section
->output_offset
);
1122 memset (&outrel
, 0, sizeof outrel
);
1125 else if (r_type
== R_ARM_PC24
)
1127 BFD_ASSERT (h
!= NULL
&& h
->dynindx
!= -1);
1128 if ((input_section
->flags
& SEC_ALLOC
) != 0)
1132 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_PC24
);
1137 || ((info
->symbolic
|| h
->dynindx
== -1)
1138 && (h
->elf_link_hash_flags
1139 & ELF_LINK_HASH_DEF_REGULAR
) != 0))
1142 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1146 BFD_ASSERT (h
->dynindx
!= -1);
1147 if ((input_section
->flags
& SEC_ALLOC
) != 0)
1151 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_ABS32
);
1155 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1156 (((Elf32_External_Rel
*)
1158 + sreloc
->reloc_count
));
1159 ++sreloc
->reloc_count
;
1161 /* If this reloc is against an external symbol, we do not want to
1162 fiddle with the addend. Otherwise, we need to include the symbol
1163 value so that it becomes an addend for the dynamic reloc. */
1165 return bfd_reloc_ok
;
1168 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1169 contents
, rel
->r_offset
, value
,
1172 else switch (r_type
)
1175 /* Arm B/BL instruction */
1177 /* Check for arm calling thumb function. */
1178 if (sym_flags
== STT_ARM_TFUNC
)
1180 elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
, output_bfd
,
1181 input_section
, hit_data
, sym_sec
, rel
->r_offset
,
1182 signed_addend
, value
);
1183 return bfd_reloc_ok
;
1186 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1187 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0)
1189 /* The old way of doing things. Trearing the addend as a
1190 byte sized field and adding in the pipeline offset. */
1192 value
-= (input_section
->output_section
->vma
1193 + input_section
->output_offset
);
1194 value
-= rel
->r_offset
;
1197 if (! globals
->no_pipeline_knowledge
)
1202 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1204 S is the address of the symbol in the relocation.
1205 P is address of the instruction being relocated.
1206 A is the addend (extracted from the instruction) in bytes.
1208 S is held in 'value'.
1209 P is the base address of the section containing the instruction
1210 plus the offset of the reloc into that section, ie:
1211 (input_section->output_section->vma +
1212 input_section->output_offset +
1214 A is the addend, converted into bytes, ie:
1217 Note: None of these operations have knowledge of the pipeline
1218 size of the processor, thus it is up to the assembler to encode
1219 this information into the addend. */
1221 value
-= (input_section
->output_section
->vma
1222 + input_section
->output_offset
);
1223 value
-= rel
->r_offset
;
1224 value
+= (signed_addend
<< howto
->size
);
1226 /* Previous versions of this code also used to add in the pipeline
1227 offset here. This is wrong because the linker is not supposed
1228 to know about such things, and one day it might change. In order
1229 to support old binaries that need the old behaviour however, so
1230 we attempt to detect which ABI was used to create the reloc. */
1231 if (! globals
->no_pipeline_knowledge
)
1233 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form */
1235 i_ehdrp
= elf_elfheader (input_bfd
);
1237 if (i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1242 /* It is not an error for an undefined weak reference to be
1243 out of range. Any program that branches to such a symbol
1244 is going to crash anyway, so there is no point worrying
1245 about getting the destination exactly right. */
1246 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
1248 /* Perform a signed range check. */
1249 signed_addend
= value
;
1250 signed_addend
>>= howto
->rightshift
;
1251 if (signed_addend
> ((bfd_signed_vma
)(howto
->dst_mask
>> 1))
1252 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
1253 return bfd_reloc_overflow
;
1256 value
= (signed_addend
& howto
->dst_mask
)
1257 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
1262 if (sym_flags
== STT_ARM_TFUNC
)
1267 value
-= (input_section
->output_section
->vma
1268 + input_section
->output_offset
);
1273 bfd_put_32 (input_bfd
, value
, hit_data
);
1274 return bfd_reloc_ok
;
1278 if ((long) value
> 0x7f || (long) value
< -0x80)
1279 return bfd_reloc_overflow
;
1281 bfd_put_8 (input_bfd
, value
, hit_data
);
1282 return bfd_reloc_ok
;
1287 if ((long) value
> 0x7fff || (long) value
< -0x8000)
1288 return bfd_reloc_overflow
;
1290 bfd_put_16 (input_bfd
, value
, hit_data
);
1291 return bfd_reloc_ok
;
1294 /* Support ldr and str instruction for the arm */
1295 /* Also thumb b (unconditional branch). ??? Really? */
1298 if ((long) value
> 0x7ff || (long) value
< -0x800)
1299 return bfd_reloc_overflow
;
1301 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0xfffff000);
1302 bfd_put_32 (input_bfd
, value
, hit_data
);
1303 return bfd_reloc_ok
;
1305 case R_ARM_THM_ABS5
:
1306 /* Support ldr and str instructions for the thumb. */
1308 /* Need to refetch addend. */
1309 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
1310 /* ??? Need to determine shift amount from operand size. */
1311 addend
>>= howto
->rightshift
;
1315 /* ??? Isn't value unsigned? */
1316 if ((long) value
> 0x1f || (long) value
< -0x10)
1317 return bfd_reloc_overflow
;
1319 /* ??? Value needs to be properly shifted into place first. */
1320 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
1321 bfd_put_16 (input_bfd
, value
, hit_data
);
1322 return bfd_reloc_ok
;
1324 case R_ARM_THM_PC22
:
1325 /* Thumb BL (branch long instruction). */
1328 boolean overflow
= false;
1329 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
1330 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
1331 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
1332 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
1334 bfd_signed_vma signed_check
;
1337 /* Need to refetch the addend and squish the two 11 bit pieces
1340 bfd_vma upper
= upper_insn
& 0x7ff;
1341 bfd_vma lower
= lower_insn
& 0x7ff;
1342 upper
= (upper
^ 0x400) - 0x400; /* sign extend */
1343 addend
= (upper
<< 12) | (lower
<< 1);
1344 signed_addend
= addend
;
1348 /* If it is not a call to thumb, assume call to arm.
1349 If it is a call relative to a section name, then it is not a
1350 function call at all, but rather a long jump. */
1351 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
)
1353 if (elf32_thumb_to_arm_stub
1354 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
1355 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
))
1356 return bfd_reloc_ok
;
1358 return bfd_reloc_dangerous
;
1361 relocation
= value
+ signed_addend
;
1363 relocation
-= (input_section
->output_section
->vma
1364 + input_section
->output_offset
1367 if (! globals
->no_pipeline_knowledge
)
1369 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form */
1371 i_ehdrp
= elf_elfheader (input_bfd
);
1373 /* Previous versions of this code also used to add in the pipline
1374 offset here. This is wrong because the linker is not supposed
1375 to know about such things, and one day it might change. In order
1376 to support old binaries that need the old behaviour however, so
1377 we attempt to detect which ABI was used to create the reloc. */
1378 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1379 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0
1380 || i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1384 check
= relocation
>> howto
->rightshift
;
1386 /* If this is a signed value, the rightshift just dropped
1387 leading 1 bits (assuming twos complement). */
1388 if ((bfd_signed_vma
) relocation
>= 0)
1389 signed_check
= check
;
1391 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
1393 /* Assumes two's complement. */
1394 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
1397 /* Put RELOCATION back into the insn. */
1398 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 12) & 0x7ff);
1399 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 1) & 0x7ff);
1401 /* Put the relocated value back in the object file: */
1402 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
1403 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
1405 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
1409 case R_ARM_GNU_VTINHERIT
:
1410 case R_ARM_GNU_VTENTRY
:
1411 return bfd_reloc_ok
;
1414 return bfd_reloc_notsupported
;
1416 case R_ARM_GLOB_DAT
:
1417 return bfd_reloc_notsupported
;
1419 case R_ARM_JUMP_SLOT
:
1420 return bfd_reloc_notsupported
;
1422 case R_ARM_RELATIVE
:
1423 return bfd_reloc_notsupported
;
1426 /* Relocation is relative to the start of the
1427 global offset table. */
1429 BFD_ASSERT (sgot
!= NULL
);
1431 return bfd_reloc_notsupported
;
1433 /* Note that sgot->output_offset is not involved in this
1434 calculation. We always want the start of .got. If we
1435 define _GLOBAL_OFFSET_TABLE in a different way, as is
1436 permitted by the ABI, we might have to change this
1439 value
-= sgot
->output_section
->vma
;
1440 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1441 contents
, rel
->r_offset
, value
,
1445 /* Use global offset table as symbol value. */
1447 BFD_ASSERT (sgot
!= NULL
);
1450 return bfd_reloc_notsupported
;
1452 value
= sgot
->output_section
->vma
;
1453 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1454 contents
, rel
->r_offset
, value
,
1458 /* Relocation is to the entry for this symbol in the
1459 global offset table. */
1461 return bfd_reloc_notsupported
;
1467 off
= h
->got
.offset
;
1468 BFD_ASSERT (off
!= (bfd_vma
) -1);
1470 if (!elf_hash_table (info
)->dynamic_sections_created
||
1471 (info
->shared
&& (info
->symbolic
|| h
->dynindx
== -1)
1472 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1474 /* This is actually a static link, or it is a -Bsymbolic link
1475 and the symbol is defined locally. We must initialize this
1476 entry in the global offset table. Since the offset must
1477 always be a multiple of 4, we use the least significant bit
1478 to record whether we have initialized it already.
1480 When doing a dynamic link, we create a .rel.got relocation
1481 entry to initialize the value. This is done in the
1482 finish_dynamic_symbol routine. */
1488 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1493 value
= sgot
->output_offset
+ off
;
1499 BFD_ASSERT (local_got_offsets
!= NULL
&&
1500 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1502 off
= local_got_offsets
[r_symndx
];
1504 /* The offset must always be a multiple of 4. We use the
1505 least significant bit to record whether we have already
1506 generated the necessary reloc. */
1511 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1516 Elf_Internal_Rel outrel
;
1518 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
1519 BFD_ASSERT (srelgot
!= NULL
);
1521 outrel
.r_offset
= (sgot
->output_section
->vma
1522 + sgot
->output_offset
1524 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1525 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1526 (((Elf32_External_Rel
*)
1528 + srelgot
->reloc_count
));
1529 ++srelgot
->reloc_count
;
1532 local_got_offsets
[r_symndx
] |= 1;
1535 value
= sgot
->output_offset
+ off
;
1538 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1539 contents
, rel
->r_offset
, value
,
1543 /* Relocation is to the entry for this symbol in the
1544 procedure linkage table. */
1546 /* Resolve a PLT32 reloc against a local symbol directly,
1547 without using the procedure linkage table. */
1549 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1550 contents
, rel
->r_offset
, value
,
1553 if (h
->plt
.offset
== (bfd_vma
) -1)
1554 /* We didn't make a PLT entry for this symbol. This
1555 happens when statically linking PIC code, or when
1556 using -Bsymbolic. */
1557 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1558 contents
, rel
->r_offset
, value
,
1561 BFD_ASSERT(splt
!= NULL
);
1563 return bfd_reloc_notsupported
;
1565 value
= (splt
->output_section
->vma
1566 + splt
->output_offset
1568 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1569 contents
, rel
->r_offset
, value
,
1573 return bfd_reloc_notsupported
;
1575 case R_ARM_AMP_VCALL9
:
1576 return bfd_reloc_notsupported
;
1578 case R_ARM_RSBREL32
:
1579 return bfd_reloc_notsupported
;
1581 case R_ARM_THM_RPC22
:
1582 return bfd_reloc_notsupported
;
1585 return bfd_reloc_notsupported
;
1588 return bfd_reloc_notsupported
;
1591 return bfd_reloc_notsupported
;
1594 return bfd_reloc_notsupported
;
1597 return bfd_reloc_notsupported
;
1602 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1604 arm_add_to_rel (abfd
, address
, howto
, increment
)
1607 reloc_howto_type
* howto
;
1608 bfd_signed_vma increment
;
1611 bfd_signed_vma addend
;
1613 contents
= bfd_get_32 (abfd
, address
);
1615 /* Get the (signed) value from the instruction. */
1616 addend
= contents
& howto
->src_mask
;
1617 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1619 bfd_signed_vma mask
;
1622 mask
&= ~ howto
->src_mask
;
1626 /* Add in the increment, (which is a byte value). */
1627 switch (howto
->type
)
1629 case R_ARM_THM_PC22
:
1631 addend
+= increment
;
1635 addend
<<= howto
->size
;
1636 addend
+= increment
;
1638 /* Should we check for overflow here ? */
1640 /* Drop any undesired bits. */
1641 addend
>>= howto
->rightshift
;
1645 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
1647 bfd_put_32 (abfd
, contents
, address
);
1649 #endif /* USE_REL */
1651 /* Relocate an ARM ELF section. */
1653 elf32_arm_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1654 contents
, relocs
, local_syms
, local_sections
)
1656 struct bfd_link_info
* info
;
1658 asection
* input_section
;
1659 bfd_byte
* contents
;
1660 Elf_Internal_Rela
* relocs
;
1661 Elf_Internal_Sym
* local_syms
;
1662 asection
** local_sections
;
1664 Elf_Internal_Shdr
* symtab_hdr
;
1665 struct elf_link_hash_entry
** sym_hashes
;
1666 Elf_Internal_Rela
* rel
;
1667 Elf_Internal_Rela
* relend
;
1670 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1671 sym_hashes
= elf_sym_hashes (input_bfd
);
1674 relend
= relocs
+ input_section
->reloc_count
;
1675 for (; rel
< relend
; rel
++)
1678 reloc_howto_type
* howto
;
1679 unsigned long r_symndx
;
1680 Elf_Internal_Sym
* sym
;
1682 struct elf_link_hash_entry
* h
;
1684 bfd_reloc_status_type r
;
1687 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1688 r_type
= ELF32_R_TYPE (rel
->r_info
);
1690 if ( r_type
== R_ARM_GNU_VTENTRY
1691 || r_type
== R_ARM_GNU_VTINHERIT
)
1694 elf32_arm_info_to_howto (input_bfd
, & bfd_reloc
, rel
);
1695 howto
= bfd_reloc
.howto
;
1697 if (info
->relocateable
)
1699 /* This is a relocateable link. We don't have to change
1700 anything, unless the reloc is against a section symbol,
1701 in which case we have to adjust according to where the
1702 section symbol winds up in the output section. */
1703 if (r_symndx
< symtab_hdr
->sh_info
)
1705 sym
= local_syms
+ r_symndx
;
1706 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1708 sec
= local_sections
[r_symndx
];
1710 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
1711 howto
, sec
->output_offset
+ sym
->st_value
);
1713 rel
->r_addend
+= (sec
->output_offset
+ sym
->st_value
)
1714 >> howto
->rightshift
;
1722 /* This is a final link. */
1726 if (r_symndx
< symtab_hdr
->sh_info
)
1728 sym
= local_syms
+ r_symndx
;
1729 sec
= local_sections
[r_symndx
];
1730 relocation
= (sec
->output_section
->vma
1731 + sec
->output_offset
1736 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1737 while (h
->root
.type
== bfd_link_hash_indirect
1738 || h
->root
.type
== bfd_link_hash_warning
)
1739 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1740 if (h
->root
.type
== bfd_link_hash_defined
1741 || h
->root
.type
== bfd_link_hash_defweak
)
1743 int relocation_needed
= 1;
1745 sec
= h
->root
.u
.def
.section
;
1747 /* In these cases, we don't need the relocation value.
1748 We check specially because in some obscure cases
1749 sec->output_section will be NULL. */
1756 (!info
->symbolic
&& h
->dynindx
!= -1)
1757 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1759 && ((input_section
->flags
& SEC_ALLOC
) != 0)
1761 relocation_needed
= 0;
1765 relocation_needed
= 0;
1769 if (elf_hash_table(info
)->dynamic_sections_created
1771 || (!info
->symbolic
&& h
->dynindx
!= -1)
1772 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1775 relocation_needed
= 0;
1779 if (h
->plt
.offset
!= (bfd_vma
)-1)
1780 relocation_needed
= 0;
1784 if (sec
->output_section
== NULL
)
1786 (*_bfd_error_handler
)
1787 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1788 bfd_get_filename (input_bfd
), h
->root
.root
.string
,
1789 bfd_get_section_name (input_bfd
, input_section
));
1790 relocation_needed
= 0;
1794 if (relocation_needed
)
1795 relocation
= h
->root
.u
.def
.value
1796 + sec
->output_section
->vma
1797 + sec
->output_offset
;
1801 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1803 else if (info
->shared
&& !info
->symbolic
&& !info
->no_undefined
)
1807 if (!((*info
->callbacks
->undefined_symbol
)
1808 (info
, h
->root
.root
.string
, input_bfd
,
1809 input_section
, rel
->r_offset
)))
1816 name
= h
->root
.root
.string
;
1819 name
= (bfd_elf_string_from_elf_section
1820 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
1821 if (name
== NULL
|| *name
== '\0')
1822 name
= bfd_section_name (input_bfd
, sec
);
1825 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
1826 input_section
, contents
, rel
,
1827 relocation
, info
, sec
, name
,
1828 (h
? ELF_ST_TYPE (h
->type
) :
1829 ELF_ST_TYPE (sym
->st_info
)), h
);
1831 if (r
!= bfd_reloc_ok
)
1833 const char * msg
= (const char *) 0;
1837 case bfd_reloc_overflow
:
1838 if (!((*info
->callbacks
->reloc_overflow
)
1839 (info
, name
, howto
->name
, (bfd_vma
) 0,
1840 input_bfd
, input_section
, rel
->r_offset
)))
1844 case bfd_reloc_undefined
:
1845 if (!((*info
->callbacks
->undefined_symbol
)
1846 (info
, name
, input_bfd
, input_section
,
1851 case bfd_reloc_outofrange
:
1852 msg
= _ ("internal error: out of range error");
1855 case bfd_reloc_notsupported
:
1856 msg
= _ ("internal error: unsupported relocation error");
1859 case bfd_reloc_dangerous
:
1860 msg
= _ ("internal error: dangerous error");
1864 msg
= _ ("internal error: unknown error");
1868 if (!((*info
->callbacks
->warning
)
1869 (info
, msg
, name
, input_bfd
, input_section
,
1880 /* Function to keep ARM specific flags in the ELF header. */
1882 elf32_arm_set_private_flags (abfd
, flags
)
1886 if (elf_flags_init (abfd
)
1887 && elf_elfheader (abfd
)->e_flags
!= flags
)
1889 if (flags
& EF_INTERWORK
)
1890 _bfd_error_handler (_ ("\
1891 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1892 bfd_get_filename (abfd
));
1894 _bfd_error_handler (_ ("\
1895 Warning: Clearing the interwork flag of %s due to outside request"),
1896 bfd_get_filename (abfd
));
1900 elf_elfheader (abfd
)->e_flags
= flags
;
1901 elf_flags_init (abfd
) = true;
1907 /* Copy backend specific data from one object module to another */
1909 elf32_arm_copy_private_bfd_data (ibfd
, obfd
)
1916 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1917 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1920 in_flags
= elf_elfheader (ibfd
)->e_flags
;
1921 out_flags
= elf_elfheader (obfd
)->e_flags
;
1923 if (elf_flags_init (obfd
) && in_flags
!= out_flags
)
1925 /* Cannot mix PIC and non-PIC code. */
1926 if ((in_flags
& EF_PIC
) != (out_flags
& EF_PIC
))
1929 /* Cannot mix APCS26 and APCS32 code. */
1930 if ((in_flags
& EF_APCS_26
) != (out_flags
& EF_APCS_26
))
1933 /* Cannot mix float APCS and non-float APCS code. */
1934 if ((in_flags
& EF_APCS_FLOAT
) != (out_flags
& EF_APCS_FLOAT
))
1937 /* If the src and dest have different interworking flags
1938 then turn off the interworking bit. */
1939 if ((in_flags
& EF_INTERWORK
) != (out_flags
& EF_INTERWORK
))
1941 if (out_flags
& EF_INTERWORK
)
1942 _bfd_error_handler (_ ("\
1943 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
1944 bfd_get_filename (obfd
), bfd_get_filename (ibfd
));
1946 in_flags
&= ~EF_INTERWORK
;
1950 elf_elfheader (obfd
)->e_flags
= in_flags
;
1951 elf_flags_init (obfd
) = true;
1956 /* Merge backend specific data from an object file to the output
1957 object file when linking. */
1959 elf32_arm_merge_private_bfd_data (ibfd
, obfd
)
1966 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1967 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1970 /* Check if we have the same endianess */
1971 if ( ibfd
->xvec
->byteorder
!= obfd
->xvec
->byteorder
1972 && obfd
->xvec
->byteorder
!= BFD_ENDIAN_UNKNOWN
1973 && ibfd
->xvec
->byteorder
!= BFD_ENDIAN_UNKNOWN
)
1975 (*_bfd_error_handler
)
1976 (_("%s: compiled for a %s endian system and target is %s endian"),
1977 bfd_get_filename (ibfd
),
1978 bfd_big_endian (ibfd
) ? "big" : "little",
1979 bfd_big_endian (obfd
) ? "big" : "little");
1981 bfd_set_error (bfd_error_wrong_format
);
1985 /* The input BFD must have had its flags initialised. */
1986 /* The following seems bogus to me -- The flags are initialized in
1987 the assembler but I don't think an elf_flags_init field is
1988 written into the object */
1989 /* BFD_ASSERT (elf_flags_init (ibfd)); */
1991 in_flags
= elf_elfheader (ibfd
)->e_flags
;
1992 out_flags
= elf_elfheader (obfd
)->e_flags
;
1994 if (!elf_flags_init (obfd
))
1996 /* If the input is the default architecture then do not
1997 bother setting the flags for the output architecture,
1998 instead allow future merges to do this. If no future
1999 merges ever set these flags then they will retain their
2000 unitialised values, which surprise surprise, correspond
2001 to the default values. */
2002 if (bfd_get_arch_info (ibfd
)->the_default
)
2005 elf_flags_init (obfd
) = true;
2006 elf_elfheader (obfd
)->e_flags
= in_flags
;
2008 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2009 && bfd_get_arch_info (obfd
)->the_default
)
2010 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
2015 /* Check flag compatibility. */
2016 if (in_flags
== out_flags
)
2019 /* Complain about various flag mismatches. */
2021 if ((in_flags
& EF_APCS_26
) != (out_flags
& EF_APCS_26
))
2022 _bfd_error_handler (_ ("\
2023 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2024 bfd_get_filename (ibfd
),
2025 in_flags
& EF_APCS_26
? 26 : 32,
2026 bfd_get_filename (obfd
),
2027 out_flags
& EF_APCS_26
? 26 : 32);
2029 if ((in_flags
& EF_APCS_FLOAT
) != (out_flags
& EF_APCS_FLOAT
))
2030 _bfd_error_handler (_ ("\
2031 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2032 bfd_get_filename (ibfd
),
2033 in_flags
& EF_APCS_FLOAT
? _ ("float") : _ ("integer"),
2034 bfd_get_filename (obfd
),
2035 out_flags
& EF_APCS_26
? _ ("float") : _ ("integer"));
2037 if ((in_flags
& EF_PIC
) != (out_flags
& EF_PIC
))
2038 _bfd_error_handler (_ ("\
2039 Error: %s is compiled as position %s code, whereas %s is not"),
2040 bfd_get_filename (ibfd
),
2041 in_flags
& EF_PIC
? _ ("independent") : _ ("dependent"),
2042 bfd_get_filename (obfd
));
2044 /* Interworking mismatch is only a warning. */
2045 if ((in_flags
& EF_INTERWORK
) != (out_flags
& EF_INTERWORK
))
2047 _bfd_error_handler (_ ("\
2048 Warning: %s %s interworking, whereas %s %s"),
2049 bfd_get_filename (ibfd
),
2050 in_flags
& EF_INTERWORK
? _ ("supports") : _ ("does not support"),
2051 bfd_get_filename (obfd
),
2052 out_flags
& EF_INTERWORK
? _ ("does not") : _ ("does"));
2059 /* Display the flags field */
2061 elf32_arm_print_private_bfd_data (abfd
, ptr
)
2065 FILE *file
= (FILE *) ptr
;
2067 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
2069 /* Print normal ELF private data. */
2070 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
2072 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
2074 /* xgettext:c-format */
2075 fprintf (file
, _ ("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
2077 if (elf_elfheader (abfd
)->e_flags
& EF_INTERWORK
)
2078 fprintf (file
, _ (" [interworking enabled]"));
2080 fprintf (file
, _ (" [interworking not enabled]"));
2082 if (elf_elfheader (abfd
)->e_flags
& EF_APCS_26
)
2083 fprintf (file
, _ (" [APCS-26]"));
2085 fprintf (file
, _ (" [APCS-32]"));
2087 if (elf_elfheader (abfd
)->e_flags
& EF_APCS_FLOAT
)
2088 fprintf (file
, _ (" [floats passed in float registers]"));
2090 fprintf (file
, _ (" [floats passed in integer registers]"));
2092 if (elf_elfheader (abfd
)->e_flags
& EF_PIC
)
2093 fprintf (file
, _ (" [position independent]"));
2095 fprintf (file
, _ (" [absolute position]"));
2103 elf32_arm_get_symbol_type (elf_sym
, type
)
2104 Elf_Internal_Sym
* elf_sym
;
2107 switch (ELF_ST_TYPE (elf_sym
->st_info
))
2110 return ELF_ST_TYPE (elf_sym
->st_info
);
2113 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2114 This allows us to distinguish between data used by Thumb instructions
2115 and non-data (which is probably code) inside Thumb regions of an
2117 if (type
!= STT_OBJECT
)
2118 return ELF_ST_TYPE (elf_sym
->st_info
);
2126 elf32_arm_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
2128 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2129 Elf_Internal_Rela
*rel
;
2130 struct elf_link_hash_entry
*h
;
2131 Elf_Internal_Sym
*sym
;
2135 switch (ELF32_R_TYPE (rel
->r_info
))
2137 case R_ARM_GNU_VTINHERIT
:
2138 case R_ARM_GNU_VTENTRY
:
2142 switch (h
->root
.type
)
2144 case bfd_link_hash_defined
:
2145 case bfd_link_hash_defweak
:
2146 return h
->root
.u
.def
.section
;
2148 case bfd_link_hash_common
:
2149 return h
->root
.u
.c
.p
->section
;
2158 if (!(elf_bad_symtab (abfd
)
2159 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
2160 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
2161 && sym
->st_shndx
!= SHN_COMMON
))
2163 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
2169 /* Update the got entry reference counts for the section being removed. */
2172 elf32_arm_gc_sweep_hook (abfd
, info
, sec
, relocs
)
2173 bfd
*abfd ATTRIBUTE_UNUSED
;
2174 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2175 asection
*sec ATTRIBUTE_UNUSED
;
2176 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
2178 /* We don't support garbage collection of GOT and PLT relocs yet. */
2182 /* Look through the relocs for a section during the first phase. */
2185 elf32_arm_check_relocs (abfd
, info
, sec
, relocs
)
2187 struct bfd_link_info
* info
;
2189 const Elf_Internal_Rela
* relocs
;
2191 Elf_Internal_Shdr
* symtab_hdr
;
2192 struct elf_link_hash_entry
** sym_hashes
;
2193 struct elf_link_hash_entry
** sym_hashes_end
;
2194 const Elf_Internal_Rela
* rel
;
2195 const Elf_Internal_Rela
* rel_end
;
2197 asection
* sgot
, *srelgot
, *sreloc
;
2198 bfd_vma
* local_got_offsets
;
2200 if (info
->relocateable
)
2203 sgot
= srelgot
= sreloc
= NULL
;
2205 dynobj
= elf_hash_table (info
)->dynobj
;
2206 local_got_offsets
= elf_local_got_offsets (abfd
);
2208 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2209 sym_hashes
= elf_sym_hashes (abfd
);
2210 sym_hashes_end
= sym_hashes
+ symtab_hdr
->sh_size
/sizeof(Elf32_External_Sym
);
2211 if (!elf_bad_symtab (abfd
))
2212 sym_hashes_end
-= symtab_hdr
->sh_info
;
2214 rel_end
= relocs
+ sec
->reloc_count
;
2215 for (rel
= relocs
; rel
< rel_end
; rel
++)
2217 struct elf_link_hash_entry
*h
;
2218 unsigned long r_symndx
;
2220 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2221 if (r_symndx
< symtab_hdr
->sh_info
)
2224 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2226 /* Some relocs require a global offset table. */
2229 switch (ELF32_R_TYPE (rel
->r_info
))
2234 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
2235 if (! _bfd_elf_create_got_section (dynobj
, info
))
2244 switch (ELF32_R_TYPE (rel
->r_info
))
2247 /* This symbol requires a global offset table entry. */
2250 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2251 BFD_ASSERT (sgot
!= NULL
);
2254 /* Get the got relocation section if necessary. */
2256 && (h
!= NULL
|| info
->shared
))
2258 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
2260 /* If no got relocation section, make one and initialize. */
2261 if (srelgot
== NULL
)
2263 srelgot
= bfd_make_section (dynobj
, ".rel.got");
2265 || ! bfd_set_section_flags (dynobj
, srelgot
,
2270 | SEC_LINKER_CREATED
2272 || ! bfd_set_section_alignment (dynobj
, srelgot
, 2))
2279 if (h
->got
.offset
!= (bfd_vma
) -1)
2280 /* We have already allocated space in the .got. */
2283 h
->got
.offset
= sgot
->_raw_size
;
2285 /* Make sure this symbol is output as a dynamic symbol. */
2286 if (h
->dynindx
== -1)
2287 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2290 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
2294 /* This is a global offset table entry for a local
2296 if (local_got_offsets
== NULL
)
2299 register unsigned int i
;
2301 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
2302 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
2303 if (local_got_offsets
== NULL
)
2305 elf_local_got_offsets (abfd
) = local_got_offsets
;
2306 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
2307 local_got_offsets
[i
] = (bfd_vma
) -1;
2310 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
2311 /* We have already allocated space in the .got. */
2314 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
2317 /* If we are generating a shared object, we need to
2318 output a R_ARM_RELATIVE reloc so that the dynamic
2319 linker can adjust this GOT entry. */
2320 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
2323 sgot
->_raw_size
+= 4;
2327 /* This symbol requires a procedure linkage table entry. We
2328 actually build the entry in adjust_dynamic_symbol,
2329 because this might be a case of linking PIC code which is
2330 never referenced by a dynamic object, in which case we
2331 don't need to generate a procedure linkage table entry
2334 /* If this is a local symbol, we resolve it directly without
2335 creating a procedure linkage table entry. */
2339 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
2345 /* If we are creating a shared library, and this is a reloc
2346 against a global symbol, or a non PC relative reloc
2347 against a local symbol, then we need to copy the reloc
2348 into the shared library. However, if we are linking with
2349 -Bsymbolic, we do not need to copy a reloc against a
2350 global symbol which is defined in an object we are
2351 including in the link (i.e., DEF_REGULAR is set). At
2352 this point we have not seen all the input files, so it is
2353 possible that DEF_REGULAR is not set now but will be set
2354 later (it is never cleared). We account for that
2355 possibility below by storing information in the
2356 pcrel_relocs_copied field of the hash table entry. */
2358 && (ELF32_R_TYPE (rel
->r_info
) != R_ARM_PC24
2360 && (! info
->symbolic
2361 || (h
->elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
2364 /* When creating a shared object, we must copy these
2365 reloc types into the output file. We create a reloc
2366 section in dynobj and make room for this reloc. */
2371 name
= (bfd_elf_string_from_elf_section
2373 elf_elfheader (abfd
)->e_shstrndx
,
2374 elf_section_data (sec
)->rel_hdr
.sh_name
));
2378 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
2379 && strcmp (bfd_get_section_name (abfd
, sec
),
2382 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2387 sreloc
= bfd_make_section (dynobj
, name
);
2388 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
2389 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2390 if ((sec
->flags
& SEC_ALLOC
) != 0)
2391 flags
|= SEC_ALLOC
| SEC_LOAD
;
2393 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
2394 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
2399 sreloc
->_raw_size
+= sizeof (Elf32_External_Rel
);
2400 /* If we are linking with -Bsymbolic, and this is a
2401 global symbol, we count the number of PC relative
2402 relocations we have entered for this symbol, so that
2403 we can discard them again if the symbol is later
2404 defined by a regular object. Note that this function
2405 is only called if we are using an elf_i386 linker
2406 hash table, which means that h is really a pointer to
2407 an elf_i386_link_hash_entry. */
2408 if (h
!= NULL
&& info
->symbolic
2409 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_PC24
)
2411 struct elf32_arm_link_hash_entry
* eh
;
2412 struct elf32_arm_pcrel_relocs_copied
* p
;
2414 eh
= (struct elf32_arm_link_hash_entry
*) h
;
2416 for (p
= eh
->pcrel_relocs_copied
; p
!= NULL
; p
= p
->next
)
2417 if (p
->section
== sreloc
)
2422 p
= ((struct elf32_arm_pcrel_relocs_copied
*)
2423 bfd_alloc (dynobj
, sizeof * p
));
2427 p
->next
= eh
->pcrel_relocs_copied
;
2428 eh
->pcrel_relocs_copied
= p
;
2429 p
->section
= sreloc
;
2438 /* This relocation describes the C++ object vtable hierarchy.
2439 Reconstruct it for later use during GC. */
2440 case R_ARM_GNU_VTINHERIT
:
2441 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2445 /* This relocation describes which C++ vtable entries are actually
2446 used. Record for later use during GC. */
2447 case R_ARM_GNU_VTENTRY
:
2448 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
2458 /* Find the nearest line to a particular section and offset, for error
2459 reporting. This code is a duplicate of the code in elf.c, except
2460 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2463 elf32_arm_find_nearest_line
2464 (abfd
, section
, symbols
, offset
, filename_ptr
, functionname_ptr
, line_ptr
)
2469 CONST
char ** filename_ptr
;
2470 CONST
char ** functionname_ptr
;
2471 unsigned int * line_ptr
;
2474 const char * filename
;
2479 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
2480 filename_ptr
, functionname_ptr
,
2484 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
2485 &found
, filename_ptr
,
2486 functionname_ptr
, line_ptr
,
2487 &elf_tdata (abfd
)->line_info
))
2493 if (symbols
== NULL
)
2500 for (p
= symbols
; *p
!= NULL
; p
++)
2504 q
= (elf_symbol_type
*) *p
;
2506 if (bfd_get_section (&q
->symbol
) != section
)
2509 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
2514 filename
= bfd_asymbol_name (&q
->symbol
);
2519 if (q
->symbol
.section
== section
2520 && q
->symbol
.value
>= low_func
2521 && q
->symbol
.value
<= offset
)
2523 func
= (asymbol
*) q
;
2524 low_func
= q
->symbol
.value
;
2533 *filename_ptr
= filename
;
2534 *functionname_ptr
= bfd_asymbol_name (func
);
2540 /* Adjust a symbol defined by a dynamic object and referenced by a
2541 regular object. The current definition is in some section of the
2542 dynamic object, but we're not including those sections. We have to
2543 change the definition to something the rest of the link can
2547 elf32_arm_adjust_dynamic_symbol (info
, h
)
2548 struct bfd_link_info
* info
;
2549 struct elf_link_hash_entry
* h
;
2553 unsigned int power_of_two
;
2555 dynobj
= elf_hash_table (info
)->dynobj
;
2557 /* Make sure we know what is going on here. */
2558 BFD_ASSERT (dynobj
!= NULL
2559 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
2560 || h
->weakdef
!= NULL
2561 || ((h
->elf_link_hash_flags
2562 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2563 && (h
->elf_link_hash_flags
2564 & ELF_LINK_HASH_REF_REGULAR
) != 0
2565 && (h
->elf_link_hash_flags
2566 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
2568 /* If this is a function, put it in the procedure linkage table. We
2569 will fill in the contents of the procedure linkage table later,
2570 when we know the address of the .got section. */
2571 if (h
->type
== STT_FUNC
2572 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
2575 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
2576 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
2578 /* This case can occur if we saw a PLT32 reloc in an input
2579 file, but the symbol was never referred to by a dynamic
2580 object. In such a case, we don't actually need to build
2581 a procedure linkage table, and we can just do a PC32
2583 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
2587 /* Make sure this symbol is output as a dynamic symbol. */
2588 if (h
->dynindx
== -1)
2590 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2594 s
= bfd_get_section_by_name (dynobj
, ".plt");
2595 BFD_ASSERT (s
!= NULL
);
2597 /* If this is the first .plt entry, make room for the special
2599 if (s
->_raw_size
== 0)
2600 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2602 /* If this symbol is not defined in a regular file, and we are
2603 not generating a shared library, then set the symbol to this
2604 location in the .plt. This is required to make function
2605 pointers compare as equal between the normal executable and
2606 the shared library. */
2608 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2610 h
->root
.u
.def
.section
= s
;
2611 h
->root
.u
.def
.value
= s
->_raw_size
;
2614 h
->plt
.offset
= s
->_raw_size
;
2616 /* Make room for this entry. */
2617 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2619 /* We also need to make an entry in the .got.plt section, which
2620 will be placed in the .got section by the linker script. */
2622 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
2623 BFD_ASSERT (s
!= NULL
);
2626 /* We also need to make an entry in the .rel.plt section. */
2628 s
= bfd_get_section_by_name (dynobj
, ".rel.plt");
2629 BFD_ASSERT (s
!= NULL
);
2630 s
->_raw_size
+= sizeof (Elf32_External_Rel
);
2635 /* If this is a weak symbol, and there is a real definition, the
2636 processor independent code will have arranged for us to see the
2637 real definition first, and we can just use the same value. */
2638 if (h
->weakdef
!= NULL
)
2640 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
2641 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
2642 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
2643 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
2647 /* This is a reference to a symbol defined by a dynamic object which
2648 is not a function. */
2650 /* If we are creating a shared library, we must presume that the
2651 only references to the symbol are via the global offset table.
2652 For such cases we need not do anything here; the relocations will
2653 be handled correctly by relocate_section. */
2657 /* We must allocate the symbol in our .dynbss section, which will
2658 become part of the .bss section of the executable. There will be
2659 an entry for this symbol in the .dynsym section. The dynamic
2660 object will contain position independent code, so all references
2661 from the dynamic object to this symbol will go through the global
2662 offset table. The dynamic linker will use the .dynsym entry to
2663 determine the address it must put in the global offset table, so
2664 both the dynamic object and the regular object will refer to the
2665 same memory location for the variable. */
2667 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
2668 BFD_ASSERT (s
!= NULL
);
2670 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2671 copy the initial value out of the dynamic object and into the
2672 runtime process image. We need to remember the offset into the
2673 .rel.bss section we are going to use. */
2674 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
2678 srel
= bfd_get_section_by_name (dynobj
, ".rel.bss");
2679 BFD_ASSERT (srel
!= NULL
);
2680 srel
->_raw_size
+= sizeof (Elf32_External_Rel
);
2681 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
2684 /* We need to figure out the alignment required for this symbol. I
2685 have no idea how ELF linkers handle this. */
2686 power_of_two
= bfd_log2 (h
->size
);
2687 if (power_of_two
> 3)
2690 /* Apply the required alignment. */
2691 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
2692 (bfd_size_type
) (1 << power_of_two
));
2693 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
2695 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
2699 /* Define the symbol as being at this point in the section. */
2700 h
->root
.u
.def
.section
= s
;
2701 h
->root
.u
.def
.value
= s
->_raw_size
;
2703 /* Increment the section size to make room for the symbol. */
2704 s
->_raw_size
+= h
->size
;
2709 /* Set the sizes of the dynamic sections. */
2712 elf32_arm_size_dynamic_sections (output_bfd
, info
)
2714 struct bfd_link_info
* info
;
2722 dynobj
= elf_hash_table (info
)->dynobj
;
2723 BFD_ASSERT (dynobj
!= NULL
);
2725 if (elf_hash_table (info
)->dynamic_sections_created
)
2727 /* Set the contents of the .interp section to the interpreter. */
2730 s
= bfd_get_section_by_name (dynobj
, ".interp");
2731 BFD_ASSERT (s
!= NULL
);
2732 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2733 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2738 /* We may have created entries in the .rel.got section.
2739 However, if we are not creating the dynamic sections, we will
2740 not actually use these entries. Reset the size of .rel.got,
2741 which will cause it to get stripped from the output file
2743 s
= bfd_get_section_by_name (dynobj
, ".rel.got");
2748 /* If this is a -Bsymbolic shared link, then we need to discard all
2749 PC relative relocs against symbols defined in a regular object.
2750 We allocated space for them in the check_relocs routine, but we
2751 will not fill them in in the relocate_section routine. */
2752 if (info
->shared
&& info
->symbolic
)
2753 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info
),
2754 elf32_arm_discard_copies
,
2757 /* The check_relocs and adjust_dynamic_symbol entry points have
2758 determined the sizes of the various dynamic sections. Allocate
2763 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2768 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2771 /* It's OK to base decisions on the section name, because none
2772 of the dynobj section names depend upon the input files. */
2773 name
= bfd_get_section_name (dynobj
, s
);
2777 if (strcmp (name
, ".plt") == 0)
2779 if (s
->_raw_size
== 0)
2781 /* Strip this section if we don't need it; see the
2787 /* Remember whether there is a PLT. */
2791 else if (strncmp (name
, ".rel", 4) == 0)
2793 if (s
->_raw_size
== 0)
2795 /* If we don't need this section, strip it from the
2796 output file. This is mostly to handle .rel.bss and
2797 .rel.plt. We must create both sections in
2798 create_dynamic_sections, because they must be created
2799 before the linker maps input sections to output
2800 sections. The linker does that before
2801 adjust_dynamic_symbol is called, and it is that
2802 function which decides whether anything needs to go
2803 into these sections. */
2810 /* Remember whether there are any reloc sections other
2812 if (strcmp (name
, ".rel.plt") != 0)
2814 const char *outname
;
2818 /* If this relocation section applies to a read only
2819 section, then we probably need a DT_TEXTREL
2820 entry. The entries in the .rel.plt section
2821 really apply to the .got section, which we
2822 created ourselves and so know is not readonly. */
2823 outname
= bfd_get_section_name (output_bfd
,
2825 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
2828 && (target
->flags
& SEC_READONLY
) != 0
2829 && (target
->flags
& SEC_ALLOC
) != 0)
2833 /* We use the reloc_count field as a counter if we need
2834 to copy relocs into the output file. */
2838 else if (strncmp (name
, ".got", 4) != 0)
2840 /* It's not one of our sections, so don't allocate space. */
2848 for (spp
= &s
->output_section
->owner
->sections
;
2849 *spp
!= s
->output_section
;
2850 spp
= &(*spp
)->next
)
2852 *spp
= s
->output_section
->next
;
2853 --s
->output_section
->owner
->section_count
;
2858 /* Allocate memory for the section contents. */
2859 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
2860 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
2864 if (elf_hash_table (info
)->dynamic_sections_created
)
2866 /* Add some entries to the .dynamic section. We fill in the
2867 values later, in elf32_arm_finish_dynamic_sections, but we
2868 must add the entries now so that we get the correct size for
2869 the .dynamic section. The DT_DEBUG entry is filled in by the
2870 dynamic linker and used by the debugger. */
2873 if (! bfd_elf32_add_dynamic_entry (info
, DT_DEBUG
, 0))
2879 if (! bfd_elf32_add_dynamic_entry (info
, DT_PLTGOT
, 0)
2880 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
2881 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTREL
, DT_REL
)
2882 || ! bfd_elf32_add_dynamic_entry (info
, DT_JMPREL
, 0))
2888 if (! bfd_elf32_add_dynamic_entry (info
, DT_REL
, 0)
2889 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELSZ
, 0)
2890 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELENT
,
2891 sizeof (Elf32_External_Rel
)))
2897 if (! bfd_elf32_add_dynamic_entry (info
, DT_TEXTREL
, 0))
2905 /* This function is called via elf32_arm_link_hash_traverse if we are
2906 creating a shared object with -Bsymbolic. It discards the space
2907 allocated to copy PC relative relocs against symbols which are
2908 defined in regular objects. We allocated space for them in the
2909 check_relocs routine, but we won't fill them in in the
2910 relocate_section routine. */
2913 elf32_arm_discard_copies (h
, ignore
)
2914 struct elf32_arm_link_hash_entry
* h
;
2915 PTR ignore ATTRIBUTE_UNUSED
;
2917 struct elf32_arm_pcrel_relocs_copied
* s
;
2919 /* We only discard relocs for symbols defined in a regular object. */
2920 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2923 for (s
= h
->pcrel_relocs_copied
; s
!= NULL
; s
= s
->next
)
2924 s
->section
->_raw_size
-= s
->count
* sizeof (Elf32_External_Rel
);
2929 /* Finish up dynamic symbol handling. We set the contents of various
2930 dynamic sections here. */
2933 elf32_arm_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2935 struct bfd_link_info
* info
;
2936 struct elf_link_hash_entry
* h
;
2937 Elf_Internal_Sym
* sym
;
2941 dynobj
= elf_hash_table (info
)->dynobj
;
2943 if (h
->plt
.offset
!= (bfd_vma
) -1)
2950 Elf_Internal_Rel rel
;
2952 /* This symbol has an entry in the procedure linkage table. Set
2955 BFD_ASSERT (h
->dynindx
!= -1);
2957 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2958 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
2959 srel
= bfd_get_section_by_name (dynobj
, ".rel.plt");
2960 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
2962 /* Get the index in the procedure linkage table which
2963 corresponds to this symbol. This is the index of this symbol
2964 in all the symbols for which we are making plt entries. The
2965 first entry in the procedure linkage table is reserved. */
2966 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2968 /* Get the offset into the .got table of the entry that
2969 corresponds to this function. Each .got entry is 4 bytes.
2970 The first three are reserved. */
2971 got_offset
= (plt_index
+ 3) * 4;
2973 /* Fill in the entry in the procedure linkage table. */
2974 memcpy (splt
->contents
+ h
->plt
.offset
,
2975 elf32_arm_plt_entry
,
2977 bfd_put_32 (output_bfd
,
2978 (sgot
->output_section
->vma
2979 + sgot
->output_offset
2981 - splt
->output_section
->vma
2982 - splt
->output_offset
2983 - h
->plt
.offset
- 12),
2984 splt
->contents
+ h
->plt
.offset
+ 12);
2986 /* Fill in the entry in the global offset table. */
2987 bfd_put_32 (output_bfd
,
2988 (splt
->output_section
->vma
2989 + splt
->output_offset
),
2990 sgot
->contents
+ got_offset
);
2992 /* Fill in the entry in the .rel.plt section. */
2993 rel
.r_offset
= (sgot
->output_section
->vma
2994 + sgot
->output_offset
2996 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
2997 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
2998 ((Elf32_External_Rel
*) srel
->contents
3001 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3003 /* Mark the symbol as undefined, rather than as defined in
3004 the .plt section. Leave the value alone. */
3005 sym
->st_shndx
= SHN_UNDEF
;
3009 if (h
->got
.offset
!= (bfd_vma
) -1)
3013 Elf_Internal_Rel rel
;
3015 /* This symbol has an entry in the global offset table. Set it
3018 sgot
= bfd_get_section_by_name (dynobj
, ".got");
3019 srel
= bfd_get_section_by_name (dynobj
, ".rel.got");
3020 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
3022 rel
.r_offset
= (sgot
->output_section
->vma
3023 + sgot
->output_offset
3024 + (h
->got
.offset
&~ 1));
3026 /* If this is a -Bsymbolic link, and the symbol is defined
3027 locally, we just want to emit a RELATIVE reloc. The entry in
3028 the global offset table will already have been initialized in
3029 the relocate_section function. */
3031 && (info
->symbolic
|| h
->dynindx
== -1)
3032 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
3033 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
3036 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
3037 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
3040 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3041 ((Elf32_External_Rel
*) srel
->contents
3042 + srel
->reloc_count
));
3043 ++srel
->reloc_count
;
3046 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
3049 Elf_Internal_Rel rel
;
3051 /* This symbol needs a copy reloc. Set it up. */
3053 BFD_ASSERT (h
->dynindx
!= -1
3054 && (h
->root
.type
== bfd_link_hash_defined
3055 || h
->root
.type
== bfd_link_hash_defweak
));
3057 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
3059 BFD_ASSERT (s
!= NULL
);
3061 rel
.r_offset
= (h
->root
.u
.def
.value
3062 + h
->root
.u
.def
.section
->output_section
->vma
3063 + h
->root
.u
.def
.section
->output_offset
);
3064 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
3065 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3066 ((Elf32_External_Rel
*) s
->contents
3071 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3072 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3073 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
3074 sym
->st_shndx
= SHN_ABS
;
3079 /* Finish up the dynamic sections. */
3082 elf32_arm_finish_dynamic_sections (output_bfd
, info
)
3084 struct bfd_link_info
* info
;
3090 dynobj
= elf_hash_table (info
)->dynobj
;
3092 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
3093 BFD_ASSERT (sgot
!= NULL
);
3094 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3096 if (elf_hash_table (info
)->dynamic_sections_created
)
3099 Elf32_External_Dyn
*dyncon
, *dynconend
;
3101 splt
= bfd_get_section_by_name (dynobj
, ".plt");
3102 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
3104 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3105 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
3106 for (; dyncon
< dynconend
; dyncon
++)
3108 Elf_Internal_Dyn dyn
;
3112 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3125 s
= bfd_get_section_by_name (output_bfd
, name
);
3126 BFD_ASSERT (s
!= NULL
);
3127 dyn
.d_un
.d_ptr
= s
->vma
;
3128 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3132 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
3133 BFD_ASSERT (s
!= NULL
);
3134 if (s
->_cooked_size
!= 0)
3135 dyn
.d_un
.d_val
= s
->_cooked_size
;
3137 dyn
.d_un
.d_val
= s
->_raw_size
;
3138 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3142 /* My reading of the SVR4 ABI indicates that the
3143 procedure linkage table relocs (DT_JMPREL) should be
3144 included in the overall relocs (DT_REL). This is
3145 what Solaris does. However, UnixWare can not handle
3146 that case. Therefore, we override the DT_RELSZ entry
3147 here to make it not include the JMPREL relocs. Since
3148 the linker script arranges for .rel.plt to follow all
3149 other relocation sections, we don't have to worry
3150 about changing the DT_REL entry. */
3151 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
3154 if (s
->_cooked_size
!= 0)
3155 dyn
.d_un
.d_val
-= s
->_cooked_size
;
3157 dyn
.d_un
.d_val
-= s
->_raw_size
;
3159 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3164 /* Fill in the first entry in the procedure linkage table. */
3165 if (splt
->_raw_size
> 0)
3166 memcpy (splt
->contents
, elf32_arm_plt0_entry
, PLT_ENTRY_SIZE
);
3168 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3169 really seem like the right value. */
3170 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
3173 /* Fill in the first three entries in the global offset table. */
3174 if (sgot
->_raw_size
> 0)
3177 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
3179 bfd_put_32 (output_bfd
,
3180 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3182 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
3183 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
3186 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
3192 elf32_arm_post_process_headers (abfd
, link_info
)
3194 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
3196 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form */
3198 i_ehdrp
= elf_elfheader (abfd
);
3200 i_ehdrp
->e_ident
[EI_OSABI
] = ARM_ELF_OS_ABI_VERSION
;
3201 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
3205 #define ELF_ARCH bfd_arch_arm
3206 #define ELF_MACHINE_CODE EM_ARM
3207 #define ELF_MAXPAGESIZE 0x8000
3210 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3211 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3212 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3213 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3214 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3215 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3216 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3218 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3219 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3220 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3221 #define elf_backend_check_relocs elf32_arm_check_relocs
3222 #define elf_backend_relocate_section elf32_arm_relocate_section
3223 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3224 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3225 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3226 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3227 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3228 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3230 #define elf_backend_can_gc_sections 1
3231 #define elf_backend_plt_readonly 1
3232 #define elf_backend_want_got_plt 1
3233 #define elf_backend_want_plt_sym 0
3235 #define elf_backend_got_header_size 12
3236 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3238 #include "elf32-target.h"