Re-indent INIT_ARRAY.
[binutils.git] / gold / symtab.h
blob1a81fd11ed8f8ecb5705b0109d9f47b6aa88c350
1 // symtab.h -- the gold symbol table -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Symbol_table
24 // The symbol table.
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
29 #include <string>
30 #include <utility>
31 #include <vector>
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
38 namespace gold
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
67 class Symbol
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
208 // Return true for function symbol.
209 bool
210 is_func() const
212 return (this->type_ == elfcpp::STT_FUNC
213 || this->type_ == elfcpp::STT_GNU_IFUNC);
216 // Return the symbol visibility.
217 elfcpp::STV
218 visibility() const
219 { return this->visibility_; }
221 // Set the visibility.
222 void
223 set_visibility(elfcpp::STV visibility)
224 { this->visibility_ = visibility; }
226 // Override symbol visibility.
227 void
228 override_visibility(elfcpp::STV);
230 // Return the non-visibility part of the st_other field.
231 unsigned char
232 nonvis() const
233 { return this->nonvis_; }
235 // Return whether this symbol is a forwarder. This will never be
236 // true of a symbol found in the hash table, but may be true of
237 // symbol pointers attached to object files.
238 bool
239 is_forwarder() const
240 { return this->is_forwarder_; }
242 // Mark this symbol as a forwarder.
243 void
244 set_forwarder()
245 { this->is_forwarder_ = true; }
247 // Return whether this symbol has an alias in the weak aliases table
248 // in Symbol_table.
249 bool
250 has_alias() const
251 { return this->has_alias_; }
253 // Mark this symbol as having an alias.
254 void
255 set_has_alias()
256 { this->has_alias_ = true; }
258 // Return whether this symbol needs an entry in the dynamic symbol
259 // table.
260 bool
261 needs_dynsym_entry() const
263 return (this->needs_dynsym_entry_
264 || (this->in_reg()
265 && this->in_dyn()
266 && this->is_externally_visible()));
269 // Mark this symbol as needing an entry in the dynamic symbol table.
270 void
271 set_needs_dynsym_entry()
272 { this->needs_dynsym_entry_ = true; }
274 // Return whether this symbol should be added to the dynamic symbol
275 // table.
276 bool
277 should_add_dynsym_entry() const;
279 // Return whether this symbol has been seen in a regular object.
280 bool
281 in_reg() const
282 { return this->in_reg_; }
284 // Mark this symbol as having been seen in a regular object.
285 void
286 set_in_reg()
287 { this->in_reg_ = true; }
289 // Return whether this symbol has been seen in a dynamic object.
290 bool
291 in_dyn() const
292 { return this->in_dyn_; }
294 // Mark this symbol as having been seen in a dynamic object.
295 void
296 set_in_dyn()
297 { this->in_dyn_ = true; }
299 // Return whether this symbol has been seen in a real ELF object.
300 // (IN_REG will return TRUE if the symbol has been seen in either
301 // a real ELF object or an object claimed by a plugin.)
302 bool
303 in_real_elf() const
304 { return this->in_real_elf_; }
306 // Mark this symbol as having been seen in a real ELF object.
307 void
308 set_in_real_elf()
309 { this->in_real_elf_ = true; }
311 // Return whether this symbol was defined in a section that was
312 // discarded from the link. This is used to control some error
313 // reporting.
314 bool
315 is_defined_in_discarded_section() const
316 { return this->is_defined_in_discarded_section_; }
318 // Mark this symbol as having been defined in a discarded section.
319 void
320 set_is_defined_in_discarded_section()
321 { this->is_defined_in_discarded_section_ = true; }
323 // Return the index of this symbol in the output file symbol table.
324 // A value of -1U means that this symbol is not going into the
325 // output file. This starts out as zero, and is set to a non-zero
326 // value by Symbol_table::finalize. It is an error to ask for the
327 // symbol table index before it has been set.
328 unsigned int
329 symtab_index() const
331 gold_assert(this->symtab_index_ != 0);
332 return this->symtab_index_;
335 // Set the index of the symbol in the output file symbol table.
336 void
337 set_symtab_index(unsigned int index)
339 gold_assert(index != 0);
340 this->symtab_index_ = index;
343 // Return whether this symbol already has an index in the output
344 // file symbol table.
345 bool
346 has_symtab_index() const
347 { return this->symtab_index_ != 0; }
349 // Return the index of this symbol in the dynamic symbol table. A
350 // value of -1U means that this symbol is not going into the dynamic
351 // symbol table. This starts out as zero, and is set to a non-zero
352 // during Layout::finalize. It is an error to ask for the dynamic
353 // symbol table index before it has been set.
354 unsigned int
355 dynsym_index() const
357 gold_assert(this->dynsym_index_ != 0);
358 return this->dynsym_index_;
361 // Set the index of the symbol in the dynamic symbol table.
362 void
363 set_dynsym_index(unsigned int index)
365 gold_assert(index != 0);
366 this->dynsym_index_ = index;
369 // Return whether this symbol already has an index in the dynamic
370 // symbol table.
371 bool
372 has_dynsym_index() const
373 { return this->dynsym_index_ != 0; }
375 // Return whether this symbol has an entry in the GOT section.
376 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
377 bool
378 has_got_offset(unsigned int got_type) const
379 { return this->got_offsets_.get_offset(got_type) != -1U; }
381 // Return the offset into the GOT section of this symbol.
382 unsigned int
383 got_offset(unsigned int got_type) const
385 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
386 gold_assert(got_offset != -1U);
387 return got_offset;
390 // Set the GOT offset of this symbol.
391 void
392 set_got_offset(unsigned int got_type, unsigned int got_offset)
393 { this->got_offsets_.set_offset(got_type, got_offset); }
395 // Return whether this symbol has an entry in the PLT section.
396 bool
397 has_plt_offset() const
398 { return this->plt_offset_ != -1U; }
400 // Return the offset into the PLT section of this symbol.
401 unsigned int
402 plt_offset() const
404 gold_assert(this->has_plt_offset());
405 return this->plt_offset_;
408 // Set the PLT offset of this symbol.
409 void
410 set_plt_offset(unsigned int plt_offset)
412 gold_assert(plt_offset != -1U);
413 this->plt_offset_ = plt_offset;
416 // Return whether this dynamic symbol needs a special value in the
417 // dynamic symbol table.
418 bool
419 needs_dynsym_value() const
420 { return this->needs_dynsym_value_; }
422 // Set that this dynamic symbol needs a special value in the dynamic
423 // symbol table.
424 void
425 set_needs_dynsym_value()
427 gold_assert(this->object()->is_dynamic());
428 this->needs_dynsym_value_ = true;
431 // Return true if the final value of this symbol is known at link
432 // time.
433 bool
434 final_value_is_known() const;
436 // Return true if SHNDX represents a common symbol. This depends on
437 // the target.
438 static bool
439 is_common_shndx(unsigned int shndx);
441 // Return whether this is a defined symbol (not undefined or
442 // common).
443 bool
444 is_defined() const
446 bool is_ordinary;
447 if (this->source_ != FROM_OBJECT)
448 return this->source_ != IS_UNDEFINED;
449 unsigned int shndx = this->shndx(&is_ordinary);
450 return (is_ordinary
451 ? shndx != elfcpp::SHN_UNDEF
452 : !Symbol::is_common_shndx(shndx));
455 // Return true if this symbol is from a dynamic object.
456 bool
457 is_from_dynobj() const
459 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
462 // Return whether this is an undefined symbol.
463 bool
464 is_undefined() const
466 bool is_ordinary;
467 return ((this->source_ == FROM_OBJECT
468 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
469 && is_ordinary)
470 || this->source_ == IS_UNDEFINED);
473 // Return whether this is a weak undefined symbol.
474 bool
475 is_weak_undefined() const
476 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
478 // Return whether this is an absolute symbol.
479 bool
480 is_absolute() const
482 bool is_ordinary;
483 return ((this->source_ == FROM_OBJECT
484 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
485 && !is_ordinary)
486 || this->source_ == IS_CONSTANT);
489 // Return whether this is a common symbol.
490 bool
491 is_common() const
493 if (this->source_ != FROM_OBJECT)
494 return false;
495 if (this->type_ == elfcpp::STT_COMMON)
496 return true;
497 bool is_ordinary;
498 unsigned int shndx = this->shndx(&is_ordinary);
499 return !is_ordinary && Symbol::is_common_shndx(shndx);
502 // Return whether this symbol can be seen outside this object.
503 bool
504 is_externally_visible() const
506 return (this->visibility_ == elfcpp::STV_DEFAULT
507 || this->visibility_ == elfcpp::STV_PROTECTED);
510 // Return true if this symbol can be preempted by a definition in
511 // another link unit.
512 bool
513 is_preemptible() const
515 // It doesn't make sense to ask whether a symbol defined in
516 // another object is preemptible.
517 gold_assert(!this->is_from_dynobj());
519 // It doesn't make sense to ask whether an undefined symbol
520 // is preemptible.
521 gold_assert(!this->is_undefined());
523 // If a symbol does not have default visibility, it can not be
524 // seen outside this link unit and therefore is not preemptible.
525 if (this->visibility_ != elfcpp::STV_DEFAULT)
526 return false;
528 // If this symbol has been forced to be a local symbol by a
529 // version script, then it is not visible outside this link unit
530 // and is not preemptible.
531 if (this->is_forced_local_)
532 return false;
534 // If we are not producing a shared library, then nothing is
535 // preemptible.
536 if (!parameters->options().shared())
537 return false;
539 // If the user used -Bsymbolic, then nothing is preemptible.
540 if (parameters->options().Bsymbolic())
541 return false;
543 // If the user used -Bsymbolic-functions, then functions are not
544 // preemptible. We explicitly check for not being STT_OBJECT,
545 // rather than for being STT_FUNC, because that is what the GNU
546 // linker does.
547 if (this->type() != elfcpp::STT_OBJECT
548 && parameters->options().Bsymbolic_functions())
549 return false;
551 // Otherwise the symbol is preemptible.
552 return true;
555 // Return true if this symbol is a function that needs a PLT entry.
556 // If the symbol is defined in a dynamic object or if it is subject
557 // to pre-emption, we need to make a PLT entry. If we're doing a
558 // static link or a -pie link, we don't create PLT entries.
559 bool
560 needs_plt_entry() const
562 // An undefined symbol from an executable does not need a PLT entry.
563 if (this->is_undefined() && !parameters->options().shared())
564 return false;
566 return (!parameters->doing_static_link()
567 && !parameters->options().pie()
568 && this->is_func()
569 && (this->is_from_dynobj()
570 || this->is_undefined()
571 || this->is_preemptible()));
574 // When determining whether a reference to a symbol needs a dynamic
575 // relocation, we need to know several things about the reference.
576 // These flags may be or'ed together.
577 enum Reference_flags
579 // Reference to the symbol's absolute address.
580 ABSOLUTE_REF = 1,
581 // A non-PIC reference.
582 NON_PIC_REF = 2,
583 // A function call.
584 FUNCTION_CALL = 4
587 // Given a direct absolute or pc-relative static relocation against
588 // the global symbol, this function returns whether a dynamic relocation
589 // is needed.
591 bool
592 needs_dynamic_reloc(int flags) const
594 // No dynamic relocations in a static link!
595 if (parameters->doing_static_link())
596 return false;
598 // A reference to an undefined symbol from an executable should be
599 // statically resolved to 0, and does not need a dynamic relocation.
600 // This matches gnu ld behavior.
601 if (this->is_undefined() && !parameters->options().shared())
602 return false;
604 // A reference to an absolute symbol does not need a dynamic relocation.
605 if (this->is_absolute())
606 return false;
608 // An absolute reference within a position-independent output file
609 // will need a dynamic relocation.
610 if ((flags & ABSOLUTE_REF)
611 && parameters->options().output_is_position_independent())
612 return true;
614 // A function call that can branch to a local PLT entry does not need
615 // a dynamic relocation. A non-pic pc-relative function call in a
616 // shared library cannot use a PLT entry.
617 if ((flags & FUNCTION_CALL)
618 && this->has_plt_offset()
619 && !((flags & NON_PIC_REF) && parameters->options().shared()))
620 return false;
622 // A reference to any PLT entry in a non-position-independent executable
623 // does not need a dynamic relocation.
624 if (!parameters->options().output_is_position_independent()
625 && this->has_plt_offset())
626 return false;
628 // A reference to a symbol defined in a dynamic object or to a
629 // symbol that is preemptible will need a dynamic relocation.
630 if (this->is_from_dynobj()
631 || this->is_undefined()
632 || this->is_preemptible())
633 return true;
635 // For all other cases, return FALSE.
636 return false;
639 // Whether we should use the PLT offset associated with a symbol for
640 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
641 // reloc--the same set of relocs for which we would pass NON_PIC_REF
642 // to the needs_dynamic_reloc function.
644 bool
645 use_plt_offset(bool is_non_pic_reference) const
647 // If the symbol doesn't have a PLT offset, then naturally we
648 // don't want to use it.
649 if (!this->has_plt_offset())
650 return false;
652 // If we are going to generate a dynamic relocation, then we will
653 // wind up using that, so no need to use the PLT entry.
654 if (this->needs_dynamic_reloc(FUNCTION_CALL
655 | (is_non_pic_reference
656 ? NON_PIC_REF
657 : 0)))
658 return false;
660 // If the symbol is from a dynamic object, we need to use the PLT
661 // entry.
662 if (this->is_from_dynobj())
663 return true;
665 // If we are generating a shared object, and this symbol is
666 // undefined or preemptible, we need to use the PLT entry.
667 if (parameters->options().shared()
668 && (this->is_undefined() || this->is_preemptible()))
669 return true;
671 // If this is a weak undefined symbol, we need to use the PLT
672 // entry; the symbol may be defined by a library loaded at
673 // runtime.
674 if (this->is_weak_undefined())
675 return true;
677 // Otherwise we can use the regular definition.
678 return false;
681 // Given a direct absolute static relocation against
682 // the global symbol, where a dynamic relocation is needed, this
683 // function returns whether a relative dynamic relocation can be used.
684 // The caller must determine separately whether the static relocation
685 // is compatible with a relative relocation.
687 bool
688 can_use_relative_reloc(bool is_function_call) const
690 // A function call that can branch to a local PLT entry can
691 // use a RELATIVE relocation.
692 if (is_function_call && this->has_plt_offset())
693 return true;
695 // A reference to a symbol defined in a dynamic object or to a
696 // symbol that is preemptible can not use a RELATIVE relocaiton.
697 if (this->is_from_dynobj()
698 || this->is_undefined()
699 || this->is_preemptible())
700 return false;
702 // For all other cases, return TRUE.
703 return true;
706 // Return the output section where this symbol is defined. Return
707 // NULL if the symbol has an absolute value.
708 Output_section*
709 output_section() const;
711 // Set the symbol's output section. This is used for symbols
712 // defined in scripts. This should only be called after the symbol
713 // table has been finalized.
714 void
715 set_output_section(Output_section*);
717 // Return whether there should be a warning for references to this
718 // symbol.
719 bool
720 has_warning() const
721 { return this->has_warning_; }
723 // Mark this symbol as having a warning.
724 void
725 set_has_warning()
726 { this->has_warning_ = true; }
728 // Return whether this symbol is defined by a COPY reloc from a
729 // dynamic object.
730 bool
731 is_copied_from_dynobj() const
732 { return this->is_copied_from_dynobj_; }
734 // Mark this symbol as defined by a COPY reloc.
735 void
736 set_is_copied_from_dynobj()
737 { this->is_copied_from_dynobj_ = true; }
739 // Return whether this symbol is forced to visibility STB_LOCAL
740 // by a "local:" entry in a version script.
741 bool
742 is_forced_local() const
743 { return this->is_forced_local_; }
745 // Mark this symbol as forced to STB_LOCAL visibility.
746 void
747 set_is_forced_local()
748 { this->is_forced_local_ = true; }
750 // Return true if this may need a COPY relocation.
751 // References from an executable object to non-function symbols
752 // defined in a dynamic object may need a COPY relocation.
753 bool
754 may_need_copy_reloc() const
756 return (!parameters->options().shared()
757 && parameters->options().copyreloc()
758 && this->is_from_dynobj()
759 && !this->is_func());
762 protected:
763 // Instances of this class should always be created at a specific
764 // size.
765 Symbol()
766 { memset(this, 0, sizeof *this); }
768 // Initialize the general fields.
769 void
770 init_fields(const char* name, const char* version,
771 elfcpp::STT type, elfcpp::STB binding,
772 elfcpp::STV visibility, unsigned char nonvis);
774 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
775 // section index, IS_ORDINARY is whether it is a normal section
776 // index rather than a special code.
777 template<int size, bool big_endian>
778 void
779 init_base_object(const char *name, const char* version, Object* object,
780 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
781 bool is_ordinary);
783 // Initialize fields for an Output_data.
784 void
785 init_base_output_data(const char* name, const char* version, Output_data*,
786 elfcpp::STT, elfcpp::STB, elfcpp::STV,
787 unsigned char nonvis, bool offset_is_from_end);
789 // Initialize fields for an Output_segment.
790 void
791 init_base_output_segment(const char* name, const char* version,
792 Output_segment* os, elfcpp::STT type,
793 elfcpp::STB binding, elfcpp::STV visibility,
794 unsigned char nonvis,
795 Segment_offset_base offset_base);
797 // Initialize fields for a constant.
798 void
799 init_base_constant(const char* name, const char* version, elfcpp::STT type,
800 elfcpp::STB binding, elfcpp::STV visibility,
801 unsigned char nonvis);
803 // Initialize fields for an undefined symbol.
804 void
805 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
806 elfcpp::STB binding, elfcpp::STV visibility,
807 unsigned char nonvis);
809 // Override existing symbol.
810 template<int size, bool big_endian>
811 void
812 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
813 bool is_ordinary, Object* object, const char* version);
815 // Override existing symbol with a special symbol.
816 void
817 override_base_with_special(const Symbol* from);
819 // Override symbol version.
820 void
821 override_version(const char* version);
823 // Allocate a common symbol by giving it a location in the output
824 // file.
825 void
826 allocate_base_common(Output_data*);
828 private:
829 Symbol(const Symbol&);
830 Symbol& operator=(const Symbol&);
832 // Symbol name (expected to point into a Stringpool).
833 const char* name_;
834 // Symbol version (expected to point into a Stringpool). This may
835 // be NULL.
836 const char* version_;
838 union
840 // This struct is used if SOURCE_ == FROM_OBJECT.
841 struct
843 // Object in which symbol is defined, or in which it was first
844 // seen.
845 Object* object;
846 // Section number in object_ in which symbol is defined.
847 unsigned int shndx;
848 } from_object;
850 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
851 struct
853 // Output_data in which symbol is defined. Before
854 // Layout::finalize the symbol's value is an offset within the
855 // Output_data.
856 Output_data* output_data;
857 // True if the offset is from the end, false if the offset is
858 // from the beginning.
859 bool offset_is_from_end;
860 } in_output_data;
862 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
863 struct
865 // Output_segment in which the symbol is defined. Before
866 // Layout::finalize the symbol's value is an offset.
867 Output_segment* output_segment;
868 // The base to use for the offset before Layout::finalize.
869 Segment_offset_base offset_base;
870 } in_output_segment;
871 } u_;
873 // The index of this symbol in the output file. If the symbol is
874 // not going into the output file, this value is -1U. This field
875 // starts as always holding zero. It is set to a non-zero value by
876 // Symbol_table::finalize.
877 unsigned int symtab_index_;
879 // The index of this symbol in the dynamic symbol table. If the
880 // symbol is not going into the dynamic symbol table, this value is
881 // -1U. This field starts as always holding zero. It is set to a
882 // non-zero value during Layout::finalize.
883 unsigned int dynsym_index_;
885 // The GOT section entries for this symbol. A symbol may have more
886 // than one GOT offset (e.g., when mixing modules compiled with two
887 // different TLS models), but will usually have at most one.
888 Got_offset_list got_offsets_;
890 // If this symbol has an entry in the PLT section, then this is the
891 // offset from the start of the PLT section. This is -1U if there
892 // is no PLT entry.
893 unsigned int plt_offset_;
895 // Symbol type (bits 0 to 3).
896 elfcpp::STT type_ : 4;
897 // Symbol binding (bits 4 to 7).
898 elfcpp::STB binding_ : 4;
899 // Symbol visibility (bits 8 to 9).
900 elfcpp::STV visibility_ : 2;
901 // Rest of symbol st_other field (bits 10 to 15).
902 unsigned int nonvis_ : 6;
903 // The type of symbol (bits 16 to 18).
904 Source source_ : 3;
905 // True if this is the default version of the symbol (bit 19).
906 bool is_def_ : 1;
907 // True if this symbol really forwards to another symbol. This is
908 // used when we discover after the fact that two different entries
909 // in the hash table really refer to the same symbol. This will
910 // never be set for a symbol found in the hash table, but may be set
911 // for a symbol found in the list of symbols attached to an Object.
912 // It forwards to the symbol found in the forwarders_ map of
913 // Symbol_table (bit 20).
914 bool is_forwarder_ : 1;
915 // True if the symbol has an alias in the weak_aliases table in
916 // Symbol_table (bit 21).
917 bool has_alias_ : 1;
918 // True if this symbol needs to be in the dynamic symbol table (bit
919 // 22).
920 bool needs_dynsym_entry_ : 1;
921 // True if we've seen this symbol in a regular object (bit 23).
922 bool in_reg_ : 1;
923 // True if we've seen this symbol in a dynamic object (bit 24).
924 bool in_dyn_ : 1;
925 // True if this is a dynamic symbol which needs a special value in
926 // the dynamic symbol table (bit 25).
927 bool needs_dynsym_value_ : 1;
928 // True if there is a warning for this symbol (bit 26).
929 bool has_warning_ : 1;
930 // True if we are using a COPY reloc for this symbol, so that the
931 // real definition lives in a dynamic object (bit 27).
932 bool is_copied_from_dynobj_ : 1;
933 // True if this symbol was forced to local visibility by a version
934 // script (bit 28).
935 bool is_forced_local_ : 1;
936 // True if the field u_.from_object.shndx is an ordinary section
937 // index, not one of the special codes from SHN_LORESERVE to
938 // SHN_HIRESERVE (bit 29).
939 bool is_ordinary_shndx_ : 1;
940 // True if we've seen this symbol in a real ELF object (bit 30).
941 bool in_real_elf_ : 1;
942 // True if this symbol is defined in a section which was discarded
943 // (bit 31).
944 bool is_defined_in_discarded_section_ : 1;
947 // The parts of a symbol which are size specific. Using a template
948 // derived class like this helps us use less space on a 32-bit system.
950 template<int size>
951 class Sized_symbol : public Symbol
953 public:
954 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
955 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
957 Sized_symbol()
960 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
961 // section index, IS_ORDINARY is whether it is a normal section
962 // index rather than a special code.
963 template<bool big_endian>
964 void
965 init_object(const char *name, const char* version, Object* object,
966 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
967 bool is_ordinary);
969 // Initialize fields for an Output_data.
970 void
971 init_output_data(const char* name, const char* version, Output_data*,
972 Value_type value, Size_type symsize, elfcpp::STT,
973 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
974 bool offset_is_from_end);
976 // Initialize fields for an Output_segment.
977 void
978 init_output_segment(const char* name, const char* version, Output_segment*,
979 Value_type value, Size_type symsize, elfcpp::STT,
980 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
981 Segment_offset_base offset_base);
983 // Initialize fields for a constant.
984 void
985 init_constant(const char* name, const char* version, Value_type value,
986 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
987 unsigned char nonvis);
989 // Initialize fields for an undefined symbol.
990 void
991 init_undefined(const char* name, const char* version, elfcpp::STT,
992 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
994 // Override existing symbol.
995 template<bool big_endian>
996 void
997 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
998 bool is_ordinary, Object* object, const char* version);
1000 // Override existing symbol with a special symbol.
1001 void
1002 override_with_special(const Sized_symbol<size>*);
1004 // Return the symbol's value.
1005 Value_type
1006 value() const
1007 { return this->value_; }
1009 // Return the symbol's size (we can't call this 'size' because that
1010 // is a template parameter).
1011 Size_type
1012 symsize() const
1013 { return this->symsize_; }
1015 // Set the symbol size. This is used when resolving common symbols.
1016 void
1017 set_symsize(Size_type symsize)
1018 { this->symsize_ = symsize; }
1020 // Set the symbol value. This is called when we store the final
1021 // values of the symbols into the symbol table.
1022 void
1023 set_value(Value_type value)
1024 { this->value_ = value; }
1026 // Allocate a common symbol by giving it a location in the output
1027 // file.
1028 void
1029 allocate_common(Output_data*, Value_type value);
1031 private:
1032 Sized_symbol(const Sized_symbol&);
1033 Sized_symbol& operator=(const Sized_symbol&);
1035 // Symbol value. Before Layout::finalize this is the offset in the
1036 // input section. This is set to the final value during
1037 // Layout::finalize.
1038 Value_type value_;
1039 // Symbol size.
1040 Size_type symsize_;
1043 // A struct describing a symbol defined by the linker, where the value
1044 // of the symbol is defined based on an output section. This is used
1045 // for symbols defined by the linker, like "_init_array_start".
1047 struct Define_symbol_in_section
1049 // The symbol name.
1050 const char* name;
1051 // The name of the output section with which this symbol should be
1052 // associated. If there is no output section with that name, the
1053 // symbol will be defined as zero.
1054 const char* output_section;
1055 // The offset of the symbol within the output section. This is an
1056 // offset from the start of the output section, unless start_at_end
1057 // is true, in which case this is an offset from the end of the
1058 // output section.
1059 uint64_t value;
1060 // The size of the symbol.
1061 uint64_t size;
1062 // The symbol type.
1063 elfcpp::STT type;
1064 // The symbol binding.
1065 elfcpp::STB binding;
1066 // The symbol visibility.
1067 elfcpp::STV visibility;
1068 // The rest of the st_other field.
1069 unsigned char nonvis;
1070 // If true, the value field is an offset from the end of the output
1071 // section.
1072 bool offset_is_from_end;
1073 // If true, this symbol is defined only if we see a reference to it.
1074 bool only_if_ref;
1077 // A struct describing a symbol defined by the linker, where the value
1078 // of the symbol is defined based on a segment. This is used for
1079 // symbols defined by the linker, like "_end". We describe the
1080 // segment with which the symbol should be associated by its
1081 // characteristics. If no segment meets these characteristics, the
1082 // symbol will be defined as zero. If there is more than one segment
1083 // which meets these characteristics, we will use the first one.
1085 struct Define_symbol_in_segment
1087 // The symbol name.
1088 const char* name;
1089 // The segment type where the symbol should be defined, typically
1090 // PT_LOAD.
1091 elfcpp::PT segment_type;
1092 // Bitmask of segment flags which must be set.
1093 elfcpp::PF segment_flags_set;
1094 // Bitmask of segment flags which must be clear.
1095 elfcpp::PF segment_flags_clear;
1096 // The offset of the symbol within the segment. The offset is
1097 // calculated from the position set by offset_base.
1098 uint64_t value;
1099 // The size of the symbol.
1100 uint64_t size;
1101 // The symbol type.
1102 elfcpp::STT type;
1103 // The symbol binding.
1104 elfcpp::STB binding;
1105 // The symbol visibility.
1106 elfcpp::STV visibility;
1107 // The rest of the st_other field.
1108 unsigned char nonvis;
1109 // The base from which we compute the offset.
1110 Symbol::Segment_offset_base offset_base;
1111 // If true, this symbol is defined only if we see a reference to it.
1112 bool only_if_ref;
1115 // This class manages warnings. Warnings are a GNU extension. When
1116 // we see a section named .gnu.warning.SYM in an object file, and if
1117 // we wind using the definition of SYM from that object file, then we
1118 // will issue a warning for any relocation against SYM from a
1119 // different object file. The text of the warning is the contents of
1120 // the section. This is not precisely the definition used by the old
1121 // GNU linker; the old GNU linker treated an occurrence of
1122 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1123 // would trigger a warning on any reference. However, it was
1124 // inconsistent in that a warning in a dynamic object only triggered
1125 // if there was no definition in a regular object. This linker is
1126 // different in that we only issue a warning if we use the symbol
1127 // definition from the same object file as the warning section.
1129 class Warnings
1131 public:
1132 Warnings()
1133 : warnings_()
1136 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1137 // of the warning.
1138 void
1139 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1140 const std::string& warning);
1142 // For each symbol for which we should give a warning, make a note
1143 // on the symbol.
1144 void
1145 note_warnings(Symbol_table* symtab);
1147 // Issue a warning for a reference to SYM at RELINFO's location.
1148 template<int size, bool big_endian>
1149 void
1150 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1151 size_t relnum, off_t reloffset) const;
1153 private:
1154 Warnings(const Warnings&);
1155 Warnings& operator=(const Warnings&);
1157 // What we need to know to get the warning text.
1158 struct Warning_location
1160 // The object the warning is in.
1161 Object* object;
1162 // The warning text.
1163 std::string text;
1165 Warning_location()
1166 : object(NULL), text()
1169 void
1170 set(Object* o, const std::string& t)
1172 this->object = o;
1173 this->text = t;
1177 // A mapping from warning symbol names (canonicalized in
1178 // Symbol_table's namepool_ field) to warning information.
1179 typedef Unordered_map<const char*, Warning_location> Warning_table;
1181 Warning_table warnings_;
1184 // The main linker symbol table.
1186 class Symbol_table
1188 public:
1189 // The different places where a symbol definition can come from.
1190 enum Defined
1192 // Defined in an object file--the normal case.
1193 OBJECT,
1194 // Defined for a COPY reloc.
1195 COPY,
1196 // Defined on the command line using --defsym.
1197 DEFSYM,
1198 // Defined (so to speak) on the command line using -u.
1199 UNDEFINED,
1200 // Defined in a linker script.
1201 SCRIPT,
1202 // Predefined by the linker.
1203 PREDEFINED,
1206 // The order in which we sort common symbols.
1207 enum Sort_commons_order
1209 SORT_COMMONS_BY_SIZE_DESCENDING,
1210 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1211 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1214 // COUNT is an estimate of how many symbosl will be inserted in the
1215 // symbol table. It's ok to put 0 if you don't know; a correct
1216 // guess will just save some CPU by reducing hashtable resizes.
1217 Symbol_table(unsigned int count, const Version_script_info& version_script);
1219 ~Symbol_table();
1221 void
1222 set_icf(Icf* icf)
1223 { this->icf_ = icf;}
1225 Icf*
1226 icf() const
1227 { return this->icf_; }
1229 // Returns true if ICF determined that this is a duplicate section.
1230 bool
1231 is_section_folded(Object* obj, unsigned int shndx) const;
1233 void
1234 set_gc(Garbage_collection* gc)
1235 { this->gc_ = gc; }
1237 Garbage_collection*
1238 gc() const
1239 { return this->gc_; }
1241 // During garbage collection, this keeps undefined symbols.
1242 void
1243 gc_mark_undef_symbols();
1245 // During garbage collection, this ensures externally visible symbols
1246 // are not treated as garbage while building shared objects.
1247 void
1248 gc_mark_symbol_for_shlib(Symbol* sym);
1250 // During garbage collection, this keeps sections that correspond to
1251 // symbols seen in dynamic objects.
1252 inline void
1253 gc_mark_dyn_syms(Symbol* sym);
1255 // Add COUNT external symbols from the relocatable object RELOBJ to
1256 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1257 // offset in the symbol table of the first symbol, SYM_NAMES is
1258 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1259 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1260 // *DEFINED to the number of defined symbols.
1261 template<int size, bool big_endian>
1262 void
1263 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1264 const unsigned char* syms, size_t count,
1265 size_t symndx_offset, const char* sym_names,
1266 size_t sym_name_size,
1267 typename Sized_relobj<size, big_endian>::Symbols*,
1268 size_t* defined);
1270 // Add one external symbol from the plugin object OBJ to the symbol table.
1271 // Returns a pointer to the resolved symbol in the symbol table.
1272 template<int size, bool big_endian>
1273 Symbol*
1274 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1275 const char* name, const char* ver,
1276 elfcpp::Sym<size, big_endian>* sym);
1278 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1279 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1280 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1281 // symbol version data.
1282 template<int size, bool big_endian>
1283 void
1284 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1285 const unsigned char* syms, size_t count,
1286 const char* sym_names, size_t sym_name_size,
1287 const unsigned char* versym, size_t versym_size,
1288 const std::vector<const char*>*,
1289 typename Sized_relobj<size, big_endian>::Symbols*,
1290 size_t* defined);
1292 // Define a special symbol based on an Output_data. It is a
1293 // multiple definition error if this symbol is already defined.
1294 Symbol*
1295 define_in_output_data(const char* name, const char* version, Defined,
1296 Output_data*, uint64_t value, uint64_t symsize,
1297 elfcpp::STT type, elfcpp::STB binding,
1298 elfcpp::STV visibility, unsigned char nonvis,
1299 bool offset_is_from_end, bool only_if_ref);
1301 // Define a special symbol based on an Output_segment. It is a
1302 // multiple definition error if this symbol is already defined.
1303 Symbol*
1304 define_in_output_segment(const char* name, const char* version, Defined,
1305 Output_segment*, uint64_t value, uint64_t symsize,
1306 elfcpp::STT type, elfcpp::STB binding,
1307 elfcpp::STV visibility, unsigned char nonvis,
1308 Symbol::Segment_offset_base, bool only_if_ref);
1310 // Define a special symbol with a constant value. It is a multiple
1311 // definition error if this symbol is already defined.
1312 Symbol*
1313 define_as_constant(const char* name, const char* version, Defined,
1314 uint64_t value, uint64_t symsize, elfcpp::STT type,
1315 elfcpp::STB binding, elfcpp::STV visibility,
1316 unsigned char nonvis, bool only_if_ref,
1317 bool force_override);
1319 // Define a set of symbols in output sections. If ONLY_IF_REF is
1320 // true, only define them if they are referenced.
1321 void
1322 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1323 bool only_if_ref);
1325 // Define a set of symbols in output segments. If ONLY_IF_REF is
1326 // true, only defined them if they are referenced.
1327 void
1328 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1329 bool only_if_ref);
1331 // Define SYM using a COPY reloc. POSD is the Output_data where the
1332 // symbol should be defined--typically a .dyn.bss section. VALUE is
1333 // the offset within POSD.
1334 template<int size>
1335 void
1336 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1337 typename elfcpp::Elf_types<size>::Elf_Addr);
1339 // Look up a symbol.
1340 Symbol*
1341 lookup(const char*, const char* version = NULL) const;
1343 // Return the real symbol associated with the forwarder symbol FROM.
1344 Symbol*
1345 resolve_forwards(const Symbol* from) const;
1347 // Return the sized version of a symbol in this table.
1348 template<int size>
1349 Sized_symbol<size>*
1350 get_sized_symbol(Symbol*) const;
1352 template<int size>
1353 const Sized_symbol<size>*
1354 get_sized_symbol(const Symbol*) const;
1356 // Return the count of undefined symbols seen.
1357 size_t
1358 saw_undefined() const
1359 { return this->saw_undefined_; }
1361 // Allocate the common symbols
1362 void
1363 allocate_commons(Layout*, Mapfile*);
1365 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1366 // of the warning.
1367 void
1368 add_warning(const char* name, Object* obj, const std::string& warning)
1369 { this->warnings_.add_warning(this, name, obj, warning); }
1371 // Canonicalize a symbol name for use in the hash table.
1372 const char*
1373 canonicalize_name(const char* name)
1374 { return this->namepool_.add(name, true, NULL); }
1376 // Possibly issue a warning for a reference to SYM at LOCATION which
1377 // is in OBJ.
1378 template<int size, bool big_endian>
1379 void
1380 issue_warning(const Symbol* sym,
1381 const Relocate_info<size, big_endian>* relinfo,
1382 size_t relnum, off_t reloffset) const
1383 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1385 // Check candidate_odr_violations_ to find symbols with the same name
1386 // but apparently different definitions (different source-file/line-no).
1387 void
1388 detect_odr_violations(const Task*, const char* output_file_name) const;
1390 // Add any undefined symbols named on the command line to the symbol
1391 // table.
1392 void
1393 add_undefined_symbols_from_command_line();
1395 // SYM is defined using a COPY reloc. Return the dynamic object
1396 // where the original definition was found.
1397 Dynobj*
1398 get_copy_source(const Symbol* sym) const;
1400 // Set the dynamic symbol indexes. INDEX is the index of the first
1401 // global dynamic symbol. Pointers to the symbols are stored into
1402 // the vector. The names are stored into the Stringpool. This
1403 // returns an updated dynamic symbol index.
1404 unsigned int
1405 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1406 Stringpool*, Versions*);
1408 // Finalize the symbol table after we have set the final addresses
1409 // of all the input sections. This sets the final symbol indexes,
1410 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1411 // index of the first global symbol. OFF is the file offset of the
1412 // global symbol table, DYNOFF is the offset of the globals in the
1413 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1414 // global dynamic symbol, and DYNCOUNT is the number of global
1415 // dynamic symbols. This records the parameters, and returns the
1416 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1417 // local symbols.
1418 off_t
1419 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1420 Stringpool* pool, unsigned int *plocal_symcount);
1422 // Status code of Symbol_table::compute_final_value.
1423 enum Compute_final_value_status
1425 // No error.
1426 CFVS_OK,
1427 // Unspported symbol section.
1428 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1429 // No output section.
1430 CFVS_NO_OUTPUT_SECTION
1433 // Compute the final value of SYM and store status in location PSTATUS.
1434 // During relaxation, this may be called multiple times for a symbol to
1435 // compute its would-be final value in each relaxation pass.
1437 template<int size>
1438 typename Sized_symbol<size>::Value_type
1439 compute_final_value(const Sized_symbol<size>* sym,
1440 Compute_final_value_status* pstatus) const;
1442 // Write out the global symbols.
1443 void
1444 write_globals(const Stringpool*, const Stringpool*,
1445 Output_symtab_xindex*, Output_symtab_xindex*,
1446 Output_file*) const;
1448 // Write out a section symbol. Return the updated offset.
1449 void
1450 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1451 Output_file*, off_t) const;
1453 // Dump statistical information to stderr.
1454 void
1455 print_stats() const;
1457 // Return the version script information.
1458 const Version_script_info&
1459 version_script() const
1460 { return version_script_; }
1462 private:
1463 Symbol_table(const Symbol_table&);
1464 Symbol_table& operator=(const Symbol_table&);
1466 // The type of the list of common symbols.
1467 typedef std::vector<Symbol*> Commons_type;
1469 // The type of the symbol hash table.
1471 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1473 struct Symbol_table_hash
1475 size_t
1476 operator()(const Symbol_table_key&) const;
1479 struct Symbol_table_eq
1481 bool
1482 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1485 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1486 Symbol_table_eq> Symbol_table_type;
1488 // Make FROM a forwarder symbol to TO.
1489 void
1490 make_forwarder(Symbol* from, Symbol* to);
1492 // Add a symbol.
1493 template<int size, bool big_endian>
1494 Sized_symbol<size>*
1495 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1496 const char *version, Stringpool::Key version_key,
1497 bool def, const elfcpp::Sym<size, big_endian>& sym,
1498 unsigned int st_shndx, bool is_ordinary,
1499 unsigned int orig_st_shndx);
1501 // Define a default symbol.
1502 template<int size, bool big_endian>
1503 void
1504 define_default_version(Sized_symbol<size>*, bool,
1505 Symbol_table_type::iterator);
1507 // Resolve symbols.
1508 template<int size, bool big_endian>
1509 void
1510 resolve(Sized_symbol<size>* to,
1511 const elfcpp::Sym<size, big_endian>& sym,
1512 unsigned int st_shndx, bool is_ordinary,
1513 unsigned int orig_st_shndx,
1514 Object*, const char* version);
1516 template<int size, bool big_endian>
1517 void
1518 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1520 // Record that a symbol is forced to be local by a version script or
1521 // by visibility.
1522 void
1523 force_local(Symbol*);
1525 // Adjust NAME and *NAME_KEY for wrapping.
1526 const char*
1527 wrap_symbol(const char* name, Stringpool::Key* name_key);
1529 // Whether we should override a symbol, based on flags in
1530 // resolve.cc.
1531 static bool
1532 should_override(const Symbol*, unsigned int, Defined, Object*, bool*);
1534 // Report a problem in symbol resolution.
1535 static void
1536 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1537 Defined, Object* object);
1539 // Override a symbol.
1540 template<int size, bool big_endian>
1541 void
1542 override(Sized_symbol<size>* tosym,
1543 const elfcpp::Sym<size, big_endian>& fromsym,
1544 unsigned int st_shndx, bool is_ordinary,
1545 Object* object, const char* version);
1547 // Whether we should override a symbol with a special symbol which
1548 // is automatically defined by the linker.
1549 static bool
1550 should_override_with_special(const Symbol*, Defined);
1552 // Override a symbol with a special symbol.
1553 template<int size>
1554 void
1555 override_with_special(Sized_symbol<size>* tosym,
1556 const Sized_symbol<size>* fromsym);
1558 // Record all weak alias sets for a dynamic object.
1559 template<int size>
1560 void
1561 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1563 // Define a special symbol.
1564 template<int size, bool big_endian>
1565 Sized_symbol<size>*
1566 define_special_symbol(const char** pname, const char** pversion,
1567 bool only_if_ref, Sized_symbol<size>** poldsym,
1568 bool* resolve_oldsym);
1570 // Define a symbol in an Output_data, sized version.
1571 template<int size>
1572 Sized_symbol<size>*
1573 do_define_in_output_data(const char* name, const char* version, Defined,
1574 Output_data*,
1575 typename elfcpp::Elf_types<size>::Elf_Addr value,
1576 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1577 elfcpp::STT type, elfcpp::STB binding,
1578 elfcpp::STV visibility, unsigned char nonvis,
1579 bool offset_is_from_end, bool only_if_ref);
1581 // Define a symbol in an Output_segment, sized version.
1582 template<int size>
1583 Sized_symbol<size>*
1584 do_define_in_output_segment(
1585 const char* name, const char* version, Defined, Output_segment* os,
1586 typename elfcpp::Elf_types<size>::Elf_Addr value,
1587 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1588 elfcpp::STT type, elfcpp::STB binding,
1589 elfcpp::STV visibility, unsigned char nonvis,
1590 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1592 // Define a symbol as a constant, sized version.
1593 template<int size>
1594 Sized_symbol<size>*
1595 do_define_as_constant(
1596 const char* name, const char* version, Defined,
1597 typename elfcpp::Elf_types<size>::Elf_Addr value,
1598 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1599 elfcpp::STT type, elfcpp::STB binding,
1600 elfcpp::STV visibility, unsigned char nonvis,
1601 bool only_if_ref, bool force_override);
1603 // Add any undefined symbols named on the command line to the symbol
1604 // table, sized version.
1605 template<int size>
1606 void
1607 do_add_undefined_symbols_from_command_line();
1609 // Types of common symbols.
1611 enum Commons_section_type
1613 COMMONS_NORMAL,
1614 COMMONS_TLS,
1615 COMMONS_SMALL,
1616 COMMONS_LARGE
1619 // Allocate the common symbols, sized version.
1620 template<int size>
1621 void
1622 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1624 // Allocate the common symbols from one list.
1625 template<int size>
1626 void
1627 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1628 Mapfile*, Sort_commons_order);
1630 // Implement detect_odr_violations.
1631 template<int size, bool big_endian>
1632 void
1633 sized_detect_odr_violations() const;
1635 // Finalize symbols specialized for size.
1636 template<int size>
1637 off_t
1638 sized_finalize(off_t, Stringpool*, unsigned int*);
1640 // Finalize a symbol. Return whether it should be added to the
1641 // symbol table.
1642 template<int size>
1643 bool
1644 sized_finalize_symbol(Symbol*);
1646 // Add a symbol the final symtab by setting its index.
1647 template<int size>
1648 void
1649 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1651 // Write globals specialized for size and endianness.
1652 template<int size, bool big_endian>
1653 void
1654 sized_write_globals(const Stringpool*, const Stringpool*,
1655 Output_symtab_xindex*, Output_symtab_xindex*,
1656 Output_file*) const;
1658 // Write out a symbol to P.
1659 template<int size, bool big_endian>
1660 void
1661 sized_write_symbol(Sized_symbol<size>*,
1662 typename elfcpp::Elf_types<size>::Elf_Addr value,
1663 unsigned int shndx,
1664 const Stringpool*, unsigned char* p) const;
1666 // Possibly warn about an undefined symbol from a dynamic object.
1667 void
1668 warn_about_undefined_dynobj_symbol(Symbol*) const;
1670 // Write out a section symbol, specialized for size and endianness.
1671 template<int size, bool big_endian>
1672 void
1673 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1674 Output_file*, off_t) const;
1676 // The type of the list of symbols which have been forced local.
1677 typedef std::vector<Symbol*> Forced_locals;
1679 // A map from symbols with COPY relocs to the dynamic objects where
1680 // they are defined.
1681 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1683 // A map from symbol name (as a pointer into the namepool) to all
1684 // the locations the symbols is (weakly) defined (and certain other
1685 // conditions are met). This map will be used later to detect
1686 // possible One Definition Rule (ODR) violations.
1687 struct Symbol_location
1689 Object* object; // Object where the symbol is defined.
1690 unsigned int shndx; // Section-in-object where the symbol is defined.
1691 off_t offset; // Offset-in-section where the symbol is defined.
1692 bool operator==(const Symbol_location& that) const
1694 return (this->object == that.object
1695 && this->shndx == that.shndx
1696 && this->offset == that.offset);
1700 struct Symbol_location_hash
1702 size_t operator()(const Symbol_location& loc) const
1703 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1706 typedef Unordered_map<const char*,
1707 Unordered_set<Symbol_location, Symbol_location_hash> >
1708 Odr_map;
1710 // We increment this every time we see a new undefined symbol, for
1711 // use in archive groups.
1712 size_t saw_undefined_;
1713 // The index of the first global symbol in the output file.
1714 unsigned int first_global_index_;
1715 // The file offset within the output symtab section where we should
1716 // write the table.
1717 off_t offset_;
1718 // The number of global symbols we want to write out.
1719 unsigned int output_count_;
1720 // The file offset of the global dynamic symbols, or 0 if none.
1721 off_t dynamic_offset_;
1722 // The index of the first global dynamic symbol.
1723 unsigned int first_dynamic_global_index_;
1724 // The number of global dynamic symbols, or 0 if none.
1725 unsigned int dynamic_count_;
1726 // The symbol hash table.
1727 Symbol_table_type table_;
1728 // A pool of symbol names. This is used for all global symbols.
1729 // Entries in the hash table point into this pool.
1730 Stringpool namepool_;
1731 // Forwarding symbols.
1732 Unordered_map<const Symbol*, Symbol*> forwarders_;
1733 // Weak aliases. A symbol in this list points to the next alias.
1734 // The aliases point to each other in a circular list.
1735 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1736 // We don't expect there to be very many common symbols, so we keep
1737 // a list of them. When we find a common symbol we add it to this
1738 // list. It is possible that by the time we process the list the
1739 // symbol is no longer a common symbol. It may also have become a
1740 // forwarder.
1741 Commons_type commons_;
1742 // This is like the commons_ field, except that it holds TLS common
1743 // symbols.
1744 Commons_type tls_commons_;
1745 // This is for small common symbols.
1746 Commons_type small_commons_;
1747 // This is for large common symbols.
1748 Commons_type large_commons_;
1749 // A list of symbols which have been forced to be local. We don't
1750 // expect there to be very many of them, so we keep a list of them
1751 // rather than walking the whole table to find them.
1752 Forced_locals forced_locals_;
1753 // Manage symbol warnings.
1754 Warnings warnings_;
1755 // Manage potential One Definition Rule (ODR) violations.
1756 Odr_map candidate_odr_violations_;
1758 // When we emit a COPY reloc for a symbol, we define it in an
1759 // Output_data. When it's time to emit version information for it,
1760 // we need to know the dynamic object in which we found the original
1761 // definition. This maps symbols with COPY relocs to the dynamic
1762 // object where they were defined.
1763 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1764 // Information parsed from the version script, if any.
1765 const Version_script_info& version_script_;
1766 Garbage_collection* gc_;
1767 Icf* icf_;
1770 // We inline get_sized_symbol for efficiency.
1772 template<int size>
1773 Sized_symbol<size>*
1774 Symbol_table::get_sized_symbol(Symbol* sym) const
1776 gold_assert(size == parameters->target().get_size());
1777 return static_cast<Sized_symbol<size>*>(sym);
1780 template<int size>
1781 const Sized_symbol<size>*
1782 Symbol_table::get_sized_symbol(const Symbol* sym) const
1784 gold_assert(size == parameters->target().get_size());
1785 return static_cast<const Sized_symbol<size>*>(sym);
1788 } // End namespace gold.
1790 #endif // !defined(GOLD_SYMTAB_H)