1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
36 /* For sparc64-cross-sparc32. */
44 #include "libiberty.h"
45 #include "safe-ctype.h"
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
49 static bfd_boolean
prep_headers (bfd
*);
50 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
51 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
52 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
59 /* Swap in a Verdef structure. */
62 _bfd_elf_swap_verdef_in (bfd
*abfd
,
63 const Elf_External_Verdef
*src
,
64 Elf_Internal_Verdef
*dst
)
66 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
67 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
68 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
69 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
70 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
71 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
72 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
75 /* Swap out a Verdef structure. */
78 _bfd_elf_swap_verdef_out (bfd
*abfd
,
79 const Elf_Internal_Verdef
*src
,
80 Elf_External_Verdef
*dst
)
82 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
83 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
84 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
85 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
86 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
87 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
88 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
91 /* Swap in a Verdaux structure. */
94 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
95 const Elf_External_Verdaux
*src
,
96 Elf_Internal_Verdaux
*dst
)
98 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
99 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
102 /* Swap out a Verdaux structure. */
105 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
106 const Elf_Internal_Verdaux
*src
,
107 Elf_External_Verdaux
*dst
)
109 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
110 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
113 /* Swap in a Verneed structure. */
116 _bfd_elf_swap_verneed_in (bfd
*abfd
,
117 const Elf_External_Verneed
*src
,
118 Elf_Internal_Verneed
*dst
)
120 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
121 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
122 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
123 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
124 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
127 /* Swap out a Verneed structure. */
130 _bfd_elf_swap_verneed_out (bfd
*abfd
,
131 const Elf_Internal_Verneed
*src
,
132 Elf_External_Verneed
*dst
)
134 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
135 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
136 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
137 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
138 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
141 /* Swap in a Vernaux structure. */
144 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
145 const Elf_External_Vernaux
*src
,
146 Elf_Internal_Vernaux
*dst
)
148 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
149 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
150 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
151 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
152 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
155 /* Swap out a Vernaux structure. */
158 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
159 const Elf_Internal_Vernaux
*src
,
160 Elf_External_Vernaux
*dst
)
162 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
163 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
164 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
165 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
166 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
169 /* Swap in a Versym structure. */
172 _bfd_elf_swap_versym_in (bfd
*abfd
,
173 const Elf_External_Versym
*src
,
174 Elf_Internal_Versym
*dst
)
176 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
179 /* Swap out a Versym structure. */
182 _bfd_elf_swap_versym_out (bfd
*abfd
,
183 const Elf_Internal_Versym
*src
,
184 Elf_External_Versym
*dst
)
186 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
193 bfd_elf_hash (const char *namearg
)
195 const unsigned char *name
= (const unsigned char *) namearg
;
200 while ((ch
= *name
++) != '\0')
203 if ((g
= (h
& 0xf0000000)) != 0)
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
211 return h
& 0xffffffff;
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
218 bfd_elf_gnu_hash (const char *namearg
)
220 const unsigned char *name
= (const unsigned char *) namearg
;
221 unsigned long h
= 5381;
224 while ((ch
= *name
++) != '\0')
225 h
= (h
<< 5) + h
+ ch
;
226 return h
& 0xffffffff;
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232 bfd_elf_allocate_object (bfd
*abfd
,
234 enum elf_object_id object_id
)
236 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
237 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
238 if (abfd
->tdata
.any
== NULL
)
241 elf_object_id (abfd
) = object_id
;
242 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
248 bfd_elf_make_generic_object (bfd
*abfd
)
250 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
255 bfd_elf_mkcorefile (bfd
*abfd
)
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd
);
262 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
264 Elf_Internal_Shdr
**i_shdrp
;
265 bfd_byte
*shstrtab
= NULL
;
267 bfd_size_type shstrtabsize
;
269 i_shdrp
= elf_elfsections (abfd
);
271 || shindex
>= elf_numsections (abfd
)
272 || i_shdrp
[shindex
] == 0)
275 shstrtab
= i_shdrp
[shindex
]->contents
;
276 if (shstrtab
== NULL
)
278 /* No cached one, attempt to read, and cache what we read. */
279 offset
= i_shdrp
[shindex
]->sh_offset
;
280 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize
+ 1 <= 1
285 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
286 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
288 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
290 if (bfd_get_error () != bfd_error_system_call
)
291 bfd_set_error (bfd_error_file_truncated
);
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp
[shindex
]->sh_size
= 0;
299 shstrtab
[shstrtabsize
] = '\0';
300 i_shdrp
[shindex
]->contents
= shstrtab
;
302 return (char *) shstrtab
;
306 bfd_elf_string_from_elf_section (bfd
*abfd
,
307 unsigned int shindex
,
308 unsigned int strindex
)
310 Elf_Internal_Shdr
*hdr
;
315 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
318 hdr
= elf_elfsections (abfd
)[shindex
];
320 if (hdr
->contents
== NULL
321 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
324 if (strindex
>= hdr
->sh_size
)
326 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
327 (*_bfd_error_handler
)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
330 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
332 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
336 return ((char *) hdr
->contents
) + strindex
;
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
348 bfd_elf_get_elf_syms (bfd
*ibfd
,
349 Elf_Internal_Shdr
*symtab_hdr
,
352 Elf_Internal_Sym
*intsym_buf
,
354 Elf_External_Sym_Shndx
*extshndx_buf
)
356 Elf_Internal_Shdr
*shndx_hdr
;
358 const bfd_byte
*esym
;
359 Elf_External_Sym_Shndx
*alloc_extshndx
;
360 Elf_External_Sym_Shndx
*shndx
;
361 Elf_Internal_Sym
*alloc_intsym
;
362 Elf_Internal_Sym
*isym
;
363 Elf_Internal_Sym
*isymend
;
364 const struct elf_backend_data
*bed
;
369 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
375 /* Normal syms might have section extension entries. */
377 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
378 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
380 /* Read the symbols. */
382 alloc_extshndx
= NULL
;
384 bed
= get_elf_backend_data (ibfd
);
385 extsym_size
= bed
->s
->sizeof_sym
;
386 amt
= symcount
* extsym_size
;
387 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
388 if (extsym_buf
== NULL
)
390 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
391 extsym_buf
= alloc_ext
;
393 if (extsym_buf
== NULL
394 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
395 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
401 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
405 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
406 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
407 if (extshndx_buf
== NULL
)
409 alloc_extshndx
= bfd_malloc2 (symcount
,
410 sizeof (Elf_External_Sym_Shndx
));
411 extshndx_buf
= alloc_extshndx
;
413 if (extshndx_buf
== NULL
414 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
415 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
422 if (intsym_buf
== NULL
)
424 alloc_intsym
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
425 intsym_buf
= alloc_intsym
;
426 if (intsym_buf
== NULL
)
430 /* Convert the symbols to internal form. */
431 isymend
= intsym_buf
+ symcount
;
432 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
434 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
435 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
437 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
438 (*_bfd_error_handler
) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd
, (unsigned long) symoffset
);
441 if (alloc_intsym
!= NULL
)
448 if (alloc_ext
!= NULL
)
450 if (alloc_extshndx
!= NULL
)
451 free (alloc_extshndx
);
456 /* Look up a symbol name. */
458 bfd_elf_sym_name (bfd
*abfd
,
459 Elf_Internal_Shdr
*symtab_hdr
,
460 Elf_Internal_Sym
*isym
,
464 unsigned int iname
= isym
->st_name
;
465 unsigned int shindex
= symtab_hdr
->sh_link
;
467 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym
->st_shndx
< elf_numsections (abfd
))
471 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
472 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
475 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
478 else if (sym_sec
&& *name
== '\0')
479 name
= bfd_section_name (abfd
, sym_sec
);
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
488 typedef union elf_internal_group
{
489 Elf_Internal_Shdr
*shdr
;
491 } Elf_Internal_Group
;
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
497 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
499 Elf_Internal_Shdr
*hdr
;
500 unsigned char esym
[sizeof (Elf64_External_Sym
)];
501 Elf_External_Sym_Shndx eshndx
;
502 Elf_Internal_Sym isym
;
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr
->sh_link
>= elf_numsections (abfd
))
508 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
509 if (hdr
->sh_type
!= SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
513 /* Go read the symbol. */
514 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
515 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
516 &isym
, esym
, &eshndx
) == NULL
)
519 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
525 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
527 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
533 unsigned int i
, shnum
;
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum
= elf_numsections (abfd
);
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
546 for (i
= 0; i
< shnum
; i
++)
548 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
556 num_group
= (unsigned) -1;
557 elf_tdata (abfd
)->num_group
= num_group
;
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
565 elf_tdata (abfd
)->num_group
= num_group
;
566 elf_tdata (abfd
)->group_sect_ptr
567 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
568 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
572 for (i
= 0; i
< shnum
; i
++)
574 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
579 Elf_Internal_Group
*dest
;
581 /* Add to list of sections. */
582 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest
) >= 4);
587 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
588 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr
->contents
== NULL
)
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
595 bfd_set_error (bfd_error_bad_value
);
599 memset (shdr
->contents
, 0, amt
);
601 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
602 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
610 src
= shdr
->contents
+ shdr
->sh_size
;
611 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
618 idx
= H_GET_32 (abfd
, src
);
619 if (src
== shdr
->contents
)
622 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
623 shdr
->bfd_section
->flags
624 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
629 ((*_bfd_error_handler
)
630 (_("%B: invalid SHT_GROUP entry"), abfd
));
633 dest
->shdr
= elf_elfsections (abfd
)[idx
];
640 if (num_group
!= (unsigned) -1)
644 for (i
= 0; i
< num_group
; i
++)
646 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
647 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
648 unsigned int n_elt
= shdr
->sh_size
/ 4;
650 /* Look through this group's sections to see if current
651 section is a member. */
653 if ((++idx
)->shdr
== hdr
)
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
660 idx
= (Elf_Internal_Group
*) shdr
->contents
;
661 n_elt
= shdr
->sh_size
/ 4;
663 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
664 && elf_next_in_group (s
) != NULL
)
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect
) = elf_group_name (s
);
671 elf_next_in_group (newsect
) = elf_next_in_group (s
);
672 elf_next_in_group (s
) = newsect
;
678 gname
= group_signature (abfd
, shdr
);
681 elf_group_name (newsect
) = gname
;
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect
) = newsect
;
687 /* If the group section has been created, point to the
689 if (shdr
->bfd_section
!= NULL
)
690 elf_next_in_group (shdr
->bfd_section
) = newsect
;
698 if (elf_group_name (newsect
) == NULL
)
700 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
707 _bfd_elf_setup_sections (bfd
*abfd
)
710 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
711 bfd_boolean result
= TRUE
;
714 /* Process SHF_LINK_ORDER. */
715 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
717 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
718 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
720 unsigned int elfsec
= this_hdr
->sh_link
;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
726 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
727 if (bed
->link_order_error_handler
)
728 bed
->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
734 asection
*link
= NULL
;
736 if (elfsec
< elf_numsections (abfd
))
738 this_hdr
= elf_elfsections (abfd
)[elfsec
];
739 link
= this_hdr
->bfd_section
;
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
747 (*_bfd_error_handler
)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s
->owner
, s
, elfsec
);
753 elf_linked_to_section (s
) = link
;
758 /* Process section groups. */
759 if (num_group
== (unsigned) -1)
762 for (i
= 0; i
< num_group
; i
++)
764 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
765 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
766 unsigned int n_elt
= shdr
->sh_size
/ 4;
769 if ((++idx
)->shdr
->bfd_section
)
770 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
771 else if (idx
->shdr
->sh_type
== SHT_RELA
772 || idx
->shdr
->sh_type
== SHT_REL
)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
778 shdr
->bfd_section
->size
-= 4;
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler
)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
785 (unsigned int) idx
->shdr
->sh_type
,
786 bfd_elf_string_from_elf_section (abfd
,
787 (elf_elfheader (abfd
)
790 shdr
->bfd_section
->name
);
798 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
800 return elf_next_in_group (sec
) != NULL
;
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
807 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
808 Elf_Internal_Shdr
*hdr
,
814 const struct elf_backend_data
*bed
;
816 if (hdr
->bfd_section
!= NULL
)
818 BFD_ASSERT (strcmp (name
,
819 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
823 newsect
= bfd_make_section_anyway (abfd
, name
);
827 hdr
->bfd_section
= newsect
;
828 elf_section_data (newsect
)->this_hdr
= *hdr
;
829 elf_section_data (newsect
)->this_idx
= shindex
;
831 /* Always use the real type/flags. */
832 elf_section_type (newsect
) = hdr
->sh_type
;
833 elf_section_flags (newsect
) = hdr
->sh_flags
;
835 newsect
->filepos
= hdr
->sh_offset
;
837 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
838 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
839 || ! bfd_set_section_alignment (abfd
, newsect
,
840 bfd_log2 (hdr
->sh_addralign
)))
843 flags
= SEC_NO_FLAGS
;
844 if (hdr
->sh_type
!= SHT_NOBITS
)
845 flags
|= SEC_HAS_CONTENTS
;
846 if (hdr
->sh_type
== SHT_GROUP
)
847 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
848 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
851 if (hdr
->sh_type
!= SHT_NOBITS
)
854 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
855 flags
|= SEC_READONLY
;
856 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
858 else if ((flags
& SEC_LOAD
) != 0)
860 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
863 newsect
->entsize
= hdr
->sh_entsize
;
864 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
865 flags
|= SEC_STRINGS
;
867 if (hdr
->sh_flags
& SHF_GROUP
)
868 if (!setup_group (abfd
, hdr
, newsect
))
870 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
871 flags
|= SEC_THREAD_LOCAL
;
873 if ((flags
& SEC_ALLOC
) == 0)
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
881 } debug_sections
[] =
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL
, 0 }, /* 'e' */
885 { NULL
, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL
, 0 }, /* 'h' */
888 { NULL
, 0 }, /* 'i' */
889 { NULL
, 0 }, /* 'j' */
890 { NULL
, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL
, 0 }, /* 'm' */
893 { NULL
, 0 }, /* 'n' */
894 { NULL
, 0 }, /* 'o' */
895 { NULL
, 0 }, /* 'p' */
896 { NULL
, 0 }, /* 'q' */
897 { NULL
, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL
, 0 }, /* 't' */
900 { NULL
, 0 }, /* 'u' */
901 { NULL
, 0 }, /* 'v' */
902 { NULL
, 0 }, /* 'w' */
903 { NULL
, 0 }, /* 'x' */
904 { NULL
, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
910 int i
= name
[1] - 'd';
912 && i
< (int) ARRAY_SIZE (debug_sections
)
913 && debug_sections
[i
].name
!= NULL
914 && strncmp (&name
[1], debug_sections
[i
].name
,
915 debug_sections
[i
].len
) == 0)
916 flags
|= SEC_DEBUGGING
;
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name
, ".gnu.linkonce")
927 && elf_next_in_group (newsect
) == NULL
)
928 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
930 bed
= get_elf_backend_data (abfd
);
931 if (bed
->elf_backend_section_flags
)
932 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
935 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr
->sh_type
== SHT_NOTE
)
945 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
948 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
952 if ((flags
& SEC_ALLOC
) != 0)
954 Elf_Internal_Phdr
*phdr
;
955 unsigned int i
, nload
;
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr
= elf_tdata (abfd
)->phdr
;
962 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
963 if (phdr
->p_paddr
!= 0)
965 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
967 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
970 phdr
= elf_tdata (abfd
)->phdr
;
971 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr
->p_type
== PT_LOAD
986 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
987 && (hdr
->sh_offset
+ hdr
->sh_size
988 <= phdr
->p_offset
+ phdr
->p_memsz
)
989 && ((flags
& SEC_LOAD
) == 0
990 || (hdr
->sh_offset
+ hdr
->sh_size
991 <= phdr
->p_offset
+ phdr
->p_filesz
)))
993 if ((flags
& SEC_LOAD
) == 0)
994 newsect
->lma
= (phdr
->p_paddr
995 + hdr
->sh_addr
- phdr
->p_vaddr
);
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect
->lma
= (phdr
->p_paddr
1005 + hdr
->sh_offset
- phdr
->p_offset
);
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr
->sh_addr
>= phdr
->p_vaddr
1012 && (hdr
->sh_addr
+ hdr
->sh_size
1013 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1024 bfd_elf_find_section
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1037 struct elf_internal_shdr
*
1038 bfd_elf_find_section (bfd
*abfd
, char *name
)
1040 Elf_Internal_Shdr
**i_shdrp
;
1045 i_shdrp
= elf_elfsections (abfd
);
1046 if (i_shdrp
!= NULL
)
1048 shstrtab
= bfd_elf_get_str_section (abfd
,
1049 elf_elfheader (abfd
)->e_shstrndx
);
1050 if (shstrtab
!= NULL
)
1052 max
= elf_numsections (abfd
);
1053 for (i
= 1; i
< max
; i
++)
1054 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
1061 const char *const bfd_elf_section_type_names
[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1079 arelent
*reloc_entry
,
1081 void *data ATTRIBUTE_UNUSED
,
1082 asection
*input_section
,
1084 char **error_message ATTRIBUTE_UNUSED
)
1086 if (output_bfd
!= NULL
1087 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1088 && (! reloc_entry
->howto
->partial_inplace
1089 || reloc_entry
->addend
== 0))
1091 reloc_entry
->address
+= input_section
->output_offset
;
1092 return bfd_reloc_ok
;
1095 return bfd_reloc_continue
;
1098 /* Copy the program header and other data from one object module to
1102 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1104 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1108 BFD_ASSERT (!elf_flags_init (obfd
)
1109 || (elf_elfheader (obfd
)->e_flags
1110 == elf_elfheader (ibfd
)->e_flags
));
1112 elf_gp (obfd
) = elf_gp (ibfd
);
1113 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1114 elf_flags_init (obfd
) = TRUE
;
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1123 get_segment_type (unsigned int p_type
)
1128 case PT_NULL
: pt
= "NULL"; break;
1129 case PT_LOAD
: pt
= "LOAD"; break;
1130 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1131 case PT_INTERP
: pt
= "INTERP"; break;
1132 case PT_NOTE
: pt
= "NOTE"; break;
1133 case PT_SHLIB
: pt
= "SHLIB"; break;
1134 case PT_PHDR
: pt
= "PHDR"; break;
1135 case PT_TLS
: pt
= "TLS"; break;
1136 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1137 case PT_GNU_STACK
: pt
= "STACK"; break;
1138 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1139 default: pt
= NULL
; break;
1144 /* Print out the program headers. */
1147 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1150 Elf_Internal_Phdr
*p
;
1152 bfd_byte
*dynbuf
= NULL
;
1154 p
= elf_tdata (abfd
)->phdr
;
1159 fprintf (f
, _("\nProgram Header:\n"));
1160 c
= elf_elfheader (abfd
)->e_phnum
;
1161 for (i
= 0; i
< c
; i
++, p
++)
1163 const char *pt
= get_segment_type (p
->p_type
);
1168 sprintf (buf
, "0x%lx", p
->p_type
);
1171 fprintf (f
, "%8s off 0x", pt
);
1172 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1173 fprintf (f
, " vaddr 0x");
1174 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1175 fprintf (f
, " paddr 0x");
1176 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1177 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1178 fprintf (f
, " filesz 0x");
1179 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1180 fprintf (f
, " memsz 0x");
1181 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1182 fprintf (f
, " flags %c%c%c",
1183 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1184 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1185 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1186 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1187 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1192 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1195 unsigned int elfsec
;
1196 unsigned long shlink
;
1197 bfd_byte
*extdyn
, *extdynend
;
1199 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1201 fprintf (f
, _("\nDynamic Section:\n"));
1203 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1206 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1207 if (elfsec
== SHN_BAD
)
1209 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1211 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1212 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1215 extdynend
= extdyn
+ s
->size
;
1216 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1218 Elf_Internal_Dyn dyn
;
1219 const char *name
= "";
1221 bfd_boolean stringp
;
1222 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1224 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1226 if (dyn
.d_tag
== DT_NULL
)
1233 if (bed
->elf_backend_get_target_dtag
)
1234 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1236 if (!strcmp (name
, ""))
1238 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1243 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1244 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1245 case DT_PLTGOT
: name
= "PLTGOT"; break;
1246 case DT_HASH
: name
= "HASH"; break;
1247 case DT_STRTAB
: name
= "STRTAB"; break;
1248 case DT_SYMTAB
: name
= "SYMTAB"; break;
1249 case DT_RELA
: name
= "RELA"; break;
1250 case DT_RELASZ
: name
= "RELASZ"; break;
1251 case DT_RELAENT
: name
= "RELAENT"; break;
1252 case DT_STRSZ
: name
= "STRSZ"; break;
1253 case DT_SYMENT
: name
= "SYMENT"; break;
1254 case DT_INIT
: name
= "INIT"; break;
1255 case DT_FINI
: name
= "FINI"; break;
1256 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1257 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1258 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1259 case DT_REL
: name
= "REL"; break;
1260 case DT_RELSZ
: name
= "RELSZ"; break;
1261 case DT_RELENT
: name
= "RELENT"; break;
1262 case DT_PLTREL
: name
= "PLTREL"; break;
1263 case DT_DEBUG
: name
= "DEBUG"; break;
1264 case DT_TEXTREL
: name
= "TEXTREL"; break;
1265 case DT_JMPREL
: name
= "JMPREL"; break;
1266 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1267 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1272 case DT_FLAGS
: name
= "FLAGS"; break;
1273 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1276 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1277 case DT_MOVEENT
: name
= "MOVEENT"; break;
1278 case DT_MOVESZ
: name
= "MOVESZ"; break;
1279 case DT_FEATURE
: name
= "FEATURE"; break;
1280 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1281 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1282 case DT_SYMINENT
: name
= "SYMINENT"; break;
1283 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1284 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1285 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1286 case DT_PLTPAD
: name
= "PLTPAD"; break;
1287 case DT_MOVETAB
: name
= "MOVETAB"; break;
1288 case DT_SYMINFO
: name
= "SYMINFO"; break;
1289 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1290 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1291 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1292 case DT_VERSYM
: name
= "VERSYM"; break;
1293 case DT_VERDEF
: name
= "VERDEF"; break;
1294 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1295 case DT_VERNEED
: name
= "VERNEED"; break;
1296 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1297 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1298 case DT_USED
: name
= "USED"; break;
1299 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1300 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1303 fprintf (f
, " %-20s ", name
);
1307 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1312 unsigned int tagv
= dyn
.d_un
.d_val
;
1314 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1317 fprintf (f
, "%s", string
);
1326 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1327 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1329 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1333 if (elf_dynverdef (abfd
) != 0)
1335 Elf_Internal_Verdef
*t
;
1337 fprintf (f
, _("\nVersion definitions:\n"));
1338 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1340 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1341 t
->vd_flags
, t
->vd_hash
,
1342 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1343 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1345 Elf_Internal_Verdaux
*a
;
1348 for (a
= t
->vd_auxptr
->vda_nextptr
;
1352 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1358 if (elf_dynverref (abfd
) != 0)
1360 Elf_Internal_Verneed
*t
;
1362 fprintf (f
, _("\nVersion References:\n"));
1363 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1365 Elf_Internal_Vernaux
*a
;
1367 fprintf (f
, _(" required from %s:\n"),
1368 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1369 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1370 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1371 a
->vna_flags
, a
->vna_other
,
1372 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1384 /* Display ELF-specific fields of a symbol. */
1387 bfd_elf_print_symbol (bfd
*abfd
,
1390 bfd_print_symbol_type how
)
1395 case bfd_print_symbol_name
:
1396 fprintf (file
, "%s", symbol
->name
);
1398 case bfd_print_symbol_more
:
1399 fprintf (file
, "elf ");
1400 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1401 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1403 case bfd_print_symbol_all
:
1405 const char *section_name
;
1406 const char *name
= NULL
;
1407 const struct elf_backend_data
*bed
;
1408 unsigned char st_other
;
1411 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1413 bed
= get_elf_backend_data (abfd
);
1414 if (bed
->elf_backend_print_symbol_all
)
1415 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1419 name
= symbol
->name
;
1420 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1423 fprintf (file
, " %s\t", section_name
);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1429 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1431 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1432 bfd_fprintf_vma (abfd
, file
, val
);
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd
)->dynversym_section
!= 0
1436 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1437 || elf_tdata (abfd
)->dynverref_section
!= 0))
1439 unsigned int vernum
;
1440 const char *version_string
;
1442 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1445 version_string
= "";
1446 else if (vernum
== 1)
1447 version_string
= "Base";
1448 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1450 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1453 Elf_Internal_Verneed
*t
;
1455 version_string
= "";
1456 for (t
= elf_tdata (abfd
)->verref
;
1460 Elf_Internal_Vernaux
*a
;
1462 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1464 if (a
->vna_other
== vernum
)
1466 version_string
= a
->vna_nodename
;
1473 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1474 fprintf (file
, " %-11s", version_string
);
1479 fprintf (file
, " (%s)", version_string
);
1480 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1485 /* If the st_other field is not zero, print it. */
1486 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1491 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1492 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1493 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1495 /* Some other non-defined flags are also present, so print
1497 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1500 fprintf (file
, " %s", name
);
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1508 struct bfd_strtab_hash
*
1509 _bfd_elf_stringtab_init (void)
1511 struct bfd_strtab_hash
*ret
;
1513 ret
= _bfd_stringtab_init ();
1518 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1519 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1520 if (loc
== (bfd_size_type
) -1)
1522 _bfd_stringtab_free (ret
);
1529 /* ELF .o/exec file reading */
1531 /* Create a new bfd section from an ELF section header. */
1534 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1536 Elf_Internal_Shdr
*hdr
;
1537 Elf_Internal_Ehdr
*ehdr
;
1538 const struct elf_backend_data
*bed
;
1541 if (shindex
>= elf_numsections (abfd
))
1544 hdr
= elf_elfsections (abfd
)[shindex
];
1545 ehdr
= elf_elfheader (abfd
);
1546 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1551 bed
= get_elf_backend_data (abfd
);
1552 switch (hdr
->sh_type
)
1555 /* Inactive section. Throw it away. */
1558 case SHT_PROGBITS
: /* Normal section with contents. */
1559 case SHT_NOBITS
: /* .bss section. */
1560 case SHT_HASH
: /* .hash section. */
1561 case SHT_NOTE
: /* .note section. */
1562 case SHT_INIT_ARRAY
: /* .init_array section. */
1563 case SHT_FINI_ARRAY
: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH
: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1569 case SHT_DYNAMIC
: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1572 if (hdr
->sh_link
> elf_numsections (abfd
)
1573 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1575 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1577 Elf_Internal_Shdr
*dynsymhdr
;
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd
) != 0)
1584 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1585 hdr
->sh_link
= dynsymhdr
->sh_link
;
1589 unsigned int i
, num_sec
;
1591 num_sec
= elf_numsections (abfd
);
1592 for (i
= 1; i
< num_sec
; i
++)
1594 dynsymhdr
= elf_elfsections (abfd
)[i
];
1595 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1597 hdr
->sh_link
= dynsymhdr
->sh_link
;
1605 case SHT_SYMTAB
: /* A symbol table */
1606 if (elf_onesymtab (abfd
) == shindex
)
1609 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1611 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1613 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1614 elf_onesymtab (abfd
) = shindex
;
1615 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1616 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1617 abfd
->flags
|= HAS_SYMS
;
1619 /* Sometimes a shared object will map in the symbol table. If
1620 SHF_ALLOC is set, and this is a shared object, then we also
1621 treat this section as a BFD section. We can not base the
1622 decision purely on SHF_ALLOC, because that flag is sometimes
1623 set in a relocatable object file, which would confuse the
1625 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1626 && (abfd
->flags
& DYNAMIC
) != 0
1627 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1631 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1632 can't read symbols without that section loaded as well. It
1633 is most likely specified by the next section header. */
1634 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1636 unsigned int i
, num_sec
;
1638 num_sec
= elf_numsections (abfd
);
1639 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1641 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1642 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1643 && hdr2
->sh_link
== shindex
)
1647 for (i
= 1; i
< shindex
; i
++)
1649 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1650 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1651 && hdr2
->sh_link
== shindex
)
1655 return bfd_section_from_shdr (abfd
, i
);
1659 case SHT_DYNSYM
: /* A dynamic symbol table */
1660 if (elf_dynsymtab (abfd
) == shindex
)
1663 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1665 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1666 elf_dynsymtab (abfd
) = shindex
;
1667 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1668 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1669 abfd
->flags
|= HAS_SYMS
;
1671 /* Besides being a symbol table, we also treat this as a regular
1672 section, so that objcopy can handle it. */
1673 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1675 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1676 if (elf_symtab_shndx (abfd
) == shindex
)
1679 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1680 elf_symtab_shndx (abfd
) = shindex
;
1681 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1682 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1685 case SHT_STRTAB
: /* A string table */
1686 if (hdr
->bfd_section
!= NULL
)
1688 if (ehdr
->e_shstrndx
== shindex
)
1690 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1691 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1694 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1697 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1698 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1701 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1704 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1705 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1706 elf_elfsections (abfd
)[shindex
] = hdr
;
1707 /* We also treat this as a regular section, so that objcopy
1709 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1713 /* If the string table isn't one of the above, then treat it as a
1714 regular section. We need to scan all the headers to be sure,
1715 just in case this strtab section appeared before the above. */
1716 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1718 unsigned int i
, num_sec
;
1720 num_sec
= elf_numsections (abfd
);
1721 for (i
= 1; i
< num_sec
; i
++)
1723 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1724 if (hdr2
->sh_link
== shindex
)
1726 /* Prevent endless recursion on broken objects. */
1729 if (! bfd_section_from_shdr (abfd
, i
))
1731 if (elf_onesymtab (abfd
) == i
)
1733 if (elf_dynsymtab (abfd
) == i
)
1734 goto dynsymtab_strtab
;
1738 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1742 /* *These* do a lot of work -- but build no sections! */
1744 asection
*target_sect
;
1745 Elf_Internal_Shdr
*hdr2
;
1746 unsigned int num_sec
= elf_numsections (abfd
);
1749 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1750 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1753 /* Check for a bogus link to avoid crashing. */
1754 if (hdr
->sh_link
>= num_sec
)
1756 ((*_bfd_error_handler
)
1757 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1758 abfd
, hdr
->sh_link
, name
, shindex
));
1759 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1763 /* For some incomprehensible reason Oracle distributes
1764 libraries for Solaris in which some of the objects have
1765 bogus sh_link fields. It would be nice if we could just
1766 reject them, but, unfortunately, some people need to use
1767 them. We scan through the section headers; if we find only
1768 one suitable symbol table, we clobber the sh_link to point
1769 to it. I hope this doesn't break anything. */
1770 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1771 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1777 for (scan
= 1; scan
< num_sec
; scan
++)
1779 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1780 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1791 hdr
->sh_link
= found
;
1794 /* Get the symbol table. */
1795 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1796 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1797 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1800 /* If this reloc section does not use the main symbol table we
1801 don't treat it as a reloc section. BFD can't adequately
1802 represent such a section, so at least for now, we don't
1803 try. We just present it as a normal section. We also
1804 can't use it as a reloc section if it points to the null
1805 section, an invalid section, or another reloc section. */
1806 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1807 || hdr
->sh_info
== SHN_UNDEF
1808 || hdr
->sh_info
>= num_sec
1809 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1810 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1811 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1814 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1816 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1817 if (target_sect
== NULL
)
1820 if ((target_sect
->flags
& SEC_RELOC
) == 0
1821 || target_sect
->reloc_count
== 0)
1822 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1826 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1827 amt
= sizeof (*hdr2
);
1828 hdr2
= bfd_alloc (abfd
, amt
);
1831 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1834 elf_elfsections (abfd
)[shindex
] = hdr2
;
1835 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1836 target_sect
->flags
|= SEC_RELOC
;
1837 target_sect
->relocation
= NULL
;
1838 target_sect
->rel_filepos
= hdr
->sh_offset
;
1839 /* In the section to which the relocations apply, mark whether
1840 its relocations are of the REL or RELA variety. */
1841 if (hdr
->sh_size
!= 0)
1842 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1843 abfd
->flags
|= HAS_RELOC
;
1847 case SHT_GNU_verdef
:
1848 elf_dynverdef (abfd
) = shindex
;
1849 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1850 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1852 case SHT_GNU_versym
:
1853 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1855 elf_dynversym (abfd
) = shindex
;
1856 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1857 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1859 case SHT_GNU_verneed
:
1860 elf_dynverref (abfd
) = shindex
;
1861 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1862 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1868 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1870 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1872 if (hdr
->contents
!= NULL
)
1874 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1875 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1878 if (idx
->flags
& GRP_COMDAT
)
1879 hdr
->bfd_section
->flags
1880 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1882 /* We try to keep the same section order as it comes in. */
1884 while (--n_elt
!= 0)
1888 if (idx
->shdr
!= NULL
1889 && (s
= idx
->shdr
->bfd_section
) != NULL
1890 && elf_next_in_group (s
) != NULL
)
1892 elf_next_in_group (hdr
->bfd_section
) = s
;
1900 /* Possibly an attributes section. */
1901 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1902 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1904 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1906 _bfd_elf_parse_attributes (abfd
, hdr
);
1910 /* Check for any processor-specific section types. */
1911 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1914 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1916 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1917 /* FIXME: How to properly handle allocated section reserved
1918 for applications? */
1919 (*_bfd_error_handler
)
1920 (_("%B: don't know how to handle allocated, application "
1921 "specific section `%s' [0x%8x]"),
1922 abfd
, name
, hdr
->sh_type
);
1924 /* Allow sections reserved for applications. */
1925 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1928 else if (hdr
->sh_type
>= SHT_LOPROC
1929 && hdr
->sh_type
<= SHT_HIPROC
)
1930 /* FIXME: We should handle this section. */
1931 (*_bfd_error_handler
)
1932 (_("%B: don't know how to handle processor specific section "
1934 abfd
, name
, hdr
->sh_type
);
1935 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1937 /* Unrecognised OS-specific sections. */
1938 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1939 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1940 required to correctly process the section and the file should
1941 be rejected with an error message. */
1942 (*_bfd_error_handler
)
1943 (_("%B: don't know how to handle OS specific section "
1945 abfd
, name
, hdr
->sh_type
);
1947 /* Otherwise it should be processed. */
1948 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1951 /* FIXME: We should handle this section. */
1952 (*_bfd_error_handler
)
1953 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1954 abfd
, name
, hdr
->sh_type
);
1962 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1963 Return SEC for sections that have no elf section, and NULL on error. */
1966 bfd_section_from_r_symndx (bfd
*abfd
,
1967 struct sym_sec_cache
*cache
,
1969 unsigned long r_symndx
)
1971 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1974 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1976 Elf_Internal_Shdr
*symtab_hdr
;
1977 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1978 Elf_External_Sym_Shndx eshndx
;
1979 Elf_Internal_Sym isym
;
1981 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1982 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1983 &isym
, esym
, &eshndx
) == NULL
)
1986 if (cache
->abfd
!= abfd
)
1988 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1991 cache
->indx
[ent
] = r_symndx
;
1992 cache
->shndx
[ent
] = isym
.st_shndx
;
1995 s
= bfd_section_from_elf_index (abfd
, cache
->shndx
[ent
]);
2002 /* Given an ELF section number, retrieve the corresponding BFD
2006 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2008 if (index
>= elf_numsections (abfd
))
2010 return elf_elfsections (abfd
)[index
]->bfd_section
;
2013 static const struct bfd_elf_special_section special_sections_b
[] =
2015 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2016 { NULL
, 0, 0, 0, 0 }
2019 static const struct bfd_elf_special_section special_sections_c
[] =
2021 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2022 { NULL
, 0, 0, 0, 0 }
2025 static const struct bfd_elf_special_section special_sections_d
[] =
2027 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2028 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2029 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2030 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2031 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2032 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2033 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2034 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2035 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2036 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2037 { NULL
, 0, 0, 0, 0 }
2040 static const struct bfd_elf_special_section special_sections_f
[] =
2042 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2043 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2044 { NULL
, 0, 0, 0, 0 }
2047 static const struct bfd_elf_special_section special_sections_g
[] =
2049 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2050 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2051 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2052 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2053 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2054 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2055 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2056 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2057 { NULL
, 0, 0, 0, 0 }
2060 static const struct bfd_elf_special_section special_sections_h
[] =
2062 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2063 { NULL
, 0, 0, 0, 0 }
2066 static const struct bfd_elf_special_section special_sections_i
[] =
2068 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2069 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2070 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2071 { NULL
, 0, 0, 0, 0 }
2074 static const struct bfd_elf_special_section special_sections_l
[] =
2076 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2077 { NULL
, 0, 0, 0, 0 }
2080 static const struct bfd_elf_special_section special_sections_n
[] =
2082 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2083 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2084 { NULL
, 0, 0, 0, 0 }
2087 static const struct bfd_elf_special_section special_sections_p
[] =
2089 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2090 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2091 { NULL
, 0, 0, 0, 0 }
2094 static const struct bfd_elf_special_section special_sections_r
[] =
2096 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2097 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2098 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2099 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2100 { NULL
, 0, 0, 0, 0 }
2103 static const struct bfd_elf_special_section special_sections_s
[] =
2105 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2106 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2107 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2108 /* See struct bfd_elf_special_section declaration for the semantics of
2109 this special case where .prefix_length != strlen (.prefix). */
2110 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2111 { NULL
, 0, 0, 0, 0 }
2114 static const struct bfd_elf_special_section special_sections_t
[] =
2116 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2117 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2118 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2119 { NULL
, 0, 0, 0, 0 }
2122 static const struct bfd_elf_special_section special_sections_z
[] =
2124 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2125 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2126 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2127 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2128 { NULL
, 0, 0, 0, 0 }
2131 static const struct bfd_elf_special_section
*special_sections
[] =
2133 special_sections_b
, /* 'b' */
2134 special_sections_c
, /* 'c' */
2135 special_sections_d
, /* 'd' */
2137 special_sections_f
, /* 'f' */
2138 special_sections_g
, /* 'g' */
2139 special_sections_h
, /* 'h' */
2140 special_sections_i
, /* 'i' */
2143 special_sections_l
, /* 'l' */
2145 special_sections_n
, /* 'n' */
2147 special_sections_p
, /* 'p' */
2149 special_sections_r
, /* 'r' */
2150 special_sections_s
, /* 's' */
2151 special_sections_t
, /* 't' */
2157 special_sections_z
/* 'z' */
2160 const struct bfd_elf_special_section
*
2161 _bfd_elf_get_special_section (const char *name
,
2162 const struct bfd_elf_special_section
*spec
,
2168 len
= strlen (name
);
2170 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2173 int prefix_len
= spec
[i
].prefix_length
;
2175 if (len
< prefix_len
)
2177 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2180 suffix_len
= spec
[i
].suffix_length
;
2181 if (suffix_len
<= 0)
2183 if (name
[prefix_len
] != 0)
2185 if (suffix_len
== 0)
2187 if (name
[prefix_len
] != '.'
2188 && (suffix_len
== -2
2189 || (rela
&& spec
[i
].type
== SHT_REL
)))
2195 if (len
< prefix_len
+ suffix_len
)
2197 if (memcmp (name
+ len
- suffix_len
,
2198 spec
[i
].prefix
+ prefix_len
,
2208 const struct bfd_elf_special_section
*
2209 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2212 const struct bfd_elf_special_section
*spec
;
2213 const struct elf_backend_data
*bed
;
2215 /* See if this is one of the special sections. */
2216 if (sec
->name
== NULL
)
2219 bed
= get_elf_backend_data (abfd
);
2220 spec
= bed
->special_sections
;
2223 spec
= _bfd_elf_get_special_section (sec
->name
,
2224 bed
->special_sections
,
2230 if (sec
->name
[0] != '.')
2233 i
= sec
->name
[1] - 'b';
2234 if (i
< 0 || i
> 'z' - 'b')
2237 spec
= special_sections
[i
];
2242 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2246 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2248 struct bfd_elf_section_data
*sdata
;
2249 const struct elf_backend_data
*bed
;
2250 const struct bfd_elf_special_section
*ssect
;
2252 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2255 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2258 sec
->used_by_bfd
= sdata
;
2261 /* Indicate whether or not this section should use RELA relocations. */
2262 bed
= get_elf_backend_data (abfd
);
2263 sec
->use_rela_p
= bed
->default_use_rela_p
;
2265 /* When we read a file, we don't need to set ELF section type and
2266 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2267 anyway. We will set ELF section type and flags for all linker
2268 created sections. If user specifies BFD section flags, we will
2269 set ELF section type and flags based on BFD section flags in
2270 elf_fake_sections. */
2271 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2272 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2274 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2277 elf_section_type (sec
) = ssect
->type
;
2278 elf_section_flags (sec
) = ssect
->attr
;
2282 return _bfd_generic_new_section_hook (abfd
, sec
);
2285 /* Create a new bfd section from an ELF program header.
2287 Since program segments have no names, we generate a synthetic name
2288 of the form segment<NUM>, where NUM is generally the index in the
2289 program header table. For segments that are split (see below) we
2290 generate the names segment<NUM>a and segment<NUM>b.
2292 Note that some program segments may have a file size that is different than
2293 (less than) the memory size. All this means is that at execution the
2294 system must allocate the amount of memory specified by the memory size,
2295 but only initialize it with the first "file size" bytes read from the
2296 file. This would occur for example, with program segments consisting
2297 of combined data+bss.
2299 To handle the above situation, this routine generates TWO bfd sections
2300 for the single program segment. The first has the length specified by
2301 the file size of the segment, and the second has the length specified
2302 by the difference between the two sizes. In effect, the segment is split
2303 into its initialized and uninitialized parts.
2308 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2309 Elf_Internal_Phdr
*hdr
,
2311 const char *typename
)
2319 split
= ((hdr
->p_memsz
> 0)
2320 && (hdr
->p_filesz
> 0)
2321 && (hdr
->p_memsz
> hdr
->p_filesz
));
2323 if (hdr
->p_filesz
> 0)
2325 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2326 len
= strlen (namebuf
) + 1;
2327 name
= bfd_alloc (abfd
, len
);
2330 memcpy (name
, namebuf
, len
);
2331 newsect
= bfd_make_section (abfd
, name
);
2332 if (newsect
== NULL
)
2334 newsect
->vma
= hdr
->p_vaddr
;
2335 newsect
->lma
= hdr
->p_paddr
;
2336 newsect
->size
= hdr
->p_filesz
;
2337 newsect
->filepos
= hdr
->p_offset
;
2338 newsect
->flags
|= SEC_HAS_CONTENTS
;
2339 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2340 if (hdr
->p_type
== PT_LOAD
)
2342 newsect
->flags
|= SEC_ALLOC
;
2343 newsect
->flags
|= SEC_LOAD
;
2344 if (hdr
->p_flags
& PF_X
)
2346 /* FIXME: all we known is that it has execute PERMISSION,
2348 newsect
->flags
|= SEC_CODE
;
2351 if (!(hdr
->p_flags
& PF_W
))
2353 newsect
->flags
|= SEC_READONLY
;
2357 if (hdr
->p_memsz
> hdr
->p_filesz
)
2361 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "b" : "");
2362 len
= strlen (namebuf
) + 1;
2363 name
= bfd_alloc (abfd
, len
);
2366 memcpy (name
, namebuf
, len
);
2367 newsect
= bfd_make_section (abfd
, name
);
2368 if (newsect
== NULL
)
2370 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2371 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2372 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2373 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2374 align
= newsect
->vma
& -newsect
->vma
;
2375 if (align
== 0 || align
> hdr
->p_align
)
2376 align
= hdr
->p_align
;
2377 newsect
->alignment_power
= bfd_log2 (align
);
2378 if (hdr
->p_type
== PT_LOAD
)
2380 /* Hack for gdb. Segments that have not been modified do
2381 not have their contents written to a core file, on the
2382 assumption that a debugger can find the contents in the
2383 executable. We flag this case by setting the fake
2384 section size to zero. Note that "real" bss sections will
2385 always have their contents dumped to the core file. */
2386 if (bfd_get_format (abfd
) == bfd_core
)
2388 newsect
->flags
|= SEC_ALLOC
;
2389 if (hdr
->p_flags
& PF_X
)
2390 newsect
->flags
|= SEC_CODE
;
2392 if (!(hdr
->p_flags
& PF_W
))
2393 newsect
->flags
|= SEC_READONLY
;
2400 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2402 const struct elf_backend_data
*bed
;
2404 switch (hdr
->p_type
)
2407 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2410 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2413 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2416 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2419 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2421 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2426 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2429 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2431 case PT_GNU_EH_FRAME
:
2432 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2436 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2439 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2442 /* Check for any processor-specific program segment types. */
2443 bed
= get_elf_backend_data (abfd
);
2444 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2448 /* Initialize REL_HDR, the section-header for new section, containing
2449 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2450 relocations; otherwise, we use REL relocations. */
2453 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2454 Elf_Internal_Shdr
*rel_hdr
,
2456 bfd_boolean use_rela_p
)
2459 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2460 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2462 name
= bfd_alloc (abfd
, amt
);
2465 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2467 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2469 if (rel_hdr
->sh_name
== (unsigned int) -1)
2471 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2472 rel_hdr
->sh_entsize
= (use_rela_p
2473 ? bed
->s
->sizeof_rela
2474 : bed
->s
->sizeof_rel
);
2475 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2476 rel_hdr
->sh_flags
= 0;
2477 rel_hdr
->sh_addr
= 0;
2478 rel_hdr
->sh_size
= 0;
2479 rel_hdr
->sh_offset
= 0;
2484 /* Set up an ELF internal section header for a section. */
2487 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2489 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2490 bfd_boolean
*failedptr
= failedptrarg
;
2491 Elf_Internal_Shdr
*this_hdr
;
2492 unsigned int sh_type
;
2496 /* We already failed; just get out of the bfd_map_over_sections
2501 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2503 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2504 asect
->name
, FALSE
);
2505 if (this_hdr
->sh_name
== (unsigned int) -1)
2511 /* Don't clear sh_flags. Assembler may set additional bits. */
2513 if ((asect
->flags
& SEC_ALLOC
) != 0
2514 || asect
->user_set_vma
)
2515 this_hdr
->sh_addr
= asect
->vma
;
2517 this_hdr
->sh_addr
= 0;
2519 this_hdr
->sh_offset
= 0;
2520 this_hdr
->sh_size
= asect
->size
;
2521 this_hdr
->sh_link
= 0;
2522 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2523 /* The sh_entsize and sh_info fields may have been set already by
2524 copy_private_section_data. */
2526 this_hdr
->bfd_section
= asect
;
2527 this_hdr
->contents
= NULL
;
2529 /* If the section type is unspecified, we set it based on
2531 if ((asect
->flags
& SEC_GROUP
) != 0)
2532 sh_type
= SHT_GROUP
;
2533 else if ((asect
->flags
& SEC_ALLOC
) != 0
2534 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2535 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2536 sh_type
= SHT_NOBITS
;
2538 sh_type
= SHT_PROGBITS
;
2540 if (this_hdr
->sh_type
== SHT_NULL
)
2541 this_hdr
->sh_type
= sh_type
;
2542 else if (this_hdr
->sh_type
== SHT_NOBITS
2543 && sh_type
== SHT_PROGBITS
2544 && (asect
->flags
& SEC_ALLOC
) != 0)
2546 /* Warn if we are changing a NOBITS section to PROGBITS, but
2547 allow the link to proceed. This can happen when users link
2548 non-bss input sections to bss output sections, or emit data
2549 to a bss output section via a linker script. */
2550 (*_bfd_error_handler
)
2551 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2552 this_hdr
->sh_type
= sh_type
;
2555 switch (this_hdr
->sh_type
)
2561 case SHT_INIT_ARRAY
:
2562 case SHT_FINI_ARRAY
:
2563 case SHT_PREINIT_ARRAY
:
2570 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2574 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2578 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2582 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2583 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2587 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2588 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2591 case SHT_GNU_versym
:
2592 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2595 case SHT_GNU_verdef
:
2596 this_hdr
->sh_entsize
= 0;
2597 /* objcopy or strip will copy over sh_info, but may not set
2598 cverdefs. The linker will set cverdefs, but sh_info will be
2600 if (this_hdr
->sh_info
== 0)
2601 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2603 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2604 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2607 case SHT_GNU_verneed
:
2608 this_hdr
->sh_entsize
= 0;
2609 /* objcopy or strip will copy over sh_info, but may not set
2610 cverrefs. The linker will set cverrefs, but sh_info will be
2612 if (this_hdr
->sh_info
== 0)
2613 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2615 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2616 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2620 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2624 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2628 if ((asect
->flags
& SEC_ALLOC
) != 0)
2629 this_hdr
->sh_flags
|= SHF_ALLOC
;
2630 if ((asect
->flags
& SEC_READONLY
) == 0)
2631 this_hdr
->sh_flags
|= SHF_WRITE
;
2632 if ((asect
->flags
& SEC_CODE
) != 0)
2633 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2634 if ((asect
->flags
& SEC_MERGE
) != 0)
2636 this_hdr
->sh_flags
|= SHF_MERGE
;
2637 this_hdr
->sh_entsize
= asect
->entsize
;
2638 if ((asect
->flags
& SEC_STRINGS
) != 0)
2639 this_hdr
->sh_flags
|= SHF_STRINGS
;
2641 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2642 this_hdr
->sh_flags
|= SHF_GROUP
;
2643 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2645 this_hdr
->sh_flags
|= SHF_TLS
;
2646 if (asect
->size
== 0
2647 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2649 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2651 this_hdr
->sh_size
= 0;
2654 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2655 if (this_hdr
->sh_size
!= 0)
2656 this_hdr
->sh_type
= SHT_NOBITS
;
2661 /* Check for processor-specific section types. */
2662 sh_type
= this_hdr
->sh_type
;
2663 if (bed
->elf_backend_fake_sections
2664 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2667 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2669 /* Don't change the header type from NOBITS if we are being
2670 called for objcopy --only-keep-debug. */
2671 this_hdr
->sh_type
= sh_type
;
2674 /* If the section has relocs, set up a section header for the
2675 SHT_REL[A] section. If two relocation sections are required for
2676 this section, it is up to the processor-specific back-end to
2677 create the other. */
2678 if ((asect
->flags
& SEC_RELOC
) != 0
2679 && !_bfd_elf_init_reloc_shdr (abfd
,
2680 &elf_section_data (asect
)->rel_hdr
,
2686 /* Fill in the contents of a SHT_GROUP section. Called from
2687 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2688 when ELF targets use the generic linker, ld. Called for ld -r
2689 from bfd_elf_final_link. */
2692 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2694 bfd_boolean
*failedptr
= failedptrarg
;
2695 asection
*elt
, *first
;
2699 /* Ignore linker created group section. See elfNN_ia64_object_p in
2701 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2705 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2707 unsigned long symindx
= 0;
2709 /* elf_group_id will have been set up by objcopy and the
2711 if (elf_group_id (sec
) != NULL
)
2712 symindx
= elf_group_id (sec
)->udata
.i
;
2716 /* If called from the assembler, swap_out_syms will have set up
2717 elf_section_syms. */
2718 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2719 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2721 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2723 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2725 /* The ELF backend linker sets sh_info to -2 when the group
2726 signature symbol is global, and thus the index can't be
2727 set until all local symbols are output. */
2728 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2729 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2730 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2731 unsigned long extsymoff
= 0;
2732 struct elf_link_hash_entry
*h
;
2734 if (!elf_bad_symtab (igroup
->owner
))
2736 Elf_Internal_Shdr
*symtab_hdr
;
2738 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2739 extsymoff
= symtab_hdr
->sh_info
;
2741 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2742 while (h
->root
.type
== bfd_link_hash_indirect
2743 || h
->root
.type
== bfd_link_hash_warning
)
2744 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2746 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2749 /* The contents won't be allocated for "ld -r" or objcopy. */
2751 if (sec
->contents
== NULL
)
2754 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2756 /* Arrange for the section to be written out. */
2757 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2758 if (sec
->contents
== NULL
)
2765 loc
= sec
->contents
+ sec
->size
;
2767 /* Get the pointer to the first section in the group that gas
2768 squirreled away here. objcopy arranges for this to be set to the
2769 start of the input section group. */
2770 first
= elt
= elf_next_in_group (sec
);
2772 /* First element is a flag word. Rest of section is elf section
2773 indices for all the sections of the group. Write them backwards
2774 just to keep the group in the same order as given in .section
2775 directives, not that it matters. */
2784 s
= s
->output_section
;
2787 idx
= elf_section_data (s
)->this_idx
;
2788 H_PUT_32 (abfd
, idx
, loc
);
2789 elt
= elf_next_in_group (elt
);
2794 if ((loc
-= 4) != sec
->contents
)
2797 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2800 /* Assign all ELF section numbers. The dummy first section is handled here
2801 too. The link/info pointers for the standard section types are filled
2802 in here too, while we're at it. */
2805 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2807 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2809 unsigned int section_number
, secn
;
2810 Elf_Internal_Shdr
**i_shdrp
;
2811 struct bfd_elf_section_data
*d
;
2815 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2817 /* SHT_GROUP sections are in relocatable files only. */
2818 if (link_info
== NULL
|| link_info
->relocatable
)
2820 /* Put SHT_GROUP sections first. */
2821 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2823 d
= elf_section_data (sec
);
2825 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2827 if (sec
->flags
& SEC_LINKER_CREATED
)
2829 /* Remove the linker created SHT_GROUP sections. */
2830 bfd_section_list_remove (abfd
, sec
);
2831 abfd
->section_count
--;
2834 d
->this_idx
= section_number
++;
2839 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2841 d
= elf_section_data (sec
);
2843 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2844 d
->this_idx
= section_number
++;
2845 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2846 if ((sec
->flags
& SEC_RELOC
) == 0)
2850 d
->rel_idx
= section_number
++;
2851 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2856 d
->rel_idx2
= section_number
++;
2857 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2863 t
->shstrtab_section
= section_number
++;
2864 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2865 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2867 if (bfd_get_symcount (abfd
) > 0)
2869 t
->symtab_section
= section_number
++;
2870 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2871 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2873 t
->symtab_shndx_section
= section_number
++;
2874 t
->symtab_shndx_hdr
.sh_name
2875 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2876 ".symtab_shndx", FALSE
);
2877 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2880 t
->strtab_section
= section_number
++;
2881 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2884 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2885 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2887 elf_numsections (abfd
) = section_number
;
2888 elf_elfheader (abfd
)->e_shnum
= section_number
;
2890 /* Set up the list of section header pointers, in agreement with the
2892 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
2893 if (i_shdrp
== NULL
)
2896 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
2897 if (i_shdrp
[0] == NULL
)
2899 bfd_release (abfd
, i_shdrp
);
2903 elf_elfsections (abfd
) = i_shdrp
;
2905 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2906 if (bfd_get_symcount (abfd
) > 0)
2908 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2909 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2911 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2912 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2914 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2915 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2918 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2920 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2924 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2925 if (d
->rel_idx
!= 0)
2926 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2927 if (d
->rel_idx2
!= 0)
2928 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2930 /* Fill in the sh_link and sh_info fields while we're at it. */
2932 /* sh_link of a reloc section is the section index of the symbol
2933 table. sh_info is the section index of the section to which
2934 the relocation entries apply. */
2935 if (d
->rel_idx
!= 0)
2937 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2938 d
->rel_hdr
.sh_info
= d
->this_idx
;
2940 if (d
->rel_idx2
!= 0)
2942 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2943 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2946 /* We need to set up sh_link for SHF_LINK_ORDER. */
2947 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2949 s
= elf_linked_to_section (sec
);
2952 /* elf_linked_to_section points to the input section. */
2953 if (link_info
!= NULL
)
2955 /* Check discarded linkonce section. */
2956 if (elf_discarded_section (s
))
2959 (*_bfd_error_handler
)
2960 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2961 abfd
, d
->this_hdr
.bfd_section
,
2963 /* Point to the kept section if it has the same
2964 size as the discarded one. */
2965 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2968 bfd_set_error (bfd_error_bad_value
);
2974 s
= s
->output_section
;
2975 BFD_ASSERT (s
!= NULL
);
2979 /* Handle objcopy. */
2980 if (s
->output_section
== NULL
)
2982 (*_bfd_error_handler
)
2983 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2984 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2985 bfd_set_error (bfd_error_bad_value
);
2988 s
= s
->output_section
;
2990 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2995 The Intel C compiler generates SHT_IA_64_UNWIND with
2996 SHF_LINK_ORDER. But it doesn't set the sh_link or
2997 sh_info fields. Hence we could get the situation
2999 const struct elf_backend_data
*bed
3000 = get_elf_backend_data (abfd
);
3001 if (bed
->link_order_error_handler
)
3002 bed
->link_order_error_handler
3003 (_("%B: warning: sh_link not set for section `%A'"),
3008 switch (d
->this_hdr
.sh_type
)
3012 /* A reloc section which we are treating as a normal BFD
3013 section. sh_link is the section index of the symbol
3014 table. sh_info is the section index of the section to
3015 which the relocation entries apply. We assume that an
3016 allocated reloc section uses the dynamic symbol table.
3017 FIXME: How can we be sure? */
3018 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3020 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3022 /* We look up the section the relocs apply to by name. */
3024 if (d
->this_hdr
.sh_type
== SHT_REL
)
3028 s
= bfd_get_section_by_name (abfd
, name
);
3030 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3034 /* We assume that a section named .stab*str is a stabs
3035 string section. We look for a section with the same name
3036 but without the trailing ``str'', and set its sh_link
3037 field to point to this section. */
3038 if (CONST_STRNEQ (sec
->name
, ".stab")
3039 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3044 len
= strlen (sec
->name
);
3045 alc
= bfd_malloc (len
- 2);
3048 memcpy (alc
, sec
->name
, len
- 3);
3049 alc
[len
- 3] = '\0';
3050 s
= bfd_get_section_by_name (abfd
, alc
);
3054 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3056 /* This is a .stab section. */
3057 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3058 elf_section_data (s
)->this_hdr
.sh_entsize
3059 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3066 case SHT_GNU_verneed
:
3067 case SHT_GNU_verdef
:
3068 /* sh_link is the section header index of the string table
3069 used for the dynamic entries, or the symbol table, or the
3071 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3073 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3076 case SHT_GNU_LIBLIST
:
3077 /* sh_link is the section header index of the prelink library
3078 list used for the dynamic entries, or the symbol table, or
3079 the version strings. */
3080 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3081 ? ".dynstr" : ".gnu.libstr");
3083 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3088 case SHT_GNU_versym
:
3089 /* sh_link is the section header index of the symbol table
3090 this hash table or version table is for. */
3091 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3093 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3097 d
->this_hdr
.sh_link
= t
->symtab_section
;
3101 for (secn
= 1; secn
< section_number
; ++secn
)
3102 if (i_shdrp
[secn
] == NULL
)
3103 i_shdrp
[secn
] = i_shdrp
[0];
3105 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3106 i_shdrp
[secn
]->sh_name
);
3110 /* Map symbol from it's internal number to the external number, moving
3111 all local symbols to be at the head of the list. */
3114 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3116 /* If the backend has a special mapping, use it. */
3117 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3118 if (bed
->elf_backend_sym_is_global
)
3119 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3121 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3122 || bfd_is_und_section (bfd_get_section (sym
))
3123 || bfd_is_com_section (bfd_get_section (sym
)));
3126 /* Don't output section symbols for sections that are not going to be
3130 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3132 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3133 && !(sym
->section
->owner
== abfd
3134 || (sym
->section
->output_section
->owner
== abfd
3135 && sym
->section
->output_offset
== 0)));
3139 elf_map_symbols (bfd
*abfd
)
3141 unsigned int symcount
= bfd_get_symcount (abfd
);
3142 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3143 asymbol
**sect_syms
;
3144 unsigned int num_locals
= 0;
3145 unsigned int num_globals
= 0;
3146 unsigned int num_locals2
= 0;
3147 unsigned int num_globals2
= 0;
3154 fprintf (stderr
, "elf_map_symbols\n");
3158 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3160 if (max_index
< asect
->index
)
3161 max_index
= asect
->index
;
3165 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3166 if (sect_syms
== NULL
)
3168 elf_section_syms (abfd
) = sect_syms
;
3169 elf_num_section_syms (abfd
) = max_index
;
3171 /* Init sect_syms entries for any section symbols we have already
3172 decided to output. */
3173 for (idx
= 0; idx
< symcount
; idx
++)
3175 asymbol
*sym
= syms
[idx
];
3177 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3179 && !ignore_section_sym (abfd
, sym
))
3181 asection
*sec
= sym
->section
;
3183 if (sec
->owner
!= abfd
)
3184 sec
= sec
->output_section
;
3186 sect_syms
[sec
->index
] = syms
[idx
];
3190 /* Classify all of the symbols. */
3191 for (idx
= 0; idx
< symcount
; idx
++)
3193 if (ignore_section_sym (abfd
, syms
[idx
]))
3195 if (!sym_is_global (abfd
, syms
[idx
]))
3201 /* We will be adding a section symbol for each normal BFD section. Most
3202 sections will already have a section symbol in outsymbols, but
3203 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3204 at least in that case. */
3205 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3207 if (sect_syms
[asect
->index
] == NULL
)
3209 if (!sym_is_global (abfd
, asect
->symbol
))
3216 /* Now sort the symbols so the local symbols are first. */
3217 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3219 if (new_syms
== NULL
)
3222 for (idx
= 0; idx
< symcount
; idx
++)
3224 asymbol
*sym
= syms
[idx
];
3227 if (ignore_section_sym (abfd
, sym
))
3229 if (!sym_is_global (abfd
, sym
))
3232 i
= num_locals
+ num_globals2
++;
3234 sym
->udata
.i
= i
+ 1;
3236 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3238 if (sect_syms
[asect
->index
] == NULL
)
3240 asymbol
*sym
= asect
->symbol
;
3243 sect_syms
[asect
->index
] = sym
;
3244 if (!sym_is_global (abfd
, sym
))
3247 i
= num_locals
+ num_globals2
++;
3249 sym
->udata
.i
= i
+ 1;
3253 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3255 elf_num_locals (abfd
) = num_locals
;
3256 elf_num_globals (abfd
) = num_globals
;
3260 /* Align to the maximum file alignment that could be required for any
3261 ELF data structure. */
3263 static inline file_ptr
3264 align_file_position (file_ptr off
, int align
)
3266 return (off
+ align
- 1) & ~(align
- 1);
3269 /* Assign a file position to a section, optionally aligning to the
3270 required section alignment. */
3273 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3277 if (align
&& i_shdrp
->sh_addralign
> 1)
3278 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3279 i_shdrp
->sh_offset
= offset
;
3280 if (i_shdrp
->bfd_section
!= NULL
)
3281 i_shdrp
->bfd_section
->filepos
= offset
;
3282 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3283 offset
+= i_shdrp
->sh_size
;
3287 /* Compute the file positions we are going to put the sections at, and
3288 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3289 is not NULL, this is being called by the ELF backend linker. */
3292 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3293 struct bfd_link_info
*link_info
)
3295 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3297 struct bfd_strtab_hash
*strtab
= NULL
;
3298 Elf_Internal_Shdr
*shstrtab_hdr
;
3300 if (abfd
->output_has_begun
)
3303 /* Do any elf backend specific processing first. */
3304 if (bed
->elf_backend_begin_write_processing
)
3305 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3307 if (! prep_headers (abfd
))
3310 /* Post process the headers if necessary. */
3311 if (bed
->elf_backend_post_process_headers
)
3312 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3315 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3319 if (!assign_section_numbers (abfd
, link_info
))
3322 /* The backend linker builds symbol table information itself. */
3323 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3325 /* Non-zero if doing a relocatable link. */
3326 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3328 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3332 if (link_info
== NULL
)
3334 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3339 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3340 /* sh_name was set in prep_headers. */
3341 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3342 shstrtab_hdr
->sh_flags
= 0;
3343 shstrtab_hdr
->sh_addr
= 0;
3344 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3345 shstrtab_hdr
->sh_entsize
= 0;
3346 shstrtab_hdr
->sh_link
= 0;
3347 shstrtab_hdr
->sh_info
= 0;
3348 /* sh_offset is set in assign_file_positions_except_relocs. */
3349 shstrtab_hdr
->sh_addralign
= 1;
3351 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3354 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3357 Elf_Internal_Shdr
*hdr
;
3359 off
= elf_tdata (abfd
)->next_file_pos
;
3361 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3362 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3364 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3365 if (hdr
->sh_size
!= 0)
3366 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3368 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3369 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3371 elf_tdata (abfd
)->next_file_pos
= off
;
3373 /* Now that we know where the .strtab section goes, write it
3375 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3376 || ! _bfd_stringtab_emit (abfd
, strtab
))
3378 _bfd_stringtab_free (strtab
);
3381 abfd
->output_has_begun
= TRUE
;
3386 /* Make an initial estimate of the size of the program header. If we
3387 get the number wrong here, we'll redo section placement. */
3389 static bfd_size_type
3390 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3394 const struct elf_backend_data
*bed
;
3396 /* Assume we will need exactly two PT_LOAD segments: one for text
3397 and one for data. */
3400 s
= bfd_get_section_by_name (abfd
, ".interp");
3401 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3403 /* If we have a loadable interpreter section, we need a
3404 PT_INTERP segment. In this case, assume we also need a
3405 PT_PHDR segment, although that may not be true for all
3410 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3412 /* We need a PT_DYNAMIC segment. */
3416 if (info
!= NULL
&& info
->relro
)
3418 /* We need a PT_GNU_RELRO segment. */
3422 if (elf_tdata (abfd
)->eh_frame_hdr
)
3424 /* We need a PT_GNU_EH_FRAME segment. */
3428 if (elf_tdata (abfd
)->stack_flags
)
3430 /* We need a PT_GNU_STACK segment. */
3434 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3436 if ((s
->flags
& SEC_LOAD
) != 0
3437 && CONST_STRNEQ (s
->name
, ".note"))
3439 /* We need a PT_NOTE segment. */
3441 /* Try to create just one PT_NOTE segment
3442 for all adjacent loadable .note* sections.
3443 gABI requires that within a PT_NOTE segment
3444 (and also inside of each SHT_NOTE section)
3445 each note is padded to a multiple of 4 size,
3446 so we check whether the sections are correctly
3448 if (s
->alignment_power
== 2)
3449 while (s
->next
!= NULL
3450 && s
->next
->alignment_power
== 2
3451 && (s
->next
->flags
& SEC_LOAD
) != 0
3452 && CONST_STRNEQ (s
->next
->name
, ".note"))
3457 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3459 if (s
->flags
& SEC_THREAD_LOCAL
)
3461 /* We need a PT_TLS segment. */
3467 /* Let the backend count up any program headers it might need. */
3468 bed
= get_elf_backend_data (abfd
);
3469 if (bed
->elf_backend_additional_program_headers
)
3473 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3479 return segs
* bed
->s
->sizeof_phdr
;
3482 /* Find the segment that contains the output_section of section. */
3485 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3487 struct elf_segment_map
*m
;
3488 Elf_Internal_Phdr
*p
;
3490 for (m
= elf_tdata (abfd
)->segment_map
,
3491 p
= elf_tdata (abfd
)->phdr
;
3497 for (i
= m
->count
- 1; i
>= 0; i
--)
3498 if (m
->sections
[i
] == section
)
3505 /* Create a mapping from a set of sections to a program segment. */
3507 static struct elf_segment_map
*
3508 make_mapping (bfd
*abfd
,
3509 asection
**sections
,
3514 struct elf_segment_map
*m
;
3519 amt
= sizeof (struct elf_segment_map
);
3520 amt
+= (to
- from
- 1) * sizeof (asection
*);
3521 m
= bfd_zalloc (abfd
, amt
);
3525 m
->p_type
= PT_LOAD
;
3526 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3527 m
->sections
[i
- from
] = *hdrpp
;
3528 m
->count
= to
- from
;
3530 if (from
== 0 && phdr
)
3532 /* Include the headers in the first PT_LOAD segment. */
3533 m
->includes_filehdr
= 1;
3534 m
->includes_phdrs
= 1;
3540 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3543 struct elf_segment_map
*
3544 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3546 struct elf_segment_map
*m
;
3548 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3552 m
->p_type
= PT_DYNAMIC
;
3554 m
->sections
[0] = dynsec
;
3559 /* Possibly add or remove segments from the segment map. */
3562 elf_modify_segment_map (bfd
*abfd
,
3563 struct bfd_link_info
*info
,
3564 bfd_boolean remove_empty_load
)
3566 struct elf_segment_map
**m
;
3567 const struct elf_backend_data
*bed
;
3569 /* The placement algorithm assumes that non allocated sections are
3570 not in PT_LOAD segments. We ensure this here by removing such
3571 sections from the segment map. We also remove excluded
3572 sections. Finally, any PT_LOAD segment without sections is
3574 m
= &elf_tdata (abfd
)->segment_map
;
3577 unsigned int i
, new_count
;
3579 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3581 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3582 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3583 || (*m
)->p_type
!= PT_LOAD
))
3585 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3589 (*m
)->count
= new_count
;
3591 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3597 bed
= get_elf_backend_data (abfd
);
3598 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3600 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3607 /* Set up a mapping from BFD sections to program segments. */
3610 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3613 struct elf_segment_map
*m
;
3614 asection
**sections
= NULL
;
3615 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3616 bfd_boolean no_user_phdrs
;
3618 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3619 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3623 struct elf_segment_map
*mfirst
;
3624 struct elf_segment_map
**pm
;
3627 unsigned int phdr_index
;
3628 bfd_vma maxpagesize
;
3630 bfd_boolean phdr_in_segment
= TRUE
;
3631 bfd_boolean writable
;
3633 asection
*first_tls
= NULL
;
3634 asection
*dynsec
, *eh_frame_hdr
;
3637 /* Select the allocated sections, and sort them. */
3639 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3640 if (sections
== NULL
)
3644 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3646 if ((s
->flags
& SEC_ALLOC
) != 0)
3652 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3655 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3657 /* Build the mapping. */
3662 /* If we have a .interp section, then create a PT_PHDR segment for
3663 the program headers and a PT_INTERP segment for the .interp
3665 s
= bfd_get_section_by_name (abfd
, ".interp");
3666 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3668 amt
= sizeof (struct elf_segment_map
);
3669 m
= bfd_zalloc (abfd
, amt
);
3673 m
->p_type
= PT_PHDR
;
3674 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3675 m
->p_flags
= PF_R
| PF_X
;
3676 m
->p_flags_valid
= 1;
3677 m
->includes_phdrs
= 1;
3682 amt
= sizeof (struct elf_segment_map
);
3683 m
= bfd_zalloc (abfd
, amt
);
3687 m
->p_type
= PT_INTERP
;
3695 /* Look through the sections. We put sections in the same program
3696 segment when the start of the second section can be placed within
3697 a few bytes of the end of the first section. */
3701 maxpagesize
= bed
->maxpagesize
;
3703 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3705 && (dynsec
->flags
& SEC_LOAD
) == 0)
3708 /* Deal with -Ttext or something similar such that the first section
3709 is not adjacent to the program headers. This is an
3710 approximation, since at this point we don't know exactly how many
3711 program headers we will need. */
3714 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3716 if (phdr_size
== (bfd_size_type
) -1)
3717 phdr_size
= get_program_header_size (abfd
, info
);
3718 if ((abfd
->flags
& D_PAGED
) == 0
3719 || sections
[0]->lma
< phdr_size
3720 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3721 phdr_in_segment
= FALSE
;
3724 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3727 bfd_boolean new_segment
;
3731 /* See if this section and the last one will fit in the same
3734 if (last_hdr
== NULL
)
3736 /* If we don't have a segment yet, then we don't need a new
3737 one (we build the last one after this loop). */
3738 new_segment
= FALSE
;
3740 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3742 /* If this section has a different relation between the
3743 virtual address and the load address, then we need a new
3747 /* In the next test we have to be careful when last_hdr->lma is close
3748 to the end of the address space. If the aligned address wraps
3749 around to the start of the address space, then there are no more
3750 pages left in memory and it is OK to assume that the current
3751 section can be included in the current segment. */
3752 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3754 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3757 /* If putting this section in this segment would force us to
3758 skip a page in the segment, then we need a new segment. */
3761 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3762 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3764 /* We don't want to put a loadable section after a
3765 nonloadable section in the same segment.
3766 Consider .tbss sections as loadable for this purpose. */
3769 else if ((abfd
->flags
& D_PAGED
) == 0)
3771 /* If the file is not demand paged, which means that we
3772 don't require the sections to be correctly aligned in the
3773 file, then there is no other reason for a new segment. */
3774 new_segment
= FALSE
;
3777 && (hdr
->flags
& SEC_READONLY
) == 0
3778 && (((last_hdr
->lma
+ last_size
- 1)
3779 & ~(maxpagesize
- 1))
3780 != (hdr
->lma
& ~(maxpagesize
- 1))))
3782 /* We don't want to put a writable section in a read only
3783 segment, unless they are on the same page in memory
3784 anyhow. We already know that the last section does not
3785 bring us past the current section on the page, so the
3786 only case in which the new section is not on the same
3787 page as the previous section is when the previous section
3788 ends precisely on a page boundary. */
3793 /* Otherwise, we can use the same segment. */
3794 new_segment
= FALSE
;
3797 /* Allow interested parties a chance to override our decision. */
3798 if (last_hdr
!= NULL
3800 && info
->callbacks
->override_segment_assignment
!= NULL
)
3802 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3808 if ((hdr
->flags
& SEC_READONLY
) == 0)
3811 /* .tbss sections effectively have zero size. */
3812 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3813 != SEC_THREAD_LOCAL
)
3814 last_size
= hdr
->size
;
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3823 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3830 if ((hdr
->flags
& SEC_READONLY
) == 0)
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3838 last_size
= hdr
->size
;
3842 phdr_in_segment
= FALSE
;
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr
!= NULL
)
3848 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3859 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3866 /* For each batch of consecutive loadable .note sections,
3867 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3868 because if we link together nonloadable .note sections and
3869 loadable .note sections, we will generate two .note sections
3870 in the output file. FIXME: Using names for section types is
3872 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3874 if ((s
->flags
& SEC_LOAD
) != 0
3875 && CONST_STRNEQ (s
->name
, ".note"))
3879 amt
= sizeof (struct elf_segment_map
);
3880 if (s
->alignment_power
== 2)
3881 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3883 if (s2
->next
->alignment_power
== 2
3884 && (s2
->next
->flags
& SEC_LOAD
) != 0
3885 && CONST_STRNEQ (s2
->next
->name
, ".note")
3886 && align_power (s2
->vma
+ s2
->size
, 2)
3892 amt
+= (count
- 1) * sizeof (asection
*);
3893 m
= bfd_zalloc (abfd
, amt
);
3897 m
->p_type
= PT_NOTE
;
3901 m
->sections
[m
->count
- count
--] = s
;
3902 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3905 m
->sections
[m
->count
- 1] = s
;
3906 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3910 if (s
->flags
& SEC_THREAD_LOCAL
)
3918 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3923 amt
= sizeof (struct elf_segment_map
);
3924 amt
+= (tls_count
- 1) * sizeof (asection
*);
3925 m
= bfd_zalloc (abfd
, amt
);
3930 m
->count
= tls_count
;
3931 /* Mandated PF_R. */
3933 m
->p_flags_valid
= 1;
3934 for (i
= 0; i
< tls_count
; ++i
)
3936 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3937 m
->sections
[i
] = first_tls
;
3938 first_tls
= first_tls
->next
;
3945 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3947 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3948 if (eh_frame_hdr
!= NULL
3949 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3951 amt
= sizeof (struct elf_segment_map
);
3952 m
= bfd_zalloc (abfd
, amt
);
3956 m
->p_type
= PT_GNU_EH_FRAME
;
3958 m
->sections
[0] = eh_frame_hdr
->output_section
;
3964 if (elf_tdata (abfd
)->stack_flags
)
3966 amt
= sizeof (struct elf_segment_map
);
3967 m
= bfd_zalloc (abfd
, amt
);
3971 m
->p_type
= PT_GNU_STACK
;
3972 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3973 m
->p_flags_valid
= 1;
3979 if (info
!= NULL
&& info
->relro
)
3981 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3983 if (m
->p_type
== PT_LOAD
)
3985 asection
*last
= m
->sections
[m
->count
- 1];
3986 bfd_vma vaddr
= m
->sections
[0]->vma
;
3987 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3989 if (vaddr
< info
->relro_end
3990 && vaddr
>= info
->relro_start
3991 && (vaddr
+ filesz
) >= info
->relro_end
)
3996 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3999 amt
= sizeof (struct elf_segment_map
);
4000 m
= bfd_zalloc (abfd
, amt
);
4004 m
->p_type
= PT_GNU_RELRO
;
4006 m
->p_flags_valid
= 1;
4014 elf_tdata (abfd
)->segment_map
= mfirst
;
4017 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4020 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4022 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4027 if (sections
!= NULL
)
4032 /* Sort sections by address. */
4035 elf_sort_sections (const void *arg1
, const void *arg2
)
4037 const asection
*sec1
= *(const asection
**) arg1
;
4038 const asection
*sec2
= *(const asection
**) arg2
;
4039 bfd_size_type size1
, size2
;
4041 /* Sort by LMA first, since this is the address used to
4042 place the section into a segment. */
4043 if (sec1
->lma
< sec2
->lma
)
4045 else if (sec1
->lma
> sec2
->lma
)
4048 /* Then sort by VMA. Normally the LMA and the VMA will be
4049 the same, and this will do nothing. */
4050 if (sec1
->vma
< sec2
->vma
)
4052 else if (sec1
->vma
> sec2
->vma
)
4055 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4057 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4063 /* If the indicies are the same, do not return 0
4064 here, but continue to try the next comparison. */
4065 if (sec1
->target_index
- sec2
->target_index
!= 0)
4066 return sec1
->target_index
- sec2
->target_index
;
4071 else if (TOEND (sec2
))
4076 /* Sort by size, to put zero sized sections
4077 before others at the same address. */
4079 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4080 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4087 return sec1
->target_index
- sec2
->target_index
;
4090 /* Ian Lance Taylor writes:
4092 We shouldn't be using % with a negative signed number. That's just
4093 not good. We have to make sure either that the number is not
4094 negative, or that the number has an unsigned type. When the types
4095 are all the same size they wind up as unsigned. When file_ptr is a
4096 larger signed type, the arithmetic winds up as signed long long,
4099 What we're trying to say here is something like ``increase OFF by
4100 the least amount that will cause it to be equal to the VMA modulo
4102 /* In other words, something like:
4104 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4105 off_offset = off % bed->maxpagesize;
4106 if (vma_offset < off_offset)
4107 adjustment = vma_offset + bed->maxpagesize - off_offset;
4109 adjustment = vma_offset - off_offset;
4111 which can can be collapsed into the expression below. */
4114 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4116 return ((vma
- off
) % maxpagesize
);
4120 print_segment_map (const struct elf_segment_map
*m
)
4123 const char *pt
= get_segment_type (m
->p_type
);
4128 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4129 sprintf (buf
, "LOPROC+%7.7x",
4130 (unsigned int) (m
->p_type
- PT_LOPROC
));
4131 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4132 sprintf (buf
, "LOOS+%7.7x",
4133 (unsigned int) (m
->p_type
- PT_LOOS
));
4135 snprintf (buf
, sizeof (buf
), "%8.8x",
4136 (unsigned int) m
->p_type
);
4139 fprintf (stderr
, "%s:", pt
);
4140 for (j
= 0; j
< m
->count
; j
++)
4141 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4145 /* Assign file positions to the sections based on the mapping from
4146 sections to segments. This function also sets up some fields in
4150 assign_file_positions_for_load_sections (bfd
*abfd
,
4151 struct bfd_link_info
*link_info
)
4153 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4154 struct elf_segment_map
*m
;
4155 Elf_Internal_Phdr
*phdrs
;
4156 Elf_Internal_Phdr
*p
;
4158 bfd_size_type maxpagesize
;
4162 if (link_info
== NULL
4163 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4167 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4170 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4171 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4172 elf_elfheader (abfd
)->e_phnum
= alloc
;
4174 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4175 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4177 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4178 >= alloc
* bed
->s
->sizeof_phdr
);
4182 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4186 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4187 elf_tdata (abfd
)->phdr
= phdrs
;
4192 if ((abfd
->flags
& D_PAGED
) != 0)
4193 maxpagesize
= bed
->maxpagesize
;
4195 off
= bed
->s
->sizeof_ehdr
;
4196 off
+= alloc
* bed
->s
->sizeof_phdr
;
4198 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4200 m
= m
->next
, p
++, j
++)
4204 bfd_boolean no_contents
;
4206 /* If elf_segment_map is not from map_sections_to_segments, the
4207 sections may not be correctly ordered. NOTE: sorting should
4208 not be done to the PT_NOTE section of a corefile, which may
4209 contain several pseudo-sections artificially created by bfd.
4210 Sorting these pseudo-sections breaks things badly. */
4212 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4213 && m
->p_type
== PT_NOTE
))
4214 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4217 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4218 number of sections with contents contributing to both p_filesz
4219 and p_memsz, followed by a number of sections with no contents
4220 that just contribute to p_memsz. In this loop, OFF tracks next
4221 available file offset for PT_LOAD and PT_NOTE segments. */
4222 p
->p_type
= m
->p_type
;
4223 p
->p_flags
= m
->p_flags
;
4228 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4230 if (m
->p_paddr_valid
)
4231 p
->p_paddr
= m
->p_paddr
;
4232 else if (m
->count
== 0)
4235 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4237 if (p
->p_type
== PT_LOAD
4238 && (abfd
->flags
& D_PAGED
) != 0)
4240 /* p_align in demand paged PT_LOAD segments effectively stores
4241 the maximum page size. When copying an executable with
4242 objcopy, we set m->p_align from the input file. Use this
4243 value for maxpagesize rather than bed->maxpagesize, which
4244 may be different. Note that we use maxpagesize for PT_TLS
4245 segment alignment later in this function, so we are relying
4246 on at least one PT_LOAD segment appearing before a PT_TLS
4248 if (m
->p_align_valid
)
4249 maxpagesize
= m
->p_align
;
4251 p
->p_align
= maxpagesize
;
4253 else if (m
->p_align_valid
)
4254 p
->p_align
= m
->p_align
;
4255 else if (m
->count
== 0)
4256 p
->p_align
= 1 << bed
->s
->log_file_align
;
4260 no_contents
= FALSE
;
4262 if (p
->p_type
== PT_LOAD
4265 bfd_size_type align
;
4266 unsigned int align_power
= 0;
4268 if (m
->p_align_valid
)
4272 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4274 unsigned int secalign
;
4276 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4277 if (secalign
> align_power
)
4278 align_power
= secalign
;
4280 align
= (bfd_size_type
) 1 << align_power
;
4281 if (align
< maxpagesize
)
4282 align
= maxpagesize
;
4285 for (i
= 0; i
< m
->count
; i
++)
4286 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4287 /* If we aren't making room for this section, then
4288 it must be SHT_NOBITS regardless of what we've
4289 set via struct bfd_elf_special_section. */
4290 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4292 /* Find out whether this segment contains any loadable
4295 for (i
= 0; i
< m
->count
; i
++)
4296 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4298 no_contents
= FALSE
;
4302 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4306 /* We shouldn't need to align the segment on disk since
4307 the segment doesn't need file space, but the gABI
4308 arguably requires the alignment and glibc ld.so
4309 checks it. So to comply with the alignment
4310 requirement but not waste file space, we adjust
4311 p_offset for just this segment. (OFF_ADJUST is
4312 subtracted from OFF later.) This may put p_offset
4313 past the end of file, but that shouldn't matter. */
4318 /* Make sure the .dynamic section is the first section in the
4319 PT_DYNAMIC segment. */
4320 else if (p
->p_type
== PT_DYNAMIC
4322 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4325 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4327 bfd_set_error (bfd_error_bad_value
);
4330 /* Set the note section type to SHT_NOTE. */
4331 else if (p
->p_type
== PT_NOTE
)
4332 for (i
= 0; i
< m
->count
; i
++)
4333 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4339 if (m
->includes_filehdr
)
4341 if (!m
->p_flags_valid
)
4343 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4344 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4347 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4349 if (p
->p_vaddr
< (bfd_vma
) off
)
4351 (*_bfd_error_handler
)
4352 (_("%B: Not enough room for program headers, try linking with -N"),
4354 bfd_set_error (bfd_error_bad_value
);
4359 if (!m
->p_paddr_valid
)
4364 if (m
->includes_phdrs
)
4366 if (!m
->p_flags_valid
)
4369 if (!m
->includes_filehdr
)
4371 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4375 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4376 p
->p_vaddr
-= off
- p
->p_offset
;
4377 if (!m
->p_paddr_valid
)
4378 p
->p_paddr
-= off
- p
->p_offset
;
4382 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4383 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4386 if (p
->p_type
== PT_LOAD
4387 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4389 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4395 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4397 p
->p_filesz
+= adjust
;
4398 p
->p_memsz
+= adjust
;
4402 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4403 maps. Set filepos for sections in PT_LOAD segments, and in
4404 core files, for sections in PT_NOTE segments.
4405 assign_file_positions_for_non_load_sections will set filepos
4406 for other sections and update p_filesz for other segments. */
4407 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4410 bfd_size_type align
;
4411 Elf_Internal_Shdr
*this_hdr
;
4414 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4415 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4417 if ((p
->p_type
== PT_LOAD
4418 || p
->p_type
== PT_TLS
)
4419 && (this_hdr
->sh_type
!= SHT_NOBITS
4420 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4421 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4422 || p
->p_type
== PT_TLS
))))
4424 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4428 (*_bfd_error_handler
)
4429 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4430 abfd
, sec
, (unsigned long) sec
->vma
);
4433 p
->p_memsz
+= adjust
;
4435 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4438 p
->p_filesz
+= adjust
;
4442 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4444 /* The section at i == 0 is the one that actually contains
4448 this_hdr
->sh_offset
= sec
->filepos
= off
;
4449 off
+= this_hdr
->sh_size
;
4450 p
->p_filesz
= this_hdr
->sh_size
;
4456 /* The rest are fake sections that shouldn't be written. */
4465 if (p
->p_type
== PT_LOAD
)
4467 this_hdr
->sh_offset
= sec
->filepos
= off
;
4468 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4469 off
+= this_hdr
->sh_size
;
4472 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4474 p
->p_filesz
+= this_hdr
->sh_size
;
4475 /* A load section without SHF_ALLOC is something like
4476 a note section in a PT_NOTE segment. These take
4477 file space but are not loaded into memory. */
4478 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4479 p
->p_memsz
+= this_hdr
->sh_size
;
4481 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4483 if (p
->p_type
== PT_TLS
)
4484 p
->p_memsz
+= this_hdr
->sh_size
;
4486 /* .tbss is special. It doesn't contribute to p_memsz of
4488 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4489 p
->p_memsz
+= this_hdr
->sh_size
;
4492 if (align
> p
->p_align
4493 && !m
->p_align_valid
4494 && (p
->p_type
!= PT_LOAD
4495 || (abfd
->flags
& D_PAGED
) == 0))
4499 if (!m
->p_flags_valid
)
4502 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4504 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4510 /* Check that all sections are in a PT_LOAD segment.
4511 Don't check funky gdb generated core files. */
4512 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4513 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4515 Elf_Internal_Shdr
*this_hdr
;
4519 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4520 if (this_hdr
->sh_size
!= 0
4521 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4523 (*_bfd_error_handler
)
4524 (_("%B: section `%A' can't be allocated in segment %d"),
4526 print_segment_map (m
);
4527 bfd_set_error (bfd_error_bad_value
);
4533 elf_tdata (abfd
)->next_file_pos
= off
;
4537 /* Assign file positions for the other sections. */
4540 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4541 struct bfd_link_info
*link_info
)
4543 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4544 Elf_Internal_Shdr
**i_shdrpp
;
4545 Elf_Internal_Shdr
**hdrpp
;
4546 Elf_Internal_Phdr
*phdrs
;
4547 Elf_Internal_Phdr
*p
;
4548 struct elf_segment_map
*m
;
4549 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4550 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4552 unsigned int num_sec
;
4556 i_shdrpp
= elf_elfsections (abfd
);
4557 num_sec
= elf_numsections (abfd
);
4558 off
= elf_tdata (abfd
)->next_file_pos
;
4559 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4561 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4562 Elf_Internal_Shdr
*hdr
;
4565 if (hdr
->bfd_section
!= NULL
4566 && (hdr
->bfd_section
->filepos
!= 0
4567 || (hdr
->sh_type
== SHT_NOBITS
4568 && hdr
->contents
== NULL
)))
4569 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4570 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4572 if (hdr
->sh_size
!= 0)
4573 ((*_bfd_error_handler
)
4574 (_("%B: warning: allocated section `%s' not in segment"),
4576 (hdr
->bfd_section
== NULL
4578 : hdr
->bfd_section
->name
)));
4579 /* We don't need to page align empty sections. */
4580 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4581 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4584 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4586 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4589 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4590 && hdr
->bfd_section
== NULL
)
4591 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4592 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4593 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4594 hdr
->sh_offset
= -1;
4596 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4599 /* Now that we have set the section file positions, we can set up
4600 the file positions for the non PT_LOAD segments. */
4604 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4606 phdrs
= elf_tdata (abfd
)->phdr
;
4607 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4612 if (p
->p_type
!= PT_LOAD
)
4615 if (m
->includes_filehdr
)
4617 filehdr_vaddr
= p
->p_vaddr
;
4618 filehdr_paddr
= p
->p_paddr
;
4620 if (m
->includes_phdrs
)
4622 phdrs_vaddr
= p
->p_vaddr
;
4623 phdrs_paddr
= p
->p_paddr
;
4624 if (m
->includes_filehdr
)
4626 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4627 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4632 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4636 if (p
->p_type
== PT_GNU_RELRO
)
4638 const Elf_Internal_Phdr
*lp
;
4640 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4642 if (link_info
!= NULL
)
4644 /* During linking the range of the RELRO segment is passed
4646 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4648 if (lp
->p_type
== PT_LOAD
4649 && lp
->p_vaddr
>= link_info
->relro_start
4650 && lp
->p_vaddr
< link_info
->relro_end
4651 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4657 /* Otherwise we are copying an executable or shared
4658 library, but we need to use the same linker logic. */
4659 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4661 if (lp
->p_type
== PT_LOAD
4662 && lp
->p_paddr
== p
->p_paddr
)
4667 if (lp
< phdrs
+ count
)
4669 p
->p_vaddr
= lp
->p_vaddr
;
4670 p
->p_paddr
= lp
->p_paddr
;
4671 p
->p_offset
= lp
->p_offset
;
4672 if (link_info
!= NULL
)
4673 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4674 else if (m
->p_size_valid
)
4675 p
->p_filesz
= m
->p_size
;
4678 p
->p_memsz
= p
->p_filesz
;
4680 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4682 else if (link_info
!= NULL
)
4684 memset (p
, 0, sizeof *p
);
4685 p
->p_type
= PT_NULL
;
4690 else if (m
->count
!= 0)
4692 if (p
->p_type
!= PT_LOAD
4693 && (p
->p_type
!= PT_NOTE
4694 || bfd_get_format (abfd
) != bfd_core
))
4696 Elf_Internal_Shdr
*hdr
;
4699 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4701 sect
= m
->sections
[m
->count
- 1];
4702 hdr
= &elf_section_data (sect
)->this_hdr
;
4703 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4704 if (hdr
->sh_type
!= SHT_NOBITS
)
4705 p
->p_filesz
+= hdr
->sh_size
;
4706 p
->p_offset
= m
->sections
[0]->filepos
;
4709 else if (m
->includes_filehdr
)
4711 p
->p_vaddr
= filehdr_vaddr
;
4712 if (! m
->p_paddr_valid
)
4713 p
->p_paddr
= filehdr_paddr
;
4715 else if (m
->includes_phdrs
)
4717 p
->p_vaddr
= phdrs_vaddr
;
4718 if (! m
->p_paddr_valid
)
4719 p
->p_paddr
= phdrs_paddr
;
4723 elf_tdata (abfd
)->next_file_pos
= off
;
4728 /* Work out the file positions of all the sections. This is called by
4729 _bfd_elf_compute_section_file_positions. All the section sizes and
4730 VMAs must be known before this is called.
4732 Reloc sections come in two flavours: Those processed specially as
4733 "side-channel" data attached to a section to which they apply, and
4734 those that bfd doesn't process as relocations. The latter sort are
4735 stored in a normal bfd section by bfd_section_from_shdr. We don't
4736 consider the former sort here, unless they form part of the loadable
4737 image. Reloc sections not assigned here will be handled later by
4738 assign_file_positions_for_relocs.
4740 We also don't set the positions of the .symtab and .strtab here. */
4743 assign_file_positions_except_relocs (bfd
*abfd
,
4744 struct bfd_link_info
*link_info
)
4746 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4747 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4749 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4751 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4752 && bfd_get_format (abfd
) != bfd_core
)
4754 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4755 unsigned int num_sec
= elf_numsections (abfd
);
4756 Elf_Internal_Shdr
**hdrpp
;
4759 /* Start after the ELF header. */
4760 off
= i_ehdrp
->e_ehsize
;
4762 /* We are not creating an executable, which means that we are
4763 not creating a program header, and that the actual order of
4764 the sections in the file is unimportant. */
4765 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4767 Elf_Internal_Shdr
*hdr
;
4770 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4771 && hdr
->bfd_section
== NULL
)
4772 || i
== tdata
->symtab_section
4773 || i
== tdata
->symtab_shndx_section
4774 || i
== tdata
->strtab_section
)
4776 hdr
->sh_offset
= -1;
4779 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4786 /* Assign file positions for the loaded sections based on the
4787 assignment of sections to segments. */
4788 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4791 /* And for non-load sections. */
4792 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4795 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4797 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4801 /* Write out the program headers. */
4802 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4803 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4804 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4807 off
= tdata
->next_file_pos
;
4810 /* Place the section headers. */
4811 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4812 i_ehdrp
->e_shoff
= off
;
4813 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4815 tdata
->next_file_pos
= off
;
4821 prep_headers (bfd
*abfd
)
4823 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4824 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4825 struct elf_strtab_hash
*shstrtab
;
4826 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4828 i_ehdrp
= elf_elfheader (abfd
);
4830 shstrtab
= _bfd_elf_strtab_init ();
4831 if (shstrtab
== NULL
)
4834 elf_shstrtab (abfd
) = shstrtab
;
4836 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4837 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4838 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4839 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4841 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4842 i_ehdrp
->e_ident
[EI_DATA
] =
4843 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4844 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4846 if ((abfd
->flags
& DYNAMIC
) != 0)
4847 i_ehdrp
->e_type
= ET_DYN
;
4848 else if ((abfd
->flags
& EXEC_P
) != 0)
4849 i_ehdrp
->e_type
= ET_EXEC
;
4850 else if (bfd_get_format (abfd
) == bfd_core
)
4851 i_ehdrp
->e_type
= ET_CORE
;
4853 i_ehdrp
->e_type
= ET_REL
;
4855 switch (bfd_get_arch (abfd
))
4857 case bfd_arch_unknown
:
4858 i_ehdrp
->e_machine
= EM_NONE
;
4861 /* There used to be a long list of cases here, each one setting
4862 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4863 in the corresponding bfd definition. To avoid duplication,
4864 the switch was removed. Machines that need special handling
4865 can generally do it in elf_backend_final_write_processing(),
4866 unless they need the information earlier than the final write.
4867 Such need can generally be supplied by replacing the tests for
4868 e_machine with the conditions used to determine it. */
4870 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4873 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4874 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4876 /* No program header, for now. */
4877 i_ehdrp
->e_phoff
= 0;
4878 i_ehdrp
->e_phentsize
= 0;
4879 i_ehdrp
->e_phnum
= 0;
4881 /* Each bfd section is section header entry. */
4882 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4883 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4885 /* If we're building an executable, we'll need a program header table. */
4886 if (abfd
->flags
& EXEC_P
)
4887 /* It all happens later. */
4891 i_ehdrp
->e_phentsize
= 0;
4893 i_ehdrp
->e_phoff
= 0;
4896 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4897 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4898 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4899 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4900 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4901 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4902 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4903 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4904 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4910 /* Assign file positions for all the reloc sections which are not part
4911 of the loadable file image. */
4914 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4917 unsigned int i
, num_sec
;
4918 Elf_Internal_Shdr
**shdrpp
;
4920 off
= elf_tdata (abfd
)->next_file_pos
;
4922 num_sec
= elf_numsections (abfd
);
4923 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4925 Elf_Internal_Shdr
*shdrp
;
4928 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4929 && shdrp
->sh_offset
== -1)
4930 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4933 elf_tdata (abfd
)->next_file_pos
= off
;
4937 _bfd_elf_write_object_contents (bfd
*abfd
)
4939 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4940 Elf_Internal_Ehdr
*i_ehdrp
;
4941 Elf_Internal_Shdr
**i_shdrp
;
4943 unsigned int count
, num_sec
;
4945 if (! abfd
->output_has_begun
4946 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4949 i_shdrp
= elf_elfsections (abfd
);
4950 i_ehdrp
= elf_elfheader (abfd
);
4953 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4957 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4959 /* After writing the headers, we need to write the sections too... */
4960 num_sec
= elf_numsections (abfd
);
4961 for (count
= 1; count
< num_sec
; count
++)
4963 if (bed
->elf_backend_section_processing
)
4964 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4965 if (i_shdrp
[count
]->contents
)
4967 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4969 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4970 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4975 /* Write out the section header names. */
4976 if (elf_shstrtab (abfd
) != NULL
4977 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4978 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4981 if (bed
->elf_backend_final_write_processing
)
4982 (*bed
->elf_backend_final_write_processing
) (abfd
,
4983 elf_tdata (abfd
)->linker
);
4985 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
4988 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4989 if (elf_tdata (abfd
)->after_write_object_contents
)
4990 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
4996 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4998 /* Hopefully this can be done just like an object file. */
4999 return _bfd_elf_write_object_contents (abfd
);
5002 /* Given a section, search the header to find them. */
5005 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5007 const struct elf_backend_data
*bed
;
5010 if (elf_section_data (asect
) != NULL
5011 && elf_section_data (asect
)->this_idx
!= 0)
5012 return elf_section_data (asect
)->this_idx
;
5014 if (bfd_is_abs_section (asect
))
5016 else if (bfd_is_com_section (asect
))
5018 else if (bfd_is_und_section (asect
))
5023 bed
= get_elf_backend_data (abfd
);
5024 if (bed
->elf_backend_section_from_bfd_section
)
5028 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5032 if (index
== SHN_BAD
)
5033 bfd_set_error (bfd_error_nonrepresentable_section
);
5038 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5042 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5044 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5046 flagword flags
= asym_ptr
->flags
;
5048 /* When gas creates relocations against local labels, it creates its
5049 own symbol for the section, but does put the symbol into the
5050 symbol chain, so udata is 0. When the linker is generating
5051 relocatable output, this section symbol may be for one of the
5052 input sections rather than the output section. */
5053 if (asym_ptr
->udata
.i
== 0
5054 && (flags
& BSF_SECTION_SYM
)
5055 && asym_ptr
->section
)
5060 sec
= asym_ptr
->section
;
5061 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5062 sec
= sec
->output_section
;
5063 if (sec
->owner
== abfd
5064 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5065 && elf_section_syms (abfd
)[indx
] != NULL
)
5066 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5069 idx
= asym_ptr
->udata
.i
;
5073 /* This case can occur when using --strip-symbol on a symbol
5074 which is used in a relocation entry. */
5075 (*_bfd_error_handler
)
5076 (_("%B: symbol `%s' required but not present"),
5077 abfd
, bfd_asymbol_name (asym_ptr
));
5078 bfd_set_error (bfd_error_no_symbols
);
5085 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5086 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5087 elf_symbol_flags (flags
));
5095 /* Rewrite program header information. */
5098 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5100 Elf_Internal_Ehdr
*iehdr
;
5101 struct elf_segment_map
*map
;
5102 struct elf_segment_map
*map_first
;
5103 struct elf_segment_map
**pointer_to_map
;
5104 Elf_Internal_Phdr
*segment
;
5107 unsigned int num_segments
;
5108 bfd_boolean phdr_included
= FALSE
;
5109 bfd_boolean p_paddr_valid
;
5110 bfd_vma maxpagesize
;
5111 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5112 unsigned int phdr_adjust_num
= 0;
5113 const struct elf_backend_data
*bed
;
5115 bed
= get_elf_backend_data (ibfd
);
5116 iehdr
= elf_elfheader (ibfd
);
5119 pointer_to_map
= &map_first
;
5121 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5122 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5124 /* Returns the end address of the segment + 1. */
5125 #define SEGMENT_END(segment, start) \
5126 (start + (segment->p_memsz > segment->p_filesz \
5127 ? segment->p_memsz : segment->p_filesz))
5129 #define SECTION_SIZE(section, segment) \
5130 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5131 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5132 ? section->size : 0)
5134 /* Returns TRUE if the given section is contained within
5135 the given segment. VMA addresses are compared. */
5136 #define IS_CONTAINED_BY_VMA(section, segment) \
5137 (section->vma >= segment->p_vaddr \
5138 && (section->vma + SECTION_SIZE (section, segment) \
5139 <= (SEGMENT_END (segment, segment->p_vaddr))))
5141 /* Returns TRUE if the given section is contained within
5142 the given segment. LMA addresses are compared. */
5143 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5144 (section->lma >= base \
5145 && (section->lma + SECTION_SIZE (section, segment) \
5146 <= SEGMENT_END (segment, base)))
5148 /* Handle PT_NOTE segment. */
5149 #define IS_NOTE(p, s) \
5150 (p->p_type == PT_NOTE \
5151 && elf_section_type (s) == SHT_NOTE \
5152 && (bfd_vma) s->filepos >= p->p_offset \
5153 && ((bfd_vma) s->filepos + s->size \
5154 <= p->p_offset + p->p_filesz))
5156 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5158 #define IS_COREFILE_NOTE(p, s) \
5160 && bfd_get_format (ibfd) == bfd_core \
5164 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5165 linker, which generates a PT_INTERP section with p_vaddr and
5166 p_memsz set to 0. */
5167 #define IS_SOLARIS_PT_INTERP(p, s) \
5169 && p->p_paddr == 0 \
5170 && p->p_memsz == 0 \
5171 && p->p_filesz > 0 \
5172 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5174 && (bfd_vma) s->filepos >= p->p_offset \
5175 && ((bfd_vma) s->filepos + s->size \
5176 <= p->p_offset + p->p_filesz))
5178 /* Decide if the given section should be included in the given segment.
5179 A section will be included if:
5180 1. It is within the address space of the segment -- we use the LMA
5181 if that is set for the segment and the VMA otherwise,
5182 2. It is an allocated section or a NOTE section in a PT_NOTE
5184 3. There is an output section associated with it,
5185 4. The section has not already been allocated to a previous segment.
5186 5. PT_GNU_STACK segments do not include any sections.
5187 6. PT_TLS segment includes only SHF_TLS sections.
5188 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5189 8. PT_DYNAMIC should not contain empty sections at the beginning
5190 (with the possible exception of .dynamic). */
5191 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5192 ((((segment->p_paddr \
5193 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5194 : IS_CONTAINED_BY_VMA (section, segment)) \
5195 && (section->flags & SEC_ALLOC) != 0) \
5196 || IS_NOTE (segment, section)) \
5197 && segment->p_type != PT_GNU_STACK \
5198 && (segment->p_type != PT_TLS \
5199 || (section->flags & SEC_THREAD_LOCAL)) \
5200 && (segment->p_type == PT_LOAD \
5201 || segment->p_type == PT_TLS \
5202 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5203 && (segment->p_type != PT_DYNAMIC \
5204 || SECTION_SIZE (section, segment) > 0 \
5205 || (segment->p_paddr \
5206 ? segment->p_paddr != section->lma \
5207 : segment->p_vaddr != section->vma) \
5208 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5210 && !section->segment_mark)
5212 /* If the output section of a section in the input segment is NULL,
5213 it is removed from the corresponding output segment. */
5214 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5215 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5216 && section->output_section != NULL)
5218 /* Returns TRUE iff seg1 starts after the end of seg2. */
5219 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5220 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5222 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5223 their VMA address ranges and their LMA address ranges overlap.
5224 It is possible to have overlapping VMA ranges without overlapping LMA
5225 ranges. RedBoot images for example can have both .data and .bss mapped
5226 to the same VMA range, but with the .data section mapped to a different
5228 #define SEGMENT_OVERLAPS(seg1, seg2) \
5229 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5230 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5231 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5232 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5234 /* Initialise the segment mark field. */
5235 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5236 section
->segment_mark
= FALSE
;
5238 /* The Solaris linker creates program headers in which all the
5239 p_paddr fields are zero. When we try to objcopy or strip such a
5240 file, we get confused. Check for this case, and if we find it
5241 don't set the p_paddr_valid fields. */
5242 p_paddr_valid
= FALSE
;
5243 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5246 if (segment
->p_paddr
!= 0)
5248 p_paddr_valid
= TRUE
;
5252 /* Scan through the segments specified in the program header
5253 of the input BFD. For this first scan we look for overlaps
5254 in the loadable segments. These can be created by weird
5255 parameters to objcopy. Also, fix some solaris weirdness. */
5256 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5261 Elf_Internal_Phdr
*segment2
;
5263 if (segment
->p_type
== PT_INTERP
)
5264 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5265 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5267 /* Mininal change so that the normal section to segment
5268 assignment code will work. */
5269 segment
->p_vaddr
= section
->vma
;
5273 if (segment
->p_type
!= PT_LOAD
)
5275 /* Remove PT_GNU_RELRO segment. */
5276 if (segment
->p_type
== PT_GNU_RELRO
)
5277 segment
->p_type
= PT_NULL
;
5281 /* Determine if this segment overlaps any previous segments. */
5282 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5284 bfd_signed_vma extra_length
;
5286 if (segment2
->p_type
!= PT_LOAD
5287 || !SEGMENT_OVERLAPS (segment
, segment2
))
5290 /* Merge the two segments together. */
5291 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5293 /* Extend SEGMENT2 to include SEGMENT and then delete
5295 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5296 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5298 if (extra_length
> 0)
5300 segment2
->p_memsz
+= extra_length
;
5301 segment2
->p_filesz
+= extra_length
;
5304 segment
->p_type
= PT_NULL
;
5306 /* Since we have deleted P we must restart the outer loop. */
5308 segment
= elf_tdata (ibfd
)->phdr
;
5313 /* Extend SEGMENT to include SEGMENT2 and then delete
5315 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5316 - SEGMENT_END (segment
, segment
->p_vaddr
));
5318 if (extra_length
> 0)
5320 segment
->p_memsz
+= extra_length
;
5321 segment
->p_filesz
+= extra_length
;
5324 segment2
->p_type
= PT_NULL
;
5329 /* The second scan attempts to assign sections to segments. */
5330 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5334 unsigned int section_count
;
5335 asection
**sections
;
5336 asection
*output_section
;
5338 bfd_vma matching_lma
;
5339 bfd_vma suggested_lma
;
5342 asection
*first_section
;
5343 bfd_boolean first_matching_lma
;
5344 bfd_boolean first_suggested_lma
;
5346 if (segment
->p_type
== PT_NULL
)
5349 first_section
= NULL
;
5350 /* Compute how many sections might be placed into this segment. */
5351 for (section
= ibfd
->sections
, section_count
= 0;
5353 section
= section
->next
)
5355 /* Find the first section in the input segment, which may be
5356 removed from the corresponding output segment. */
5357 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5359 if (first_section
== NULL
)
5360 first_section
= section
;
5361 if (section
->output_section
!= NULL
)
5366 /* Allocate a segment map big enough to contain
5367 all of the sections we have selected. */
5368 amt
= sizeof (struct elf_segment_map
);
5369 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5370 map
= bfd_zalloc (obfd
, amt
);
5374 /* Initialise the fields of the segment map. Default to
5375 using the physical address of the segment in the input BFD. */
5377 map
->p_type
= segment
->p_type
;
5378 map
->p_flags
= segment
->p_flags
;
5379 map
->p_flags_valid
= 1;
5381 /* If the first section in the input segment is removed, there is
5382 no need to preserve segment physical address in the corresponding
5384 if (!first_section
|| first_section
->output_section
!= NULL
)
5386 map
->p_paddr
= segment
->p_paddr
;
5387 map
->p_paddr_valid
= p_paddr_valid
;
5390 /* Determine if this segment contains the ELF file header
5391 and if it contains the program headers themselves. */
5392 map
->includes_filehdr
= (segment
->p_offset
== 0
5393 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5394 map
->includes_phdrs
= 0;
5396 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5398 map
->includes_phdrs
=
5399 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5400 && (segment
->p_offset
+ segment
->p_filesz
5401 >= ((bfd_vma
) iehdr
->e_phoff
5402 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5404 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5405 phdr_included
= TRUE
;
5408 if (section_count
== 0)
5410 /* Special segments, such as the PT_PHDR segment, may contain
5411 no sections, but ordinary, loadable segments should contain
5412 something. They are allowed by the ELF spec however, so only
5413 a warning is produced. */
5414 if (segment
->p_type
== PT_LOAD
)
5415 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5416 " detected, is this intentional ?\n"),
5420 *pointer_to_map
= map
;
5421 pointer_to_map
= &map
->next
;
5426 /* Now scan the sections in the input BFD again and attempt
5427 to add their corresponding output sections to the segment map.
5428 The problem here is how to handle an output section which has
5429 been moved (ie had its LMA changed). There are four possibilities:
5431 1. None of the sections have been moved.
5432 In this case we can continue to use the segment LMA from the
5435 2. All of the sections have been moved by the same amount.
5436 In this case we can change the segment's LMA to match the LMA
5437 of the first section.
5439 3. Some of the sections have been moved, others have not.
5440 In this case those sections which have not been moved can be
5441 placed in the current segment which will have to have its size,
5442 and possibly its LMA changed, and a new segment or segments will
5443 have to be created to contain the other sections.
5445 4. The sections have been moved, but not by the same amount.
5446 In this case we can change the segment's LMA to match the LMA
5447 of the first section and we will have to create a new segment
5448 or segments to contain the other sections.
5450 In order to save time, we allocate an array to hold the section
5451 pointers that we are interested in. As these sections get assigned
5452 to a segment, they are removed from this array. */
5454 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5455 if (sections
== NULL
)
5458 /* Step One: Scan for segment vs section LMA conflicts.
5459 Also add the sections to the section array allocated above.
5460 Also add the sections to the current segment. In the common
5461 case, where the sections have not been moved, this means that
5462 we have completely filled the segment, and there is nothing
5467 first_matching_lma
= TRUE
;
5468 first_suggested_lma
= TRUE
;
5470 for (section
= ibfd
->sections
;
5472 section
= section
->next
)
5473 if (section
== first_section
)
5476 for (j
= 0; section
!= NULL
; section
= section
->next
)
5478 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5480 output_section
= section
->output_section
;
5482 sections
[j
++] = section
;
5484 /* The Solaris native linker always sets p_paddr to 0.
5485 We try to catch that case here, and set it to the
5486 correct value. Note - some backends require that
5487 p_paddr be left as zero. */
5489 && segment
->p_vaddr
!= 0
5490 && !bed
->want_p_paddr_set_to_zero
5492 && output_section
->lma
!= 0
5493 && output_section
->vma
== (segment
->p_vaddr
5494 + (map
->includes_filehdr
5497 + (map
->includes_phdrs
5499 * iehdr
->e_phentsize
)
5501 map
->p_paddr
= segment
->p_vaddr
;
5503 /* Match up the physical address of the segment with the
5504 LMA address of the output section. */
5505 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5506 || IS_COREFILE_NOTE (segment
, section
)
5507 || (bed
->want_p_paddr_set_to_zero
5508 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5510 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5512 matching_lma
= output_section
->lma
;
5513 first_matching_lma
= FALSE
;
5516 /* We assume that if the section fits within the segment
5517 then it does not overlap any other section within that
5519 map
->sections
[isec
++] = output_section
;
5521 else if (first_suggested_lma
)
5523 suggested_lma
= output_section
->lma
;
5524 first_suggested_lma
= FALSE
;
5527 if (j
== section_count
)
5532 BFD_ASSERT (j
== section_count
);
5534 /* Step Two: Adjust the physical address of the current segment,
5536 if (isec
== section_count
)
5538 /* All of the sections fitted within the segment as currently
5539 specified. This is the default case. Add the segment to
5540 the list of built segments and carry on to process the next
5541 program header in the input BFD. */
5542 map
->count
= section_count
;
5543 *pointer_to_map
= map
;
5544 pointer_to_map
= &map
->next
;
5547 && !bed
->want_p_paddr_set_to_zero
5548 && matching_lma
!= map
->p_paddr
5549 && !map
->includes_filehdr
5550 && !map
->includes_phdrs
)
5551 /* There is some padding before the first section in the
5552 segment. So, we must account for that in the output
5554 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5561 if (!first_matching_lma
)
5563 /* At least one section fits inside the current segment.
5564 Keep it, but modify its physical address to match the
5565 LMA of the first section that fitted. */
5566 map
->p_paddr
= matching_lma
;
5570 /* None of the sections fitted inside the current segment.
5571 Change the current segment's physical address to match
5572 the LMA of the first section. */
5573 map
->p_paddr
= suggested_lma
;
5576 /* Offset the segment physical address from the lma
5577 to allow for space taken up by elf headers. */
5578 if (map
->includes_filehdr
)
5580 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5581 map
->p_paddr
-= iehdr
->e_ehsize
;
5584 map
->includes_filehdr
= FALSE
;
5585 map
->includes_phdrs
= FALSE
;
5589 if (map
->includes_phdrs
)
5591 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5593 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5595 /* iehdr->e_phnum is just an estimate of the number
5596 of program headers that we will need. Make a note
5597 here of the number we used and the segment we chose
5598 to hold these headers, so that we can adjust the
5599 offset when we know the correct value. */
5600 phdr_adjust_num
= iehdr
->e_phnum
;
5601 phdr_adjust_seg
= map
;
5604 map
->includes_phdrs
= FALSE
;
5608 /* Step Three: Loop over the sections again, this time assigning
5609 those that fit to the current segment and removing them from the
5610 sections array; but making sure not to leave large gaps. Once all
5611 possible sections have been assigned to the current segment it is
5612 added to the list of built segments and if sections still remain
5613 to be assigned, a new segment is constructed before repeating
5620 first_suggested_lma
= TRUE
;
5622 /* Fill the current segment with sections that fit. */
5623 for (j
= 0; j
< section_count
; j
++)
5625 section
= sections
[j
];
5627 if (section
== NULL
)
5630 output_section
= section
->output_section
;
5632 BFD_ASSERT (output_section
!= NULL
);
5634 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5635 || IS_COREFILE_NOTE (segment
, section
))
5637 if (map
->count
== 0)
5639 /* If the first section in a segment does not start at
5640 the beginning of the segment, then something is
5642 if (output_section
->lma
5644 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5645 + (map
->includes_phdrs
5646 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5654 prev_sec
= map
->sections
[map
->count
- 1];
5656 /* If the gap between the end of the previous section
5657 and the start of this section is more than
5658 maxpagesize then we need to start a new segment. */
5659 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5661 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5662 || (prev_sec
->lma
+ prev_sec
->size
5663 > output_section
->lma
))
5665 if (first_suggested_lma
)
5667 suggested_lma
= output_section
->lma
;
5668 first_suggested_lma
= FALSE
;
5675 map
->sections
[map
->count
++] = output_section
;
5678 section
->segment_mark
= TRUE
;
5680 else if (first_suggested_lma
)
5682 suggested_lma
= output_section
->lma
;
5683 first_suggested_lma
= FALSE
;
5687 BFD_ASSERT (map
->count
> 0);
5689 /* Add the current segment to the list of built segments. */
5690 *pointer_to_map
= map
;
5691 pointer_to_map
= &map
->next
;
5693 if (isec
< section_count
)
5695 /* We still have not allocated all of the sections to
5696 segments. Create a new segment here, initialise it
5697 and carry on looping. */
5698 amt
= sizeof (struct elf_segment_map
);
5699 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5700 map
= bfd_alloc (obfd
, amt
);
5707 /* Initialise the fields of the segment map. Set the physical
5708 physical address to the LMA of the first section that has
5709 not yet been assigned. */
5711 map
->p_type
= segment
->p_type
;
5712 map
->p_flags
= segment
->p_flags
;
5713 map
->p_flags_valid
= 1;
5714 map
->p_paddr
= suggested_lma
;
5715 map
->p_paddr_valid
= p_paddr_valid
;
5716 map
->includes_filehdr
= 0;
5717 map
->includes_phdrs
= 0;
5720 while (isec
< section_count
);
5725 elf_tdata (obfd
)->segment_map
= map_first
;
5727 /* If we had to estimate the number of program headers that were
5728 going to be needed, then check our estimate now and adjust
5729 the offset if necessary. */
5730 if (phdr_adjust_seg
!= NULL
)
5734 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5737 if (count
> phdr_adjust_num
)
5738 phdr_adjust_seg
->p_paddr
5739 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5744 #undef IS_CONTAINED_BY_VMA
5745 #undef IS_CONTAINED_BY_LMA
5747 #undef IS_COREFILE_NOTE
5748 #undef IS_SOLARIS_PT_INTERP
5749 #undef IS_SECTION_IN_INPUT_SEGMENT
5750 #undef INCLUDE_SECTION_IN_SEGMENT
5751 #undef SEGMENT_AFTER_SEGMENT
5752 #undef SEGMENT_OVERLAPS
5756 /* Copy ELF program header information. */
5759 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5761 Elf_Internal_Ehdr
*iehdr
;
5762 struct elf_segment_map
*map
;
5763 struct elf_segment_map
*map_first
;
5764 struct elf_segment_map
**pointer_to_map
;
5765 Elf_Internal_Phdr
*segment
;
5767 unsigned int num_segments
;
5768 bfd_boolean phdr_included
= FALSE
;
5769 bfd_boolean p_paddr_valid
;
5771 iehdr
= elf_elfheader (ibfd
);
5774 pointer_to_map
= &map_first
;
5776 /* If all the segment p_paddr fields are zero, don't set
5777 map->p_paddr_valid. */
5778 p_paddr_valid
= FALSE
;
5779 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5780 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5783 if (segment
->p_paddr
!= 0)
5785 p_paddr_valid
= TRUE
;
5789 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5794 unsigned int section_count
;
5796 Elf_Internal_Shdr
*this_hdr
;
5797 asection
*first_section
= NULL
;
5798 asection
*lowest_section
= NULL
;
5800 /* Compute how many sections are in this segment. */
5801 for (section
= ibfd
->sections
, section_count
= 0;
5803 section
= section
->next
)
5805 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5806 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5809 first_section
= lowest_section
= section
;
5810 if (section
->lma
< lowest_section
->lma
)
5811 lowest_section
= section
;
5816 /* Allocate a segment map big enough to contain
5817 all of the sections we have selected. */
5818 amt
= sizeof (struct elf_segment_map
);
5819 if (section_count
!= 0)
5820 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5821 map
= bfd_zalloc (obfd
, amt
);
5825 /* Initialize the fields of the output segment map with the
5828 map
->p_type
= segment
->p_type
;
5829 map
->p_flags
= segment
->p_flags
;
5830 map
->p_flags_valid
= 1;
5831 map
->p_paddr
= segment
->p_paddr
;
5832 map
->p_paddr_valid
= p_paddr_valid
;
5833 map
->p_align
= segment
->p_align
;
5834 map
->p_align_valid
= 1;
5835 map
->p_vaddr_offset
= 0;
5837 if (map
->p_type
== PT_GNU_RELRO
5838 && segment
->p_filesz
== segment
->p_memsz
)
5840 /* The PT_GNU_RELRO segment may contain the first a few
5841 bytes in the .got.plt section even if the whole .got.plt
5842 section isn't in the PT_GNU_RELRO segment. We won't
5843 change the size of the PT_GNU_RELRO segment. */
5844 map
->p_size
= segment
->p_filesz
;
5845 map
->p_size_valid
= 1;
5848 /* Determine if this segment contains the ELF file header
5849 and if it contains the program headers themselves. */
5850 map
->includes_filehdr
= (segment
->p_offset
== 0
5851 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5853 map
->includes_phdrs
= 0;
5854 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5856 map
->includes_phdrs
=
5857 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5858 && (segment
->p_offset
+ segment
->p_filesz
5859 >= ((bfd_vma
) iehdr
->e_phoff
5860 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5862 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5863 phdr_included
= TRUE
;
5866 if (!map
->includes_phdrs
5867 && !map
->includes_filehdr
5868 && map
->p_paddr_valid
)
5869 /* There is some other padding before the first section. */
5870 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5871 - segment
->p_paddr
);
5873 if (section_count
!= 0)
5875 unsigned int isec
= 0;
5877 for (section
= first_section
;
5879 section
= section
->next
)
5881 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5882 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5884 map
->sections
[isec
++] = section
->output_section
;
5885 if (isec
== section_count
)
5891 map
->count
= section_count
;
5892 *pointer_to_map
= map
;
5893 pointer_to_map
= &map
->next
;
5896 elf_tdata (obfd
)->segment_map
= map_first
;
5900 /* Copy private BFD data. This copies or rewrites ELF program header
5904 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5906 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5907 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5910 if (elf_tdata (ibfd
)->phdr
== NULL
)
5913 if (ibfd
->xvec
== obfd
->xvec
)
5915 /* Check to see if any sections in the input BFD
5916 covered by ELF program header have changed. */
5917 Elf_Internal_Phdr
*segment
;
5918 asection
*section
, *osec
;
5919 unsigned int i
, num_segments
;
5920 Elf_Internal_Shdr
*this_hdr
;
5921 const struct elf_backend_data
*bed
;
5923 bed
= get_elf_backend_data (ibfd
);
5925 /* Regenerate the segment map if p_paddr is set to 0. */
5926 if (bed
->want_p_paddr_set_to_zero
)
5929 /* Initialize the segment mark field. */
5930 for (section
= obfd
->sections
; section
!= NULL
;
5931 section
= section
->next
)
5932 section
->segment_mark
= FALSE
;
5934 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5935 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5939 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5940 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5941 which severly confuses things, so always regenerate the segment
5942 map in this case. */
5943 if (segment
->p_paddr
== 0
5944 && segment
->p_memsz
== 0
5945 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5948 for (section
= ibfd
->sections
;
5949 section
!= NULL
; section
= section
->next
)
5951 /* We mark the output section so that we know it comes
5952 from the input BFD. */
5953 osec
= section
->output_section
;
5955 osec
->segment_mark
= TRUE
;
5957 /* Check if this section is covered by the segment. */
5958 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5959 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5961 /* FIXME: Check if its output section is changed or
5962 removed. What else do we need to check? */
5964 || section
->flags
!= osec
->flags
5965 || section
->lma
!= osec
->lma
5966 || section
->vma
!= osec
->vma
5967 || section
->size
!= osec
->size
5968 || section
->rawsize
!= osec
->rawsize
5969 || section
->alignment_power
!= osec
->alignment_power
)
5975 /* Check to see if any output section do not come from the
5977 for (section
= obfd
->sections
; section
!= NULL
;
5978 section
= section
->next
)
5980 if (section
->segment_mark
== FALSE
)
5983 section
->segment_mark
= FALSE
;
5986 return copy_elf_program_header (ibfd
, obfd
);
5990 return rewrite_elf_program_header (ibfd
, obfd
);
5993 /* Initialize private output section information from input section. */
5996 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6000 struct bfd_link_info
*link_info
)
6003 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6004 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6006 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6007 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6010 /* Don't copy the output ELF section type from input if the
6011 output BFD section flags have been set to something different.
6012 elf_fake_sections will set ELF section type based on BFD
6014 if (elf_section_type (osec
) == SHT_NULL
6015 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6016 elf_section_type (osec
) = elf_section_type (isec
);
6018 /* FIXME: Is this correct for all OS/PROC specific flags? */
6019 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6020 & (SHF_MASKOS
| SHF_MASKPROC
));
6022 /* Set things up for objcopy and relocatable link. The output
6023 SHT_GROUP section will have its elf_next_in_group pointing back
6024 to the input group members. Ignore linker created group section.
6025 See elfNN_ia64_object_p in elfxx-ia64.c. */
6028 if (elf_sec_group (isec
) == NULL
6029 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6031 if (elf_section_flags (isec
) & SHF_GROUP
)
6032 elf_section_flags (osec
) |= SHF_GROUP
;
6033 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6034 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6038 ihdr
= &elf_section_data (isec
)->this_hdr
;
6040 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6041 don't use the output section of the linked-to section since it
6042 may be NULL at this point. */
6043 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6045 ohdr
= &elf_section_data (osec
)->this_hdr
;
6046 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6047 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6050 osec
->use_rela_p
= isec
->use_rela_p
;
6055 /* Copy private section information. This copies over the entsize
6056 field, and sometimes the info field. */
6059 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6064 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6066 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6067 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6070 ihdr
= &elf_section_data (isec
)->this_hdr
;
6071 ohdr
= &elf_section_data (osec
)->this_hdr
;
6073 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6075 if (ihdr
->sh_type
== SHT_SYMTAB
6076 || ihdr
->sh_type
== SHT_DYNSYM
6077 || ihdr
->sh_type
== SHT_GNU_verneed
6078 || ihdr
->sh_type
== SHT_GNU_verdef
)
6079 ohdr
->sh_info
= ihdr
->sh_info
;
6081 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6085 /* Copy private header information. */
6088 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6092 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6093 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6096 /* Copy over private BFD data if it has not already been copied.
6097 This must be done here, rather than in the copy_private_bfd_data
6098 entry point, because the latter is called after the section
6099 contents have been set, which means that the program headers have
6100 already been worked out. */
6101 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6103 if (! copy_private_bfd_data (ibfd
, obfd
))
6107 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6108 but this might be wrong if we deleted the group section. */
6109 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6110 if (elf_section_type (isec
) == SHT_GROUP
6111 && isec
->output_section
== NULL
)
6113 asection
*first
= elf_next_in_group (isec
);
6114 asection
*s
= first
;
6117 if (s
->output_section
!= NULL
)
6119 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6120 elf_group_name (s
->output_section
) = NULL
;
6122 s
= elf_next_in_group (s
);
6131 /* Copy private symbol information. If this symbol is in a section
6132 which we did not map into a BFD section, try to map the section
6133 index correctly. We use special macro definitions for the mapped
6134 section indices; these definitions are interpreted by the
6135 swap_out_syms function. */
6137 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6138 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6139 #define MAP_STRTAB (SHN_HIOS + 3)
6140 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6141 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6144 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6149 elf_symbol_type
*isym
, *osym
;
6151 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6152 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6155 isym
= elf_symbol_from (ibfd
, isymarg
);
6156 osym
= elf_symbol_from (obfd
, osymarg
);
6159 && isym
->internal_elf_sym
.st_shndx
!= 0
6161 && bfd_is_abs_section (isym
->symbol
.section
))
6165 shndx
= isym
->internal_elf_sym
.st_shndx
;
6166 if (shndx
== elf_onesymtab (ibfd
))
6167 shndx
= MAP_ONESYMTAB
;
6168 else if (shndx
== elf_dynsymtab (ibfd
))
6169 shndx
= MAP_DYNSYMTAB
;
6170 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6172 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6173 shndx
= MAP_SHSTRTAB
;
6174 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6175 shndx
= MAP_SYM_SHNDX
;
6176 osym
->internal_elf_sym
.st_shndx
= shndx
;
6182 /* Swap out the symbols. */
6185 swap_out_syms (bfd
*abfd
,
6186 struct bfd_strtab_hash
**sttp
,
6189 const struct elf_backend_data
*bed
;
6192 struct bfd_strtab_hash
*stt
;
6193 Elf_Internal_Shdr
*symtab_hdr
;
6194 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6195 Elf_Internal_Shdr
*symstrtab_hdr
;
6196 bfd_byte
*outbound_syms
;
6197 bfd_byte
*outbound_shndx
;
6200 bfd_boolean name_local_sections
;
6202 if (!elf_map_symbols (abfd
))
6205 /* Dump out the symtabs. */
6206 stt
= _bfd_elf_stringtab_init ();
6210 bed
= get_elf_backend_data (abfd
);
6211 symcount
= bfd_get_symcount (abfd
);
6212 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6213 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6214 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6215 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6216 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6217 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6219 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6220 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6222 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6223 if (outbound_syms
== NULL
)
6225 _bfd_stringtab_free (stt
);
6228 symtab_hdr
->contents
= outbound_syms
;
6230 outbound_shndx
= NULL
;
6231 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6232 if (symtab_shndx_hdr
->sh_name
!= 0)
6234 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6235 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6236 sizeof (Elf_External_Sym_Shndx
));
6237 if (outbound_shndx
== NULL
)
6239 _bfd_stringtab_free (stt
);
6243 symtab_shndx_hdr
->contents
= outbound_shndx
;
6244 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6245 symtab_shndx_hdr
->sh_size
= amt
;
6246 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6247 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6250 /* Now generate the data (for "contents"). */
6252 /* Fill in zeroth symbol and swap it out. */
6253 Elf_Internal_Sym sym
;
6259 sym
.st_shndx
= SHN_UNDEF
;
6260 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6261 outbound_syms
+= bed
->s
->sizeof_sym
;
6262 if (outbound_shndx
!= NULL
)
6263 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6267 = (bed
->elf_backend_name_local_section_symbols
6268 && bed
->elf_backend_name_local_section_symbols (abfd
));
6270 syms
= bfd_get_outsymbols (abfd
);
6271 for (idx
= 0; idx
< symcount
; idx
++)
6273 Elf_Internal_Sym sym
;
6274 bfd_vma value
= syms
[idx
]->value
;
6275 elf_symbol_type
*type_ptr
;
6276 flagword flags
= syms
[idx
]->flags
;
6279 if (!name_local_sections
6280 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6282 /* Local section symbols have no name. */
6287 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6290 if (sym
.st_name
== (unsigned long) -1)
6292 _bfd_stringtab_free (stt
);
6297 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6299 if ((flags
& BSF_SECTION_SYM
) == 0
6300 && bfd_is_com_section (syms
[idx
]->section
))
6302 /* ELF common symbols put the alignment into the `value' field,
6303 and the size into the `size' field. This is backwards from
6304 how BFD handles it, so reverse it here. */
6305 sym
.st_size
= value
;
6306 if (type_ptr
== NULL
6307 || type_ptr
->internal_elf_sym
.st_value
== 0)
6308 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6310 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6311 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6312 (abfd
, syms
[idx
]->section
);
6316 asection
*sec
= syms
[idx
]->section
;
6319 if (sec
->output_section
)
6321 value
+= sec
->output_offset
;
6322 sec
= sec
->output_section
;
6325 /* Don't add in the section vma for relocatable output. */
6326 if (! relocatable_p
)
6328 sym
.st_value
= value
;
6329 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6331 if (bfd_is_abs_section (sec
)
6333 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6335 /* This symbol is in a real ELF section which we did
6336 not create as a BFD section. Undo the mapping done
6337 by copy_private_symbol_data. */
6338 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6342 shndx
= elf_onesymtab (abfd
);
6345 shndx
= elf_dynsymtab (abfd
);
6348 shndx
= elf_tdata (abfd
)->strtab_section
;
6351 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6354 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6362 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6364 if (shndx
== SHN_BAD
)
6368 /* Writing this would be a hell of a lot easier if
6369 we had some decent documentation on bfd, and
6370 knew what to expect of the library, and what to
6371 demand of applications. For example, it
6372 appears that `objcopy' might not set the
6373 section of a symbol to be a section that is
6374 actually in the output file. */
6375 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6378 _bfd_error_handler (_("\
6379 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6380 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6382 bfd_set_error (bfd_error_invalid_operation
);
6383 _bfd_stringtab_free (stt
);
6387 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6388 BFD_ASSERT (shndx
!= SHN_BAD
);
6392 sym
.st_shndx
= shndx
;
6395 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6397 else if ((flags
& BSF_FUNCTION
) != 0)
6399 else if ((flags
& BSF_OBJECT
) != 0)
6401 else if ((flags
& BSF_RELC
) != 0)
6403 else if ((flags
& BSF_SRELC
) != 0)
6408 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6411 /* Processor-specific types. */
6412 if (type_ptr
!= NULL
6413 && bed
->elf_backend_get_symbol_type
)
6414 type
= ((*bed
->elf_backend_get_symbol_type
)
6415 (&type_ptr
->internal_elf_sym
, type
));
6417 if (flags
& BSF_SECTION_SYM
)
6419 if (flags
& BSF_GLOBAL
)
6420 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6422 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6424 else if (bfd_is_com_section (syms
[idx
]->section
))
6426 #ifdef USE_STT_COMMON
6427 if (type
== STT_OBJECT
)
6428 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6431 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6434 else if (bfd_is_und_section (syms
[idx
]->section
))
6435 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6439 else if (flags
& BSF_FILE
)
6440 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6443 int bind
= STB_LOCAL
;
6445 if (flags
& BSF_LOCAL
)
6447 else if (flags
& BSF_WEAK
)
6449 else if (flags
& BSF_GLOBAL
)
6452 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6455 if (type_ptr
!= NULL
)
6456 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6460 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6461 outbound_syms
+= bed
->s
->sizeof_sym
;
6462 if (outbound_shndx
!= NULL
)
6463 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6467 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6468 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6470 symstrtab_hdr
->sh_flags
= 0;
6471 symstrtab_hdr
->sh_addr
= 0;
6472 symstrtab_hdr
->sh_entsize
= 0;
6473 symstrtab_hdr
->sh_link
= 0;
6474 symstrtab_hdr
->sh_info
= 0;
6475 symstrtab_hdr
->sh_addralign
= 1;
6480 /* Return the number of bytes required to hold the symtab vector.
6482 Note that we base it on the count plus 1, since we will null terminate
6483 the vector allocated based on this size. However, the ELF symbol table
6484 always has a dummy entry as symbol #0, so it ends up even. */
6487 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6491 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6493 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6494 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6496 symtab_size
-= sizeof (asymbol
*);
6502 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6506 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6508 if (elf_dynsymtab (abfd
) == 0)
6510 bfd_set_error (bfd_error_invalid_operation
);
6514 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6515 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6517 symtab_size
-= sizeof (asymbol
*);
6523 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6526 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6529 /* Canonicalize the relocs. */
6532 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6539 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6541 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6544 tblptr
= section
->relocation
;
6545 for (i
= 0; i
< section
->reloc_count
; i
++)
6546 *relptr
++ = tblptr
++;
6550 return section
->reloc_count
;
6554 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6556 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6557 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6560 bfd_get_symcount (abfd
) = symcount
;
6565 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6566 asymbol
**allocation
)
6568 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6569 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6572 bfd_get_dynamic_symcount (abfd
) = symcount
;
6576 /* Return the size required for the dynamic reloc entries. Any loadable
6577 section that was actually installed in the BFD, and has type SHT_REL
6578 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6579 dynamic reloc section. */
6582 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6587 if (elf_dynsymtab (abfd
) == 0)
6589 bfd_set_error (bfd_error_invalid_operation
);
6593 ret
= sizeof (arelent
*);
6594 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6595 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6596 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6597 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6598 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6599 * sizeof (arelent
*));
6604 /* Canonicalize the dynamic relocation entries. Note that we return the
6605 dynamic relocations as a single block, although they are actually
6606 associated with particular sections; the interface, which was
6607 designed for SunOS style shared libraries, expects that there is only
6608 one set of dynamic relocs. Any loadable section that was actually
6609 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6610 dynamic symbol table, is considered to be a dynamic reloc section. */
6613 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6617 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6621 if (elf_dynsymtab (abfd
) == 0)
6623 bfd_set_error (bfd_error_invalid_operation
);
6627 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6629 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6631 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6632 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6633 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6638 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6640 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6642 for (i
= 0; i
< count
; i
++)
6653 /* Read in the version information. */
6656 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6658 bfd_byte
*contents
= NULL
;
6659 unsigned int freeidx
= 0;
6661 if (elf_dynverref (abfd
) != 0)
6663 Elf_Internal_Shdr
*hdr
;
6664 Elf_External_Verneed
*everneed
;
6665 Elf_Internal_Verneed
*iverneed
;
6667 bfd_byte
*contents_end
;
6669 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6671 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6672 sizeof (Elf_Internal_Verneed
));
6673 if (elf_tdata (abfd
)->verref
== NULL
)
6676 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6678 contents
= bfd_malloc (hdr
->sh_size
);
6679 if (contents
== NULL
)
6681 error_return_verref
:
6682 elf_tdata (abfd
)->verref
= NULL
;
6683 elf_tdata (abfd
)->cverrefs
= 0;
6686 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6687 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6688 goto error_return_verref
;
6690 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6691 goto error_return_verref
;
6693 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6694 == sizeof (Elf_External_Vernaux
));
6695 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6696 everneed
= (Elf_External_Verneed
*) contents
;
6697 iverneed
= elf_tdata (abfd
)->verref
;
6698 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6700 Elf_External_Vernaux
*evernaux
;
6701 Elf_Internal_Vernaux
*ivernaux
;
6704 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6706 iverneed
->vn_bfd
= abfd
;
6708 iverneed
->vn_filename
=
6709 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6711 if (iverneed
->vn_filename
== NULL
)
6712 goto error_return_verref
;
6714 if (iverneed
->vn_cnt
== 0)
6715 iverneed
->vn_auxptr
= NULL
;
6718 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6719 sizeof (Elf_Internal_Vernaux
));
6720 if (iverneed
->vn_auxptr
== NULL
)
6721 goto error_return_verref
;
6724 if (iverneed
->vn_aux
6725 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6726 goto error_return_verref
;
6728 evernaux
= ((Elf_External_Vernaux
*)
6729 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6730 ivernaux
= iverneed
->vn_auxptr
;
6731 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6733 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6735 ivernaux
->vna_nodename
=
6736 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6737 ivernaux
->vna_name
);
6738 if (ivernaux
->vna_nodename
== NULL
)
6739 goto error_return_verref
;
6741 if (j
+ 1 < iverneed
->vn_cnt
)
6742 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6744 ivernaux
->vna_nextptr
= NULL
;
6746 if (ivernaux
->vna_next
6747 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6748 goto error_return_verref
;
6750 evernaux
= ((Elf_External_Vernaux
*)
6751 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6753 if (ivernaux
->vna_other
> freeidx
)
6754 freeidx
= ivernaux
->vna_other
;
6757 if (i
+ 1 < hdr
->sh_info
)
6758 iverneed
->vn_nextref
= iverneed
+ 1;
6760 iverneed
->vn_nextref
= NULL
;
6762 if (iverneed
->vn_next
6763 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6764 goto error_return_verref
;
6766 everneed
= ((Elf_External_Verneed
*)
6767 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6774 if (elf_dynverdef (abfd
) != 0)
6776 Elf_Internal_Shdr
*hdr
;
6777 Elf_External_Verdef
*everdef
;
6778 Elf_Internal_Verdef
*iverdef
;
6779 Elf_Internal_Verdef
*iverdefarr
;
6780 Elf_Internal_Verdef iverdefmem
;
6782 unsigned int maxidx
;
6783 bfd_byte
*contents_end_def
, *contents_end_aux
;
6785 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6787 contents
= bfd_malloc (hdr
->sh_size
);
6788 if (contents
== NULL
)
6790 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6791 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6794 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6797 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6798 >= sizeof (Elf_External_Verdaux
));
6799 contents_end_def
= contents
+ hdr
->sh_size
6800 - sizeof (Elf_External_Verdef
);
6801 contents_end_aux
= contents
+ hdr
->sh_size
6802 - sizeof (Elf_External_Verdaux
);
6804 /* We know the number of entries in the section but not the maximum
6805 index. Therefore we have to run through all entries and find
6807 everdef
= (Elf_External_Verdef
*) contents
;
6809 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6811 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6813 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6814 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6816 if (iverdefmem
.vd_next
6817 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6820 everdef
= ((Elf_External_Verdef
*)
6821 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6824 if (default_imported_symver
)
6826 if (freeidx
> maxidx
)
6831 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6832 sizeof (Elf_Internal_Verdef
));
6833 if (elf_tdata (abfd
)->verdef
== NULL
)
6836 elf_tdata (abfd
)->cverdefs
= maxidx
;
6838 everdef
= (Elf_External_Verdef
*) contents
;
6839 iverdefarr
= elf_tdata (abfd
)->verdef
;
6840 for (i
= 0; i
< hdr
->sh_info
; i
++)
6842 Elf_External_Verdaux
*everdaux
;
6843 Elf_Internal_Verdaux
*iverdaux
;
6846 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6848 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6850 error_return_verdef
:
6851 elf_tdata (abfd
)->verdef
= NULL
;
6852 elf_tdata (abfd
)->cverdefs
= 0;
6856 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6857 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6859 iverdef
->vd_bfd
= abfd
;
6861 if (iverdef
->vd_cnt
== 0)
6862 iverdef
->vd_auxptr
= NULL
;
6865 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6866 sizeof (Elf_Internal_Verdaux
));
6867 if (iverdef
->vd_auxptr
== NULL
)
6868 goto error_return_verdef
;
6872 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6873 goto error_return_verdef
;
6875 everdaux
= ((Elf_External_Verdaux
*)
6876 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6877 iverdaux
= iverdef
->vd_auxptr
;
6878 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6880 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6882 iverdaux
->vda_nodename
=
6883 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6884 iverdaux
->vda_name
);
6885 if (iverdaux
->vda_nodename
== NULL
)
6886 goto error_return_verdef
;
6888 if (j
+ 1 < iverdef
->vd_cnt
)
6889 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6891 iverdaux
->vda_nextptr
= NULL
;
6893 if (iverdaux
->vda_next
6894 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6895 goto error_return_verdef
;
6897 everdaux
= ((Elf_External_Verdaux
*)
6898 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6901 if (iverdef
->vd_cnt
)
6902 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6904 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6905 iverdef
->vd_nextdef
= iverdef
+ 1;
6907 iverdef
->vd_nextdef
= NULL
;
6909 everdef
= ((Elf_External_Verdef
*)
6910 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6916 else if (default_imported_symver
)
6923 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6924 sizeof (Elf_Internal_Verdef
));
6925 if (elf_tdata (abfd
)->verdef
== NULL
)
6928 elf_tdata (abfd
)->cverdefs
= freeidx
;
6931 /* Create a default version based on the soname. */
6932 if (default_imported_symver
)
6934 Elf_Internal_Verdef
*iverdef
;
6935 Elf_Internal_Verdaux
*iverdaux
;
6937 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6939 iverdef
->vd_version
= VER_DEF_CURRENT
;
6940 iverdef
->vd_flags
= 0;
6941 iverdef
->vd_ndx
= freeidx
;
6942 iverdef
->vd_cnt
= 1;
6944 iverdef
->vd_bfd
= abfd
;
6946 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6947 if (iverdef
->vd_nodename
== NULL
)
6948 goto error_return_verdef
;
6949 iverdef
->vd_nextdef
= NULL
;
6950 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6951 if (iverdef
->vd_auxptr
== NULL
)
6952 goto error_return_verdef
;
6954 iverdaux
= iverdef
->vd_auxptr
;
6955 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6956 iverdaux
->vda_nextptr
= NULL
;
6962 if (contents
!= NULL
)
6968 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6970 elf_symbol_type
*newsym
;
6971 bfd_size_type amt
= sizeof (elf_symbol_type
);
6973 newsym
= bfd_zalloc (abfd
, amt
);
6978 newsym
->symbol
.the_bfd
= abfd
;
6979 return &newsym
->symbol
;
6984 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6988 bfd_symbol_info (symbol
, ret
);
6991 /* Return whether a symbol name implies a local symbol. Most targets
6992 use this function for the is_local_label_name entry point, but some
6996 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6999 /* Normal local symbols start with ``.L''. */
7000 if (name
[0] == '.' && name
[1] == 'L')
7003 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7004 DWARF debugging symbols starting with ``..''. */
7005 if (name
[0] == '.' && name
[1] == '.')
7008 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7009 emitting DWARF debugging output. I suspect this is actually a
7010 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7011 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7012 underscore to be emitted on some ELF targets). For ease of use,
7013 we treat such symbols as local. */
7014 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7021 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7022 asymbol
*symbol ATTRIBUTE_UNUSED
)
7029 _bfd_elf_set_arch_mach (bfd
*abfd
,
7030 enum bfd_architecture arch
,
7031 unsigned long machine
)
7033 /* If this isn't the right architecture for this backend, and this
7034 isn't the generic backend, fail. */
7035 if (arch
!= get_elf_backend_data (abfd
)->arch
7036 && arch
!= bfd_arch_unknown
7037 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7040 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7043 /* Find the function to a particular section and offset,
7044 for error reporting. */
7047 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7051 const char **filename_ptr
,
7052 const char **functionname_ptr
)
7054 const char *filename
;
7055 asymbol
*func
, *file
;
7058 /* ??? Given multiple file symbols, it is impossible to reliably
7059 choose the right file name for global symbols. File symbols are
7060 local symbols, and thus all file symbols must sort before any
7061 global symbols. The ELF spec may be interpreted to say that a
7062 file symbol must sort before other local symbols, but currently
7063 ld -r doesn't do this. So, for ld -r output, it is possible to
7064 make a better choice of file name for local symbols by ignoring
7065 file symbols appearing after a given local symbol. */
7066 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7072 state
= nothing_seen
;
7074 for (p
= symbols
; *p
!= NULL
; p
++)
7078 q
= (elf_symbol_type
*) *p
;
7080 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7086 if (state
== symbol_seen
)
7087 state
= file_after_symbol_seen
;
7091 if (bfd_get_section (&q
->symbol
) == section
7092 && q
->symbol
.value
>= low_func
7093 && q
->symbol
.value
<= offset
)
7095 func
= (asymbol
*) q
;
7096 low_func
= q
->symbol
.value
;
7099 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7100 || state
!= file_after_symbol_seen
))
7101 filename
= bfd_asymbol_name (file
);
7105 if (state
== nothing_seen
)
7106 state
= symbol_seen
;
7113 *filename_ptr
= filename
;
7114 if (functionname_ptr
)
7115 *functionname_ptr
= bfd_asymbol_name (func
);
7120 /* Find the nearest line to a particular section and offset,
7121 for error reporting. */
7124 _bfd_elf_find_nearest_line (bfd
*abfd
,
7128 const char **filename_ptr
,
7129 const char **functionname_ptr
,
7130 unsigned int *line_ptr
)
7134 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7135 filename_ptr
, functionname_ptr
,
7138 if (!*functionname_ptr
)
7139 elf_find_function (abfd
, section
, symbols
, offset
,
7140 *filename_ptr
? NULL
: filename_ptr
,
7146 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7147 filename_ptr
, functionname_ptr
,
7149 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7151 if (!*functionname_ptr
)
7152 elf_find_function (abfd
, section
, symbols
, offset
,
7153 *filename_ptr
? NULL
: filename_ptr
,
7159 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7160 &found
, filename_ptr
,
7161 functionname_ptr
, line_ptr
,
7162 &elf_tdata (abfd
)->line_info
))
7164 if (found
&& (*functionname_ptr
|| *line_ptr
))
7167 if (symbols
== NULL
)
7170 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7171 filename_ptr
, functionname_ptr
))
7178 /* Find the line for a symbol. */
7181 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7182 const char **filename_ptr
, unsigned int *line_ptr
)
7184 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7185 filename_ptr
, line_ptr
, 0,
7186 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7189 /* After a call to bfd_find_nearest_line, successive calls to
7190 bfd_find_inliner_info can be used to get source information about
7191 each level of function inlining that terminated at the address
7192 passed to bfd_find_nearest_line. Currently this is only supported
7193 for DWARF2 with appropriate DWARF3 extensions. */
7196 _bfd_elf_find_inliner_info (bfd
*abfd
,
7197 const char **filename_ptr
,
7198 const char **functionname_ptr
,
7199 unsigned int *line_ptr
)
7202 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7203 functionname_ptr
, line_ptr
,
7204 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7209 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7211 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7212 int ret
= bed
->s
->sizeof_ehdr
;
7214 if (!info
->relocatable
)
7216 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7218 if (phdr_size
== (bfd_size_type
) -1)
7220 struct elf_segment_map
*m
;
7223 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7224 phdr_size
+= bed
->s
->sizeof_phdr
;
7227 phdr_size
= get_program_header_size (abfd
, info
);
7230 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7238 _bfd_elf_set_section_contents (bfd
*abfd
,
7240 const void *location
,
7242 bfd_size_type count
)
7244 Elf_Internal_Shdr
*hdr
;
7247 if (! abfd
->output_has_begun
7248 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7251 hdr
= &elf_section_data (section
)->this_hdr
;
7252 pos
= hdr
->sh_offset
+ offset
;
7253 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7254 || bfd_bwrite (location
, count
, abfd
) != count
)
7261 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7262 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7263 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7268 /* Try to convert a non-ELF reloc into an ELF one. */
7271 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7273 /* Check whether we really have an ELF howto. */
7275 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7277 bfd_reloc_code_real_type code
;
7278 reloc_howto_type
*howto
;
7280 /* Alien reloc: Try to determine its type to replace it with an
7281 equivalent ELF reloc. */
7283 if (areloc
->howto
->pc_relative
)
7285 switch (areloc
->howto
->bitsize
)
7288 code
= BFD_RELOC_8_PCREL
;
7291 code
= BFD_RELOC_12_PCREL
;
7294 code
= BFD_RELOC_16_PCREL
;
7297 code
= BFD_RELOC_24_PCREL
;
7300 code
= BFD_RELOC_32_PCREL
;
7303 code
= BFD_RELOC_64_PCREL
;
7309 howto
= bfd_reloc_type_lookup (abfd
, code
);
7311 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7313 if (howto
->pcrel_offset
)
7314 areloc
->addend
+= areloc
->address
;
7316 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7321 switch (areloc
->howto
->bitsize
)
7327 code
= BFD_RELOC_14
;
7330 code
= BFD_RELOC_16
;
7333 code
= BFD_RELOC_26
;
7336 code
= BFD_RELOC_32
;
7339 code
= BFD_RELOC_64
;
7345 howto
= bfd_reloc_type_lookup (abfd
, code
);
7349 areloc
->howto
= howto
;
7357 (*_bfd_error_handler
)
7358 (_("%B: unsupported relocation type %s"),
7359 abfd
, areloc
->howto
->name
);
7360 bfd_set_error (bfd_error_bad_value
);
7365 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7367 if (bfd_get_format (abfd
) == bfd_object
)
7369 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7370 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7371 _bfd_dwarf2_cleanup_debug_info (abfd
);
7374 return _bfd_generic_close_and_cleanup (abfd
);
7377 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7378 in the relocation's offset. Thus we cannot allow any sort of sanity
7379 range-checking to interfere. There is nothing else to do in processing
7382 bfd_reloc_status_type
7383 _bfd_elf_rel_vtable_reloc_fn
7384 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7385 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7386 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7387 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7389 return bfd_reloc_ok
;
7392 /* Elf core file support. Much of this only works on native
7393 toolchains, since we rely on knowing the
7394 machine-dependent procfs structure in order to pick
7395 out details about the corefile. */
7397 #ifdef HAVE_SYS_PROCFS_H
7398 # include <sys/procfs.h>
7401 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7404 elfcore_make_pid (bfd
*abfd
)
7406 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7407 + (elf_tdata (abfd
)->core_pid
));
7410 /* If there isn't a section called NAME, make one, using
7411 data from SECT. Note, this function will generate a
7412 reference to NAME, so you shouldn't deallocate or
7416 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7420 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7423 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7427 sect2
->size
= sect
->size
;
7428 sect2
->filepos
= sect
->filepos
;
7429 sect2
->alignment_power
= sect
->alignment_power
;
7433 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7434 actually creates up to two pseudosections:
7435 - For the single-threaded case, a section named NAME, unless
7436 such a section already exists.
7437 - For the multi-threaded case, a section named "NAME/PID", where
7438 PID is elfcore_make_pid (abfd).
7439 Both pseudosections have identical contents. */
7441 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7447 char *threaded_name
;
7451 /* Build the section name. */
7453 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7454 len
= strlen (buf
) + 1;
7455 threaded_name
= bfd_alloc (abfd
, len
);
7456 if (threaded_name
== NULL
)
7458 memcpy (threaded_name
, buf
, len
);
7460 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7465 sect
->filepos
= filepos
;
7466 sect
->alignment_power
= 2;
7468 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7471 /* prstatus_t exists on:
7473 linux 2.[01] + glibc
7477 #if defined (HAVE_PRSTATUS_T)
7480 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7485 if (note
->descsz
== sizeof (prstatus_t
))
7489 size
= sizeof (prstat
.pr_reg
);
7490 offset
= offsetof (prstatus_t
, pr_reg
);
7491 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7493 /* Do not overwrite the core signal if it
7494 has already been set by another thread. */
7495 if (elf_tdata (abfd
)->core_signal
== 0)
7496 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7497 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7499 /* pr_who exists on:
7502 pr_who doesn't exist on:
7505 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7506 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7509 #if defined (HAVE_PRSTATUS32_T)
7510 else if (note
->descsz
== sizeof (prstatus32_t
))
7512 /* 64-bit host, 32-bit corefile */
7513 prstatus32_t prstat
;
7515 size
= sizeof (prstat
.pr_reg
);
7516 offset
= offsetof (prstatus32_t
, pr_reg
);
7517 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7519 /* Do not overwrite the core signal if it
7520 has already been set by another thread. */
7521 if (elf_tdata (abfd
)->core_signal
== 0)
7522 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7523 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7525 /* pr_who exists on:
7528 pr_who doesn't exist on:
7531 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7532 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7535 #endif /* HAVE_PRSTATUS32_T */
7538 /* Fail - we don't know how to handle any other
7539 note size (ie. data object type). */
7543 /* Make a ".reg/999" section and a ".reg" section. */
7544 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7545 size
, note
->descpos
+ offset
);
7547 #endif /* defined (HAVE_PRSTATUS_T) */
7549 /* Create a pseudosection containing the exact contents of NOTE. */
7551 elfcore_make_note_pseudosection (bfd
*abfd
,
7553 Elf_Internal_Note
*note
)
7555 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7556 note
->descsz
, note
->descpos
);
7559 /* There isn't a consistent prfpregset_t across platforms,
7560 but it doesn't matter, because we don't have to pick this
7561 data structure apart. */
7564 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7566 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7569 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7570 type of NT_PRXFPREG. Just include the whole note's contents
7574 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7576 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7580 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7582 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7586 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7588 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7591 #if defined (HAVE_PRPSINFO_T)
7592 typedef prpsinfo_t elfcore_psinfo_t
;
7593 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7594 typedef prpsinfo32_t elfcore_psinfo32_t
;
7598 #if defined (HAVE_PSINFO_T)
7599 typedef psinfo_t elfcore_psinfo_t
;
7600 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7601 typedef psinfo32_t elfcore_psinfo32_t
;
7605 /* return a malloc'ed copy of a string at START which is at
7606 most MAX bytes long, possibly without a terminating '\0'.
7607 the copy will always have a terminating '\0'. */
7610 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7613 char *end
= memchr (start
, '\0', max
);
7621 dups
= bfd_alloc (abfd
, len
+ 1);
7625 memcpy (dups
, start
, len
);
7631 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7633 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7635 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7637 elfcore_psinfo_t psinfo
;
7639 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7641 elf_tdata (abfd
)->core_program
7642 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7643 sizeof (psinfo
.pr_fname
));
7645 elf_tdata (abfd
)->core_command
7646 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7647 sizeof (psinfo
.pr_psargs
));
7649 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7650 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7652 /* 64-bit host, 32-bit corefile */
7653 elfcore_psinfo32_t psinfo
;
7655 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7657 elf_tdata (abfd
)->core_program
7658 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7659 sizeof (psinfo
.pr_fname
));
7661 elf_tdata (abfd
)->core_command
7662 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7663 sizeof (psinfo
.pr_psargs
));
7669 /* Fail - we don't know how to handle any other
7670 note size (ie. data object type). */
7674 /* Note that for some reason, a spurious space is tacked
7675 onto the end of the args in some (at least one anyway)
7676 implementations, so strip it off if it exists. */
7679 char *command
= elf_tdata (abfd
)->core_command
;
7680 int n
= strlen (command
);
7682 if (0 < n
&& command
[n
- 1] == ' ')
7683 command
[n
- 1] = '\0';
7688 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7690 #if defined (HAVE_PSTATUS_T)
7692 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7694 if (note
->descsz
== sizeof (pstatus_t
)
7695 #if defined (HAVE_PXSTATUS_T)
7696 || note
->descsz
== sizeof (pxstatus_t
)
7702 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7704 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7706 #if defined (HAVE_PSTATUS32_T)
7707 else if (note
->descsz
== sizeof (pstatus32_t
))
7709 /* 64-bit host, 32-bit corefile */
7712 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7714 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7717 /* Could grab some more details from the "representative"
7718 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7719 NT_LWPSTATUS note, presumably. */
7723 #endif /* defined (HAVE_PSTATUS_T) */
7725 #if defined (HAVE_LWPSTATUS_T)
7727 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7729 lwpstatus_t lwpstat
;
7735 if (note
->descsz
!= sizeof (lwpstat
)
7736 #if defined (HAVE_LWPXSTATUS_T)
7737 && note
->descsz
!= sizeof (lwpxstatus_t
)
7742 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7744 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7745 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7747 /* Make a ".reg/999" section. */
7749 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7750 len
= strlen (buf
) + 1;
7751 name
= bfd_alloc (abfd
, len
);
7754 memcpy (name
, buf
, len
);
7756 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7760 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7761 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7762 sect
->filepos
= note
->descpos
7763 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7766 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7767 sect
->size
= sizeof (lwpstat
.pr_reg
);
7768 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7771 sect
->alignment_power
= 2;
7773 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7776 /* Make a ".reg2/999" section */
7778 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7779 len
= strlen (buf
) + 1;
7780 name
= bfd_alloc (abfd
, len
);
7783 memcpy (name
, buf
, len
);
7785 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7789 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7790 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7791 sect
->filepos
= note
->descpos
7792 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7795 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7796 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7797 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7800 sect
->alignment_power
= 2;
7802 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7804 #endif /* defined (HAVE_LWPSTATUS_T) */
7807 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7814 int is_active_thread
;
7817 if (note
->descsz
< 728)
7820 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7823 type
= bfd_get_32 (abfd
, note
->descdata
);
7827 case 1 /* NOTE_INFO_PROCESS */:
7828 /* FIXME: need to add ->core_command. */
7829 /* process_info.pid */
7830 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7831 /* process_info.signal */
7832 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7835 case 2 /* NOTE_INFO_THREAD */:
7836 /* Make a ".reg/999" section. */
7837 /* thread_info.tid */
7838 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7840 len
= strlen (buf
) + 1;
7841 name
= bfd_alloc (abfd
, len
);
7845 memcpy (name
, buf
, len
);
7847 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7851 /* sizeof (thread_info.thread_context) */
7853 /* offsetof (thread_info.thread_context) */
7854 sect
->filepos
= note
->descpos
+ 12;
7855 sect
->alignment_power
= 2;
7857 /* thread_info.is_active_thread */
7858 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7860 if (is_active_thread
)
7861 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7865 case 3 /* NOTE_INFO_MODULE */:
7866 /* Make a ".module/xxxxxxxx" section. */
7867 /* module_info.base_address */
7868 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7869 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7871 len
= strlen (buf
) + 1;
7872 name
= bfd_alloc (abfd
, len
);
7876 memcpy (name
, buf
, len
);
7878 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7883 sect
->size
= note
->descsz
;
7884 sect
->filepos
= note
->descpos
;
7885 sect
->alignment_power
= 2;
7896 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7898 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7906 if (bed
->elf_backend_grok_prstatus
)
7907 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7909 #if defined (HAVE_PRSTATUS_T)
7910 return elfcore_grok_prstatus (abfd
, note
);
7915 #if defined (HAVE_PSTATUS_T)
7917 return elfcore_grok_pstatus (abfd
, note
);
7920 #if defined (HAVE_LWPSTATUS_T)
7922 return elfcore_grok_lwpstatus (abfd
, note
);
7925 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7926 return elfcore_grok_prfpreg (abfd
, note
);
7928 case NT_WIN32PSTATUS
:
7929 return elfcore_grok_win32pstatus (abfd
, note
);
7931 case NT_PRXFPREG
: /* Linux SSE extension */
7932 if (note
->namesz
== 6
7933 && strcmp (note
->namedata
, "LINUX") == 0)
7934 return elfcore_grok_prxfpreg (abfd
, note
);
7939 if (note
->namesz
== 6
7940 && strcmp (note
->namedata
, "LINUX") == 0)
7941 return elfcore_grok_ppc_vmx (abfd
, note
);
7946 if (note
->namesz
== 6
7947 && strcmp (note
->namedata
, "LINUX") == 0)
7948 return elfcore_grok_ppc_vsx (abfd
, note
);
7954 if (bed
->elf_backend_grok_psinfo
)
7955 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7957 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7958 return elfcore_grok_psinfo (abfd
, note
);
7965 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7970 sect
->size
= note
->descsz
;
7971 sect
->filepos
= note
->descpos
;
7972 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7980 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
7982 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
7983 elf_tdata (abfd
)->build_id
= bfd_alloc (abfd
, note
->descsz
);
7984 if (elf_tdata (abfd
)->build_id
== NULL
)
7987 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
7993 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8000 case NT_GNU_BUILD_ID
:
8001 return elfobj_grok_gnu_build_id (abfd
, note
);
8006 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8010 cp
= strchr (note
->namedata
, '@');
8013 *lwpidp
= atoi(cp
+ 1);
8020 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8022 /* Signal number at offset 0x08. */
8023 elf_tdata (abfd
)->core_signal
8024 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8026 /* Process ID at offset 0x50. */
8027 elf_tdata (abfd
)->core_pid
8028 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8030 /* Command name at 0x7c (max 32 bytes, including nul). */
8031 elf_tdata (abfd
)->core_command
8032 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8034 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8039 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8043 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8044 elf_tdata (abfd
)->core_lwpid
= lwp
;
8046 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8048 /* NetBSD-specific core "procinfo". Note that we expect to
8049 find this note before any of the others, which is fine,
8050 since the kernel writes this note out first when it
8051 creates a core file. */
8053 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8056 /* As of Jan 2002 there are no other machine-independent notes
8057 defined for NetBSD core files. If the note type is less
8058 than the start of the machine-dependent note types, we don't
8061 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8065 switch (bfd_get_arch (abfd
))
8067 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8068 PT_GETFPREGS == mach+2. */
8070 case bfd_arch_alpha
:
8071 case bfd_arch_sparc
:
8074 case NT_NETBSDCORE_FIRSTMACH
+0:
8075 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8077 case NT_NETBSDCORE_FIRSTMACH
+2:
8078 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8084 /* On all other arch's, PT_GETREGS == mach+1 and
8085 PT_GETFPREGS == mach+3. */
8090 case NT_NETBSDCORE_FIRSTMACH
+1:
8091 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8093 case NT_NETBSDCORE_FIRSTMACH
+3:
8094 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8104 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8106 void *ddata
= note
->descdata
;
8113 /* nto_procfs_status 'pid' field is at offset 0. */
8114 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8116 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8117 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8119 /* nto_procfs_status 'flags' field is at offset 8. */
8120 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8122 /* nto_procfs_status 'what' field is at offset 14. */
8123 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8125 elf_tdata (abfd
)->core_signal
= sig
;
8126 elf_tdata (abfd
)->core_lwpid
= *tid
;
8129 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8130 do not come from signals so we make sure we set the current
8131 thread just in case. */
8132 if (flags
& 0x00000080)
8133 elf_tdata (abfd
)->core_lwpid
= *tid
;
8135 /* Make a ".qnx_core_status/%d" section. */
8136 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8138 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8143 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8147 sect
->size
= note
->descsz
;
8148 sect
->filepos
= note
->descpos
;
8149 sect
->alignment_power
= 2;
8151 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8155 elfcore_grok_nto_regs (bfd
*abfd
,
8156 Elf_Internal_Note
*note
,
8164 /* Make a "(base)/%d" section. */
8165 sprintf (buf
, "%s/%ld", base
, tid
);
8167 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8172 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8176 sect
->size
= note
->descsz
;
8177 sect
->filepos
= note
->descpos
;
8178 sect
->alignment_power
= 2;
8180 /* This is the current thread. */
8181 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8182 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8187 #define BFD_QNT_CORE_INFO 7
8188 #define BFD_QNT_CORE_STATUS 8
8189 #define BFD_QNT_CORE_GREG 9
8190 #define BFD_QNT_CORE_FPREG 10
8193 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8195 /* Every GREG section has a STATUS section before it. Store the
8196 tid from the previous call to pass down to the next gregs
8198 static long tid
= 1;
8202 case BFD_QNT_CORE_INFO
:
8203 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8204 case BFD_QNT_CORE_STATUS
:
8205 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8206 case BFD_QNT_CORE_GREG
:
8207 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8208 case BFD_QNT_CORE_FPREG
:
8209 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8216 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8222 /* Use note name as section name. */
8224 name
= bfd_alloc (abfd
, len
);
8227 memcpy (name
, note
->namedata
, len
);
8228 name
[len
- 1] = '\0';
8230 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8234 sect
->size
= note
->descsz
;
8235 sect
->filepos
= note
->descpos
;
8236 sect
->alignment_power
= 1;
8241 /* Function: elfcore_write_note
8244 buffer to hold note, and current size of buffer
8248 size of data for note
8250 Writes note to end of buffer. ELF64 notes are written exactly as
8251 for ELF32, despite the current (as of 2006) ELF gabi specifying
8252 that they ought to have 8-byte namesz and descsz field, and have
8253 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8256 Pointer to realloc'd buffer, *BUFSIZ updated. */
8259 elfcore_write_note (bfd
*abfd
,
8267 Elf_External_Note
*xnp
;
8274 namesz
= strlen (name
) + 1;
8276 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8278 buf
= realloc (buf
, *bufsiz
+ newspace
);
8281 dest
= buf
+ *bufsiz
;
8282 *bufsiz
+= newspace
;
8283 xnp
= (Elf_External_Note
*) dest
;
8284 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8285 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8286 H_PUT_32 (abfd
, type
, xnp
->type
);
8290 memcpy (dest
, name
, namesz
);
8298 memcpy (dest
, input
, size
);
8308 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8310 elfcore_write_prpsinfo (bfd
*abfd
,
8316 const char *note_name
= "CORE";
8317 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8319 if (bed
->elf_backend_write_core_note
!= NULL
)
8322 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8323 NT_PRPSINFO
, fname
, psargs
);
8328 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8329 if (bed
->s
->elfclass
== ELFCLASS32
)
8331 #if defined (HAVE_PSINFO32_T)
8333 int note_type
= NT_PSINFO
;
8336 int note_type
= NT_PRPSINFO
;
8339 memset (&data
, 0, sizeof (data
));
8340 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8341 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8342 return elfcore_write_note (abfd
, buf
, bufsiz
,
8343 note_name
, note_type
, &data
, sizeof (data
));
8348 #if defined (HAVE_PSINFO_T)
8350 int note_type
= NT_PSINFO
;
8353 int note_type
= NT_PRPSINFO
;
8356 memset (&data
, 0, sizeof (data
));
8357 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8358 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8359 return elfcore_write_note (abfd
, buf
, bufsiz
,
8360 note_name
, note_type
, &data
, sizeof (data
));
8363 #endif /* PSINFO_T or PRPSINFO_T */
8365 #if defined (HAVE_PRSTATUS_T)
8367 elfcore_write_prstatus (bfd
*abfd
,
8374 const char *note_name
= "CORE";
8375 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8377 if (bed
->elf_backend_write_core_note
!= NULL
)
8380 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8382 pid
, cursig
, gregs
);
8387 #if defined (HAVE_PRSTATUS32_T)
8388 if (bed
->s
->elfclass
== ELFCLASS32
)
8390 prstatus32_t prstat
;
8392 memset (&prstat
, 0, sizeof (prstat
));
8393 prstat
.pr_pid
= pid
;
8394 prstat
.pr_cursig
= cursig
;
8395 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8396 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8397 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8404 memset (&prstat
, 0, sizeof (prstat
));
8405 prstat
.pr_pid
= pid
;
8406 prstat
.pr_cursig
= cursig
;
8407 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8408 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8409 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8412 #endif /* HAVE_PRSTATUS_T */
8414 #if defined (HAVE_LWPSTATUS_T)
8416 elfcore_write_lwpstatus (bfd
*abfd
,
8423 lwpstatus_t lwpstat
;
8424 const char *note_name
= "CORE";
8426 memset (&lwpstat
, 0, sizeof (lwpstat
));
8427 lwpstat
.pr_lwpid
= pid
>> 16;
8428 lwpstat
.pr_cursig
= cursig
;
8429 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8430 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8431 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8433 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8434 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8436 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8437 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8440 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8441 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8443 #endif /* HAVE_LWPSTATUS_T */
8445 #if defined (HAVE_PSTATUS_T)
8447 elfcore_write_pstatus (bfd
*abfd
,
8451 int cursig ATTRIBUTE_UNUSED
,
8452 const void *gregs ATTRIBUTE_UNUSED
)
8454 const char *note_name
= "CORE";
8455 #if defined (HAVE_PSTATUS32_T)
8456 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8458 if (bed
->s
->elfclass
== ELFCLASS32
)
8462 memset (&pstat
, 0, sizeof (pstat
));
8463 pstat
.pr_pid
= pid
& 0xffff;
8464 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8465 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8473 memset (&pstat
, 0, sizeof (pstat
));
8474 pstat
.pr_pid
= pid
& 0xffff;
8475 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8476 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8480 #endif /* HAVE_PSTATUS_T */
8483 elfcore_write_prfpreg (bfd
*abfd
,
8489 const char *note_name
= "CORE";
8490 return elfcore_write_note (abfd
, buf
, bufsiz
,
8491 note_name
, NT_FPREGSET
, fpregs
, size
);
8495 elfcore_write_prxfpreg (bfd
*abfd
,
8498 const void *xfpregs
,
8501 char *note_name
= "LINUX";
8502 return elfcore_write_note (abfd
, buf
, bufsiz
,
8503 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8507 elfcore_write_ppc_vmx (bfd
*abfd
,
8510 const void *ppc_vmx
,
8513 char *note_name
= "LINUX";
8514 return elfcore_write_note (abfd
, buf
, bufsiz
,
8515 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8519 elfcore_write_ppc_vsx (bfd
*abfd
,
8522 const void *ppc_vsx
,
8525 char *note_name
= "LINUX";
8526 return elfcore_write_note (abfd
, buf
, bufsiz
,
8527 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8531 elfcore_write_register_note (bfd
*abfd
,
8534 const char *section
,
8538 if (strcmp (section
, ".reg2") == 0)
8539 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8540 if (strcmp (section
, ".reg-xfp") == 0)
8541 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8542 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8543 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8544 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8545 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8550 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8555 while (p
< buf
+ size
)
8557 /* FIXME: bad alignment assumption. */
8558 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8559 Elf_Internal_Note in
;
8561 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8564 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8566 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8567 in
.namedata
= xnp
->name
;
8568 if (in
.namesz
> buf
- in
.namedata
+ size
)
8571 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8572 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8573 in
.descpos
= offset
+ (in
.descdata
- buf
);
8575 && (in
.descdata
>= buf
+ size
8576 || in
.descsz
> buf
- in
.descdata
+ size
))
8579 switch (bfd_get_format (abfd
))
8585 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8587 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8590 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8592 if (! elfcore_grok_nto_note (abfd
, &in
))
8595 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8597 if (! elfcore_grok_spu_note (abfd
, &in
))
8602 if (! elfcore_grok_note (abfd
, &in
))
8608 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8610 if (! elfobj_grok_gnu_note (abfd
, &in
))
8616 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8623 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8630 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8633 buf
= bfd_malloc (size
);
8637 if (bfd_bread (buf
, size
, abfd
) != size
8638 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8648 /* Providing external access to the ELF program header table. */
8650 /* Return an upper bound on the number of bytes required to store a
8651 copy of ABFD's program header table entries. Return -1 if an error
8652 occurs; bfd_get_error will return an appropriate code. */
8655 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8657 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8659 bfd_set_error (bfd_error_wrong_format
);
8663 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8666 /* Copy ABFD's program header table entries to *PHDRS. The entries
8667 will be stored as an array of Elf_Internal_Phdr structures, as
8668 defined in include/elf/internal.h. To find out how large the
8669 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8671 Return the number of program header table entries read, or -1 if an
8672 error occurs; bfd_get_error will return an appropriate code. */
8675 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8679 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8681 bfd_set_error (bfd_error_wrong_format
);
8685 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8686 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8687 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8692 enum elf_reloc_type_class
8693 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8695 return reloc_class_normal
;
8698 /* For RELA architectures, return the relocation value for a
8699 relocation against a local symbol. */
8702 _bfd_elf_rela_local_sym (bfd
*abfd
,
8703 Elf_Internal_Sym
*sym
,
8705 Elf_Internal_Rela
*rel
)
8707 asection
*sec
= *psec
;
8710 relocation
= (sec
->output_section
->vma
8711 + sec
->output_offset
8713 if ((sec
->flags
& SEC_MERGE
)
8714 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8715 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8718 _bfd_merged_section_offset (abfd
, psec
,
8719 elf_section_data (sec
)->sec_info
,
8720 sym
->st_value
+ rel
->r_addend
);
8723 /* If we have changed the section, and our original section is
8724 marked with SEC_EXCLUDE, it means that the original
8725 SEC_MERGE section has been completely subsumed in some
8726 other SEC_MERGE section. In this case, we need to leave
8727 some info around for --emit-relocs. */
8728 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8729 sec
->kept_section
= *psec
;
8732 rel
->r_addend
-= relocation
;
8733 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8739 _bfd_elf_rel_local_sym (bfd
*abfd
,
8740 Elf_Internal_Sym
*sym
,
8744 asection
*sec
= *psec
;
8746 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8747 return sym
->st_value
+ addend
;
8749 return _bfd_merged_section_offset (abfd
, psec
,
8750 elf_section_data (sec
)->sec_info
,
8751 sym
->st_value
+ addend
);
8755 _bfd_elf_section_offset (bfd
*abfd
,
8756 struct bfd_link_info
*info
,
8760 switch (sec
->sec_info_type
)
8762 case ELF_INFO_TYPE_STABS
:
8763 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8765 case ELF_INFO_TYPE_EH_FRAME
:
8766 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8772 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8773 reconstruct an ELF file by reading the segments out of remote memory
8774 based on the ELF file header at EHDR_VMA and the ELF program headers it
8775 points to. If not null, *LOADBASEP is filled in with the difference
8776 between the VMAs from which the segments were read, and the VMAs the
8777 file headers (and hence BFD's idea of each section's VMA) put them at.
8779 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8780 remote memory at target address VMA into the local buffer at MYADDR; it
8781 should return zero on success or an `errno' code on failure. TEMPL must
8782 be a BFD for an ELF target with the word size and byte order found in
8783 the remote memory. */
8786 bfd_elf_bfd_from_remote_memory
8790 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8792 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8793 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8797 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8798 long symcount ATTRIBUTE_UNUSED
,
8799 asymbol
**syms ATTRIBUTE_UNUSED
,
8804 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8807 const char *relplt_name
;
8808 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8812 Elf_Internal_Shdr
*hdr
;
8818 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8821 if (dynsymcount
<= 0)
8824 if (!bed
->plt_sym_val
)
8827 relplt_name
= bed
->relplt_name
;
8828 if (relplt_name
== NULL
)
8829 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8830 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8834 hdr
= &elf_section_data (relplt
)->this_hdr
;
8835 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8836 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8839 plt
= bfd_get_section_by_name (abfd
, ".plt");
8843 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8844 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8847 count
= relplt
->size
/ hdr
->sh_entsize
;
8848 size
= count
* sizeof (asymbol
);
8849 p
= relplt
->relocation
;
8850 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8851 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8853 s
= *ret
= bfd_malloc (size
);
8857 names
= (char *) (s
+ count
);
8858 p
= relplt
->relocation
;
8860 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8865 addr
= bed
->plt_sym_val (i
, plt
, p
);
8866 if (addr
== (bfd_vma
) -1)
8869 *s
= **p
->sym_ptr_ptr
;
8870 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8871 we are defining a symbol, ensure one of them is set. */
8872 if ((s
->flags
& BSF_LOCAL
) == 0)
8873 s
->flags
|= BSF_GLOBAL
;
8874 s
->flags
|= BSF_SYNTHETIC
;
8876 s
->value
= addr
- plt
->vma
;
8879 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8880 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8882 memcpy (names
, "@plt", sizeof ("@plt"));
8883 names
+= sizeof ("@plt");
8890 /* It is only used by x86-64 so far. */
8891 asection _bfd_elf_large_com_section
8892 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8893 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8896 _bfd_elf_set_osabi (bfd
* abfd
,
8897 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
8899 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
8901 i_ehdrp
= elf_elfheader (abfd
);
8903 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
8907 /* Return TRUE for ELF symbol types that represent functions.
8908 This is the default version of this function, which is sufficient for
8909 most targets. It returns true if TYPE is STT_FUNC. */
8912 _bfd_elf_is_function_type (unsigned int type
)
8914 return (type
== STT_FUNC
);