1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22 /* No specific ABI or "processor-specific supplement" defined. */
25 - "Traditional" linker relaxation (shrinking whole sections).
26 - Merge reloc stubs jumping to same location.
27 - GETA stub relaxation (call a stub for out of range new
28 R_MMIX_GETA_STUBBABLE). */
35 #include "opcode/mmix.h"
37 #define MINUS_ONE (((bfd_vma) 0) - 1)
39 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41 /* Put these everywhere in new code. */
43 _bfd_abort (__FILE__, __LINE__, \
44 "Internal: Non-debugged code (test-case missing)")
47 _bfd_abort (__FILE__, __LINE__, \
50 struct _mmix_elf_section_data
52 struct bfd_elf_section_data elf
;
55 struct bpo_reloc_section_info
*reloc
;
56 struct bpo_greg_section_info
*greg
;
59 struct pushj_stub_info
61 /* Maximum number of stubs needed for this section. */
62 bfd_size_type n_pushj_relocs
;
64 /* Size of stubs after a mmix_elf_relax_section round. */
65 bfd_size_type stubs_size_sum
;
67 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
68 of these. Allocated in mmix_elf_check_common_relocs. */
69 bfd_size_type
*stub_size
;
71 /* Offset of next stub during relocation. Somewhat redundant with the
72 above: error coverage is easier and we don't have to reset the
73 stubs_size_sum for relocation. */
74 bfd_size_type stub_offset
;
78 #define mmix_elf_section_data(sec) \
79 ((struct _mmix_elf_section_data *) elf_section_data (sec))
81 /* For each section containing a base-plus-offset (BPO) reloc, we attach
82 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
84 struct bpo_reloc_section_info
86 /* The base is 1; this is the first number in this section. */
87 size_t first_base_plus_offset_reloc
;
89 /* Number of BPO-relocs in this section. */
90 size_t n_bpo_relocs_this_section
;
92 /* Running index, used at relocation time. */
95 /* We don't have access to the bfd_link_info struct in
96 mmix_final_link_relocate. What we really want to get at is the
97 global single struct greg_relocation, so we stash it here. */
98 asection
*bpo_greg_section
;
101 /* Helper struct (in global context) for the one below.
102 There's one of these created for every BPO reloc. */
103 struct bpo_reloc_request
107 /* Valid after relaxation. The base is 0; the first register number
108 must be added. The offset is in range 0..255. */
112 /* The order number for this BPO reloc, corresponding to the order in
113 which BPO relocs were found. Used to create an index after reloc
114 requests are sorted. */
117 /* Set when the value is computed. Better than coding "guard values"
118 into the other members. Is FALSE only for BPO relocs in a GC:ed
123 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
124 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
125 which is linked into the register contents section
126 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
127 linker; using the same hook as for usual with BPO relocs does not
129 struct bpo_greg_section_info
131 /* After GC, this reflects the number of remaining, non-excluded
135 /* This is the number of allocated bpo_reloc_requests; the size of
136 sorted_indexes. Valid after the check.*relocs functions are called
137 for all incoming sections. It includes the number of BPO relocs in
138 sections that were GC:ed. */
139 size_t n_max_bpo_relocs
;
141 /* A counter used to find out when to fold the BPO gregs, since we
142 don't have a single "after-relaxation" hook. */
143 size_t n_remaining_bpo_relocs_this_relaxation_round
;
145 /* The number of linker-allocated GREGs resulting from BPO relocs.
146 This is an approximation after _bfd_mmix_before_linker_allocation
147 and supposedly accurate after mmix_elf_relax_section is called for
148 all incoming non-collected sections. */
149 size_t n_allocated_bpo_gregs
;
151 /* Index into reloc_request[], sorted on increasing "value", secondary
152 by increasing index for strict sorting order. */
153 size_t *bpo_reloc_indexes
;
155 /* An array of all relocations, with the "value" member filled in by
156 the relaxation function. */
157 struct bpo_reloc_request
*reloc_request
;
160 static bfd_boolean mmix_elf_link_output_symbol_hook
161 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
162 asection
*, struct elf_link_hash_entry
*));
164 static bfd_reloc_status_type mmix_elf_reloc
165 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
167 static reloc_howto_type
*bfd_elf64_bfd_reloc_type_lookup
168 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
170 static void mmix_info_to_howto_rela
171 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
173 static int mmix_elf_sort_relocs
PARAMS ((const PTR
, const PTR
));
175 static bfd_boolean mmix_elf_new_section_hook
176 PARAMS ((bfd
*, asection
*));
178 static bfd_boolean mmix_elf_check_relocs
179 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
180 const Elf_Internal_Rela
*));
182 static bfd_boolean mmix_elf_check_common_relocs
183 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
184 const Elf_Internal_Rela
*));
186 static bfd_boolean mmix_elf_relocate_section
187 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
188 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
190 static asection
* mmix_elf_gc_mark_hook
191 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
192 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
194 static bfd_boolean mmix_elf_gc_sweep_hook
195 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
196 const Elf_Internal_Rela
*));
198 static bfd_reloc_status_type mmix_final_link_relocate
199 PARAMS ((reloc_howto_type
*, asection
*, bfd_byte
*,
200 bfd_vma
, bfd_signed_vma
, bfd_vma
, const char *, asection
*));
202 static bfd_reloc_status_type mmix_elf_perform_relocation
203 PARAMS ((asection
*, reloc_howto_type
*, PTR
, bfd_vma
, bfd_vma
));
205 static bfd_boolean mmix_elf_section_from_bfd_section
206 PARAMS ((bfd
*, asection
*, int *));
208 static bfd_boolean mmix_elf_add_symbol_hook
209 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
210 const char **, flagword
*, asection
**, bfd_vma
*));
212 static bfd_boolean mmix_elf_is_local_label_name
213 PARAMS ((bfd
*, const char *));
215 static int bpo_reloc_request_sort_fn
PARAMS ((const PTR
, const PTR
));
217 static bfd_boolean mmix_elf_relax_section
218 PARAMS ((bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
,
219 bfd_boolean
*again
));
221 extern bfd_boolean mmix_elf_final_link
PARAMS ((bfd
*, struct bfd_link_info
*));
223 extern void mmix_elf_symbol_processing
PARAMS ((bfd
*, asymbol
*));
225 /* Only intended to be called from a debugger. */
226 extern void mmix_dump_bpo_gregs
227 PARAMS ((struct bfd_link_info
*, bfd_error_handler_type
));
230 mmix_set_relaxable_size
231 PARAMS ((bfd
*, asection
*, void *));
234 /* Watch out: this currently needs to have elements with the same index as
235 their R_MMIX_ number. */
236 static reloc_howto_type elf_mmix_howto_table
[] =
238 /* This reloc does nothing. */
239 HOWTO (R_MMIX_NONE
, /* type */
241 2, /* size (0 = byte, 1 = short, 2 = long) */
243 FALSE
, /* pc_relative */
245 complain_overflow_bitfield
, /* complain_on_overflow */
246 bfd_elf_generic_reloc
, /* special_function */
247 "R_MMIX_NONE", /* name */
248 FALSE
, /* partial_inplace */
251 FALSE
), /* pcrel_offset */
253 /* An 8 bit absolute relocation. */
254 HOWTO (R_MMIX_8
, /* type */
256 0, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE
, /* pc_relative */
260 complain_overflow_bitfield
, /* complain_on_overflow */
261 bfd_elf_generic_reloc
, /* special_function */
262 "R_MMIX_8", /* name */
263 FALSE
, /* partial_inplace */
266 FALSE
), /* pcrel_offset */
268 /* An 16 bit absolute relocation. */
269 HOWTO (R_MMIX_16
, /* type */
271 1, /* size (0 = byte, 1 = short, 2 = long) */
273 FALSE
, /* pc_relative */
275 complain_overflow_bitfield
, /* complain_on_overflow */
276 bfd_elf_generic_reloc
, /* special_function */
277 "R_MMIX_16", /* name */
278 FALSE
, /* partial_inplace */
280 0xffff, /* dst_mask */
281 FALSE
), /* pcrel_offset */
283 /* An 24 bit absolute relocation. */
284 HOWTO (R_MMIX_24
, /* type */
286 2, /* size (0 = byte, 1 = short, 2 = long) */
288 FALSE
, /* pc_relative */
290 complain_overflow_bitfield
, /* complain_on_overflow */
291 bfd_elf_generic_reloc
, /* special_function */
292 "R_MMIX_24", /* name */
293 FALSE
, /* partial_inplace */
294 ~0xffffff, /* src_mask */
295 0xffffff, /* dst_mask */
296 FALSE
), /* pcrel_offset */
298 /* A 32 bit absolute relocation. */
299 HOWTO (R_MMIX_32
, /* type */
301 2, /* size (0 = byte, 1 = short, 2 = long) */
303 FALSE
, /* pc_relative */
305 complain_overflow_bitfield
, /* complain_on_overflow */
306 bfd_elf_generic_reloc
, /* special_function */
307 "R_MMIX_32", /* name */
308 FALSE
, /* partial_inplace */
310 0xffffffff, /* dst_mask */
311 FALSE
), /* pcrel_offset */
313 /* 64 bit relocation. */
314 HOWTO (R_MMIX_64
, /* type */
316 4, /* size (0 = byte, 1 = short, 2 = long) */
318 FALSE
, /* pc_relative */
320 complain_overflow_bitfield
, /* complain_on_overflow */
321 bfd_elf_generic_reloc
, /* special_function */
322 "R_MMIX_64", /* name */
323 FALSE
, /* partial_inplace */
325 MINUS_ONE
, /* dst_mask */
326 FALSE
), /* pcrel_offset */
328 /* An 8 bit PC-relative relocation. */
329 HOWTO (R_MMIX_PC_8
, /* type */
331 0, /* size (0 = byte, 1 = short, 2 = long) */
333 TRUE
, /* pc_relative */
335 complain_overflow_bitfield
, /* complain_on_overflow */
336 bfd_elf_generic_reloc
, /* special_function */
337 "R_MMIX_PC_8", /* name */
338 FALSE
, /* partial_inplace */
341 TRUE
), /* pcrel_offset */
343 /* An 16 bit PC-relative relocation. */
344 HOWTO (R_MMIX_PC_16
, /* type */
346 1, /* size (0 = byte, 1 = short, 2 = long) */
348 TRUE
, /* pc_relative */
350 complain_overflow_bitfield
, /* complain_on_overflow */
351 bfd_elf_generic_reloc
, /* special_function */
352 "R_MMIX_PC_16", /* name */
353 FALSE
, /* partial_inplace */
355 0xffff, /* dst_mask */
356 TRUE
), /* pcrel_offset */
358 /* An 24 bit PC-relative relocation. */
359 HOWTO (R_MMIX_PC_24
, /* type */
361 2, /* size (0 = byte, 1 = short, 2 = long) */
363 TRUE
, /* pc_relative */
365 complain_overflow_bitfield
, /* complain_on_overflow */
366 bfd_elf_generic_reloc
, /* special_function */
367 "R_MMIX_PC_24", /* name */
368 FALSE
, /* partial_inplace */
369 ~0xffffff, /* src_mask */
370 0xffffff, /* dst_mask */
371 TRUE
), /* pcrel_offset */
373 /* A 32 bit absolute PC-relative relocation. */
374 HOWTO (R_MMIX_PC_32
, /* type */
376 2, /* size (0 = byte, 1 = short, 2 = long) */
378 TRUE
, /* pc_relative */
380 complain_overflow_bitfield
, /* complain_on_overflow */
381 bfd_elf_generic_reloc
, /* special_function */
382 "R_MMIX_PC_32", /* name */
383 FALSE
, /* partial_inplace */
385 0xffffffff, /* dst_mask */
386 TRUE
), /* pcrel_offset */
388 /* 64 bit PC-relative relocation. */
389 HOWTO (R_MMIX_PC_64
, /* type */
391 4, /* size (0 = byte, 1 = short, 2 = long) */
393 TRUE
, /* pc_relative */
395 complain_overflow_bitfield
, /* complain_on_overflow */
396 bfd_elf_generic_reloc
, /* special_function */
397 "R_MMIX_PC_64", /* name */
398 FALSE
, /* partial_inplace */
400 MINUS_ONE
, /* dst_mask */
401 TRUE
), /* pcrel_offset */
403 /* GNU extension to record C++ vtable hierarchy. */
404 HOWTO (R_MMIX_GNU_VTINHERIT
, /* type */
406 0, /* size (0 = byte, 1 = short, 2 = long) */
408 FALSE
, /* pc_relative */
410 complain_overflow_dont
, /* complain_on_overflow */
411 NULL
, /* special_function */
412 "R_MMIX_GNU_VTINHERIT", /* name */
413 FALSE
, /* partial_inplace */
416 TRUE
), /* pcrel_offset */
418 /* GNU extension to record C++ vtable member usage. */
419 HOWTO (R_MMIX_GNU_VTENTRY
, /* type */
421 0, /* size (0 = byte, 1 = short, 2 = long) */
423 FALSE
, /* pc_relative */
425 complain_overflow_dont
, /* complain_on_overflow */
426 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
427 "R_MMIX_GNU_VTENTRY", /* name */
428 FALSE
, /* partial_inplace */
431 FALSE
), /* pcrel_offset */
433 /* The GETA relocation is supposed to get any address that could
434 possibly be reached by the GETA instruction. It can silently expand
435 to get a 64-bit operand, but will complain if any of the two least
436 significant bits are set. The howto members reflect a simple GETA. */
437 HOWTO (R_MMIX_GETA
, /* type */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
441 TRUE
, /* pc_relative */
443 complain_overflow_signed
, /* complain_on_overflow */
444 mmix_elf_reloc
, /* special_function */
445 "R_MMIX_GETA", /* name */
446 FALSE
, /* partial_inplace */
447 ~0x0100ffff, /* src_mask */
448 0x0100ffff, /* dst_mask */
449 TRUE
), /* pcrel_offset */
451 HOWTO (R_MMIX_GETA_1
, /* type */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
455 TRUE
, /* pc_relative */
457 complain_overflow_signed
, /* complain_on_overflow */
458 mmix_elf_reloc
, /* special_function */
459 "R_MMIX_GETA_1", /* name */
460 FALSE
, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE
), /* pcrel_offset */
465 HOWTO (R_MMIX_GETA_2
, /* type */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
469 TRUE
, /* pc_relative */
471 complain_overflow_signed
, /* complain_on_overflow */
472 mmix_elf_reloc
, /* special_function */
473 "R_MMIX_GETA_2", /* name */
474 FALSE
, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE
), /* pcrel_offset */
479 HOWTO (R_MMIX_GETA_3
, /* type */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
483 TRUE
, /* pc_relative */
485 complain_overflow_signed
, /* complain_on_overflow */
486 mmix_elf_reloc
, /* special_function */
487 "R_MMIX_GETA_3", /* name */
488 FALSE
, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE
), /* pcrel_offset */
493 /* The conditional branches are supposed to reach any (code) address.
494 It can silently expand to a 64-bit operand, but will emit an error if
495 any of the two least significant bits are set. The howto members
496 reflect a simple branch. */
497 HOWTO (R_MMIX_CBRANCH
, /* type */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
501 TRUE
, /* pc_relative */
503 complain_overflow_signed
, /* complain_on_overflow */
504 mmix_elf_reloc
, /* special_function */
505 "R_MMIX_CBRANCH", /* name */
506 FALSE
, /* partial_inplace */
507 ~0x0100ffff, /* src_mask */
508 0x0100ffff, /* dst_mask */
509 TRUE
), /* pcrel_offset */
511 HOWTO (R_MMIX_CBRANCH_J
, /* type */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
515 TRUE
, /* pc_relative */
517 complain_overflow_signed
, /* complain_on_overflow */
518 mmix_elf_reloc
, /* special_function */
519 "R_MMIX_CBRANCH_J", /* name */
520 FALSE
, /* partial_inplace */
521 ~0x0100ffff, /* src_mask */
522 0x0100ffff, /* dst_mask */
523 TRUE
), /* pcrel_offset */
525 HOWTO (R_MMIX_CBRANCH_1
, /* type */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
529 TRUE
, /* pc_relative */
531 complain_overflow_signed
, /* complain_on_overflow */
532 mmix_elf_reloc
, /* special_function */
533 "R_MMIX_CBRANCH_1", /* name */
534 FALSE
, /* partial_inplace */
535 ~0x0100ffff, /* src_mask */
536 0x0100ffff, /* dst_mask */
537 TRUE
), /* pcrel_offset */
539 HOWTO (R_MMIX_CBRANCH_2
, /* type */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
543 TRUE
, /* pc_relative */
545 complain_overflow_signed
, /* complain_on_overflow */
546 mmix_elf_reloc
, /* special_function */
547 "R_MMIX_CBRANCH_2", /* name */
548 FALSE
, /* partial_inplace */
549 ~0x0100ffff, /* src_mask */
550 0x0100ffff, /* dst_mask */
551 TRUE
), /* pcrel_offset */
553 HOWTO (R_MMIX_CBRANCH_3
, /* type */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
557 TRUE
, /* pc_relative */
559 complain_overflow_signed
, /* complain_on_overflow */
560 mmix_elf_reloc
, /* special_function */
561 "R_MMIX_CBRANCH_3", /* name */
562 FALSE
, /* partial_inplace */
563 ~0x0100ffff, /* src_mask */
564 0x0100ffff, /* dst_mask */
565 TRUE
), /* pcrel_offset */
567 /* The PUSHJ instruction can reach any (code) address, as long as it's
568 the beginning of a function (no usable restriction). It can silently
569 expand to a 64-bit operand, but will emit an error if any of the two
570 least significant bits are set. It can also expand into a call to a
571 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
573 HOWTO (R_MMIX_PUSHJ
, /* type */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
577 TRUE
, /* pc_relative */
579 complain_overflow_signed
, /* complain_on_overflow */
580 mmix_elf_reloc
, /* special_function */
581 "R_MMIX_PUSHJ", /* name */
582 FALSE
, /* partial_inplace */
583 ~0x0100ffff, /* src_mask */
584 0x0100ffff, /* dst_mask */
585 TRUE
), /* pcrel_offset */
587 HOWTO (R_MMIX_PUSHJ_1
, /* type */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
591 TRUE
, /* pc_relative */
593 complain_overflow_signed
, /* complain_on_overflow */
594 mmix_elf_reloc
, /* special_function */
595 "R_MMIX_PUSHJ_1", /* name */
596 FALSE
, /* partial_inplace */
597 ~0x0100ffff, /* src_mask */
598 0x0100ffff, /* dst_mask */
599 TRUE
), /* pcrel_offset */
601 HOWTO (R_MMIX_PUSHJ_2
, /* type */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
605 TRUE
, /* pc_relative */
607 complain_overflow_signed
, /* complain_on_overflow */
608 mmix_elf_reloc
, /* special_function */
609 "R_MMIX_PUSHJ_2", /* name */
610 FALSE
, /* partial_inplace */
611 ~0x0100ffff, /* src_mask */
612 0x0100ffff, /* dst_mask */
613 TRUE
), /* pcrel_offset */
615 HOWTO (R_MMIX_PUSHJ_3
, /* type */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
619 TRUE
, /* pc_relative */
621 complain_overflow_signed
, /* complain_on_overflow */
622 mmix_elf_reloc
, /* special_function */
623 "R_MMIX_PUSHJ_3", /* name */
624 FALSE
, /* partial_inplace */
625 ~0x0100ffff, /* src_mask */
626 0x0100ffff, /* dst_mask */
627 TRUE
), /* pcrel_offset */
629 /* A JMP is supposed to reach any (code) address. By itself, it can
630 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
631 limit is soon reached if you link the program in wildly different
632 memory segments. The howto members reflect a trivial JMP. */
633 HOWTO (R_MMIX_JMP
, /* type */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
637 TRUE
, /* pc_relative */
639 complain_overflow_signed
, /* complain_on_overflow */
640 mmix_elf_reloc
, /* special_function */
641 "R_MMIX_JMP", /* name */
642 FALSE
, /* partial_inplace */
643 ~0x1ffffff, /* src_mask */
644 0x1ffffff, /* dst_mask */
645 TRUE
), /* pcrel_offset */
647 HOWTO (R_MMIX_JMP_1
, /* type */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
651 TRUE
, /* pc_relative */
653 complain_overflow_signed
, /* complain_on_overflow */
654 mmix_elf_reloc
, /* special_function */
655 "R_MMIX_JMP_1", /* name */
656 FALSE
, /* partial_inplace */
657 ~0x1ffffff, /* src_mask */
658 0x1ffffff, /* dst_mask */
659 TRUE
), /* pcrel_offset */
661 HOWTO (R_MMIX_JMP_2
, /* type */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
665 TRUE
, /* pc_relative */
667 complain_overflow_signed
, /* complain_on_overflow */
668 mmix_elf_reloc
, /* special_function */
669 "R_MMIX_JMP_2", /* name */
670 FALSE
, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE
), /* pcrel_offset */
675 HOWTO (R_MMIX_JMP_3
, /* type */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
679 TRUE
, /* pc_relative */
681 complain_overflow_signed
, /* complain_on_overflow */
682 mmix_elf_reloc
, /* special_function */
683 "R_MMIX_JMP_3", /* name */
684 FALSE
, /* partial_inplace */
685 ~0x1ffffff, /* src_mask */
686 0x1ffffff, /* dst_mask */
687 TRUE
), /* pcrel_offset */
689 /* When we don't emit link-time-relaxable code from the assembler, or
690 when relaxation has done all it can do, these relocs are used. For
691 GETA/PUSHJ/branches. */
692 HOWTO (R_MMIX_ADDR19
, /* type */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
696 TRUE
, /* pc_relative */
698 complain_overflow_signed
, /* complain_on_overflow */
699 mmix_elf_reloc
, /* special_function */
700 "R_MMIX_ADDR19", /* name */
701 FALSE
, /* partial_inplace */
702 ~0x0100ffff, /* src_mask */
703 0x0100ffff, /* dst_mask */
704 TRUE
), /* pcrel_offset */
707 HOWTO (R_MMIX_ADDR27
, /* type */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
711 TRUE
, /* pc_relative */
713 complain_overflow_signed
, /* complain_on_overflow */
714 mmix_elf_reloc
, /* special_function */
715 "R_MMIX_ADDR27", /* name */
716 FALSE
, /* partial_inplace */
717 ~0x1ffffff, /* src_mask */
718 0x1ffffff, /* dst_mask */
719 TRUE
), /* pcrel_offset */
721 /* A general register or the value 0..255. If a value, then the
722 instruction (offset -3) needs adjusting. */
723 HOWTO (R_MMIX_REG_OR_BYTE
, /* type */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
727 FALSE
, /* pc_relative */
729 complain_overflow_bitfield
, /* complain_on_overflow */
730 mmix_elf_reloc
, /* special_function */
731 "R_MMIX_REG_OR_BYTE", /* name */
732 FALSE
, /* partial_inplace */
735 FALSE
), /* pcrel_offset */
737 /* A general register. */
738 HOWTO (R_MMIX_REG
, /* type */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
742 FALSE
, /* pc_relative */
744 complain_overflow_bitfield
, /* complain_on_overflow */
745 mmix_elf_reloc
, /* special_function */
746 "R_MMIX_REG", /* name */
747 FALSE
, /* partial_inplace */
750 FALSE
), /* pcrel_offset */
752 /* A register plus an index, corresponding to the relocation expression.
753 The sizes must correspond to the valid range of the expression, while
754 the bitmasks correspond to what we store in the image. */
755 HOWTO (R_MMIX_BASE_PLUS_OFFSET
, /* type */
757 4, /* size (0 = byte, 1 = short, 2 = long) */
759 FALSE
, /* pc_relative */
761 complain_overflow_bitfield
, /* complain_on_overflow */
762 mmix_elf_reloc
, /* special_function */
763 "R_MMIX_BASE_PLUS_OFFSET", /* name */
764 FALSE
, /* partial_inplace */
766 0xffff, /* dst_mask */
767 FALSE
), /* pcrel_offset */
769 /* A "magic" relocation for a LOCAL expression, asserting that the
770 expression is less than the number of global registers. No actual
771 modification of the contents is done. Implementing this as a
772 relocation was less intrusive than e.g. putting such expressions in a
773 section to discard *after* relocation. */
774 HOWTO (R_MMIX_LOCAL
, /* type */
776 0, /* size (0 = byte, 1 = short, 2 = long) */
778 FALSE
, /* pc_relative */
780 complain_overflow_dont
, /* complain_on_overflow */
781 mmix_elf_reloc
, /* special_function */
782 "R_MMIX_LOCAL", /* name */
783 FALSE
, /* partial_inplace */
786 FALSE
), /* pcrel_offset */
788 HOWTO (R_MMIX_PUSHJ_STUBBABLE
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_signed
, /* complain_on_overflow */
795 mmix_elf_reloc
, /* special_function */
796 "R_MMIX_PUSHJ_STUBBABLE", /* name */
797 FALSE
, /* partial_inplace */
798 ~0x0100ffff, /* src_mask */
799 0x0100ffff, /* dst_mask */
800 TRUE
) /* pcrel_offset */
804 /* Map BFD reloc types to MMIX ELF reloc types. */
806 struct mmix_reloc_map
808 bfd_reloc_code_real_type bfd_reloc_val
;
809 enum elf_mmix_reloc_type elf_reloc_val
;
813 static const struct mmix_reloc_map mmix_reloc_map
[] =
815 {BFD_RELOC_NONE
, R_MMIX_NONE
},
816 {BFD_RELOC_8
, R_MMIX_8
},
817 {BFD_RELOC_16
, R_MMIX_16
},
818 {BFD_RELOC_24
, R_MMIX_24
},
819 {BFD_RELOC_32
, R_MMIX_32
},
820 {BFD_RELOC_64
, R_MMIX_64
},
821 {BFD_RELOC_8_PCREL
, R_MMIX_PC_8
},
822 {BFD_RELOC_16_PCREL
, R_MMIX_PC_16
},
823 {BFD_RELOC_24_PCREL
, R_MMIX_PC_24
},
824 {BFD_RELOC_32_PCREL
, R_MMIX_PC_32
},
825 {BFD_RELOC_64_PCREL
, R_MMIX_PC_64
},
826 {BFD_RELOC_VTABLE_INHERIT
, R_MMIX_GNU_VTINHERIT
},
827 {BFD_RELOC_VTABLE_ENTRY
, R_MMIX_GNU_VTENTRY
},
828 {BFD_RELOC_MMIX_GETA
, R_MMIX_GETA
},
829 {BFD_RELOC_MMIX_CBRANCH
, R_MMIX_CBRANCH
},
830 {BFD_RELOC_MMIX_PUSHJ
, R_MMIX_PUSHJ
},
831 {BFD_RELOC_MMIX_JMP
, R_MMIX_JMP
},
832 {BFD_RELOC_MMIX_ADDR19
, R_MMIX_ADDR19
},
833 {BFD_RELOC_MMIX_ADDR27
, R_MMIX_ADDR27
},
834 {BFD_RELOC_MMIX_REG_OR_BYTE
, R_MMIX_REG_OR_BYTE
},
835 {BFD_RELOC_MMIX_REG
, R_MMIX_REG
},
836 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET
, R_MMIX_BASE_PLUS_OFFSET
},
837 {BFD_RELOC_MMIX_LOCAL
, R_MMIX_LOCAL
},
838 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE
, R_MMIX_PUSHJ_STUBBABLE
}
841 static reloc_howto_type
*
842 bfd_elf64_bfd_reloc_type_lookup (abfd
, code
)
843 bfd
*abfd ATTRIBUTE_UNUSED
;
844 bfd_reloc_code_real_type code
;
849 i
< sizeof (mmix_reloc_map
) / sizeof (mmix_reloc_map
[0]);
852 if (mmix_reloc_map
[i
].bfd_reloc_val
== code
)
853 return &elf_mmix_howto_table
[mmix_reloc_map
[i
].elf_reloc_val
];
860 mmix_elf_new_section_hook (abfd
, sec
)
864 if (!sec
->used_by_bfd
)
866 struct _mmix_elf_section_data
*sdata
;
867 bfd_size_type amt
= sizeof (*sdata
);
869 sdata
= bfd_zalloc (abfd
, amt
);
872 sec
->used_by_bfd
= sdata
;
875 return _bfd_elf_new_section_hook (abfd
, sec
);
879 /* This function performs the actual bitfiddling and sanity check for a
880 final relocation. Each relocation gets its *worst*-case expansion
881 in size when it arrives here; any reduction in size should have been
882 caught in linker relaxation earlier. When we get here, the relocation
883 looks like the smallest instruction with SWYM:s (nop:s) appended to the
884 max size. We fill in those nop:s.
886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
890 INCML $N,(foo >> 16) & 0xffff
891 INCMH $N,(foo >> 32) & 0xffff
892 INCH $N,(foo >> 48) & 0xffff
894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895 condbranches needing relaxation might be rare enough to not be
906 R_MMIX_PUSHJ: (FIXME: Relaxation...)
915 R_MMIX_JMP: (FIXME: Relaxation...)
924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
926 static bfd_reloc_status_type
927 mmix_elf_perform_relocation (isec
, howto
, datap
, addr
, value
)
929 reloc_howto_type
*howto
;
934 bfd
*abfd
= isec
->owner
;
935 bfd_reloc_status_type flag
= bfd_reloc_ok
;
936 bfd_reloc_status_type r
;
940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941 We handle the differences here and the common sequence later. */
946 reg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
948 /* We change to an absolute value. */
954 int in1
= bfd_get_16 (abfd
, (bfd_byte
*) datap
) << 16;
956 /* Invert the condition and prediction bit, and set the offset
957 to five instructions ahead.
959 We *can* do better if we want to. If the branch is found to be
960 within limits, we could leave the branch as is; there'll just
961 be a bunch of NOP:s after it. But we shouldn't see this
962 sequence often enough that it's worth doing it. */
965 (((in1
^ ((PRED_INV_BIT
| COND_INV_BIT
) << 24)) & ~0xffff)
969 /* Put a "GO $255,$255,0" after the common sequence. */
971 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24) | 0xffff00,
972 (bfd_byte
*) datap
+ 20);
974 /* Common sequence starts at offset 4. */
977 /* We change to an absolute value. */
982 case R_MMIX_PUSHJ_STUBBABLE
:
983 /* If the address fits, we're fine. */
985 /* Note rightshift 0; see R_MMIX_JMP case below. */
986 && (r
= bfd_check_overflow (complain_overflow_signed
,
989 bfd_arch_bits_per_address (abfd
),
990 value
)) == bfd_reloc_ok
)
991 goto pcrel_mmix_reloc_fits
;
994 bfd_size_type size
= isec
->rawsize
? isec
->rawsize
: isec
->size
;
996 /* We have the bytes at the PUSHJ insn and need to get the
997 position for the stub. There's supposed to be room allocated
999 bfd_byte
*stubcontents
1000 = ((bfd_byte
*) datap
1001 - (addr
- (isec
->output_section
->vma
+ isec
->output_offset
))
1003 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1006 /* The address doesn't fit, so redirect the PUSHJ to the
1007 location of the stub. */
1008 r
= mmix_elf_perform_relocation (isec
,
1009 &elf_mmix_howto_table
1013 isec
->output_section
->vma
1014 + isec
->output_offset
1016 + (mmix_elf_section_data (isec
)
1019 if (r
!= bfd_reloc_ok
)
1023 = (isec
->output_section
->vma
1024 + isec
->output_offset
1026 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1028 /* We generate a simple JMP if that suffices, else the whole 5
1030 if (bfd_check_overflow (complain_overflow_signed
,
1031 elf_mmix_howto_table
[R_MMIX_ADDR27
].bitsize
,
1033 bfd_arch_bits_per_address (abfd
),
1034 addr
+ value
- stubaddr
) == bfd_reloc_ok
)
1036 bfd_put_32 (abfd
, JMP_INSN_BYTE
<< 24, stubcontents
);
1037 r
= mmix_elf_perform_relocation (isec
,
1038 &elf_mmix_howto_table
1042 value
+ addr
- stubaddr
);
1043 mmix_elf_section_data (isec
)->pjs
.stub_offset
+= 4;
1045 if (size
+ mmix_elf_section_data (isec
)->pjs
.stub_offset
1053 /* Put a "GO $255,0" after the common sequence. */
1055 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1056 | 0xff00, (bfd_byte
*) stubcontents
+ 16);
1058 /* Prepare for the general code to set the first part of the
1061 datap
= stubcontents
;
1062 mmix_elf_section_data (isec
)->pjs
.stub_offset
1063 += MAX_PUSHJ_STUB_SIZE
;
1070 int inreg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
1072 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1074 ((PUSHGO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1077 (bfd_byte
*) datap
+ 16);
1079 /* We change to an absolute value. */
1085 /* This one is a little special. If we get here on a non-relaxing
1086 link, and the destination is actually in range, we don't need to
1088 If so, we fall through to the bit-fiddling relocs.
1090 FIXME: bfd_check_overflow seems broken; the relocation is
1091 rightshifted before testing, so supply a zero rightshift. */
1093 if (! ((value
& 3) == 0
1094 && (r
= bfd_check_overflow (complain_overflow_signed
,
1097 bfd_arch_bits_per_address (abfd
),
1098 value
)) == bfd_reloc_ok
))
1100 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1101 modified below, and put a "GO $255,$255,0" after the
1102 address-loading sequence. */
1104 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1106 (bfd_byte
*) datap
+ 16);
1108 /* We change to an absolute value. */
1115 pcrel_mmix_reloc_fits
:
1116 /* These must be in range, or else we emit an error. */
1117 if ((value
& 3) == 0
1118 /* Note rightshift 0; see above. */
1119 && (r
= bfd_check_overflow (complain_overflow_signed
,
1122 bfd_arch_bits_per_address (abfd
),
1123 value
)) == bfd_reloc_ok
)
1126 = bfd_get_32 (abfd
, (bfd_byte
*) datap
);
1129 if ((bfd_signed_vma
) value
< 0)
1132 value
+= (1 << (howto
->bitsize
- 1));
1140 (in1
& howto
->src_mask
)
1142 | (value
& howto
->dst_mask
),
1143 (bfd_byte
*) datap
);
1145 return bfd_reloc_ok
;
1148 return bfd_reloc_overflow
;
1150 case R_MMIX_BASE_PLUS_OFFSET
:
1152 struct bpo_reloc_section_info
*bpodata
1153 = mmix_elf_section_data (isec
)->bpo
.reloc
;
1154 asection
*bpo_greg_section
1155 = bpodata
->bpo_greg_section
;
1156 struct bpo_greg_section_info
*gregdata
1157 = mmix_elf_section_data (bpo_greg_section
)->bpo
.greg
;
1159 = gregdata
->bpo_reloc_indexes
[bpodata
->bpo_index
++];
1161 /* A consistency check: The value we now have in "relocation" must
1162 be the same as the value we stored for that relocation. It
1163 doesn't cost much, so can be left in at all times. */
1164 if (value
!= gregdata
->reloc_request
[bpo_index
].value
)
1166 (*_bfd_error_handler
)
1167 (_("%s: Internal inconsistency error for value for\n\
1168 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1169 bfd_get_filename (isec
->owner
),
1170 (unsigned long) (value
>> 32), (unsigned long) value
,
1171 (unsigned long) (gregdata
->reloc_request
[bpo_index
].value
1173 (unsigned long) gregdata
->reloc_request
[bpo_index
].value
);
1174 bfd_set_error (bfd_error_bad_value
);
1175 return bfd_reloc_overflow
;
1178 /* Then store the register number and offset for that register
1179 into datap and datap + 1 respectively. */
1181 gregdata
->reloc_request
[bpo_index
].regindex
1182 + bpo_greg_section
->output_section
->vma
/ 8,
1185 gregdata
->reloc_request
[bpo_index
].offset
,
1186 ((unsigned char *) datap
) + 1);
1187 return bfd_reloc_ok
;
1190 case R_MMIX_REG_OR_BYTE
:
1193 return bfd_reloc_overflow
;
1194 bfd_put_8 (abfd
, value
, datap
);
1195 return bfd_reloc_ok
;
1198 BAD_CASE (howto
->type
);
1201 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1204 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1205 everything that looks strange. */
1207 flag
= bfd_reloc_overflow
;
1210 (SETL_INSN_BYTE
<< 24) | (value
& 0xffff) | (reg
<< 16),
1211 (bfd_byte
*) datap
+ offs
);
1213 (INCML_INSN_BYTE
<< 24) | ((value
>> 16) & 0xffff) | (reg
<< 16),
1214 (bfd_byte
*) datap
+ offs
+ 4);
1216 (INCMH_INSN_BYTE
<< 24) | ((value
>> 32) & 0xffff) | (reg
<< 16),
1217 (bfd_byte
*) datap
+ offs
+ 8);
1219 (INCH_INSN_BYTE
<< 24) | ((value
>> 48) & 0xffff) | (reg
<< 16),
1220 (bfd_byte
*) datap
+ offs
+ 12);
1225 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1228 mmix_info_to_howto_rela (abfd
, cache_ptr
, dst
)
1229 bfd
*abfd ATTRIBUTE_UNUSED
;
1231 Elf_Internal_Rela
*dst
;
1233 unsigned int r_type
;
1235 r_type
= ELF64_R_TYPE (dst
->r_info
);
1236 BFD_ASSERT (r_type
< (unsigned int) R_MMIX_max
);
1237 cache_ptr
->howto
= &elf_mmix_howto_table
[r_type
];
1240 /* Any MMIX-specific relocation gets here at assembly time or when linking
1241 to other formats (such as mmo); this is the relocation function from
1242 the reloc_table. We don't get here for final pure ELF linking. */
1244 static bfd_reloc_status_type
1245 mmix_elf_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1246 output_bfd
, error_message
)
1248 arelent
*reloc_entry
;
1251 asection
*input_section
;
1253 char **error_message ATTRIBUTE_UNUSED
;
1256 bfd_reloc_status_type r
;
1257 asection
*reloc_target_output_section
;
1258 bfd_reloc_status_type flag
= bfd_reloc_ok
;
1259 bfd_vma output_base
= 0;
1262 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1263 input_section
, output_bfd
, error_message
);
1265 /* If that was all that was needed (i.e. this isn't a final link, only
1266 some segment adjustments), we're done. */
1267 if (r
!= bfd_reloc_continue
)
1270 if (bfd_is_und_section (symbol
->section
)
1271 && (symbol
->flags
& BSF_WEAK
) == 0
1272 && output_bfd
== (bfd
*) NULL
)
1273 return bfd_reloc_undefined
;
1275 /* Is the address of the relocation really within the section? */
1276 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1277 return bfd_reloc_outofrange
;
1279 /* Work out which section the relocation is targeted at and the
1280 initial relocation command value. */
1282 /* Get symbol value. (Common symbols are special.) */
1283 if (bfd_is_com_section (symbol
->section
))
1286 relocation
= symbol
->value
;
1288 reloc_target_output_section
= bfd_get_output_section (symbol
);
1290 /* Here the variable relocation holds the final address of the symbol we
1291 are relocating against, plus any addend. */
1295 output_base
= reloc_target_output_section
->vma
;
1297 relocation
+= output_base
+ symbol
->section
->output_offset
;
1299 /* Get position of relocation. */
1300 addr
= (reloc_entry
->address
+ input_section
->output_section
->vma
1301 + input_section
->output_offset
);
1302 if (output_bfd
!= (bfd
*) NULL
)
1304 /* Add in supplied addend. */
1305 relocation
+= reloc_entry
->addend
;
1307 /* This is a partial relocation, and we want to apply the
1308 relocation to the reloc entry rather than the raw data.
1309 Modify the reloc inplace to reflect what we now know. */
1310 reloc_entry
->addend
= relocation
;
1311 reloc_entry
->address
+= input_section
->output_offset
;
1315 return mmix_final_link_relocate (reloc_entry
->howto
, input_section
,
1316 data
, reloc_entry
->address
,
1317 reloc_entry
->addend
, relocation
,
1318 bfd_asymbol_name (symbol
),
1319 reloc_target_output_section
);
1322 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1323 for guidance if you're thinking of copying this. */
1326 mmix_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1327 contents
, relocs
, local_syms
, local_sections
)
1328 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1329 struct bfd_link_info
*info
;
1331 asection
*input_section
;
1333 Elf_Internal_Rela
*relocs
;
1334 Elf_Internal_Sym
*local_syms
;
1335 asection
**local_sections
;
1337 Elf_Internal_Shdr
*symtab_hdr
;
1338 struct elf_link_hash_entry
**sym_hashes
;
1339 Elf_Internal_Rela
*rel
;
1340 Elf_Internal_Rela
*relend
;
1344 size
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
1345 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1346 sym_hashes
= elf_sym_hashes (input_bfd
);
1347 relend
= relocs
+ input_section
->reloc_count
;
1349 /* Zero the stub area before we start. */
1350 if (input_section
->rawsize
!= 0
1351 && input_section
->size
> input_section
->rawsize
)
1352 memset (contents
+ input_section
->rawsize
, 0,
1353 input_section
->size
- input_section
->rawsize
);
1355 for (rel
= relocs
; rel
< relend
; rel
++)
1357 reloc_howto_type
*howto
;
1358 unsigned long r_symndx
;
1359 Elf_Internal_Sym
*sym
;
1361 struct elf_link_hash_entry
*h
;
1363 bfd_reloc_status_type r
;
1364 const char *name
= NULL
;
1366 bfd_boolean undefined_signalled
= FALSE
;
1368 r_type
= ELF64_R_TYPE (rel
->r_info
);
1370 if (r_type
== R_MMIX_GNU_VTINHERIT
1371 || r_type
== R_MMIX_GNU_VTENTRY
)
1374 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1376 if (info
->relocatable
)
1378 /* This is a relocatable link. For most relocs we don't have to
1379 change anything, unless the reloc is against a section
1380 symbol, in which case we have to adjust according to where
1381 the section symbol winds up in the output section. */
1382 if (r_symndx
< symtab_hdr
->sh_info
)
1384 sym
= local_syms
+ r_symndx
;
1386 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1388 sec
= local_sections
[r_symndx
];
1389 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1393 /* For PUSHJ stub relocs however, we may need to change the
1394 reloc and the section contents, if the reloc doesn't reach
1395 beyond the end of the output section and previous stubs.
1396 Then we change the section contents to be a PUSHJ to the end
1397 of the input section plus stubs (we can do that without using
1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 at the stub location. */
1400 if (r_type
== R_MMIX_PUSHJ_STUBBABLE
)
1402 /* We've already checked whether we need a stub; use that
1404 if (mmix_elf_section_data (input_section
)->pjs
.stub_size
[pjsno
]
1407 Elf_Internal_Rela relcpy
;
1409 if (mmix_elf_section_data (input_section
)
1410 ->pjs
.stub_size
[pjsno
] != MAX_PUSHJ_STUB_SIZE
)
1413 /* There's already a PUSHJ insn there, so just fill in
1414 the offset bits to the stub. */
1415 if (mmix_final_link_relocate (elf_mmix_howto_table
1422 ->output_section
->vma
1423 + input_section
->output_offset
1425 + mmix_elf_section_data (input_section
)
1427 NULL
, NULL
) != bfd_reloc_ok
)
1430 /* Put a JMP insn at the stub; it goes with the
1431 R_MMIX_JMP reloc. */
1432 bfd_put_32 (output_bfd
, JMP_INSN_BYTE
<< 24,
1435 + mmix_elf_section_data (input_section
)
1438 /* Change the reloc to be at the stub, and to a full
1439 R_MMIX_JMP reloc. */
1440 rel
->r_info
= ELF64_R_INFO (r_symndx
, R_MMIX_JMP
);
1443 + mmix_elf_section_data (input_section
)
1446 mmix_elf_section_data (input_section
)->pjs
.stub_offset
1447 += MAX_PUSHJ_STUB_SIZE
;
1449 /* Shift this reloc to the end of the relocs to maintain
1450 the r_offset sorted reloc order. */
1452 memmove (rel
, rel
+ 1, (char *) relend
- (char *) rel
);
1453 relend
[-1] = relcpy
;
1455 /* Back up one reloc, or else we'd skip the next reloc
1465 /* This is a final link. */
1466 howto
= elf_mmix_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
1471 if (r_symndx
< symtab_hdr
->sh_info
)
1473 sym
= local_syms
+ r_symndx
;
1474 sec
= local_sections
[r_symndx
];
1475 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1477 name
= bfd_elf_string_from_elf_section (input_bfd
,
1478 symtab_hdr
->sh_link
,
1481 name
= bfd_section_name (input_bfd
, sec
);
1485 bfd_boolean unresolved_reloc
;
1487 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
1488 r_symndx
, symtab_hdr
, sym_hashes
,
1490 unresolved_reloc
, undefined_signalled
);
1491 name
= h
->root
.root
.string
;
1494 r
= mmix_final_link_relocate (howto
, input_section
,
1495 contents
, rel
->r_offset
,
1496 rel
->r_addend
, relocation
, name
, sec
);
1498 if (r
!= bfd_reloc_ok
)
1500 bfd_boolean check_ok
= TRUE
;
1501 const char * msg
= (const char *) NULL
;
1505 case bfd_reloc_overflow
:
1506 check_ok
= info
->callbacks
->reloc_overflow
1507 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
1508 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
1511 case bfd_reloc_undefined
:
1512 /* We may have sent this message above. */
1513 if (! undefined_signalled
)
1514 check_ok
= info
->callbacks
->undefined_symbol
1515 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
1517 undefined_signalled
= TRUE
;
1520 case bfd_reloc_outofrange
:
1521 msg
= _("internal error: out of range error");
1524 case bfd_reloc_notsupported
:
1525 msg
= _("internal error: unsupported relocation error");
1528 case bfd_reloc_dangerous
:
1529 msg
= _("internal error: dangerous relocation");
1533 msg
= _("internal error: unknown error");
1538 check_ok
= info
->callbacks
->warning
1539 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
1549 /* Perform a single relocation. By default we use the standard BFD
1550 routines. A few relocs we have to do ourselves. */
1552 static bfd_reloc_status_type
1553 mmix_final_link_relocate (howto
, input_section
, contents
,
1554 r_offset
, r_addend
, relocation
, symname
, symsec
)
1555 reloc_howto_type
*howto
;
1556 asection
*input_section
;
1559 bfd_signed_vma r_addend
;
1561 const char *symname
;
1564 bfd_reloc_status_type r
= bfd_reloc_ok
;
1566 = (input_section
->output_section
->vma
1567 + input_section
->output_offset
1570 = (bfd_signed_vma
) relocation
+ r_addend
;
1572 switch (howto
->type
)
1574 /* All these are PC-relative. */
1575 case R_MMIX_PUSHJ_STUBBABLE
:
1577 case R_MMIX_CBRANCH
:
1582 contents
+= r_offset
;
1584 srel
-= (input_section
->output_section
->vma
1585 + input_section
->output_offset
1588 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1592 case R_MMIX_BASE_PLUS_OFFSET
:
1594 return bfd_reloc_undefined
;
1596 /* Check that we're not relocating against a register symbol. */
1597 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1598 MMIX_REG_CONTENTS_SECTION_NAME
) == 0
1599 || strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1600 MMIX_REG_SECTION_NAME
) == 0)
1602 /* Note: This is separated out into two messages in order
1603 to ease the translation into other languages. */
1604 if (symname
== NULL
|| *symname
== 0)
1605 (*_bfd_error_handler
)
1606 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1607 bfd_get_filename (input_section
->owner
),
1608 bfd_get_section_name (symsec
->owner
, symsec
));
1610 (*_bfd_error_handler
)
1611 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1612 bfd_get_filename (input_section
->owner
), symname
,
1613 bfd_get_section_name (symsec
->owner
, symsec
));
1614 return bfd_reloc_overflow
;
1618 case R_MMIX_REG_OR_BYTE
:
1620 /* For now, we handle these alike. They must refer to an register
1621 symbol, which is either relative to the register section and in
1622 the range 0..255, or is in the register contents section with vma
1625 /* FIXME: A better way to check for reg contents section?
1626 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1628 return bfd_reloc_undefined
;
1630 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1631 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1633 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1635 /* The bfd_reloc_outofrange return value, though intuitively
1636 a better value, will not get us an error. */
1637 return bfd_reloc_overflow
;
1641 else if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1642 MMIX_REG_SECTION_NAME
) == 0)
1644 if (srel
< 0 || srel
> 255)
1645 /* The bfd_reloc_outofrange return value, though intuitively a
1646 better value, will not get us an error. */
1647 return bfd_reloc_overflow
;
1651 /* Note: This is separated out into two messages in order
1652 to ease the translation into other languages. */
1653 if (symname
== NULL
|| *symname
== 0)
1654 (*_bfd_error_handler
)
1655 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1656 bfd_get_filename (input_section
->owner
),
1657 bfd_get_section_name (symsec
->owner
, symsec
));
1659 (*_bfd_error_handler
)
1660 (_("%s: register relocation against non-register symbol: %s in %s"),
1661 bfd_get_filename (input_section
->owner
), symname
,
1662 bfd_get_section_name (symsec
->owner
, symsec
));
1664 /* The bfd_reloc_outofrange return value, though intuitively a
1665 better value, will not get us an error. */
1666 return bfd_reloc_overflow
;
1669 contents
+= r_offset
;
1670 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1675 /* This isn't a real relocation, it's just an assertion that the
1676 final relocation value corresponds to a local register. We
1677 ignore the actual relocation; nothing is changed. */
1680 = bfd_get_section_by_name (input_section
->output_section
->owner
,
1681 MMIX_REG_CONTENTS_SECTION_NAME
);
1682 bfd_vma first_global
;
1684 /* Check that this is an absolute value, or a reference to the
1685 register contents section or the register (symbol) section.
1686 Absolute numbers can get here as undefined section. Undefined
1687 symbols are signalled elsewhere, so there's no conflict in us
1688 accidentally handling it. */
1689 if (!bfd_is_abs_section (symsec
)
1690 && !bfd_is_und_section (symsec
)
1691 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1692 MMIX_REG_CONTENTS_SECTION_NAME
) != 0
1693 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1694 MMIX_REG_SECTION_NAME
) != 0)
1696 (*_bfd_error_handler
)
1697 (_("%s: directive LOCAL valid only with a register or absolute value"),
1698 bfd_get_filename (input_section
->owner
));
1700 return bfd_reloc_overflow
;
1703 /* If we don't have a register contents section, then $255 is the
1704 first global register. */
1709 first_global
= bfd_get_section_vma (abfd
, regsec
) / 8;
1710 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1711 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1713 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1714 /* The bfd_reloc_outofrange return value, though
1715 intuitively a better value, will not get us an error. */
1716 return bfd_reloc_overflow
;
1721 if ((bfd_vma
) srel
>= first_global
)
1723 /* FIXME: Better error message. */
1724 (*_bfd_error_handler
)
1725 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1726 bfd_get_filename (input_section
->owner
), (long) srel
, (long) first_global
);
1728 return bfd_reloc_overflow
;
1735 r
= _bfd_final_link_relocate (howto
, input_section
->owner
, input_section
,
1737 relocation
, r_addend
);
1743 /* Return the section that should be marked against GC for a given
1747 mmix_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
)
1749 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1750 Elf_Internal_Rela
*rel
;
1751 struct elf_link_hash_entry
*h
;
1752 Elf_Internal_Sym
*sym
;
1756 switch (ELF64_R_TYPE (rel
->r_info
))
1758 case R_MMIX_GNU_VTINHERIT
:
1759 case R_MMIX_GNU_VTENTRY
:
1763 switch (h
->root
.type
)
1765 case bfd_link_hash_defined
:
1766 case bfd_link_hash_defweak
:
1767 return h
->root
.u
.def
.section
;
1769 case bfd_link_hash_common
:
1770 return h
->root
.u
.c
.p
->section
;
1778 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1783 /* Update relocation info for a GC-excluded section. We could supposedly
1784 perform the allocation after GC, but there's no suitable hook between
1785 GC (or section merge) and the point when all input sections must be
1786 present. Better to waste some memory and (perhaps) a little time. */
1789 mmix_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
1790 bfd
*abfd ATTRIBUTE_UNUSED
;
1791 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1792 asection
*sec ATTRIBUTE_UNUSED
;
1793 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
1795 struct bpo_reloc_section_info
*bpodata
1796 = mmix_elf_section_data (sec
)->bpo
.reloc
;
1797 asection
*allocated_gregs_section
;
1799 /* If no bpodata here, we have nothing to do. */
1800 if (bpodata
== NULL
)
1803 allocated_gregs_section
= bpodata
->bpo_greg_section
;
1805 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
->n_bpo_relocs
1806 -= bpodata
->n_bpo_relocs_this_section
;
1811 /* Sort register relocs to come before expanding relocs. */
1814 mmix_elf_sort_relocs (p1
, p2
)
1818 const Elf_Internal_Rela
*r1
= (const Elf_Internal_Rela
*) p1
;
1819 const Elf_Internal_Rela
*r2
= (const Elf_Internal_Rela
*) p2
;
1820 int r1_is_reg
, r2_is_reg
;
1822 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1824 if ((r1
->r_offset
& ~(bfd_vma
) 3) > (r2
->r_offset
& ~(bfd_vma
) 3))
1826 else if ((r1
->r_offset
& ~(bfd_vma
) 3) < (r2
->r_offset
& ~(bfd_vma
) 3))
1830 = (ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG_OR_BYTE
1831 || ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG
);
1833 = (ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG_OR_BYTE
1834 || ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG
);
1835 if (r1_is_reg
!= r2_is_reg
)
1836 return r2_is_reg
- r1_is_reg
;
1838 /* Neither or both are register relocs. Then sort on full offset. */
1839 if (r1
->r_offset
> r2
->r_offset
)
1841 else if (r1
->r_offset
< r2
->r_offset
)
1846 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1849 mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
)
1851 struct bfd_link_info
*info
;
1853 const Elf_Internal_Rela
*relocs
;
1855 bfd
*bpo_greg_owner
= NULL
;
1856 asection
*allocated_gregs_section
= NULL
;
1857 struct bpo_greg_section_info
*gregdata
= NULL
;
1858 struct bpo_reloc_section_info
*bpodata
= NULL
;
1859 const Elf_Internal_Rela
*rel
;
1860 const Elf_Internal_Rela
*rel_end
;
1862 /* We currently have to abuse this COFF-specific member, since there's
1863 no target-machine-dedicated member. There's no alternative outside
1864 the bfd_link_info struct; we can't specialize a hash-table since
1865 they're different between ELF and mmo. */
1866 bpo_greg_owner
= (bfd
*) info
->base_file
;
1868 rel_end
= relocs
+ sec
->reloc_count
;
1869 for (rel
= relocs
; rel
< rel_end
; rel
++)
1871 switch (ELF64_R_TYPE (rel
->r_info
))
1873 /* This relocation causes a GREG allocation. We need to count
1874 them, and we need to create a section for them, so we need an
1875 object to fake as the owner of that section. We can't use
1876 the ELF dynobj for this, since the ELF bits assume lots of
1877 DSO-related stuff if that member is non-NULL. */
1878 case R_MMIX_BASE_PLUS_OFFSET
:
1879 /* We don't do anything with this reloc for a relocatable link. */
1880 if (info
->relocatable
)
1883 if (bpo_greg_owner
== NULL
)
1885 bpo_greg_owner
= abfd
;
1886 info
->base_file
= (PTR
) bpo_greg_owner
;
1889 if (allocated_gregs_section
== NULL
)
1890 allocated_gregs_section
1891 = bfd_get_section_by_name (bpo_greg_owner
,
1892 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
1894 if (allocated_gregs_section
== NULL
)
1896 allocated_gregs_section
1897 = bfd_make_section_with_flags (bpo_greg_owner
,
1898 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
,
1901 | SEC_LINKER_CREATED
));
1902 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1903 treated like any other section, and we'd get errors for
1904 address overlap with the text section. Let's set none of
1905 those flags, as that is what currently happens for usual
1906 GREG allocations, and that works. */
1907 if (allocated_gregs_section
== NULL
1908 || !bfd_set_section_alignment (bpo_greg_owner
,
1909 allocated_gregs_section
,
1913 gregdata
= (struct bpo_greg_section_info
*)
1914 bfd_zalloc (bpo_greg_owner
, sizeof (struct bpo_greg_section_info
));
1915 if (gregdata
== NULL
)
1917 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
1920 else if (gregdata
== NULL
)
1922 = mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
;
1924 /* Get ourselves some auxiliary info for the BPO-relocs. */
1925 if (bpodata
== NULL
)
1927 /* No use doing a separate iteration pass to find the upper
1928 limit - just use the number of relocs. */
1929 bpodata
= (struct bpo_reloc_section_info
*)
1930 bfd_alloc (bpo_greg_owner
,
1931 sizeof (struct bpo_reloc_section_info
)
1932 * (sec
->reloc_count
+ 1));
1933 if (bpodata
== NULL
)
1935 mmix_elf_section_data (sec
)->bpo
.reloc
= bpodata
;
1936 bpodata
->first_base_plus_offset_reloc
1937 = bpodata
->bpo_index
1938 = gregdata
->n_max_bpo_relocs
;
1939 bpodata
->bpo_greg_section
1940 = allocated_gregs_section
;
1941 bpodata
->n_bpo_relocs_this_section
= 0;
1944 bpodata
->n_bpo_relocs_this_section
++;
1945 gregdata
->n_max_bpo_relocs
++;
1947 /* We don't get another chance to set this before GC; we've not
1948 set up any hook that runs before GC. */
1949 gregdata
->n_bpo_relocs
1950 = gregdata
->n_max_bpo_relocs
;
1953 case R_MMIX_PUSHJ_STUBBABLE
:
1954 mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
++;
1959 /* Allocate per-reloc stub storage and initialize it to the max stub
1961 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
!= 0)
1965 mmix_elf_section_data (sec
)->pjs
.stub_size
1966 = bfd_alloc (abfd
, mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
1967 * sizeof (mmix_elf_section_data (sec
)
1968 ->pjs
.stub_size
[0]));
1969 if (mmix_elf_section_data (sec
)->pjs
.stub_size
== NULL
)
1972 for (i
= 0; i
< mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
; i
++)
1973 mmix_elf_section_data (sec
)->pjs
.stub_size
[i
] = MAX_PUSHJ_STUB_SIZE
;
1979 /* Look through the relocs for a section during the first phase. */
1982 mmix_elf_check_relocs (abfd
, info
, sec
, relocs
)
1984 struct bfd_link_info
*info
;
1986 const Elf_Internal_Rela
*relocs
;
1988 Elf_Internal_Shdr
*symtab_hdr
;
1989 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
1990 const Elf_Internal_Rela
*rel
;
1991 const Elf_Internal_Rela
*rel_end
;
1993 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1994 sym_hashes
= elf_sym_hashes (abfd
);
1995 sym_hashes_end
= sym_hashes
+ symtab_hdr
->sh_size
/sizeof(Elf64_External_Sym
);
1996 if (!elf_bad_symtab (abfd
))
1997 sym_hashes_end
-= symtab_hdr
->sh_info
;
1999 /* First we sort the relocs so that any register relocs come before
2000 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2001 qsort ((PTR
) relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
2002 mmix_elf_sort_relocs
);
2004 /* Do the common part. */
2005 if (!mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
))
2008 if (info
->relocatable
)
2011 rel_end
= relocs
+ sec
->reloc_count
;
2012 for (rel
= relocs
; rel
< rel_end
; rel
++)
2014 struct elf_link_hash_entry
*h
;
2015 unsigned long r_symndx
;
2017 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2018 if (r_symndx
< symtab_hdr
->sh_info
)
2022 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2023 while (h
->root
.type
== bfd_link_hash_indirect
2024 || h
->root
.type
== bfd_link_hash_warning
)
2025 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2028 switch (ELF64_R_TYPE (rel
->r_info
))
2030 /* This relocation describes the C++ object vtable hierarchy.
2031 Reconstruct it for later use during GC. */
2032 case R_MMIX_GNU_VTINHERIT
:
2033 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2037 /* This relocation describes which C++ vtable entries are actually
2038 used. Record for later use during GC. */
2039 case R_MMIX_GNU_VTENTRY
:
2040 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
2049 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2050 Copied from elf_link_add_object_symbols. */
2053 _bfd_mmix_check_all_relocs (abfd
, info
)
2055 struct bfd_link_info
*info
;
2059 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2061 Elf_Internal_Rela
*internal_relocs
;
2064 if ((o
->flags
& SEC_RELOC
) == 0
2065 || o
->reloc_count
== 0
2066 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2067 && (o
->flags
& SEC_DEBUGGING
) != 0)
2068 || bfd_is_abs_section (o
->output_section
))
2072 = _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
2073 (Elf_Internal_Rela
*) NULL
,
2075 if (internal_relocs
== NULL
)
2078 ok
= mmix_elf_check_common_relocs (abfd
, info
, o
, internal_relocs
);
2080 if (! info
->keep_memory
)
2081 free (internal_relocs
);
2090 /* Change symbols relative to the reg contents section to instead be to
2091 the register section, and scale them down to correspond to the register
2095 mmix_elf_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
2096 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2097 const char *name ATTRIBUTE_UNUSED
;
2098 Elf_Internal_Sym
*sym
;
2099 asection
*input_sec
;
2100 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
;
2102 if (input_sec
!= NULL
2103 && input_sec
->name
!= NULL
2104 && ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
2105 && strcmp (input_sec
->name
, MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
2108 sym
->st_shndx
= SHN_REGISTER
;
2114 /* We fake a register section that holds values that are register numbers.
2115 Having a SHN_REGISTER and register section translates better to other
2116 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2117 This section faking is based on a construct in elf32-mips.c. */
2118 static asection mmix_elf_reg_section
;
2119 static asymbol mmix_elf_reg_section_symbol
;
2120 static asymbol
*mmix_elf_reg_section_symbol_ptr
;
2122 /* Handle the special section numbers that a symbol may use. */
2125 mmix_elf_symbol_processing (abfd
, asym
)
2126 bfd
*abfd ATTRIBUTE_UNUSED
;
2129 elf_symbol_type
*elfsym
;
2131 elfsym
= (elf_symbol_type
*) asym
;
2132 switch (elfsym
->internal_elf_sym
.st_shndx
)
2135 if (mmix_elf_reg_section
.name
== NULL
)
2137 /* Initialize the register section. */
2138 mmix_elf_reg_section
.name
= MMIX_REG_SECTION_NAME
;
2139 mmix_elf_reg_section
.flags
= SEC_NO_FLAGS
;
2140 mmix_elf_reg_section
.output_section
= &mmix_elf_reg_section
;
2141 mmix_elf_reg_section
.symbol
= &mmix_elf_reg_section_symbol
;
2142 mmix_elf_reg_section
.symbol_ptr_ptr
= &mmix_elf_reg_section_symbol_ptr
;
2143 mmix_elf_reg_section_symbol
.name
= MMIX_REG_SECTION_NAME
;
2144 mmix_elf_reg_section_symbol
.flags
= BSF_SECTION_SYM
;
2145 mmix_elf_reg_section_symbol
.section
= &mmix_elf_reg_section
;
2146 mmix_elf_reg_section_symbol_ptr
= &mmix_elf_reg_section_symbol
;
2148 asym
->section
= &mmix_elf_reg_section
;
2156 /* Given a BFD section, try to locate the corresponding ELF section
2160 mmix_elf_section_from_bfd_section (abfd
, sec
, retval
)
2161 bfd
* abfd ATTRIBUTE_UNUSED
;
2165 if (strcmp (bfd_get_section_name (abfd
, sec
), MMIX_REG_SECTION_NAME
) == 0)
2166 *retval
= SHN_REGISTER
;
2173 /* Hook called by the linker routine which adds symbols from an object
2174 file. We must handle the special SHN_REGISTER section number here.
2176 We also check that we only have *one* each of the section-start
2177 symbols, since otherwise having two with the same value would cause
2178 them to be "merged", but with the contents serialized. */
2181 mmix_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
2183 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2184 Elf_Internal_Sym
*sym
;
2185 const char **namep ATTRIBUTE_UNUSED
;
2186 flagword
*flagsp ATTRIBUTE_UNUSED
;
2188 bfd_vma
*valp ATTRIBUTE_UNUSED
;
2190 if (sym
->st_shndx
== SHN_REGISTER
)
2192 *secp
= bfd_make_section_old_way (abfd
, MMIX_REG_SECTION_NAME
);
2193 (*secp
)->flags
|= SEC_LINKER_CREATED
;
2195 else if ((*namep
)[0] == '_' && (*namep
)[1] == '_' && (*namep
)[2] == '.'
2196 && strncmp (*namep
, MMIX_LOC_SECTION_START_SYMBOL_PREFIX
,
2197 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)) == 0)
2199 /* See if we have another one. */
2200 struct bfd_link_hash_entry
*h
= bfd_link_hash_lookup (info
->hash
,
2206 if (h
!= NULL
&& h
->type
!= bfd_link_hash_undefined
)
2208 /* How do we get the asymbol (or really: the filename) from h?
2209 h->u.def.section->owner is NULL. */
2210 ((*_bfd_error_handler
)
2211 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2212 bfd_get_filename (abfd
), *namep
,
2213 *namep
+ strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)));
2214 bfd_set_error (bfd_error_bad_value
);
2222 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2225 mmix_elf_is_local_label_name (abfd
, name
)
2232 /* Also include the default local-label definition. */
2233 if (_bfd_elf_is_local_label_name (abfd
, name
))
2239 /* If there's no ":", or more than one, it's not a local symbol. */
2240 colpos
= strchr (name
, ':');
2241 if (colpos
== NULL
|| strchr (colpos
+ 1, ':') != NULL
)
2244 /* Check that there are remaining characters and that they are digits. */
2248 digits
= strspn (colpos
+ 1, "0123456789");
2249 return digits
!= 0 && colpos
[1 + digits
] == 0;
2252 /* We get rid of the register section here. */
2255 mmix_elf_final_link (abfd
, info
)
2257 struct bfd_link_info
*info
;
2259 /* We never output a register section, though we create one for
2260 temporary measures. Check that nobody entered contents into it. */
2261 asection
*reg_section
;
2263 reg_section
= bfd_get_section_by_name (abfd
, MMIX_REG_SECTION_NAME
);
2265 if (reg_section
!= NULL
)
2267 /* FIXME: Pass error state gracefully. */
2268 if (bfd_get_section_flags (abfd
, reg_section
) & SEC_HAS_CONTENTS
)
2269 _bfd_abort (__FILE__
, __LINE__
, _("Register section has contents\n"));
2271 /* Really remove the section, if it hasn't already been done. */
2272 if (!bfd_section_removed_from_list (abfd
, reg_section
))
2274 bfd_section_list_remove (abfd
, reg_section
);
2275 --abfd
->section_count
;
2279 if (! bfd_elf_final_link (abfd
, info
))
2282 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2283 the regular linker machinery. We do it here, like other targets with
2284 special sections. */
2285 if (info
->base_file
!= NULL
)
2287 asection
*greg_section
2288 = bfd_get_section_by_name ((bfd
*) info
->base_file
,
2289 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2290 if (!bfd_set_section_contents (abfd
,
2291 greg_section
->output_section
,
2292 greg_section
->contents
,
2293 (file_ptr
) greg_section
->output_offset
,
2294 greg_section
->size
))
2300 /* We need to include the maximum size of PUSHJ-stubs in the initial
2301 section size. This is expected to shrink during linker relaxation. */
2304 mmix_set_relaxable_size (abfd
, sec
, ptr
)
2305 bfd
*abfd ATTRIBUTE_UNUSED
;
2309 struct bfd_link_info
*info
= ptr
;
2311 /* Make sure we only do this for section where we know we want this,
2312 otherwise we might end up resetting the size of COMMONs. */
2313 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0)
2316 sec
->rawsize
= sec
->size
;
2317 sec
->size
+= (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2318 * MAX_PUSHJ_STUB_SIZE
);
2320 /* For use in relocatable link, we start with a max stubs size. See
2321 mmix_elf_relax_section. */
2322 if (info
->relocatable
&& sec
->output_section
)
2323 mmix_elf_section_data (sec
->output_section
)->pjs
.stubs_size_sum
2324 += (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2325 * MAX_PUSHJ_STUB_SIZE
);
2328 /* Initialize stuff for the linker-generated GREGs to match
2329 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2332 _bfd_mmix_before_linker_allocation (abfd
, info
)
2333 bfd
*abfd ATTRIBUTE_UNUSED
;
2334 struct bfd_link_info
*info
;
2336 asection
*bpo_gregs_section
;
2337 bfd
*bpo_greg_owner
;
2338 struct bpo_greg_section_info
*gregdata
;
2342 size_t *bpo_reloc_indexes
;
2345 /* Set the initial size of sections. */
2346 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2347 bfd_map_over_sections (ibfd
, mmix_set_relaxable_size
, info
);
2349 /* The bpo_greg_owner bfd is supposed to have been set by
2350 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2351 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2352 bpo_greg_owner
= (bfd
*) info
->base_file
;
2353 if (bpo_greg_owner
== NULL
)
2357 = bfd_get_section_by_name (bpo_greg_owner
,
2358 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2360 if (bpo_gregs_section
== NULL
)
2363 /* We use the target-data handle in the ELF section data. */
2364 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2365 if (gregdata
== NULL
)
2368 n_gregs
= gregdata
->n_bpo_relocs
;
2369 gregdata
->n_allocated_bpo_gregs
= n_gregs
;
2371 /* When this reaches zero during relaxation, all entries have been
2372 filled in and the size of the linker gregs can be calculated. */
2373 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
= n_gregs
;
2375 /* Set the zeroth-order estimate for the GREGs size. */
2376 gregs_size
= n_gregs
* 8;
2378 if (!bfd_set_section_size (bpo_greg_owner
, bpo_gregs_section
, gregs_size
))
2381 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2382 time. Note that we must use the max number ever noted for the array,
2383 since the index numbers were created before GC. */
2384 gregdata
->reloc_request
2385 = bfd_zalloc (bpo_greg_owner
,
2386 sizeof (struct bpo_reloc_request
)
2387 * gregdata
->n_max_bpo_relocs
);
2389 gregdata
->bpo_reloc_indexes
2391 = bfd_alloc (bpo_greg_owner
,
2392 gregdata
->n_max_bpo_relocs
2394 if (bpo_reloc_indexes
== NULL
)
2397 /* The default order is an identity mapping. */
2398 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2400 bpo_reloc_indexes
[i
] = i
;
2401 gregdata
->reloc_request
[i
].bpo_reloc_no
= i
;
2407 /* Fill in contents in the linker allocated gregs. Everything is
2408 calculated at this point; we just move the contents into place here. */
2411 _bfd_mmix_after_linker_allocation (abfd
, link_info
)
2412 bfd
*abfd ATTRIBUTE_UNUSED
;
2413 struct bfd_link_info
*link_info
;
2415 asection
*bpo_gregs_section
;
2416 bfd
*bpo_greg_owner
;
2417 struct bpo_greg_section_info
*gregdata
;
2423 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2424 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2425 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2426 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2427 if (bpo_greg_owner
== NULL
)
2431 = bfd_get_section_by_name (bpo_greg_owner
,
2432 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2434 /* This can't happen without DSO handling. When DSOs are handled
2435 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2437 if (bpo_gregs_section
== NULL
)
2440 /* We use the target-data handle in the ELF section data. */
2442 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2443 if (gregdata
== NULL
)
2446 n_gregs
= gregdata
->n_allocated_bpo_gregs
;
2448 bpo_gregs_section
->contents
2449 = contents
= bfd_alloc (bpo_greg_owner
, bpo_gregs_section
->size
);
2450 if (contents
== NULL
)
2453 /* Sanity check: If these numbers mismatch, some relocation has not been
2454 accounted for and the rest of gregdata is probably inconsistent.
2455 It's a bug, but it's more helpful to identify it than segfaulting
2457 if (gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2458 != gregdata
->n_bpo_relocs
)
2460 (*_bfd_error_handler
)
2461 (_("Internal inconsistency: remaining %u != max %u.\n\
2462 Please report this bug."),
2463 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2464 gregdata
->n_bpo_relocs
);
2468 for (lastreg
= 255, i
= 0, j
= 0; j
< n_gregs
; i
++)
2469 if (gregdata
->reloc_request
[i
].regindex
!= lastreg
)
2471 bfd_put_64 (bpo_greg_owner
, gregdata
->reloc_request
[i
].value
,
2473 lastreg
= gregdata
->reloc_request
[i
].regindex
;
2480 /* Sort valid relocs to come before non-valid relocs, then on increasing
2484 bpo_reloc_request_sort_fn (p1
, p2
)
2488 const struct bpo_reloc_request
*r1
= (const struct bpo_reloc_request
*) p1
;
2489 const struct bpo_reloc_request
*r2
= (const struct bpo_reloc_request
*) p2
;
2491 /* Primary function is validity; non-valid relocs sorted after valid
2493 if (r1
->valid
!= r2
->valid
)
2494 return r2
->valid
- r1
->valid
;
2496 /* Then sort on value. Don't simplify and return just the difference of
2497 the values: the upper bits of the 64-bit value would be truncated on
2498 a host with 32-bit ints. */
2499 if (r1
->value
!= r2
->value
)
2500 return r1
->value
> r2
->value
? 1 : -1;
2502 /* As a last re-sort, use the relocation number, so we get a stable
2503 sort. The *addresses* aren't stable since items are swapped during
2504 sorting. It depends on the qsort implementation if this actually
2506 return r1
->bpo_reloc_no
> r2
->bpo_reloc_no
2507 ? 1 : (r1
->bpo_reloc_no
< r2
->bpo_reloc_no
? -1 : 0);
2510 /* For debug use only. Dumps the global register allocations resulting
2511 from base-plus-offset relocs. */
2514 mmix_dump_bpo_gregs (link_info
, pf
)
2515 struct bfd_link_info
*link_info
;
2516 bfd_error_handler_type pf
;
2518 bfd
*bpo_greg_owner
;
2519 asection
*bpo_gregs_section
;
2520 struct bpo_greg_section_info
*gregdata
;
2523 if (link_info
== NULL
|| link_info
->base_file
== NULL
)
2526 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2529 = bfd_get_section_by_name (bpo_greg_owner
,
2530 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2532 if (bpo_gregs_section
== NULL
)
2535 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2536 if (gregdata
== NULL
)
2540 pf
= _bfd_error_handler
;
2542 /* These format strings are not translated. They are for debug purposes
2543 only and never displayed to an end user. Should they escape, we
2544 surely want them in original. */
2545 (*pf
) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2546 n_allocated_bpo_gregs: %u\n", gregdata
->n_bpo_relocs
,
2547 gregdata
->n_max_bpo_relocs
,
2548 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2549 gregdata
->n_allocated_bpo_gregs
);
2551 if (gregdata
->reloc_request
)
2552 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2553 (*pf
) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2555 (gregdata
->bpo_reloc_indexes
!= NULL
2556 ? gregdata
->bpo_reloc_indexes
[i
] : (size_t) -1),
2557 gregdata
->reloc_request
[i
].bpo_reloc_no
,
2558 gregdata
->reloc_request
[i
].valid
,
2560 (unsigned long) (gregdata
->reloc_request
[i
].value
>> 32),
2561 (unsigned long) gregdata
->reloc_request
[i
].value
,
2562 gregdata
->reloc_request
[i
].regindex
,
2563 gregdata
->reloc_request
[i
].offset
);
2566 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2567 when the last such reloc is done, an index-array is sorted according to
2568 the values and iterated over to produce register numbers (indexed by 0
2569 from the first allocated register number) and offsets for use in real
2572 PUSHJ stub accounting is also done here.
2574 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2577 mmix_elf_relax_section (abfd
, sec
, link_info
, again
)
2580 struct bfd_link_info
*link_info
;
2583 Elf_Internal_Shdr
*symtab_hdr
;
2584 Elf_Internal_Rela
*internal_relocs
;
2585 Elf_Internal_Rela
*irel
, *irelend
;
2586 asection
*bpo_gregs_section
= NULL
;
2587 struct bpo_greg_section_info
*gregdata
;
2588 struct bpo_reloc_section_info
*bpodata
2589 = mmix_elf_section_data (sec
)->bpo
.reloc
;
2590 /* The initialization is to quiet compiler warnings. The value is to
2591 spot a missing actual initialization. */
2592 size_t bpono
= (size_t) -1;
2594 bfd
*bpo_greg_owner
;
2595 Elf_Internal_Sym
*isymbuf
= NULL
;
2596 bfd_size_type size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
2598 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
= 0;
2600 /* Assume nothing changes. */
2603 /* We don't have to do anything if this section does not have relocs, or
2604 if this is not a code section. */
2605 if ((sec
->flags
& SEC_RELOC
) == 0
2606 || sec
->reloc_count
== 0
2607 || (sec
->flags
& SEC_CODE
) == 0
2608 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2609 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2610 then nothing to do. */
2612 && mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0))
2615 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2617 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2619 if (bpodata
!= NULL
)
2621 bpo_gregs_section
= bpodata
->bpo_greg_section
;
2622 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2623 bpono
= bpodata
->first_base_plus_offset_reloc
;
2628 /* Get a copy of the native relocations. */
2630 = _bfd_elf_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
2631 (Elf_Internal_Rela
*) NULL
,
2632 link_info
->keep_memory
);
2633 if (internal_relocs
== NULL
)
2636 /* Walk through them looking for relaxing opportunities. */
2637 irelend
= internal_relocs
+ sec
->reloc_count
;
2638 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2641 struct elf_link_hash_entry
*h
= NULL
;
2643 /* We only process two relocs. */
2644 if (ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_BASE_PLUS_OFFSET
2645 && ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_PUSHJ_STUBBABLE
)
2648 /* We process relocs in a distinctly different way when this is a
2649 relocatable link (for one, we don't look at symbols), so we avoid
2650 mixing its code with that for the "normal" relaxation. */
2651 if (link_info
->relocatable
)
2653 /* The only transformation in a relocatable link is to generate
2654 a full stub at the location of the stub calculated for the
2655 input section, if the relocated stub location, the end of the
2656 output section plus earlier stubs, cannot be reached. Thus
2657 relocatable linking can only lead to worse code, but it still
2659 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_PUSHJ_STUBBABLE
)
2661 /* If we can reach the end of the output-section and beyond
2662 any current stubs, then we don't need a stub for this
2663 reloc. The relaxed order of output stub allocation may
2664 not exactly match the straightforward order, so we always
2665 assume presence of output stubs, which will allow
2666 relaxation only on relocations indifferent to the
2667 presence of output stub allocations for other relocations
2668 and thus the order of output stub allocation. */
2669 if (bfd_check_overflow (complain_overflow_signed
,
2672 bfd_arch_bits_per_address (abfd
),
2673 /* Output-stub location. */
2674 sec
->output_section
->rawsize
2675 + (mmix_elf_section_data (sec
2677 ->pjs
.stubs_size_sum
)
2678 /* Location of this PUSHJ reloc. */
2679 - (sec
->output_offset
+ irel
->r_offset
)
2680 /* Don't count *this* stub twice. */
2681 - (mmix_elf_section_data (sec
)
2682 ->pjs
.stub_size
[pjsno
]
2683 + MAX_PUSHJ_STUB_SIZE
))
2685 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2687 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2688 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2696 /* Get the value of the symbol referred to by the reloc. */
2697 if (ELF64_R_SYM (irel
->r_info
) < symtab_hdr
->sh_info
)
2699 /* A local symbol. */
2700 Elf_Internal_Sym
*isym
;
2703 /* Read this BFD's local symbols if we haven't already. */
2704 if (isymbuf
== NULL
)
2706 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2707 if (isymbuf
== NULL
)
2708 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
2709 symtab_hdr
->sh_info
, 0,
2715 isym
= isymbuf
+ ELF64_R_SYM (irel
->r_info
);
2716 if (isym
->st_shndx
== SHN_UNDEF
)
2717 sym_sec
= bfd_und_section_ptr
;
2718 else if (isym
->st_shndx
== SHN_ABS
)
2719 sym_sec
= bfd_abs_section_ptr
;
2720 else if (isym
->st_shndx
== SHN_COMMON
)
2721 sym_sec
= bfd_com_section_ptr
;
2723 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
2724 symval
= (isym
->st_value
2725 + sym_sec
->output_section
->vma
2726 + sym_sec
->output_offset
);
2732 /* An external symbol. */
2733 indx
= ELF64_R_SYM (irel
->r_info
) - symtab_hdr
->sh_info
;
2734 h
= elf_sym_hashes (abfd
)[indx
];
2735 BFD_ASSERT (h
!= NULL
);
2736 if (h
->root
.type
!= bfd_link_hash_defined
2737 && h
->root
.type
!= bfd_link_hash_defweak
)
2739 /* This appears to be a reference to an undefined symbol. Just
2740 ignore it--it will be caught by the regular reloc processing.
2741 We need to keep BPO reloc accounting consistent, though
2742 else we'll abort instead of emitting an error message. */
2743 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_BASE_PLUS_OFFSET
2744 && gregdata
!= NULL
)
2746 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2752 symval
= (h
->root
.u
.def
.value
2753 + h
->root
.u
.def
.section
->output_section
->vma
2754 + h
->root
.u
.def
.section
->output_offset
);
2757 if (ELF64_R_TYPE (irel
->r_info
) == (int) R_MMIX_PUSHJ_STUBBABLE
)
2759 bfd_vma value
= symval
+ irel
->r_addend
;
2761 = (sec
->output_section
->vma
2762 + sec
->output_offset
2765 = (sec
->output_section
->vma
2766 + sec
->output_offset
2768 + mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
);
2770 if ((value
& 3) == 0
2771 && bfd_check_overflow (complain_overflow_signed
,
2774 bfd_arch_bits_per_address (abfd
),
2777 ? mmix_elf_section_data (sec
)
2778 ->pjs
.stub_size
[pjsno
]
2781 /* If the reloc fits, no stub is needed. */
2782 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2784 /* Maybe we can get away with just a JMP insn? */
2785 if ((value
& 3) == 0
2786 && bfd_check_overflow (complain_overflow_signed
,
2789 bfd_arch_bits_per_address (abfd
),
2792 ? mmix_elf_section_data (sec
)
2793 ->pjs
.stub_size
[pjsno
] - 4
2796 /* Yep, account for a stub consisting of a single JMP insn. */
2797 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 4;
2799 /* Nope, go for the full insn stub. It doesn't seem useful to
2800 emit the intermediate sizes; those will only be useful for
2801 a >64M program assuming contiguous code. */
2802 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
]
2803 = MAX_PUSHJ_STUB_SIZE
;
2805 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2806 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2811 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2813 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
]].value
2814 = symval
+ irel
->r_addend
;
2815 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
++]].valid
= TRUE
;
2816 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2819 /* Check if that was the last BPO-reloc. If so, sort the values and
2820 calculate how many registers we need to cover them. Set the size of
2821 the linker gregs, and if the number of registers changed, indicate
2822 that we need to relax some more because we have more work to do. */
2823 if (gregdata
!= NULL
2824 && gregdata
->n_remaining_bpo_relocs_this_relaxation_round
== 0)
2830 /* First, reset the remaining relocs for the next round. */
2831 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2832 = gregdata
->n_bpo_relocs
;
2834 qsort ((PTR
) gregdata
->reloc_request
,
2835 gregdata
->n_max_bpo_relocs
,
2836 sizeof (struct bpo_reloc_request
),
2837 bpo_reloc_request_sort_fn
);
2839 /* Recalculate indexes. When we find a change (however unlikely
2840 after the initial iteration), we know we need to relax again,
2841 since items in the GREG-array are sorted by increasing value and
2842 stored in the relaxation phase. */
2843 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2844 if (gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2847 gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2852 /* Allocate register numbers (indexing from 0). Stop at the first
2854 for (i
= 0, regindex
= 0, prev_base
= gregdata
->reloc_request
[0].value
;
2855 i
< gregdata
->n_bpo_relocs
;
2858 if (gregdata
->reloc_request
[i
].value
> prev_base
+ 255)
2861 prev_base
= gregdata
->reloc_request
[i
].value
;
2863 gregdata
->reloc_request
[i
].regindex
= regindex
;
2864 gregdata
->reloc_request
[i
].offset
2865 = gregdata
->reloc_request
[i
].value
- prev_base
;
2868 /* If it's not the same as the last time, we need to relax again,
2869 because the size of the section has changed. I'm not sure we
2870 actually need to do any adjustments since the shrinking happens
2871 at the start of this section, but better safe than sorry. */
2872 if (gregdata
->n_allocated_bpo_gregs
!= regindex
+ 1)
2874 gregdata
->n_allocated_bpo_gregs
= regindex
+ 1;
2878 bpo_gregs_section
->size
= (regindex
+ 1) * 8;
2881 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2883 if (! link_info
->keep_memory
)
2887 /* Cache the symbols for elf_link_input_bfd. */
2888 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
2892 if (internal_relocs
!= NULL
2893 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2894 free (internal_relocs
);
2896 if (sec
->size
< size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2899 if (sec
->size
> size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2901 sec
->size
= size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
;
2908 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2910 if (internal_relocs
!= NULL
2911 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2912 free (internal_relocs
);
2916 #define ELF_ARCH bfd_arch_mmix
2917 #define ELF_MACHINE_CODE EM_MMIX
2919 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2920 However, that's too much for something somewhere in the linker part of
2921 BFD; perhaps the start-address has to be a non-zero multiple of this
2922 number, or larger than this number. The symptom is that the linker
2923 complains: "warning: allocated section `.text' not in segment". We
2924 settle for 64k; the page-size used in examples is 8k.
2925 #define ELF_MAXPAGESIZE 0x10000
2927 Unfortunately, this causes excessive padding in the supposedly small
2928 for-education programs that are the expected usage (where people would
2929 inspect output). We stick to 256 bytes just to have *some* default
2931 #define ELF_MAXPAGESIZE 0x100
2933 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2934 #define TARGET_BIG_NAME "elf64-mmix"
2936 #define elf_info_to_howto_rel NULL
2937 #define elf_info_to_howto mmix_info_to_howto_rela
2938 #define elf_backend_relocate_section mmix_elf_relocate_section
2939 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2940 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2942 #define elf_backend_link_output_symbol_hook \
2943 mmix_elf_link_output_symbol_hook
2944 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2946 #define elf_backend_check_relocs mmix_elf_check_relocs
2947 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2949 #define bfd_elf64_bfd_is_local_label_name \
2950 mmix_elf_is_local_label_name
2952 #define elf_backend_may_use_rel_p 0
2953 #define elf_backend_may_use_rela_p 1
2954 #define elf_backend_default_use_rela_p 1
2956 #define elf_backend_can_gc_sections 1
2957 #define elf_backend_section_from_bfd_section \
2958 mmix_elf_section_from_bfd_section
2960 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2961 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2962 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2964 #include "elf64-target.h"