daily update
[binutils.git] / bfd / elfxx-mips.c
blobbc81458987a637031222f9d6da15d2009f3b0ece
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elfxx-mips.h"
35 #include "elf/mips.h"
37 /* Get the ECOFF swapping routines. */
38 #include "coff/sym.h"
39 #include "coff/symconst.h"
40 #include "coff/ecoff.h"
41 #include "coff/mips.h"
43 /* This structure is used to hold .got information when linking. It
44 is stored in the tdata field of the bfd_elf_section_data structure. */
46 struct mips_got_info
48 /* The global symbol in the GOT with the lowest index in the dynamic
49 symbol table. */
50 struct elf_link_hash_entry *global_gotsym;
51 /* The number of global .got entries. */
52 unsigned int global_gotno;
53 /* The number of local .got entries. */
54 unsigned int local_gotno;
55 /* The number of local .got entries we have used. */
56 unsigned int assigned_gotno;
59 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
60 the dynamic symbols. */
62 struct mips_elf_hash_sort_data
64 /* The symbol in the global GOT with the lowest dynamic symbol table
65 index. */
66 struct elf_link_hash_entry *low;
67 /* The least dynamic symbol table index corresponding to a symbol
68 with a GOT entry. */
69 long min_got_dynindx;
70 /* The greatest dynamic symbol table index not corresponding to a
71 symbol without a GOT entry. */
72 long max_non_got_dynindx;
75 /* The MIPS ELF linker needs additional information for each symbol in
76 the global hash table. */
78 struct mips_elf_link_hash_entry
80 struct elf_link_hash_entry root;
82 /* External symbol information. */
83 EXTR esym;
85 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
86 this symbol. */
87 unsigned int possibly_dynamic_relocs;
89 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
90 a readonly section. */
91 boolean readonly_reloc;
93 /* The index of the first dynamic relocation (in the .rel.dyn
94 section) against this symbol. */
95 unsigned int min_dyn_reloc_index;
97 /* We must not create a stub for a symbol that has relocations
98 related to taking the function's address, i.e. any but
99 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
100 p. 4-20. */
101 boolean no_fn_stub;
103 /* If there is a stub that 32 bit functions should use to call this
104 16 bit function, this points to the section containing the stub. */
105 asection *fn_stub;
107 /* Whether we need the fn_stub; this is set if this symbol appears
108 in any relocs other than a 16 bit call. */
109 boolean need_fn_stub;
111 /* If there is a stub that 16 bit functions should use to call this
112 32 bit function, this points to the section containing the stub. */
113 asection *call_stub;
115 /* This is like the call_stub field, but it is used if the function
116 being called returns a floating point value. */
117 asection *call_fp_stub;
119 /* Are we forced local? .*/
120 boolean forced_local;
123 /* MIPS ELF linker hash table. */
125 struct mips_elf_link_hash_table
127 struct elf_link_hash_table root;
128 #if 0
129 /* We no longer use this. */
130 /* String section indices for the dynamic section symbols. */
131 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
132 #endif
133 /* The number of .rtproc entries. */
134 bfd_size_type procedure_count;
135 /* The size of the .compact_rel section (if SGI_COMPAT). */
136 bfd_size_type compact_rel_size;
137 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
138 entry is set to the address of __rld_obj_head as in IRIX5. */
139 boolean use_rld_obj_head;
140 /* This is the value of the __rld_map or __rld_obj_head symbol. */
141 bfd_vma rld_value;
142 /* This is set if we see any mips16 stub sections. */
143 boolean mips16_stubs_seen;
146 /* Structure used to pass information to mips_elf_output_extsym. */
148 struct extsym_info
150 bfd *abfd;
151 struct bfd_link_info *info;
152 struct ecoff_debug_info *debug;
153 const struct ecoff_debug_swap *swap;
154 boolean failed;
157 /* The names of the runtime procedure table symbols used on IRIX5. */
159 static const char * const mips_elf_dynsym_rtproc_names[] =
161 "_procedure_table",
162 "_procedure_string_table",
163 "_procedure_table_size",
164 NULL
167 /* These structures are used to generate the .compact_rel section on
168 IRIX5. */
170 typedef struct
172 unsigned long id1; /* Always one? */
173 unsigned long num; /* Number of compact relocation entries. */
174 unsigned long id2; /* Always two? */
175 unsigned long offset; /* The file offset of the first relocation. */
176 unsigned long reserved0; /* Zero? */
177 unsigned long reserved1; /* Zero? */
178 } Elf32_compact_rel;
180 typedef struct
182 bfd_byte id1[4];
183 bfd_byte num[4];
184 bfd_byte id2[4];
185 bfd_byte offset[4];
186 bfd_byte reserved0[4];
187 bfd_byte reserved1[4];
188 } Elf32_External_compact_rel;
190 typedef struct
192 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
193 unsigned int rtype : 4; /* Relocation types. See below. */
194 unsigned int dist2to : 8;
195 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
196 unsigned long konst; /* KONST field. See below. */
197 unsigned long vaddr; /* VADDR to be relocated. */
198 } Elf32_crinfo;
200 typedef struct
202 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
203 unsigned int rtype : 4; /* Relocation types. See below. */
204 unsigned int dist2to : 8;
205 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
206 unsigned long konst; /* KONST field. See below. */
207 } Elf32_crinfo2;
209 typedef struct
211 bfd_byte info[4];
212 bfd_byte konst[4];
213 bfd_byte vaddr[4];
214 } Elf32_External_crinfo;
216 typedef struct
218 bfd_byte info[4];
219 bfd_byte konst[4];
220 } Elf32_External_crinfo2;
222 /* These are the constants used to swap the bitfields in a crinfo. */
224 #define CRINFO_CTYPE (0x1)
225 #define CRINFO_CTYPE_SH (31)
226 #define CRINFO_RTYPE (0xf)
227 #define CRINFO_RTYPE_SH (27)
228 #define CRINFO_DIST2TO (0xff)
229 #define CRINFO_DIST2TO_SH (19)
230 #define CRINFO_RELVADDR (0x7ffff)
231 #define CRINFO_RELVADDR_SH (0)
233 /* A compact relocation info has long (3 words) or short (2 words)
234 formats. A short format doesn't have VADDR field and relvaddr
235 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
236 #define CRF_MIPS_LONG 1
237 #define CRF_MIPS_SHORT 0
239 /* There are 4 types of compact relocation at least. The value KONST
240 has different meaning for each type:
242 (type) (konst)
243 CT_MIPS_REL32 Address in data
244 CT_MIPS_WORD Address in word (XXX)
245 CT_MIPS_GPHI_LO GP - vaddr
246 CT_MIPS_JMPAD Address to jump
249 #define CRT_MIPS_REL32 0xa
250 #define CRT_MIPS_WORD 0xb
251 #define CRT_MIPS_GPHI_LO 0xc
252 #define CRT_MIPS_JMPAD 0xd
254 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
255 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
256 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
257 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
259 /* The structure of the runtime procedure descriptor created by the
260 loader for use by the static exception system. */
262 typedef struct runtime_pdr {
263 bfd_vma adr; /* memory address of start of procedure */
264 long regmask; /* save register mask */
265 long regoffset; /* save register offset */
266 long fregmask; /* save floating point register mask */
267 long fregoffset; /* save floating point register offset */
268 long frameoffset; /* frame size */
269 short framereg; /* frame pointer register */
270 short pcreg; /* offset or reg of return pc */
271 long irpss; /* index into the runtime string table */
272 long reserved;
273 struct exception_info *exception_info;/* pointer to exception array */
274 } RPDR, *pRPDR;
275 #define cbRPDR sizeof (RPDR)
276 #define rpdNil ((pRPDR) 0)
278 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280 static void ecoff_swap_rpdr_out
281 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
282 static boolean mips_elf_create_procedure_table
283 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
284 struct ecoff_debug_info *));
285 static boolean mips_elf_check_mips16_stubs
286 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
287 static void bfd_mips_elf32_swap_gptab_in
288 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
289 static void bfd_mips_elf32_swap_gptab_out
290 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
291 static void bfd_elf32_swap_compact_rel_out
292 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
293 static void bfd_elf32_swap_crinfo_out
294 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
295 #if 0
296 static void bfd_mips_elf_swap_msym_in
297 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
298 #endif
299 static void bfd_mips_elf_swap_msym_out
300 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
301 static int sort_dynamic_relocs
302 PARAMS ((const void *, const void *));
303 static boolean mips_elf_output_extsym
304 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
305 static int gptab_compare PARAMS ((const void *, const void *));
306 static asection * mips_elf_got_section PARAMS ((bfd *));
307 static struct mips_got_info *mips_elf_got_info
308 PARAMS ((bfd *, asection **));
309 static bfd_vma mips_elf_local_got_index
310 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
311 static bfd_vma mips_elf_global_got_index
312 PARAMS ((bfd *, struct elf_link_hash_entry *));
313 static bfd_vma mips_elf_got_page
314 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
315 static bfd_vma mips_elf_got16_entry
316 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
317 static bfd_vma mips_elf_got_offset_from_index
318 PARAMS ((bfd *, bfd *, bfd_vma));
319 static bfd_vma mips_elf_create_local_got_entry
320 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
321 static boolean mips_elf_sort_hash_table
322 PARAMS ((struct bfd_link_info *, unsigned long));
323 static boolean mips_elf_sort_hash_table_f
324 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
325 static boolean mips_elf_record_global_got_symbol
326 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
327 struct mips_got_info *));
328 static const Elf_Internal_Rela *mips_elf_next_relocation
329 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
330 const Elf_Internal_Rela *));
331 static boolean mips_elf_local_relocation_p
332 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
333 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
334 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
335 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
336 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
337 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
338 static boolean mips_elf_create_compact_rel_section
339 PARAMS ((bfd *, struct bfd_link_info *));
340 static boolean mips_elf_create_got_section
341 PARAMS ((bfd *, struct bfd_link_info *));
342 static asection *mips_elf_create_msym_section
343 PARAMS ((bfd *));
344 static bfd_reloc_status_type mips_elf_calculate_relocation
345 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
346 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
347 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
348 boolean *, boolean));
349 static bfd_vma mips_elf_obtain_contents
350 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
351 static boolean mips_elf_perform_relocation
352 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
353 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
354 boolean));
355 static boolean mips_elf_stub_section_p
356 PARAMS ((bfd *, asection *));
357 static void mips_elf_allocate_dynamic_relocations
358 PARAMS ((bfd *, unsigned int));
359 static boolean mips_elf_create_dynamic_relocation
360 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
361 struct mips_elf_link_hash_entry *, asection *,
362 bfd_vma, bfd_vma *, asection *));
363 static INLINE int elf_mips_isa PARAMS ((flagword));
364 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
365 static void mips_elf_irix6_finish_dynamic_symbol
366 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
367 static boolean _bfd_mips_elf_mach_extends_p PARAMS ((flagword, flagword));
369 /* This will be used when we sort the dynamic relocation records. */
370 static bfd *reldyn_sorting_bfd;
372 /* Nonzero if ABFD is using the N32 ABI. */
374 #define ABI_N32_P(abfd) \
375 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
377 /* Nonzero if ABFD is using the N64 ABI. */
378 #define ABI_64_P(abfd) \
379 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
381 /* Nonzero if ABFD is using NewABI conventions. */
382 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
384 /* The IRIX compatibility level we are striving for. */
385 #define IRIX_COMPAT(abfd) \
386 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
388 /* Whether we are trying to be compatible with IRIX at all. */
389 #define SGI_COMPAT(abfd) \
390 (IRIX_COMPAT (abfd) != ict_none)
392 /* The name of the options section. */
393 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
394 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
396 /* The name of the stub section. */
397 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
398 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
400 /* The size of an external REL relocation. */
401 #define MIPS_ELF_REL_SIZE(abfd) \
402 (get_elf_backend_data (abfd)->s->sizeof_rel)
404 /* The size of an external dynamic table entry. */
405 #define MIPS_ELF_DYN_SIZE(abfd) \
406 (get_elf_backend_data (abfd)->s->sizeof_dyn)
408 /* The size of a GOT entry. */
409 #define MIPS_ELF_GOT_SIZE(abfd) \
410 (get_elf_backend_data (abfd)->s->arch_size / 8)
412 /* The size of a symbol-table entry. */
413 #define MIPS_ELF_SYM_SIZE(abfd) \
414 (get_elf_backend_data (abfd)->s->sizeof_sym)
416 /* The default alignment for sections, as a power of two. */
417 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
418 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
420 /* Get word-sized data. */
421 #define MIPS_ELF_GET_WORD(abfd, ptr) \
422 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
424 /* Put out word-sized data. */
425 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
426 (ABI_64_P (abfd) \
427 ? bfd_put_64 (abfd, val, ptr) \
428 : bfd_put_32 (abfd, val, ptr))
430 /* Add a dynamic symbol table-entry. */
431 #ifdef BFD64
432 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
433 (ABI_64_P (elf_hash_table (info)->dynobj) \
434 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
435 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
436 #else
437 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
438 (ABI_64_P (elf_hash_table (info)->dynobj) \
439 ? (boolean) (abort (), false) \
440 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
441 #endif
443 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
444 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
446 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
447 from smaller values. Start with zero, widen, *then* decrement. */
448 #define MINUS_ONE (((bfd_vma)0) - 1)
450 /* The number of local .got entries we reserve. */
451 #define MIPS_RESERVED_GOTNO (2)
453 /* Instructions which appear in a stub. For some reason the stub is
454 slightly different on an SGI system. */
455 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
456 #define STUB_LW(abfd) \
457 (SGI_COMPAT (abfd) \
458 ? (ABI_64_P (abfd) \
459 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
460 : 0x8f998010) /* lw t9,0x8010(gp) */ \
461 : 0x8f998010) /* lw t9,0x8000(gp) */
462 #define STUB_MOVE(abfd) \
463 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
464 #define STUB_JALR 0x0320f809 /* jal t9 */
465 #define STUB_LI16(abfd) \
466 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
467 #define MIPS_FUNCTION_STUB_SIZE (16)
469 /* The name of the dynamic interpreter. This is put in the .interp
470 section. */
472 #define ELF_DYNAMIC_INTERPRETER(abfd) \
473 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
474 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
475 : "/usr/lib/libc.so.1")
477 #ifdef BFD64
478 #define ELF_R_SYM(bfd, i) \
479 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
480 #define ELF_R_TYPE(bfd, i) \
481 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
482 #define ELF_R_INFO(bfd, s, t) \
483 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
484 #else
485 #define ELF_R_SYM(bfd, i) \
486 (ELF32_R_SYM (i))
487 #define ELF_R_TYPE(bfd, i) \
488 (ELF32_R_TYPE (i))
489 #define ELF_R_INFO(bfd, s, t) \
490 (ELF32_R_INFO (s, t))
491 #endif
493 /* The mips16 compiler uses a couple of special sections to handle
494 floating point arguments.
496 Section names that look like .mips16.fn.FNNAME contain stubs that
497 copy floating point arguments from the fp regs to the gp regs and
498 then jump to FNNAME. If any 32 bit function calls FNNAME, the
499 call should be redirected to the stub instead. If no 32 bit
500 function calls FNNAME, the stub should be discarded. We need to
501 consider any reference to the function, not just a call, because
502 if the address of the function is taken we will need the stub,
503 since the address might be passed to a 32 bit function.
505 Section names that look like .mips16.call.FNNAME contain stubs
506 that copy floating point arguments from the gp regs to the fp
507 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
508 then any 16 bit function that calls FNNAME should be redirected
509 to the stub instead. If FNNAME is not a 32 bit function, the
510 stub should be discarded.
512 .mips16.call.fp.FNNAME sections are similar, but contain stubs
513 which call FNNAME and then copy the return value from the fp regs
514 to the gp regs. These stubs store the return value in $18 while
515 calling FNNAME; any function which might call one of these stubs
516 must arrange to save $18 around the call. (This case is not
517 needed for 32 bit functions that call 16 bit functions, because
518 16 bit functions always return floating point values in both
519 $f0/$f1 and $2/$3.)
521 Note that in all cases FNNAME might be defined statically.
522 Therefore, FNNAME is not used literally. Instead, the relocation
523 information will indicate which symbol the section is for.
525 We record any stubs that we find in the symbol table. */
527 #define FN_STUB ".mips16.fn."
528 #define CALL_STUB ".mips16.call."
529 #define CALL_FP_STUB ".mips16.call.fp."
531 /* Look up an entry in a MIPS ELF linker hash table. */
533 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
534 ((struct mips_elf_link_hash_entry *) \
535 elf_link_hash_lookup (&(table)->root, (string), (create), \
536 (copy), (follow)))
538 /* Traverse a MIPS ELF linker hash table. */
540 #define mips_elf_link_hash_traverse(table, func, info) \
541 (elf_link_hash_traverse \
542 (&(table)->root, \
543 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
544 (info)))
546 /* Get the MIPS ELF linker hash table from a link_info structure. */
548 #define mips_elf_hash_table(p) \
549 ((struct mips_elf_link_hash_table *) ((p)->hash))
551 /* Create an entry in a MIPS ELF linker hash table. */
553 static struct bfd_hash_entry *
554 mips_elf_link_hash_newfunc (entry, table, string)
555 struct bfd_hash_entry *entry;
556 struct bfd_hash_table *table;
557 const char *string;
559 struct mips_elf_link_hash_entry *ret =
560 (struct mips_elf_link_hash_entry *) entry;
562 /* Allocate the structure if it has not already been allocated by a
563 subclass. */
564 if (ret == (struct mips_elf_link_hash_entry *) NULL)
565 ret = ((struct mips_elf_link_hash_entry *)
566 bfd_hash_allocate (table,
567 sizeof (struct mips_elf_link_hash_entry)));
568 if (ret == (struct mips_elf_link_hash_entry *) NULL)
569 return (struct bfd_hash_entry *) ret;
571 /* Call the allocation method of the superclass. */
572 ret = ((struct mips_elf_link_hash_entry *)
573 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
574 table, string));
575 if (ret != (struct mips_elf_link_hash_entry *) NULL)
577 /* Set local fields. */
578 memset (&ret->esym, 0, sizeof (EXTR));
579 /* We use -2 as a marker to indicate that the information has
580 not been set. -1 means there is no associated ifd. */
581 ret->esym.ifd = -2;
582 ret->possibly_dynamic_relocs = 0;
583 ret->readonly_reloc = false;
584 ret->min_dyn_reloc_index = 0;
585 ret->no_fn_stub = false;
586 ret->fn_stub = NULL;
587 ret->need_fn_stub = false;
588 ret->call_stub = NULL;
589 ret->call_fp_stub = NULL;
590 ret->forced_local = false;
593 return (struct bfd_hash_entry *) ret;
596 /* Read ECOFF debugging information from a .mdebug section into a
597 ecoff_debug_info structure. */
599 boolean
600 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
601 bfd *abfd;
602 asection *section;
603 struct ecoff_debug_info *debug;
605 HDRR *symhdr;
606 const struct ecoff_debug_swap *swap;
607 char *ext_hdr = NULL;
609 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
610 memset (debug, 0, sizeof (*debug));
612 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
613 if (ext_hdr == NULL && swap->external_hdr_size != 0)
614 goto error_return;
616 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
617 swap->external_hdr_size))
618 goto error_return;
620 symhdr = &debug->symbolic_header;
621 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
623 /* The symbolic header contains absolute file offsets and sizes to
624 read. */
625 #define READ(ptr, offset, count, size, type) \
626 if (symhdr->count == 0) \
627 debug->ptr = NULL; \
628 else \
630 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
631 debug->ptr = (type) bfd_malloc (amt); \
632 if (debug->ptr == NULL) \
633 goto error_return; \
634 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
635 || bfd_bread (debug->ptr, amt, abfd) != amt) \
636 goto error_return; \
639 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
640 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
641 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
642 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
643 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
644 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
645 union aux_ext *);
646 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
647 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
648 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
649 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
650 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
651 #undef READ
653 debug->fdr = NULL;
654 debug->adjust = NULL;
656 return true;
658 error_return:
659 if (ext_hdr != NULL)
660 free (ext_hdr);
661 if (debug->line != NULL)
662 free (debug->line);
663 if (debug->external_dnr != NULL)
664 free (debug->external_dnr);
665 if (debug->external_pdr != NULL)
666 free (debug->external_pdr);
667 if (debug->external_sym != NULL)
668 free (debug->external_sym);
669 if (debug->external_opt != NULL)
670 free (debug->external_opt);
671 if (debug->external_aux != NULL)
672 free (debug->external_aux);
673 if (debug->ss != NULL)
674 free (debug->ss);
675 if (debug->ssext != NULL)
676 free (debug->ssext);
677 if (debug->external_fdr != NULL)
678 free (debug->external_fdr);
679 if (debug->external_rfd != NULL)
680 free (debug->external_rfd);
681 if (debug->external_ext != NULL)
682 free (debug->external_ext);
683 return false;
686 /* Swap RPDR (runtime procedure table entry) for output. */
688 static void
689 ecoff_swap_rpdr_out (abfd, in, ex)
690 bfd *abfd;
691 const RPDR *in;
692 struct rpdr_ext *ex;
694 H_PUT_S32 (abfd, in->adr, ex->p_adr);
695 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
696 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
697 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
698 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
699 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
701 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
702 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
704 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
705 #if 0 /* FIXME */
706 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
707 #endif
710 /* Create a runtime procedure table from the .mdebug section. */
712 static boolean
713 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
714 PTR handle;
715 bfd *abfd;
716 struct bfd_link_info *info;
717 asection *s;
718 struct ecoff_debug_info *debug;
720 const struct ecoff_debug_swap *swap;
721 HDRR *hdr = &debug->symbolic_header;
722 RPDR *rpdr, *rp;
723 struct rpdr_ext *erp;
724 PTR rtproc;
725 struct pdr_ext *epdr;
726 struct sym_ext *esym;
727 char *ss, **sv;
728 char *str;
729 bfd_size_type size;
730 bfd_size_type count;
731 unsigned long sindex;
732 unsigned long i;
733 PDR pdr;
734 SYMR sym;
735 const char *no_name_func = _("static procedure (no name)");
737 epdr = NULL;
738 rpdr = NULL;
739 esym = NULL;
740 ss = NULL;
741 sv = NULL;
743 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
745 sindex = strlen (no_name_func) + 1;
746 count = hdr->ipdMax;
747 if (count > 0)
749 size = swap->external_pdr_size;
751 epdr = (struct pdr_ext *) bfd_malloc (size * count);
752 if (epdr == NULL)
753 goto error_return;
755 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
756 goto error_return;
758 size = sizeof (RPDR);
759 rp = rpdr = (RPDR *) bfd_malloc (size * count);
760 if (rpdr == NULL)
761 goto error_return;
763 size = sizeof (char *);
764 sv = (char **) bfd_malloc (size * count);
765 if (sv == NULL)
766 goto error_return;
768 count = hdr->isymMax;
769 size = swap->external_sym_size;
770 esym = (struct sym_ext *) bfd_malloc (size * count);
771 if (esym == NULL)
772 goto error_return;
774 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
775 goto error_return;
777 count = hdr->issMax;
778 ss = (char *) bfd_malloc (count);
779 if (ss == NULL)
780 goto error_return;
781 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
782 goto error_return;
784 count = hdr->ipdMax;
785 for (i = 0; i < (unsigned long) count; i++, rp++)
787 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
788 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
789 rp->adr = sym.value;
790 rp->regmask = pdr.regmask;
791 rp->regoffset = pdr.regoffset;
792 rp->fregmask = pdr.fregmask;
793 rp->fregoffset = pdr.fregoffset;
794 rp->frameoffset = pdr.frameoffset;
795 rp->framereg = pdr.framereg;
796 rp->pcreg = pdr.pcreg;
797 rp->irpss = sindex;
798 sv[i] = ss + sym.iss;
799 sindex += strlen (sv[i]) + 1;
803 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
804 size = BFD_ALIGN (size, 16);
805 rtproc = (PTR) bfd_alloc (abfd, size);
806 if (rtproc == NULL)
808 mips_elf_hash_table (info)->procedure_count = 0;
809 goto error_return;
812 mips_elf_hash_table (info)->procedure_count = count + 2;
814 erp = (struct rpdr_ext *) rtproc;
815 memset (erp, 0, sizeof (struct rpdr_ext));
816 erp++;
817 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
818 strcpy (str, no_name_func);
819 str += strlen (no_name_func) + 1;
820 for (i = 0; i < count; i++)
822 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
823 strcpy (str, sv[i]);
824 str += strlen (sv[i]) + 1;
826 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
828 /* Set the size and contents of .rtproc section. */
829 s->_raw_size = size;
830 s->contents = (bfd_byte *) rtproc;
832 /* Skip this section later on (I don't think this currently
833 matters, but someday it might). */
834 s->link_order_head = (struct bfd_link_order *) NULL;
836 if (epdr != NULL)
837 free (epdr);
838 if (rpdr != NULL)
839 free (rpdr);
840 if (esym != NULL)
841 free (esym);
842 if (ss != NULL)
843 free (ss);
844 if (sv != NULL)
845 free (sv);
847 return true;
849 error_return:
850 if (epdr != NULL)
851 free (epdr);
852 if (rpdr != NULL)
853 free (rpdr);
854 if (esym != NULL)
855 free (esym);
856 if (ss != NULL)
857 free (ss);
858 if (sv != NULL)
859 free (sv);
860 return false;
863 /* Check the mips16 stubs for a particular symbol, and see if we can
864 discard them. */
866 static boolean
867 mips_elf_check_mips16_stubs (h, data)
868 struct mips_elf_link_hash_entry *h;
869 PTR data ATTRIBUTE_UNUSED;
871 if (h->root.root.type == bfd_link_hash_warning)
872 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
874 if (h->fn_stub != NULL
875 && ! h->need_fn_stub)
877 /* We don't need the fn_stub; the only references to this symbol
878 are 16 bit calls. Clobber the size to 0 to prevent it from
879 being included in the link. */
880 h->fn_stub->_raw_size = 0;
881 h->fn_stub->_cooked_size = 0;
882 h->fn_stub->flags &= ~SEC_RELOC;
883 h->fn_stub->reloc_count = 0;
884 h->fn_stub->flags |= SEC_EXCLUDE;
887 if (h->call_stub != NULL
888 && h->root.other == STO_MIPS16)
890 /* We don't need the call_stub; this is a 16 bit function, so
891 calls from other 16 bit functions are OK. Clobber the size
892 to 0 to prevent it from being included in the link. */
893 h->call_stub->_raw_size = 0;
894 h->call_stub->_cooked_size = 0;
895 h->call_stub->flags &= ~SEC_RELOC;
896 h->call_stub->reloc_count = 0;
897 h->call_stub->flags |= SEC_EXCLUDE;
900 if (h->call_fp_stub != NULL
901 && h->root.other == STO_MIPS16)
903 /* We don't need the call_stub; this is a 16 bit function, so
904 calls from other 16 bit functions are OK. Clobber the size
905 to 0 to prevent it from being included in the link. */
906 h->call_fp_stub->_raw_size = 0;
907 h->call_fp_stub->_cooked_size = 0;
908 h->call_fp_stub->flags &= ~SEC_RELOC;
909 h->call_fp_stub->reloc_count = 0;
910 h->call_fp_stub->flags |= SEC_EXCLUDE;
913 return true;
916 bfd_reloc_status_type
917 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
918 relocateable, data, gp)
919 bfd *abfd;
920 asymbol *symbol;
921 arelent *reloc_entry;
922 asection *input_section;
923 boolean relocateable;
924 PTR data;
925 bfd_vma gp;
927 bfd_vma relocation;
928 unsigned long insn;
929 unsigned long val;
931 if (bfd_is_com_section (symbol->section))
932 relocation = 0;
933 else
934 relocation = symbol->value;
936 relocation += symbol->section->output_section->vma;
937 relocation += symbol->section->output_offset;
939 if (reloc_entry->address > input_section->_cooked_size)
940 return bfd_reloc_outofrange;
942 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
944 /* Set val to the offset into the section or symbol. */
945 if (reloc_entry->howto->src_mask == 0)
947 /* This case occurs with the 64-bit MIPS ELF ABI. */
948 val = reloc_entry->addend;
950 else
952 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
953 if (val & 0x8000)
954 val -= 0x10000;
957 /* Adjust val for the final section location and GP value. If we
958 are producing relocateable output, we don't want to do this for
959 an external symbol. */
960 if (! relocateable
961 || (symbol->flags & BSF_SECTION_SYM) != 0)
962 val += relocation - gp;
964 insn = (insn & ~0xffff) | (val & 0xffff);
965 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
967 if (relocateable)
968 reloc_entry->address += input_section->output_offset;
970 else if ((long) val >= 0x8000 || (long) val < -0x8000)
971 return bfd_reloc_overflow;
973 return bfd_reloc_ok;
976 /* Swap an entry in a .gptab section. Note that these routines rely
977 on the equivalence of the two elements of the union. */
979 static void
980 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
981 bfd *abfd;
982 const Elf32_External_gptab *ex;
983 Elf32_gptab *in;
985 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
986 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
989 static void
990 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
991 bfd *abfd;
992 const Elf32_gptab *in;
993 Elf32_External_gptab *ex;
995 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
996 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
999 static void
1000 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1001 bfd *abfd;
1002 const Elf32_compact_rel *in;
1003 Elf32_External_compact_rel *ex;
1005 H_PUT_32 (abfd, in->id1, ex->id1);
1006 H_PUT_32 (abfd, in->num, ex->num);
1007 H_PUT_32 (abfd, in->id2, ex->id2);
1008 H_PUT_32 (abfd, in->offset, ex->offset);
1009 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1010 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1013 static void
1014 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1015 bfd *abfd;
1016 const Elf32_crinfo *in;
1017 Elf32_External_crinfo *ex;
1019 unsigned long l;
1021 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1022 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1023 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1024 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1025 H_PUT_32 (abfd, l, ex->info);
1026 H_PUT_32 (abfd, in->konst, ex->konst);
1027 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1030 #if 0
1031 /* Swap in an MSYM entry. */
1033 static void
1034 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1035 bfd *abfd;
1036 const Elf32_External_Msym *ex;
1037 Elf32_Internal_Msym *in;
1039 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1040 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1042 #endif
1043 /* Swap out an MSYM entry. */
1045 static void
1046 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1047 bfd *abfd;
1048 const Elf32_Internal_Msym *in;
1049 Elf32_External_Msym *ex;
1051 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1052 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1055 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1056 routines swap this structure in and out. They are used outside of
1057 BFD, so they are globally visible. */
1059 void
1060 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1061 bfd *abfd;
1062 const Elf32_External_RegInfo *ex;
1063 Elf32_RegInfo *in;
1065 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1066 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1067 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1068 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1069 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1070 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1073 void
1074 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1075 bfd *abfd;
1076 const Elf32_RegInfo *in;
1077 Elf32_External_RegInfo *ex;
1079 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1080 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1081 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1082 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1083 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1084 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1087 /* In the 64 bit ABI, the .MIPS.options section holds register
1088 information in an Elf64_Reginfo structure. These routines swap
1089 them in and out. They are globally visible because they are used
1090 outside of BFD. These routines are here so that gas can call them
1091 without worrying about whether the 64 bit ABI has been included. */
1093 void
1094 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1095 bfd *abfd;
1096 const Elf64_External_RegInfo *ex;
1097 Elf64_Internal_RegInfo *in;
1099 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1100 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1101 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1102 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1103 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1104 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1105 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1108 void
1109 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1110 bfd *abfd;
1111 const Elf64_Internal_RegInfo *in;
1112 Elf64_External_RegInfo *ex;
1114 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1115 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1116 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1117 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1118 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1119 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1120 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1123 /* Swap in an options header. */
1125 void
1126 bfd_mips_elf_swap_options_in (abfd, ex, in)
1127 bfd *abfd;
1128 const Elf_External_Options *ex;
1129 Elf_Internal_Options *in;
1131 in->kind = H_GET_8 (abfd, ex->kind);
1132 in->size = H_GET_8 (abfd, ex->size);
1133 in->section = H_GET_16 (abfd, ex->section);
1134 in->info = H_GET_32 (abfd, ex->info);
1137 /* Swap out an options header. */
1139 void
1140 bfd_mips_elf_swap_options_out (abfd, in, ex)
1141 bfd *abfd;
1142 const Elf_Internal_Options *in;
1143 Elf_External_Options *ex;
1145 H_PUT_8 (abfd, in->kind, ex->kind);
1146 H_PUT_8 (abfd, in->size, ex->size);
1147 H_PUT_16 (abfd, in->section, ex->section);
1148 H_PUT_32 (abfd, in->info, ex->info);
1151 /* This function is called via qsort() to sort the dynamic relocation
1152 entries by increasing r_symndx value. */
1154 static int
1155 sort_dynamic_relocs (arg1, arg2)
1156 const PTR arg1;
1157 const PTR arg2;
1159 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
1160 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
1162 Elf_Internal_Rel int_reloc1;
1163 Elf_Internal_Rel int_reloc2;
1165 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
1166 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
1168 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
1171 /* This routine is used to write out ECOFF debugging external symbol
1172 information. It is called via mips_elf_link_hash_traverse. The
1173 ECOFF external symbol information must match the ELF external
1174 symbol information. Unfortunately, at this point we don't know
1175 whether a symbol is required by reloc information, so the two
1176 tables may wind up being different. We must sort out the external
1177 symbol information before we can set the final size of the .mdebug
1178 section, and we must set the size of the .mdebug section before we
1179 can relocate any sections, and we can't know which symbols are
1180 required by relocation until we relocate the sections.
1181 Fortunately, it is relatively unlikely that any symbol will be
1182 stripped but required by a reloc. In particular, it can not happen
1183 when generating a final executable. */
1185 static boolean
1186 mips_elf_output_extsym (h, data)
1187 struct mips_elf_link_hash_entry *h;
1188 PTR data;
1190 struct extsym_info *einfo = (struct extsym_info *) data;
1191 boolean strip;
1192 asection *sec, *output_section;
1194 if (h->root.root.type == bfd_link_hash_warning)
1195 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1197 if (h->root.indx == -2)
1198 strip = false;
1199 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1200 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1201 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1202 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1203 strip = true;
1204 else if (einfo->info->strip == strip_all
1205 || (einfo->info->strip == strip_some
1206 && bfd_hash_lookup (einfo->info->keep_hash,
1207 h->root.root.root.string,
1208 false, false) == NULL))
1209 strip = true;
1210 else
1211 strip = false;
1213 if (strip)
1214 return true;
1216 if (h->esym.ifd == -2)
1218 h->esym.jmptbl = 0;
1219 h->esym.cobol_main = 0;
1220 h->esym.weakext = 0;
1221 h->esym.reserved = 0;
1222 h->esym.ifd = ifdNil;
1223 h->esym.asym.value = 0;
1224 h->esym.asym.st = stGlobal;
1226 if (h->root.root.type == bfd_link_hash_undefined
1227 || h->root.root.type == bfd_link_hash_undefweak)
1229 const char *name;
1231 /* Use undefined class. Also, set class and type for some
1232 special symbols. */
1233 name = h->root.root.root.string;
1234 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1235 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1237 h->esym.asym.sc = scData;
1238 h->esym.asym.st = stLabel;
1239 h->esym.asym.value = 0;
1241 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1243 h->esym.asym.sc = scAbs;
1244 h->esym.asym.st = stLabel;
1245 h->esym.asym.value =
1246 mips_elf_hash_table (einfo->info)->procedure_count;
1248 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1250 h->esym.asym.sc = scAbs;
1251 h->esym.asym.st = stLabel;
1252 h->esym.asym.value = elf_gp (einfo->abfd);
1254 else
1255 h->esym.asym.sc = scUndefined;
1257 else if (h->root.root.type != bfd_link_hash_defined
1258 && h->root.root.type != bfd_link_hash_defweak)
1259 h->esym.asym.sc = scAbs;
1260 else
1262 const char *name;
1264 sec = h->root.root.u.def.section;
1265 output_section = sec->output_section;
1267 /* When making a shared library and symbol h is the one from
1268 the another shared library, OUTPUT_SECTION may be null. */
1269 if (output_section == NULL)
1270 h->esym.asym.sc = scUndefined;
1271 else
1273 name = bfd_section_name (output_section->owner, output_section);
1275 if (strcmp (name, ".text") == 0)
1276 h->esym.asym.sc = scText;
1277 else if (strcmp (name, ".data") == 0)
1278 h->esym.asym.sc = scData;
1279 else if (strcmp (name, ".sdata") == 0)
1280 h->esym.asym.sc = scSData;
1281 else if (strcmp (name, ".rodata") == 0
1282 || strcmp (name, ".rdata") == 0)
1283 h->esym.asym.sc = scRData;
1284 else if (strcmp (name, ".bss") == 0)
1285 h->esym.asym.sc = scBss;
1286 else if (strcmp (name, ".sbss") == 0)
1287 h->esym.asym.sc = scSBss;
1288 else if (strcmp (name, ".init") == 0)
1289 h->esym.asym.sc = scInit;
1290 else if (strcmp (name, ".fini") == 0)
1291 h->esym.asym.sc = scFini;
1292 else
1293 h->esym.asym.sc = scAbs;
1297 h->esym.asym.reserved = 0;
1298 h->esym.asym.index = indexNil;
1301 if (h->root.root.type == bfd_link_hash_common)
1302 h->esym.asym.value = h->root.root.u.c.size;
1303 else if (h->root.root.type == bfd_link_hash_defined
1304 || h->root.root.type == bfd_link_hash_defweak)
1306 if (h->esym.asym.sc == scCommon)
1307 h->esym.asym.sc = scBss;
1308 else if (h->esym.asym.sc == scSCommon)
1309 h->esym.asym.sc = scSBss;
1311 sec = h->root.root.u.def.section;
1312 output_section = sec->output_section;
1313 if (output_section != NULL)
1314 h->esym.asym.value = (h->root.root.u.def.value
1315 + sec->output_offset
1316 + output_section->vma);
1317 else
1318 h->esym.asym.value = 0;
1320 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1322 struct mips_elf_link_hash_entry *hd = h;
1323 boolean no_fn_stub = h->no_fn_stub;
1325 while (hd->root.root.type == bfd_link_hash_indirect)
1327 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1328 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1331 if (!no_fn_stub)
1333 /* Set type and value for a symbol with a function stub. */
1334 h->esym.asym.st = stProc;
1335 sec = hd->root.root.u.def.section;
1336 if (sec == NULL)
1337 h->esym.asym.value = 0;
1338 else
1340 output_section = sec->output_section;
1341 if (output_section != NULL)
1342 h->esym.asym.value = (hd->root.plt.offset
1343 + sec->output_offset
1344 + output_section->vma);
1345 else
1346 h->esym.asym.value = 0;
1348 #if 0 /* FIXME? */
1349 h->esym.ifd = 0;
1350 #endif
1354 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1355 h->root.root.root.string,
1356 &h->esym))
1358 einfo->failed = true;
1359 return false;
1362 return true;
1365 /* A comparison routine used to sort .gptab entries. */
1367 static int
1368 gptab_compare (p1, p2)
1369 const PTR p1;
1370 const PTR p2;
1372 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1373 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1375 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1378 /* Returns the GOT section for ABFD. */
1380 static asection *
1381 mips_elf_got_section (abfd)
1382 bfd *abfd;
1384 return bfd_get_section_by_name (abfd, ".got");
1387 /* Returns the GOT information associated with the link indicated by
1388 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1389 section. */
1391 static struct mips_got_info *
1392 mips_elf_got_info (abfd, sgotp)
1393 bfd *abfd;
1394 asection **sgotp;
1396 asection *sgot;
1397 struct mips_got_info *g;
1399 sgot = mips_elf_got_section (abfd);
1400 BFD_ASSERT (sgot != NULL);
1401 BFD_ASSERT (elf_section_data (sgot) != NULL);
1402 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
1403 BFD_ASSERT (g != NULL);
1405 if (sgotp)
1406 *sgotp = sgot;
1407 return g;
1410 /* Returns the GOT offset at which the indicated address can be found.
1411 If there is not yet a GOT entry for this value, create one. Returns
1412 -1 if no satisfactory GOT offset can be found. */
1414 static bfd_vma
1415 mips_elf_local_got_index (abfd, info, value)
1416 bfd *abfd;
1417 struct bfd_link_info *info;
1418 bfd_vma value;
1420 asection *sgot;
1421 struct mips_got_info *g;
1422 bfd_byte *entry;
1424 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1426 /* Look to see if we already have an appropriate entry. */
1427 for (entry = (sgot->contents
1428 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
1429 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
1430 entry += MIPS_ELF_GOT_SIZE (abfd))
1432 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
1433 if (address == value)
1434 return entry - sgot->contents;
1437 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
1440 /* Returns the GOT index for the global symbol indicated by H. */
1442 static bfd_vma
1443 mips_elf_global_got_index (abfd, h)
1444 bfd *abfd;
1445 struct elf_link_hash_entry *h;
1447 bfd_vma index;
1448 asection *sgot;
1449 struct mips_got_info *g;
1450 long global_got_dynindx = 0;
1452 g = mips_elf_got_info (abfd, &sgot);
1453 if (g->global_gotsym != NULL)
1454 global_got_dynindx = g->global_gotsym->dynindx;
1456 /* Once we determine the global GOT entry with the lowest dynamic
1457 symbol table index, we must put all dynamic symbols with greater
1458 indices into the GOT. That makes it easy to calculate the GOT
1459 offset. */
1460 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1461 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1462 * MIPS_ELF_GOT_SIZE (abfd));
1463 BFD_ASSERT (index < sgot->_raw_size);
1465 return index;
1468 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1469 are supposed to be placed at small offsets in the GOT, i.e.,
1470 within 32KB of GP. Return the index into the GOT for this page,
1471 and store the offset from this entry to the desired address in
1472 OFFSETP, if it is non-NULL. */
1474 static bfd_vma
1475 mips_elf_got_page (abfd, info, value, offsetp)
1476 bfd *abfd;
1477 struct bfd_link_info *info;
1478 bfd_vma value;
1479 bfd_vma *offsetp;
1481 asection *sgot;
1482 struct mips_got_info *g;
1483 bfd_byte *entry;
1484 bfd_byte *last_entry;
1485 bfd_vma index = 0;
1486 bfd_vma address;
1488 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1490 /* Look to see if we already have an appropriate entry. */
1491 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
1492 for (entry = (sgot->contents
1493 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
1494 entry != last_entry;
1495 entry += MIPS_ELF_GOT_SIZE (abfd))
1497 address = MIPS_ELF_GET_WORD (abfd, entry);
1499 if (!mips_elf_overflow_p (value - address, 16))
1501 /* This entry will serve as the page pointer. We can add a
1502 16-bit number to it to get the actual address. */
1503 index = entry - sgot->contents;
1504 break;
1508 /* If we didn't have an appropriate entry, we create one now. */
1509 if (entry == last_entry)
1510 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
1512 if (offsetp)
1514 address = MIPS_ELF_GET_WORD (abfd, entry);
1515 *offsetp = value - address;
1518 return index;
1521 /* Find a GOT entry whose higher-order 16 bits are the same as those
1522 for value. Return the index into the GOT for this entry. */
1524 static bfd_vma
1525 mips_elf_got16_entry (abfd, info, value, external)
1526 bfd *abfd;
1527 struct bfd_link_info *info;
1528 bfd_vma value;
1529 boolean external;
1531 asection *sgot;
1532 struct mips_got_info *g;
1533 bfd_byte *entry;
1534 bfd_byte *last_entry;
1535 bfd_vma index = 0;
1536 bfd_vma address;
1538 if (! external)
1540 /* Although the ABI says that it is "the high-order 16 bits" that we
1541 want, it is really the %high value. The complete value is
1542 calculated with a `addiu' of a LO16 relocation, just as with a
1543 HI16/LO16 pair. */
1544 value = mips_elf_high (value) << 16;
1547 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1549 /* Look to see if we already have an appropriate entry. */
1550 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
1551 for (entry = (sgot->contents
1552 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
1553 entry != last_entry;
1554 entry += MIPS_ELF_GOT_SIZE (abfd))
1556 address = MIPS_ELF_GET_WORD (abfd, entry);
1557 if (address == value)
1559 /* This entry has the right high-order 16 bits, and the low-order
1560 16 bits are set to zero. */
1561 index = entry - sgot->contents;
1562 break;
1566 /* If we didn't have an appropriate entry, we create one now. */
1567 if (entry == last_entry)
1568 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
1570 return index;
1573 /* Returns the offset for the entry at the INDEXth position
1574 in the GOT. */
1576 static bfd_vma
1577 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
1578 bfd *dynobj;
1579 bfd *output_bfd;
1580 bfd_vma index;
1582 asection *sgot;
1583 bfd_vma gp;
1585 sgot = mips_elf_got_section (dynobj);
1586 gp = _bfd_get_gp_value (output_bfd);
1587 return (sgot->output_section->vma + sgot->output_offset + index -
1588 gp);
1591 /* Create a local GOT entry for VALUE. Return the index of the entry,
1592 or -1 if it could not be created. */
1594 static bfd_vma
1595 mips_elf_create_local_got_entry (abfd, g, sgot, value)
1596 bfd *abfd;
1597 struct mips_got_info *g;
1598 asection *sgot;
1599 bfd_vma value;
1601 if (g->assigned_gotno >= g->local_gotno)
1603 /* We didn't allocate enough space in the GOT. */
1604 (*_bfd_error_handler)
1605 (_("not enough GOT space for local GOT entries"));
1606 bfd_set_error (bfd_error_bad_value);
1607 return (bfd_vma) -1;
1610 MIPS_ELF_PUT_WORD (abfd, value,
1611 (sgot->contents
1612 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
1613 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1616 /* Sort the dynamic symbol table so that symbols that need GOT entries
1617 appear towards the end. This reduces the amount of GOT space
1618 required. MAX_LOCAL is used to set the number of local symbols
1619 known to be in the dynamic symbol table. During
1620 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1621 section symbols are added and the count is higher. */
1623 static boolean
1624 mips_elf_sort_hash_table (info, max_local)
1625 struct bfd_link_info *info;
1626 unsigned long max_local;
1628 struct mips_elf_hash_sort_data hsd;
1629 struct mips_got_info *g;
1630 bfd *dynobj;
1632 dynobj = elf_hash_table (info)->dynobj;
1634 hsd.low = NULL;
1635 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
1636 hsd.max_non_got_dynindx = max_local;
1637 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1638 elf_hash_table (info)),
1639 mips_elf_sort_hash_table_f,
1640 &hsd);
1642 /* There should have been enough room in the symbol table to
1643 accommodate both the GOT and non-GOT symbols. */
1644 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1646 /* Now we know which dynamic symbol has the lowest dynamic symbol
1647 table index in the GOT. */
1648 g = mips_elf_got_info (dynobj, NULL);
1649 g->global_gotsym = hsd.low;
1651 return true;
1654 /* If H needs a GOT entry, assign it the highest available dynamic
1655 index. Otherwise, assign it the lowest available dynamic
1656 index. */
1658 static boolean
1659 mips_elf_sort_hash_table_f (h, data)
1660 struct mips_elf_link_hash_entry *h;
1661 PTR data;
1663 struct mips_elf_hash_sort_data *hsd
1664 = (struct mips_elf_hash_sort_data *) data;
1666 if (h->root.root.type == bfd_link_hash_warning)
1667 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1669 /* Symbols without dynamic symbol table entries aren't interesting
1670 at all. */
1671 if (h->root.dynindx == -1)
1672 return true;
1674 if (h->root.got.offset != 1)
1675 h->root.dynindx = hsd->max_non_got_dynindx++;
1676 else
1678 h->root.dynindx = --hsd->min_got_dynindx;
1679 hsd->low = (struct elf_link_hash_entry *) h;
1682 return true;
1685 /* If H is a symbol that needs a global GOT entry, but has a dynamic
1686 symbol table index lower than any we've seen to date, record it for
1687 posterity. */
1689 static boolean
1690 mips_elf_record_global_got_symbol (h, info, g)
1691 struct elf_link_hash_entry *h;
1692 struct bfd_link_info *info;
1693 struct mips_got_info *g ATTRIBUTE_UNUSED;
1695 /* A global symbol in the GOT must also be in the dynamic symbol
1696 table. */
1697 if (h->dynindx == -1)
1699 switch (ELF_ST_VISIBILITY (h->other))
1701 case STV_INTERNAL:
1702 case STV_HIDDEN:
1703 _bfd_mips_elf_hide_symbol (info, h, true);
1704 break;
1706 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
1707 return false;
1710 /* If we've already marked this entry as needing GOT space, we don't
1711 need to do it again. */
1712 if (h->got.offset != MINUS_ONE)
1713 return true;
1715 /* By setting this to a value other than -1, we are indicating that
1716 there needs to be a GOT entry for H. Avoid using zero, as the
1717 generic ELF copy_indirect_symbol tests for <= 0. */
1718 h->got.offset = 1;
1720 return true;
1723 /* Returns the first relocation of type r_type found, beginning with
1724 RELOCATION. RELEND is one-past-the-end of the relocation table. */
1726 static const Elf_Internal_Rela *
1727 mips_elf_next_relocation (abfd, r_type, relocation, relend)
1728 bfd *abfd ATTRIBUTE_UNUSED;
1729 unsigned int r_type;
1730 const Elf_Internal_Rela *relocation;
1731 const Elf_Internal_Rela *relend;
1733 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
1734 immediately following. However, for the IRIX6 ABI, the next
1735 relocation may be a composed relocation consisting of several
1736 relocations for the same address. In that case, the R_MIPS_LO16
1737 relocation may occur as one of these. We permit a similar
1738 extension in general, as that is useful for GCC. */
1739 while (relocation < relend)
1741 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
1742 return relocation;
1744 ++relocation;
1747 /* We didn't find it. */
1748 bfd_set_error (bfd_error_bad_value);
1749 return NULL;
1752 /* Return whether a relocation is against a local symbol. */
1754 static boolean
1755 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
1756 check_forced)
1757 bfd *input_bfd;
1758 const Elf_Internal_Rela *relocation;
1759 asection **local_sections;
1760 boolean check_forced;
1762 unsigned long r_symndx;
1763 Elf_Internal_Shdr *symtab_hdr;
1764 struct mips_elf_link_hash_entry *h;
1765 size_t extsymoff;
1767 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
1768 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1769 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
1771 if (r_symndx < extsymoff)
1772 return true;
1773 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
1774 return true;
1776 if (check_forced)
1778 /* Look up the hash table to check whether the symbol
1779 was forced local. */
1780 h = (struct mips_elf_link_hash_entry *)
1781 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
1782 /* Find the real hash-table entry for this symbol. */
1783 while (h->root.root.type == bfd_link_hash_indirect
1784 || h->root.root.type == bfd_link_hash_warning)
1785 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1786 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1787 return true;
1790 return false;
1793 /* Sign-extend VALUE, which has the indicated number of BITS. */
1795 static bfd_vma
1796 mips_elf_sign_extend (value, bits)
1797 bfd_vma value;
1798 int bits;
1800 if (value & ((bfd_vma) 1 << (bits - 1)))
1801 /* VALUE is negative. */
1802 value |= ((bfd_vma) - 1) << bits;
1804 return value;
1807 /* Return non-zero if the indicated VALUE has overflowed the maximum
1808 range expressable by a signed number with the indicated number of
1809 BITS. */
1811 static boolean
1812 mips_elf_overflow_p (value, bits)
1813 bfd_vma value;
1814 int bits;
1816 bfd_signed_vma svalue = (bfd_signed_vma) value;
1818 if (svalue > (1 << (bits - 1)) - 1)
1819 /* The value is too big. */
1820 return true;
1821 else if (svalue < -(1 << (bits - 1)))
1822 /* The value is too small. */
1823 return true;
1825 /* All is well. */
1826 return false;
1829 /* Calculate the %high function. */
1831 static bfd_vma
1832 mips_elf_high (value)
1833 bfd_vma value;
1835 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
1838 /* Calculate the %higher function. */
1840 static bfd_vma
1841 mips_elf_higher (value)
1842 bfd_vma value ATTRIBUTE_UNUSED;
1844 #ifdef BFD64
1845 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
1846 #else
1847 abort ();
1848 return (bfd_vma) -1;
1849 #endif
1852 /* Calculate the %highest function. */
1854 static bfd_vma
1855 mips_elf_highest (value)
1856 bfd_vma value ATTRIBUTE_UNUSED;
1858 #ifdef BFD64
1859 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
1860 #else
1861 abort ();
1862 return (bfd_vma) -1;
1863 #endif
1866 /* Create the .compact_rel section. */
1868 static boolean
1869 mips_elf_create_compact_rel_section (abfd, info)
1870 bfd *abfd;
1871 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1873 flagword flags;
1874 register asection *s;
1876 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
1878 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
1879 | SEC_READONLY);
1881 s = bfd_make_section (abfd, ".compact_rel");
1882 if (s == NULL
1883 || ! bfd_set_section_flags (abfd, s, flags)
1884 || ! bfd_set_section_alignment (abfd, s,
1885 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
1886 return false;
1888 s->_raw_size = sizeof (Elf32_External_compact_rel);
1891 return true;
1894 /* Create the .got section to hold the global offset table. */
1896 static boolean
1897 mips_elf_create_got_section (abfd, info)
1898 bfd *abfd;
1899 struct bfd_link_info *info;
1901 flagword flags;
1902 register asection *s;
1903 struct elf_link_hash_entry *h;
1904 struct bfd_link_hash_entry *bh;
1905 struct mips_got_info *g;
1906 bfd_size_type amt;
1908 /* This function may be called more than once. */
1909 if (mips_elf_got_section (abfd))
1910 return true;
1912 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1913 | SEC_LINKER_CREATED);
1915 s = bfd_make_section (abfd, ".got");
1916 if (s == NULL
1917 || ! bfd_set_section_flags (abfd, s, flags)
1918 || ! bfd_set_section_alignment (abfd, s, 4))
1919 return false;
1921 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
1922 linker script because we don't want to define the symbol if we
1923 are not creating a global offset table. */
1924 bh = NULL;
1925 if (! (_bfd_generic_link_add_one_symbol
1926 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
1927 (bfd_vma) 0, (const char *) NULL, false,
1928 get_elf_backend_data (abfd)->collect, &bh)))
1929 return false;
1931 h = (struct elf_link_hash_entry *) bh;
1932 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
1933 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1934 h->type = STT_OBJECT;
1936 if (info->shared
1937 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
1938 return false;
1940 /* The first several global offset table entries are reserved. */
1941 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
1943 amt = sizeof (struct mips_got_info);
1944 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
1945 if (g == NULL)
1946 return false;
1947 g->global_gotsym = NULL;
1948 g->local_gotno = MIPS_RESERVED_GOTNO;
1949 g->assigned_gotno = MIPS_RESERVED_GOTNO;
1950 if (elf_section_data (s) == NULL)
1952 amt = sizeof (struct bfd_elf_section_data);
1953 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
1954 if (elf_section_data (s) == NULL)
1955 return false;
1957 elf_section_data (s)->tdata = (PTR) g;
1958 elf_section_data (s)->this_hdr.sh_flags
1959 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
1961 return true;
1964 /* Returns the .msym section for ABFD, creating it if it does not
1965 already exist. Returns NULL to indicate error. */
1967 static asection *
1968 mips_elf_create_msym_section (abfd)
1969 bfd *abfd;
1971 asection *s;
1973 s = bfd_get_section_by_name (abfd, ".msym");
1974 if (!s)
1976 s = bfd_make_section (abfd, ".msym");
1977 if (!s
1978 || !bfd_set_section_flags (abfd, s,
1979 SEC_ALLOC
1980 | SEC_LOAD
1981 | SEC_HAS_CONTENTS
1982 | SEC_LINKER_CREATED
1983 | SEC_READONLY)
1984 || !bfd_set_section_alignment (abfd, s,
1985 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
1986 return NULL;
1989 return s;
1992 /* Calculate the value produced by the RELOCATION (which comes from
1993 the INPUT_BFD). The ADDEND is the addend to use for this
1994 RELOCATION; RELOCATION->R_ADDEND is ignored.
1996 The result of the relocation calculation is stored in VALUEP.
1997 REQUIRE_JALXP indicates whether or not the opcode used with this
1998 relocation must be JALX.
2000 This function returns bfd_reloc_continue if the caller need take no
2001 further action regarding this relocation, bfd_reloc_notsupported if
2002 something goes dramatically wrong, bfd_reloc_overflow if an
2003 overflow occurs, and bfd_reloc_ok to indicate success. */
2005 static bfd_reloc_status_type
2006 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2007 relocation, addend, howto, local_syms,
2008 local_sections, valuep, namep,
2009 require_jalxp, save_addend)
2010 bfd *abfd;
2011 bfd *input_bfd;
2012 asection *input_section;
2013 struct bfd_link_info *info;
2014 const Elf_Internal_Rela *relocation;
2015 bfd_vma addend;
2016 reloc_howto_type *howto;
2017 Elf_Internal_Sym *local_syms;
2018 asection **local_sections;
2019 bfd_vma *valuep;
2020 const char **namep;
2021 boolean *require_jalxp;
2022 boolean save_addend;
2024 /* The eventual value we will return. */
2025 bfd_vma value;
2026 /* The address of the symbol against which the relocation is
2027 occurring. */
2028 bfd_vma symbol = 0;
2029 /* The final GP value to be used for the relocatable, executable, or
2030 shared object file being produced. */
2031 bfd_vma gp = MINUS_ONE;
2032 /* The place (section offset or address) of the storage unit being
2033 relocated. */
2034 bfd_vma p;
2035 /* The value of GP used to create the relocatable object. */
2036 bfd_vma gp0 = MINUS_ONE;
2037 /* The offset into the global offset table at which the address of
2038 the relocation entry symbol, adjusted by the addend, resides
2039 during execution. */
2040 bfd_vma g = MINUS_ONE;
2041 /* The section in which the symbol referenced by the relocation is
2042 located. */
2043 asection *sec = NULL;
2044 struct mips_elf_link_hash_entry *h = NULL;
2045 /* True if the symbol referred to by this relocation is a local
2046 symbol. */
2047 boolean local_p, was_local_p;
2048 /* True if the symbol referred to by this relocation is "_gp_disp". */
2049 boolean gp_disp_p = false;
2050 Elf_Internal_Shdr *symtab_hdr;
2051 size_t extsymoff;
2052 unsigned long r_symndx;
2053 int r_type;
2054 /* True if overflow occurred during the calculation of the
2055 relocation value. */
2056 boolean overflowed_p;
2057 /* True if this relocation refers to a MIPS16 function. */
2058 boolean target_is_16_bit_code_p = false;
2060 /* Parse the relocation. */
2061 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2062 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2063 p = (input_section->output_section->vma
2064 + input_section->output_offset
2065 + relocation->r_offset);
2067 /* Assume that there will be no overflow. */
2068 overflowed_p = false;
2070 /* Figure out whether or not the symbol is local, and get the offset
2071 used in the array of hash table entries. */
2072 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2073 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
2074 local_sections, false);
2075 was_local_p = local_p;
2076 if (! elf_bad_symtab (input_bfd))
2077 extsymoff = symtab_hdr->sh_info;
2078 else
2080 /* The symbol table does not follow the rule that local symbols
2081 must come before globals. */
2082 extsymoff = 0;
2085 /* Figure out the value of the symbol. */
2086 if (local_p)
2088 Elf_Internal_Sym *sym;
2090 sym = local_syms + r_symndx;
2091 sec = local_sections[r_symndx];
2093 symbol = sec->output_section->vma + sec->output_offset;
2094 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
2095 || (sec->flags & SEC_MERGE))
2096 symbol += sym->st_value;
2097 if ((sec->flags & SEC_MERGE)
2098 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2100 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
2101 addend -= symbol;
2102 addend += sec->output_section->vma + sec->output_offset;
2105 /* MIPS16 text labels should be treated as odd. */
2106 if (sym->st_other == STO_MIPS16)
2107 ++symbol;
2109 /* Record the name of this symbol, for our caller. */
2110 *namep = bfd_elf_string_from_elf_section (input_bfd,
2111 symtab_hdr->sh_link,
2112 sym->st_name);
2113 if (*namep == '\0')
2114 *namep = bfd_section_name (input_bfd, sec);
2116 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
2118 else
2120 /* For global symbols we look up the symbol in the hash-table. */
2121 h = ((struct mips_elf_link_hash_entry *)
2122 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
2123 /* Find the real hash-table entry for this symbol. */
2124 while (h->root.root.type == bfd_link_hash_indirect
2125 || h->root.root.type == bfd_link_hash_warning)
2126 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2128 /* Record the name of this symbol, for our caller. */
2129 *namep = h->root.root.root.string;
2131 /* See if this is the special _gp_disp symbol. Note that such a
2132 symbol must always be a global symbol. */
2133 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
2134 && ! NEWABI_P (input_bfd))
2136 /* Relocations against _gp_disp are permitted only with
2137 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
2138 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
2139 return bfd_reloc_notsupported;
2141 gp_disp_p = true;
2143 /* If this symbol is defined, calculate its address. Note that
2144 _gp_disp is a magic symbol, always implicitly defined by the
2145 linker, so it's inappropriate to check to see whether or not
2146 its defined. */
2147 else if ((h->root.root.type == bfd_link_hash_defined
2148 || h->root.root.type == bfd_link_hash_defweak)
2149 && h->root.root.u.def.section)
2151 sec = h->root.root.u.def.section;
2152 if (sec->output_section)
2153 symbol = (h->root.root.u.def.value
2154 + sec->output_section->vma
2155 + sec->output_offset);
2156 else
2157 symbol = h->root.root.u.def.value;
2159 else if (h->root.root.type == bfd_link_hash_undefweak)
2160 /* We allow relocations against undefined weak symbols, giving
2161 it the value zero, so that you can undefined weak functions
2162 and check to see if they exist by looking at their
2163 addresses. */
2164 symbol = 0;
2165 else if (info->shared
2166 && (!info->symbolic || info->allow_shlib_undefined)
2167 && !info->no_undefined
2168 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
2169 symbol = 0;
2170 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
2171 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
2173 /* If this is a dynamic link, we should have created a
2174 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
2175 in in _bfd_mips_elf_create_dynamic_sections.
2176 Otherwise, we should define the symbol with a value of 0.
2177 FIXME: It should probably get into the symbol table
2178 somehow as well. */
2179 BFD_ASSERT (! info->shared);
2180 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
2181 symbol = 0;
2183 else
2185 if (! ((*info->callbacks->undefined_symbol)
2186 (info, h->root.root.root.string, input_bfd,
2187 input_section, relocation->r_offset,
2188 (!info->shared || info->no_undefined
2189 || ELF_ST_VISIBILITY (h->root.other)))))
2190 return bfd_reloc_undefined;
2191 symbol = 0;
2194 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
2197 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
2198 need to redirect the call to the stub, unless we're already *in*
2199 a stub. */
2200 if (r_type != R_MIPS16_26 && !info->relocateable
2201 && ((h != NULL && h->fn_stub != NULL)
2202 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
2203 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
2204 && !mips_elf_stub_section_p (input_bfd, input_section))
2206 /* This is a 32- or 64-bit call to a 16-bit function. We should
2207 have already noticed that we were going to need the
2208 stub. */
2209 if (local_p)
2210 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
2211 else
2213 BFD_ASSERT (h->need_fn_stub);
2214 sec = h->fn_stub;
2217 symbol = sec->output_section->vma + sec->output_offset;
2219 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
2220 need to redirect the call to the stub. */
2221 else if (r_type == R_MIPS16_26 && !info->relocateable
2222 && h != NULL
2223 && (h->call_stub != NULL || h->call_fp_stub != NULL)
2224 && !target_is_16_bit_code_p)
2226 /* If both call_stub and call_fp_stub are defined, we can figure
2227 out which one to use by seeing which one appears in the input
2228 file. */
2229 if (h->call_stub != NULL && h->call_fp_stub != NULL)
2231 asection *o;
2233 sec = NULL;
2234 for (o = input_bfd->sections; o != NULL; o = o->next)
2236 if (strncmp (bfd_get_section_name (input_bfd, o),
2237 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
2239 sec = h->call_fp_stub;
2240 break;
2243 if (sec == NULL)
2244 sec = h->call_stub;
2246 else if (h->call_stub != NULL)
2247 sec = h->call_stub;
2248 else
2249 sec = h->call_fp_stub;
2251 BFD_ASSERT (sec->_raw_size > 0);
2252 symbol = sec->output_section->vma + sec->output_offset;
2255 /* Calls from 16-bit code to 32-bit code and vice versa require the
2256 special jalx instruction. */
2257 *require_jalxp = (!info->relocateable
2258 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
2259 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
2261 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
2262 local_sections, true);
2264 /* If we haven't already determined the GOT offset, or the GP value,
2265 and we're going to need it, get it now. */
2266 switch (r_type)
2268 case R_MIPS_CALL16:
2269 case R_MIPS_GOT16:
2270 case R_MIPS_GOT_DISP:
2271 case R_MIPS_GOT_HI16:
2272 case R_MIPS_CALL_HI16:
2273 case R_MIPS_GOT_LO16:
2274 case R_MIPS_CALL_LO16:
2275 /* Find the index into the GOT where this value is located. */
2276 if (!local_p)
2278 BFD_ASSERT (addend == 0);
2279 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
2280 (struct elf_link_hash_entry *) h);
2281 if (! elf_hash_table(info)->dynamic_sections_created
2282 || (info->shared
2283 && (info->symbolic || h->root.dynindx == -1)
2284 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2286 /* This is a static link or a -Bsymbolic link. The
2287 symbol is defined locally, or was forced to be local.
2288 We must initialize this entry in the GOT. */
2289 bfd *tmpbfd = elf_hash_table (info)->dynobj;
2290 asection *sgot = mips_elf_got_section(tmpbfd);
2291 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
2294 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
2295 /* There's no need to create a local GOT entry here; the
2296 calculation for a local GOT16 entry does not involve G. */
2297 break;
2298 else
2300 g = mips_elf_local_got_index (abfd, info, symbol + addend);
2301 if (g == MINUS_ONE)
2302 return bfd_reloc_outofrange;
2305 /* Convert GOT indices to actual offsets. */
2306 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
2307 abfd, g);
2308 break;
2310 case R_MIPS_HI16:
2311 case R_MIPS_LO16:
2312 case R_MIPS16_GPREL:
2313 case R_MIPS_GPREL16:
2314 case R_MIPS_GPREL32:
2315 case R_MIPS_LITERAL:
2316 gp0 = _bfd_get_gp_value (input_bfd);
2317 gp = _bfd_get_gp_value (abfd);
2318 break;
2320 default:
2321 break;
2324 /* Figure out what kind of relocation is being performed. */
2325 switch (r_type)
2327 case R_MIPS_NONE:
2328 return bfd_reloc_continue;
2330 case R_MIPS_16:
2331 value = symbol + mips_elf_sign_extend (addend, 16);
2332 overflowed_p = mips_elf_overflow_p (value, 16);
2333 break;
2335 case R_MIPS_32:
2336 case R_MIPS_REL32:
2337 case R_MIPS_64:
2338 if ((info->shared
2339 || (elf_hash_table (info)->dynamic_sections_created
2340 && h != NULL
2341 && ((h->root.elf_link_hash_flags
2342 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2343 && ((h->root.elf_link_hash_flags
2344 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2345 && r_symndx != 0
2346 && (input_section->flags & SEC_ALLOC) != 0)
2348 /* If we're creating a shared library, or this relocation is
2349 against a symbol in a shared library, then we can't know
2350 where the symbol will end up. So, we create a relocation
2351 record in the output, and leave the job up to the dynamic
2352 linker. */
2353 value = addend;
2354 if (!mips_elf_create_dynamic_relocation (abfd,
2355 info,
2356 relocation,
2358 sec,
2359 symbol,
2360 &value,
2361 input_section))
2362 return bfd_reloc_undefined;
2364 else
2366 if (r_type != R_MIPS_REL32)
2367 value = symbol + addend;
2368 else
2369 value = addend;
2371 value &= howto->dst_mask;
2372 break;
2374 case R_MIPS_PC32:
2375 case R_MIPS_PC64:
2376 case R_MIPS_GNU_REL_LO16:
2377 value = symbol + addend - p;
2378 value &= howto->dst_mask;
2379 break;
2381 case R_MIPS_GNU_REL16_S2:
2382 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
2383 overflowed_p = mips_elf_overflow_p (value, 18);
2384 value = (value >> 2) & howto->dst_mask;
2385 break;
2387 case R_MIPS_GNU_REL_HI16:
2388 /* Instead of subtracting 'p' here, we should be subtracting the
2389 equivalent value for the LO part of the reloc, since the value
2390 here is relative to that address. Because that's not easy to do,
2391 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
2392 the comment there for more information. */
2393 value = mips_elf_high (addend + symbol - p);
2394 value &= howto->dst_mask;
2395 break;
2397 case R_MIPS16_26:
2398 /* The calculation for R_MIPS16_26 is just the same as for an
2399 R_MIPS_26. It's only the storage of the relocated field into
2400 the output file that's different. That's handled in
2401 mips_elf_perform_relocation. So, we just fall through to the
2402 R_MIPS_26 case here. */
2403 case R_MIPS_26:
2404 if (local_p)
2405 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
2406 else
2407 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
2408 value &= howto->dst_mask;
2409 break;
2411 case R_MIPS_HI16:
2412 if (!gp_disp_p)
2414 value = mips_elf_high (addend + symbol);
2415 value &= howto->dst_mask;
2417 else
2419 value = mips_elf_high (addend + gp - p);
2420 overflowed_p = mips_elf_overflow_p (value, 16);
2422 break;
2424 case R_MIPS_LO16:
2425 if (!gp_disp_p)
2426 value = (symbol + addend) & howto->dst_mask;
2427 else
2429 value = addend + gp - p + 4;
2430 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
2431 for overflow. But, on, say, IRIX5, relocations against
2432 _gp_disp are normally generated from the .cpload
2433 pseudo-op. It generates code that normally looks like
2434 this:
2436 lui $gp,%hi(_gp_disp)
2437 addiu $gp,$gp,%lo(_gp_disp)
2438 addu $gp,$gp,$t9
2440 Here $t9 holds the address of the function being called,
2441 as required by the MIPS ELF ABI. The R_MIPS_LO16
2442 relocation can easily overflow in this situation, but the
2443 R_MIPS_HI16 relocation will handle the overflow.
2444 Therefore, we consider this a bug in the MIPS ABI, and do
2445 not check for overflow here. */
2447 break;
2449 case R_MIPS_LITERAL:
2450 /* Because we don't merge literal sections, we can handle this
2451 just like R_MIPS_GPREL16. In the long run, we should merge
2452 shared literals, and then we will need to additional work
2453 here. */
2455 /* Fall through. */
2457 case R_MIPS16_GPREL:
2458 /* The R_MIPS16_GPREL performs the same calculation as
2459 R_MIPS_GPREL16, but stores the relocated bits in a different
2460 order. We don't need to do anything special here; the
2461 differences are handled in mips_elf_perform_relocation. */
2462 case R_MIPS_GPREL16:
2463 /* Only sign-extend the addend if it was extracted from the
2464 instruction. If the addend was separate, leave it alone,
2465 otherwise we may lose significant bits. */
2466 if (howto->partial_inplace)
2467 addend = mips_elf_sign_extend (addend, 16);
2468 value = symbol + addend - gp;
2469 /* If the symbol was local, any earlier relocatable links will
2470 have adjusted its addend with the gp offset, so compensate
2471 for that now. Don't do it for symbols forced local in this
2472 link, though, since they won't have had the gp offset applied
2473 to them before. */
2474 if (was_local_p)
2475 value += gp0;
2476 overflowed_p = mips_elf_overflow_p (value, 16);
2477 break;
2479 case R_MIPS_GOT16:
2480 case R_MIPS_CALL16:
2481 if (local_p)
2483 boolean forced;
2485 /* The special case is when the symbol is forced to be local. We
2486 need the full address in the GOT since no R_MIPS_LO16 relocation
2487 follows. */
2488 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
2489 local_sections, false);
2490 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
2491 if (value == MINUS_ONE)
2492 return bfd_reloc_outofrange;
2493 value
2494 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
2495 abfd, value);
2496 overflowed_p = mips_elf_overflow_p (value, 16);
2497 break;
2500 /* Fall through. */
2502 case R_MIPS_GOT_DISP:
2503 value = g;
2504 overflowed_p = mips_elf_overflow_p (value, 16);
2505 break;
2507 case R_MIPS_GPREL32:
2508 value = (addend + symbol + gp0 - gp);
2509 if (!save_addend)
2510 value &= howto->dst_mask;
2511 break;
2513 case R_MIPS_PC16:
2514 value = mips_elf_sign_extend (addend, 16) + symbol - p;
2515 overflowed_p = mips_elf_overflow_p (value, 16);
2516 value = (bfd_vma) ((bfd_signed_vma) value / 4);
2517 break;
2519 case R_MIPS_GOT_HI16:
2520 case R_MIPS_CALL_HI16:
2521 /* We're allowed to handle these two relocations identically.
2522 The dynamic linker is allowed to handle the CALL relocations
2523 differently by creating a lazy evaluation stub. */
2524 value = g;
2525 value = mips_elf_high (value);
2526 value &= howto->dst_mask;
2527 break;
2529 case R_MIPS_GOT_LO16:
2530 case R_MIPS_CALL_LO16:
2531 value = g & howto->dst_mask;
2532 break;
2534 case R_MIPS_GOT_PAGE:
2535 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
2536 if (value == MINUS_ONE)
2537 return bfd_reloc_outofrange;
2538 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
2539 abfd, value);
2540 overflowed_p = mips_elf_overflow_p (value, 16);
2541 break;
2543 case R_MIPS_GOT_OFST:
2544 mips_elf_got_page (abfd, info, symbol + addend, &value);
2545 overflowed_p = mips_elf_overflow_p (value, 16);
2546 break;
2548 case R_MIPS_SUB:
2549 value = symbol - addend;
2550 value &= howto->dst_mask;
2551 break;
2553 case R_MIPS_HIGHER:
2554 value = mips_elf_higher (addend + symbol);
2555 value &= howto->dst_mask;
2556 break;
2558 case R_MIPS_HIGHEST:
2559 value = mips_elf_highest (addend + symbol);
2560 value &= howto->dst_mask;
2561 break;
2563 case R_MIPS_SCN_DISP:
2564 value = symbol + addend - sec->output_offset;
2565 value &= howto->dst_mask;
2566 break;
2568 case R_MIPS_PJUMP:
2569 case R_MIPS_JALR:
2570 /* Both of these may be ignored. R_MIPS_JALR is an optimization
2571 hint; we could improve performance by honoring that hint. */
2572 return bfd_reloc_continue;
2574 case R_MIPS_GNU_VTINHERIT:
2575 case R_MIPS_GNU_VTENTRY:
2576 /* We don't do anything with these at present. */
2577 return bfd_reloc_continue;
2579 default:
2580 /* An unrecognized relocation type. */
2581 return bfd_reloc_notsupported;
2584 /* Store the VALUE for our caller. */
2585 *valuep = value;
2586 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
2589 /* Obtain the field relocated by RELOCATION. */
2591 static bfd_vma
2592 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
2593 reloc_howto_type *howto;
2594 const Elf_Internal_Rela *relocation;
2595 bfd *input_bfd;
2596 bfd_byte *contents;
2598 bfd_vma x;
2599 bfd_byte *location = contents + relocation->r_offset;
2601 /* Obtain the bytes. */
2602 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
2604 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
2605 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
2606 && bfd_little_endian (input_bfd))
2607 /* The two 16-bit words will be reversed on a little-endian system.
2608 See mips_elf_perform_relocation for more details. */
2609 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
2611 return x;
2614 /* It has been determined that the result of the RELOCATION is the
2615 VALUE. Use HOWTO to place VALUE into the output file at the
2616 appropriate position. The SECTION is the section to which the
2617 relocation applies. If REQUIRE_JALX is true, then the opcode used
2618 for the relocation must be either JAL or JALX, and it is
2619 unconditionally converted to JALX.
2621 Returns false if anything goes wrong. */
2623 static boolean
2624 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
2625 input_section, contents, require_jalx)
2626 struct bfd_link_info *info;
2627 reloc_howto_type *howto;
2628 const Elf_Internal_Rela *relocation;
2629 bfd_vma value;
2630 bfd *input_bfd;
2631 asection *input_section;
2632 bfd_byte *contents;
2633 boolean require_jalx;
2635 bfd_vma x;
2636 bfd_byte *location;
2637 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2639 /* Figure out where the relocation is occurring. */
2640 location = contents + relocation->r_offset;
2642 /* Obtain the current value. */
2643 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
2645 /* Clear the field we are setting. */
2646 x &= ~howto->dst_mask;
2648 /* If this is the R_MIPS16_26 relocation, we must store the
2649 value in a funny way. */
2650 if (r_type == R_MIPS16_26)
2652 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2653 Most mips16 instructions are 16 bits, but these instructions
2654 are 32 bits.
2656 The format of these instructions is:
2658 +--------------+--------------------------------+
2659 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
2660 +--------------+--------------------------------+
2661 ! Immediate 15:0 !
2662 +-----------------------------------------------+
2664 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2665 Note that the immediate value in the first word is swapped.
2667 When producing a relocateable object file, R_MIPS16_26 is
2668 handled mostly like R_MIPS_26. In particular, the addend is
2669 stored as a straight 26-bit value in a 32-bit instruction.
2670 (gas makes life simpler for itself by never adjusting a
2671 R_MIPS16_26 reloc to be against a section, so the addend is
2672 always zero). However, the 32 bit instruction is stored as 2
2673 16-bit values, rather than a single 32-bit value. In a
2674 big-endian file, the result is the same; in a little-endian
2675 file, the two 16-bit halves of the 32 bit value are swapped.
2676 This is so that a disassembler can recognize the jal
2677 instruction.
2679 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2680 instruction stored as two 16-bit values. The addend A is the
2681 contents of the targ26 field. The calculation is the same as
2682 R_MIPS_26. When storing the calculated value, reorder the
2683 immediate value as shown above, and don't forget to store the
2684 value as two 16-bit values.
2686 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2687 defined as
2689 big-endian:
2690 +--------+----------------------+
2691 | | |
2692 | | targ26-16 |
2693 |31 26|25 0|
2694 +--------+----------------------+
2696 little-endian:
2697 +----------+------+-------------+
2698 | | | |
2699 | sub1 | | sub2 |
2700 |0 9|10 15|16 31|
2701 +----------+--------------------+
2702 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2703 ((sub1 << 16) | sub2)).
2705 When producing a relocateable object file, the calculation is
2706 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2707 When producing a fully linked file, the calculation is
2708 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2709 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
2711 if (!info->relocateable)
2712 /* Shuffle the bits according to the formula above. */
2713 value = (((value & 0x1f0000) << 5)
2714 | ((value & 0x3e00000) >> 5)
2715 | (value & 0xffff));
2717 else if (r_type == R_MIPS16_GPREL)
2719 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
2720 mode. A typical instruction will have a format like this:
2722 +--------------+--------------------------------+
2723 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
2724 +--------------+--------------------------------+
2725 ! Major ! rx ! ry ! Imm 4:0 !
2726 +--------------+--------------------------------+
2728 EXTEND is the five bit value 11110. Major is the instruction
2729 opcode.
2731 This is handled exactly like R_MIPS_GPREL16, except that the
2732 addend is retrieved and stored as shown in this diagram; that
2733 is, the Imm fields above replace the V-rel16 field.
2735 All we need to do here is shuffle the bits appropriately. As
2736 above, the two 16-bit halves must be swapped on a
2737 little-endian system. */
2738 value = (((value & 0x7e0) << 16)
2739 | ((value & 0xf800) << 5)
2740 | (value & 0x1f));
2743 /* Set the field. */
2744 x |= (value & howto->dst_mask);
2746 /* If required, turn JAL into JALX. */
2747 if (require_jalx)
2749 boolean ok;
2750 bfd_vma opcode = x >> 26;
2751 bfd_vma jalx_opcode;
2753 /* Check to see if the opcode is already JAL or JALX. */
2754 if (r_type == R_MIPS16_26)
2756 ok = ((opcode == 0x6) || (opcode == 0x7));
2757 jalx_opcode = 0x7;
2759 else
2761 ok = ((opcode == 0x3) || (opcode == 0x1d));
2762 jalx_opcode = 0x1d;
2765 /* If the opcode is not JAL or JALX, there's a problem. */
2766 if (!ok)
2768 (*_bfd_error_handler)
2769 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
2770 bfd_archive_filename (input_bfd),
2771 input_section->name,
2772 (unsigned long) relocation->r_offset);
2773 bfd_set_error (bfd_error_bad_value);
2774 return false;
2777 /* Make this the JALX opcode. */
2778 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
2781 /* Swap the high- and low-order 16 bits on little-endian systems
2782 when doing a MIPS16 relocation. */
2783 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
2784 && bfd_little_endian (input_bfd))
2785 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
2787 /* Put the value into the output. */
2788 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
2789 return true;
2792 /* Returns true if SECTION is a MIPS16 stub section. */
2794 static boolean
2795 mips_elf_stub_section_p (abfd, section)
2796 bfd *abfd ATTRIBUTE_UNUSED;
2797 asection *section;
2799 const char *name = bfd_get_section_name (abfd, section);
2801 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
2802 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
2803 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
2806 /* Add room for N relocations to the .rel.dyn section in ABFD. */
2808 static void
2809 mips_elf_allocate_dynamic_relocations (abfd, n)
2810 bfd *abfd;
2811 unsigned int n;
2813 asection *s;
2815 s = bfd_get_section_by_name (abfd, ".rel.dyn");
2816 BFD_ASSERT (s != NULL);
2818 if (s->_raw_size == 0)
2820 /* Make room for a null element. */
2821 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
2822 ++s->reloc_count;
2824 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
2827 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
2828 is the original relocation, which is now being transformed into a
2829 dynamic relocation. The ADDENDP is adjusted if necessary; the
2830 caller should store the result in place of the original addend. */
2832 static boolean
2833 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
2834 symbol, addendp, input_section)
2835 bfd *output_bfd;
2836 struct bfd_link_info *info;
2837 const Elf_Internal_Rela *rel;
2838 struct mips_elf_link_hash_entry *h;
2839 asection *sec;
2840 bfd_vma symbol;
2841 bfd_vma *addendp;
2842 asection *input_section;
2844 Elf_Internal_Rel outrel[3];
2845 boolean skip;
2846 asection *sreloc;
2847 bfd *dynobj;
2848 int r_type;
2850 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
2851 dynobj = elf_hash_table (info)->dynobj;
2852 sreloc = bfd_get_section_by_name (dynobj, ".rel.dyn");
2853 BFD_ASSERT (sreloc != NULL);
2854 BFD_ASSERT (sreloc->contents != NULL);
2855 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
2856 < sreloc->_raw_size);
2858 skip = false;
2859 outrel[0].r_offset =
2860 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
2861 outrel[1].r_offset =
2862 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
2863 outrel[2].r_offset =
2864 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
2866 #if 0
2867 /* We begin by assuming that the offset for the dynamic relocation
2868 is the same as for the original relocation. We'll adjust this
2869 later to reflect the correct output offsets. */
2870 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
2872 outrel[1].r_offset = rel[1].r_offset;
2873 outrel[2].r_offset = rel[2].r_offset;
2875 else
2877 /* Except that in a stab section things are more complex.
2878 Because we compress stab information, the offset given in the
2879 relocation may not be the one we want; we must let the stabs
2880 machinery tell us the offset. */
2881 outrel[1].r_offset = outrel[0].r_offset;
2882 outrel[2].r_offset = outrel[0].r_offset;
2883 /* If we didn't need the relocation at all, this value will be
2884 -1. */
2885 if (outrel[0].r_offset == (bfd_vma) -1)
2886 skip = true;
2888 #endif
2890 if (outrel[0].r_offset == (bfd_vma) -1)
2891 skip = true;
2892 /* FIXME: For -2 runtime relocation needs to be skipped, but
2893 properly resolved statically and installed. */
2894 BFD_ASSERT (outrel[0].r_offset != (bfd_vma) -2);
2896 /* If we've decided to skip this relocation, just output an empty
2897 record. Note that R_MIPS_NONE == 0, so that this call to memset
2898 is a way of setting R_TYPE to R_MIPS_NONE. */
2899 if (skip)
2900 memset (outrel, 0, sizeof (Elf_Internal_Rel) * 3);
2901 else
2903 long indx;
2904 bfd_vma section_offset;
2906 /* We must now calculate the dynamic symbol table index to use
2907 in the relocation. */
2908 if (h != NULL
2909 && (! info->symbolic || (h->root.elf_link_hash_flags
2910 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2912 indx = h->root.dynindx;
2913 /* h->root.dynindx may be -1 if this symbol was marked to
2914 become local. */
2915 if (indx == -1)
2916 indx = 0;
2918 else
2920 if (sec != NULL && bfd_is_abs_section (sec))
2921 indx = 0;
2922 else if (sec == NULL || sec->owner == NULL)
2924 bfd_set_error (bfd_error_bad_value);
2925 return false;
2927 else
2929 indx = elf_section_data (sec->output_section)->dynindx;
2930 if (indx == 0)
2931 abort ();
2934 /* Figure out how far the target of the relocation is from
2935 the beginning of its section. */
2936 section_offset = symbol - sec->output_section->vma;
2937 /* The relocation we're building is section-relative.
2938 Therefore, the original addend must be adjusted by the
2939 section offset. */
2940 *addendp += section_offset;
2941 /* Now, the relocation is just against the section. */
2942 symbol = sec->output_section->vma;
2945 /* If the relocation was previously an absolute relocation and
2946 this symbol will not be referred to by the relocation, we must
2947 adjust it by the value we give it in the dynamic symbol table.
2948 Otherwise leave the job up to the dynamic linker. */
2949 if (!indx && r_type != R_MIPS_REL32)
2950 *addendp += symbol;
2952 /* The relocation is always an REL32 relocation because we don't
2953 know where the shared library will wind up at load-time. */
2954 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
2955 R_MIPS_REL32);
2956 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
2957 ABI_64_P (output_bfd)
2958 ? R_MIPS_64
2959 : R_MIPS_NONE);
2960 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
2961 R_MIPS_NONE);
2963 /* Adjust the output offset of the relocation to reference the
2964 correct location in the output file. */
2965 outrel[0].r_offset += (input_section->output_section->vma
2966 + input_section->output_offset);
2967 outrel[1].r_offset += (input_section->output_section->vma
2968 + input_section->output_offset);
2969 outrel[2].r_offset += (input_section->output_section->vma
2970 + input_section->output_offset);
2973 /* Put the relocation back out. We have to use the special
2974 relocation outputter in the 64-bit case since the 64-bit
2975 relocation format is non-standard. */
2976 if (ABI_64_P (output_bfd))
2978 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2979 (output_bfd, &outrel[0],
2980 (sreloc->contents
2981 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2983 else
2984 bfd_elf32_swap_reloc_out (output_bfd, &outrel[0],
2985 (((Elf32_External_Rel *)
2986 sreloc->contents)
2987 + sreloc->reloc_count));
2989 /* Record the index of the first relocation referencing H. This
2990 information is later emitted in the .msym section. */
2991 if (h != NULL
2992 && (h->min_dyn_reloc_index == 0
2993 || sreloc->reloc_count < h->min_dyn_reloc_index))
2994 h->min_dyn_reloc_index = sreloc->reloc_count;
2996 /* We've now added another relocation. */
2997 ++sreloc->reloc_count;
2999 /* Make sure the output section is writable. The dynamic linker
3000 will be writing to it. */
3001 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3002 |= SHF_WRITE;
3004 /* On IRIX5, make an entry of compact relocation info. */
3005 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3007 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3008 bfd_byte *cr;
3010 if (scpt)
3012 Elf32_crinfo cptrel;
3014 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3015 cptrel.vaddr = (rel->r_offset
3016 + input_section->output_section->vma
3017 + input_section->output_offset);
3018 if (r_type == R_MIPS_REL32)
3019 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3020 else
3021 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3022 mips_elf_set_cr_dist2to (cptrel, 0);
3023 cptrel.konst = *addendp;
3025 cr = (scpt->contents
3026 + sizeof (Elf32_External_compact_rel));
3027 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3028 ((Elf32_External_crinfo *) cr
3029 + scpt->reloc_count));
3030 ++scpt->reloc_count;
3034 return true;
3037 /* Return the ISA for a MIPS e_flags value. */
3039 static INLINE int
3040 elf_mips_isa (flags)
3041 flagword flags;
3043 switch (flags & EF_MIPS_ARCH)
3045 case E_MIPS_ARCH_1:
3046 return 1;
3047 case E_MIPS_ARCH_2:
3048 return 2;
3049 case E_MIPS_ARCH_3:
3050 return 3;
3051 case E_MIPS_ARCH_4:
3052 return 4;
3053 case E_MIPS_ARCH_5:
3054 return 5;
3055 case E_MIPS_ARCH_32:
3056 return 32;
3057 case E_MIPS_ARCH_64:
3058 return 64;
3060 return 4;
3063 /* Return the MACH for a MIPS e_flags value. */
3065 unsigned long
3066 _bfd_elf_mips_mach (flags)
3067 flagword flags;
3069 switch (flags & EF_MIPS_MACH)
3071 case E_MIPS_MACH_3900:
3072 return bfd_mach_mips3900;
3074 case E_MIPS_MACH_4010:
3075 return bfd_mach_mips4010;
3077 case E_MIPS_MACH_4100:
3078 return bfd_mach_mips4100;
3080 case E_MIPS_MACH_4111:
3081 return bfd_mach_mips4111;
3083 case E_MIPS_MACH_4120:
3084 return bfd_mach_mips4120;
3086 case E_MIPS_MACH_4650:
3087 return bfd_mach_mips4650;
3089 case E_MIPS_MACH_5400:
3090 return bfd_mach_mips5400;
3092 case E_MIPS_MACH_5500:
3093 return bfd_mach_mips5500;
3095 case E_MIPS_MACH_SB1:
3096 return bfd_mach_mips_sb1;
3098 default:
3099 switch (flags & EF_MIPS_ARCH)
3101 default:
3102 case E_MIPS_ARCH_1:
3103 return bfd_mach_mips3000;
3104 break;
3106 case E_MIPS_ARCH_2:
3107 return bfd_mach_mips6000;
3108 break;
3110 case E_MIPS_ARCH_3:
3111 return bfd_mach_mips4000;
3112 break;
3114 case E_MIPS_ARCH_4:
3115 return bfd_mach_mips8000;
3116 break;
3118 case E_MIPS_ARCH_5:
3119 return bfd_mach_mips5;
3120 break;
3122 case E_MIPS_ARCH_32:
3123 return bfd_mach_mipsisa32;
3124 break;
3126 case E_MIPS_ARCH_64:
3127 return bfd_mach_mipsisa64;
3128 break;
3132 return 0;
3135 /* Return printable name for ABI. */
3137 static INLINE char *
3138 elf_mips_abi_name (abfd)
3139 bfd *abfd;
3141 flagword flags;
3143 flags = elf_elfheader (abfd)->e_flags;
3144 switch (flags & EF_MIPS_ABI)
3146 case 0:
3147 if (ABI_N32_P (abfd))
3148 return "N32";
3149 else if (ABI_64_P (abfd))
3150 return "64";
3151 else
3152 return "none";
3153 case E_MIPS_ABI_O32:
3154 return "O32";
3155 case E_MIPS_ABI_O64:
3156 return "O64";
3157 case E_MIPS_ABI_EABI32:
3158 return "EABI32";
3159 case E_MIPS_ABI_EABI64:
3160 return "EABI64";
3161 default:
3162 return "unknown abi";
3166 /* MIPS ELF uses two common sections. One is the usual one, and the
3167 other is for small objects. All the small objects are kept
3168 together, and then referenced via the gp pointer, which yields
3169 faster assembler code. This is what we use for the small common
3170 section. This approach is copied from ecoff.c. */
3171 static asection mips_elf_scom_section;
3172 static asymbol mips_elf_scom_symbol;
3173 static asymbol *mips_elf_scom_symbol_ptr;
3175 /* MIPS ELF also uses an acommon section, which represents an
3176 allocated common symbol which may be overridden by a
3177 definition in a shared library. */
3178 static asection mips_elf_acom_section;
3179 static asymbol mips_elf_acom_symbol;
3180 static asymbol *mips_elf_acom_symbol_ptr;
3182 /* Handle the special MIPS section numbers that a symbol may use.
3183 This is used for both the 32-bit and the 64-bit ABI. */
3185 void
3186 _bfd_mips_elf_symbol_processing (abfd, asym)
3187 bfd *abfd;
3188 asymbol *asym;
3190 elf_symbol_type *elfsym;
3192 elfsym = (elf_symbol_type *) asym;
3193 switch (elfsym->internal_elf_sym.st_shndx)
3195 case SHN_MIPS_ACOMMON:
3196 /* This section is used in a dynamically linked executable file.
3197 It is an allocated common section. The dynamic linker can
3198 either resolve these symbols to something in a shared
3199 library, or it can just leave them here. For our purposes,
3200 we can consider these symbols to be in a new section. */
3201 if (mips_elf_acom_section.name == NULL)
3203 /* Initialize the acommon section. */
3204 mips_elf_acom_section.name = ".acommon";
3205 mips_elf_acom_section.flags = SEC_ALLOC;
3206 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3207 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3208 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3209 mips_elf_acom_symbol.name = ".acommon";
3210 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3211 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3212 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3214 asym->section = &mips_elf_acom_section;
3215 break;
3217 case SHN_COMMON:
3218 /* Common symbols less than the GP size are automatically
3219 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3220 if (asym->value > elf_gp_size (abfd)
3221 || IRIX_COMPAT (abfd) == ict_irix6)
3222 break;
3223 /* Fall through. */
3224 case SHN_MIPS_SCOMMON:
3225 if (mips_elf_scom_section.name == NULL)
3227 /* Initialize the small common section. */
3228 mips_elf_scom_section.name = ".scommon";
3229 mips_elf_scom_section.flags = SEC_IS_COMMON;
3230 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3231 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3232 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3233 mips_elf_scom_symbol.name = ".scommon";
3234 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3235 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3236 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3238 asym->section = &mips_elf_scom_section;
3239 asym->value = elfsym->internal_elf_sym.st_size;
3240 break;
3242 case SHN_MIPS_SUNDEFINED:
3243 asym->section = bfd_und_section_ptr;
3244 break;
3246 #if 0 /* for SGI_COMPAT */
3247 case SHN_MIPS_TEXT:
3248 asym->section = mips_elf_text_section_ptr;
3249 break;
3251 case SHN_MIPS_DATA:
3252 asym->section = mips_elf_data_section_ptr;
3253 break;
3254 #endif
3258 /* Work over a section just before writing it out. This routine is
3259 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3260 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3261 a better way. */
3263 boolean
3264 _bfd_mips_elf_section_processing (abfd, hdr)
3265 bfd *abfd;
3266 Elf_Internal_Shdr *hdr;
3268 if (hdr->sh_type == SHT_MIPS_REGINFO
3269 && hdr->sh_size > 0)
3271 bfd_byte buf[4];
3273 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3274 BFD_ASSERT (hdr->contents == NULL);
3276 if (bfd_seek (abfd,
3277 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3278 SEEK_SET) != 0)
3279 return false;
3280 H_PUT_32 (abfd, elf_gp (abfd), buf);
3281 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3282 return false;
3285 if (hdr->sh_type == SHT_MIPS_OPTIONS
3286 && hdr->bfd_section != NULL
3287 && elf_section_data (hdr->bfd_section) != NULL
3288 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3290 bfd_byte *contents, *l, *lend;
3292 /* We stored the section contents in the elf_section_data tdata
3293 field in the set_section_contents routine. We save the
3294 section contents so that we don't have to read them again.
3295 At this point we know that elf_gp is set, so we can look
3296 through the section contents to see if there is an
3297 ODK_REGINFO structure. */
3299 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3300 l = contents;
3301 lend = contents + hdr->sh_size;
3302 while (l + sizeof (Elf_External_Options) <= lend)
3304 Elf_Internal_Options intopt;
3306 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3307 &intopt);
3308 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3310 bfd_byte buf[8];
3312 if (bfd_seek (abfd,
3313 (hdr->sh_offset
3314 + (l - contents)
3315 + sizeof (Elf_External_Options)
3316 + (sizeof (Elf64_External_RegInfo) - 8)),
3317 SEEK_SET) != 0)
3318 return false;
3319 H_PUT_64 (abfd, elf_gp (abfd), buf);
3320 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
3321 return false;
3323 else if (intopt.kind == ODK_REGINFO)
3325 bfd_byte buf[4];
3327 if (bfd_seek (abfd,
3328 (hdr->sh_offset
3329 + (l - contents)
3330 + sizeof (Elf_External_Options)
3331 + (sizeof (Elf32_External_RegInfo) - 4)),
3332 SEEK_SET) != 0)
3333 return false;
3334 H_PUT_32 (abfd, elf_gp (abfd), buf);
3335 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3336 return false;
3338 l += intopt.size;
3342 if (hdr->bfd_section != NULL)
3344 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3346 if (strcmp (name, ".sdata") == 0
3347 || strcmp (name, ".lit8") == 0
3348 || strcmp (name, ".lit4") == 0)
3350 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3351 hdr->sh_type = SHT_PROGBITS;
3353 else if (strcmp (name, ".sbss") == 0)
3355 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3356 hdr->sh_type = SHT_NOBITS;
3358 else if (strcmp (name, ".srdata") == 0)
3360 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3361 hdr->sh_type = SHT_PROGBITS;
3363 else if (strcmp (name, ".compact_rel") == 0)
3365 hdr->sh_flags = 0;
3366 hdr->sh_type = SHT_PROGBITS;
3368 else if (strcmp (name, ".rtproc") == 0)
3370 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3372 unsigned int adjust;
3374 adjust = hdr->sh_size % hdr->sh_addralign;
3375 if (adjust != 0)
3376 hdr->sh_size += hdr->sh_addralign - adjust;
3381 return true;
3384 /* Handle a MIPS specific section when reading an object file. This
3385 is called when elfcode.h finds a section with an unknown type.
3386 This routine supports both the 32-bit and 64-bit ELF ABI.
3388 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3389 how to. */
3391 boolean
3392 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
3393 bfd *abfd;
3394 Elf_Internal_Shdr *hdr;
3395 const char *name;
3397 flagword flags = 0;
3399 /* There ought to be a place to keep ELF backend specific flags, but
3400 at the moment there isn't one. We just keep track of the
3401 sections by their name, instead. Fortunately, the ABI gives
3402 suggested names for all the MIPS specific sections, so we will
3403 probably get away with this. */
3404 switch (hdr->sh_type)
3406 case SHT_MIPS_LIBLIST:
3407 if (strcmp (name, ".liblist") != 0)
3408 return false;
3409 break;
3410 case SHT_MIPS_MSYM:
3411 if (strcmp (name, ".msym") != 0)
3412 return false;
3413 break;
3414 case SHT_MIPS_CONFLICT:
3415 if (strcmp (name, ".conflict") != 0)
3416 return false;
3417 break;
3418 case SHT_MIPS_GPTAB:
3419 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
3420 return false;
3421 break;
3422 case SHT_MIPS_UCODE:
3423 if (strcmp (name, ".ucode") != 0)
3424 return false;
3425 break;
3426 case SHT_MIPS_DEBUG:
3427 if (strcmp (name, ".mdebug") != 0)
3428 return false;
3429 flags = SEC_DEBUGGING;
3430 break;
3431 case SHT_MIPS_REGINFO:
3432 if (strcmp (name, ".reginfo") != 0
3433 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
3434 return false;
3435 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
3436 break;
3437 case SHT_MIPS_IFACE:
3438 if (strcmp (name, ".MIPS.interfaces") != 0)
3439 return false;
3440 break;
3441 case SHT_MIPS_CONTENT:
3442 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3443 return false;
3444 break;
3445 case SHT_MIPS_OPTIONS:
3446 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
3447 return false;
3448 break;
3449 case SHT_MIPS_DWARF:
3450 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
3451 return false;
3452 break;
3453 case SHT_MIPS_SYMBOL_LIB:
3454 if (strcmp (name, ".MIPS.symlib") != 0)
3455 return false;
3456 break;
3457 case SHT_MIPS_EVENTS:
3458 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3459 && strncmp (name, ".MIPS.post_rel",
3460 sizeof ".MIPS.post_rel" - 1) != 0)
3461 return false;
3462 break;
3463 default:
3464 return false;
3467 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
3468 return false;
3470 if (flags)
3472 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
3473 (bfd_get_section_flags (abfd,
3474 hdr->bfd_section)
3475 | flags)))
3476 return false;
3479 /* FIXME: We should record sh_info for a .gptab section. */
3481 /* For a .reginfo section, set the gp value in the tdata information
3482 from the contents of this section. We need the gp value while
3483 processing relocs, so we just get it now. The .reginfo section
3484 is not used in the 64-bit MIPS ELF ABI. */
3485 if (hdr->sh_type == SHT_MIPS_REGINFO)
3487 Elf32_External_RegInfo ext;
3488 Elf32_RegInfo s;
3490 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
3491 (file_ptr) 0,
3492 (bfd_size_type) sizeof ext))
3493 return false;
3494 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
3495 elf_gp (abfd) = s.ri_gp_value;
3498 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3499 set the gp value based on what we find. We may see both
3500 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3501 they should agree. */
3502 if (hdr->sh_type == SHT_MIPS_OPTIONS)
3504 bfd_byte *contents, *l, *lend;
3506 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3507 if (contents == NULL)
3508 return false;
3509 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
3510 (file_ptr) 0, hdr->sh_size))
3512 free (contents);
3513 return false;
3515 l = contents;
3516 lend = contents + hdr->sh_size;
3517 while (l + sizeof (Elf_External_Options) <= lend)
3519 Elf_Internal_Options intopt;
3521 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3522 &intopt);
3523 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3525 Elf64_Internal_RegInfo intreg;
3527 bfd_mips_elf64_swap_reginfo_in
3528 (abfd,
3529 ((Elf64_External_RegInfo *)
3530 (l + sizeof (Elf_External_Options))),
3531 &intreg);
3532 elf_gp (abfd) = intreg.ri_gp_value;
3534 else if (intopt.kind == ODK_REGINFO)
3536 Elf32_RegInfo intreg;
3538 bfd_mips_elf32_swap_reginfo_in
3539 (abfd,
3540 ((Elf32_External_RegInfo *)
3541 (l + sizeof (Elf_External_Options))),
3542 &intreg);
3543 elf_gp (abfd) = intreg.ri_gp_value;
3545 l += intopt.size;
3547 free (contents);
3550 return true;
3553 /* Set the correct type for a MIPS ELF section. We do this by the
3554 section name, which is a hack, but ought to work. This routine is
3555 used by both the 32-bit and the 64-bit ABI. */
3557 boolean
3558 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
3559 bfd *abfd;
3560 Elf32_Internal_Shdr *hdr;
3561 asection *sec;
3563 register const char *name;
3565 name = bfd_get_section_name (abfd, sec);
3567 if (strcmp (name, ".liblist") == 0)
3569 hdr->sh_type = SHT_MIPS_LIBLIST;
3570 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
3571 /* The sh_link field is set in final_write_processing. */
3573 else if (strcmp (name, ".conflict") == 0)
3574 hdr->sh_type = SHT_MIPS_CONFLICT;
3575 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
3577 hdr->sh_type = SHT_MIPS_GPTAB;
3578 hdr->sh_entsize = sizeof (Elf32_External_gptab);
3579 /* The sh_info field is set in final_write_processing. */
3581 else if (strcmp (name, ".ucode") == 0)
3582 hdr->sh_type = SHT_MIPS_UCODE;
3583 else if (strcmp (name, ".mdebug") == 0)
3585 hdr->sh_type = SHT_MIPS_DEBUG;
3586 /* In a shared object on IRIX 5.3, the .mdebug section has an
3587 entsize of 0. FIXME: Does this matter? */
3588 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
3589 hdr->sh_entsize = 0;
3590 else
3591 hdr->sh_entsize = 1;
3593 else if (strcmp (name, ".reginfo") == 0)
3595 hdr->sh_type = SHT_MIPS_REGINFO;
3596 /* In a shared object on IRIX 5.3, the .reginfo section has an
3597 entsize of 0x18. FIXME: Does this matter? */
3598 if (SGI_COMPAT (abfd))
3600 if ((abfd->flags & DYNAMIC) != 0)
3601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3602 else
3603 hdr->sh_entsize = 1;
3605 else
3606 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3608 else if (SGI_COMPAT (abfd)
3609 && (strcmp (name, ".hash") == 0
3610 || strcmp (name, ".dynamic") == 0
3611 || strcmp (name, ".dynstr") == 0))
3613 if (SGI_COMPAT (abfd))
3614 hdr->sh_entsize = 0;
3615 #if 0
3616 /* This isn't how the IRIX6 linker behaves. */
3617 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3618 #endif
3620 else if (strcmp (name, ".got") == 0
3621 || strcmp (name, ".srdata") == 0
3622 || strcmp (name, ".sdata") == 0
3623 || strcmp (name, ".sbss") == 0
3624 || strcmp (name, ".lit4") == 0
3625 || strcmp (name, ".lit8") == 0)
3626 hdr->sh_flags |= SHF_MIPS_GPREL;
3627 else if (strcmp (name, ".MIPS.interfaces") == 0)
3629 hdr->sh_type = SHT_MIPS_IFACE;
3630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3632 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3634 hdr->sh_type = SHT_MIPS_CONTENT;
3635 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3636 /* The sh_info field is set in final_write_processing. */
3638 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3640 hdr->sh_type = SHT_MIPS_OPTIONS;
3641 hdr->sh_entsize = 1;
3642 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3644 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3645 hdr->sh_type = SHT_MIPS_DWARF;
3646 else if (strcmp (name, ".MIPS.symlib") == 0)
3648 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3649 /* The sh_link and sh_info fields are set in
3650 final_write_processing. */
3652 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3653 || strncmp (name, ".MIPS.post_rel",
3654 sizeof ".MIPS.post_rel" - 1) == 0)
3656 hdr->sh_type = SHT_MIPS_EVENTS;
3657 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3658 /* The sh_link field is set in final_write_processing. */
3660 else if (strcmp (name, ".msym") == 0)
3662 hdr->sh_type = SHT_MIPS_MSYM;
3663 hdr->sh_flags |= SHF_ALLOC;
3664 hdr->sh_entsize = 8;
3667 /* The generic elf_fake_sections will set up REL_HDR using the
3668 default kind of relocations. But, we may actually need both
3669 kinds of relocations, so we set up the second header here.
3671 This is not necessary for the O32 ABI since that only uses Elf32_Rel
3672 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
3673 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
3674 of the resulting empty .rela.<section> sections starts with
3675 sh_offset == object size, and ld doesn't allow that. While the check
3676 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
3677 avoided by not emitting those useless sections in the first place. */
3678 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
3679 && (sec->flags & SEC_RELOC) != 0)
3681 struct bfd_elf_section_data *esd;
3682 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
3684 esd = elf_section_data (sec);
3685 BFD_ASSERT (esd->rel_hdr2 == NULL);
3686 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
3687 if (!esd->rel_hdr2)
3688 return false;
3689 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3690 !elf_section_data (sec)->use_rela_p);
3693 return true;
3696 /* Given a BFD section, try to locate the corresponding ELF section
3697 index. This is used by both the 32-bit and the 64-bit ABI.
3698 Actually, it's not clear to me that the 64-bit ABI supports these,
3699 but for non-PIC objects we will certainly want support for at least
3700 the .scommon section. */
3702 boolean
3703 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
3704 bfd *abfd ATTRIBUTE_UNUSED;
3705 asection *sec;
3706 int *retval;
3708 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3710 *retval = SHN_MIPS_SCOMMON;
3711 return true;
3713 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3715 *retval = SHN_MIPS_ACOMMON;
3716 return true;
3718 return false;
3721 /* Hook called by the linker routine which adds symbols from an object
3722 file. We must handle the special MIPS section numbers here. */
3724 boolean
3725 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3726 bfd *abfd;
3727 struct bfd_link_info *info;
3728 const Elf_Internal_Sym *sym;
3729 const char **namep;
3730 flagword *flagsp ATTRIBUTE_UNUSED;
3731 asection **secp;
3732 bfd_vma *valp;
3734 if (SGI_COMPAT (abfd)
3735 && (abfd->flags & DYNAMIC) != 0
3736 && strcmp (*namep, "_rld_new_interface") == 0)
3738 /* Skip IRIX5 rld entry name. */
3739 *namep = NULL;
3740 return true;
3743 switch (sym->st_shndx)
3745 case SHN_COMMON:
3746 /* Common symbols less than the GP size are automatically
3747 treated as SHN_MIPS_SCOMMON symbols. */
3748 if (sym->st_size > elf_gp_size (abfd)
3749 || IRIX_COMPAT (abfd) == ict_irix6)
3750 break;
3751 /* Fall through. */
3752 case SHN_MIPS_SCOMMON:
3753 *secp = bfd_make_section_old_way (abfd, ".scommon");
3754 (*secp)->flags |= SEC_IS_COMMON;
3755 *valp = sym->st_size;
3756 break;
3758 case SHN_MIPS_TEXT:
3759 /* This section is used in a shared object. */
3760 if (elf_tdata (abfd)->elf_text_section == NULL)
3762 asymbol *elf_text_symbol;
3763 asection *elf_text_section;
3764 bfd_size_type amt = sizeof (asection);
3766 elf_text_section = bfd_zalloc (abfd, amt);
3767 if (elf_text_section == NULL)
3768 return false;
3770 amt = sizeof (asymbol);
3771 elf_text_symbol = bfd_zalloc (abfd, amt);
3772 if (elf_text_symbol == NULL)
3773 return false;
3775 /* Initialize the section. */
3777 elf_tdata (abfd)->elf_text_section = elf_text_section;
3778 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
3780 elf_text_section->symbol = elf_text_symbol;
3781 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
3783 elf_text_section->name = ".text";
3784 elf_text_section->flags = SEC_NO_FLAGS;
3785 elf_text_section->output_section = NULL;
3786 elf_text_section->owner = abfd;
3787 elf_text_symbol->name = ".text";
3788 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3789 elf_text_symbol->section = elf_text_section;
3791 /* This code used to do *secp = bfd_und_section_ptr if
3792 info->shared. I don't know why, and that doesn't make sense,
3793 so I took it out. */
3794 *secp = elf_tdata (abfd)->elf_text_section;
3795 break;
3797 case SHN_MIPS_ACOMMON:
3798 /* Fall through. XXX Can we treat this as allocated data? */
3799 case SHN_MIPS_DATA:
3800 /* This section is used in a shared object. */
3801 if (elf_tdata (abfd)->elf_data_section == NULL)
3803 asymbol *elf_data_symbol;
3804 asection *elf_data_section;
3805 bfd_size_type amt = sizeof (asection);
3807 elf_data_section = bfd_zalloc (abfd, amt);
3808 if (elf_data_section == NULL)
3809 return false;
3811 amt = sizeof (asymbol);
3812 elf_data_symbol = bfd_zalloc (abfd, amt);
3813 if (elf_data_symbol == NULL)
3814 return false;
3816 /* Initialize the section. */
3818 elf_tdata (abfd)->elf_data_section = elf_data_section;
3819 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
3821 elf_data_section->symbol = elf_data_symbol;
3822 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
3824 elf_data_section->name = ".data";
3825 elf_data_section->flags = SEC_NO_FLAGS;
3826 elf_data_section->output_section = NULL;
3827 elf_data_section->owner = abfd;
3828 elf_data_symbol->name = ".data";
3829 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
3830 elf_data_symbol->section = elf_data_section;
3832 /* This code used to do *secp = bfd_und_section_ptr if
3833 info->shared. I don't know why, and that doesn't make sense,
3834 so I took it out. */
3835 *secp = elf_tdata (abfd)->elf_data_section;
3836 break;
3838 case SHN_MIPS_SUNDEFINED:
3839 *secp = bfd_und_section_ptr;
3840 break;
3843 if (SGI_COMPAT (abfd)
3844 && ! info->shared
3845 && info->hash->creator == abfd->xvec
3846 && strcmp (*namep, "__rld_obj_head") == 0)
3848 struct elf_link_hash_entry *h;
3849 struct bfd_link_hash_entry *bh;
3851 /* Mark __rld_obj_head as dynamic. */
3852 bh = NULL;
3853 if (! (_bfd_generic_link_add_one_symbol
3854 (info, abfd, *namep, BSF_GLOBAL, *secp,
3855 (bfd_vma) *valp, (const char *) NULL, false,
3856 get_elf_backend_data (abfd)->collect, &bh)))
3857 return false;
3859 h = (struct elf_link_hash_entry *) bh;
3860 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
3861 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3862 h->type = STT_OBJECT;
3864 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3865 return false;
3867 mips_elf_hash_table (info)->use_rld_obj_head = true;
3870 /* If this is a mips16 text symbol, add 1 to the value to make it
3871 odd. This will cause something like .word SYM to come up with
3872 the right value when it is loaded into the PC. */
3873 if (sym->st_other == STO_MIPS16)
3874 ++*valp;
3876 return true;
3879 /* This hook function is called before the linker writes out a global
3880 symbol. We mark symbols as small common if appropriate. This is
3881 also where we undo the increment of the value for a mips16 symbol. */
3883 boolean
3884 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
3885 bfd *abfd ATTRIBUTE_UNUSED;
3886 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3887 const char *name ATTRIBUTE_UNUSED;
3888 Elf_Internal_Sym *sym;
3889 asection *input_sec;
3891 /* If we see a common symbol, which implies a relocatable link, then
3892 if a symbol was small common in an input file, mark it as small
3893 common in the output file. */
3894 if (sym->st_shndx == SHN_COMMON
3895 && strcmp (input_sec->name, ".scommon") == 0)
3896 sym->st_shndx = SHN_MIPS_SCOMMON;
3898 if (sym->st_other == STO_MIPS16
3899 && (sym->st_value & 1) != 0)
3900 --sym->st_value;
3902 return true;
3905 /* Functions for the dynamic linker. */
3907 /* Create dynamic sections when linking against a dynamic object. */
3909 boolean
3910 _bfd_mips_elf_create_dynamic_sections (abfd, info)
3911 bfd *abfd;
3912 struct bfd_link_info *info;
3914 struct elf_link_hash_entry *h;
3915 struct bfd_link_hash_entry *bh;
3916 flagword flags;
3917 register asection *s;
3918 const char * const *namep;
3920 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3921 | SEC_LINKER_CREATED | SEC_READONLY);
3923 /* Mips ABI requests the .dynamic section to be read only. */
3924 s = bfd_get_section_by_name (abfd, ".dynamic");
3925 if (s != NULL)
3927 if (! bfd_set_section_flags (abfd, s, flags))
3928 return false;
3931 /* We need to create .got section. */
3932 if (! mips_elf_create_got_section (abfd, info))
3933 return false;
3935 /* Create the .msym section on IRIX6. It is used by the dynamic
3936 linker to speed up dynamic relocations, and to avoid computing
3937 the ELF hash for symbols. */
3938 if (IRIX_COMPAT (abfd) == ict_irix6
3939 && !mips_elf_create_msym_section (abfd))
3940 return false;
3942 /* Create .stub section. */
3943 if (bfd_get_section_by_name (abfd,
3944 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
3946 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
3947 if (s == NULL
3948 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
3949 || ! bfd_set_section_alignment (abfd, s,
3950 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3951 return false;
3954 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
3955 && !info->shared
3956 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
3958 s = bfd_make_section (abfd, ".rld_map");
3959 if (s == NULL
3960 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
3961 || ! bfd_set_section_alignment (abfd, s,
3962 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3963 return false;
3966 /* On IRIX5, we adjust add some additional symbols and change the
3967 alignments of several sections. There is no ABI documentation
3968 indicating that this is necessary on IRIX6, nor any evidence that
3969 the linker takes such action. */
3970 if (IRIX_COMPAT (abfd) == ict_irix5)
3972 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
3974 bh = NULL;
3975 if (! (_bfd_generic_link_add_one_symbol
3976 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
3977 (bfd_vma) 0, (const char *) NULL, false,
3978 get_elf_backend_data (abfd)->collect, &bh)))
3979 return false;
3981 h = (struct elf_link_hash_entry *) bh;
3982 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
3983 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3984 h->type = STT_SECTION;
3986 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3987 return false;
3990 /* We need to create a .compact_rel section. */
3991 if (SGI_COMPAT (abfd))
3993 if (!mips_elf_create_compact_rel_section (abfd, info))
3994 return false;
3997 /* Change alignments of some sections. */
3998 s = bfd_get_section_by_name (abfd, ".hash");
3999 if (s != NULL)
4000 bfd_set_section_alignment (abfd, s, 4);
4001 s = bfd_get_section_by_name (abfd, ".dynsym");
4002 if (s != NULL)
4003 bfd_set_section_alignment (abfd, s, 4);
4004 s = bfd_get_section_by_name (abfd, ".dynstr");
4005 if (s != NULL)
4006 bfd_set_section_alignment (abfd, s, 4);
4007 s = bfd_get_section_by_name (abfd, ".reginfo");
4008 if (s != NULL)
4009 bfd_set_section_alignment (abfd, s, 4);
4010 s = bfd_get_section_by_name (abfd, ".dynamic");
4011 if (s != NULL)
4012 bfd_set_section_alignment (abfd, s, 4);
4015 if (!info->shared)
4017 const char *name;
4019 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4020 bh = NULL;
4021 if (!(_bfd_generic_link_add_one_symbol
4022 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4023 (bfd_vma) 0, (const char *) NULL, false,
4024 get_elf_backend_data (abfd)->collect, &bh)))
4025 return false;
4027 h = (struct elf_link_hash_entry *) bh;
4028 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4029 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4030 h->type = STT_SECTION;
4032 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4033 return false;
4035 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4037 /* __rld_map is a four byte word located in the .data section
4038 and is filled in by the rtld to contain a pointer to
4039 the _r_debug structure. Its symbol value will be set in
4040 _bfd_mips_elf_finish_dynamic_symbol. */
4041 s = bfd_get_section_by_name (abfd, ".rld_map");
4042 BFD_ASSERT (s != NULL);
4044 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4045 bh = NULL;
4046 if (!(_bfd_generic_link_add_one_symbol
4047 (info, abfd, name, BSF_GLOBAL, s,
4048 (bfd_vma) 0, (const char *) NULL, false,
4049 get_elf_backend_data (abfd)->collect, &bh)))
4050 return false;
4052 h = (struct elf_link_hash_entry *) bh;
4053 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4054 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4055 h->type = STT_OBJECT;
4057 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4058 return false;
4062 return true;
4065 /* Look through the relocs for a section during the first phase, and
4066 allocate space in the global offset table. */
4068 boolean
4069 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4070 bfd *abfd;
4071 struct bfd_link_info *info;
4072 asection *sec;
4073 const Elf_Internal_Rela *relocs;
4075 const char *name;
4076 bfd *dynobj;
4077 Elf_Internal_Shdr *symtab_hdr;
4078 struct elf_link_hash_entry **sym_hashes;
4079 struct mips_got_info *g;
4080 size_t extsymoff;
4081 const Elf_Internal_Rela *rel;
4082 const Elf_Internal_Rela *rel_end;
4083 asection *sgot;
4084 asection *sreloc;
4085 struct elf_backend_data *bed;
4087 if (info->relocateable)
4088 return true;
4090 dynobj = elf_hash_table (info)->dynobj;
4091 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4092 sym_hashes = elf_sym_hashes (abfd);
4093 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
4095 /* Check for the mips16 stub sections. */
4097 name = bfd_get_section_name (abfd, sec);
4098 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
4100 unsigned long r_symndx;
4102 /* Look at the relocation information to figure out which symbol
4103 this is for. */
4105 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
4107 if (r_symndx < extsymoff
4108 || sym_hashes[r_symndx - extsymoff] == NULL)
4110 asection *o;
4112 /* This stub is for a local symbol. This stub will only be
4113 needed if there is some relocation in this BFD, other
4114 than a 16 bit function call, which refers to this symbol. */
4115 for (o = abfd->sections; o != NULL; o = o->next)
4117 Elf_Internal_Rela *sec_relocs;
4118 const Elf_Internal_Rela *r, *rend;
4120 /* We can ignore stub sections when looking for relocs. */
4121 if ((o->flags & SEC_RELOC) == 0
4122 || o->reloc_count == 0
4123 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
4124 sizeof FN_STUB - 1) == 0
4125 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
4126 sizeof CALL_STUB - 1) == 0
4127 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
4128 sizeof CALL_FP_STUB - 1) == 0)
4129 continue;
4131 sec_relocs = (_bfd_elf32_link_read_relocs
4132 (abfd, o, (PTR) NULL,
4133 (Elf_Internal_Rela *) NULL,
4134 info->keep_memory));
4135 if (sec_relocs == NULL)
4136 return false;
4138 rend = sec_relocs + o->reloc_count;
4139 for (r = sec_relocs; r < rend; r++)
4140 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
4141 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
4142 break;
4144 if (elf_section_data (o)->relocs != sec_relocs)
4145 free (sec_relocs);
4147 if (r < rend)
4148 break;
4151 if (o == NULL)
4153 /* There is no non-call reloc for this stub, so we do
4154 not need it. Since this function is called before
4155 the linker maps input sections to output sections, we
4156 can easily discard it by setting the SEC_EXCLUDE
4157 flag. */
4158 sec->flags |= SEC_EXCLUDE;
4159 return true;
4162 /* Record this stub in an array of local symbol stubs for
4163 this BFD. */
4164 if (elf_tdata (abfd)->local_stubs == NULL)
4166 unsigned long symcount;
4167 asection **n;
4168 bfd_size_type amt;
4170 if (elf_bad_symtab (abfd))
4171 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
4172 else
4173 symcount = symtab_hdr->sh_info;
4174 amt = symcount * sizeof (asection *);
4175 n = (asection **) bfd_zalloc (abfd, amt);
4176 if (n == NULL)
4177 return false;
4178 elf_tdata (abfd)->local_stubs = n;
4181 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
4183 /* We don't need to set mips16_stubs_seen in this case.
4184 That flag is used to see whether we need to look through
4185 the global symbol table for stubs. We don't need to set
4186 it here, because we just have a local stub. */
4188 else
4190 struct mips_elf_link_hash_entry *h;
4192 h = ((struct mips_elf_link_hash_entry *)
4193 sym_hashes[r_symndx - extsymoff]);
4195 /* H is the symbol this stub is for. */
4197 h->fn_stub = sec;
4198 mips_elf_hash_table (info)->mips16_stubs_seen = true;
4201 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4202 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4204 unsigned long r_symndx;
4205 struct mips_elf_link_hash_entry *h;
4206 asection **loc;
4208 /* Look at the relocation information to figure out which symbol
4209 this is for. */
4211 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
4213 if (r_symndx < extsymoff
4214 || sym_hashes[r_symndx - extsymoff] == NULL)
4216 /* This stub was actually built for a static symbol defined
4217 in the same file. We assume that all static symbols in
4218 mips16 code are themselves mips16, so we can simply
4219 discard this stub. Since this function is called before
4220 the linker maps input sections to output sections, we can
4221 easily discard it by setting the SEC_EXCLUDE flag. */
4222 sec->flags |= SEC_EXCLUDE;
4223 return true;
4226 h = ((struct mips_elf_link_hash_entry *)
4227 sym_hashes[r_symndx - extsymoff]);
4229 /* H is the symbol this stub is for. */
4231 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4232 loc = &h->call_fp_stub;
4233 else
4234 loc = &h->call_stub;
4236 /* If we already have an appropriate stub for this function, we
4237 don't need another one, so we can discard this one. Since
4238 this function is called before the linker maps input sections
4239 to output sections, we can easily discard it by setting the
4240 SEC_EXCLUDE flag. We can also discard this section if we
4241 happen to already know that this is a mips16 function; it is
4242 not necessary to check this here, as it is checked later, but
4243 it is slightly faster to check now. */
4244 if (*loc != NULL || h->root.other == STO_MIPS16)
4246 sec->flags |= SEC_EXCLUDE;
4247 return true;
4250 *loc = sec;
4251 mips_elf_hash_table (info)->mips16_stubs_seen = true;
4254 if (dynobj == NULL)
4256 sgot = NULL;
4257 g = NULL;
4259 else
4261 sgot = mips_elf_got_section (dynobj);
4262 if (sgot == NULL)
4263 g = NULL;
4264 else
4266 BFD_ASSERT (elf_section_data (sgot) != NULL);
4267 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
4268 BFD_ASSERT (g != NULL);
4272 sreloc = NULL;
4273 bed = get_elf_backend_data (abfd);
4274 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
4275 for (rel = relocs; rel < rel_end; ++rel)
4277 unsigned long r_symndx;
4278 unsigned int r_type;
4279 struct elf_link_hash_entry *h;
4281 r_symndx = ELF_R_SYM (abfd, rel->r_info);
4282 r_type = ELF_R_TYPE (abfd, rel->r_info);
4284 if (r_symndx < extsymoff)
4285 h = NULL;
4286 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
4288 (*_bfd_error_handler)
4289 (_("%s: Malformed reloc detected for section %s"),
4290 bfd_archive_filename (abfd), name);
4291 bfd_set_error (bfd_error_bad_value);
4292 return false;
4294 else
4296 h = sym_hashes[r_symndx - extsymoff];
4298 /* This may be an indirect symbol created because of a version. */
4299 if (h != NULL)
4301 while (h->root.type == bfd_link_hash_indirect)
4302 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4306 /* Some relocs require a global offset table. */
4307 if (dynobj == NULL || sgot == NULL)
4309 switch (r_type)
4311 case R_MIPS_GOT16:
4312 case R_MIPS_CALL16:
4313 case R_MIPS_CALL_HI16:
4314 case R_MIPS_CALL_LO16:
4315 case R_MIPS_GOT_HI16:
4316 case R_MIPS_GOT_LO16:
4317 case R_MIPS_GOT_PAGE:
4318 case R_MIPS_GOT_OFST:
4319 case R_MIPS_GOT_DISP:
4320 if (dynobj == NULL)
4321 elf_hash_table (info)->dynobj = dynobj = abfd;
4322 if (! mips_elf_create_got_section (dynobj, info))
4323 return false;
4324 g = mips_elf_got_info (dynobj, &sgot);
4325 break;
4327 case R_MIPS_32:
4328 case R_MIPS_REL32:
4329 case R_MIPS_64:
4330 if (dynobj == NULL
4331 && (info->shared || h != NULL)
4332 && (sec->flags & SEC_ALLOC) != 0)
4333 elf_hash_table (info)->dynobj = dynobj = abfd;
4334 break;
4336 default:
4337 break;
4341 if (!h && (r_type == R_MIPS_CALL_LO16
4342 || r_type == R_MIPS_GOT_LO16
4343 || r_type == R_MIPS_GOT_DISP))
4345 /* We may need a local GOT entry for this relocation. We
4346 don't count R_MIPS_GOT_PAGE because we can estimate the
4347 maximum number of pages needed by looking at the size of
4348 the segment. Similar comments apply to R_MIPS_GOT16 and
4349 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
4350 R_MIPS_CALL_HI16 because these are always followed by an
4351 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
4353 This estimation is very conservative since we can merge
4354 duplicate entries in the GOT. In order to be less
4355 conservative, we could actually build the GOT here,
4356 rather than in relocate_section. */
4357 g->local_gotno++;
4358 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4361 switch (r_type)
4363 case R_MIPS_CALL16:
4364 if (h == NULL)
4366 (*_bfd_error_handler)
4367 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
4368 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
4369 bfd_set_error (bfd_error_bad_value);
4370 return false;
4372 /* Fall through. */
4374 case R_MIPS_CALL_HI16:
4375 case R_MIPS_CALL_LO16:
4376 if (h != NULL)
4378 /* This symbol requires a global offset table entry. */
4379 if (! mips_elf_record_global_got_symbol (h, info, g))
4380 return false;
4382 /* We need a stub, not a plt entry for the undefined
4383 function. But we record it as if it needs plt. See
4384 elf_adjust_dynamic_symbol in elflink.h. */
4385 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
4386 h->type = STT_FUNC;
4388 break;
4390 case R_MIPS_GOT16:
4391 case R_MIPS_GOT_HI16:
4392 case R_MIPS_GOT_LO16:
4393 case R_MIPS_GOT_DISP:
4394 /* This symbol requires a global offset table entry. */
4395 if (h && ! mips_elf_record_global_got_symbol (h, info, g))
4396 return false;
4397 break;
4399 case R_MIPS_32:
4400 case R_MIPS_REL32:
4401 case R_MIPS_64:
4402 if ((info->shared || h != NULL)
4403 && (sec->flags & SEC_ALLOC) != 0)
4405 if (sreloc == NULL)
4407 const char *dname = ".rel.dyn";
4409 sreloc = bfd_get_section_by_name (dynobj, dname);
4410 if (sreloc == NULL)
4412 sreloc = bfd_make_section (dynobj, dname);
4413 if (sreloc == NULL
4414 || ! bfd_set_section_flags (dynobj, sreloc,
4415 (SEC_ALLOC
4416 | SEC_LOAD
4417 | SEC_HAS_CONTENTS
4418 | SEC_IN_MEMORY
4419 | SEC_LINKER_CREATED
4420 | SEC_READONLY))
4421 || ! bfd_set_section_alignment (dynobj, sreloc,
4423 return false;
4426 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
4427 if (info->shared)
4429 /* When creating a shared object, we must copy these
4430 reloc types into the output file as R_MIPS_REL32
4431 relocs. We make room for this reloc in the
4432 .rel.dyn reloc section. */
4433 mips_elf_allocate_dynamic_relocations (dynobj, 1);
4434 if ((sec->flags & MIPS_READONLY_SECTION)
4435 == MIPS_READONLY_SECTION)
4436 /* We tell the dynamic linker that there are
4437 relocations against the text segment. */
4438 info->flags |= DF_TEXTREL;
4440 else
4442 struct mips_elf_link_hash_entry *hmips;
4444 /* We only need to copy this reloc if the symbol is
4445 defined in a dynamic object. */
4446 hmips = (struct mips_elf_link_hash_entry *) h;
4447 ++hmips->possibly_dynamic_relocs;
4448 if ((sec->flags & MIPS_READONLY_SECTION)
4449 == MIPS_READONLY_SECTION)
4450 /* We need it to tell the dynamic linker if there
4451 are relocations against the text segment. */
4452 hmips->readonly_reloc = true;
4455 /* Even though we don't directly need a GOT entry for
4456 this symbol, a symbol must have a dynamic symbol
4457 table index greater that DT_MIPS_GOTSYM if there are
4458 dynamic relocations against it. */
4459 if (h != NULL
4460 && ! mips_elf_record_global_got_symbol (h, info, g))
4461 return false;
4464 if (SGI_COMPAT (abfd))
4465 mips_elf_hash_table (info)->compact_rel_size +=
4466 sizeof (Elf32_External_crinfo);
4467 break;
4469 case R_MIPS_26:
4470 case R_MIPS_GPREL16:
4471 case R_MIPS_LITERAL:
4472 case R_MIPS_GPREL32:
4473 if (SGI_COMPAT (abfd))
4474 mips_elf_hash_table (info)->compact_rel_size +=
4475 sizeof (Elf32_External_crinfo);
4476 break;
4478 /* This relocation describes the C++ object vtable hierarchy.
4479 Reconstruct it for later use during GC. */
4480 case R_MIPS_GNU_VTINHERIT:
4481 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4482 return false;
4483 break;
4485 /* This relocation describes which C++ vtable entries are actually
4486 used. Record for later use during GC. */
4487 case R_MIPS_GNU_VTENTRY:
4488 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
4489 return false;
4490 break;
4492 default:
4493 break;
4496 /* We must not create a stub for a symbol that has relocations
4497 related to taking the function's address. */
4498 switch (r_type)
4500 default:
4501 if (h != NULL)
4503 struct mips_elf_link_hash_entry *mh;
4505 mh = (struct mips_elf_link_hash_entry *) h;
4506 mh->no_fn_stub = true;
4508 break;
4509 case R_MIPS_CALL16:
4510 case R_MIPS_CALL_HI16:
4511 case R_MIPS_CALL_LO16:
4512 break;
4515 /* If this reloc is not a 16 bit call, and it has a global
4516 symbol, then we will need the fn_stub if there is one.
4517 References from a stub section do not count. */
4518 if (h != NULL
4519 && r_type != R_MIPS16_26
4520 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
4521 sizeof FN_STUB - 1) != 0
4522 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
4523 sizeof CALL_STUB - 1) != 0
4524 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
4525 sizeof CALL_FP_STUB - 1) != 0)
4527 struct mips_elf_link_hash_entry *mh;
4529 mh = (struct mips_elf_link_hash_entry *) h;
4530 mh->need_fn_stub = true;
4534 return true;
4537 /* Adjust a symbol defined by a dynamic object and referenced by a
4538 regular object. The current definition is in some section of the
4539 dynamic object, but we're not including those sections. We have to
4540 change the definition to something the rest of the link can
4541 understand. */
4543 boolean
4544 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
4545 struct bfd_link_info *info;
4546 struct elf_link_hash_entry *h;
4548 bfd *dynobj;
4549 struct mips_elf_link_hash_entry *hmips;
4550 asection *s;
4552 dynobj = elf_hash_table (info)->dynobj;
4554 /* Make sure we know what is going on here. */
4555 BFD_ASSERT (dynobj != NULL
4556 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
4557 || h->weakdef != NULL
4558 || ((h->elf_link_hash_flags
4559 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4560 && (h->elf_link_hash_flags
4561 & ELF_LINK_HASH_REF_REGULAR) != 0
4562 && (h->elf_link_hash_flags
4563 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
4565 /* If this symbol is defined in a dynamic object, we need to copy
4566 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
4567 file. */
4568 hmips = (struct mips_elf_link_hash_entry *) h;
4569 if (! info->relocateable
4570 && hmips->possibly_dynamic_relocs != 0
4571 && (h->root.type == bfd_link_hash_defweak
4572 || (h->elf_link_hash_flags
4573 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4575 mips_elf_allocate_dynamic_relocations (dynobj,
4576 hmips->possibly_dynamic_relocs);
4577 if (hmips->readonly_reloc)
4578 /* We tell the dynamic linker that there are relocations
4579 against the text segment. */
4580 info->flags |= DF_TEXTREL;
4583 /* For a function, create a stub, if allowed. */
4584 if (! hmips->no_fn_stub
4585 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4587 if (! elf_hash_table (info)->dynamic_sections_created)
4588 return true;
4590 /* If this symbol is not defined in a regular file, then set
4591 the symbol to the stub location. This is required to make
4592 function pointers compare as equal between the normal
4593 executable and the shared library. */
4594 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4596 /* We need .stub section. */
4597 s = bfd_get_section_by_name (dynobj,
4598 MIPS_ELF_STUB_SECTION_NAME (dynobj));
4599 BFD_ASSERT (s != NULL);
4601 h->root.u.def.section = s;
4602 h->root.u.def.value = s->_raw_size;
4604 /* XXX Write this stub address somewhere. */
4605 h->plt.offset = s->_raw_size;
4607 /* Make room for this stub code. */
4608 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
4610 /* The last half word of the stub will be filled with the index
4611 of this symbol in .dynsym section. */
4612 return true;
4615 else if ((h->type == STT_FUNC)
4616 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4618 /* This will set the entry for this symbol in the GOT to 0, and
4619 the dynamic linker will take care of this. */
4620 h->root.u.def.value = 0;
4621 return true;
4624 /* If this is a weak symbol, and there is a real definition, the
4625 processor independent code will have arranged for us to see the
4626 real definition first, and we can just use the same value. */
4627 if (h->weakdef != NULL)
4629 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
4630 || h->weakdef->root.type == bfd_link_hash_defweak);
4631 h->root.u.def.section = h->weakdef->root.u.def.section;
4632 h->root.u.def.value = h->weakdef->root.u.def.value;
4633 return true;
4636 /* This is a reference to a symbol defined by a dynamic object which
4637 is not a function. */
4639 return true;
4642 /* This function is called after all the input files have been read,
4643 and the input sections have been assigned to output sections. We
4644 check for any mips16 stub sections that we can discard. */
4646 boolean
4647 _bfd_mips_elf_always_size_sections (output_bfd, info)
4648 bfd *output_bfd;
4649 struct bfd_link_info *info;
4651 asection *ri;
4653 /* The .reginfo section has a fixed size. */
4654 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
4655 if (ri != NULL)
4656 bfd_set_section_size (output_bfd, ri,
4657 (bfd_size_type) sizeof (Elf32_External_RegInfo));
4659 if (info->relocateable
4660 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
4661 return true;
4663 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4664 mips_elf_check_mips16_stubs,
4665 (PTR) NULL);
4667 return true;
4670 /* Set the sizes of the dynamic sections. */
4672 boolean
4673 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
4674 bfd *output_bfd;
4675 struct bfd_link_info *info;
4677 bfd *dynobj;
4678 asection *s;
4679 boolean reltext;
4680 struct mips_got_info *g = NULL;
4682 dynobj = elf_hash_table (info)->dynobj;
4683 BFD_ASSERT (dynobj != NULL);
4685 if (elf_hash_table (info)->dynamic_sections_created)
4687 /* Set the contents of the .interp section to the interpreter. */
4688 if (! info->shared)
4690 s = bfd_get_section_by_name (dynobj, ".interp");
4691 BFD_ASSERT (s != NULL);
4692 s->_raw_size
4693 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
4694 s->contents
4695 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
4699 /* The check_relocs and adjust_dynamic_symbol entry points have
4700 determined the sizes of the various dynamic sections. Allocate
4701 memory for them. */
4702 reltext = false;
4703 for (s = dynobj->sections; s != NULL; s = s->next)
4705 const char *name;
4706 boolean strip;
4708 /* It's OK to base decisions on the section name, because none
4709 of the dynobj section names depend upon the input files. */
4710 name = bfd_get_section_name (dynobj, s);
4712 if ((s->flags & SEC_LINKER_CREATED) == 0)
4713 continue;
4715 strip = false;
4717 if (strncmp (name, ".rel", 4) == 0)
4719 if (s->_raw_size == 0)
4721 /* We only strip the section if the output section name
4722 has the same name. Otherwise, there might be several
4723 input sections for this output section. FIXME: This
4724 code is probably not needed these days anyhow, since
4725 the linker now does not create empty output sections. */
4726 if (s->output_section != NULL
4727 && strcmp (name,
4728 bfd_get_section_name (s->output_section->owner,
4729 s->output_section)) == 0)
4730 strip = true;
4732 else
4734 const char *outname;
4735 asection *target;
4737 /* If this relocation section applies to a read only
4738 section, then we probably need a DT_TEXTREL entry.
4739 If the relocation section is .rel.dyn, we always
4740 assert a DT_TEXTREL entry rather than testing whether
4741 there exists a relocation to a read only section or
4742 not. */
4743 outname = bfd_get_section_name (output_bfd,
4744 s->output_section);
4745 target = bfd_get_section_by_name (output_bfd, outname + 4);
4746 if ((target != NULL
4747 && (target->flags & SEC_READONLY) != 0
4748 && (target->flags & SEC_ALLOC) != 0)
4749 || strcmp (outname, ".rel.dyn") == 0)
4750 reltext = true;
4752 /* We use the reloc_count field as a counter if we need
4753 to copy relocs into the output file. */
4754 if (strcmp (name, ".rel.dyn") != 0)
4755 s->reloc_count = 0;
4758 else if (strncmp (name, ".got", 4) == 0)
4760 int i;
4761 bfd_size_type loadable_size = 0;
4762 bfd_size_type local_gotno;
4763 bfd *sub;
4765 BFD_ASSERT (elf_section_data (s) != NULL);
4766 g = (struct mips_got_info *) elf_section_data (s)->tdata;
4767 BFD_ASSERT (g != NULL);
4769 /* Calculate the total loadable size of the output. That
4770 will give us the maximum number of GOT_PAGE entries
4771 required. */
4772 for (sub = info->input_bfds; sub; sub = sub->link_next)
4774 asection *subsection;
4776 for (subsection = sub->sections;
4777 subsection;
4778 subsection = subsection->next)
4780 if ((subsection->flags & SEC_ALLOC) == 0)
4781 continue;
4782 loadable_size += ((subsection->_raw_size + 0xf)
4783 &~ (bfd_size_type) 0xf);
4786 loadable_size += MIPS_FUNCTION_STUB_SIZE;
4788 /* Assume there are two loadable segments consisting of
4789 contiguous sections. Is 5 enough? */
4790 local_gotno = (loadable_size >> 16) + 5;
4791 if (NEWABI_P (output_bfd))
4792 /* It's possible we will need GOT_PAGE entries as well as
4793 GOT16 entries. Often, these will be able to share GOT
4794 entries, but not always. */
4795 local_gotno *= 2;
4797 g->local_gotno += local_gotno;
4798 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
4800 /* There has to be a global GOT entry for every symbol with
4801 a dynamic symbol table index of DT_MIPS_GOTSYM or
4802 higher. Therefore, it make sense to put those symbols
4803 that need GOT entries at the end of the symbol table. We
4804 do that here. */
4805 if (! mips_elf_sort_hash_table (info, 1))
4806 return false;
4808 if (g->global_gotsym != NULL)
4809 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
4810 else
4811 /* If there are no global symbols, or none requiring
4812 relocations, then GLOBAL_GOTSYM will be NULL. */
4813 i = 0;
4814 g->global_gotno = i;
4815 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
4817 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
4819 /* IRIX rld assumes that the function stub isn't at the end
4820 of .text section. So put a dummy. XXX */
4821 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
4823 else if (! info->shared
4824 && ! mips_elf_hash_table (info)->use_rld_obj_head
4825 && strncmp (name, ".rld_map", 8) == 0)
4827 /* We add a room for __rld_map. It will be filled in by the
4828 rtld to contain a pointer to the _r_debug structure. */
4829 s->_raw_size += 4;
4831 else if (SGI_COMPAT (output_bfd)
4832 && strncmp (name, ".compact_rel", 12) == 0)
4833 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
4834 else if (strcmp (name, ".msym") == 0)
4835 s->_raw_size = (sizeof (Elf32_External_Msym)
4836 * (elf_hash_table (info)->dynsymcount
4837 + bfd_count_sections (output_bfd)));
4838 else if (strncmp (name, ".init", 5) != 0)
4840 /* It's not one of our sections, so don't allocate space. */
4841 continue;
4844 if (strip)
4846 _bfd_strip_section_from_output (info, s);
4847 continue;
4850 /* Allocate memory for the section contents. */
4851 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
4852 if (s->contents == NULL && s->_raw_size != 0)
4854 bfd_set_error (bfd_error_no_memory);
4855 return false;
4859 if (elf_hash_table (info)->dynamic_sections_created)
4861 /* Add some entries to the .dynamic section. We fill in the
4862 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
4863 must add the entries now so that we get the correct size for
4864 the .dynamic section. The DT_DEBUG entry is filled in by the
4865 dynamic linker and used by the debugger. */
4866 if (! info->shared)
4868 /* SGI object has the equivalence of DT_DEBUG in the
4869 DT_MIPS_RLD_MAP entry. */
4870 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
4871 return false;
4872 if (!SGI_COMPAT (output_bfd))
4874 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
4875 return false;
4878 else
4880 /* Shared libraries on traditional mips have DT_DEBUG. */
4881 if (!SGI_COMPAT (output_bfd))
4883 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
4884 return false;
4888 if (reltext && SGI_COMPAT (output_bfd))
4889 info->flags |= DF_TEXTREL;
4891 if ((info->flags & DF_TEXTREL) != 0)
4893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
4894 return false;
4897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
4898 return false;
4900 if (bfd_get_section_by_name (dynobj, ".rel.dyn"))
4902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
4903 return false;
4905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
4906 return false;
4908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
4909 return false;
4912 if (SGI_COMPAT (output_bfd))
4914 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
4915 return false;
4918 if (SGI_COMPAT (output_bfd))
4920 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
4921 return false;
4924 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
4926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
4927 return false;
4929 s = bfd_get_section_by_name (dynobj, ".liblist");
4930 BFD_ASSERT (s != NULL);
4932 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
4933 return false;
4936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
4937 return false;
4939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
4940 return false;
4942 #if 0
4943 /* Time stamps in executable files are a bad idea. */
4944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
4945 return false;
4946 #endif
4948 #if 0 /* FIXME */
4949 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
4950 return false;
4951 #endif
4953 #if 0 /* FIXME */
4954 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
4955 return false;
4956 #endif
4958 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
4959 return false;
4961 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
4962 return false;
4964 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
4965 return false;
4967 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
4968 return false;
4970 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
4971 return false;
4973 if (IRIX_COMPAT (dynobj) == ict_irix5
4974 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
4975 return false;
4977 if (IRIX_COMPAT (dynobj) == ict_irix6
4978 && (bfd_get_section_by_name
4979 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
4980 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
4981 return false;
4983 if (bfd_get_section_by_name (dynobj, ".msym")
4984 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
4985 return false;
4988 return true;
4991 /* Relocate a MIPS ELF section. */
4993 boolean
4994 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
4995 contents, relocs, local_syms, local_sections)
4996 bfd *output_bfd;
4997 struct bfd_link_info *info;
4998 bfd *input_bfd;
4999 asection *input_section;
5000 bfd_byte *contents;
5001 Elf_Internal_Rela *relocs;
5002 Elf_Internal_Sym *local_syms;
5003 asection **local_sections;
5005 Elf_Internal_Rela *rel;
5006 const Elf_Internal_Rela *relend;
5007 bfd_vma addend = 0;
5008 boolean use_saved_addend_p = false;
5009 struct elf_backend_data *bed;
5011 bed = get_elf_backend_data (output_bfd);
5012 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
5013 for (rel = relocs; rel < relend; ++rel)
5015 const char *name;
5016 bfd_vma value;
5017 reloc_howto_type *howto;
5018 boolean require_jalx;
5019 /* True if the relocation is a RELA relocation, rather than a
5020 REL relocation. */
5021 boolean rela_relocation_p = true;
5022 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5023 const char * msg = (const char *) NULL;
5025 /* Find the relocation howto for this relocation. */
5026 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
5028 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5029 64-bit code, but make sure all their addresses are in the
5030 lowermost or uppermost 32-bit section of the 64-bit address
5031 space. Thus, when they use an R_MIPS_64 they mean what is
5032 usually meant by R_MIPS_32, with the exception that the
5033 stored value is sign-extended to 64 bits. */
5034 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
5036 /* On big-endian systems, we need to lie about the position
5037 of the reloc. */
5038 if (bfd_big_endian (input_bfd))
5039 rel->r_offset += 4;
5041 else
5042 /* NewABI defaults to RELA relocations. */
5043 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
5044 NEWABI_P (input_bfd));
5046 if (!use_saved_addend_p)
5048 Elf_Internal_Shdr *rel_hdr;
5050 /* If these relocations were originally of the REL variety,
5051 we must pull the addend out of the field that will be
5052 relocated. Otherwise, we simply use the contents of the
5053 RELA relocation. To determine which flavor or relocation
5054 this is, we depend on the fact that the INPUT_SECTION's
5055 REL_HDR is read before its REL_HDR2. */
5056 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5057 if ((size_t) (rel - relocs)
5058 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
5059 rel_hdr = elf_section_data (input_section)->rel_hdr2;
5060 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
5062 /* Note that this is a REL relocation. */
5063 rela_relocation_p = false;
5065 /* Get the addend, which is stored in the input file. */
5066 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
5067 contents);
5068 addend &= howto->src_mask;
5069 addend <<= howto->rightshift;
5071 /* For some kinds of relocations, the ADDEND is a
5072 combination of the addend stored in two different
5073 relocations. */
5074 if (r_type == R_MIPS_HI16
5075 || r_type == R_MIPS_GNU_REL_HI16
5076 || (r_type == R_MIPS_GOT16
5077 && mips_elf_local_relocation_p (input_bfd, rel,
5078 local_sections, false)))
5080 bfd_vma l;
5081 const Elf_Internal_Rela *lo16_relocation;
5082 reloc_howto_type *lo16_howto;
5083 unsigned int lo;
5085 /* The combined value is the sum of the HI16 addend,
5086 left-shifted by sixteen bits, and the LO16
5087 addend, sign extended. (Usually, the code does
5088 a `lui' of the HI16 value, and then an `addiu' of
5089 the LO16 value.)
5091 Scan ahead to find a matching LO16 relocation. */
5092 if (r_type == R_MIPS_GNU_REL_HI16)
5093 lo = R_MIPS_GNU_REL_LO16;
5094 else
5095 lo = R_MIPS_LO16;
5096 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
5097 rel, relend);
5098 if (lo16_relocation == NULL)
5099 return false;
5101 /* Obtain the addend kept there. */
5102 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, false);
5103 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
5104 input_bfd, contents);
5105 l &= lo16_howto->src_mask;
5106 l <<= lo16_howto->rightshift;
5107 l = mips_elf_sign_extend (l, 16);
5109 addend <<= 16;
5111 /* Compute the combined addend. */
5112 addend += l;
5114 /* If PC-relative, subtract the difference between the
5115 address of the LO part of the reloc and the address of
5116 the HI part. The relocation is relative to the LO
5117 part, but mips_elf_calculate_relocation() doesn't
5118 know its address or the difference from the HI part, so
5119 we subtract that difference here. See also the
5120 comment in mips_elf_calculate_relocation(). */
5121 if (r_type == R_MIPS_GNU_REL_HI16)
5122 addend -= (lo16_relocation->r_offset - rel->r_offset);
5124 else if (r_type == R_MIPS16_GPREL)
5126 /* The addend is scrambled in the object file. See
5127 mips_elf_perform_relocation for details on the
5128 format. */
5129 addend = (((addend & 0x1f0000) >> 5)
5130 | ((addend & 0x7e00000) >> 16)
5131 | (addend & 0x1f));
5134 else
5135 addend = rel->r_addend;
5138 if (info->relocateable)
5140 Elf_Internal_Sym *sym;
5141 unsigned long r_symndx;
5143 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
5144 && bfd_big_endian (input_bfd))
5145 rel->r_offset -= 4;
5147 /* Since we're just relocating, all we need to do is copy
5148 the relocations back out to the object file, unless
5149 they're against a section symbol, in which case we need
5150 to adjust by the section offset, or unless they're GP
5151 relative in which case we need to adjust by the amount
5152 that we're adjusting GP in this relocateable object. */
5154 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
5155 false))
5156 /* There's nothing to do for non-local relocations. */
5157 continue;
5159 if (r_type == R_MIPS16_GPREL
5160 || r_type == R_MIPS_GPREL16
5161 || r_type == R_MIPS_GPREL32
5162 || r_type == R_MIPS_LITERAL)
5163 addend -= (_bfd_get_gp_value (output_bfd)
5164 - _bfd_get_gp_value (input_bfd));
5166 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
5167 sym = local_syms + r_symndx;
5168 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5169 /* Adjust the addend appropriately. */
5170 addend += local_sections[r_symndx]->output_offset;
5172 if (howto->partial_inplace)
5174 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
5175 then we only want to write out the high-order 16 bits.
5176 The subsequent R_MIPS_LO16 will handle the low-order bits.
5178 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
5179 || r_type == R_MIPS_GNU_REL_HI16)
5180 addend = mips_elf_high (addend);
5181 else if (r_type == R_MIPS_HIGHER)
5182 addend = mips_elf_higher (addend);
5183 else if (r_type == R_MIPS_HIGHEST)
5184 addend = mips_elf_highest (addend);
5187 if (rela_relocation_p)
5188 /* If this is a RELA relocation, just update the addend.
5189 We have to cast away constness for REL. */
5190 rel->r_addend = addend;
5191 else
5193 /* Otherwise, we have to write the value back out. Note
5194 that we use the source mask, rather than the
5195 destination mask because the place to which we are
5196 writing will be source of the addend in the final
5197 link. */
5198 addend >>= howto->rightshift;
5199 addend &= howto->src_mask;
5201 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
5202 /* See the comment above about using R_MIPS_64 in the 32-bit
5203 ABI. Here, we need to update the addend. It would be
5204 possible to get away with just using the R_MIPS_32 reloc
5205 but for endianness. */
5207 bfd_vma sign_bits;
5208 bfd_vma low_bits;
5209 bfd_vma high_bits;
5211 if (addend & ((bfd_vma) 1 << 31))
5212 #ifdef BFD64
5213 sign_bits = ((bfd_vma) 1 << 32) - 1;
5214 #else
5215 sign_bits = -1;
5216 #endif
5217 else
5218 sign_bits = 0;
5220 /* If we don't know that we have a 64-bit type,
5221 do two separate stores. */
5222 if (bfd_big_endian (input_bfd))
5224 /* Store the sign-bits (which are most significant)
5225 first. */
5226 low_bits = sign_bits;
5227 high_bits = addend;
5229 else
5231 low_bits = addend;
5232 high_bits = sign_bits;
5234 bfd_put_32 (input_bfd, low_bits,
5235 contents + rel->r_offset);
5236 bfd_put_32 (input_bfd, high_bits,
5237 contents + rel->r_offset + 4);
5238 continue;
5241 if (! mips_elf_perform_relocation (info, howto, rel, addend,
5242 input_bfd, input_section,
5243 contents, false))
5244 return false;
5247 /* Go on to the next relocation. */
5248 continue;
5251 /* In the N32 and 64-bit ABIs there may be multiple consecutive
5252 relocations for the same offset. In that case we are
5253 supposed to treat the output of each relocation as the addend
5254 for the next. */
5255 if (rel + 1 < relend
5256 && rel->r_offset == rel[1].r_offset
5257 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
5258 use_saved_addend_p = true;
5259 else
5260 use_saved_addend_p = false;
5262 addend >>= howto->rightshift;
5264 /* Figure out what value we are supposed to relocate. */
5265 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
5266 input_section, info, rel,
5267 addend, howto, local_syms,
5268 local_sections, &value,
5269 &name, &require_jalx,
5270 use_saved_addend_p))
5272 case bfd_reloc_continue:
5273 /* There's nothing to do. */
5274 continue;
5276 case bfd_reloc_undefined:
5277 /* mips_elf_calculate_relocation already called the
5278 undefined_symbol callback. There's no real point in
5279 trying to perform the relocation at this point, so we
5280 just skip ahead to the next relocation. */
5281 continue;
5283 case bfd_reloc_notsupported:
5284 msg = _("internal error: unsupported relocation error");
5285 info->callbacks->warning
5286 (info, msg, name, input_bfd, input_section, rel->r_offset);
5287 return false;
5289 case bfd_reloc_overflow:
5290 if (use_saved_addend_p)
5291 /* Ignore overflow until we reach the last relocation for
5292 a given location. */
5294 else
5296 BFD_ASSERT (name != NULL);
5297 if (! ((*info->callbacks->reloc_overflow)
5298 (info, name, howto->name, (bfd_vma) 0,
5299 input_bfd, input_section, rel->r_offset)))
5300 return false;
5302 break;
5304 case bfd_reloc_ok:
5305 break;
5307 default:
5308 abort ();
5309 break;
5312 /* If we've got another relocation for the address, keep going
5313 until we reach the last one. */
5314 if (use_saved_addend_p)
5316 addend = value;
5317 continue;
5320 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
5321 /* See the comment above about using R_MIPS_64 in the 32-bit
5322 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
5323 that calculated the right value. Now, however, we
5324 sign-extend the 32-bit result to 64-bits, and store it as a
5325 64-bit value. We are especially generous here in that we
5326 go to extreme lengths to support this usage on systems with
5327 only a 32-bit VMA. */
5329 bfd_vma sign_bits;
5330 bfd_vma low_bits;
5331 bfd_vma high_bits;
5333 if (value & ((bfd_vma) 1 << 31))
5334 #ifdef BFD64
5335 sign_bits = ((bfd_vma) 1 << 32) - 1;
5336 #else
5337 sign_bits = -1;
5338 #endif
5339 else
5340 sign_bits = 0;
5342 /* If we don't know that we have a 64-bit type,
5343 do two separate stores. */
5344 if (bfd_big_endian (input_bfd))
5346 /* Undo what we did above. */
5347 rel->r_offset -= 4;
5348 /* Store the sign-bits (which are most significant)
5349 first. */
5350 low_bits = sign_bits;
5351 high_bits = value;
5353 else
5355 low_bits = value;
5356 high_bits = sign_bits;
5358 bfd_put_32 (input_bfd, low_bits,
5359 contents + rel->r_offset);
5360 bfd_put_32 (input_bfd, high_bits,
5361 contents + rel->r_offset + 4);
5362 continue;
5365 /* Actually perform the relocation. */
5366 if (! mips_elf_perform_relocation (info, howto, rel, value,
5367 input_bfd, input_section,
5368 contents, require_jalx))
5369 return false;
5372 return true;
5375 /* If NAME is one of the special IRIX6 symbols defined by the linker,
5376 adjust it appropriately now. */
5378 static void
5379 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5380 bfd *abfd ATTRIBUTE_UNUSED;
5381 const char *name;
5382 Elf_Internal_Sym *sym;
5384 /* The linker script takes care of providing names and values for
5385 these, but we must place them into the right sections. */
5386 static const char* const text_section_symbols[] = {
5387 "_ftext",
5388 "_etext",
5389 "__dso_displacement",
5390 "__elf_header",
5391 "__program_header_table",
5392 NULL
5395 static const char* const data_section_symbols[] = {
5396 "_fdata",
5397 "_edata",
5398 "_end",
5399 "_fbss",
5400 NULL
5403 const char* const *p;
5404 int i;
5406 for (i = 0; i < 2; ++i)
5407 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
5409 ++p)
5410 if (strcmp (*p, name) == 0)
5412 /* All of these symbols are given type STT_SECTION by the
5413 IRIX6 linker. */
5414 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5416 /* The IRIX linker puts these symbols in special sections. */
5417 if (i == 0)
5418 sym->st_shndx = SHN_MIPS_TEXT;
5419 else
5420 sym->st_shndx = SHN_MIPS_DATA;
5422 break;
5426 /* Finish up dynamic symbol handling. We set the contents of various
5427 dynamic sections here. */
5429 boolean
5430 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
5431 bfd *output_bfd;
5432 struct bfd_link_info *info;
5433 struct elf_link_hash_entry *h;
5434 Elf_Internal_Sym *sym;
5436 bfd *dynobj;
5437 bfd_vma gval;
5438 asection *sgot;
5439 asection *smsym;
5440 struct mips_got_info *g;
5441 const char *name;
5442 struct mips_elf_link_hash_entry *mh;
5444 dynobj = elf_hash_table (info)->dynobj;
5445 gval = sym->st_value;
5446 mh = (struct mips_elf_link_hash_entry *) h;
5448 if (h->plt.offset != (bfd_vma) -1)
5450 asection *s;
5451 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
5453 /* This symbol has a stub. Set it up. */
5455 BFD_ASSERT (h->dynindx != -1);
5457 s = bfd_get_section_by_name (dynobj,
5458 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5459 BFD_ASSERT (s != NULL);
5461 /* FIXME: Can h->dynindex be more than 64K? */
5462 if (h->dynindx & 0xffff0000)
5463 return false;
5465 /* Fill the stub. */
5466 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
5467 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
5468 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
5469 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
5471 BFD_ASSERT (h->plt.offset <= s->_raw_size);
5472 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
5474 /* Mark the symbol as undefined. plt.offset != -1 occurs
5475 only for the referenced symbol. */
5476 sym->st_shndx = SHN_UNDEF;
5478 /* The run-time linker uses the st_value field of the symbol
5479 to reset the global offset table entry for this external
5480 to its stub address when unlinking a shared object. */
5481 gval = s->output_section->vma + s->output_offset + h->plt.offset;
5482 sym->st_value = gval;
5485 BFD_ASSERT (h->dynindx != -1
5486 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
5488 sgot = mips_elf_got_section (dynobj);
5489 BFD_ASSERT (sgot != NULL);
5490 BFD_ASSERT (elf_section_data (sgot) != NULL);
5491 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5492 BFD_ASSERT (g != NULL);
5494 /* Run through the global symbol table, creating GOT entries for all
5495 the symbols that need them. */
5496 if (g->global_gotsym != NULL
5497 && h->dynindx >= g->global_gotsym->dynindx)
5499 bfd_vma offset;
5500 bfd_vma value;
5502 if (sym->st_value)
5503 value = sym->st_value;
5504 else
5506 /* For an entity defined in a shared object, this will be
5507 NULL. (For functions in shared objects for
5508 which we have created stubs, ST_VALUE will be non-NULL.
5509 That's because such the functions are now no longer defined
5510 in a shared object.) */
5512 if (info->shared && h->root.type == bfd_link_hash_undefined)
5513 value = 0;
5514 else
5515 value = h->root.u.def.value;
5517 offset = mips_elf_global_got_index (dynobj, h);
5518 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
5521 /* Create a .msym entry, if appropriate. */
5522 smsym = bfd_get_section_by_name (dynobj, ".msym");
5523 if (smsym)
5525 Elf32_Internal_Msym msym;
5527 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
5528 /* It is undocumented what the `1' indicates, but IRIX6 uses
5529 this value. */
5530 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
5531 bfd_mips_elf_swap_msym_out
5532 (dynobj, &msym,
5533 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
5536 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
5537 name = h->root.root.string;
5538 if (strcmp (name, "_DYNAMIC") == 0
5539 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
5540 sym->st_shndx = SHN_ABS;
5541 else if (strcmp (name, "_DYNAMIC_LINK") == 0
5542 || strcmp (name, "_DYNAMIC_LINKING") == 0)
5544 sym->st_shndx = SHN_ABS;
5545 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5546 sym->st_value = 1;
5548 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
5550 sym->st_shndx = SHN_ABS;
5551 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5552 sym->st_value = elf_gp (output_bfd);
5554 else if (SGI_COMPAT (output_bfd))
5556 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
5557 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
5559 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5560 sym->st_other = STO_PROTECTED;
5561 sym->st_value = 0;
5562 sym->st_shndx = SHN_MIPS_DATA;
5564 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
5566 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5567 sym->st_other = STO_PROTECTED;
5568 sym->st_value = mips_elf_hash_table (info)->procedure_count;
5569 sym->st_shndx = SHN_ABS;
5571 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
5573 if (h->type == STT_FUNC)
5574 sym->st_shndx = SHN_MIPS_TEXT;
5575 else if (h->type == STT_OBJECT)
5576 sym->st_shndx = SHN_MIPS_DATA;
5580 /* Handle the IRIX6-specific symbols. */
5581 if (IRIX_COMPAT (output_bfd) == ict_irix6)
5582 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
5584 if (! info->shared)
5586 if (! mips_elf_hash_table (info)->use_rld_obj_head
5587 && (strcmp (name, "__rld_map") == 0
5588 || strcmp (name, "__RLD_MAP") == 0))
5590 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
5591 BFD_ASSERT (s != NULL);
5592 sym->st_value = s->output_section->vma + s->output_offset;
5593 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
5594 if (mips_elf_hash_table (info)->rld_value == 0)
5595 mips_elf_hash_table (info)->rld_value = sym->st_value;
5597 else if (mips_elf_hash_table (info)->use_rld_obj_head
5598 && strcmp (name, "__rld_obj_head") == 0)
5600 /* IRIX6 does not use a .rld_map section. */
5601 if (IRIX_COMPAT (output_bfd) == ict_irix5
5602 || IRIX_COMPAT (output_bfd) == ict_none)
5603 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
5604 != NULL);
5605 mips_elf_hash_table (info)->rld_value = sym->st_value;
5609 /* If this is a mips16 symbol, force the value to be even. */
5610 if (sym->st_other == STO_MIPS16
5611 && (sym->st_value & 1) != 0)
5612 --sym->st_value;
5614 return true;
5617 /* Finish up the dynamic sections. */
5619 boolean
5620 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
5621 bfd *output_bfd;
5622 struct bfd_link_info *info;
5624 bfd *dynobj;
5625 asection *sdyn;
5626 asection *sgot;
5627 struct mips_got_info *g;
5629 dynobj = elf_hash_table (info)->dynobj;
5631 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5633 sgot = bfd_get_section_by_name (dynobj, ".got");
5634 if (sgot == NULL)
5635 g = NULL;
5636 else
5638 BFD_ASSERT (elf_section_data (sgot) != NULL);
5639 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5640 BFD_ASSERT (g != NULL);
5643 if (elf_hash_table (info)->dynamic_sections_created)
5645 bfd_byte *b;
5647 BFD_ASSERT (sdyn != NULL);
5648 BFD_ASSERT (g != NULL);
5650 for (b = sdyn->contents;
5651 b < sdyn->contents + sdyn->_raw_size;
5652 b += MIPS_ELF_DYN_SIZE (dynobj))
5654 Elf_Internal_Dyn dyn;
5655 const char *name;
5656 size_t elemsize;
5657 asection *s;
5658 boolean swap_out_p;
5660 /* Read in the current dynamic entry. */
5661 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
5663 /* Assume that we're going to modify it and write it out. */
5664 swap_out_p = true;
5666 switch (dyn.d_tag)
5668 case DT_RELENT:
5669 s = (bfd_get_section_by_name (dynobj, ".rel.dyn"));
5670 BFD_ASSERT (s != NULL);
5671 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
5672 break;
5674 case DT_STRSZ:
5675 /* Rewrite DT_STRSZ. */
5676 dyn.d_un.d_val =
5677 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5678 break;
5680 case DT_PLTGOT:
5681 name = ".got";
5682 goto get_vma;
5683 case DT_MIPS_CONFLICT:
5684 name = ".conflict";
5685 goto get_vma;
5686 case DT_MIPS_LIBLIST:
5687 name = ".liblist";
5688 get_vma:
5689 s = bfd_get_section_by_name (output_bfd, name);
5690 BFD_ASSERT (s != NULL);
5691 dyn.d_un.d_ptr = s->vma;
5692 break;
5694 case DT_MIPS_RLD_VERSION:
5695 dyn.d_un.d_val = 1; /* XXX */
5696 break;
5698 case DT_MIPS_FLAGS:
5699 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
5700 break;
5702 case DT_MIPS_CONFLICTNO:
5703 name = ".conflict";
5704 elemsize = sizeof (Elf32_Conflict);
5705 goto set_elemno;
5707 case DT_MIPS_LIBLISTNO:
5708 name = ".liblist";
5709 elemsize = sizeof (Elf32_Lib);
5710 set_elemno:
5711 s = bfd_get_section_by_name (output_bfd, name);
5712 if (s != NULL)
5714 if (s->_cooked_size != 0)
5715 dyn.d_un.d_val = s->_cooked_size / elemsize;
5716 else
5717 dyn.d_un.d_val = s->_raw_size / elemsize;
5719 else
5720 dyn.d_un.d_val = 0;
5721 break;
5723 case DT_MIPS_TIME_STAMP:
5724 time ((time_t *) &dyn.d_un.d_val);
5725 break;
5727 case DT_MIPS_ICHECKSUM:
5728 /* XXX FIXME: */
5729 swap_out_p = false;
5730 break;
5732 case DT_MIPS_IVERSION:
5733 /* XXX FIXME: */
5734 swap_out_p = false;
5735 break;
5737 case DT_MIPS_BASE_ADDRESS:
5738 s = output_bfd->sections;
5739 BFD_ASSERT (s != NULL);
5740 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
5741 break;
5743 case DT_MIPS_LOCAL_GOTNO:
5744 dyn.d_un.d_val = g->local_gotno;
5745 break;
5747 case DT_MIPS_UNREFEXTNO:
5748 /* The index into the dynamic symbol table which is the
5749 entry of the first external symbol that is not
5750 referenced within the same object. */
5751 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
5752 break;
5754 case DT_MIPS_GOTSYM:
5755 if (g->global_gotsym)
5757 dyn.d_un.d_val = g->global_gotsym->dynindx;
5758 break;
5760 /* In case if we don't have global got symbols we default
5761 to setting DT_MIPS_GOTSYM to the same value as
5762 DT_MIPS_SYMTABNO, so we just fall through. */
5764 case DT_MIPS_SYMTABNO:
5765 name = ".dynsym";
5766 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
5767 s = bfd_get_section_by_name (output_bfd, name);
5768 BFD_ASSERT (s != NULL);
5770 if (s->_cooked_size != 0)
5771 dyn.d_un.d_val = s->_cooked_size / elemsize;
5772 else
5773 dyn.d_un.d_val = s->_raw_size / elemsize;
5774 break;
5776 case DT_MIPS_HIPAGENO:
5777 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
5778 break;
5780 case DT_MIPS_RLD_MAP:
5781 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
5782 break;
5784 case DT_MIPS_OPTIONS:
5785 s = (bfd_get_section_by_name
5786 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
5787 dyn.d_un.d_ptr = s->vma;
5788 break;
5790 case DT_MIPS_MSYM:
5791 s = (bfd_get_section_by_name (output_bfd, ".msym"));
5792 dyn.d_un.d_ptr = s->vma;
5793 break;
5795 default:
5796 swap_out_p = false;
5797 break;
5800 if (swap_out_p)
5801 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
5802 (dynobj, &dyn, b);
5806 /* The first entry of the global offset table will be filled at
5807 runtime. The second entry will be used by some runtime loaders.
5808 This isn't the case of IRIX rld. */
5809 if (sgot != NULL && sgot->_raw_size > 0)
5811 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
5812 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
5813 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
5816 if (sgot != NULL)
5817 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
5818 = MIPS_ELF_GOT_SIZE (output_bfd);
5821 asection *smsym;
5822 asection *s;
5823 Elf32_compact_rel cpt;
5825 /* ??? The section symbols for the output sections were set up in
5826 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
5827 symbols. Should we do so? */
5829 smsym = bfd_get_section_by_name (dynobj, ".msym");
5830 if (smsym != NULL)
5832 Elf32_Internal_Msym msym;
5834 msym.ms_hash_value = 0;
5835 msym.ms_info = ELF32_MS_INFO (0, 1);
5837 for (s = output_bfd->sections; s != NULL; s = s->next)
5839 long dynindx = elf_section_data (s)->dynindx;
5841 bfd_mips_elf_swap_msym_out
5842 (output_bfd, &msym,
5843 (((Elf32_External_Msym *) smsym->contents)
5844 + dynindx));
5848 if (SGI_COMPAT (output_bfd))
5850 /* Write .compact_rel section out. */
5851 s = bfd_get_section_by_name (dynobj, ".compact_rel");
5852 if (s != NULL)
5854 cpt.id1 = 1;
5855 cpt.num = s->reloc_count;
5856 cpt.id2 = 2;
5857 cpt.offset = (s->output_section->filepos
5858 + sizeof (Elf32_External_compact_rel));
5859 cpt.reserved0 = 0;
5860 cpt.reserved1 = 0;
5861 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
5862 ((Elf32_External_compact_rel *)
5863 s->contents));
5865 /* Clean up a dummy stub function entry in .text. */
5866 s = bfd_get_section_by_name (dynobj,
5867 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5868 if (s != NULL)
5870 file_ptr dummy_offset;
5872 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
5873 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
5874 memset (s->contents + dummy_offset, 0,
5875 MIPS_FUNCTION_STUB_SIZE);
5880 /* We need to sort the entries of the dynamic relocation section. */
5882 if (!ABI_64_P (output_bfd))
5884 asection *reldyn;
5886 reldyn = bfd_get_section_by_name (dynobj, ".rel.dyn");
5887 if (reldyn != NULL && reldyn->reloc_count > 2)
5889 reldyn_sorting_bfd = output_bfd;
5890 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
5891 (size_t) reldyn->reloc_count - 1,
5892 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
5896 /* Clean up a first relocation in .rel.dyn. */
5897 s = bfd_get_section_by_name (dynobj, ".rel.dyn");
5898 if (s != NULL && s->_raw_size > 0)
5899 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
5902 return true;
5905 /* The final processing done just before writing out a MIPS ELF object
5906 file. This gets the MIPS architecture right based on the machine
5907 number. This is used by both the 32-bit and the 64-bit ABI. */
5909 void
5910 _bfd_mips_elf_final_write_processing (abfd, linker)
5911 bfd *abfd;
5912 boolean linker ATTRIBUTE_UNUSED;
5914 unsigned long val;
5915 unsigned int i;
5916 Elf_Internal_Shdr **hdrpp;
5917 const char *name;
5918 asection *sec;
5920 switch (bfd_get_mach (abfd))
5922 default:
5923 case bfd_mach_mips3000:
5924 val = E_MIPS_ARCH_1;
5925 break;
5927 case bfd_mach_mips3900:
5928 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
5929 break;
5931 case bfd_mach_mips6000:
5932 val = E_MIPS_ARCH_2;
5933 break;
5935 case bfd_mach_mips4000:
5936 case bfd_mach_mips4300:
5937 case bfd_mach_mips4400:
5938 case bfd_mach_mips4600:
5939 val = E_MIPS_ARCH_3;
5940 break;
5942 case bfd_mach_mips4010:
5943 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
5944 break;
5946 case bfd_mach_mips4100:
5947 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
5948 break;
5950 case bfd_mach_mips4111:
5951 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
5952 break;
5954 case bfd_mach_mips4120:
5955 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
5956 break;
5958 case bfd_mach_mips4650:
5959 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
5960 break;
5962 case bfd_mach_mips5400:
5963 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
5964 break;
5966 case bfd_mach_mips5500:
5967 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
5968 break;
5970 case bfd_mach_mips5000:
5971 case bfd_mach_mips8000:
5972 case bfd_mach_mips10000:
5973 case bfd_mach_mips12000:
5974 val = E_MIPS_ARCH_4;
5975 break;
5977 case bfd_mach_mips5:
5978 val = E_MIPS_ARCH_5;
5979 break;
5981 case bfd_mach_mips_sb1:
5982 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
5983 break;
5985 case bfd_mach_mipsisa32:
5986 val = E_MIPS_ARCH_32;
5987 break;
5989 case bfd_mach_mipsisa64:
5990 val = E_MIPS_ARCH_64;
5993 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
5994 elf_elfheader (abfd)->e_flags |= val;
5996 /* Set the sh_info field for .gptab sections and other appropriate
5997 info for each special section. */
5998 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
5999 i < elf_numsections (abfd);
6000 i++, hdrpp++)
6002 switch ((*hdrpp)->sh_type)
6004 case SHT_MIPS_MSYM:
6005 case SHT_MIPS_LIBLIST:
6006 sec = bfd_get_section_by_name (abfd, ".dynstr");
6007 if (sec != NULL)
6008 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
6009 break;
6011 case SHT_MIPS_GPTAB:
6012 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
6013 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
6014 BFD_ASSERT (name != NULL
6015 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
6016 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
6017 BFD_ASSERT (sec != NULL);
6018 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
6019 break;
6021 case SHT_MIPS_CONTENT:
6022 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
6023 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
6024 BFD_ASSERT (name != NULL
6025 && strncmp (name, ".MIPS.content",
6026 sizeof ".MIPS.content" - 1) == 0);
6027 sec = bfd_get_section_by_name (abfd,
6028 name + sizeof ".MIPS.content" - 1);
6029 BFD_ASSERT (sec != NULL);
6030 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
6031 break;
6033 case SHT_MIPS_SYMBOL_LIB:
6034 sec = bfd_get_section_by_name (abfd, ".dynsym");
6035 if (sec != NULL)
6036 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
6037 sec = bfd_get_section_by_name (abfd, ".liblist");
6038 if (sec != NULL)
6039 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
6040 break;
6042 case SHT_MIPS_EVENTS:
6043 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
6044 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
6045 BFD_ASSERT (name != NULL);
6046 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
6047 sec = bfd_get_section_by_name (abfd,
6048 name + sizeof ".MIPS.events" - 1);
6049 else
6051 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
6052 sizeof ".MIPS.post_rel" - 1) == 0);
6053 sec = bfd_get_section_by_name (abfd,
6054 (name
6055 + sizeof ".MIPS.post_rel" - 1));
6057 BFD_ASSERT (sec != NULL);
6058 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
6059 break;
6065 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
6066 segments. */
6069 _bfd_mips_elf_additional_program_headers (abfd)
6070 bfd *abfd;
6072 asection *s;
6073 int ret = 0;
6075 /* See if we need a PT_MIPS_REGINFO segment. */
6076 s = bfd_get_section_by_name (abfd, ".reginfo");
6077 if (s && (s->flags & SEC_LOAD))
6078 ++ret;
6080 /* See if we need a PT_MIPS_OPTIONS segment. */
6081 if (IRIX_COMPAT (abfd) == ict_irix6
6082 && bfd_get_section_by_name (abfd,
6083 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
6084 ++ret;
6086 /* See if we need a PT_MIPS_RTPROC segment. */
6087 if (IRIX_COMPAT (abfd) == ict_irix5
6088 && bfd_get_section_by_name (abfd, ".dynamic")
6089 && bfd_get_section_by_name (abfd, ".mdebug"))
6090 ++ret;
6092 return ret;
6095 /* Modify the segment map for an IRIX5 executable. */
6097 boolean
6098 _bfd_mips_elf_modify_segment_map (abfd)
6099 bfd *abfd;
6101 asection *s;
6102 struct elf_segment_map *m, **pm;
6103 bfd_size_type amt;
6105 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
6106 segment. */
6107 s = bfd_get_section_by_name (abfd, ".reginfo");
6108 if (s != NULL && (s->flags & SEC_LOAD) != 0)
6110 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
6111 if (m->p_type == PT_MIPS_REGINFO)
6112 break;
6113 if (m == NULL)
6115 amt = sizeof *m;
6116 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
6117 if (m == NULL)
6118 return false;
6120 m->p_type = PT_MIPS_REGINFO;
6121 m->count = 1;
6122 m->sections[0] = s;
6124 /* We want to put it after the PHDR and INTERP segments. */
6125 pm = &elf_tdata (abfd)->segment_map;
6126 while (*pm != NULL
6127 && ((*pm)->p_type == PT_PHDR
6128 || (*pm)->p_type == PT_INTERP))
6129 pm = &(*pm)->next;
6131 m->next = *pm;
6132 *pm = m;
6136 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
6137 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
6138 PT_OPTIONS segment immediately following the program header
6139 table. */
6140 if (NEWABI_P (abfd)
6141 /* On non-IRIX6 new abi, we'll have already created a segment
6142 for this section, so don't create another. I'm not sure this
6143 is not also the case for IRIX 6, but I can't test it right
6144 now. */
6145 && IRIX_COMPAT (abfd) == ict_irix6)
6147 for (s = abfd->sections; s; s = s->next)
6148 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
6149 break;
6151 if (s)
6153 struct elf_segment_map *options_segment;
6155 /* Usually, there's a program header table. But, sometimes
6156 there's not (like when running the `ld' testsuite). So,
6157 if there's no program header table, we just put the
6158 options segment at the end. */
6159 for (pm = &elf_tdata (abfd)->segment_map;
6160 *pm != NULL;
6161 pm = &(*pm)->next)
6162 if ((*pm)->p_type == PT_PHDR)
6163 break;
6165 amt = sizeof (struct elf_segment_map);
6166 options_segment = bfd_zalloc (abfd, amt);
6167 options_segment->next = *pm;
6168 options_segment->p_type = PT_MIPS_OPTIONS;
6169 options_segment->p_flags = PF_R;
6170 options_segment->p_flags_valid = true;
6171 options_segment->count = 1;
6172 options_segment->sections[0] = s;
6173 *pm = options_segment;
6176 else
6178 if (IRIX_COMPAT (abfd) == ict_irix5)
6180 /* If there are .dynamic and .mdebug sections, we make a room
6181 for the RTPROC header. FIXME: Rewrite without section names. */
6182 if (bfd_get_section_by_name (abfd, ".interp") == NULL
6183 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
6184 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
6186 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
6187 if (m->p_type == PT_MIPS_RTPROC)
6188 break;
6189 if (m == NULL)
6191 amt = sizeof *m;
6192 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
6193 if (m == NULL)
6194 return false;
6196 m->p_type = PT_MIPS_RTPROC;
6198 s = bfd_get_section_by_name (abfd, ".rtproc");
6199 if (s == NULL)
6201 m->count = 0;
6202 m->p_flags = 0;
6203 m->p_flags_valid = 1;
6205 else
6207 m->count = 1;
6208 m->sections[0] = s;
6211 /* We want to put it after the DYNAMIC segment. */
6212 pm = &elf_tdata (abfd)->segment_map;
6213 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
6214 pm = &(*pm)->next;
6215 if (*pm != NULL)
6216 pm = &(*pm)->next;
6218 m->next = *pm;
6219 *pm = m;
6223 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
6224 .dynstr, .dynsym, and .hash sections, and everything in
6225 between. */
6226 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
6227 pm = &(*pm)->next)
6228 if ((*pm)->p_type == PT_DYNAMIC)
6229 break;
6230 m = *pm;
6231 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
6233 /* For a normal mips executable the permissions for the PT_DYNAMIC
6234 segment are read, write and execute. We do that here since
6235 the code in elf.c sets only the read permission. This matters
6236 sometimes for the dynamic linker. */
6237 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
6239 m->p_flags = PF_R | PF_W | PF_X;
6240 m->p_flags_valid = 1;
6243 if (m != NULL
6244 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
6246 static const char *sec_names[] =
6248 ".dynamic", ".dynstr", ".dynsym", ".hash"
6250 bfd_vma low, high;
6251 unsigned int i, c;
6252 struct elf_segment_map *n;
6254 low = 0xffffffff;
6255 high = 0;
6256 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
6258 s = bfd_get_section_by_name (abfd, sec_names[i]);
6259 if (s != NULL && (s->flags & SEC_LOAD) != 0)
6261 bfd_size_type sz;
6263 if (low > s->vma)
6264 low = s->vma;
6265 sz = s->_cooked_size;
6266 if (sz == 0)
6267 sz = s->_raw_size;
6268 if (high < s->vma + sz)
6269 high = s->vma + sz;
6273 c = 0;
6274 for (s = abfd->sections; s != NULL; s = s->next)
6275 if ((s->flags & SEC_LOAD) != 0
6276 && s->vma >= low
6277 && ((s->vma
6278 + (s->_cooked_size !=
6279 0 ? s->_cooked_size : s->_raw_size)) <= high))
6280 ++c;
6282 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
6283 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
6284 if (n == NULL)
6285 return false;
6286 *n = *m;
6287 n->count = c;
6289 i = 0;
6290 for (s = abfd->sections; s != NULL; s = s->next)
6292 if ((s->flags & SEC_LOAD) != 0
6293 && s->vma >= low
6294 && ((s->vma
6295 + (s->_cooked_size != 0 ?
6296 s->_cooked_size : s->_raw_size)) <= high))
6298 n->sections[i] = s;
6299 ++i;
6303 *pm = n;
6307 return true;
6310 /* Return the section that should be marked against GC for a given
6311 relocation. */
6313 asection *
6314 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
6315 asection *sec;
6316 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6317 Elf_Internal_Rela *rel;
6318 struct elf_link_hash_entry *h;
6319 Elf_Internal_Sym *sym;
6321 /* ??? Do mips16 stub sections need to be handled special? */
6323 if (h != NULL)
6325 switch (ELF_R_TYPE (sec->owner, rel->r_info))
6327 case R_MIPS_GNU_VTINHERIT:
6328 case R_MIPS_GNU_VTENTRY:
6329 break;
6331 default:
6332 switch (h->root.type)
6334 case bfd_link_hash_defined:
6335 case bfd_link_hash_defweak:
6336 return h->root.u.def.section;
6338 case bfd_link_hash_common:
6339 return h->root.u.c.p->section;
6341 default:
6342 break;
6346 else
6347 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6349 return NULL;
6352 /* Update the got entry reference counts for the section being removed. */
6354 boolean
6355 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
6356 bfd *abfd ATTRIBUTE_UNUSED;
6357 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6358 asection *sec ATTRIBUTE_UNUSED;
6359 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
6361 #if 0
6362 Elf_Internal_Shdr *symtab_hdr;
6363 struct elf_link_hash_entry **sym_hashes;
6364 bfd_signed_vma *local_got_refcounts;
6365 const Elf_Internal_Rela *rel, *relend;
6366 unsigned long r_symndx;
6367 struct elf_link_hash_entry *h;
6369 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6370 sym_hashes = elf_sym_hashes (abfd);
6371 local_got_refcounts = elf_local_got_refcounts (abfd);
6373 relend = relocs + sec->reloc_count;
6374 for (rel = relocs; rel < relend; rel++)
6375 switch (ELF_R_TYPE (abfd, rel->r_info))
6377 case R_MIPS_GOT16:
6378 case R_MIPS_CALL16:
6379 case R_MIPS_CALL_HI16:
6380 case R_MIPS_CALL_LO16:
6381 case R_MIPS_GOT_HI16:
6382 case R_MIPS_GOT_LO16:
6383 case R_MIPS_GOT_DISP:
6384 case R_MIPS_GOT_PAGE:
6385 case R_MIPS_GOT_OFST:
6386 /* ??? It would seem that the existing MIPS code does no sort
6387 of reference counting or whatnot on its GOT and PLT entries,
6388 so it is not possible to garbage collect them at this time. */
6389 break;
6391 default:
6392 break;
6394 #endif
6396 return true;
6399 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
6400 hiding the old indirect symbol. Process additional relocation
6401 information. Also called for weakdefs, in which case we just let
6402 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
6404 void
6405 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
6406 struct elf_backend_data *bed;
6407 struct elf_link_hash_entry *dir, *ind;
6409 struct mips_elf_link_hash_entry *dirmips, *indmips;
6411 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
6413 if (ind->root.type != bfd_link_hash_indirect)
6414 return;
6416 dirmips = (struct mips_elf_link_hash_entry *) dir;
6417 indmips = (struct mips_elf_link_hash_entry *) ind;
6418 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
6419 if (indmips->readonly_reloc)
6420 dirmips->readonly_reloc = true;
6421 if (dirmips->min_dyn_reloc_index == 0
6422 || (indmips->min_dyn_reloc_index != 0
6423 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
6424 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
6425 if (indmips->no_fn_stub)
6426 dirmips->no_fn_stub = true;
6429 void
6430 _bfd_mips_elf_hide_symbol (info, entry, force_local)
6431 struct bfd_link_info *info;
6432 struct elf_link_hash_entry *entry;
6433 boolean force_local;
6435 bfd *dynobj;
6436 asection *got;
6437 struct mips_got_info *g;
6438 struct mips_elf_link_hash_entry *h;
6440 h = (struct mips_elf_link_hash_entry *) entry;
6441 if (h->forced_local)
6442 return;
6443 h->forced_local = true;
6445 dynobj = elf_hash_table (info)->dynobj;
6446 got = bfd_get_section_by_name (dynobj, ".got");
6447 g = (struct mips_got_info *) elf_section_data (got)->tdata;
6449 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
6451 /* FIXME: Do we allocate too much GOT space here? */
6452 g->local_gotno++;
6453 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
6456 #define PDR_SIZE 32
6458 boolean
6459 _bfd_mips_elf_discard_info (abfd, cookie, info)
6460 bfd *abfd;
6461 struct elf_reloc_cookie *cookie;
6462 struct bfd_link_info *info;
6464 asection *o;
6465 boolean ret = false;
6466 unsigned char *tdata;
6467 size_t i, skip;
6469 o = bfd_get_section_by_name (abfd, ".pdr");
6470 if (! o)
6471 return false;
6472 if (o->_raw_size == 0)
6473 return false;
6474 if (o->_raw_size % PDR_SIZE != 0)
6475 return false;
6476 if (o->output_section != NULL
6477 && bfd_is_abs_section (o->output_section))
6478 return false;
6480 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
6481 if (! tdata)
6482 return false;
6484 cookie->rels = _bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL,
6485 (Elf_Internal_Rela *) NULL,
6486 info->keep_memory);
6487 if (!cookie->rels)
6489 free (tdata);
6490 return false;
6493 cookie->rel = cookie->rels;
6494 cookie->relend = cookie->rels + o->reloc_count;
6496 for (i = 0, skip = 0; i < o->_raw_size; i ++)
6498 if (_bfd_elf32_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
6500 tdata[i] = 1;
6501 skip ++;
6505 if (skip != 0)
6507 elf_section_data (o)->tdata = tdata;
6508 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
6509 ret = true;
6511 else
6512 free (tdata);
6514 if (! info->keep_memory)
6515 free (cookie->rels);
6517 return ret;
6520 boolean
6521 _bfd_mips_elf_ignore_discarded_relocs (sec)
6522 asection *sec;
6524 if (strcmp (sec->name, ".pdr") == 0)
6525 return true;
6526 return false;
6529 boolean
6530 _bfd_mips_elf_write_section (output_bfd, sec, contents)
6531 bfd *output_bfd;
6532 asection *sec;
6533 bfd_byte *contents;
6535 bfd_byte *to, *from, *end;
6536 int i;
6538 if (strcmp (sec->name, ".pdr") != 0)
6539 return false;
6541 if (elf_section_data (sec)->tdata == NULL)
6542 return false;
6544 to = contents;
6545 end = contents + sec->_raw_size;
6546 for (from = contents, i = 0;
6547 from < end;
6548 from += PDR_SIZE, i++)
6550 if (((unsigned char *) elf_section_data (sec)->tdata)[i] == 1)
6551 continue;
6552 if (to != from)
6553 memcpy (to, from, PDR_SIZE);
6554 to += PDR_SIZE;
6556 bfd_set_section_contents (output_bfd, sec->output_section, contents,
6557 (file_ptr) sec->output_offset,
6558 sec->_cooked_size);
6559 return true;
6562 /* MIPS ELF uses a special find_nearest_line routine in order the
6563 handle the ECOFF debugging information. */
6565 struct mips_elf_find_line
6567 struct ecoff_debug_info d;
6568 struct ecoff_find_line i;
6571 boolean
6572 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
6573 functionname_ptr, line_ptr)
6574 bfd *abfd;
6575 asection *section;
6576 asymbol **symbols;
6577 bfd_vma offset;
6578 const char **filename_ptr;
6579 const char **functionname_ptr;
6580 unsigned int *line_ptr;
6582 asection *msec;
6584 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6585 filename_ptr, functionname_ptr,
6586 line_ptr))
6587 return true;
6589 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6590 filename_ptr, functionname_ptr,
6591 line_ptr,
6592 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
6593 &elf_tdata (abfd)->dwarf2_find_line_info))
6594 return true;
6596 msec = bfd_get_section_by_name (abfd, ".mdebug");
6597 if (msec != NULL)
6599 flagword origflags;
6600 struct mips_elf_find_line *fi;
6601 const struct ecoff_debug_swap * const swap =
6602 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
6604 /* If we are called during a link, mips_elf_final_link may have
6605 cleared the SEC_HAS_CONTENTS field. We force it back on here
6606 if appropriate (which it normally will be). */
6607 origflags = msec->flags;
6608 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
6609 msec->flags |= SEC_HAS_CONTENTS;
6611 fi = elf_tdata (abfd)->find_line_info;
6612 if (fi == NULL)
6614 bfd_size_type external_fdr_size;
6615 char *fraw_src;
6616 char *fraw_end;
6617 struct fdr *fdr_ptr;
6618 bfd_size_type amt = sizeof (struct mips_elf_find_line);
6620 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
6621 if (fi == NULL)
6623 msec->flags = origflags;
6624 return false;
6627 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
6629 msec->flags = origflags;
6630 return false;
6633 /* Swap in the FDR information. */
6634 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
6635 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
6636 if (fi->d.fdr == NULL)
6638 msec->flags = origflags;
6639 return false;
6641 external_fdr_size = swap->external_fdr_size;
6642 fdr_ptr = fi->d.fdr;
6643 fraw_src = (char *) fi->d.external_fdr;
6644 fraw_end = (fraw_src
6645 + fi->d.symbolic_header.ifdMax * external_fdr_size);
6646 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
6647 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
6649 elf_tdata (abfd)->find_line_info = fi;
6651 /* Note that we don't bother to ever free this information.
6652 find_nearest_line is either called all the time, as in
6653 objdump -l, so the information should be saved, or it is
6654 rarely called, as in ld error messages, so the memory
6655 wasted is unimportant. Still, it would probably be a
6656 good idea for free_cached_info to throw it away. */
6659 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
6660 &fi->i, filename_ptr, functionname_ptr,
6661 line_ptr))
6663 msec->flags = origflags;
6664 return true;
6667 msec->flags = origflags;
6670 /* Fall back on the generic ELF find_nearest_line routine. */
6672 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
6673 filename_ptr, functionname_ptr,
6674 line_ptr);
6677 /* When are writing out the .options or .MIPS.options section,
6678 remember the bytes we are writing out, so that we can install the
6679 GP value in the section_processing routine. */
6681 boolean
6682 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
6683 bfd *abfd;
6684 sec_ptr section;
6685 PTR location;
6686 file_ptr offset;
6687 bfd_size_type count;
6689 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
6691 bfd_byte *c;
6693 if (elf_section_data (section) == NULL)
6695 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
6696 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
6697 if (elf_section_data (section) == NULL)
6698 return false;
6700 c = (bfd_byte *) elf_section_data (section)->tdata;
6701 if (c == NULL)
6703 bfd_size_type size;
6705 if (section->_cooked_size != 0)
6706 size = section->_cooked_size;
6707 else
6708 size = section->_raw_size;
6709 c = (bfd_byte *) bfd_zalloc (abfd, size);
6710 if (c == NULL)
6711 return false;
6712 elf_section_data (section)->tdata = (PTR) c;
6715 memcpy (c + offset, location, (size_t) count);
6718 return _bfd_elf_set_section_contents (abfd, section, location, offset,
6719 count);
6722 /* This is almost identical to bfd_generic_get_... except that some
6723 MIPS relocations need to be handled specially. Sigh. */
6725 bfd_byte *
6726 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
6727 data, relocateable, symbols)
6728 bfd *abfd;
6729 struct bfd_link_info *link_info;
6730 struct bfd_link_order *link_order;
6731 bfd_byte *data;
6732 boolean relocateable;
6733 asymbol **symbols;
6735 /* Get enough memory to hold the stuff */
6736 bfd *input_bfd = link_order->u.indirect.section->owner;
6737 asection *input_section = link_order->u.indirect.section;
6739 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
6740 arelent **reloc_vector = NULL;
6741 long reloc_count;
6743 if (reloc_size < 0)
6744 goto error_return;
6746 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
6747 if (reloc_vector == NULL && reloc_size != 0)
6748 goto error_return;
6750 /* read in the section */
6751 if (!bfd_get_section_contents (input_bfd,
6752 input_section,
6753 (PTR) data,
6754 (file_ptr) 0,
6755 input_section->_raw_size))
6756 goto error_return;
6758 /* We're not relaxing the section, so just copy the size info */
6759 input_section->_cooked_size = input_section->_raw_size;
6760 input_section->reloc_done = true;
6762 reloc_count = bfd_canonicalize_reloc (input_bfd,
6763 input_section,
6764 reloc_vector,
6765 symbols);
6766 if (reloc_count < 0)
6767 goto error_return;
6769 if (reloc_count > 0)
6771 arelent **parent;
6772 /* for mips */
6773 int gp_found;
6774 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
6777 struct bfd_hash_entry *h;
6778 struct bfd_link_hash_entry *lh;
6779 /* Skip all this stuff if we aren't mixing formats. */
6780 if (abfd && input_bfd
6781 && abfd->xvec == input_bfd->xvec)
6782 lh = 0;
6783 else
6785 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
6786 lh = (struct bfd_link_hash_entry *) h;
6788 lookup:
6789 if (lh)
6791 switch (lh->type)
6793 case bfd_link_hash_undefined:
6794 case bfd_link_hash_undefweak:
6795 case bfd_link_hash_common:
6796 gp_found = 0;
6797 break;
6798 case bfd_link_hash_defined:
6799 case bfd_link_hash_defweak:
6800 gp_found = 1;
6801 gp = lh->u.def.value;
6802 break;
6803 case bfd_link_hash_indirect:
6804 case bfd_link_hash_warning:
6805 lh = lh->u.i.link;
6806 /* @@FIXME ignoring warning for now */
6807 goto lookup;
6808 case bfd_link_hash_new:
6809 default:
6810 abort ();
6813 else
6814 gp_found = 0;
6816 /* end mips */
6817 for (parent = reloc_vector; *parent != (arelent *) NULL;
6818 parent++)
6820 char *error_message = (char *) NULL;
6821 bfd_reloc_status_type r;
6823 /* Specific to MIPS: Deal with relocation types that require
6824 knowing the gp of the output bfd. */
6825 asymbol *sym = *(*parent)->sym_ptr_ptr;
6826 if (bfd_is_abs_section (sym->section) && abfd)
6828 /* The special_function wouldn't get called anyway. */
6830 else if (!gp_found)
6832 /* The gp isn't there; let the special function code
6833 fall over on its own. */
6835 else if ((*parent)->howto->special_function
6836 == _bfd_mips_elf32_gprel16_reloc)
6838 /* bypass special_function call */
6839 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
6840 input_section, relocateable,
6841 (PTR) data, gp);
6842 goto skip_bfd_perform_relocation;
6844 /* end mips specific stuff */
6846 r = bfd_perform_relocation (input_bfd,
6847 *parent,
6848 (PTR) data,
6849 input_section,
6850 relocateable ? abfd : (bfd *) NULL,
6851 &error_message);
6852 skip_bfd_perform_relocation:
6854 if (relocateable)
6856 asection *os = input_section->output_section;
6858 /* A partial link, so keep the relocs */
6859 os->orelocation[os->reloc_count] = *parent;
6860 os->reloc_count++;
6863 if (r != bfd_reloc_ok)
6865 switch (r)
6867 case bfd_reloc_undefined:
6868 if (!((*link_info->callbacks->undefined_symbol)
6869 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
6870 input_bfd, input_section, (*parent)->address,
6871 true)))
6872 goto error_return;
6873 break;
6874 case bfd_reloc_dangerous:
6875 BFD_ASSERT (error_message != (char *) NULL);
6876 if (!((*link_info->callbacks->reloc_dangerous)
6877 (link_info, error_message, input_bfd, input_section,
6878 (*parent)->address)))
6879 goto error_return;
6880 break;
6881 case bfd_reloc_overflow:
6882 if (!((*link_info->callbacks->reloc_overflow)
6883 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
6884 (*parent)->howto->name, (*parent)->addend,
6885 input_bfd, input_section, (*parent)->address)))
6886 goto error_return;
6887 break;
6888 case bfd_reloc_outofrange:
6889 default:
6890 abort ();
6891 break;
6897 if (reloc_vector != NULL)
6898 free (reloc_vector);
6899 return data;
6901 error_return:
6902 if (reloc_vector != NULL)
6903 free (reloc_vector);
6904 return NULL;
6907 /* Create a MIPS ELF linker hash table. */
6909 struct bfd_link_hash_table *
6910 _bfd_mips_elf_link_hash_table_create (abfd)
6911 bfd *abfd;
6913 struct mips_elf_link_hash_table *ret;
6914 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
6916 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
6917 if (ret == (struct mips_elf_link_hash_table *) NULL)
6918 return NULL;
6920 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
6921 mips_elf_link_hash_newfunc))
6923 free (ret);
6924 return NULL;
6927 #if 0
6928 /* We no longer use this. */
6929 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
6930 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
6931 #endif
6932 ret->procedure_count = 0;
6933 ret->compact_rel_size = 0;
6934 ret->use_rld_obj_head = false;
6935 ret->rld_value = 0;
6936 ret->mips16_stubs_seen = false;
6938 return &ret->root.root;
6941 /* We need to use a special link routine to handle the .reginfo and
6942 the .mdebug sections. We need to merge all instances of these
6943 sections together, not write them all out sequentially. */
6945 boolean
6946 _bfd_mips_elf_final_link (abfd, info)
6947 bfd *abfd;
6948 struct bfd_link_info *info;
6950 asection **secpp;
6951 asection *o;
6952 struct bfd_link_order *p;
6953 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
6954 asection *rtproc_sec;
6955 Elf32_RegInfo reginfo;
6956 struct ecoff_debug_info debug;
6957 const struct ecoff_debug_swap *swap
6958 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
6959 HDRR *symhdr = &debug.symbolic_header;
6960 PTR mdebug_handle = NULL;
6961 asection *s;
6962 EXTR esym;
6963 unsigned int i;
6964 bfd_size_type amt;
6966 static const char * const secname[] =
6968 ".text", ".init", ".fini", ".data",
6969 ".rodata", ".sdata", ".sbss", ".bss"
6971 static const int sc[] =
6973 scText, scInit, scFini, scData,
6974 scRData, scSData, scSBss, scBss
6977 /* If all the things we linked together were PIC, but we're
6978 producing an executable (rather than a shared object), then the
6979 resulting file is CPIC (i.e., it calls PIC code.) */
6980 if (!info->shared
6981 && !info->relocateable
6982 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
6984 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
6985 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
6988 /* We'd carefully arranged the dynamic symbol indices, and then the
6989 generic size_dynamic_sections renumbered them out from under us.
6990 Rather than trying somehow to prevent the renumbering, just do
6991 the sort again. */
6992 if (elf_hash_table (info)->dynamic_sections_created)
6994 bfd *dynobj;
6995 asection *got;
6996 struct mips_got_info *g;
6998 /* When we resort, we must tell mips_elf_sort_hash_table what
6999 the lowest index it may use is. That's the number of section
7000 symbols we're going to add. The generic ELF linker only
7001 adds these symbols when building a shared object. Note that
7002 we count the sections after (possibly) removing the .options
7003 section above. */
7004 if (! mips_elf_sort_hash_table (info, (info->shared
7005 ? bfd_count_sections (abfd) + 1
7006 : 1)))
7007 return false;
7009 /* Make sure we didn't grow the global .got region. */
7010 dynobj = elf_hash_table (info)->dynobj;
7011 got = bfd_get_section_by_name (dynobj, ".got");
7012 g = (struct mips_got_info *) elf_section_data (got)->tdata;
7014 if (g->global_gotsym != NULL)
7015 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
7016 - g->global_gotsym->dynindx)
7017 <= g->global_gotno);
7020 #if 0
7021 /* We want to set the GP value for ld -r. */
7022 /* On IRIX5, we omit the .options section. On IRIX6, however, we
7023 include it, even though we don't process it quite right. (Some
7024 entries are supposed to be merged.) Empirically, we seem to be
7025 better off including it then not. */
7026 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7027 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
7029 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7031 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
7032 if (p->type == bfd_indirect_link_order)
7033 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
7034 (*secpp)->link_order_head = NULL;
7035 bfd_section_list_remove (abfd, secpp);
7036 --abfd->section_count;
7038 break;
7042 /* We include .MIPS.options, even though we don't process it quite right.
7043 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
7044 to be better off including it than not. */
7045 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
7047 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
7049 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
7050 if (p->type == bfd_indirect_link_order)
7051 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
7052 (*secpp)->link_order_head = NULL;
7053 bfd_section_list_remove (abfd, secpp);
7054 --abfd->section_count;
7056 break;
7059 #endif
7061 /* Get a value for the GP register. */
7062 if (elf_gp (abfd) == 0)
7064 struct bfd_link_hash_entry *h;
7066 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
7067 if (h != (struct bfd_link_hash_entry *) NULL
7068 && h->type == bfd_link_hash_defined)
7069 elf_gp (abfd) = (h->u.def.value
7070 + h->u.def.section->output_section->vma
7071 + h->u.def.section->output_offset);
7072 else if (info->relocateable)
7074 bfd_vma lo = MINUS_ONE;
7076 /* Find the GP-relative section with the lowest offset. */
7077 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
7078 if (o->vma < lo
7079 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
7080 lo = o->vma;
7082 /* And calculate GP relative to that. */
7083 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
7085 else
7087 /* If the relocate_section function needs to do a reloc
7088 involving the GP value, it should make a reloc_dangerous
7089 callback to warn that GP is not defined. */
7093 /* Go through the sections and collect the .reginfo and .mdebug
7094 information. */
7095 reginfo_sec = NULL;
7096 mdebug_sec = NULL;
7097 gptab_data_sec = NULL;
7098 gptab_bss_sec = NULL;
7099 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
7101 if (strcmp (o->name, ".reginfo") == 0)
7103 memset (&reginfo, 0, sizeof reginfo);
7105 /* We have found the .reginfo section in the output file.
7106 Look through all the link_orders comprising it and merge
7107 the information together. */
7108 for (p = o->link_order_head;
7109 p != (struct bfd_link_order *) NULL;
7110 p = p->next)
7112 asection *input_section;
7113 bfd *input_bfd;
7114 Elf32_External_RegInfo ext;
7115 Elf32_RegInfo sub;
7117 if (p->type != bfd_indirect_link_order)
7119 if (p->type == bfd_data_link_order)
7120 continue;
7121 abort ();
7124 input_section = p->u.indirect.section;
7125 input_bfd = input_section->owner;
7127 /* The linker emulation code has probably clobbered the
7128 size to be zero bytes. */
7129 if (input_section->_raw_size == 0)
7130 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
7132 if (! bfd_get_section_contents (input_bfd, input_section,
7133 (PTR) &ext,
7134 (file_ptr) 0,
7135 (bfd_size_type) sizeof ext))
7136 return false;
7138 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
7140 reginfo.ri_gprmask |= sub.ri_gprmask;
7141 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
7142 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
7143 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
7144 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
7146 /* ri_gp_value is set by the function
7147 mips_elf32_section_processing when the section is
7148 finally written out. */
7150 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7151 elf_link_input_bfd ignores this section. */
7152 input_section->flags &= ~SEC_HAS_CONTENTS;
7155 /* Size has been set in _bfd_mips_elf_always_size_sections. */
7156 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
7158 /* Skip this section later on (I don't think this currently
7159 matters, but someday it might). */
7160 o->link_order_head = (struct bfd_link_order *) NULL;
7162 reginfo_sec = o;
7165 if (strcmp (o->name, ".mdebug") == 0)
7167 struct extsym_info einfo;
7168 bfd_vma last;
7170 /* We have found the .mdebug section in the output file.
7171 Look through all the link_orders comprising it and merge
7172 the information together. */
7173 symhdr->magic = swap->sym_magic;
7174 /* FIXME: What should the version stamp be? */
7175 symhdr->vstamp = 0;
7176 symhdr->ilineMax = 0;
7177 symhdr->cbLine = 0;
7178 symhdr->idnMax = 0;
7179 symhdr->ipdMax = 0;
7180 symhdr->isymMax = 0;
7181 symhdr->ioptMax = 0;
7182 symhdr->iauxMax = 0;
7183 symhdr->issMax = 0;
7184 symhdr->issExtMax = 0;
7185 symhdr->ifdMax = 0;
7186 symhdr->crfd = 0;
7187 symhdr->iextMax = 0;
7189 /* We accumulate the debugging information itself in the
7190 debug_info structure. */
7191 debug.line = NULL;
7192 debug.external_dnr = NULL;
7193 debug.external_pdr = NULL;
7194 debug.external_sym = NULL;
7195 debug.external_opt = NULL;
7196 debug.external_aux = NULL;
7197 debug.ss = NULL;
7198 debug.ssext = debug.ssext_end = NULL;
7199 debug.external_fdr = NULL;
7200 debug.external_rfd = NULL;
7201 debug.external_ext = debug.external_ext_end = NULL;
7203 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
7204 if (mdebug_handle == (PTR) NULL)
7205 return false;
7207 esym.jmptbl = 0;
7208 esym.cobol_main = 0;
7209 esym.weakext = 0;
7210 esym.reserved = 0;
7211 esym.ifd = ifdNil;
7212 esym.asym.iss = issNil;
7213 esym.asym.st = stLocal;
7214 esym.asym.reserved = 0;
7215 esym.asym.index = indexNil;
7216 last = 0;
7217 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
7219 esym.asym.sc = sc[i];
7220 s = bfd_get_section_by_name (abfd, secname[i]);
7221 if (s != NULL)
7223 esym.asym.value = s->vma;
7224 last = s->vma + s->_raw_size;
7226 else
7227 esym.asym.value = last;
7228 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
7229 secname[i], &esym))
7230 return false;
7233 for (p = o->link_order_head;
7234 p != (struct bfd_link_order *) NULL;
7235 p = p->next)
7237 asection *input_section;
7238 bfd *input_bfd;
7239 const struct ecoff_debug_swap *input_swap;
7240 struct ecoff_debug_info input_debug;
7241 char *eraw_src;
7242 char *eraw_end;
7244 if (p->type != bfd_indirect_link_order)
7246 if (p->type == bfd_data_link_order)
7247 continue;
7248 abort ();
7251 input_section = p->u.indirect.section;
7252 input_bfd = input_section->owner;
7254 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
7255 || (get_elf_backend_data (input_bfd)
7256 ->elf_backend_ecoff_debug_swap) == NULL)
7258 /* I don't know what a non MIPS ELF bfd would be
7259 doing with a .mdebug section, but I don't really
7260 want to deal with it. */
7261 continue;
7264 input_swap = (get_elf_backend_data (input_bfd)
7265 ->elf_backend_ecoff_debug_swap);
7267 BFD_ASSERT (p->size == input_section->_raw_size);
7269 /* The ECOFF linking code expects that we have already
7270 read in the debugging information and set up an
7271 ecoff_debug_info structure, so we do that now. */
7272 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
7273 &input_debug))
7274 return false;
7276 if (! (bfd_ecoff_debug_accumulate
7277 (mdebug_handle, abfd, &debug, swap, input_bfd,
7278 &input_debug, input_swap, info)))
7279 return false;
7281 /* Loop through the external symbols. For each one with
7282 interesting information, try to find the symbol in
7283 the linker global hash table and save the information
7284 for the output external symbols. */
7285 eraw_src = input_debug.external_ext;
7286 eraw_end = (eraw_src
7287 + (input_debug.symbolic_header.iextMax
7288 * input_swap->external_ext_size));
7289 for (;
7290 eraw_src < eraw_end;
7291 eraw_src += input_swap->external_ext_size)
7293 EXTR ext;
7294 const char *name;
7295 struct mips_elf_link_hash_entry *h;
7297 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
7298 if (ext.asym.sc == scNil
7299 || ext.asym.sc == scUndefined
7300 || ext.asym.sc == scSUndefined)
7301 continue;
7303 name = input_debug.ssext + ext.asym.iss;
7304 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
7305 name, false, false, true);
7306 if (h == NULL || h->esym.ifd != -2)
7307 continue;
7309 if (ext.ifd != -1)
7311 BFD_ASSERT (ext.ifd
7312 < input_debug.symbolic_header.ifdMax);
7313 ext.ifd = input_debug.ifdmap[ext.ifd];
7316 h->esym = ext;
7319 /* Free up the information we just read. */
7320 free (input_debug.line);
7321 free (input_debug.external_dnr);
7322 free (input_debug.external_pdr);
7323 free (input_debug.external_sym);
7324 free (input_debug.external_opt);
7325 free (input_debug.external_aux);
7326 free (input_debug.ss);
7327 free (input_debug.ssext);
7328 free (input_debug.external_fdr);
7329 free (input_debug.external_rfd);
7330 free (input_debug.external_ext);
7332 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7333 elf_link_input_bfd ignores this section. */
7334 input_section->flags &= ~SEC_HAS_CONTENTS;
7337 if (SGI_COMPAT (abfd) && info->shared)
7339 /* Create .rtproc section. */
7340 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
7341 if (rtproc_sec == NULL)
7343 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
7344 | SEC_LINKER_CREATED | SEC_READONLY);
7346 rtproc_sec = bfd_make_section (abfd, ".rtproc");
7347 if (rtproc_sec == NULL
7348 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
7349 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
7350 return false;
7353 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
7354 info, rtproc_sec,
7355 &debug))
7356 return false;
7359 /* Build the external symbol information. */
7360 einfo.abfd = abfd;
7361 einfo.info = info;
7362 einfo.debug = &debug;
7363 einfo.swap = swap;
7364 einfo.failed = false;
7365 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7366 mips_elf_output_extsym,
7367 (PTR) &einfo);
7368 if (einfo.failed)
7369 return false;
7371 /* Set the size of the .mdebug section. */
7372 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
7374 /* Skip this section later on (I don't think this currently
7375 matters, but someday it might). */
7376 o->link_order_head = (struct bfd_link_order *) NULL;
7378 mdebug_sec = o;
7381 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
7383 const char *subname;
7384 unsigned int c;
7385 Elf32_gptab *tab;
7386 Elf32_External_gptab *ext_tab;
7387 unsigned int j;
7389 /* The .gptab.sdata and .gptab.sbss sections hold
7390 information describing how the small data area would
7391 change depending upon the -G switch. These sections
7392 not used in executables files. */
7393 if (! info->relocateable)
7395 for (p = o->link_order_head;
7396 p != (struct bfd_link_order *) NULL;
7397 p = p->next)
7399 asection *input_section;
7401 if (p->type != bfd_indirect_link_order)
7403 if (p->type == bfd_data_link_order)
7404 continue;
7405 abort ();
7408 input_section = p->u.indirect.section;
7410 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7411 elf_link_input_bfd ignores this section. */
7412 input_section->flags &= ~SEC_HAS_CONTENTS;
7415 /* Skip this section later on (I don't think this
7416 currently matters, but someday it might). */
7417 o->link_order_head = (struct bfd_link_order *) NULL;
7419 /* Really remove the section. */
7420 for (secpp = &abfd->sections;
7421 *secpp != o;
7422 secpp = &(*secpp)->next)
7424 bfd_section_list_remove (abfd, secpp);
7425 --abfd->section_count;
7427 continue;
7430 /* There is one gptab for initialized data, and one for
7431 uninitialized data. */
7432 if (strcmp (o->name, ".gptab.sdata") == 0)
7433 gptab_data_sec = o;
7434 else if (strcmp (o->name, ".gptab.sbss") == 0)
7435 gptab_bss_sec = o;
7436 else
7438 (*_bfd_error_handler)
7439 (_("%s: illegal section name `%s'"),
7440 bfd_get_filename (abfd), o->name);
7441 bfd_set_error (bfd_error_nonrepresentable_section);
7442 return false;
7445 /* The linker script always combines .gptab.data and
7446 .gptab.sdata into .gptab.sdata, and likewise for
7447 .gptab.bss and .gptab.sbss. It is possible that there is
7448 no .sdata or .sbss section in the output file, in which
7449 case we must change the name of the output section. */
7450 subname = o->name + sizeof ".gptab" - 1;
7451 if (bfd_get_section_by_name (abfd, subname) == NULL)
7453 if (o == gptab_data_sec)
7454 o->name = ".gptab.data";
7455 else
7456 o->name = ".gptab.bss";
7457 subname = o->name + sizeof ".gptab" - 1;
7458 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
7461 /* Set up the first entry. */
7462 c = 1;
7463 amt = c * sizeof (Elf32_gptab);
7464 tab = (Elf32_gptab *) bfd_malloc (amt);
7465 if (tab == NULL)
7466 return false;
7467 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
7468 tab[0].gt_header.gt_unused = 0;
7470 /* Combine the input sections. */
7471 for (p = o->link_order_head;
7472 p != (struct bfd_link_order *) NULL;
7473 p = p->next)
7475 asection *input_section;
7476 bfd *input_bfd;
7477 bfd_size_type size;
7478 unsigned long last;
7479 bfd_size_type gpentry;
7481 if (p->type != bfd_indirect_link_order)
7483 if (p->type == bfd_data_link_order)
7484 continue;
7485 abort ();
7488 input_section = p->u.indirect.section;
7489 input_bfd = input_section->owner;
7491 /* Combine the gptab entries for this input section one
7492 by one. We know that the input gptab entries are
7493 sorted by ascending -G value. */
7494 size = bfd_section_size (input_bfd, input_section);
7495 last = 0;
7496 for (gpentry = sizeof (Elf32_External_gptab);
7497 gpentry < size;
7498 gpentry += sizeof (Elf32_External_gptab))
7500 Elf32_External_gptab ext_gptab;
7501 Elf32_gptab int_gptab;
7502 unsigned long val;
7503 unsigned long add;
7504 boolean exact;
7505 unsigned int look;
7507 if (! (bfd_get_section_contents
7508 (input_bfd, input_section, (PTR) &ext_gptab,
7509 (file_ptr) gpentry,
7510 (bfd_size_type) sizeof (Elf32_External_gptab))))
7512 free (tab);
7513 return false;
7516 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
7517 &int_gptab);
7518 val = int_gptab.gt_entry.gt_g_value;
7519 add = int_gptab.gt_entry.gt_bytes - last;
7521 exact = false;
7522 for (look = 1; look < c; look++)
7524 if (tab[look].gt_entry.gt_g_value >= val)
7525 tab[look].gt_entry.gt_bytes += add;
7527 if (tab[look].gt_entry.gt_g_value == val)
7528 exact = true;
7531 if (! exact)
7533 Elf32_gptab *new_tab;
7534 unsigned int max;
7536 /* We need a new table entry. */
7537 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
7538 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
7539 if (new_tab == NULL)
7541 free (tab);
7542 return false;
7544 tab = new_tab;
7545 tab[c].gt_entry.gt_g_value = val;
7546 tab[c].gt_entry.gt_bytes = add;
7548 /* Merge in the size for the next smallest -G
7549 value, since that will be implied by this new
7550 value. */
7551 max = 0;
7552 for (look = 1; look < c; look++)
7554 if (tab[look].gt_entry.gt_g_value < val
7555 && (max == 0
7556 || (tab[look].gt_entry.gt_g_value
7557 > tab[max].gt_entry.gt_g_value)))
7558 max = look;
7560 if (max != 0)
7561 tab[c].gt_entry.gt_bytes +=
7562 tab[max].gt_entry.gt_bytes;
7564 ++c;
7567 last = int_gptab.gt_entry.gt_bytes;
7570 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7571 elf_link_input_bfd ignores this section. */
7572 input_section->flags &= ~SEC_HAS_CONTENTS;
7575 /* The table must be sorted by -G value. */
7576 if (c > 2)
7577 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
7579 /* Swap out the table. */
7580 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
7581 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
7582 if (ext_tab == NULL)
7584 free (tab);
7585 return false;
7588 for (j = 0; j < c; j++)
7589 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
7590 free (tab);
7592 o->_raw_size = c * sizeof (Elf32_External_gptab);
7593 o->contents = (bfd_byte *) ext_tab;
7595 /* Skip this section later on (I don't think this currently
7596 matters, but someday it might). */
7597 o->link_order_head = (struct bfd_link_order *) NULL;
7601 /* Invoke the regular ELF backend linker to do all the work. */
7602 if (ABI_64_P (abfd))
7604 #ifdef BFD64
7605 if (!bfd_elf64_bfd_final_link (abfd, info))
7606 return false;
7607 #else
7608 abort ();
7609 return false;
7610 #endif /* BFD64 */
7612 else if (!bfd_elf32_bfd_final_link (abfd, info))
7613 return false;
7615 /* Now write out the computed sections. */
7617 if (reginfo_sec != (asection *) NULL)
7619 Elf32_External_RegInfo ext;
7621 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
7622 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
7623 (file_ptr) 0,
7624 (bfd_size_type) sizeof ext))
7625 return false;
7628 if (mdebug_sec != (asection *) NULL)
7630 BFD_ASSERT (abfd->output_has_begun);
7631 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
7632 swap, info,
7633 mdebug_sec->filepos))
7634 return false;
7636 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
7639 if (gptab_data_sec != (asection *) NULL)
7641 if (! bfd_set_section_contents (abfd, gptab_data_sec,
7642 gptab_data_sec->contents,
7643 (file_ptr) 0,
7644 gptab_data_sec->_raw_size))
7645 return false;
7648 if (gptab_bss_sec != (asection *) NULL)
7650 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
7651 gptab_bss_sec->contents,
7652 (file_ptr) 0,
7653 gptab_bss_sec->_raw_size))
7654 return false;
7657 if (SGI_COMPAT (abfd))
7659 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
7660 if (rtproc_sec != NULL)
7662 if (! bfd_set_section_contents (abfd, rtproc_sec,
7663 rtproc_sec->contents,
7664 (file_ptr) 0,
7665 rtproc_sec->_raw_size))
7666 return false;
7670 return true;
7673 /* Return true if machine EXTENSION is an extension of machine BASE,
7674 meaning that it should be safe to link code for the two machines
7675 and set the output machine to EXTENSION. EXTENSION and BASE are
7676 both submasks of EF_MIPS_MACH. */
7678 static boolean
7679 _bfd_mips_elf_mach_extends_p (base, extension)
7680 flagword base, extension;
7682 /* The vr5500 ISA is an extension of the core vr5400 ISA, but doesn't
7683 include the multimedia stuff. It seems better to allow vr5400
7684 and vr5500 code to be merged anyway, since many libraries will
7685 just use the core ISA. Perhaps we could add some sort of ASE
7686 flag if this ever proves a problem. */
7687 return (base == 0
7688 || (base == E_MIPS_MACH_5400 && extension == E_MIPS_MACH_5500)
7689 || (base == E_MIPS_MACH_4100 && extension == E_MIPS_MACH_4111)
7690 || (base == E_MIPS_MACH_4100 && extension == E_MIPS_MACH_4120));
7693 /* Merge backend specific data from an object file to the output
7694 object file when linking. */
7696 boolean
7697 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
7698 bfd *ibfd;
7699 bfd *obfd;
7701 flagword old_flags;
7702 flagword new_flags;
7703 boolean ok;
7704 boolean null_input_bfd = true;
7705 asection *sec;
7707 /* Check if we have the same endianess */
7708 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
7709 return false;
7711 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7712 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7713 return true;
7715 new_flags = elf_elfheader (ibfd)->e_flags;
7716 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
7717 old_flags = elf_elfheader (obfd)->e_flags;
7719 if (! elf_flags_init (obfd))
7721 elf_flags_init (obfd) = true;
7722 elf_elfheader (obfd)->e_flags = new_flags;
7723 elf_elfheader (obfd)->e_ident[EI_CLASS]
7724 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
7726 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7727 && bfd_get_arch_info (obfd)->the_default)
7729 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7730 bfd_get_mach (ibfd)))
7731 return false;
7734 return true;
7737 /* Check flag compatibility. */
7739 new_flags &= ~EF_MIPS_NOREORDER;
7740 old_flags &= ~EF_MIPS_NOREORDER;
7742 if (new_flags == old_flags)
7743 return true;
7745 /* Check to see if the input BFD actually contains any sections.
7746 If not, its flags may not have been initialised either, but it cannot
7747 actually cause any incompatibility. */
7748 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7750 /* Ignore synthetic sections and empty .text, .data and .bss sections
7751 which are automatically generated by gas. */
7752 if (strcmp (sec->name, ".reginfo")
7753 && strcmp (sec->name, ".mdebug")
7754 && ((!strcmp (sec->name, ".text")
7755 || !strcmp (sec->name, ".data")
7756 || !strcmp (sec->name, ".bss"))
7757 && sec->_raw_size != 0))
7759 null_input_bfd = false;
7760 break;
7763 if (null_input_bfd)
7764 return true;
7766 ok = true;
7768 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
7770 new_flags &= ~EF_MIPS_PIC;
7771 old_flags &= ~EF_MIPS_PIC;
7772 (*_bfd_error_handler)
7773 (_("%s: linking PIC files with non-PIC files"),
7774 bfd_archive_filename (ibfd));
7775 ok = false;
7778 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
7780 new_flags &= ~EF_MIPS_CPIC;
7781 old_flags &= ~EF_MIPS_CPIC;
7782 (*_bfd_error_handler)
7783 (_("%s: linking abicalls files with non-abicalls files"),
7784 bfd_archive_filename (ibfd));
7785 ok = false;
7788 /* Compare the ISA's. */
7789 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
7790 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
7792 int new_mach = new_flags & EF_MIPS_MACH;
7793 int old_mach = old_flags & EF_MIPS_MACH;
7794 int new_isa = elf_mips_isa (new_flags);
7795 int old_isa = elf_mips_isa (old_flags);
7797 /* If either has no machine specified, just compare the general isa's.
7798 Some combinations of machines are ok, if the isa's match. */
7799 if (new_mach == old_mach
7800 || _bfd_mips_elf_mach_extends_p (new_mach, old_mach)
7801 || _bfd_mips_elf_mach_extends_p (old_mach, new_mach))
7803 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
7804 using 64-bit ISAs. They will normally use the same data sizes
7805 and calling conventions. */
7807 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
7808 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
7810 (*_bfd_error_handler)
7811 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
7812 bfd_archive_filename (ibfd), new_isa, old_isa);
7813 ok = false;
7815 else
7817 /* Do we need to update the mach field? */
7818 if (_bfd_mips_elf_mach_extends_p (old_mach, new_mach))
7820 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_MACH;
7821 elf_elfheader (obfd)->e_flags |= new_mach;
7824 /* Do we need to update the ISA field? */
7825 if (new_isa > old_isa)
7827 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_ARCH;
7828 elf_elfheader (obfd)->e_flags
7829 |= new_flags & EF_MIPS_ARCH;
7833 else
7835 (*_bfd_error_handler)
7836 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
7837 bfd_archive_filename (ibfd),
7838 _bfd_elf_mips_mach (new_flags),
7839 _bfd_elf_mips_mach (old_flags));
7840 ok = false;
7843 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7844 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7847 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
7848 does set EI_CLASS differently from any 32-bit ABI. */
7849 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
7850 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7851 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
7853 /* Only error if both are set (to different values). */
7854 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
7855 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7856 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
7858 (*_bfd_error_handler)
7859 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
7860 bfd_archive_filename (ibfd),
7861 elf_mips_abi_name (ibfd),
7862 elf_mips_abi_name (obfd));
7863 ok = false;
7865 new_flags &= ~EF_MIPS_ABI;
7866 old_flags &= ~EF_MIPS_ABI;
7869 /* For now, allow arbitrary mixing of ASEs (retain the union). */
7870 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
7872 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
7874 new_flags &= ~ EF_MIPS_ARCH_ASE;
7875 old_flags &= ~ EF_MIPS_ARCH_ASE;
7878 /* Warn about any other mismatches */
7879 if (new_flags != old_flags)
7881 (*_bfd_error_handler)
7882 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
7883 bfd_archive_filename (ibfd), (unsigned long) new_flags,
7884 (unsigned long) old_flags);
7885 ok = false;
7888 if (! ok)
7890 bfd_set_error (bfd_error_bad_value);
7891 return false;
7894 return true;
7897 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
7899 boolean
7900 _bfd_mips_elf_set_private_flags (abfd, flags)
7901 bfd *abfd;
7902 flagword flags;
7904 BFD_ASSERT (!elf_flags_init (abfd)
7905 || elf_elfheader (abfd)->e_flags == flags);
7907 elf_elfheader (abfd)->e_flags = flags;
7908 elf_flags_init (abfd) = true;
7909 return true;
7912 boolean
7913 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
7914 bfd *abfd;
7915 PTR ptr;
7917 FILE *file = (FILE *) ptr;
7919 BFD_ASSERT (abfd != NULL && ptr != NULL);
7921 /* Print normal ELF private data. */
7922 _bfd_elf_print_private_bfd_data (abfd, ptr);
7924 /* xgettext:c-format */
7925 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7927 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
7928 fprintf (file, _(" [abi=O32]"));
7929 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
7930 fprintf (file, _(" [abi=O64]"));
7931 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
7932 fprintf (file, _(" [abi=EABI32]"));
7933 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7934 fprintf (file, _(" [abi=EABI64]"));
7935 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
7936 fprintf (file, _(" [abi unknown]"));
7937 else if (ABI_N32_P (abfd))
7938 fprintf (file, _(" [abi=N32]"));
7939 else if (ABI_64_P (abfd))
7940 fprintf (file, _(" [abi=64]"));
7941 else
7942 fprintf (file, _(" [no abi set]"));
7944 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
7945 fprintf (file, _(" [mips1]"));
7946 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
7947 fprintf (file, _(" [mips2]"));
7948 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
7949 fprintf (file, _(" [mips3]"));
7950 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
7951 fprintf (file, _(" [mips4]"));
7952 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
7953 fprintf (file, _(" [mips5]"));
7954 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
7955 fprintf (file, _(" [mips32]"));
7956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
7957 fprintf (file, _(" [mips64]"));
7958 else
7959 fprintf (file, _(" [unknown ISA]"));
7961 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
7962 fprintf (file, _(" [mdmx]"));
7964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
7965 fprintf (file, _(" [mips16]"));
7967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
7968 fprintf (file, _(" [32bitmode]"));
7969 else
7970 fprintf (file, _(" [not 32bitmode]"));
7972 fputc ('\n', file);
7974 return true;