1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
32 #include "safe-ctype.h"
36 #include "opcode/arm.h"
40 #include "dwarf2dbg.h"
41 #include "dw2gencfi.h"
44 /* XXX Set this to 1 after the next binutils release. */
45 #define WARN_DEPRECATED 0
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
51 /* This structure holds the unwinding state. */
56 symbolS
* table_entry
;
57 symbolS
* personality_routine
;
58 int personality_index
;
59 /* The segment containing the function. */
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes
;
66 /* The number of bytes pushed to the stack. */
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset
;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
76 /* Nonzero if an unwind_setfp directive has been seen. */
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored
:1;
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency
= 0;
89 /* Results from operand parsing worker functions. */
93 PARSE_OPERAND_SUCCESS
,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result
;
101 ARM_FLOAT_ABI_SOFTFP
,
105 /* Types of processor to assemble for. */
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
132 #endif /* ifndef FPU_DEFAULT */
134 #define streq(a, b) (strcmp (a, b) == 0)
136 static arm_feature_set cpu_variant
;
137 static arm_feature_set arm_arch_used
;
138 static arm_feature_set thumb_arch_used
;
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26
= FALSE
;
142 static int atpcs
= FALSE
;
143 static int support_interwork
= FALSE
;
144 static int uses_apcs_float
= FALSE
;
145 static int pic_code
= FALSE
;
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
150 static const arm_feature_set
*legacy_cpu
= NULL
;
151 static const arm_feature_set
*legacy_fpu
= NULL
;
153 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
154 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
155 static const arm_feature_set
*march_cpu_opt
= NULL
;
156 static const arm_feature_set
*march_fpu_opt
= NULL
;
157 static const arm_feature_set
*mfpu_opt
= NULL
;
159 /* Constants for known architecture features. */
160 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
161 static const arm_feature_set fpu_arch_vfp_v1
= FPU_ARCH_VFP_V1
;
162 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
163 static const arm_feature_set fpu_arch_vfp_v3
= FPU_ARCH_VFP_V3
;
164 static const arm_feature_set fpu_arch_neon_v1
= FPU_ARCH_NEON_V1
;
165 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
166 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
167 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
168 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
171 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
174 static const arm_feature_set arm_ext_v1
= ARM_FEATURE (ARM_EXT_V1
, 0);
175 static const arm_feature_set arm_ext_v2
= ARM_FEATURE (ARM_EXT_V1
, 0);
176 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE (ARM_EXT_V2S
, 0);
177 static const arm_feature_set arm_ext_v3
= ARM_FEATURE (ARM_EXT_V3
, 0);
178 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE (ARM_EXT_V3M
, 0);
179 static const arm_feature_set arm_ext_v4
= ARM_FEATURE (ARM_EXT_V4
, 0);
180 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE (ARM_EXT_V4T
, 0);
181 static const arm_feature_set arm_ext_v5
= ARM_FEATURE (ARM_EXT_V5
, 0);
182 static const arm_feature_set arm_ext_v4t_5
=
183 ARM_FEATURE (ARM_EXT_V4T
| ARM_EXT_V5
, 0);
184 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE (ARM_EXT_V5T
, 0);
185 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE (ARM_EXT_V5E
, 0);
186 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE (ARM_EXT_V5ExP
, 0);
187 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE (ARM_EXT_V5J
, 0);
188 static const arm_feature_set arm_ext_v6
= ARM_FEATURE (ARM_EXT_V6
, 0);
189 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE (ARM_EXT_V6K
, 0);
190 static const arm_feature_set arm_ext_v6z
= ARM_FEATURE (ARM_EXT_V6Z
, 0);
191 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE (ARM_EXT_V6T2
, 0);
192 static const arm_feature_set arm_ext_v6_notm
= ARM_FEATURE (ARM_EXT_V6_NOTM
, 0);
193 static const arm_feature_set arm_ext_div
= ARM_FEATURE (ARM_EXT_DIV
, 0);
194 static const arm_feature_set arm_ext_v7
= ARM_FEATURE (ARM_EXT_V7
, 0);
195 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE (ARM_EXT_V7A
, 0);
196 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE (ARM_EXT_V7R
, 0);
197 static const arm_feature_set arm_ext_v7m
= ARM_FEATURE (ARM_EXT_V7M
, 0);
199 static const arm_feature_set arm_arch_any
= ARM_ANY
;
200 static const arm_feature_set arm_arch_full
= ARM_FEATURE (-1, -1);
201 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
202 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
204 static const arm_feature_set arm_cext_iwmmxt
=
205 ARM_FEATURE (0, ARM_CEXT_IWMMXT
);
206 static const arm_feature_set arm_cext_xscale
=
207 ARM_FEATURE (0, ARM_CEXT_XSCALE
);
208 static const arm_feature_set arm_cext_maverick
=
209 ARM_FEATURE (0, ARM_CEXT_MAVERICK
);
210 static const arm_feature_set fpu_fpa_ext_v1
= ARM_FEATURE (0, FPU_FPA_EXT_V1
);
211 static const arm_feature_set fpu_fpa_ext_v2
= ARM_FEATURE (0, FPU_FPA_EXT_V2
);
212 static const arm_feature_set fpu_vfp_ext_v1xd
=
213 ARM_FEATURE (0, FPU_VFP_EXT_V1xD
);
214 static const arm_feature_set fpu_vfp_ext_v1
= ARM_FEATURE (0, FPU_VFP_EXT_V1
);
215 static const arm_feature_set fpu_vfp_ext_v2
= ARM_FEATURE (0, FPU_VFP_EXT_V2
);
216 static const arm_feature_set fpu_vfp_ext_v3
= ARM_FEATURE (0, FPU_VFP_EXT_V3
);
217 static const arm_feature_set fpu_neon_ext_v1
= ARM_FEATURE (0, FPU_NEON_EXT_V1
);
218 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
219 ARM_FEATURE (0, FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
221 static int mfloat_abi_opt
= -1;
222 /* Record user cpu selection for object attributes. */
223 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
224 /* Must be long enough to hold any of the names in arm_cpus. */
225 static char selected_cpu_name
[16];
228 static int meabi_flags
= EABI_DEFAULT
;
230 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
235 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
236 symbolS
* GOT_symbol
;
239 /* 0: assemble for ARM,
240 1: assemble for Thumb,
241 2: assemble for Thumb even though target CPU does not support thumb
243 static int thumb_mode
= 0;
245 /* If unified_syntax is true, we are processing the new unified
246 ARM/Thumb syntax. Important differences from the old ARM mode:
248 - Immediate operands do not require a # prefix.
249 - Conditional affixes always appear at the end of the
250 instruction. (For backward compatibility, those instructions
251 that formerly had them in the middle, continue to accept them
253 - The IT instruction may appear, and if it does is validated
254 against subsequent conditional affixes. It does not generate
257 Important differences from the old Thumb mode:
259 - Immediate operands do not require a # prefix.
260 - Most of the V6T2 instructions are only available in unified mode.
261 - The .N and .W suffixes are recognized and honored (it is an error
262 if they cannot be honored).
263 - All instructions set the flags if and only if they have an 's' affix.
264 - Conditional affixes may be used. They are validated against
265 preceding IT instructions. Unlike ARM mode, you cannot use a
266 conditional affix except in the scope of an IT instruction. */
268 static bfd_boolean unified_syntax
= FALSE
;
283 enum neon_el_type type
;
287 #define NEON_MAX_TYPE_ELS 4
291 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
298 unsigned long instruction
;
302 /* "uncond_value" is set to the value in place of the conditional field in
303 unconditional versions of the instruction, or -1 if nothing is
306 struct neon_type vectype
;
307 /* Set to the opcode if the instruction needs relaxation.
308 Zero if the instruction is not relaxed. */
312 bfd_reloc_code_real_type type
;
321 struct neon_type_el vectype
;
322 unsigned present
: 1; /* Operand present. */
323 unsigned isreg
: 1; /* Operand was a register. */
324 unsigned immisreg
: 1; /* .imm field is a second register. */
325 unsigned isscalar
: 1; /* Operand is a (Neon) scalar. */
326 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
327 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
328 instructions. This allows us to disambiguate ARM <-> vector insns. */
329 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
330 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
331 unsigned isquad
: 1; /* Operand is Neon quad-precision register. */
332 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
333 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
334 unsigned writeback
: 1; /* Operand has trailing ! */
335 unsigned preind
: 1; /* Preindexed address. */
336 unsigned postind
: 1; /* Postindexed address. */
337 unsigned negative
: 1; /* Index register was negated. */
338 unsigned shifted
: 1; /* Shift applied to operation. */
339 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
343 static struct arm_it inst
;
345 #define NUM_FLOAT_VALS 8
347 const char * fp_const
[] =
349 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
352 /* Number of littlenums required to hold an extended precision number. */
353 #define MAX_LITTLENUMS 6
355 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
365 #define CP_T_X 0x00008000
366 #define CP_T_Y 0x00400000
368 #define CONDS_BIT 0x00100000
369 #define LOAD_BIT 0x00100000
371 #define DOUBLE_LOAD_FLAG 0x00000001
375 const char * template;
379 #define COND_ALWAYS 0xE
383 const char *template;
387 struct asm_barrier_opt
389 const char *template;
393 /* The bit that distinguishes CPSR and SPSR. */
394 #define SPSR_BIT (1 << 22)
396 /* The individual PSR flag bits. */
397 #define PSR_c (1 << 16)
398 #define PSR_x (1 << 17)
399 #define PSR_s (1 << 18)
400 #define PSR_f (1 << 19)
405 bfd_reloc_code_real_type reloc
;
410 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
411 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
416 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
419 /* Bits for DEFINED field in neon_typed_alias. */
420 #define NTA_HASTYPE 1
421 #define NTA_HASINDEX 2
423 struct neon_typed_alias
425 unsigned char defined
;
427 struct neon_type_el eltype
;
430 /* ARM register categories. This includes coprocessor numbers and various
431 architecture extensions' registers. */
457 /* Structure for a hash table entry for a register.
458 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
459 information which states whether a vector type or index is specified (for a
460 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
464 unsigned char number
;
466 unsigned char builtin
;
467 struct neon_typed_alias
*neon
;
470 /* Diagnostics used when we don't get a register of the expected type. */
471 const char *const reg_expected_msgs
[] =
473 N_("ARM register expected"),
474 N_("bad or missing co-processor number"),
475 N_("co-processor register expected"),
476 N_("FPA register expected"),
477 N_("VFP single precision register expected"),
478 N_("VFP/Neon double precision register expected"),
479 N_("Neon quad precision register expected"),
480 N_("VFP single or double precision register expected"),
481 N_("Neon double or quad precision register expected"),
482 N_("VFP single, double or Neon quad precision register expected"),
483 N_("VFP system register expected"),
484 N_("Maverick MVF register expected"),
485 N_("Maverick MVD register expected"),
486 N_("Maverick MVFX register expected"),
487 N_("Maverick MVDX register expected"),
488 N_("Maverick MVAX register expected"),
489 N_("Maverick DSPSC register expected"),
490 N_("iWMMXt data register expected"),
491 N_("iWMMXt control register expected"),
492 N_("iWMMXt scalar register expected"),
493 N_("XScale accumulator register expected"),
496 /* Some well known registers that we refer to directly elsewhere. */
501 /* ARM instructions take 4bytes in the object file, Thumb instructions
507 /* Basic string to match. */
508 const char *template;
510 /* Parameters to instruction. */
511 unsigned char operands
[8];
513 /* Conditional tag - see opcode_lookup. */
514 unsigned int tag
: 4;
516 /* Basic instruction code. */
517 unsigned int avalue
: 28;
519 /* Thumb-format instruction code. */
522 /* Which architecture variant provides this instruction. */
523 const arm_feature_set
*avariant
;
524 const arm_feature_set
*tvariant
;
526 /* Function to call to encode instruction in ARM format. */
527 void (* aencode
) (void);
529 /* Function to call to encode instruction in Thumb format. */
530 void (* tencode
) (void);
533 /* Defines for various bits that we will want to toggle. */
534 #define INST_IMMEDIATE 0x02000000
535 #define OFFSET_REG 0x02000000
536 #define HWOFFSET_IMM 0x00400000
537 #define SHIFT_BY_REG 0x00000010
538 #define PRE_INDEX 0x01000000
539 #define INDEX_UP 0x00800000
540 #define WRITE_BACK 0x00200000
541 #define LDM_TYPE_2_OR_3 0x00400000
543 #define LITERAL_MASK 0xf000f000
544 #define OPCODE_MASK 0xfe1fffff
545 #define V4_STR_BIT 0x00000020
547 #define DATA_OP_SHIFT 21
549 #define T2_OPCODE_MASK 0xfe1fffff
550 #define T2_DATA_OP_SHIFT 21
552 /* Codes to distinguish the arithmetic instructions. */
563 #define OPCODE_CMP 10
564 #define OPCODE_CMN 11
565 #define OPCODE_ORR 12
566 #define OPCODE_MOV 13
567 #define OPCODE_BIC 14
568 #define OPCODE_MVN 15
570 #define T2_OPCODE_AND 0
571 #define T2_OPCODE_BIC 1
572 #define T2_OPCODE_ORR 2
573 #define T2_OPCODE_ORN 3
574 #define T2_OPCODE_EOR 4
575 #define T2_OPCODE_ADD 8
576 #define T2_OPCODE_ADC 10
577 #define T2_OPCODE_SBC 11
578 #define T2_OPCODE_SUB 13
579 #define T2_OPCODE_RSB 14
581 #define T_OPCODE_MUL 0x4340
582 #define T_OPCODE_TST 0x4200
583 #define T_OPCODE_CMN 0x42c0
584 #define T_OPCODE_NEG 0x4240
585 #define T_OPCODE_MVN 0x43c0
587 #define T_OPCODE_ADD_R3 0x1800
588 #define T_OPCODE_SUB_R3 0x1a00
589 #define T_OPCODE_ADD_HI 0x4400
590 #define T_OPCODE_ADD_ST 0xb000
591 #define T_OPCODE_SUB_ST 0xb080
592 #define T_OPCODE_ADD_SP 0xa800
593 #define T_OPCODE_ADD_PC 0xa000
594 #define T_OPCODE_ADD_I8 0x3000
595 #define T_OPCODE_SUB_I8 0x3800
596 #define T_OPCODE_ADD_I3 0x1c00
597 #define T_OPCODE_SUB_I3 0x1e00
599 #define T_OPCODE_ASR_R 0x4100
600 #define T_OPCODE_LSL_R 0x4080
601 #define T_OPCODE_LSR_R 0x40c0
602 #define T_OPCODE_ROR_R 0x41c0
603 #define T_OPCODE_ASR_I 0x1000
604 #define T_OPCODE_LSL_I 0x0000
605 #define T_OPCODE_LSR_I 0x0800
607 #define T_OPCODE_MOV_I8 0x2000
608 #define T_OPCODE_CMP_I8 0x2800
609 #define T_OPCODE_CMP_LR 0x4280
610 #define T_OPCODE_MOV_HR 0x4600
611 #define T_OPCODE_CMP_HR 0x4500
613 #define T_OPCODE_LDR_PC 0x4800
614 #define T_OPCODE_LDR_SP 0x9800
615 #define T_OPCODE_STR_SP 0x9000
616 #define T_OPCODE_LDR_IW 0x6800
617 #define T_OPCODE_STR_IW 0x6000
618 #define T_OPCODE_LDR_IH 0x8800
619 #define T_OPCODE_STR_IH 0x8000
620 #define T_OPCODE_LDR_IB 0x7800
621 #define T_OPCODE_STR_IB 0x7000
622 #define T_OPCODE_LDR_RW 0x5800
623 #define T_OPCODE_STR_RW 0x5000
624 #define T_OPCODE_LDR_RH 0x5a00
625 #define T_OPCODE_STR_RH 0x5200
626 #define T_OPCODE_LDR_RB 0x5c00
627 #define T_OPCODE_STR_RB 0x5400
629 #define T_OPCODE_PUSH 0xb400
630 #define T_OPCODE_POP 0xbc00
632 #define T_OPCODE_BRANCH 0xe000
634 #define THUMB_SIZE 2 /* Size of thumb instruction. */
635 #define THUMB_PP_PC_LR 0x0100
636 #define THUMB_LOAD_BIT 0x0800
637 #define THUMB2_LOAD_BIT 0x00100000
639 #define BAD_ARGS _("bad arguments to instruction")
640 #define BAD_PC _("r15 not allowed here")
641 #define BAD_COND _("instruction cannot be conditional")
642 #define BAD_OVERLAP _("registers may not be the same")
643 #define BAD_HIREG _("lo register required")
644 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
645 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
646 #define BAD_BRANCH _("branch must be last instruction in IT block")
647 #define BAD_NOT_IT _("instruction not allowed in IT block")
648 #define BAD_FPU _("selected FPU does not support instruction")
650 static struct hash_control
*arm_ops_hsh
;
651 static struct hash_control
*arm_cond_hsh
;
652 static struct hash_control
*arm_shift_hsh
;
653 static struct hash_control
*arm_psr_hsh
;
654 static struct hash_control
*arm_v7m_psr_hsh
;
655 static struct hash_control
*arm_reg_hsh
;
656 static struct hash_control
*arm_reloc_hsh
;
657 static struct hash_control
*arm_barrier_opt_hsh
;
659 /* Stuff needed to resolve the label ambiguity
669 symbolS
* last_label_seen
;
670 static int label_is_thumb_function_name
= FALSE
;
672 /* Literal pool structure. Held on a per-section
673 and per-sub-section basis. */
675 #define MAX_LITERAL_POOL_SIZE 1024
676 typedef struct literal_pool
678 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
679 unsigned int next_free_entry
;
684 struct literal_pool
* next
;
687 /* Pointer to a linked list of literal pools. */
688 literal_pool
* list_of_pools
= NULL
;
690 /* State variables for IT block handling. */
691 static bfd_boolean current_it_mask
= 0;
692 static int current_cc
;
697 /* This array holds the chars that always start a comment. If the
698 pre-processor is disabled, these aren't very useful. */
699 const char comment_chars
[] = "@";
701 /* This array holds the chars that only start a comment at the beginning of
702 a line. If the line seems to have the form '# 123 filename'
703 .line and .file directives will appear in the pre-processed output. */
704 /* Note that input_file.c hand checks for '#' at the beginning of the
705 first line of the input file. This is because the compiler outputs
706 #NO_APP at the beginning of its output. */
707 /* Also note that comments like this one will always work. */
708 const char line_comment_chars
[] = "#";
710 const char line_separator_chars
[] = ";";
712 /* Chars that can be used to separate mant
713 from exp in floating point numbers. */
714 const char EXP_CHARS
[] = "eE";
716 /* Chars that mean this number is a floating point constant. */
720 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
722 /* Prefix characters that indicate the start of an immediate
724 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
726 /* Separator character handling. */
728 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
731 skip_past_char (char ** str
, char c
)
741 #define skip_past_comma(str) skip_past_char (str, ',')
743 /* Arithmetic expressions (possibly involving symbols). */
745 /* Return TRUE if anything in the expression is a bignum. */
748 walk_no_bignums (symbolS
* sp
)
750 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
753 if (symbol_get_value_expression (sp
)->X_add_symbol
)
755 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
756 || (symbol_get_value_expression (sp
)->X_op_symbol
757 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
763 static int in_my_get_expression
= 0;
765 /* Third argument to my_get_expression. */
766 #define GE_NO_PREFIX 0
767 #define GE_IMM_PREFIX 1
768 #define GE_OPT_PREFIX 2
769 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
770 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
771 #define GE_OPT_PREFIX_BIG 3
774 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
779 /* In unified syntax, all prefixes are optional. */
781 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
786 case GE_NO_PREFIX
: break;
788 if (!is_immediate_prefix (**str
))
790 inst
.error
= _("immediate expression requires a # prefix");
796 case GE_OPT_PREFIX_BIG
:
797 if (is_immediate_prefix (**str
))
803 memset (ep
, 0, sizeof (expressionS
));
805 save_in
= input_line_pointer
;
806 input_line_pointer
= *str
;
807 in_my_get_expression
= 1;
808 seg
= expression (ep
);
809 in_my_get_expression
= 0;
811 if (ep
->X_op
== O_illegal
)
813 /* We found a bad expression in md_operand(). */
814 *str
= input_line_pointer
;
815 input_line_pointer
= save_in
;
816 if (inst
.error
== NULL
)
817 inst
.error
= _("bad expression");
822 if (seg
!= absolute_section
823 && seg
!= text_section
824 && seg
!= data_section
825 && seg
!= bss_section
826 && seg
!= undefined_section
)
828 inst
.error
= _("bad segment");
829 *str
= input_line_pointer
;
830 input_line_pointer
= save_in
;
835 /* Get rid of any bignums now, so that we don't generate an error for which
836 we can't establish a line number later on. Big numbers are never valid
837 in instructions, which is where this routine is always called. */
838 if (prefix_mode
!= GE_OPT_PREFIX_BIG
839 && (ep
->X_op
== O_big
841 && (walk_no_bignums (ep
->X_add_symbol
)
843 && walk_no_bignums (ep
->X_op_symbol
))))))
845 inst
.error
= _("invalid constant");
846 *str
= input_line_pointer
;
847 input_line_pointer
= save_in
;
851 *str
= input_line_pointer
;
852 input_line_pointer
= save_in
;
856 /* Turn a string in input_line_pointer into a floating point constant
857 of type TYPE, and store the appropriate bytes in *LITP. The number
858 of LITTLENUMS emitted is stored in *SIZEP. An error message is
859 returned, or NULL on OK.
861 Note that fp constants aren't represent in the normal way on the ARM.
862 In big endian mode, things are as expected. However, in little endian
863 mode fp constants are big-endian word-wise, and little-endian byte-wise
864 within the words. For example, (double) 1.1 in big endian mode is
865 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
866 the byte sequence 99 99 f1 3f 9a 99 99 99.
868 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
871 md_atof (int type
, char * litP
, int * sizeP
)
874 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
906 return _("bad call to MD_ATOF()");
909 t
= atof_ieee (input_line_pointer
, type
, words
);
911 input_line_pointer
= t
;
914 if (target_big_endian
)
916 for (i
= 0; i
< prec
; i
++)
918 md_number_to_chars (litP
, (valueT
) words
[i
], 2);
924 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
925 for (i
= prec
- 1; i
>= 0; i
--)
927 md_number_to_chars (litP
, (valueT
) words
[i
], 2);
931 /* For a 4 byte float the order of elements in `words' is 1 0.
932 For an 8 byte float the order is 1 0 3 2. */
933 for (i
= 0; i
< prec
; i
+= 2)
935 md_number_to_chars (litP
, (valueT
) words
[i
+ 1], 2);
936 md_number_to_chars (litP
+ 2, (valueT
) words
[i
], 2);
944 /* We handle all bad expressions here, so that we can report the faulty
945 instruction in the error message. */
947 md_operand (expressionS
* expr
)
949 if (in_my_get_expression
)
950 expr
->X_op
= O_illegal
;
953 /* Immediate values. */
955 /* Generic immediate-value read function for use in directives.
956 Accepts anything that 'expression' can fold to a constant.
957 *val receives the number. */
960 immediate_for_directive (int *val
)
963 exp
.X_op
= O_illegal
;
965 if (is_immediate_prefix (*input_line_pointer
))
967 input_line_pointer
++;
971 if (exp
.X_op
!= O_constant
)
973 as_bad (_("expected #constant"));
974 ignore_rest_of_line ();
977 *val
= exp
.X_add_number
;
982 /* Register parsing. */
984 /* Generic register parser. CCP points to what should be the
985 beginning of a register name. If it is indeed a valid register
986 name, advance CCP over it and return the reg_entry structure;
987 otherwise return NULL. Does not issue diagnostics. */
989 static struct reg_entry
*
990 arm_reg_parse_multi (char **ccp
)
994 struct reg_entry
*reg
;
996 #ifdef REGISTER_PREFIX
997 if (*start
!= REGISTER_PREFIX
)
1001 #ifdef OPTIONAL_REGISTER_PREFIX
1002 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1007 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1012 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1014 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1024 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1025 enum arm_reg_type type
)
1027 /* Alternative syntaxes are accepted for a few register classes. */
1034 /* Generic coprocessor register names are allowed for these. */
1035 if (reg
&& reg
->type
== REG_TYPE_CN
)
1040 /* For backward compatibility, a bare number is valid here. */
1042 unsigned long processor
= strtoul (start
, ccp
, 10);
1043 if (*ccp
!= start
&& processor
<= 15)
1047 case REG_TYPE_MMXWC
:
1048 /* WC includes WCG. ??? I'm not sure this is true for all
1049 instructions that take WC registers. */
1050 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1061 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1062 return value is the register number or FAIL. */
1065 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1068 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1071 /* Do not allow a scalar (reg+index) to parse as a register. */
1072 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1075 if (reg
&& reg
->type
== type
)
1078 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1085 /* Parse a Neon type specifier. *STR should point at the leading '.'
1086 character. Does no verification at this stage that the type fits the opcode
1093 Can all be legally parsed by this function.
1095 Fills in neon_type struct pointer with parsed information, and updates STR
1096 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1097 type, FAIL if not. */
1100 parse_neon_type (struct neon_type
*type
, char **str
)
1107 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1109 enum neon_el_type thistype
= NT_untyped
;
1110 unsigned thissize
= -1u;
1117 /* Just a size without an explicit type. */
1121 switch (TOLOWER (*ptr
))
1123 case 'i': thistype
= NT_integer
; break;
1124 case 'f': thistype
= NT_float
; break;
1125 case 'p': thistype
= NT_poly
; break;
1126 case 's': thistype
= NT_signed
; break;
1127 case 'u': thistype
= NT_unsigned
; break;
1129 thistype
= NT_float
;
1134 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1140 /* .f is an abbreviation for .f32. */
1141 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1146 thissize
= strtoul (ptr
, &ptr
, 10);
1148 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1151 as_bad (_("bad size %d in type specifier"), thissize
);
1159 type
->el
[type
->elems
].type
= thistype
;
1160 type
->el
[type
->elems
].size
= thissize
;
1165 /* Empty/missing type is not a successful parse. */
1166 if (type
->elems
== 0)
1174 /* Errors may be set multiple times during parsing or bit encoding
1175 (particularly in the Neon bits), but usually the earliest error which is set
1176 will be the most meaningful. Avoid overwriting it with later (cascading)
1177 errors by calling this function. */
1180 first_error (const char *err
)
1186 /* Parse a single type, e.g. ".s32", leading period included. */
1188 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1191 struct neon_type optype
;
1195 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1197 if (optype
.elems
== 1)
1198 *vectype
= optype
.el
[0];
1201 first_error (_("only one type should be specified for operand"));
1207 first_error (_("vector type expected"));
1219 /* Special meanings for indices (which have a range of 0-7), which will fit into
1222 #define NEON_ALL_LANES 15
1223 #define NEON_INTERLEAVE_LANES 14
1225 /* Parse either a register or a scalar, with an optional type. Return the
1226 register number, and optionally fill in the actual type of the register
1227 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1228 type/index information in *TYPEINFO. */
1231 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1232 enum arm_reg_type
*rtype
,
1233 struct neon_typed_alias
*typeinfo
)
1236 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1237 struct neon_typed_alias atype
;
1238 struct neon_type_el parsetype
;
1242 atype
.eltype
.type
= NT_invtype
;
1243 atype
.eltype
.size
= -1;
1245 /* Try alternate syntax for some types of register. Note these are mutually
1246 exclusive with the Neon syntax extensions. */
1249 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1257 /* Undo polymorphism when a set of register types may be accepted. */
1258 if ((type
== REG_TYPE_NDQ
1259 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1260 || (type
== REG_TYPE_VFSD
1261 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1262 || (type
== REG_TYPE_NSDQ
1263 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1264 || reg
->type
== REG_TYPE_NQ
)))
1267 if (type
!= reg
->type
)
1273 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1275 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1277 first_error (_("can't redefine type for operand"));
1280 atype
.defined
|= NTA_HASTYPE
;
1281 atype
.eltype
= parsetype
;
1284 if (skip_past_char (&str
, '[') == SUCCESS
)
1286 if (type
!= REG_TYPE_VFD
)
1288 first_error (_("only D registers may be indexed"));
1292 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1294 first_error (_("can't change index for operand"));
1298 atype
.defined
|= NTA_HASINDEX
;
1300 if (skip_past_char (&str
, ']') == SUCCESS
)
1301 atype
.index
= NEON_ALL_LANES
;
1306 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1308 if (exp
.X_op
!= O_constant
)
1310 first_error (_("constant expression required"));
1314 if (skip_past_char (&str
, ']') == FAIL
)
1317 atype
.index
= exp
.X_add_number
;
1332 /* Like arm_reg_parse, but allow allow the following extra features:
1333 - If RTYPE is non-zero, return the (possibly restricted) type of the
1334 register (e.g. Neon double or quad reg when either has been requested).
1335 - If this is a Neon vector type with additional type information, fill
1336 in the struct pointed to by VECTYPE (if non-NULL).
1337 This function will fault on encountering a scalar.
1341 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1342 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1344 struct neon_typed_alias atype
;
1346 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1351 /* Do not allow a scalar (reg+index) to parse as a register. */
1352 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1354 first_error (_("register operand expected, but got scalar"));
1359 *vectype
= atype
.eltype
;
1366 #define NEON_SCALAR_REG(X) ((X) >> 4)
1367 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1369 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1370 have enough information to be able to do a good job bounds-checking. So, we
1371 just do easy checks here, and do further checks later. */
1374 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
)
1378 struct neon_typed_alias atype
;
1380 reg
= parse_typed_reg_or_scalar (&str
, REG_TYPE_VFD
, NULL
, &atype
);
1382 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1385 if (atype
.index
== NEON_ALL_LANES
)
1387 first_error (_("scalar must have an index"));
1390 else if (atype
.index
>= 64 / elsize
)
1392 first_error (_("scalar index out of range"));
1397 *type
= atype
.eltype
;
1401 return reg
* 16 + atype
.index
;
1404 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1406 parse_reg_list (char ** strp
)
1408 char * str
= * strp
;
1412 /* We come back here if we get ranges concatenated by '+' or '|'. */
1427 if ((reg
= arm_reg_parse (&str
, REG_TYPE_RN
)) == FAIL
)
1429 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
1439 first_error (_("bad range in register list"));
1443 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1445 if (range
& (1 << i
))
1447 (_("Warning: duplicated register (r%d) in register list"),
1455 if (range
& (1 << reg
))
1456 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1458 else if (reg
<= cur_reg
)
1459 as_tsktsk (_("Warning: register range not in ascending order"));
1464 while (skip_past_comma (&str
) != FAIL
1465 || (in_range
= 1, *str
++ == '-'));
1470 first_error (_("missing `}'"));
1478 if (my_get_expression (&expr
, &str
, GE_NO_PREFIX
))
1481 if (expr
.X_op
== O_constant
)
1483 if (expr
.X_add_number
1484 != (expr
.X_add_number
& 0x0000ffff))
1486 inst
.error
= _("invalid register mask");
1490 if ((range
& expr
.X_add_number
) != 0)
1492 int regno
= range
& expr
.X_add_number
;
1495 regno
= (1 << regno
) - 1;
1497 (_("Warning: duplicated register (r%d) in register list"),
1501 range
|= expr
.X_add_number
;
1505 if (inst
.reloc
.type
!= 0)
1507 inst
.error
= _("expression too complex");
1511 memcpy (&inst
.reloc
.exp
, &expr
, sizeof (expressionS
));
1512 inst
.reloc
.type
= BFD_RELOC_ARM_MULTI
;
1513 inst
.reloc
.pc_rel
= 0;
1517 if (*str
== '|' || *str
== '+')
1523 while (another_range
);
1529 /* Types of registers in a list. */
1538 /* Parse a VFP register list. If the string is invalid return FAIL.
1539 Otherwise return the number of registers, and set PBASE to the first
1540 register. Parses registers of type ETYPE.
1541 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1542 - Q registers can be used to specify pairs of D registers
1543 - { } can be omitted from around a singleton register list
1544 FIXME: This is not implemented, as it would require backtracking in
1547 This could be done (the meaning isn't really ambiguous), but doesn't
1548 fit in well with the current parsing framework.
1549 - 32 D registers may be used (also true for VFPv3).
1550 FIXME: Types are ignored in these register lists, which is probably a
1554 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
)
1559 enum arm_reg_type regtype
= 0;
1563 unsigned long mask
= 0;
1568 inst
.error
= _("expecting {");
1577 regtype
= REG_TYPE_VFS
;
1582 regtype
= REG_TYPE_VFD
;
1585 case REGLIST_NEON_D
:
1586 regtype
= REG_TYPE_NDQ
;
1590 if (etype
!= REGLIST_VFP_S
)
1592 /* VFPv3 allows 32 D registers. */
1593 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
1597 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
1600 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
1607 base_reg
= max_regs
;
1611 int setmask
= 1, addregs
= 1;
1613 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
1615 if (new_base
== FAIL
)
1617 first_error (_(reg_expected_msgs
[regtype
]));
1621 if (new_base
>= max_regs
)
1623 first_error (_("register out of range in list"));
1627 /* Note: a value of 2 * n is returned for the register Q<n>. */
1628 if (regtype
== REG_TYPE_NQ
)
1634 if (new_base
< base_reg
)
1635 base_reg
= new_base
;
1637 if (mask
& (setmask
<< new_base
))
1639 first_error (_("invalid register list"));
1643 if ((mask
>> new_base
) != 0 && ! warned
)
1645 as_tsktsk (_("register list not in ascending order"));
1649 mask
|= setmask
<< new_base
;
1652 if (*str
== '-') /* We have the start of a range expression */
1658 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
1661 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
1665 if (high_range
>= max_regs
)
1667 first_error (_("register out of range in list"));
1671 if (regtype
== REG_TYPE_NQ
)
1672 high_range
= high_range
+ 1;
1674 if (high_range
<= new_base
)
1676 inst
.error
= _("register range not in ascending order");
1680 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
1682 if (mask
& (setmask
<< new_base
))
1684 inst
.error
= _("invalid register list");
1688 mask
|= setmask
<< new_base
;
1693 while (skip_past_comma (&str
) != FAIL
);
1697 /* Sanity check -- should have raised a parse error above. */
1698 if (count
== 0 || count
> max_regs
)
1703 /* Final test -- the registers must be consecutive. */
1705 for (i
= 0; i
< count
; i
++)
1707 if ((mask
& (1u << i
)) == 0)
1709 inst
.error
= _("non-contiguous register range");
1719 /* True if two alias types are the same. */
1722 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
1730 if (a
->defined
!= b
->defined
)
1733 if ((a
->defined
& NTA_HASTYPE
) != 0
1734 && (a
->eltype
.type
!= b
->eltype
.type
1735 || a
->eltype
.size
!= b
->eltype
.size
))
1738 if ((a
->defined
& NTA_HASINDEX
) != 0
1739 && (a
->index
!= b
->index
))
1745 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1746 The base register is put in *PBASE.
1747 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1749 The register stride (minus one) is put in bit 4 of the return value.
1750 Bits [6:5] encode the list length (minus one).
1751 The type of the list elements is put in *ELTYPE, if non-NULL. */
1753 #define NEON_LANE(X) ((X) & 0xf)
1754 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1755 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1758 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
1759 struct neon_type_el
*eltype
)
1766 int leading_brace
= 0;
1767 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
1769 const char *const incr_error
= "register stride must be 1 or 2";
1770 const char *const type_error
= "mismatched element/structure types in list";
1771 struct neon_typed_alias firsttype
;
1773 if (skip_past_char (&ptr
, '{') == SUCCESS
)
1778 struct neon_typed_alias atype
;
1779 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
1783 first_error (_(reg_expected_msgs
[rtype
]));
1790 if (rtype
== REG_TYPE_NQ
)
1797 else if (reg_incr
== -1)
1799 reg_incr
= getreg
- base_reg
;
1800 if (reg_incr
< 1 || reg_incr
> 2)
1802 first_error (_(incr_error
));
1806 else if (getreg
!= base_reg
+ reg_incr
* count
)
1808 first_error (_(incr_error
));
1812 if (!neon_alias_types_same (&atype
, &firsttype
))
1814 first_error (_(type_error
));
1818 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1822 struct neon_typed_alias htype
;
1823 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
1825 lane
= NEON_INTERLEAVE_LANES
;
1826 else if (lane
!= NEON_INTERLEAVE_LANES
)
1828 first_error (_(type_error
));
1833 else if (reg_incr
!= 1)
1835 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1839 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
1842 first_error (_(reg_expected_msgs
[rtype
]));
1845 if (!neon_alias_types_same (&htype
, &firsttype
))
1847 first_error (_(type_error
));
1850 count
+= hireg
+ dregs
- getreg
;
1854 /* If we're using Q registers, we can't use [] or [n] syntax. */
1855 if (rtype
== REG_TYPE_NQ
)
1861 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1865 else if (lane
!= atype
.index
)
1867 first_error (_(type_error
));
1871 else if (lane
== -1)
1872 lane
= NEON_INTERLEAVE_LANES
;
1873 else if (lane
!= NEON_INTERLEAVE_LANES
)
1875 first_error (_(type_error
));
1880 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
1882 /* No lane set by [x]. We must be interleaving structures. */
1884 lane
= NEON_INTERLEAVE_LANES
;
1887 if (lane
== -1 || base_reg
== -1 || count
< 1 || count
> 4
1888 || (count
> 1 && reg_incr
== -1))
1890 first_error (_("error parsing element/structure list"));
1894 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
1896 first_error (_("expected }"));
1904 *eltype
= firsttype
.eltype
;
1909 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
1912 /* Parse an explicit relocation suffix on an expression. This is
1913 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1914 arm_reloc_hsh contains no entries, so this function can only
1915 succeed if there is no () after the word. Returns -1 on error,
1916 BFD_RELOC_UNUSED if there wasn't any suffix. */
1918 parse_reloc (char **str
)
1920 struct reloc_entry
*r
;
1924 return BFD_RELOC_UNUSED
;
1929 while (*q
&& *q
!= ')' && *q
!= ',')
1934 if ((r
= hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
1941 /* Directives: register aliases. */
1943 static struct reg_entry
*
1944 insert_reg_alias (char *str
, int number
, int type
)
1946 struct reg_entry
*new;
1949 if ((new = hash_find (arm_reg_hsh
, str
)) != 0)
1952 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
1954 /* Only warn about a redefinition if it's not defined as the
1956 else if (new->number
!= number
|| new->type
!= type
)
1957 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
1962 name
= xstrdup (str
);
1963 new = xmalloc (sizeof (struct reg_entry
));
1966 new->number
= number
;
1968 new->builtin
= FALSE
;
1971 if (hash_insert (arm_reg_hsh
, name
, (PTR
) new))
1978 insert_neon_reg_alias (char *str
, int number
, int type
,
1979 struct neon_typed_alias
*atype
)
1981 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
1985 first_error (_("attempt to redefine typed alias"));
1991 reg
->neon
= xmalloc (sizeof (struct neon_typed_alias
));
1992 *reg
->neon
= *atype
;
1996 /* Look for the .req directive. This is of the form:
1998 new_register_name .req existing_register_name
2000 If we find one, or if it looks sufficiently like one that we want to
2001 handle any error here, return non-zero. Otherwise return zero. */
2004 create_register_alias (char * newname
, char *p
)
2006 struct reg_entry
*old
;
2007 char *oldname
, *nbuf
;
2010 /* The input scrubber ensures that whitespace after the mnemonic is
2011 collapsed to single spaces. */
2013 if (strncmp (oldname
, " .req ", 6) != 0)
2017 if (*oldname
== '\0')
2020 old
= hash_find (arm_reg_hsh
, oldname
);
2023 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2027 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2028 the desired alias name, and p points to its end. If not, then
2029 the desired alias name is in the global original_case_string. */
2030 #ifdef TC_CASE_SENSITIVE
2033 newname
= original_case_string
;
2034 nlen
= strlen (newname
);
2037 nbuf
= alloca (nlen
+ 1);
2038 memcpy (nbuf
, newname
, nlen
);
2041 /* Create aliases under the new name as stated; an all-lowercase
2042 version of the new name; and an all-uppercase version of the new
2044 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2046 for (p
= nbuf
; *p
; p
++)
2049 if (strncmp (nbuf
, newname
, nlen
))
2050 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2052 for (p
= nbuf
; *p
; p
++)
2055 if (strncmp (nbuf
, newname
, nlen
))
2056 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2061 /* Create a Neon typed/indexed register alias using directives, e.g.:
2066 These typed registers can be used instead of the types specified after the
2067 Neon mnemonic, so long as all operands given have types. Types can also be
2068 specified directly, e.g.:
2069 vadd d0.s32, d1.s32, d2.s32
2073 create_neon_reg_alias (char *newname
, char *p
)
2075 enum arm_reg_type basetype
;
2076 struct reg_entry
*basereg
;
2077 struct reg_entry mybasereg
;
2078 struct neon_type ntype
;
2079 struct neon_typed_alias typeinfo
;
2080 char *namebuf
, *nameend
;
2083 typeinfo
.defined
= 0;
2084 typeinfo
.eltype
.type
= NT_invtype
;
2085 typeinfo
.eltype
.size
= -1;
2086 typeinfo
.index
= -1;
2090 if (strncmp (p
, " .dn ", 5) == 0)
2091 basetype
= REG_TYPE_VFD
;
2092 else if (strncmp (p
, " .qn ", 5) == 0)
2093 basetype
= REG_TYPE_NQ
;
2102 basereg
= arm_reg_parse_multi (&p
);
2104 if (basereg
&& basereg
->type
!= basetype
)
2106 as_bad (_("bad type for register"));
2110 if (basereg
== NULL
)
2113 /* Try parsing as an integer. */
2114 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2115 if (exp
.X_op
!= O_constant
)
2117 as_bad (_("expression must be constant"));
2120 basereg
= &mybasereg
;
2121 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2127 typeinfo
= *basereg
->neon
;
2129 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2131 /* We got a type. */
2132 if (typeinfo
.defined
& NTA_HASTYPE
)
2134 as_bad (_("can't redefine the type of a register alias"));
2138 typeinfo
.defined
|= NTA_HASTYPE
;
2139 if (ntype
.elems
!= 1)
2141 as_bad (_("you must specify a single type only"));
2144 typeinfo
.eltype
= ntype
.el
[0];
2147 if (skip_past_char (&p
, '[') == SUCCESS
)
2150 /* We got a scalar index. */
2152 if (typeinfo
.defined
& NTA_HASINDEX
)
2154 as_bad (_("can't redefine the index of a scalar alias"));
2158 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2160 if (exp
.X_op
!= O_constant
)
2162 as_bad (_("scalar index must be constant"));
2166 typeinfo
.defined
|= NTA_HASINDEX
;
2167 typeinfo
.index
= exp
.X_add_number
;
2169 if (skip_past_char (&p
, ']') == FAIL
)
2171 as_bad (_("expecting ]"));
2176 namelen
= nameend
- newname
;
2177 namebuf
= alloca (namelen
+ 1);
2178 strncpy (namebuf
, newname
, namelen
);
2179 namebuf
[namelen
] = '\0';
2181 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2182 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2184 /* Insert name in all uppercase. */
2185 for (p
= namebuf
; *p
; p
++)
2188 if (strncmp (namebuf
, newname
, namelen
))
2189 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2190 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2192 /* Insert name in all lowercase. */
2193 for (p
= namebuf
; *p
; p
++)
2196 if (strncmp (namebuf
, newname
, namelen
))
2197 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2198 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2203 /* Should never be called, as .req goes between the alias and the
2204 register name, not at the beginning of the line. */
2206 s_req (int a ATTRIBUTE_UNUSED
)
2208 as_bad (_("invalid syntax for .req directive"));
2212 s_dn (int a ATTRIBUTE_UNUSED
)
2214 as_bad (_("invalid syntax for .dn directive"));
2218 s_qn (int a ATTRIBUTE_UNUSED
)
2220 as_bad (_("invalid syntax for .qn directive"));
2223 /* The .unreq directive deletes an alias which was previously defined
2224 by .req. For example:
2230 s_unreq (int a ATTRIBUTE_UNUSED
)
2235 name
= input_line_pointer
;
2237 while (*input_line_pointer
!= 0
2238 && *input_line_pointer
!= ' '
2239 && *input_line_pointer
!= '\n')
2240 ++input_line_pointer
;
2242 saved_char
= *input_line_pointer
;
2243 *input_line_pointer
= 0;
2246 as_bad (_("invalid syntax for .unreq directive"));
2249 struct reg_entry
*reg
= hash_find (arm_reg_hsh
, name
);
2252 as_bad (_("unknown register alias '%s'"), name
);
2253 else if (reg
->builtin
)
2254 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2258 hash_delete (arm_reg_hsh
, name
);
2259 free ((char *) reg
->name
);
2266 *input_line_pointer
= saved_char
;
2267 demand_empty_rest_of_line ();
2270 /* Directives: Instruction set selection. */
2273 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2274 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2275 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2276 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2278 static enum mstate mapstate
= MAP_UNDEFINED
;
2281 mapping_state (enum mstate state
)
2284 const char * symname
;
2287 if (mapstate
== state
)
2288 /* The mapping symbol has already been emitted.
2289 There is nothing else to do. */
2298 type
= BSF_NO_FLAGS
;
2302 type
= BSF_NO_FLAGS
;
2306 type
= BSF_NO_FLAGS
;
2314 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2316 symbolP
= symbol_new (symname
, now_seg
, (valueT
) frag_now_fix (), frag_now
);
2317 symbol_table_insert (symbolP
);
2318 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2323 THUMB_SET_FUNC (symbolP
, 0);
2324 ARM_SET_THUMB (symbolP
, 0);
2325 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2329 THUMB_SET_FUNC (symbolP
, 1);
2330 ARM_SET_THUMB (symbolP
, 1);
2331 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2340 #define mapping_state(x) /* nothing */
2343 /* Find the real, Thumb encoded start of a Thumb function. */
2346 find_real_start (symbolS
* symbolP
)
2349 const char * name
= S_GET_NAME (symbolP
);
2350 symbolS
* new_target
;
2352 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2353 #define STUB_NAME ".real_start_of"
2358 /* The compiler may generate BL instructions to local labels because
2359 it needs to perform a branch to a far away location. These labels
2360 do not have a corresponding ".real_start_of" label. We check
2361 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2362 the ".real_start_of" convention for nonlocal branches. */
2363 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
2366 real_start
= ACONCAT ((STUB_NAME
, name
, NULL
));
2367 new_target
= symbol_find (real_start
);
2369 if (new_target
== NULL
)
2371 as_warn ("Failed to find real start of function: %s\n", name
);
2372 new_target
= symbolP
;
2379 opcode_select (int width
)
2386 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
2387 as_bad (_("selected processor does not support THUMB opcodes"));
2390 /* No need to force the alignment, since we will have been
2391 coming from ARM mode, which is word-aligned. */
2392 record_alignment (now_seg
, 1);
2394 mapping_state (MAP_THUMB
);
2400 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
2401 as_bad (_("selected processor does not support ARM opcodes"));
2406 frag_align (2, 0, 0);
2408 record_alignment (now_seg
, 1);
2410 mapping_state (MAP_ARM
);
2414 as_bad (_("invalid instruction size selected (%d)"), width
);
2419 s_arm (int ignore ATTRIBUTE_UNUSED
)
2422 demand_empty_rest_of_line ();
2426 s_thumb (int ignore ATTRIBUTE_UNUSED
)
2429 demand_empty_rest_of_line ();
2433 s_code (int unused ATTRIBUTE_UNUSED
)
2437 temp
= get_absolute_expression ();
2442 opcode_select (temp
);
2446 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
2451 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
2453 /* If we are not already in thumb mode go into it, EVEN if
2454 the target processor does not support thumb instructions.
2455 This is used by gcc/config/arm/lib1funcs.asm for example
2456 to compile interworking support functions even if the
2457 target processor should not support interworking. */
2461 record_alignment (now_seg
, 1);
2464 demand_empty_rest_of_line ();
2468 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
2472 /* The following label is the name/address of the start of a Thumb function.
2473 We need to know this for the interworking support. */
2474 label_is_thumb_function_name
= TRUE
;
2477 /* Perform a .set directive, but also mark the alias as
2478 being a thumb function. */
2481 s_thumb_set (int equiv
)
2483 /* XXX the following is a duplicate of the code for s_set() in read.c
2484 We cannot just call that code as we need to get at the symbol that
2491 /* Especial apologies for the random logic:
2492 This just grew, and could be parsed much more simply!
2494 name
= input_line_pointer
;
2495 delim
= get_symbol_end ();
2496 end_name
= input_line_pointer
;
2499 if (*input_line_pointer
!= ',')
2502 as_bad (_("expected comma after name \"%s\""), name
);
2504 ignore_rest_of_line ();
2508 input_line_pointer
++;
2511 if (name
[0] == '.' && name
[1] == '\0')
2513 /* XXX - this should not happen to .thumb_set. */
2517 if ((symbolP
= symbol_find (name
)) == NULL
2518 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
2521 /* When doing symbol listings, play games with dummy fragments living
2522 outside the normal fragment chain to record the file and line info
2524 if (listing
& LISTING_SYMBOLS
)
2526 extern struct list_info_struct
* listing_tail
;
2527 fragS
* dummy_frag
= xmalloc (sizeof (fragS
));
2529 memset (dummy_frag
, 0, sizeof (fragS
));
2530 dummy_frag
->fr_type
= rs_fill
;
2531 dummy_frag
->line
= listing_tail
;
2532 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
2533 dummy_frag
->fr_symbol
= symbolP
;
2537 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
2540 /* "set" symbols are local unless otherwise specified. */
2541 SF_SET_LOCAL (symbolP
);
2542 #endif /* OBJ_COFF */
2543 } /* Make a new symbol. */
2545 symbol_table_insert (symbolP
);
2550 && S_IS_DEFINED (symbolP
)
2551 && S_GET_SEGMENT (symbolP
) != reg_section
)
2552 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
2554 pseudo_set (symbolP
);
2556 demand_empty_rest_of_line ();
2558 /* XXX Now we come to the Thumb specific bit of code. */
2560 THUMB_SET_FUNC (symbolP
, 1);
2561 ARM_SET_THUMB (symbolP
, 1);
2562 #if defined OBJ_ELF || defined OBJ_COFF
2563 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2567 /* Directives: Mode selection. */
2569 /* .syntax [unified|divided] - choose the new unified syntax
2570 (same for Arm and Thumb encoding, modulo slight differences in what
2571 can be represented) or the old divergent syntax for each mode. */
2573 s_syntax (int unused ATTRIBUTE_UNUSED
)
2577 name
= input_line_pointer
;
2578 delim
= get_symbol_end ();
2580 if (!strcasecmp (name
, "unified"))
2581 unified_syntax
= TRUE
;
2582 else if (!strcasecmp (name
, "divided"))
2583 unified_syntax
= FALSE
;
2586 as_bad (_("unrecognized syntax mode \"%s\""), name
);
2589 *input_line_pointer
= delim
;
2590 demand_empty_rest_of_line ();
2593 /* Directives: sectioning and alignment. */
2595 /* Same as s_align_ptwo but align 0 => align 2. */
2598 s_align (int unused ATTRIBUTE_UNUSED
)
2602 long max_alignment
= 15;
2604 temp
= get_absolute_expression ();
2605 if (temp
> max_alignment
)
2606 as_bad (_("alignment too large: %d assumed"), temp
= max_alignment
);
2609 as_bad (_("alignment negative. 0 assumed."));
2613 if (*input_line_pointer
== ',')
2615 input_line_pointer
++;
2616 temp_fill
= get_absolute_expression ();
2624 /* Only make a frag if we HAVE to. */
2625 if (temp
&& !need_pass_2
)
2626 frag_align (temp
, (int) temp_fill
, 0);
2627 demand_empty_rest_of_line ();
2629 record_alignment (now_seg
, temp
);
2633 s_bss (int ignore ATTRIBUTE_UNUSED
)
2635 /* We don't support putting frags in the BSS segment, we fake it by
2636 marking in_bss, then looking at s_skip for clues. */
2637 subseg_set (bss_section
, 0);
2638 demand_empty_rest_of_line ();
2639 mapping_state (MAP_DATA
);
2643 s_even (int ignore ATTRIBUTE_UNUSED
)
2645 /* Never make frag if expect extra pass. */
2647 frag_align (1, 0, 0);
2649 record_alignment (now_seg
, 1);
2651 demand_empty_rest_of_line ();
2654 /* Directives: Literal pools. */
2656 static literal_pool
*
2657 find_literal_pool (void)
2659 literal_pool
* pool
;
2661 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
2663 if (pool
->section
== now_seg
2664 && pool
->sub_section
== now_subseg
)
2671 static literal_pool
*
2672 find_or_make_literal_pool (void)
2674 /* Next literal pool ID number. */
2675 static unsigned int latest_pool_num
= 1;
2676 literal_pool
* pool
;
2678 pool
= find_literal_pool ();
2682 /* Create a new pool. */
2683 pool
= xmalloc (sizeof (* pool
));
2687 pool
->next_free_entry
= 0;
2688 pool
->section
= now_seg
;
2689 pool
->sub_section
= now_subseg
;
2690 pool
->next
= list_of_pools
;
2691 pool
->symbol
= NULL
;
2693 /* Add it to the list. */
2694 list_of_pools
= pool
;
2697 /* New pools, and emptied pools, will have a NULL symbol. */
2698 if (pool
->symbol
== NULL
)
2700 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
2701 (valueT
) 0, &zero_address_frag
);
2702 pool
->id
= latest_pool_num
++;
2709 /* Add the literal in the global 'inst'
2710 structure to the relevent literal pool. */
2713 add_to_lit_pool (void)
2715 literal_pool
* pool
;
2718 pool
= find_or_make_literal_pool ();
2720 /* Check if this literal value is already in the pool. */
2721 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
2723 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
2724 && (inst
.reloc
.exp
.X_op
== O_constant
)
2725 && (pool
->literals
[entry
].X_add_number
2726 == inst
.reloc
.exp
.X_add_number
)
2727 && (pool
->literals
[entry
].X_unsigned
2728 == inst
.reloc
.exp
.X_unsigned
))
2731 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
2732 && (inst
.reloc
.exp
.X_op
== O_symbol
)
2733 && (pool
->literals
[entry
].X_add_number
2734 == inst
.reloc
.exp
.X_add_number
)
2735 && (pool
->literals
[entry
].X_add_symbol
2736 == inst
.reloc
.exp
.X_add_symbol
)
2737 && (pool
->literals
[entry
].X_op_symbol
2738 == inst
.reloc
.exp
.X_op_symbol
))
2742 /* Do we need to create a new entry? */
2743 if (entry
== pool
->next_free_entry
)
2745 if (entry
>= MAX_LITERAL_POOL_SIZE
)
2747 inst
.error
= _("literal pool overflow");
2751 pool
->literals
[entry
] = inst
.reloc
.exp
;
2752 pool
->next_free_entry
+= 1;
2755 inst
.reloc
.exp
.X_op
= O_symbol
;
2756 inst
.reloc
.exp
.X_add_number
= ((int) entry
) * 4;
2757 inst
.reloc
.exp
.X_add_symbol
= pool
->symbol
;
2762 /* Can't use symbol_new here, so have to create a symbol and then at
2763 a later date assign it a value. Thats what these functions do. */
2766 symbol_locate (symbolS
* symbolP
,
2767 const char * name
, /* It is copied, the caller can modify. */
2768 segT segment
, /* Segment identifier (SEG_<something>). */
2769 valueT valu
, /* Symbol value. */
2770 fragS
* frag
) /* Associated fragment. */
2772 unsigned int name_length
;
2773 char * preserved_copy_of_name
;
2775 name_length
= strlen (name
) + 1; /* +1 for \0. */
2776 obstack_grow (¬es
, name
, name_length
);
2777 preserved_copy_of_name
= obstack_finish (¬es
);
2779 #ifdef tc_canonicalize_symbol_name
2780 preserved_copy_of_name
=
2781 tc_canonicalize_symbol_name (preserved_copy_of_name
);
2784 S_SET_NAME (symbolP
, preserved_copy_of_name
);
2786 S_SET_SEGMENT (symbolP
, segment
);
2787 S_SET_VALUE (symbolP
, valu
);
2788 symbol_clear_list_pointers (symbolP
);
2790 symbol_set_frag (symbolP
, frag
);
2792 /* Link to end of symbol chain. */
2794 extern int symbol_table_frozen
;
2796 if (symbol_table_frozen
)
2800 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
2802 obj_symbol_new_hook (symbolP
);
2804 #ifdef tc_symbol_new_hook
2805 tc_symbol_new_hook (symbolP
);
2809 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
2810 #endif /* DEBUG_SYMS */
2815 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
2818 literal_pool
* pool
;
2821 pool
= find_literal_pool ();
2823 || pool
->symbol
== NULL
2824 || pool
->next_free_entry
== 0)
2827 mapping_state (MAP_DATA
);
2829 /* Align pool as you have word accesses.
2830 Only make a frag if we have to. */
2832 frag_align (2, 0, 0);
2834 record_alignment (now_seg
, 2);
2836 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
2838 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
2839 (valueT
) frag_now_fix (), frag_now
);
2840 symbol_table_insert (pool
->symbol
);
2842 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
2844 #if defined OBJ_COFF || defined OBJ_ELF
2845 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
2848 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
2849 /* First output the expression in the instruction to the pool. */
2850 emit_expr (&(pool
->literals
[entry
]), 4); /* .word */
2852 /* Mark the pool as empty. */
2853 pool
->next_free_entry
= 0;
2854 pool
->symbol
= NULL
;
2858 /* Forward declarations for functions below, in the MD interface
2860 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
2861 static valueT
create_unwind_entry (int);
2862 static void start_unwind_section (const segT
, int);
2863 static void add_unwind_opcode (valueT
, int);
2864 static void flush_pending_unwind (void);
2866 /* Directives: Data. */
2869 s_arm_elf_cons (int nbytes
)
2873 #ifdef md_flush_pending_output
2874 md_flush_pending_output ();
2877 if (is_it_end_of_statement ())
2879 demand_empty_rest_of_line ();
2883 #ifdef md_cons_align
2884 md_cons_align (nbytes
);
2887 mapping_state (MAP_DATA
);
2891 char *base
= input_line_pointer
;
2895 if (exp
.X_op
!= O_symbol
)
2896 emit_expr (&exp
, (unsigned int) nbytes
);
2899 char *before_reloc
= input_line_pointer
;
2900 reloc
= parse_reloc (&input_line_pointer
);
2903 as_bad (_("unrecognized relocation suffix"));
2904 ignore_rest_of_line ();
2907 else if (reloc
== BFD_RELOC_UNUSED
)
2908 emit_expr (&exp
, (unsigned int) nbytes
);
2911 reloc_howto_type
*howto
= bfd_reloc_type_lookup (stdoutput
, reloc
);
2912 int size
= bfd_get_reloc_size (howto
);
2914 if (reloc
== BFD_RELOC_ARM_PLT32
)
2916 as_bad (_("(plt) is only valid on branch targets"));
2917 reloc
= BFD_RELOC_UNUSED
;
2922 as_bad (_("%s relocations do not fit in %d bytes"),
2923 howto
->name
, nbytes
);
2926 /* We've parsed an expression stopping at O_symbol.
2927 But there may be more expression left now that we
2928 have parsed the relocation marker. Parse it again.
2929 XXX Surely there is a cleaner way to do this. */
2930 char *p
= input_line_pointer
;
2932 char *save_buf
= alloca (input_line_pointer
- base
);
2933 memcpy (save_buf
, base
, input_line_pointer
- base
);
2934 memmove (base
+ (input_line_pointer
- before_reloc
),
2935 base
, before_reloc
- base
);
2937 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
2939 memcpy (base
, save_buf
, p
- base
);
2941 offset
= nbytes
- size
;
2942 p
= frag_more ((int) nbytes
);
2943 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
2944 size
, &exp
, 0, reloc
);
2949 while (*input_line_pointer
++ == ',');
2951 /* Put terminator back into stream. */
2952 input_line_pointer
--;
2953 demand_empty_rest_of_line ();
2957 /* Parse a .rel31 directive. */
2960 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
2967 if (*input_line_pointer
== '1')
2968 highbit
= 0x80000000;
2969 else if (*input_line_pointer
!= '0')
2970 as_bad (_("expected 0 or 1"));
2972 input_line_pointer
++;
2973 if (*input_line_pointer
!= ',')
2974 as_bad (_("missing comma"));
2975 input_line_pointer
++;
2977 #ifdef md_flush_pending_output
2978 md_flush_pending_output ();
2981 #ifdef md_cons_align
2985 mapping_state (MAP_DATA
);
2990 md_number_to_chars (p
, highbit
, 4);
2991 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
2992 BFD_RELOC_ARM_PREL31
);
2994 demand_empty_rest_of_line ();
2997 /* Directives: AEABI stack-unwind tables. */
2999 /* Parse an unwind_fnstart directive. Simply records the current location. */
3002 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
3004 demand_empty_rest_of_line ();
3005 /* Mark the start of the function. */
3006 unwind
.proc_start
= expr_build_dot ();
3008 /* Reset the rest of the unwind info. */
3009 unwind
.opcode_count
= 0;
3010 unwind
.table_entry
= NULL
;
3011 unwind
.personality_routine
= NULL
;
3012 unwind
.personality_index
= -1;
3013 unwind
.frame_size
= 0;
3014 unwind
.fp_offset
= 0;
3017 unwind
.sp_restored
= 0;
3021 /* Parse a handlerdata directive. Creates the exception handling table entry
3022 for the function. */
3025 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
3027 demand_empty_rest_of_line ();
3028 if (unwind
.table_entry
)
3029 as_bad (_("dupicate .handlerdata directive"));
3031 create_unwind_entry (1);
3034 /* Parse an unwind_fnend directive. Generates the index table entry. */
3037 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
3043 demand_empty_rest_of_line ();
3045 /* Add eh table entry. */
3046 if (unwind
.table_entry
== NULL
)
3047 val
= create_unwind_entry (0);
3051 /* Add index table entry. This is two words. */
3052 start_unwind_section (unwind
.saved_seg
, 1);
3053 frag_align (2, 0, 0);
3054 record_alignment (now_seg
, 2);
3056 ptr
= frag_more (8);
3057 where
= frag_now_fix () - 8;
3059 /* Self relative offset of the function start. */
3060 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
3061 BFD_RELOC_ARM_PREL31
);
3063 /* Indicate dependency on EHABI-defined personality routines to the
3064 linker, if it hasn't been done already. */
3065 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
3066 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
3068 static const char *const name
[] = {
3069 "__aeabi_unwind_cpp_pr0",
3070 "__aeabi_unwind_cpp_pr1",
3071 "__aeabi_unwind_cpp_pr2"
3073 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
3074 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
3075 marked_pr_dependency
|= 1 << unwind
.personality_index
;
3076 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
3077 = marked_pr_dependency
;
3081 /* Inline exception table entry. */
3082 md_number_to_chars (ptr
+ 4, val
, 4);
3084 /* Self relative offset of the table entry. */
3085 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
3086 BFD_RELOC_ARM_PREL31
);
3088 /* Restore the original section. */
3089 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
3093 /* Parse an unwind_cantunwind directive. */
3096 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
3098 demand_empty_rest_of_line ();
3099 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3100 as_bad (_("personality routine specified for cantunwind frame"));
3102 unwind
.personality_index
= -2;
3106 /* Parse a personalityindex directive. */
3109 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
3113 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3114 as_bad (_("duplicate .personalityindex directive"));
3118 if (exp
.X_op
!= O_constant
3119 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
3121 as_bad (_("bad personality routine number"));
3122 ignore_rest_of_line ();
3126 unwind
.personality_index
= exp
.X_add_number
;
3128 demand_empty_rest_of_line ();
3132 /* Parse a personality directive. */
3135 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
3139 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3140 as_bad (_("duplicate .personality directive"));
3142 name
= input_line_pointer
;
3143 c
= get_symbol_end ();
3144 p
= input_line_pointer
;
3145 unwind
.personality_routine
= symbol_find_or_make (name
);
3147 demand_empty_rest_of_line ();
3151 /* Parse a directive saving core registers. */
3154 s_arm_unwind_save_core (void)
3160 range
= parse_reg_list (&input_line_pointer
);
3163 as_bad (_("expected register list"));
3164 ignore_rest_of_line ();
3168 demand_empty_rest_of_line ();
3170 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3171 into .unwind_save {..., sp...}. We aren't bothered about the value of
3172 ip because it is clobbered by calls. */
3173 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
3174 && (range
& 0x3000) == 0x1000)
3176 unwind
.opcode_count
--;
3177 unwind
.sp_restored
= 0;
3178 range
= (range
| 0x2000) & ~0x1000;
3179 unwind
.pending_offset
= 0;
3185 /* See if we can use the short opcodes. These pop a block of up to 8
3186 registers starting with r4, plus maybe r14. */
3187 for (n
= 0; n
< 8; n
++)
3189 /* Break at the first non-saved register. */
3190 if ((range
& (1 << (n
+ 4))) == 0)
3193 /* See if there are any other bits set. */
3194 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
3196 /* Use the long form. */
3197 op
= 0x8000 | ((range
>> 4) & 0xfff);
3198 add_unwind_opcode (op
, 2);
3202 /* Use the short form. */
3204 op
= 0xa8; /* Pop r14. */
3206 op
= 0xa0; /* Do not pop r14. */
3208 add_unwind_opcode (op
, 1);
3215 op
= 0xb100 | (range
& 0xf);
3216 add_unwind_opcode (op
, 2);
3219 /* Record the number of bytes pushed. */
3220 for (n
= 0; n
< 16; n
++)
3222 if (range
& (1 << n
))
3223 unwind
.frame_size
+= 4;
3228 /* Parse a directive saving FPA registers. */
3231 s_arm_unwind_save_fpa (int reg
)
3237 /* Get Number of registers to transfer. */
3238 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3241 exp
.X_op
= O_illegal
;
3243 if (exp
.X_op
!= O_constant
)
3245 as_bad (_("expected , <constant>"));
3246 ignore_rest_of_line ();
3250 num_regs
= exp
.X_add_number
;
3252 if (num_regs
< 1 || num_regs
> 4)
3254 as_bad (_("number of registers must be in the range [1:4]"));
3255 ignore_rest_of_line ();
3259 demand_empty_rest_of_line ();
3264 op
= 0xb4 | (num_regs
- 1);
3265 add_unwind_opcode (op
, 1);
3270 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
3271 add_unwind_opcode (op
, 2);
3273 unwind
.frame_size
+= num_regs
* 12;
3277 /* Parse a directive saving VFP registers for ARMv6 and above. */
3280 s_arm_unwind_save_vfp_armv6 (void)
3285 int num_vfpv3_regs
= 0;
3286 int num_regs_below_16
;
3288 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
);
3291 as_bad (_("expected register list"));
3292 ignore_rest_of_line ();
3296 demand_empty_rest_of_line ();
3298 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3299 than FSTMX/FLDMX-style ones). */
3301 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3303 num_vfpv3_regs
= count
;
3304 else if (start
+ count
> 16)
3305 num_vfpv3_regs
= start
+ count
- 16;
3307 if (num_vfpv3_regs
> 0)
3309 int start_offset
= start
> 16 ? start
- 16 : 0;
3310 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
3311 add_unwind_opcode (op
, 2);
3314 /* Generate opcode for registers numbered in the range 0 .. 15. */
3315 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
3316 assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
3317 if (num_regs_below_16
> 0)
3319 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
3320 add_unwind_opcode (op
, 2);
3323 unwind
.frame_size
+= count
* 8;
3327 /* Parse a directive saving VFP registers for pre-ARMv6. */
3330 s_arm_unwind_save_vfp (void)
3336 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
);
3339 as_bad (_("expected register list"));
3340 ignore_rest_of_line ();
3344 demand_empty_rest_of_line ();
3349 op
= 0xb8 | (count
- 1);
3350 add_unwind_opcode (op
, 1);
3355 op
= 0xb300 | (reg
<< 4) | (count
- 1);
3356 add_unwind_opcode (op
, 2);
3358 unwind
.frame_size
+= count
* 8 + 4;
3362 /* Parse a directive saving iWMMXt data registers. */
3365 s_arm_unwind_save_mmxwr (void)
3373 if (*input_line_pointer
== '{')
3374 input_line_pointer
++;
3378 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3382 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3387 as_tsktsk (_("register list not in ascending order"));
3390 if (*input_line_pointer
== '-')
3392 input_line_pointer
++;
3393 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3396 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3399 else if (reg
>= hi_reg
)
3401 as_bad (_("bad register range"));
3404 for (; reg
< hi_reg
; reg
++)
3408 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3410 if (*input_line_pointer
== '}')
3411 input_line_pointer
++;
3413 demand_empty_rest_of_line ();
3415 /* Generate any deferred opcodes because we're going to be looking at
3417 flush_pending_unwind ();
3419 for (i
= 0; i
< 16; i
++)
3421 if (mask
& (1 << i
))
3422 unwind
.frame_size
+= 8;
3425 /* Attempt to combine with a previous opcode. We do this because gcc
3426 likes to output separate unwind directives for a single block of
3428 if (unwind
.opcode_count
> 0)
3430 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
3431 if ((i
& 0xf8) == 0xc0)
3434 /* Only merge if the blocks are contiguous. */
3437 if ((mask
& 0xfe00) == (1 << 9))
3439 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
3440 unwind
.opcode_count
--;
3443 else if (i
== 6 && unwind
.opcode_count
>= 2)
3445 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
3449 op
= 0xffff << (reg
- 1);
3451 || ((mask
& op
) == (1u << (reg
- 1))))
3453 op
= (1 << (reg
+ i
+ 1)) - 1;
3454 op
&= ~((1 << reg
) - 1);
3456 unwind
.opcode_count
-= 2;
3463 /* We want to generate opcodes in the order the registers have been
3464 saved, ie. descending order. */
3465 for (reg
= 15; reg
>= -1; reg
--)
3467 /* Save registers in blocks. */
3469 || !(mask
& (1 << reg
)))
3471 /* We found an unsaved reg. Generate opcodes to save the
3472 preceeding block. */
3478 op
= 0xc0 | (hi_reg
- 10);
3479 add_unwind_opcode (op
, 1);
3484 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
3485 add_unwind_opcode (op
, 2);
3494 ignore_rest_of_line ();
3498 s_arm_unwind_save_mmxwcg (void)
3505 if (*input_line_pointer
== '{')
3506 input_line_pointer
++;
3510 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3514 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3520 as_tsktsk (_("register list not in ascending order"));
3523 if (*input_line_pointer
== '-')
3525 input_line_pointer
++;
3526 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3529 as_bad (_(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3532 else if (reg
>= hi_reg
)
3534 as_bad (_("bad register range"));
3537 for (; reg
< hi_reg
; reg
++)
3541 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3543 if (*input_line_pointer
== '}')
3544 input_line_pointer
++;
3546 demand_empty_rest_of_line ();
3548 /* Generate any deferred opcodes because we're going to be looking at
3550 flush_pending_unwind ();
3552 for (reg
= 0; reg
< 16; reg
++)
3554 if (mask
& (1 << reg
))
3555 unwind
.frame_size
+= 4;
3558 add_unwind_opcode (op
, 2);
3561 ignore_rest_of_line ();
3565 /* Parse an unwind_save directive.
3566 If the argument is non-zero, this is a .vsave directive. */
3569 s_arm_unwind_save (int arch_v6
)
3572 struct reg_entry
*reg
;
3573 bfd_boolean had_brace
= FALSE
;
3575 /* Figure out what sort of save we have. */
3576 peek
= input_line_pointer
;
3584 reg
= arm_reg_parse_multi (&peek
);
3588 as_bad (_("register expected"));
3589 ignore_rest_of_line ();
3598 as_bad (_("FPA .unwind_save does not take a register list"));
3599 ignore_rest_of_line ();
3602 s_arm_unwind_save_fpa (reg
->number
);
3605 case REG_TYPE_RN
: s_arm_unwind_save_core (); return;
3608 s_arm_unwind_save_vfp_armv6 ();
3610 s_arm_unwind_save_vfp ();
3612 case REG_TYPE_MMXWR
: s_arm_unwind_save_mmxwr (); return;
3613 case REG_TYPE_MMXWCG
: s_arm_unwind_save_mmxwcg (); return;
3616 as_bad (_(".unwind_save does not support this kind of register"));
3617 ignore_rest_of_line ();
3622 /* Parse an unwind_movsp directive. */
3625 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
3630 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
3633 as_bad (_(reg_expected_msgs
[REG_TYPE_RN
]));
3634 ignore_rest_of_line ();
3637 demand_empty_rest_of_line ();
3639 if (reg
== REG_SP
|| reg
== REG_PC
)
3641 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3645 if (unwind
.fp_reg
!= REG_SP
)
3646 as_bad (_("unexpected .unwind_movsp directive"));
3648 /* Generate opcode to restore the value. */
3650 add_unwind_opcode (op
, 1);
3652 /* Record the information for later. */
3653 unwind
.fp_reg
= reg
;
3654 unwind
.fp_offset
= unwind
.frame_size
;
3655 unwind
.sp_restored
= 1;
3658 /* Parse an unwind_pad directive. */
3661 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
3665 if (immediate_for_directive (&offset
) == FAIL
)
3670 as_bad (_("stack increment must be multiple of 4"));
3671 ignore_rest_of_line ();
3675 /* Don't generate any opcodes, just record the details for later. */
3676 unwind
.frame_size
+= offset
;
3677 unwind
.pending_offset
+= offset
;
3679 demand_empty_rest_of_line ();
3682 /* Parse an unwind_setfp directive. */
3685 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
3691 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
3692 if (skip_past_comma (&input_line_pointer
) == FAIL
)
3695 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
3697 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
3699 as_bad (_("expected <reg>, <reg>"));
3700 ignore_rest_of_line ();
3704 /* Optional constant. */
3705 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3707 if (immediate_for_directive (&offset
) == FAIL
)
3713 demand_empty_rest_of_line ();
3715 if (sp_reg
!= 13 && sp_reg
!= unwind
.fp_reg
)
3717 as_bad (_("register must be either sp or set by a previous"
3718 "unwind_movsp directive"));
3722 /* Don't generate any opcodes, just record the information for later. */
3723 unwind
.fp_reg
= fp_reg
;
3726 unwind
.fp_offset
= unwind
.frame_size
- offset
;
3728 unwind
.fp_offset
-= offset
;
3731 /* Parse an unwind_raw directive. */
3734 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
3737 /* This is an arbitrary limit. */
3738 unsigned char op
[16];
3742 if (exp
.X_op
== O_constant
3743 && skip_past_comma (&input_line_pointer
) != FAIL
)
3745 unwind
.frame_size
+= exp
.X_add_number
;
3749 exp
.X_op
= O_illegal
;
3751 if (exp
.X_op
!= O_constant
)
3753 as_bad (_("expected <offset>, <opcode>"));
3754 ignore_rest_of_line ();
3760 /* Parse the opcode. */
3765 as_bad (_("unwind opcode too long"));
3766 ignore_rest_of_line ();
3768 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
3770 as_bad (_("invalid unwind opcode"));
3771 ignore_rest_of_line ();
3774 op
[count
++] = exp
.X_add_number
;
3776 /* Parse the next byte. */
3777 if (skip_past_comma (&input_line_pointer
) == FAIL
)
3783 /* Add the opcode bytes in reverse order. */
3785 add_unwind_opcode (op
[count
], 1);
3787 demand_empty_rest_of_line ();
3791 /* Parse a .eabi_attribute directive. */
3794 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
3797 bfd_boolean is_string
;
3804 if (exp
.X_op
!= O_constant
)
3807 tag
= exp
.X_add_number
;
3808 if (tag
== 4 || tag
== 5 || tag
== 32 || (tag
> 32 && (tag
& 1) != 0))
3813 if (skip_past_comma (&input_line_pointer
) == FAIL
)
3815 if (tag
== 32 || !is_string
)
3818 if (exp
.X_op
!= O_constant
)
3820 as_bad (_("expected numeric constant"));
3821 ignore_rest_of_line ();
3824 i
= exp
.X_add_number
;
3826 if (tag
== Tag_compatibility
3827 && skip_past_comma (&input_line_pointer
) == FAIL
)
3829 as_bad (_("expected comma"));
3830 ignore_rest_of_line ();
3835 skip_whitespace(input_line_pointer
);
3836 if (*input_line_pointer
!= '"')
3838 input_line_pointer
++;
3839 s
= input_line_pointer
;
3840 while (*input_line_pointer
&& *input_line_pointer
!= '"')
3841 input_line_pointer
++;
3842 if (*input_line_pointer
!= '"')
3844 saved_char
= *input_line_pointer
;
3845 *input_line_pointer
= 0;
3853 if (tag
== Tag_compatibility
)
3854 elf32_arm_add_eabi_attr_compat (stdoutput
, i
, s
);
3856 elf32_arm_add_eabi_attr_string (stdoutput
, tag
, s
);
3858 elf32_arm_add_eabi_attr_int (stdoutput
, tag
, i
);
3862 *input_line_pointer
= saved_char
;
3863 input_line_pointer
++;
3865 demand_empty_rest_of_line ();
3868 as_bad (_("bad string constant"));
3869 ignore_rest_of_line ();
3872 as_bad (_("expected <tag> , <value>"));
3873 ignore_rest_of_line ();
3875 #endif /* OBJ_ELF */
3877 static void s_arm_arch (int);
3878 static void s_arm_cpu (int);
3879 static void s_arm_fpu (int);
3881 /* This table describes all the machine specific pseudo-ops the assembler
3882 has to support. The fields are:
3883 pseudo-op name without dot
3884 function to call to execute this pseudo-op
3885 Integer arg to pass to the function. */
3887 const pseudo_typeS md_pseudo_table
[] =
3889 /* Never called because '.req' does not start a line. */
3890 { "req", s_req
, 0 },
3891 /* Following two are likewise never called. */
3894 { "unreq", s_unreq
, 0 },
3895 { "bss", s_bss
, 0 },
3896 { "align", s_align
, 0 },
3897 { "arm", s_arm
, 0 },
3898 { "thumb", s_thumb
, 0 },
3899 { "code", s_code
, 0 },
3900 { "force_thumb", s_force_thumb
, 0 },
3901 { "thumb_func", s_thumb_func
, 0 },
3902 { "thumb_set", s_thumb_set
, 0 },
3903 { "even", s_even
, 0 },
3904 { "ltorg", s_ltorg
, 0 },
3905 { "pool", s_ltorg
, 0 },
3906 { "syntax", s_syntax
, 0 },
3907 { "cpu", s_arm_cpu
, 0 },
3908 { "arch", s_arm_arch
, 0 },
3909 { "fpu", s_arm_fpu
, 0 },
3911 { "word", s_arm_elf_cons
, 4 },
3912 { "long", s_arm_elf_cons
, 4 },
3913 { "rel31", s_arm_rel31
, 0 },
3914 { "fnstart", s_arm_unwind_fnstart
, 0 },
3915 { "fnend", s_arm_unwind_fnend
, 0 },
3916 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
3917 { "personality", s_arm_unwind_personality
, 0 },
3918 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
3919 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
3920 { "save", s_arm_unwind_save
, 0 },
3921 { "vsave", s_arm_unwind_save
, 1 },
3922 { "movsp", s_arm_unwind_movsp
, 0 },
3923 { "pad", s_arm_unwind_pad
, 0 },
3924 { "setfp", s_arm_unwind_setfp
, 0 },
3925 { "unwind_raw", s_arm_unwind_raw
, 0 },
3926 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
3930 { "extend", float_cons
, 'x' },
3931 { "ldouble", float_cons
, 'x' },
3932 { "packed", float_cons
, 'p' },
3936 /* Parser functions used exclusively in instruction operands. */
3938 /* Generic immediate-value read function for use in insn parsing.
3939 STR points to the beginning of the immediate (the leading #);
3940 VAL receives the value; if the value is outside [MIN, MAX]
3941 issue an error. PREFIX_OPT is true if the immediate prefix is
3945 parse_immediate (char **str
, int *val
, int min
, int max
,
3946 bfd_boolean prefix_opt
)
3949 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
3950 if (exp
.X_op
!= O_constant
)
3952 inst
.error
= _("constant expression required");
3956 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
3958 inst
.error
= _("immediate value out of range");
3962 *val
= exp
.X_add_number
;
3966 /* Less-generic immediate-value read function with the possibility of loading a
3967 big (64-bit) immediate, as required by Neon VMOV and VMVN immediate
3968 instructions. Puts the result directly in inst.operands[i]. */
3971 parse_big_immediate (char **str
, int i
)
3976 my_get_expression (&exp
, &ptr
, GE_OPT_PREFIX_BIG
);
3978 if (exp
.X_op
== O_constant
)
3979 inst
.operands
[i
].imm
= exp
.X_add_number
;
3980 else if (exp
.X_op
== O_big
3981 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 32
3982 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
<= 64)
3984 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
3985 /* Bignums have their least significant bits in
3986 generic_bignum[0]. Make sure we put 32 bits in imm and
3987 32 bits in reg, in a (hopefully) portable way. */
3988 assert (parts
!= 0);
3989 inst
.operands
[i
].imm
= 0;
3990 for (j
= 0; j
< parts
; j
++, idx
++)
3991 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
3992 << (LITTLENUM_NUMBER_OF_BITS
* j
);
3993 inst
.operands
[i
].reg
= 0;
3994 for (j
= 0; j
< parts
; j
++, idx
++)
3995 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
3996 << (LITTLENUM_NUMBER_OF_BITS
* j
);
3997 inst
.operands
[i
].regisimm
= 1;
4007 /* Returns the pseudo-register number of an FPA immediate constant,
4008 or FAIL if there isn't a valid constant here. */
4011 parse_fpa_immediate (char ** str
)
4013 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4019 /* First try and match exact strings, this is to guarantee
4020 that some formats will work even for cross assembly. */
4022 for (i
= 0; fp_const
[i
]; i
++)
4024 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
4028 *str
+= strlen (fp_const
[i
]);
4029 if (is_end_of_line
[(unsigned char) **str
])
4035 /* Just because we didn't get a match doesn't mean that the constant
4036 isn't valid, just that it is in a format that we don't
4037 automatically recognize. Try parsing it with the standard
4038 expression routines. */
4040 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
4042 /* Look for a raw floating point number. */
4043 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
4044 && is_end_of_line
[(unsigned char) *save_in
])
4046 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4048 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4050 if (words
[j
] != fp_values
[i
][j
])
4054 if (j
== MAX_LITTLENUMS
)
4062 /* Try and parse a more complex expression, this will probably fail
4063 unless the code uses a floating point prefix (eg "0f"). */
4064 save_in
= input_line_pointer
;
4065 input_line_pointer
= *str
;
4066 if (expression (&exp
) == absolute_section
4067 && exp
.X_op
== O_big
4068 && exp
.X_add_number
< 0)
4070 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4072 if (gen_to_words (words
, 5, (long) 15) == 0)
4074 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4076 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4078 if (words
[j
] != fp_values
[i
][j
])
4082 if (j
== MAX_LITTLENUMS
)
4084 *str
= input_line_pointer
;
4085 input_line_pointer
= save_in
;
4092 *str
= input_line_pointer
;
4093 input_line_pointer
= save_in
;
4094 inst
.error
= _("invalid FPA immediate expression");
4098 /* Returns 1 if a number has "quarter-precision" float format
4099 0baBbbbbbc defgh000 00000000 00000000. */
4102 is_quarter_float (unsigned imm
)
4104 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
4105 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
4108 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4109 0baBbbbbbc defgh000 00000000 00000000.
4110 The minus-zero case needs special handling, since it can't be encoded in the
4111 "quarter-precision" float format, but can nonetheless be loaded as an integer
4115 parse_qfloat_immediate (char **ccp
, int *immed
)
4118 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4120 skip_past_char (&str
, '#');
4122 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
4124 unsigned fpword
= 0;
4127 /* Our FP word must be 32 bits (single-precision FP). */
4128 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
4130 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
4134 if (is_quarter_float (fpword
) || fpword
== 0x80000000)
4147 /* Shift operands. */
4150 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
4153 struct asm_shift_name
4156 enum shift_kind kind
;
4159 /* Third argument to parse_shift. */
4160 enum parse_shift_mode
4162 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
4163 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
4164 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
4165 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
4166 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
4169 /* Parse a <shift> specifier on an ARM data processing instruction.
4170 This has three forms:
4172 (LSL|LSR|ASL|ASR|ROR) Rs
4173 (LSL|LSR|ASL|ASR|ROR) #imm
4176 Note that ASL is assimilated to LSL in the instruction encoding, and
4177 RRX to ROR #0 (which cannot be written as such). */
4180 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
4182 const struct asm_shift_name
*shift_name
;
4183 enum shift_kind shift
;
4188 for (p
= *str
; ISALPHA (*p
); p
++)
4193 inst
.error
= _("shift expression expected");
4197 shift_name
= hash_find_n (arm_shift_hsh
, *str
, p
- *str
);
4199 if (shift_name
== NULL
)
4201 inst
.error
= _("shift expression expected");
4205 shift
= shift_name
->kind
;
4209 case NO_SHIFT_RESTRICT
:
4210 case SHIFT_IMMEDIATE
: break;
4212 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
4213 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
4215 inst
.error
= _("'LSL' or 'ASR' required");
4220 case SHIFT_LSL_IMMEDIATE
:
4221 if (shift
!= SHIFT_LSL
)
4223 inst
.error
= _("'LSL' required");
4228 case SHIFT_ASR_IMMEDIATE
:
4229 if (shift
!= SHIFT_ASR
)
4231 inst
.error
= _("'ASR' required");
4239 if (shift
!= SHIFT_RRX
)
4241 /* Whitespace can appear here if the next thing is a bare digit. */
4242 skip_whitespace (p
);
4244 if (mode
== NO_SHIFT_RESTRICT
4245 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4247 inst
.operands
[i
].imm
= reg
;
4248 inst
.operands
[i
].immisreg
= 1;
4250 else if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4253 inst
.operands
[i
].shift_kind
= shift
;
4254 inst
.operands
[i
].shifted
= 1;
4259 /* Parse a <shifter_operand> for an ARM data processing instruction:
4262 #<immediate>, <rotate>
4266 where <shift> is defined by parse_shift above, and <rotate> is a
4267 multiple of 2 between 0 and 30. Validation of immediate operands
4268 is deferred to md_apply_fix. */
4271 parse_shifter_operand (char **str
, int i
)
4276 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
4278 inst
.operands
[i
].reg
= value
;
4279 inst
.operands
[i
].isreg
= 1;
4281 /* parse_shift will override this if appropriate */
4282 inst
.reloc
.exp
.X_op
= O_constant
;
4283 inst
.reloc
.exp
.X_add_number
= 0;
4285 if (skip_past_comma (str
) == FAIL
)
4288 /* Shift operation on register. */
4289 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
4292 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_IMM_PREFIX
))
4295 if (skip_past_comma (str
) == SUCCESS
)
4297 /* #x, y -- ie explicit rotation by Y. */
4298 if (my_get_expression (&expr
, str
, GE_NO_PREFIX
))
4301 if (expr
.X_op
!= O_constant
|| inst
.reloc
.exp
.X_op
!= O_constant
)
4303 inst
.error
= _("constant expression expected");
4307 value
= expr
.X_add_number
;
4308 if (value
< 0 || value
> 30 || value
% 2 != 0)
4310 inst
.error
= _("invalid rotation");
4313 if (inst
.reloc
.exp
.X_add_number
< 0 || inst
.reloc
.exp
.X_add_number
> 255)
4315 inst
.error
= _("invalid constant");
4319 /* Convert to decoded value. md_apply_fix will put it back. */
4320 inst
.reloc
.exp
.X_add_number
4321 = (((inst
.reloc
.exp
.X_add_number
<< (32 - value
))
4322 | (inst
.reloc
.exp
.X_add_number
>> value
)) & 0xffffffff);
4325 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
4326 inst
.reloc
.pc_rel
= 0;
4330 /* Group relocation information. Each entry in the table contains the
4331 textual name of the relocation as may appear in assembler source
4332 and must end with a colon.
4333 Along with this textual name are the relocation codes to be used if
4334 the corresponding instruction is an ALU instruction (ADD or SUB only),
4335 an LDR, an LDRS, or an LDC. */
4337 struct group_reloc_table_entry
4348 /* Varieties of non-ALU group relocation. */
4355 static struct group_reloc_table_entry group_reloc_table
[] =
4356 { /* Program counter relative: */
4358 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
4363 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
4364 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
4365 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
4366 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
4368 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
4373 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
4374 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
4375 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
4376 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
4378 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
4379 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
4380 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
4381 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
4382 /* Section base relative */
4384 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
4389 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
4390 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
4391 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
4392 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
4394 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
4399 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
4400 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
4401 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
4402 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
4404 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
4405 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
4406 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
4407 BFD_RELOC_ARM_LDC_SB_G2
} }; /* LDC */
4409 /* Given the address of a pointer pointing to the textual name of a group
4410 relocation as may appear in assembler source, attempt to find its details
4411 in group_reloc_table. The pointer will be updated to the character after
4412 the trailing colon. On failure, FAIL will be returned; SUCCESS
4413 otherwise. On success, *entry will be updated to point at the relevant
4414 group_reloc_table entry. */
4417 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
4420 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
4422 int length
= strlen (group_reloc_table
[i
].name
);
4424 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0 &&
4425 (*str
)[length
] == ':')
4427 *out
= &group_reloc_table
[i
];
4428 *str
+= (length
+ 1);
4436 /* Parse a <shifter_operand> for an ARM data processing instruction
4437 (as for parse_shifter_operand) where group relocations are allowed:
4440 #<immediate>, <rotate>
4441 #:<group_reloc>:<expression>
4445 where <group_reloc> is one of the strings defined in group_reloc_table.
4446 The hashes are optional.
4448 Everything else is as for parse_shifter_operand. */
4450 static parse_operand_result
4451 parse_shifter_operand_group_reloc (char **str
, int i
)
4453 /* Determine if we have the sequence of characters #: or just :
4454 coming next. If we do, then we check for a group relocation.
4455 If we don't, punt the whole lot to parse_shifter_operand. */
4457 if (((*str
)[0] == '#' && (*str
)[1] == ':')
4458 || (*str
)[0] == ':')
4460 struct group_reloc_table_entry
*entry
;
4462 if ((*str
)[0] == '#')
4467 /* Try to parse a group relocation. Anything else is an error. */
4468 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
4470 inst
.error
= _("unknown group relocation");
4471 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4474 /* We now have the group relocation table entry corresponding to
4475 the name in the assembler source. Next, we parse the expression. */
4476 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_NO_PREFIX
))
4477 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4479 /* Record the relocation type (always the ALU variant here). */
4480 inst
.reloc
.type
= entry
->alu_code
;
4481 assert (inst
.reloc
.type
!= 0);
4483 return PARSE_OPERAND_SUCCESS
;
4486 return parse_shifter_operand (str
, i
) == SUCCESS
4487 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
4489 /* Never reached. */
4492 /* Parse all forms of an ARM address expression. Information is written
4493 to inst.operands[i] and/or inst.reloc.
4495 Preindexed addressing (.preind=1):
4497 [Rn, #offset] .reg=Rn .reloc.exp=offset
4498 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4499 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4500 .shift_kind=shift .reloc.exp=shift_imm
4502 These three may have a trailing ! which causes .writeback to be set also.
4504 Postindexed addressing (.postind=1, .writeback=1):
4506 [Rn], #offset .reg=Rn .reloc.exp=offset
4507 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4508 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4509 .shift_kind=shift .reloc.exp=shift_imm
4511 Unindexed addressing (.preind=0, .postind=0):
4513 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4517 [Rn]{!} shorthand for [Rn,#0]{!}
4518 =immediate .isreg=0 .reloc.exp=immediate
4519 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4521 It is the caller's responsibility to check for addressing modes not
4522 supported by the instruction, and to set inst.reloc.type. */
4524 static parse_operand_result
4525 parse_address_main (char **str
, int i
, int group_relocations
,
4526 group_reloc_type group_type
)
4531 if (skip_past_char (&p
, '[') == FAIL
)
4533 if (skip_past_char (&p
, '=') == FAIL
)
4535 /* bare address - translate to PC-relative offset */
4536 inst
.reloc
.pc_rel
= 1;
4537 inst
.operands
[i
].reg
= REG_PC
;
4538 inst
.operands
[i
].isreg
= 1;
4539 inst
.operands
[i
].preind
= 1;
4541 /* else a load-constant pseudo op, no special treatment needed here */
4543 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4544 return PARSE_OPERAND_FAIL
;
4547 return PARSE_OPERAND_SUCCESS
;
4550 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
4552 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
4553 return PARSE_OPERAND_FAIL
;
4555 inst
.operands
[i
].reg
= reg
;
4556 inst
.operands
[i
].isreg
= 1;
4558 if (skip_past_comma (&p
) == SUCCESS
)
4560 inst
.operands
[i
].preind
= 1;
4563 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
4565 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4567 inst
.operands
[i
].imm
= reg
;
4568 inst
.operands
[i
].immisreg
= 1;
4570 if (skip_past_comma (&p
) == SUCCESS
)
4571 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
4572 return PARSE_OPERAND_FAIL
;
4574 else if (skip_past_char (&p
, ':') == SUCCESS
)
4576 /* FIXME: '@' should be used here, but it's filtered out by generic
4577 code before we get to see it here. This may be subject to
4580 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
4581 if (exp
.X_op
!= O_constant
)
4583 inst
.error
= _("alignment must be constant");
4584 return PARSE_OPERAND_FAIL
;
4586 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
4587 inst
.operands
[i
].immisalign
= 1;
4588 /* Alignments are not pre-indexes. */
4589 inst
.operands
[i
].preind
= 0;
4593 if (inst
.operands
[i
].negative
)
4595 inst
.operands
[i
].negative
= 0;
4599 if (group_relocations
&&
4600 ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
4603 struct group_reloc_table_entry
*entry
;
4605 /* Skip over the #: or : sequence. */
4611 /* Try to parse a group relocation. Anything else is an
4613 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
4615 inst
.error
= _("unknown group relocation");
4616 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4619 /* We now have the group relocation table entry corresponding to
4620 the name in the assembler source. Next, we parse the
4622 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4623 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4625 /* Record the relocation type. */
4629 inst
.reloc
.type
= entry
->ldr_code
;
4633 inst
.reloc
.type
= entry
->ldrs_code
;
4637 inst
.reloc
.type
= entry
->ldc_code
;
4644 if (inst
.reloc
.type
== 0)
4646 inst
.error
= _("this group relocation is not allowed on this instruction");
4647 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4651 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4652 return PARSE_OPERAND_FAIL
;
4656 if (skip_past_char (&p
, ']') == FAIL
)
4658 inst
.error
= _("']' expected");
4659 return PARSE_OPERAND_FAIL
;
4662 if (skip_past_char (&p
, '!') == SUCCESS
)
4663 inst
.operands
[i
].writeback
= 1;
4665 else if (skip_past_comma (&p
) == SUCCESS
)
4667 if (skip_past_char (&p
, '{') == SUCCESS
)
4669 /* [Rn], {expr} - unindexed, with option */
4670 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
4671 0, 255, TRUE
) == FAIL
)
4672 return PARSE_OPERAND_FAIL
;
4674 if (skip_past_char (&p
, '}') == FAIL
)
4676 inst
.error
= _("'}' expected at end of 'option' field");
4677 return PARSE_OPERAND_FAIL
;
4679 if (inst
.operands
[i
].preind
)
4681 inst
.error
= _("cannot combine index with option");
4682 return PARSE_OPERAND_FAIL
;
4685 return PARSE_OPERAND_SUCCESS
;
4689 inst
.operands
[i
].postind
= 1;
4690 inst
.operands
[i
].writeback
= 1;
4692 if (inst
.operands
[i
].preind
)
4694 inst
.error
= _("cannot combine pre- and post-indexing");
4695 return PARSE_OPERAND_FAIL
;
4699 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
4701 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4703 /* We might be using the immediate for alignment already. If we
4704 are, OR the register number into the low-order bits. */
4705 if (inst
.operands
[i
].immisalign
)
4706 inst
.operands
[i
].imm
|= reg
;
4708 inst
.operands
[i
].imm
= reg
;
4709 inst
.operands
[i
].immisreg
= 1;
4711 if (skip_past_comma (&p
) == SUCCESS
)
4712 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
4713 return PARSE_OPERAND_FAIL
;
4717 if (inst
.operands
[i
].negative
)
4719 inst
.operands
[i
].negative
= 0;
4722 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4723 return PARSE_OPERAND_FAIL
;
4728 /* If at this point neither .preind nor .postind is set, we have a
4729 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4730 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
4732 inst
.operands
[i
].preind
= 1;
4733 inst
.reloc
.exp
.X_op
= O_constant
;
4734 inst
.reloc
.exp
.X_add_number
= 0;
4737 return PARSE_OPERAND_SUCCESS
;
4741 parse_address (char **str
, int i
)
4743 return parse_address_main (str
, i
, 0, 0) == PARSE_OPERAND_SUCCESS
4747 static parse_operand_result
4748 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
4750 return parse_address_main (str
, i
, 1, type
);
4753 /* Parse an operand for a MOVW or MOVT instruction. */
4755 parse_half (char **str
)
4760 skip_past_char (&p
, '#');
4761 if (strncasecmp (p
, ":lower16:", 9) == 0)
4762 inst
.reloc
.type
= BFD_RELOC_ARM_MOVW
;
4763 else if (strncasecmp (p
, ":upper16:", 9) == 0)
4764 inst
.reloc
.type
= BFD_RELOC_ARM_MOVT
;
4766 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
4772 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4775 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
4777 if (inst
.reloc
.exp
.X_op
!= O_constant
)
4779 inst
.error
= _("constant expression expected");
4782 if (inst
.reloc
.exp
.X_add_number
< 0
4783 || inst
.reloc
.exp
.X_add_number
> 0xffff)
4785 inst
.error
= _("immediate value out of range");
4793 /* Miscellaneous. */
4795 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4796 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4798 parse_psr (char **str
)
4801 unsigned long psr_field
;
4802 const struct asm_psr
*psr
;
4805 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4806 feature for ease of use and backwards compatibility. */
4808 if (strncasecmp (p
, "SPSR", 4) == 0)
4809 psr_field
= SPSR_BIT
;
4810 else if (strncasecmp (p
, "CPSR", 4) == 0)
4817 while (ISALNUM (*p
) || *p
== '_');
4819 psr
= hash_find_n (arm_v7m_psr_hsh
, start
, p
- start
);
4830 /* A suffix follows. */
4836 while (ISALNUM (*p
) || *p
== '_');
4838 psr
= hash_find_n (arm_psr_hsh
, start
, p
- start
);
4842 psr_field
|= psr
->field
;
4847 goto error
; /* Garbage after "[CS]PSR". */
4849 psr_field
|= (PSR_c
| PSR_f
);
4855 inst
.error
= _("flag for {c}psr instruction expected");
4859 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4860 value suitable for splatting into the AIF field of the instruction. */
4863 parse_cps_flags (char **str
)
4872 case '\0': case ',':
4875 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
4876 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
4877 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
4880 inst
.error
= _("unrecognized CPS flag");
4885 if (saw_a_flag
== 0)
4887 inst
.error
= _("missing CPS flags");
4895 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4896 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4899 parse_endian_specifier (char **str
)
4904 if (strncasecmp (s
, "BE", 2))
4906 else if (strncasecmp (s
, "LE", 2))
4910 inst
.error
= _("valid endian specifiers are be or le");
4914 if (ISALNUM (s
[2]) || s
[2] == '_')
4916 inst
.error
= _("valid endian specifiers are be or le");
4921 return little_endian
;
4924 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
4925 value suitable for poking into the rotate field of an sxt or sxta
4926 instruction, or FAIL on error. */
4929 parse_ror (char **str
)
4934 if (strncasecmp (s
, "ROR", 3) == 0)
4938 inst
.error
= _("missing rotation field after comma");
4942 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
4947 case 0: *str
= s
; return 0x0;
4948 case 8: *str
= s
; return 0x1;
4949 case 16: *str
= s
; return 0x2;
4950 case 24: *str
= s
; return 0x3;
4953 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
4958 /* Parse a conditional code (from conds[] below). The value returned is in the
4959 range 0 .. 14, or FAIL. */
4961 parse_cond (char **str
)
4964 const struct asm_cond
*c
;
4967 while (ISALPHA (*q
))
4970 c
= hash_find_n (arm_cond_hsh
, p
, q
- p
);
4973 inst
.error
= _("condition required");
4981 /* Parse an option for a barrier instruction. Returns the encoding for the
4984 parse_barrier (char **str
)
4987 const struct asm_barrier_opt
*o
;
4990 while (ISALPHA (*q
))
4993 o
= hash_find_n (arm_barrier_opt_hsh
, p
, q
- p
);
5001 /* Parse the operands of a table branch instruction. Similar to a memory
5004 parse_tb (char **str
)
5009 if (skip_past_char (&p
, '[') == FAIL
)
5011 inst
.error
= _("'[' expected");
5015 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5017 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5020 inst
.operands
[0].reg
= reg
;
5022 if (skip_past_comma (&p
) == FAIL
)
5024 inst
.error
= _("',' expected");
5028 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5030 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5033 inst
.operands
[0].imm
= reg
;
5035 if (skip_past_comma (&p
) == SUCCESS
)
5037 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
5039 if (inst
.reloc
.exp
.X_add_number
!= 1)
5041 inst
.error
= _("invalid shift");
5044 inst
.operands
[0].shifted
= 1;
5047 if (skip_past_char (&p
, ']') == FAIL
)
5049 inst
.error
= _("']' expected");
5056 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5057 information on the types the operands can take and how they are encoded.
5058 Up to four operands may be read; this function handles setting the
5059 ".present" field for each read operand itself.
5060 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5061 else returns FAIL. */
5064 parse_neon_mov (char **str
, int *which_operand
)
5066 int i
= *which_operand
, val
;
5067 enum arm_reg_type rtype
;
5069 struct neon_type_el optype
;
5071 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5073 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5074 inst
.operands
[i
].reg
= val
;
5075 inst
.operands
[i
].isscalar
= 1;
5076 inst
.operands
[i
].vectype
= optype
;
5077 inst
.operands
[i
++].present
= 1;
5079 if (skip_past_comma (&ptr
) == FAIL
)
5082 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5085 inst
.operands
[i
].reg
= val
;
5086 inst
.operands
[i
].isreg
= 1;
5087 inst
.operands
[i
].present
= 1;
5089 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
5092 /* Cases 0, 1, 2, 3, 5 (D only). */
5093 if (skip_past_comma (&ptr
) == FAIL
)
5096 inst
.operands
[i
].reg
= val
;
5097 inst
.operands
[i
].isreg
= 1;
5098 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5099 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5100 inst
.operands
[i
].isvec
= 1;
5101 inst
.operands
[i
].vectype
= optype
;
5102 inst
.operands
[i
++].present
= 1;
5104 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5106 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5107 Case 13: VMOV <Sd>, <Rm> */
5108 inst
.operands
[i
].reg
= val
;
5109 inst
.operands
[i
].isreg
= 1;
5110 inst
.operands
[i
].present
= 1;
5112 if (rtype
== REG_TYPE_NQ
)
5114 first_error (_("can't use Neon quad register here"));
5117 else if (rtype
!= REG_TYPE_VFS
)
5120 if (skip_past_comma (&ptr
) == FAIL
)
5122 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5124 inst
.operands
[i
].reg
= val
;
5125 inst
.operands
[i
].isreg
= 1;
5126 inst
.operands
[i
].present
= 1;
5129 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
5130 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5131 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5132 Case 10: VMOV.F32 <Sd>, #<imm>
5133 Case 11: VMOV.F64 <Dd>, #<imm> */
5135 else if (parse_big_immediate (&ptr
, i
) == SUCCESS
)
5136 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5137 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5139 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
5142 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5143 Case 1: VMOV<c><q> <Dd>, <Dm>
5144 Case 8: VMOV.F32 <Sd>, <Sm>
5145 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5147 inst
.operands
[i
].reg
= val
;
5148 inst
.operands
[i
].isreg
= 1;
5149 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5150 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5151 inst
.operands
[i
].isvec
= 1;
5152 inst
.operands
[i
].vectype
= optype
;
5153 inst
.operands
[i
].present
= 1;
5155 if (skip_past_comma (&ptr
) == SUCCESS
)
5160 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5163 inst
.operands
[i
].reg
= val
;
5164 inst
.operands
[i
].isreg
= 1;
5165 inst
.operands
[i
++].present
= 1;
5167 if (skip_past_comma (&ptr
) == FAIL
)
5170 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5173 inst
.operands
[i
].reg
= val
;
5174 inst
.operands
[i
].isreg
= 1;
5175 inst
.operands
[i
++].present
= 1;
5180 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5184 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5187 inst
.operands
[i
].reg
= val
;
5188 inst
.operands
[i
].isreg
= 1;
5189 inst
.operands
[i
++].present
= 1;
5191 if (skip_past_comma (&ptr
) == FAIL
)
5194 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5196 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5197 inst
.operands
[i
].reg
= val
;
5198 inst
.operands
[i
].isscalar
= 1;
5199 inst
.operands
[i
].present
= 1;
5200 inst
.operands
[i
].vectype
= optype
;
5202 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5204 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5205 inst
.operands
[i
].reg
= val
;
5206 inst
.operands
[i
].isreg
= 1;
5207 inst
.operands
[i
++].present
= 1;
5209 if (skip_past_comma (&ptr
) == FAIL
)
5212 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
5215 first_error (_(reg_expected_msgs
[REG_TYPE_VFSD
]));
5219 inst
.operands
[i
].reg
= val
;
5220 inst
.operands
[i
].isreg
= 1;
5221 inst
.operands
[i
].isvec
= 1;
5222 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5223 inst
.operands
[i
].vectype
= optype
;
5224 inst
.operands
[i
].present
= 1;
5226 if (rtype
== REG_TYPE_VFS
)
5230 if (skip_past_comma (&ptr
) == FAIL
)
5232 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
5235 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
5238 inst
.operands
[i
].reg
= val
;
5239 inst
.operands
[i
].isreg
= 1;
5240 inst
.operands
[i
].isvec
= 1;
5241 inst
.operands
[i
].issingle
= 1;
5242 inst
.operands
[i
].vectype
= optype
;
5243 inst
.operands
[i
].present
= 1;
5246 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
5250 inst
.operands
[i
].reg
= val
;
5251 inst
.operands
[i
].isreg
= 1;
5252 inst
.operands
[i
].isvec
= 1;
5253 inst
.operands
[i
].issingle
= 1;
5254 inst
.operands
[i
].vectype
= optype
;
5255 inst
.operands
[i
++].present
= 1;
5260 first_error (_("parse error"));
5264 /* Successfully parsed the operands. Update args. */
5270 first_error (_("expected comma"));
5274 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
5278 /* Matcher codes for parse_operands. */
5279 enum operand_parse_code
5281 OP_stop
, /* end of line */
5283 OP_RR
, /* ARM register */
5284 OP_RRnpc
, /* ARM register, not r15 */
5285 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
5286 OP_RRw
, /* ARM register, not r15, optional trailing ! */
5287 OP_RCP
, /* Coprocessor number */
5288 OP_RCN
, /* Coprocessor register */
5289 OP_RF
, /* FPA register */
5290 OP_RVS
, /* VFP single precision register */
5291 OP_RVD
, /* VFP double precision register (0..15) */
5292 OP_RND
, /* Neon double precision register (0..31) */
5293 OP_RNQ
, /* Neon quad precision register */
5294 OP_RVSD
, /* VFP single or double precision register */
5295 OP_RNDQ
, /* Neon double or quad precision register */
5296 OP_RNSDQ
, /* Neon single, double or quad precision register */
5297 OP_RNSC
, /* Neon scalar D[X] */
5298 OP_RVC
, /* VFP control register */
5299 OP_RMF
, /* Maverick F register */
5300 OP_RMD
, /* Maverick D register */
5301 OP_RMFX
, /* Maverick FX register */
5302 OP_RMDX
, /* Maverick DX register */
5303 OP_RMAX
, /* Maverick AX register */
5304 OP_RMDS
, /* Maverick DSPSC register */
5305 OP_RIWR
, /* iWMMXt wR register */
5306 OP_RIWC
, /* iWMMXt wC register */
5307 OP_RIWG
, /* iWMMXt wCG register */
5308 OP_RXA
, /* XScale accumulator register */
5310 OP_REGLST
, /* ARM register list */
5311 OP_VRSLST
, /* VFP single-precision register list */
5312 OP_VRDLST
, /* VFP double-precision register list */
5313 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
5314 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
5315 OP_NSTRLST
, /* Neon element/structure list */
5317 OP_NILO
, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5318 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
5319 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
5320 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
5321 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
5322 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
5323 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
5324 OP_VMOV
, /* Neon VMOV operands. */
5325 OP_RNDQ_IMVNb
,/* Neon D or Q reg, or immediate good for VMVN. */
5326 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
5328 OP_I0
, /* immediate zero */
5329 OP_I7
, /* immediate value 0 .. 7 */
5330 OP_I15
, /* 0 .. 15 */
5331 OP_I16
, /* 1 .. 16 */
5332 OP_I16z
, /* 0 .. 16 */
5333 OP_I31
, /* 0 .. 31 */
5334 OP_I31w
, /* 0 .. 31, optional trailing ! */
5335 OP_I32
, /* 1 .. 32 */
5336 OP_I32z
, /* 0 .. 32 */
5337 OP_I63
, /* 0 .. 63 */
5338 OP_I63s
, /* -64 .. 63 */
5339 OP_I64
, /* 1 .. 64 */
5340 OP_I64z
, /* 0 .. 64 */
5341 OP_I255
, /* 0 .. 255 */
5343 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
5344 OP_I7b
, /* 0 .. 7 */
5345 OP_I15b
, /* 0 .. 15 */
5346 OP_I31b
, /* 0 .. 31 */
5348 OP_SH
, /* shifter operand */
5349 OP_SHG
, /* shifter operand with possible group relocation */
5350 OP_ADDR
, /* Memory address expression (any mode) */
5351 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
5352 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
5353 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
5354 OP_EXP
, /* arbitrary expression */
5355 OP_EXPi
, /* same, with optional immediate prefix */
5356 OP_EXPr
, /* same, with optional relocation suffix */
5357 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
5359 OP_CPSF
, /* CPS flags */
5360 OP_ENDI
, /* Endianness specifier */
5361 OP_PSR
, /* CPSR/SPSR mask for msr */
5362 OP_COND
, /* conditional code */
5363 OP_TB
, /* Table branch. */
5365 OP_RVC_PSR
, /* CPSR/SPSR mask for msr, or VFP control register. */
5366 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
5368 OP_RRnpc_I0
, /* ARM register or literal 0 */
5369 OP_RR_EXr
, /* ARM register or expression with opt. reloc suff. */
5370 OP_RR_EXi
, /* ARM register or expression with imm prefix */
5371 OP_RF_IF
, /* FPA register or immediate */
5372 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
5374 /* Optional operands. */
5375 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
5376 OP_oI31b
, /* 0 .. 31 */
5377 OP_oI32b
, /* 1 .. 32 */
5378 OP_oIffffb
, /* 0 .. 65535 */
5379 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
5381 OP_oRR
, /* ARM register */
5382 OP_oRRnpc
, /* ARM register, not the PC */
5383 OP_oRND
, /* Optional Neon double precision register */
5384 OP_oRNQ
, /* Optional Neon quad precision register */
5385 OP_oRNDQ
, /* Optional Neon double or quad precision register */
5386 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
5387 OP_oSHll
, /* LSL immediate */
5388 OP_oSHar
, /* ASR immediate */
5389 OP_oSHllar
, /* LSL or ASR immediate */
5390 OP_oROR
, /* ROR 0/8/16/24 */
5391 OP_oBARRIER
, /* Option argument for a barrier instruction. */
5393 OP_FIRST_OPTIONAL
= OP_oI7b
5396 /* Generic instruction operand parser. This does no encoding and no
5397 semantic validation; it merely squirrels values away in the inst
5398 structure. Returns SUCCESS or FAIL depending on whether the
5399 specified grammar matched. */
5401 parse_operands (char *str
, const unsigned char *pattern
)
5403 unsigned const char *upat
= pattern
;
5404 char *backtrack_pos
= 0;
5405 const char *backtrack_error
= 0;
5406 int i
, val
, backtrack_index
= 0;
5407 enum arm_reg_type rtype
;
5408 parse_operand_result result
;
5410 #define po_char_or_fail(chr) do { \
5411 if (skip_past_char (&str, chr) == FAIL) \
5415 #define po_reg_or_fail(regtype) do { \
5416 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5417 &inst.operands[i].vectype); \
5420 first_error (_(reg_expected_msgs[regtype])); \
5423 inst.operands[i].reg = val; \
5424 inst.operands[i].isreg = 1; \
5425 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5426 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5427 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5428 || rtype == REG_TYPE_VFD \
5429 || rtype == REG_TYPE_NQ); \
5432 #define po_reg_or_goto(regtype, label) do { \
5433 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5434 &inst.operands[i].vectype); \
5438 inst.operands[i].reg = val; \
5439 inst.operands[i].isreg = 1; \
5440 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5441 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5442 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5443 || rtype == REG_TYPE_VFD \
5444 || rtype == REG_TYPE_NQ); \
5447 #define po_imm_or_fail(min, max, popt) do { \
5448 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5450 inst.operands[i].imm = val; \
5453 #define po_scalar_or_goto(elsz, label) do { \
5454 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5457 inst.operands[i].reg = val; \
5458 inst.operands[i].isscalar = 1; \
5461 #define po_misc_or_fail(expr) do { \
5466 #define po_misc_or_fail_no_backtrack(expr) do { \
5468 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5469 backtrack_pos = 0; \
5470 if (result != PARSE_OPERAND_SUCCESS) \
5474 skip_whitespace (str
);
5476 for (i
= 0; upat
[i
] != OP_stop
; i
++)
5478 if (upat
[i
] >= OP_FIRST_OPTIONAL
)
5480 /* Remember where we are in case we need to backtrack. */
5481 assert (!backtrack_pos
);
5482 backtrack_pos
= str
;
5483 backtrack_error
= inst
.error
;
5484 backtrack_index
= i
;
5488 po_char_or_fail (',');
5496 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
5497 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
5498 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
5499 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
5500 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
5501 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
5503 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
5504 case OP_RVC
: po_reg_or_fail (REG_TYPE_VFC
); break;
5505 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
5506 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
5507 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
5508 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
5509 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
5510 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
5511 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
5512 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
5513 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
5514 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
5516 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
5518 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
5519 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
5521 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
5523 /* Neon scalar. Using an element size of 8 means that some invalid
5524 scalars are accepted here, so deal with those in later code. */
5525 case OP_RNSC
: po_scalar_or_goto (8, failure
); break;
5527 /* WARNING: We can expand to two operands here. This has the potential
5528 to totally confuse the backtracking mechanism! It will be OK at
5529 least as long as we don't try to use optional args as well,
5533 po_reg_or_goto (REG_TYPE_NDQ
, try_imm
);
5535 skip_past_comma (&str
);
5536 po_reg_or_goto (REG_TYPE_NDQ
, one_reg_only
);
5539 /* Optional register operand was omitted. Unfortunately, it's in
5540 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5541 here (this is a bit grotty). */
5542 inst
.operands
[i
] = inst
.operands
[i
-1];
5543 inst
.operands
[i
-1].present
= 0;
5546 /* Immediate gets verified properly later, so accept any now. */
5547 po_imm_or_fail (INT_MIN
, INT_MAX
, TRUE
);
5553 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
5556 po_imm_or_fail (0, 0, TRUE
);
5561 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
5566 po_scalar_or_goto (8, try_rr
);
5569 po_reg_or_fail (REG_TYPE_RN
);
5575 po_scalar_or_goto (8, try_nsdq
);
5578 po_reg_or_fail (REG_TYPE_NSDQ
);
5584 po_scalar_or_goto (8, try_ndq
);
5587 po_reg_or_fail (REG_TYPE_NDQ
);
5593 po_scalar_or_goto (8, try_vfd
);
5596 po_reg_or_fail (REG_TYPE_VFD
);
5601 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5602 not careful then bad things might happen. */
5603 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
5608 po_reg_or_goto (REG_TYPE_NDQ
, try_mvnimm
);
5611 /* There's a possibility of getting a 64-bit immediate here, so
5612 we need special handling. */
5613 if (parse_big_immediate (&str
, i
) == FAIL
)
5615 inst
.error
= _("immediate value is out of range");
5623 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
5626 po_imm_or_fail (0, 63, TRUE
);
5631 po_char_or_fail ('[');
5632 po_reg_or_fail (REG_TYPE_RN
);
5633 po_char_or_fail (']');
5637 po_reg_or_fail (REG_TYPE_RN
);
5638 if (skip_past_char (&str
, '!') == SUCCESS
)
5639 inst
.operands
[i
].writeback
= 1;
5643 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
5644 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
5645 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
5646 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
5647 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
5648 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
5649 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
5650 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
5651 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
5652 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
5653 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
5654 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
5656 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
5658 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
5659 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
5661 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
5662 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
5663 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
5665 /* Immediate variants */
5667 po_char_or_fail ('{');
5668 po_imm_or_fail (0, 255, TRUE
);
5669 po_char_or_fail ('}');
5673 /* The expression parser chokes on a trailing !, so we have
5674 to find it first and zap it. */
5677 while (*s
&& *s
!= ',')
5682 inst
.operands
[i
].writeback
= 1;
5684 po_imm_or_fail (0, 31, TRUE
);
5692 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
5697 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
5702 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
5704 if (inst
.reloc
.exp
.X_op
== O_symbol
)
5706 val
= parse_reloc (&str
);
5709 inst
.error
= _("unrecognized relocation suffix");
5712 else if (val
!= BFD_RELOC_UNUSED
)
5714 inst
.operands
[i
].imm
= val
;
5715 inst
.operands
[i
].hasreloc
= 1;
5720 /* Operand for MOVW or MOVT. */
5722 po_misc_or_fail (parse_half (&str
));
5725 /* Register or expression */
5726 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
5727 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
5729 /* Register or immediate */
5730 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
5731 I0
: po_imm_or_fail (0, 0, FALSE
); break;
5733 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
5735 if (!is_immediate_prefix (*str
))
5738 val
= parse_fpa_immediate (&str
);
5741 /* FPA immediates are encoded as registers 8-15.
5742 parse_fpa_immediate has already applied the offset. */
5743 inst
.operands
[i
].reg
= val
;
5744 inst
.operands
[i
].isreg
= 1;
5747 /* Two kinds of register */
5750 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
5751 if (rege
->type
!= REG_TYPE_MMXWR
5752 && rege
->type
!= REG_TYPE_MMXWC
5753 && rege
->type
!= REG_TYPE_MMXWCG
)
5755 inst
.error
= _("iWMMXt data or control register expected");
5758 inst
.operands
[i
].reg
= rege
->number
;
5759 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
5764 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
5765 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
5766 case OP_oROR
: val
= parse_ror (&str
); break;
5767 case OP_PSR
: val
= parse_psr (&str
); break;
5768 case OP_COND
: val
= parse_cond (&str
); break;
5769 case OP_oBARRIER
:val
= parse_barrier (&str
); break;
5772 po_reg_or_goto (REG_TYPE_VFC
, try_psr
);
5773 inst
.operands
[i
].isvec
= 1; /* Mark VFP control reg as vector. */
5776 val
= parse_psr (&str
);
5780 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
5783 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5785 if (strncasecmp (str
, "APSR_", 5) == 0)
5792 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
5793 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
5794 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
5795 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
5796 default: found
= 16;
5800 inst
.operands
[i
].isvec
= 1;
5807 po_misc_or_fail (parse_tb (&str
));
5810 /* Register lists */
5812 val
= parse_reg_list (&str
);
5815 inst
.operands
[1].writeback
= 1;
5821 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
);
5825 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
);
5829 /* Allow Q registers too. */
5830 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
5835 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
5837 inst
.operands
[i
].issingle
= 1;
5842 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
5847 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
5848 &inst
.operands
[i
].vectype
);
5851 /* Addressing modes */
5853 po_misc_or_fail (parse_address (&str
, i
));
5857 po_misc_or_fail_no_backtrack (
5858 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
5862 po_misc_or_fail_no_backtrack (
5863 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
5867 po_misc_or_fail_no_backtrack (
5868 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
5872 po_misc_or_fail (parse_shifter_operand (&str
, i
));
5876 po_misc_or_fail_no_backtrack (
5877 parse_shifter_operand_group_reloc (&str
, i
));
5881 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
5885 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
5889 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
5893 as_fatal ("unhandled operand code %d", upat
[i
]);
5896 /* Various value-based sanity checks and shared operations. We
5897 do not signal immediate failures for the register constraints;
5898 this allows a syntax error to take precedence. */
5906 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
5907 inst
.error
= BAD_PC
;
5925 inst
.operands
[i
].imm
= val
;
5932 /* If we get here, this operand was successfully parsed. */
5933 inst
.operands
[i
].present
= 1;
5937 inst
.error
= BAD_ARGS
;
5942 /* The parse routine should already have set inst.error, but set a
5943 defaut here just in case. */
5945 inst
.error
= _("syntax error");
5949 /* Do not backtrack over a trailing optional argument that
5950 absorbed some text. We will only fail again, with the
5951 'garbage following instruction' error message, which is
5952 probably less helpful than the current one. */
5953 if (backtrack_index
== i
&& backtrack_pos
!= str
5954 && upat
[i
+1] == OP_stop
)
5957 inst
.error
= _("syntax error");
5961 /* Try again, skipping the optional argument at backtrack_pos. */
5962 str
= backtrack_pos
;
5963 inst
.error
= backtrack_error
;
5964 inst
.operands
[backtrack_index
].present
= 0;
5965 i
= backtrack_index
;
5969 /* Check that we have parsed all the arguments. */
5970 if (*str
!= '\0' && !inst
.error
)
5971 inst
.error
= _("garbage following instruction");
5973 return inst
.error
? FAIL
: SUCCESS
;
5976 #undef po_char_or_fail
5977 #undef po_reg_or_fail
5978 #undef po_reg_or_goto
5979 #undef po_imm_or_fail
5980 #undef po_scalar_or_fail
5982 /* Shorthand macro for instruction encoding functions issuing errors. */
5983 #define constraint(expr, err) do { \
5991 /* Functions for operand encoding. ARM, then Thumb. */
5993 #define rotate_left(v, n) (v << n | v >> (32 - n))
5995 /* If VAL can be encoded in the immediate field of an ARM instruction,
5996 return the encoded form. Otherwise, return FAIL. */
5999 encode_arm_immediate (unsigned int val
)
6003 for (i
= 0; i
< 32; i
+= 2)
6004 if ((a
= rotate_left (val
, i
)) <= 0xff)
6005 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
6010 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6011 return the encoded form. Otherwise, return FAIL. */
6013 encode_thumb32_immediate (unsigned int val
)
6020 for (i
= 1; i
<= 24; i
++)
6023 if ((val
& ~(0xff << i
)) == 0)
6024 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
6028 if (val
== ((a
<< 16) | a
))
6030 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
6034 if (val
== ((a
<< 16) | a
))
6035 return 0x200 | (a
>> 8);
6039 /* Encode a VFP SP or DP register number into inst.instruction. */
6042 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
6044 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
6047 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
6050 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
6053 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
6058 first_error (_("D register out of range for selected VFP version"));
6066 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
6070 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
6074 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
6078 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
6082 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
6086 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
6094 /* Encode a <shift> in an ARM-format instruction. The immediate,
6095 if any, is handled by md_apply_fix. */
6097 encode_arm_shift (int i
)
6099 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6100 inst
.instruction
|= SHIFT_ROR
<< 5;
6103 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6104 if (inst
.operands
[i
].immisreg
)
6106 inst
.instruction
|= SHIFT_BY_REG
;
6107 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
6110 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6115 encode_arm_shifter_operand (int i
)
6117 if (inst
.operands
[i
].isreg
)
6119 inst
.instruction
|= inst
.operands
[i
].reg
;
6120 encode_arm_shift (i
);
6123 inst
.instruction
|= INST_IMMEDIATE
;
6126 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6128 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
6130 assert (inst
.operands
[i
].isreg
);
6131 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6133 if (inst
.operands
[i
].preind
)
6137 inst
.error
= _("instruction does not accept preindexed addressing");
6140 inst
.instruction
|= PRE_INDEX
;
6141 if (inst
.operands
[i
].writeback
)
6142 inst
.instruction
|= WRITE_BACK
;
6145 else if (inst
.operands
[i
].postind
)
6147 assert (inst
.operands
[i
].writeback
);
6149 inst
.instruction
|= WRITE_BACK
;
6151 else /* unindexed - only for coprocessor */
6153 inst
.error
= _("instruction does not accept unindexed addressing");
6157 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
6158 && (((inst
.instruction
& 0x000f0000) >> 16)
6159 == ((inst
.instruction
& 0x0000f000) >> 12)))
6160 as_warn ((inst
.instruction
& LOAD_BIT
)
6161 ? _("destination register same as write-back base")
6162 : _("source register same as write-back base"));
6165 /* inst.operands[i] was set up by parse_address. Encode it into an
6166 ARM-format mode 2 load or store instruction. If is_t is true,
6167 reject forms that cannot be used with a T instruction (i.e. not
6170 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
6172 encode_arm_addr_mode_common (i
, is_t
);
6174 if (inst
.operands
[i
].immisreg
)
6176 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
6177 inst
.instruction
|= inst
.operands
[i
].imm
;
6178 if (!inst
.operands
[i
].negative
)
6179 inst
.instruction
|= INDEX_UP
;
6180 if (inst
.operands
[i
].shifted
)
6182 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6183 inst
.instruction
|= SHIFT_ROR
<< 5;
6186 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6187 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6191 else /* immediate offset in inst.reloc */
6193 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6194 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM
;
6198 /* inst.operands[i] was set up by parse_address. Encode it into an
6199 ARM-format mode 3 load or store instruction. Reject forms that
6200 cannot be used with such instructions. If is_t is true, reject
6201 forms that cannot be used with a T instruction (i.e. not
6204 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
6206 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
6208 inst
.error
= _("instruction does not accept scaled register index");
6212 encode_arm_addr_mode_common (i
, is_t
);
6214 if (inst
.operands
[i
].immisreg
)
6216 inst
.instruction
|= inst
.operands
[i
].imm
;
6217 if (!inst
.operands
[i
].negative
)
6218 inst
.instruction
|= INDEX_UP
;
6220 else /* immediate offset in inst.reloc */
6222 inst
.instruction
|= HWOFFSET_IMM
;
6223 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6224 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM8
;
6228 /* inst.operands[i] was set up by parse_address. Encode it into an
6229 ARM-format instruction. Reject all forms which cannot be encoded
6230 into a coprocessor load/store instruction. If wb_ok is false,
6231 reject use of writeback; if unind_ok is false, reject use of
6232 unindexed addressing. If reloc_override is not 0, use it instead
6233 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6234 (in which case it is preserved). */
6237 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
6239 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6241 assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
6243 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
6245 assert (!inst
.operands
[i
].writeback
);
6248 inst
.error
= _("instruction does not support unindexed addressing");
6251 inst
.instruction
|= inst
.operands
[i
].imm
;
6252 inst
.instruction
|= INDEX_UP
;
6256 if (inst
.operands
[i
].preind
)
6257 inst
.instruction
|= PRE_INDEX
;
6259 if (inst
.operands
[i
].writeback
)
6261 if (inst
.operands
[i
].reg
== REG_PC
)
6263 inst
.error
= _("pc may not be used with write-back");
6268 inst
.error
= _("instruction does not support writeback");
6271 inst
.instruction
|= WRITE_BACK
;
6275 inst
.reloc
.type
= reloc_override
;
6276 else if ((inst
.reloc
.type
< BFD_RELOC_ARM_ALU_PC_G0_NC
6277 || inst
.reloc
.type
> BFD_RELOC_ARM_LDC_SB_G2
)
6278 && inst
.reloc
.type
!= BFD_RELOC_ARM_LDR_PC_G0
)
6281 inst
.reloc
.type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
6283 inst
.reloc
.type
= BFD_RELOC_ARM_CP_OFF_IMM
;
6289 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6290 Determine whether it can be performed with a move instruction; if
6291 it can, convert inst.instruction to that move instruction and
6292 return 1; if it can't, convert inst.instruction to a literal-pool
6293 load and return 0. If this is not a valid thing to do in the
6294 current context, set inst.error and return 1.
6296 inst.operands[i] describes the destination register. */
6299 move_or_literal_pool (int i
, bfd_boolean thumb_p
, bfd_boolean mode_3
)
6304 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
6308 if ((inst
.instruction
& tbit
) == 0)
6310 inst
.error
= _("invalid pseudo operation");
6313 if (inst
.reloc
.exp
.X_op
!= O_constant
&& inst
.reloc
.exp
.X_op
!= O_symbol
)
6315 inst
.error
= _("constant expression expected");
6318 if (inst
.reloc
.exp
.X_op
== O_constant
)
6322 if (!unified_syntax
&& (inst
.reloc
.exp
.X_add_number
& ~0xFF) == 0)
6324 /* This can be done with a mov(1) instruction. */
6325 inst
.instruction
= T_OPCODE_MOV_I8
| (inst
.operands
[i
].reg
<< 8);
6326 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
;
6332 int value
= encode_arm_immediate (inst
.reloc
.exp
.X_add_number
);
6335 /* This can be done with a mov instruction. */
6336 inst
.instruction
&= LITERAL_MASK
;
6337 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
6338 inst
.instruction
|= value
& 0xfff;
6342 value
= encode_arm_immediate (~inst
.reloc
.exp
.X_add_number
);
6345 /* This can be done with a mvn instruction. */
6346 inst
.instruction
&= LITERAL_MASK
;
6347 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
6348 inst
.instruction
|= value
& 0xfff;
6354 if (add_to_lit_pool () == FAIL
)
6356 inst
.error
= _("literal pool insertion failed");
6359 inst
.operands
[1].reg
= REG_PC
;
6360 inst
.operands
[1].isreg
= 1;
6361 inst
.operands
[1].preind
= 1;
6362 inst
.reloc
.pc_rel
= 1;
6363 inst
.reloc
.type
= (thumb_p
6364 ? BFD_RELOC_ARM_THUMB_OFFSET
6366 ? BFD_RELOC_ARM_HWLITERAL
6367 : BFD_RELOC_ARM_LITERAL
));
6371 /* Functions for instruction encoding, sorted by subarchitecture.
6372 First some generics; their names are taken from the conventional
6373 bit positions for register arguments in ARM format instructions. */
6383 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6389 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6390 inst
.instruction
|= inst
.operands
[1].reg
;
6396 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6397 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6403 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
6404 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
6410 unsigned Rn
= inst
.operands
[2].reg
;
6411 /* Enforce restrictions on SWP instruction. */
6412 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
6413 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
6414 _("Rn must not overlap other operands"));
6415 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6416 inst
.instruction
|= inst
.operands
[1].reg
;
6417 inst
.instruction
|= Rn
<< 16;
6423 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6424 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6425 inst
.instruction
|= inst
.operands
[2].reg
;
6431 inst
.instruction
|= inst
.operands
[0].reg
;
6432 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
6433 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
6439 inst
.instruction
|= inst
.operands
[0].imm
;
6445 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6446 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
6449 /* ARM instructions, in alphabetical order by function name (except
6450 that wrapper functions appear immediately after the function they
6453 /* This is a pseudo-op of the form "adr rd, label" to be converted
6454 into a relative address of the form "add rd, pc, #label-.-8". */
6459 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
6461 /* Frag hacking will turn this into a sub instruction if the offset turns
6462 out to be negative. */
6463 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
6464 inst
.reloc
.pc_rel
= 1;
6465 inst
.reloc
.exp
.X_add_number
-= 8;
6468 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6469 into a relative address of the form:
6470 add rd, pc, #low(label-.-8)"
6471 add rd, rd, #high(label-.-8)" */
6476 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
6478 /* Frag hacking will turn this into a sub instruction if the offset turns
6479 out to be negative. */
6480 inst
.reloc
.type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
6481 inst
.reloc
.pc_rel
= 1;
6482 inst
.size
= INSN_SIZE
* 2;
6483 inst
.reloc
.exp
.X_add_number
-= 8;
6489 if (!inst
.operands
[1].present
)
6490 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
6491 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6492 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6493 encode_arm_shifter_operand (2);
6499 if (inst
.operands
[0].present
)
6501 constraint ((inst
.instruction
& 0xf0) != 0x40
6502 && inst
.operands
[0].imm
!= 0xf,
6503 "bad barrier type");
6504 inst
.instruction
|= inst
.operands
[0].imm
;
6507 inst
.instruction
|= 0xf;
6513 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
6514 constraint (msb
> 32, _("bit-field extends past end of register"));
6515 /* The instruction encoding stores the LSB and MSB,
6516 not the LSB and width. */
6517 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6518 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
6519 inst
.instruction
|= (msb
- 1) << 16;
6527 /* #0 in second position is alternative syntax for bfc, which is
6528 the same instruction but with REG_PC in the Rm field. */
6529 if (!inst
.operands
[1].isreg
)
6530 inst
.operands
[1].reg
= REG_PC
;
6532 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
6533 constraint (msb
> 32, _("bit-field extends past end of register"));
6534 /* The instruction encoding stores the LSB and MSB,
6535 not the LSB and width. */
6536 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6537 inst
.instruction
|= inst
.operands
[1].reg
;
6538 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
6539 inst
.instruction
|= (msb
- 1) << 16;
6545 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
6546 _("bit-field extends past end of register"));
6547 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6548 inst
.instruction
|= inst
.operands
[1].reg
;
6549 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
6550 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
6553 /* ARM V5 breakpoint instruction (argument parse)
6554 BKPT <16 bit unsigned immediate>
6555 Instruction is not conditional.
6556 The bit pattern given in insns[] has the COND_ALWAYS condition,
6557 and it is an error if the caller tried to override that. */
6562 /* Top 12 of 16 bits to bits 19:8. */
6563 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
6565 /* Bottom 4 of 16 bits to bits 3:0. */
6566 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
6570 encode_branch (int default_reloc
)
6572 if (inst
.operands
[0].hasreloc
)
6574 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
,
6575 _("the only suffix valid here is '(plt)'"));
6576 inst
.reloc
.type
= BFD_RELOC_ARM_PLT32
;
6580 inst
.reloc
.type
= default_reloc
;
6582 inst
.reloc
.pc_rel
= 1;
6589 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
6590 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
6593 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
6600 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
6602 if (inst
.cond
== COND_ALWAYS
)
6603 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
6605 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
6609 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
6612 /* ARM V5 branch-link-exchange instruction (argument parse)
6613 BLX <target_addr> ie BLX(1)
6614 BLX{<condition>} <Rm> ie BLX(2)
6615 Unfortunately, there are two different opcodes for this mnemonic.
6616 So, the insns[].value is not used, and the code here zaps values
6617 into inst.instruction.
6618 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6623 if (inst
.operands
[0].isreg
)
6625 /* Arg is a register; the opcode provided by insns[] is correct.
6626 It is not illegal to do "blx pc", just useless. */
6627 if (inst
.operands
[0].reg
== REG_PC
)
6628 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6630 inst
.instruction
|= inst
.operands
[0].reg
;
6634 /* Arg is an address; this instruction cannot be executed
6635 conditionally, and the opcode must be adjusted. */
6636 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
6637 inst
.instruction
= 0xfa000000;
6639 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
6640 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
6643 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
6650 if (inst
.operands
[0].reg
== REG_PC
)
6651 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6653 inst
.instruction
|= inst
.operands
[0].reg
;
6657 /* ARM v5TEJ. Jump to Jazelle code. */
6662 if (inst
.operands
[0].reg
== REG_PC
)
6663 as_tsktsk (_("use of r15 in bxj is not really useful"));
6665 inst
.instruction
|= inst
.operands
[0].reg
;
6668 /* Co-processor data operation:
6669 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6670 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6674 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6675 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
6676 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
6677 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
6678 inst
.instruction
|= inst
.operands
[4].reg
;
6679 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
6685 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
6686 encode_arm_shifter_operand (1);
6689 /* Transfer between coprocessor and ARM registers.
6690 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6695 No special properties. */
6700 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6701 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
6702 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
6703 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
6704 inst
.instruction
|= inst
.operands
[4].reg
;
6705 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
6708 /* Transfer between coprocessor register and pair of ARM registers.
6709 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6714 Two XScale instructions are special cases of these:
6716 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6717 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6719 Result unpredicatable if Rd or Rn is R15. */
6724 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6725 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
6726 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
6727 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
6728 inst
.instruction
|= inst
.operands
[4].reg
;
6734 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
6735 inst
.instruction
|= inst
.operands
[1].imm
;
6741 inst
.instruction
|= inst
.operands
[0].imm
;
6747 /* There is no IT instruction in ARM mode. We
6748 process it but do not generate code for it. */
6755 int base_reg
= inst
.operands
[0].reg
;
6756 int range
= inst
.operands
[1].imm
;
6758 inst
.instruction
|= base_reg
<< 16;
6759 inst
.instruction
|= range
;
6761 if (inst
.operands
[1].writeback
)
6762 inst
.instruction
|= LDM_TYPE_2_OR_3
;
6764 if (inst
.operands
[0].writeback
)
6766 inst
.instruction
|= WRITE_BACK
;
6767 /* Check for unpredictable uses of writeback. */
6768 if (inst
.instruction
& LOAD_BIT
)
6770 /* Not allowed in LDM type 2. */
6771 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
6772 && ((range
& (1 << REG_PC
)) == 0))
6773 as_warn (_("writeback of base register is UNPREDICTABLE"));
6774 /* Only allowed if base reg not in list for other types. */
6775 else if (range
& (1 << base_reg
))
6776 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6780 /* Not allowed for type 2. */
6781 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
6782 as_warn (_("writeback of base register is UNPREDICTABLE"));
6783 /* Only allowed if base reg not in list, or first in list. */
6784 else if ((range
& (1 << base_reg
))
6785 && (range
& ((1 << base_reg
) - 1)))
6786 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6791 /* ARMv5TE load-consecutive (argument parse)
6800 constraint (inst
.operands
[0].reg
% 2 != 0,
6801 _("first destination register must be even"));
6802 constraint (inst
.operands
[1].present
6803 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
6804 _("can only load two consecutive registers"));
6805 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
6806 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
6808 if (!inst
.operands
[1].present
)
6809 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
6811 if (inst
.instruction
& LOAD_BIT
)
6813 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6814 register and the first register written; we have to diagnose
6815 overlap between the base and the second register written here. */
6817 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
6818 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
6819 as_warn (_("base register written back, and overlaps "
6820 "second destination register"));
6822 /* For an index-register load, the index register must not overlap the
6823 destination (even if not write-back). */
6824 else if (inst
.operands
[2].immisreg
6825 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
6826 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
6827 as_warn (_("index register overlaps destination register"));
6830 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6831 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
6837 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
6838 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
6839 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
6840 || inst
.operands
[1].negative
6841 /* This can arise if the programmer has written
6843 or if they have mistakenly used a register name as the last
6846 It is very difficult to distinguish between these two cases
6847 because "rX" might actually be a label. ie the register
6848 name has been occluded by a symbol of the same name. So we
6849 just generate a general 'bad addressing mode' type error
6850 message and leave it up to the programmer to discover the
6851 true cause and fix their mistake. */
6852 || (inst
.operands
[1].reg
== REG_PC
),
6855 constraint (inst
.reloc
.exp
.X_op
!= O_constant
6856 || inst
.reloc
.exp
.X_add_number
!= 0,
6857 _("offset must be zero in ARM encoding"));
6859 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6860 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6861 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
6867 constraint (inst
.operands
[0].reg
% 2 != 0,
6868 _("even register required"));
6869 constraint (inst
.operands
[1].present
6870 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
6871 _("can only load two consecutive registers"));
6872 /* If op 1 were present and equal to PC, this function wouldn't
6873 have been called in the first place. */
6874 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
6876 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6877 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
6883 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6884 if (!inst
.operands
[1].isreg
)
6885 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/FALSE
))
6887 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
6893 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6895 if (inst
.operands
[1].preind
)
6897 constraint (inst
.reloc
.exp
.X_op
!= O_constant
||
6898 inst
.reloc
.exp
.X_add_number
!= 0,
6899 _("this instruction requires a post-indexed address"));
6901 inst
.operands
[1].preind
= 0;
6902 inst
.operands
[1].postind
= 1;
6903 inst
.operands
[1].writeback
= 1;
6905 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6906 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
6909 /* Halfword and signed-byte load/store operations. */
6914 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6915 if (!inst
.operands
[1].isreg
)
6916 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/TRUE
))
6918 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
6924 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6926 if (inst
.operands
[1].preind
)
6928 constraint (inst
.reloc
.exp
.X_op
!= O_constant
||
6929 inst
.reloc
.exp
.X_add_number
!= 0,
6930 _("this instruction requires a post-indexed address"));
6932 inst
.operands
[1].preind
= 0;
6933 inst
.operands
[1].postind
= 1;
6934 inst
.operands
[1].writeback
= 1;
6936 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6937 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
6940 /* Co-processor register load/store.
6941 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
6945 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
6946 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
6947 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
6953 /* This restriction does not apply to mls (nor to mla in v6, but
6954 that's hard to detect at present). */
6955 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
6956 && !(inst
.instruction
& 0x00400000))
6957 as_tsktsk (_("rd and rm should be different in mla"));
6959 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
6960 inst
.instruction
|= inst
.operands
[1].reg
;
6961 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
6962 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
6969 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6970 encode_arm_shifter_operand (1);
6973 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
6980 top
= (inst
.instruction
& 0x00400000) != 0;
6981 constraint (top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
,
6982 _(":lower16: not allowed this instruction"));
6983 constraint (!top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
,
6984 _(":upper16: not allowed instruction"));
6985 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6986 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6988 imm
= inst
.reloc
.exp
.X_add_number
;
6989 /* The value is in two pieces: 0:11, 16:19. */
6990 inst
.instruction
|= (imm
& 0x00000fff);
6991 inst
.instruction
|= (imm
& 0x0000f000) << 4;
6995 static void do_vfp_nsyn_opcode (const char *);
6998 do_vfp_nsyn_mrs (void)
7000 if (inst
.operands
[0].isvec
)
7002 if (inst
.operands
[1].reg
!= 1)
7003 first_error (_("operand 1 must be FPSCR"));
7004 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
7005 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
7006 do_vfp_nsyn_opcode ("fmstat");
7008 else if (inst
.operands
[1].isvec
)
7009 do_vfp_nsyn_opcode ("fmrx");
7017 do_vfp_nsyn_msr (void)
7019 if (inst
.operands
[0].isvec
)
7020 do_vfp_nsyn_opcode ("fmxr");
7030 if (do_vfp_nsyn_mrs () == SUCCESS
)
7033 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7034 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
7036 _("'CPSR' or 'SPSR' expected"));
7037 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7038 inst
.instruction
|= (inst
.operands
[1].imm
& SPSR_BIT
);
7041 /* Two possible forms:
7042 "{C|S}PSR_<field>, Rm",
7043 "{C|S}PSR_f, #expression". */
7048 if (do_vfp_nsyn_msr () == SUCCESS
)
7051 inst
.instruction
|= inst
.operands
[0].imm
;
7052 if (inst
.operands
[1].isreg
)
7053 inst
.instruction
|= inst
.operands
[1].reg
;
7056 inst
.instruction
|= INST_IMMEDIATE
;
7057 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
7058 inst
.reloc
.pc_rel
= 0;
7065 if (!inst
.operands
[2].present
)
7066 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
7067 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7068 inst
.instruction
|= inst
.operands
[1].reg
;
7069 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7071 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
7072 as_tsktsk (_("rd and rm should be different in mul"));
7075 /* Long Multiply Parser
7076 UMULL RdLo, RdHi, Rm, Rs
7077 SMULL RdLo, RdHi, Rm, Rs
7078 UMLAL RdLo, RdHi, Rm, Rs
7079 SMLAL RdLo, RdHi, Rm, Rs. */
7084 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7085 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7086 inst
.instruction
|= inst
.operands
[2].reg
;
7087 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
7089 /* rdhi, rdlo and rm must all be different. */
7090 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7091 || inst
.operands
[0].reg
== inst
.operands
[2].reg
7092 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
7093 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7099 if (inst
.operands
[0].present
)
7101 /* Architectural NOP hints are CPSR sets with no bits selected. */
7102 inst
.instruction
&= 0xf0000000;
7103 inst
.instruction
|= 0x0320f000 + inst
.operands
[0].imm
;
7107 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7108 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7109 Condition defaults to COND_ALWAYS.
7110 Error if Rd, Rn or Rm are R15. */
7115 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7116 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7117 inst
.instruction
|= inst
.operands
[2].reg
;
7118 if (inst
.operands
[3].present
)
7119 encode_arm_shift (3);
7122 /* ARM V6 PKHTB (Argument Parse). */
7127 if (!inst
.operands
[3].present
)
7129 /* If the shift specifier is omitted, turn the instruction
7130 into pkhbt rd, rm, rn. */
7131 inst
.instruction
&= 0xfff00010;
7132 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7133 inst
.instruction
|= inst
.operands
[1].reg
;
7134 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7138 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7139 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7140 inst
.instruction
|= inst
.operands
[2].reg
;
7141 encode_arm_shift (3);
7145 /* ARMv5TE: Preload-Cache
7149 Syntactically, like LDR with B=1, W=0, L=1. */
7154 constraint (!inst
.operands
[0].isreg
,
7155 _("'[' expected after PLD mnemonic"));
7156 constraint (inst
.operands
[0].postind
,
7157 _("post-indexed expression used in preload instruction"));
7158 constraint (inst
.operands
[0].writeback
,
7159 _("writeback used in preload instruction"));
7160 constraint (!inst
.operands
[0].preind
,
7161 _("unindexed addressing used in preload instruction"));
7162 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
7165 /* ARMv7: PLI <addr_mode> */
7169 constraint (!inst
.operands
[0].isreg
,
7170 _("'[' expected after PLI mnemonic"));
7171 constraint (inst
.operands
[0].postind
,
7172 _("post-indexed expression used in preload instruction"));
7173 constraint (inst
.operands
[0].writeback
,
7174 _("writeback used in preload instruction"));
7175 constraint (!inst
.operands
[0].preind
,
7176 _("unindexed addressing used in preload instruction"));
7177 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
7178 inst
.instruction
&= ~PRE_INDEX
;
7184 inst
.operands
[1] = inst
.operands
[0];
7185 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
7186 inst
.operands
[0].isreg
= 1;
7187 inst
.operands
[0].writeback
= 1;
7188 inst
.operands
[0].reg
= REG_SP
;
7192 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7193 word at the specified address and the following word
7195 Unconditionally executed.
7196 Error if Rn is R15. */
7201 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7202 if (inst
.operands
[0].writeback
)
7203 inst
.instruction
|= WRITE_BACK
;
7206 /* ARM V6 ssat (argument parse). */
7211 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7212 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
7213 inst
.instruction
|= inst
.operands
[2].reg
;
7215 if (inst
.operands
[3].present
)
7216 encode_arm_shift (3);
7219 /* ARM V6 usat (argument parse). */
7224 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7225 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
7226 inst
.instruction
|= inst
.operands
[2].reg
;
7228 if (inst
.operands
[3].present
)
7229 encode_arm_shift (3);
7232 /* ARM V6 ssat16 (argument parse). */
7237 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7238 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
7239 inst
.instruction
|= inst
.operands
[2].reg
;
7245 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7246 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
7247 inst
.instruction
|= inst
.operands
[2].reg
;
7250 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7251 preserving the other bits.
7253 setend <endian_specifier>, where <endian_specifier> is either
7259 if (inst
.operands
[0].imm
)
7260 inst
.instruction
|= 0x200;
7266 unsigned int Rm
= (inst
.operands
[1].present
7267 ? inst
.operands
[1].reg
7268 : inst
.operands
[0].reg
);
7270 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7271 inst
.instruction
|= Rm
;
7272 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
7274 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7275 inst
.instruction
|= SHIFT_BY_REG
;
7278 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
7284 inst
.reloc
.type
= BFD_RELOC_ARM_SMC
;
7285 inst
.reloc
.pc_rel
= 0;
7291 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
7292 inst
.reloc
.pc_rel
= 0;
7295 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7296 SMLAxy{cond} Rd,Rm,Rs,Rn
7297 SMLAWy{cond} Rd,Rm,Rs,Rn
7298 Error if any register is R15. */
7303 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7304 inst
.instruction
|= inst
.operands
[1].reg
;
7305 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7306 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
7309 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7310 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7311 Error if any register is R15.
7312 Warning if Rdlo == Rdhi. */
7317 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7318 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7319 inst
.instruction
|= inst
.operands
[2].reg
;
7320 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
7322 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
7323 as_tsktsk (_("rdhi and rdlo must be different"));
7326 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7327 SMULxy{cond} Rd,Rm,Rs
7328 Error if any register is R15. */
7333 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7334 inst
.instruction
|= inst
.operands
[1].reg
;
7335 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7338 /* ARM V6 srs (argument parse). */
7343 inst
.instruction
|= inst
.operands
[0].imm
;
7344 if (inst
.operands
[0].writeback
)
7345 inst
.instruction
|= WRITE_BACK
;
7348 /* ARM V6 strex (argument parse). */
7353 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
7354 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
7355 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
7356 || inst
.operands
[2].negative
7357 /* See comment in do_ldrex(). */
7358 || (inst
.operands
[2].reg
== REG_PC
),
7361 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
7362 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
7364 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7365 || inst
.reloc
.exp
.X_add_number
!= 0,
7366 _("offset must be zero in ARM encoding"));
7368 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7369 inst
.instruction
|= inst
.operands
[1].reg
;
7370 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7371 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
7377 constraint (inst
.operands
[1].reg
% 2 != 0,
7378 _("even register required"));
7379 constraint (inst
.operands
[2].present
7380 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
7381 _("can only store two consecutive registers"));
7382 /* If op 2 were present and equal to PC, this function wouldn't
7383 have been called in the first place. */
7384 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
7386 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
7387 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
7388 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
7391 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7392 inst
.instruction
|= inst
.operands
[1].reg
;
7393 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7396 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7397 extends it to 32-bits, and adds the result to a value in another
7398 register. You can specify a rotation by 0, 8, 16, or 24 bits
7399 before extracting the 16-bit value.
7400 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7401 Condition defaults to COND_ALWAYS.
7402 Error if any register uses R15. */
7407 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7408 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7409 inst
.instruction
|= inst
.operands
[2].reg
;
7410 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
7415 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7416 Condition defaults to COND_ALWAYS.
7417 Error if any register uses R15. */
7422 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7423 inst
.instruction
|= inst
.operands
[1].reg
;
7424 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
7427 /* VFP instructions. In a logical order: SP variant first, monad
7428 before dyad, arithmetic then move then load/store. */
7431 do_vfp_sp_monadic (void)
7433 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7434 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
7438 do_vfp_sp_dyadic (void)
7440 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7441 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
7442 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
7446 do_vfp_sp_compare_z (void)
7448 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7452 do_vfp_dp_sp_cvt (void)
7454 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7455 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
7459 do_vfp_sp_dp_cvt (void)
7461 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7462 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
7466 do_vfp_reg_from_sp (void)
7468 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7469 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
7473 do_vfp_reg2_from_sp2 (void)
7475 constraint (inst
.operands
[2].imm
!= 2,
7476 _("only two consecutive VFP SP registers allowed here"));
7477 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7478 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7479 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
7483 do_vfp_sp_from_reg (void)
7485 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
7486 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7490 do_vfp_sp2_from_reg2 (void)
7492 constraint (inst
.operands
[0].imm
!= 2,
7493 _("only two consecutive VFP SP registers allowed here"));
7494 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
7495 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7496 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7500 do_vfp_sp_ldst (void)
7502 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7503 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
7507 do_vfp_dp_ldst (void)
7509 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7510 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
7515 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
7517 if (inst
.operands
[0].writeback
)
7518 inst
.instruction
|= WRITE_BACK
;
7520 constraint (ldstm_type
!= VFP_LDSTMIA
,
7521 _("this addressing mode requires base-register writeback"));
7522 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7523 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
7524 inst
.instruction
|= inst
.operands
[1].imm
;
7528 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
7532 if (inst
.operands
[0].writeback
)
7533 inst
.instruction
|= WRITE_BACK
;
7535 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
7536 _("this addressing mode requires base-register writeback"));
7538 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7539 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
7541 count
= inst
.operands
[1].imm
<< 1;
7542 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
7545 inst
.instruction
|= count
;
7549 do_vfp_sp_ldstmia (void)
7551 vfp_sp_ldstm (VFP_LDSTMIA
);
7555 do_vfp_sp_ldstmdb (void)
7557 vfp_sp_ldstm (VFP_LDSTMDB
);
7561 do_vfp_dp_ldstmia (void)
7563 vfp_dp_ldstm (VFP_LDSTMIA
);
7567 do_vfp_dp_ldstmdb (void)
7569 vfp_dp_ldstm (VFP_LDSTMDB
);
7573 do_vfp_xp_ldstmia (void)
7575 vfp_dp_ldstm (VFP_LDSTMIAX
);
7579 do_vfp_xp_ldstmdb (void)
7581 vfp_dp_ldstm (VFP_LDSTMDBX
);
7585 do_vfp_dp_rd_rm (void)
7587 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7588 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
7592 do_vfp_dp_rn_rd (void)
7594 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
7595 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
7599 do_vfp_dp_rd_rn (void)
7601 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7602 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
7606 do_vfp_dp_rd_rn_rm (void)
7608 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7609 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
7610 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
7616 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7620 do_vfp_dp_rm_rd_rn (void)
7622 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
7623 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
7624 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
7627 /* VFPv3 instructions. */
7629 do_vfp_sp_const (void)
7631 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7632 inst
.instruction
|= (inst
.operands
[1].imm
& 15) << 16;
7633 inst
.instruction
|= (inst
.operands
[1].imm
>> 4);
7637 do_vfp_dp_const (void)
7639 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7640 inst
.instruction
|= (inst
.operands
[1].imm
& 15) << 16;
7641 inst
.instruction
|= (inst
.operands
[1].imm
>> 4);
7645 vfp_conv (int srcsize
)
7647 unsigned immbits
= srcsize
- inst
.operands
[1].imm
;
7648 inst
.instruction
|= (immbits
& 1) << 5;
7649 inst
.instruction
|= (immbits
>> 1);
7653 do_vfp_sp_conv_16 (void)
7655 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7660 do_vfp_dp_conv_16 (void)
7662 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7667 do_vfp_sp_conv_32 (void)
7669 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
7674 do_vfp_dp_conv_32 (void)
7676 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
7681 /* FPA instructions. Also in a logical order. */
7686 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7687 inst
.instruction
|= inst
.operands
[1].reg
;
7691 do_fpa_ldmstm (void)
7693 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7694 switch (inst
.operands
[1].imm
)
7696 case 1: inst
.instruction
|= CP_T_X
; break;
7697 case 2: inst
.instruction
|= CP_T_Y
; break;
7698 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
7703 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
7705 /* The instruction specified "ea" or "fd", so we can only accept
7706 [Rn]{!}. The instruction does not really support stacking or
7707 unstacking, so we have to emulate these by setting appropriate
7708 bits and offsets. */
7709 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7710 || inst
.reloc
.exp
.X_add_number
!= 0,
7711 _("this instruction does not support indexing"));
7713 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
7714 inst
.reloc
.exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
7716 if (!(inst
.instruction
& INDEX_UP
))
7717 inst
.reloc
.exp
.X_add_number
= -inst
.reloc
.exp
.X_add_number
;
7719 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
7721 inst
.operands
[2].preind
= 0;
7722 inst
.operands
[2].postind
= 1;
7726 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
7730 /* iWMMXt instructions: strictly in alphabetical order. */
7733 do_iwmmxt_tandorc (void)
7735 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
7739 do_iwmmxt_textrc (void)
7741 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7742 inst
.instruction
|= inst
.operands
[1].imm
;
7746 do_iwmmxt_textrm (void)
7748 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7749 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7750 inst
.instruction
|= inst
.operands
[2].imm
;
7754 do_iwmmxt_tinsr (void)
7756 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7757 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7758 inst
.instruction
|= inst
.operands
[2].imm
;
7762 do_iwmmxt_tmia (void)
7764 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
7765 inst
.instruction
|= inst
.operands
[1].reg
;
7766 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7770 do_iwmmxt_waligni (void)
7772 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7773 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7774 inst
.instruction
|= inst
.operands
[2].reg
;
7775 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
7779 do_iwmmxt_wmov (void)
7781 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7782 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7783 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7784 inst
.instruction
|= inst
.operands
[1].reg
;
7788 do_iwmmxt_wldstbh (void)
7791 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7793 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
7795 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
7796 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
7800 do_iwmmxt_wldstw (void)
7802 /* RIWR_RIWC clears .isreg for a control register. */
7803 if (!inst
.operands
[0].isreg
)
7805 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
7806 inst
.instruction
|= 0xf0000000;
7809 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7810 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
7814 do_iwmmxt_wldstd (void)
7816 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7817 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
7821 do_iwmmxt_wshufh (void)
7823 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7824 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7825 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
7826 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
7830 do_iwmmxt_wzero (void)
7832 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7833 inst
.instruction
|= inst
.operands
[0].reg
;
7834 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7835 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7838 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
7839 operations first, then control, shift, and load/store. */
7841 /* Insns like "foo X,Y,Z". */
7844 do_mav_triple (void)
7846 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7847 inst
.instruction
|= inst
.operands
[1].reg
;
7848 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7851 /* Insns like "foo W,X,Y,Z".
7852 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
7857 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
7858 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7859 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7860 inst
.instruction
|= inst
.operands
[3].reg
;
7863 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
7867 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7870 /* Maverick shift immediate instructions.
7871 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
7872 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
7877 int imm
= inst
.operands
[2].imm
;
7879 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7880 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7882 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
7883 Bits 5-7 of the insn should have bits 4-6 of the immediate.
7884 Bit 4 should be 0. */
7885 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
7887 inst
.instruction
|= imm
;
7890 /* XScale instructions. Also sorted arithmetic before move. */
7892 /* Xscale multiply-accumulate (argument parse)
7895 MIAxycc acc0,Rm,Rs. */
7900 inst
.instruction
|= inst
.operands
[1].reg
;
7901 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7904 /* Xscale move-accumulator-register (argument parse)
7906 MARcc acc0,RdLo,RdHi. */
7911 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7912 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7915 /* Xscale move-register-accumulator (argument parse)
7917 MRAcc RdLo,RdHi,acc0. */
7922 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
7923 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7924 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7927 /* Encoding functions relevant only to Thumb. */
7929 /* inst.operands[i] is a shifted-register operand; encode
7930 it into inst.instruction in the format used by Thumb32. */
7933 encode_thumb32_shifted_operand (int i
)
7935 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
7936 unsigned int shift
= inst
.operands
[i
].shift_kind
;
7938 constraint (inst
.operands
[i
].immisreg
,
7939 _("shift by register not allowed in thumb mode"));
7940 inst
.instruction
|= inst
.operands
[i
].reg
;
7941 if (shift
== SHIFT_RRX
)
7942 inst
.instruction
|= SHIFT_ROR
<< 4;
7945 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
7946 _("expression too complex"));
7948 constraint (value
> 32
7949 || (value
== 32 && (shift
== SHIFT_LSL
7950 || shift
== SHIFT_ROR
)),
7951 _("shift expression is too large"));
7955 else if (value
== 32)
7958 inst
.instruction
|= shift
<< 4;
7959 inst
.instruction
|= (value
& 0x1c) << 10;
7960 inst
.instruction
|= (value
& 0x03) << 6;
7965 /* inst.operands[i] was set up by parse_address. Encode it into a
7966 Thumb32 format load or store instruction. Reject forms that cannot
7967 be used with such instructions. If is_t is true, reject forms that
7968 cannot be used with a T instruction; if is_d is true, reject forms
7969 that cannot be used with a D instruction. */
7972 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
7974 bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
7976 constraint (!inst
.operands
[i
].isreg
,
7977 _("Instruction does not support =N addresses"));
7979 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
7980 if (inst
.operands
[i
].immisreg
)
7982 constraint (is_pc
, _("cannot use register index with PC-relative addressing"));
7983 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
7984 constraint (inst
.operands
[i
].negative
,
7985 _("Thumb does not support negative register indexing"));
7986 constraint (inst
.operands
[i
].postind
,
7987 _("Thumb does not support register post-indexing"));
7988 constraint (inst
.operands
[i
].writeback
,
7989 _("Thumb does not support register indexing with writeback"));
7990 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
7991 _("Thumb supports only LSL in shifted register indexing"));
7993 inst
.instruction
|= inst
.operands
[i
].imm
;
7994 if (inst
.operands
[i
].shifted
)
7996 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
7997 _("expression too complex"));
7998 constraint (inst
.reloc
.exp
.X_add_number
< 0
7999 || inst
.reloc
.exp
.X_add_number
> 3,
8000 _("shift out of range"));
8001 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
8003 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8005 else if (inst
.operands
[i
].preind
)
8007 constraint (is_pc
&& inst
.operands
[i
].writeback
,
8008 _("cannot use writeback with PC-relative addressing"));
8009 constraint (is_t
&& inst
.operands
[i
].writeback
,
8010 _("cannot use writeback with this instruction"));
8014 inst
.instruction
|= 0x01000000;
8015 if (inst
.operands
[i
].writeback
)
8016 inst
.instruction
|= 0x00200000;
8020 inst
.instruction
|= 0x00000c00;
8021 if (inst
.operands
[i
].writeback
)
8022 inst
.instruction
|= 0x00000100;
8024 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
8026 else if (inst
.operands
[i
].postind
)
8028 assert (inst
.operands
[i
].writeback
);
8029 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
8030 constraint (is_t
, _("cannot use post-indexing with this instruction"));
8033 inst
.instruction
|= 0x00200000;
8035 inst
.instruction
|= 0x00000900;
8036 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
8038 else /* unindexed - only for coprocessor */
8039 inst
.error
= _("instruction does not accept unindexed addressing");
8042 /* Table of Thumb instructions which exist in both 16- and 32-bit
8043 encodings (the latter only in post-V6T2 cores). The index is the
8044 value used in the insns table below. When there is more than one
8045 possible 16-bit encoding for the instruction, this table always
8047 Also contains several pseudo-instructions used during relaxation. */
8048 #define T16_32_TAB \
8049 X(adc, 4140, eb400000), \
8050 X(adcs, 4140, eb500000), \
8051 X(add, 1c00, eb000000), \
8052 X(adds, 1c00, eb100000), \
8053 X(addi, 0000, f1000000), \
8054 X(addis, 0000, f1100000), \
8055 X(add_pc,000f, f20f0000), \
8056 X(add_sp,000d, f10d0000), \
8057 X(adr, 000f, f20f0000), \
8058 X(and, 4000, ea000000), \
8059 X(ands, 4000, ea100000), \
8060 X(asr, 1000, fa40f000), \
8061 X(asrs, 1000, fa50f000), \
8062 X(b, e000, f000b000), \
8063 X(bcond, d000, f0008000), \
8064 X(bic, 4380, ea200000), \
8065 X(bics, 4380, ea300000), \
8066 X(cmn, 42c0, eb100f00), \
8067 X(cmp, 2800, ebb00f00), \
8068 X(cpsie, b660, f3af8400), \
8069 X(cpsid, b670, f3af8600), \
8070 X(cpy, 4600, ea4f0000), \
8071 X(dec_sp,80dd, f1bd0d00), \
8072 X(eor, 4040, ea800000), \
8073 X(eors, 4040, ea900000), \
8074 X(inc_sp,00dd, f10d0d00), \
8075 X(ldmia, c800, e8900000), \
8076 X(ldr, 6800, f8500000), \
8077 X(ldrb, 7800, f8100000), \
8078 X(ldrh, 8800, f8300000), \
8079 X(ldrsb, 5600, f9100000), \
8080 X(ldrsh, 5e00, f9300000), \
8081 X(ldr_pc,4800, f85f0000), \
8082 X(ldr_pc2,4800, f85f0000), \
8083 X(ldr_sp,9800, f85d0000), \
8084 X(lsl, 0000, fa00f000), \
8085 X(lsls, 0000, fa10f000), \
8086 X(lsr, 0800, fa20f000), \
8087 X(lsrs, 0800, fa30f000), \
8088 X(mov, 2000, ea4f0000), \
8089 X(movs, 2000, ea5f0000), \
8090 X(mul, 4340, fb00f000), \
8091 X(muls, 4340, ffffffff), /* no 32b muls */ \
8092 X(mvn, 43c0, ea6f0000), \
8093 X(mvns, 43c0, ea7f0000), \
8094 X(neg, 4240, f1c00000), /* rsb #0 */ \
8095 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8096 X(orr, 4300, ea400000), \
8097 X(orrs, 4300, ea500000), \
8098 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8099 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8100 X(rev, ba00, fa90f080), \
8101 X(rev16, ba40, fa90f090), \
8102 X(revsh, bac0, fa90f0b0), \
8103 X(ror, 41c0, fa60f000), \
8104 X(rors, 41c0, fa70f000), \
8105 X(sbc, 4180, eb600000), \
8106 X(sbcs, 4180, eb700000), \
8107 X(stmia, c000, e8800000), \
8108 X(str, 6000, f8400000), \
8109 X(strb, 7000, f8000000), \
8110 X(strh, 8000, f8200000), \
8111 X(str_sp,9000, f84d0000), \
8112 X(sub, 1e00, eba00000), \
8113 X(subs, 1e00, ebb00000), \
8114 X(subi, 8000, f1a00000), \
8115 X(subis, 8000, f1b00000), \
8116 X(sxtb, b240, fa4ff080), \
8117 X(sxth, b200, fa0ff080), \
8118 X(tst, 4200, ea100f00), \
8119 X(uxtb, b2c0, fa5ff080), \
8120 X(uxth, b280, fa1ff080), \
8121 X(nop, bf00, f3af8000), \
8122 X(yield, bf10, f3af8001), \
8123 X(wfe, bf20, f3af8002), \
8124 X(wfi, bf30, f3af8003), \
8125 X(sev, bf40, f3af9004), /* typo, 8004? */
8127 /* To catch errors in encoding functions, the codes are all offset by
8128 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8129 as 16-bit instructions. */
8130 #define X(a,b,c) T_MNEM_##a
8131 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
8134 #define X(a,b,c) 0x##b
8135 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
8136 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8139 #define X(a,b,c) 0x##c
8140 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
8141 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8142 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8146 /* Thumb instruction encoders, in alphabetical order. */
8150 do_t_add_sub_w (void)
8154 Rd
= inst
.operands
[0].reg
;
8155 Rn
= inst
.operands
[1].reg
;
8157 constraint (Rd
== 15, _("PC not allowed as destination"));
8158 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
8159 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
8162 /* Parse an add or subtract instruction. We get here with inst.instruction
8163 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8170 Rd
= inst
.operands
[0].reg
;
8171 Rs
= (inst
.operands
[1].present
8172 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8173 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8181 flags
= (inst
.instruction
== T_MNEM_adds
8182 || inst
.instruction
== T_MNEM_subs
);
8184 narrow
= (current_it_mask
== 0);
8186 narrow
= (current_it_mask
!= 0);
8187 if (!inst
.operands
[2].isreg
)
8191 add
= (inst
.instruction
== T_MNEM_add
8192 || inst
.instruction
== T_MNEM_adds
);
8194 if (inst
.size_req
!= 4)
8196 /* Attempt to use a narrow opcode, with relaxation if
8198 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
8199 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
8200 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
8201 opcode
= T_MNEM_add_sp
;
8202 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
8203 opcode
= T_MNEM_add_pc
;
8204 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
8207 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
8209 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
8213 inst
.instruction
= THUMB_OP16(opcode
);
8214 inst
.instruction
|= (Rd
<< 4) | Rs
;
8215 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
8216 if (inst
.size_req
!= 2)
8217 inst
.relax
= opcode
;
8220 constraint (inst
.size_req
== 2, BAD_HIREG
);
8222 if (inst
.size_req
== 4
8223 || (inst
.size_req
!= 2 && !opcode
))
8227 /* Always use addw/subw. */
8228 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
8229 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
8233 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8234 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
8237 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
8239 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_IMM
;
8241 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8242 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8247 Rn
= inst
.operands
[2].reg
;
8248 /* See if we can do this with a 16-bit instruction. */
8249 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
8251 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
8256 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
8257 || inst
.instruction
== T_MNEM_add
)
8260 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
8264 if (inst
.instruction
== T_MNEM_add
)
8268 inst
.instruction
= T_OPCODE_ADD_HI
;
8269 inst
.instruction
|= (Rd
& 8) << 4;
8270 inst
.instruction
|= (Rd
& 7);
8271 inst
.instruction
|= Rn
<< 3;
8274 /* ... because addition is commutative! */
8277 inst
.instruction
= T_OPCODE_ADD_HI
;
8278 inst
.instruction
|= (Rd
& 8) << 4;
8279 inst
.instruction
|= (Rd
& 7);
8280 inst
.instruction
|= Rs
<< 3;
8285 /* If we get here, it can't be done in 16 bits. */
8286 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
8287 _("shift must be constant"));
8288 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8289 inst
.instruction
|= Rd
<< 8;
8290 inst
.instruction
|= Rs
<< 16;
8291 encode_thumb32_shifted_operand (2);
8296 constraint (inst
.instruction
== T_MNEM_adds
8297 || inst
.instruction
== T_MNEM_subs
,
8300 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
8302 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
8303 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
8306 inst
.instruction
= (inst
.instruction
== T_MNEM_add
8308 inst
.instruction
|= (Rd
<< 4) | Rs
;
8309 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
8313 Rn
= inst
.operands
[2].reg
;
8314 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
8316 /* We now have Rd, Rs, and Rn set to registers. */
8317 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
8319 /* Can't do this for SUB. */
8320 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
8321 inst
.instruction
= T_OPCODE_ADD_HI
;
8322 inst
.instruction
|= (Rd
& 8) << 4;
8323 inst
.instruction
|= (Rd
& 7);
8325 inst
.instruction
|= Rn
<< 3;
8327 inst
.instruction
|= Rs
<< 3;
8329 constraint (1, _("dest must overlap one source register"));
8333 inst
.instruction
= (inst
.instruction
== T_MNEM_add
8334 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
8335 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
8343 if (unified_syntax
&& inst
.size_req
== 0 && inst
.operands
[0].reg
<= 7)
8345 /* Defer to section relaxation. */
8346 inst
.relax
= inst
.instruction
;
8347 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8348 inst
.instruction
|= inst
.operands
[0].reg
<< 4;
8350 else if (unified_syntax
&& inst
.size_req
!= 2)
8352 /* Generate a 32-bit opcode. */
8353 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8354 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8355 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_PC12
;
8356 inst
.reloc
.pc_rel
= 1;
8360 /* Generate a 16-bit opcode. */
8361 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8362 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
8363 inst
.reloc
.exp
.X_add_number
-= 4; /* PC relative adjust. */
8364 inst
.reloc
.pc_rel
= 1;
8366 inst
.instruction
|= inst
.operands
[0].reg
<< 4;
8370 /* Arithmetic instructions for which there is just one 16-bit
8371 instruction encoding, and it allows only two low registers.
8372 For maximal compatibility with ARM syntax, we allow three register
8373 operands even when Thumb-32 instructions are not available, as long
8374 as the first two are identical. For instance, both "sbc r0,r1" and
8375 "sbc r0,r0,r1" are allowed. */
8381 Rd
= inst
.operands
[0].reg
;
8382 Rs
= (inst
.operands
[1].present
8383 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8384 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8385 Rn
= inst
.operands
[2].reg
;
8389 if (!inst
.operands
[2].isreg
)
8391 /* For an immediate, we always generate a 32-bit opcode;
8392 section relaxation will shrink it later if possible. */
8393 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8394 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
8395 inst
.instruction
|= Rd
<< 8;
8396 inst
.instruction
|= Rs
<< 16;
8397 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
8403 /* See if we can do this with a 16-bit instruction. */
8404 if (THUMB_SETS_FLAGS (inst
.instruction
))
8405 narrow
= current_it_mask
== 0;
8407 narrow
= current_it_mask
!= 0;
8409 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
8411 if (inst
.operands
[2].shifted
)
8413 if (inst
.size_req
== 4)
8419 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8420 inst
.instruction
|= Rd
;
8421 inst
.instruction
|= Rn
<< 3;
8425 /* If we get here, it can't be done in 16 bits. */
8426 constraint (inst
.operands
[2].shifted
8427 && inst
.operands
[2].immisreg
,
8428 _("shift must be constant"));
8429 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8430 inst
.instruction
|= Rd
<< 8;
8431 inst
.instruction
|= Rs
<< 16;
8432 encode_thumb32_shifted_operand (2);
8437 /* On its face this is a lie - the instruction does set the
8438 flags. However, the only supported mnemonic in this mode
8440 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
8442 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
8443 _("unshifted register required"));
8444 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
8445 constraint (Rd
!= Rs
,
8446 _("dest and source1 must be the same register"));
8448 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8449 inst
.instruction
|= Rd
;
8450 inst
.instruction
|= Rn
<< 3;
8454 /* Similarly, but for instructions where the arithmetic operation is
8455 commutative, so we can allow either of them to be different from
8456 the destination operand in a 16-bit instruction. For instance, all
8457 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8464 Rd
= inst
.operands
[0].reg
;
8465 Rs
= (inst
.operands
[1].present
8466 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8467 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8468 Rn
= inst
.operands
[2].reg
;
8472 if (!inst
.operands
[2].isreg
)
8474 /* For an immediate, we always generate a 32-bit opcode;
8475 section relaxation will shrink it later if possible. */
8476 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8477 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
8478 inst
.instruction
|= Rd
<< 8;
8479 inst
.instruction
|= Rs
<< 16;
8480 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
8486 /* See if we can do this with a 16-bit instruction. */
8487 if (THUMB_SETS_FLAGS (inst
.instruction
))
8488 narrow
= current_it_mask
== 0;
8490 narrow
= current_it_mask
!= 0;
8492 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
8494 if (inst
.operands
[2].shifted
)
8496 if (inst
.size_req
== 4)
8503 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8504 inst
.instruction
|= Rd
;
8505 inst
.instruction
|= Rn
<< 3;
8510 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8511 inst
.instruction
|= Rd
;
8512 inst
.instruction
|= Rs
<< 3;
8517 /* If we get here, it can't be done in 16 bits. */
8518 constraint (inst
.operands
[2].shifted
8519 && inst
.operands
[2].immisreg
,
8520 _("shift must be constant"));
8521 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8522 inst
.instruction
|= Rd
<< 8;
8523 inst
.instruction
|= Rs
<< 16;
8524 encode_thumb32_shifted_operand (2);
8529 /* On its face this is a lie - the instruction does set the
8530 flags. However, the only supported mnemonic in this mode
8532 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
8534 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
8535 _("unshifted register required"));
8536 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
8538 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8539 inst
.instruction
|= Rd
;
8542 inst
.instruction
|= Rn
<< 3;
8544 inst
.instruction
|= Rs
<< 3;
8546 constraint (1, _("dest must overlap one source register"));
8553 if (inst
.operands
[0].present
)
8555 constraint ((inst
.instruction
& 0xf0) != 0x40
8556 && inst
.operands
[0].imm
!= 0xf,
8557 "bad barrier type");
8558 inst
.instruction
|= inst
.operands
[0].imm
;
8561 inst
.instruction
|= 0xf;
8567 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
8568 constraint (msb
> 32, _("bit-field extends past end of register"));
8569 /* The instruction encoding stores the LSB and MSB,
8570 not the LSB and width. */
8571 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8572 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
8573 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
8574 inst
.instruction
|= msb
- 1;
8582 /* #0 in second position is alternative syntax for bfc, which is
8583 the same instruction but with REG_PC in the Rm field. */
8584 if (!inst
.operands
[1].isreg
)
8585 inst
.operands
[1].reg
= REG_PC
;
8587 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
8588 constraint (msb
> 32, _("bit-field extends past end of register"));
8589 /* The instruction encoding stores the LSB and MSB,
8590 not the LSB and width. */
8591 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8592 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8593 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
8594 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
8595 inst
.instruction
|= msb
- 1;
8601 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
8602 _("bit-field extends past end of register"));
8603 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8604 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8605 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
8606 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
8607 inst
.instruction
|= inst
.operands
[3].imm
- 1;
8610 /* ARM V5 Thumb BLX (argument parse)
8611 BLX <target_addr> which is BLX(1)
8612 BLX <Rm> which is BLX(2)
8613 Unfortunately, there are two different opcodes for this mnemonic.
8614 So, the insns[].value is not used, and the code here zaps values
8615 into inst.instruction.
8617 ??? How to take advantage of the additional two bits of displacement
8618 available in Thumb32 mode? Need new relocation? */
8623 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8624 if (inst
.operands
[0].isreg
)
8625 /* We have a register, so this is BLX(2). */
8626 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
8629 /* No register. This must be BLX(1). */
8630 inst
.instruction
= 0xf000e800;
8632 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
8633 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
8636 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BLX
;
8637 inst
.reloc
.pc_rel
= 1;
8647 if (current_it_mask
)
8649 /* Conditional branches inside IT blocks are encoded as unconditional
8652 /* A branch must be the last instruction in an IT block. */
8653 constraint (current_it_mask
!= 0x10, BAD_BRANCH
);
8658 if (cond
!= COND_ALWAYS
)
8659 opcode
= T_MNEM_bcond
;
8661 opcode
= inst
.instruction
;
8663 if (unified_syntax
&& inst
.size_req
== 4)
8665 inst
.instruction
= THUMB_OP32(opcode
);
8666 if (cond
== COND_ALWAYS
)
8667 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
8670 assert (cond
!= 0xF);
8671 inst
.instruction
|= cond
<< 22;
8672 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
8677 inst
.instruction
= THUMB_OP16(opcode
);
8678 if (cond
== COND_ALWAYS
)
8679 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
8682 inst
.instruction
|= cond
<< 8;
8683 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
8685 /* Allow section relaxation. */
8686 if (unified_syntax
&& inst
.size_req
!= 2)
8687 inst
.relax
= opcode
;
8690 inst
.reloc
.pc_rel
= 1;
8696 constraint (inst
.cond
!= COND_ALWAYS
,
8697 _("instruction is always unconditional"));
8698 if (inst
.operands
[0].present
)
8700 constraint (inst
.operands
[0].imm
> 255,
8701 _("immediate value out of range"));
8702 inst
.instruction
|= inst
.operands
[0].imm
;
8707 do_t_branch23 (void)
8709 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8710 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
8711 inst
.reloc
.pc_rel
= 1;
8713 /* If the destination of the branch is a defined symbol which does not have
8714 the THUMB_FUNC attribute, then we must be calling a function which has
8715 the (interfacearm) attribute. We look for the Thumb entry point to that
8716 function and change the branch to refer to that function instead. */
8717 if ( inst
.reloc
.exp
.X_op
== O_symbol
8718 && inst
.reloc
.exp
.X_add_symbol
!= NULL
8719 && S_IS_DEFINED (inst
.reloc
.exp
.X_add_symbol
)
8720 && ! THUMB_IS_FUNC (inst
.reloc
.exp
.X_add_symbol
))
8721 inst
.reloc
.exp
.X_add_symbol
=
8722 find_real_start (inst
.reloc
.exp
.X_add_symbol
);
8728 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8729 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
8730 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8731 should cause the alignment to be checked once it is known. This is
8732 because BX PC only works if the instruction is word aligned. */
8738 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
8739 if (inst
.operands
[0].reg
== REG_PC
)
8740 as_tsktsk (_("use of r15 in bxj is not really useful"));
8742 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8748 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8749 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8750 inst
.instruction
|= inst
.operands
[1].reg
;
8756 constraint (current_it_mask
, BAD_NOT_IT
);
8757 inst
.instruction
|= inst
.operands
[0].imm
;
8763 constraint (current_it_mask
, BAD_NOT_IT
);
8765 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
8766 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
8768 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
8769 inst
.instruction
= 0xf3af8000;
8770 inst
.instruction
|= imod
<< 9;
8771 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
8772 if (inst
.operands
[1].present
)
8773 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
8777 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
8778 && (inst
.operands
[0].imm
& 4),
8779 _("selected processor does not support 'A' form "
8780 "of this instruction"));
8781 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
8782 _("Thumb does not support the 2-argument "
8783 "form of this instruction"));
8784 inst
.instruction
|= inst
.operands
[0].imm
;
8788 /* THUMB CPY instruction (argument parse). */
8793 if (inst
.size_req
== 4)
8795 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
8796 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8797 inst
.instruction
|= inst
.operands
[1].reg
;
8801 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
8802 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
8803 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
8810 constraint (current_it_mask
, BAD_NOT_IT
);
8811 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
8812 inst
.instruction
|= inst
.operands
[0].reg
;
8813 inst
.reloc
.pc_rel
= 1;
8814 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
8820 inst
.instruction
|= inst
.operands
[0].imm
;
8826 if (!inst
.operands
[1].present
)
8827 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
8828 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8829 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8830 inst
.instruction
|= inst
.operands
[2].reg
;
8836 if (unified_syntax
&& inst
.size_req
== 4)
8837 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8839 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8845 unsigned int cond
= inst
.operands
[0].imm
;
8847 constraint (current_it_mask
, BAD_NOT_IT
);
8848 current_it_mask
= (inst
.instruction
& 0xf) | 0x10;
8851 /* If the condition is a negative condition, invert the mask. */
8852 if ((cond
& 0x1) == 0x0)
8854 unsigned int mask
= inst
.instruction
& 0x000f;
8856 if ((mask
& 0x7) == 0)
8857 /* no conversion needed */;
8858 else if ((mask
& 0x3) == 0)
8860 else if ((mask
& 0x1) == 0)
8865 inst
.instruction
&= 0xfff0;
8866 inst
.instruction
|= mask
;
8869 inst
.instruction
|= cond
<< 4;
8875 /* This really doesn't seem worth it. */
8876 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
8877 _("expression too complex"));
8878 constraint (inst
.operands
[1].writeback
,
8879 _("Thumb load/store multiple does not support {reglist}^"));
8883 /* See if we can use a 16-bit instruction. */
8884 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
8885 && inst
.size_req
!= 4
8886 && inst
.operands
[0].reg
<= 7
8887 && !(inst
.operands
[1].imm
& ~0xff)
8888 && (inst
.instruction
== T_MNEM_stmia
8889 ? inst
.operands
[0].writeback
8890 : (inst
.operands
[0].writeback
8891 == !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))))
8893 if (inst
.instruction
== T_MNEM_stmia
8894 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
8895 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
8896 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8897 inst
.operands
[0].reg
);
8899 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8900 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8901 inst
.instruction
|= inst
.operands
[1].imm
;
8905 if (inst
.operands
[1].imm
& (1 << 13))
8906 as_warn (_("SP should not be in register list"));
8907 if (inst
.instruction
== T_MNEM_stmia
)
8909 if (inst
.operands
[1].imm
& (1 << 15))
8910 as_warn (_("PC should not be in register list"));
8911 if (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
8912 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8913 inst
.operands
[0].reg
);
8917 if (inst
.operands
[1].imm
& (1 << 14)
8918 && inst
.operands
[1].imm
& (1 << 15))
8919 as_warn (_("LR and PC should not both be in register list"));
8920 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
8921 && inst
.operands
[0].writeback
)
8922 as_warn (_("base register should not be in register list "
8923 "when written back"));
8925 if (inst
.instruction
< 0xffff)
8926 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
8927 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8928 inst
.instruction
|= inst
.operands
[1].imm
;
8929 if (inst
.operands
[0].writeback
)
8930 inst
.instruction
|= WRITE_BACK
;
8935 constraint (inst
.operands
[0].reg
> 7
8936 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
8937 if (inst
.instruction
== T_MNEM_stmia
)
8939 if (!inst
.operands
[0].writeback
)
8940 as_warn (_("this instruction will write back the base register"));
8941 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
8942 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
8943 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8944 inst
.operands
[0].reg
);
8948 if (!inst
.operands
[0].writeback
8949 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
8950 as_warn (_("this instruction will write back the base register"));
8951 else if (inst
.operands
[0].writeback
8952 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
8953 as_warn (_("this instruction will not write back the base register"));
8956 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
8957 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8958 inst
.instruction
|= inst
.operands
[1].imm
;
8965 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
8966 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
8967 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
8968 || inst
.operands
[1].negative
,
8971 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8972 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8973 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
8979 if (!inst
.operands
[1].present
)
8981 constraint (inst
.operands
[0].reg
== REG_LR
,
8982 _("r14 not allowed as first register "
8983 "when second register is omitted"));
8984 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
8986 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
8989 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8990 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
8991 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8997 unsigned long opcode
;
9000 opcode
= inst
.instruction
;
9003 if (!inst
.operands
[1].isreg
)
9005 if (opcode
<= 0xffff)
9006 inst
.instruction
= THUMB_OP32 (opcode
);
9007 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
9010 if (inst
.operands
[1].isreg
9011 && !inst
.operands
[1].writeback
9012 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
9013 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
9015 && inst
.size_req
!= 4)
9017 /* Insn may have a 16-bit form. */
9018 Rn
= inst
.operands
[1].reg
;
9019 if (inst
.operands
[1].immisreg
)
9021 inst
.instruction
= THUMB_OP16 (opcode
);
9023 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
9026 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
9027 && opcode
!= T_MNEM_ldrsb
)
9028 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
9029 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
9036 if (inst
.reloc
.pc_rel
)
9037 opcode
= T_MNEM_ldr_pc2
;
9039 opcode
= T_MNEM_ldr_pc
;
9043 if (opcode
== T_MNEM_ldr
)
9044 opcode
= T_MNEM_ldr_sp
;
9046 opcode
= T_MNEM_str_sp
;
9048 inst
.instruction
= inst
.operands
[0].reg
<< 8;
9052 inst
.instruction
= inst
.operands
[0].reg
;
9053 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9055 inst
.instruction
|= THUMB_OP16 (opcode
);
9056 if (inst
.size_req
== 2)
9057 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
9059 inst
.relax
= opcode
;
9063 /* Definitely a 32-bit variant. */
9064 inst
.instruction
= THUMB_OP32 (opcode
);
9065 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9066 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
9070 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
9072 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
9074 /* Only [Rn,Rm] is acceptable. */
9075 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
9076 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
9077 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
9078 || inst
.operands
[1].negative
,
9079 _("Thumb does not support this addressing mode"));
9080 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9084 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9085 if (!inst
.operands
[1].isreg
)
9086 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
9089 constraint (!inst
.operands
[1].preind
9090 || inst
.operands
[1].shifted
9091 || inst
.operands
[1].writeback
,
9092 _("Thumb does not support this addressing mode"));
9093 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
9095 constraint (inst
.instruction
& 0x0600,
9096 _("byte or halfword not valid for base register"));
9097 constraint (inst
.operands
[1].reg
== REG_PC
9098 && !(inst
.instruction
& THUMB_LOAD_BIT
),
9099 _("r15 based store not allowed"));
9100 constraint (inst
.operands
[1].immisreg
,
9101 _("invalid base register for register offset"));
9103 if (inst
.operands
[1].reg
== REG_PC
)
9104 inst
.instruction
= T_OPCODE_LDR_PC
;
9105 else if (inst
.instruction
& THUMB_LOAD_BIT
)
9106 inst
.instruction
= T_OPCODE_LDR_SP
;
9108 inst
.instruction
= T_OPCODE_STR_SP
;
9110 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9111 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
9115 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
9116 if (!inst
.operands
[1].immisreg
)
9118 /* Immediate offset. */
9119 inst
.instruction
|= inst
.operands
[0].reg
;
9120 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9121 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
9125 /* Register offset. */
9126 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
9127 constraint (inst
.operands
[1].negative
,
9128 _("Thumb does not support this addressing mode"));
9131 switch (inst
.instruction
)
9133 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
9134 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
9135 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
9136 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
9137 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
9138 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
9139 case 0x5600 /* ldrsb */:
9140 case 0x5e00 /* ldrsh */: break;
9144 inst
.instruction
|= inst
.operands
[0].reg
;
9145 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9146 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
9152 if (!inst
.operands
[1].present
)
9154 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9155 constraint (inst
.operands
[0].reg
== REG_LR
,
9156 _("r14 not allowed here"));
9158 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9159 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9160 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
9167 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9168 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
9174 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9175 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9176 inst
.instruction
|= inst
.operands
[2].reg
;
9177 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
9183 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9184 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9185 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9186 inst
.instruction
|= inst
.operands
[3].reg
;
9194 int r0off
= (inst
.instruction
== T_MNEM_mov
9195 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
9196 unsigned long opcode
;
9198 bfd_boolean low_regs
;
9200 low_regs
= (inst
.operands
[0].reg
<= 7 && inst
.operands
[1].reg
<= 7);
9201 opcode
= inst
.instruction
;
9202 if (current_it_mask
)
9203 narrow
= opcode
!= T_MNEM_movs
;
9205 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
9206 if (inst
.size_req
== 4
9207 || inst
.operands
[1].shifted
)
9210 if (!inst
.operands
[1].isreg
)
9212 /* Immediate operand. */
9213 if (current_it_mask
== 0 && opcode
== T_MNEM_mov
)
9215 if (low_regs
&& narrow
)
9217 inst
.instruction
= THUMB_OP16 (opcode
);
9218 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9219 if (inst
.size_req
== 2)
9220 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
9222 inst
.relax
= opcode
;
9226 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9227 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9228 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9229 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9234 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9235 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9236 encode_thumb32_shifted_operand (1);
9239 switch (inst
.instruction
)
9242 inst
.instruction
= T_OPCODE_MOV_HR
;
9243 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
9244 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
9245 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9249 /* We know we have low registers at this point.
9250 Generate ADD Rd, Rs, #0. */
9251 inst
.instruction
= T_OPCODE_ADD_I3
;
9252 inst
.instruction
|= inst
.operands
[0].reg
;
9253 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9259 inst
.instruction
= T_OPCODE_CMP_LR
;
9260 inst
.instruction
|= inst
.operands
[0].reg
;
9261 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9265 inst
.instruction
= T_OPCODE_CMP_HR
;
9266 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
9267 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
9268 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9275 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9276 if (inst
.operands
[1].isreg
)
9278 if (inst
.operands
[0].reg
< 8 && inst
.operands
[1].reg
< 8)
9280 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9281 since a MOV instruction produces unpredictable results. */
9282 if (inst
.instruction
== T_OPCODE_MOV_I8
)
9283 inst
.instruction
= T_OPCODE_ADD_I3
;
9285 inst
.instruction
= T_OPCODE_CMP_LR
;
9287 inst
.instruction
|= inst
.operands
[0].reg
;
9288 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9292 if (inst
.instruction
== T_OPCODE_MOV_I8
)
9293 inst
.instruction
= T_OPCODE_MOV_HR
;
9295 inst
.instruction
= T_OPCODE_CMP_HR
;
9301 constraint (inst
.operands
[0].reg
> 7,
9302 _("only lo regs allowed with immediate"));
9303 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9304 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
9314 top
= (inst
.instruction
& 0x00800000) != 0;
9315 if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
)
9317 constraint (top
, _(":lower16: not allowed this instruction"));
9318 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVW
;
9320 else if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
)
9322 constraint (!top
, _(":upper16: not allowed this instruction"));
9323 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVT
;
9326 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9327 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
9329 imm
= inst
.reloc
.exp
.X_add_number
;
9330 inst
.instruction
|= (imm
& 0xf000) << 4;
9331 inst
.instruction
|= (imm
& 0x0800) << 15;
9332 inst
.instruction
|= (imm
& 0x0700) << 4;
9333 inst
.instruction
|= (imm
& 0x00ff);
9342 int r0off
= (inst
.instruction
== T_MNEM_mvn
9343 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
9346 if (inst
.size_req
== 4
9347 || inst
.instruction
> 0xffff
9348 || inst
.operands
[1].shifted
9349 || inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
9351 else if (inst
.instruction
== T_MNEM_cmn
)
9353 else if (THUMB_SETS_FLAGS (inst
.instruction
))
9354 narrow
= (current_it_mask
== 0);
9356 narrow
= (current_it_mask
!= 0);
9358 if (!inst
.operands
[1].isreg
)
9360 /* For an immediate, we always generate a 32-bit opcode;
9361 section relaxation will shrink it later if possible. */
9362 if (inst
.instruction
< 0xffff)
9363 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9364 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9365 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9366 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9370 /* See if we can do this with a 16-bit instruction. */
9373 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9374 inst
.instruction
|= inst
.operands
[0].reg
;
9375 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9379 constraint (inst
.operands
[1].shifted
9380 && inst
.operands
[1].immisreg
,
9381 _("shift must be constant"));
9382 if (inst
.instruction
< 0xffff)
9383 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9384 inst
.instruction
|= inst
.operands
[0].reg
<< r0off
;
9385 encode_thumb32_shifted_operand (1);
9391 constraint (inst
.instruction
> 0xffff
9392 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
9393 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
9394 _("unshifted register required"));
9395 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
9398 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9399 inst
.instruction
|= inst
.operands
[0].reg
;
9400 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9409 if (do_vfp_nsyn_mrs () == SUCCESS
)
9412 flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
9415 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7m
),
9416 _("selected processor does not support "
9417 "requested special purpose register"));
9421 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
),
9422 _("selected processor does not support "
9423 "requested special purpose register %x"));
9424 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9425 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
9426 _("'CPSR' or 'SPSR' expected"));
9429 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9430 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
9431 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
9439 if (do_vfp_nsyn_msr () == SUCCESS
)
9442 constraint (!inst
.operands
[1].isreg
,
9443 _("Thumb encoding does not support an immediate here"));
9444 flags
= inst
.operands
[0].imm
;
9447 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
),
9448 _("selected processor does not support "
9449 "requested special purpose register"));
9453 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7m
),
9454 _("selected processor does not support "
9455 "requested special purpose register"));
9458 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
9459 inst
.instruction
|= (flags
& ~SPSR_BIT
) >> 8;
9460 inst
.instruction
|= (flags
& 0xff);
9461 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9467 if (!inst
.operands
[2].present
)
9468 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
9470 /* There is no 32-bit MULS and no 16-bit MUL. */
9471 if (unified_syntax
&& inst
.instruction
== T_MNEM_mul
)
9473 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9474 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9475 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9476 inst
.instruction
|= inst
.operands
[2].reg
<< 0;
9480 constraint (!unified_syntax
9481 && inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
9482 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
9485 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9486 inst
.instruction
|= inst
.operands
[0].reg
;
9488 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9489 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
9490 else if (inst
.operands
[0].reg
== inst
.operands
[2].reg
)
9491 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9493 constraint (1, _("dest must overlap one source register"));
9500 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9501 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9502 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9503 inst
.instruction
|= inst
.operands
[3].reg
;
9505 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9506 as_tsktsk (_("rdhi and rdlo must be different"));
9514 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
9516 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9517 inst
.instruction
|= inst
.operands
[0].imm
;
9521 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9522 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
9527 constraint (inst
.operands
[0].present
,
9528 _("Thumb does not support NOP with hints"));
9529 inst
.instruction
= 0x46c0;
9540 if (THUMB_SETS_FLAGS (inst
.instruction
))
9541 narrow
= (current_it_mask
== 0);
9543 narrow
= (current_it_mask
!= 0);
9544 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
9546 if (inst
.size_req
== 4)
9551 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9552 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9553 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9557 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9558 inst
.instruction
|= inst
.operands
[0].reg
;
9559 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9564 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
9566 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9568 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9569 inst
.instruction
|= inst
.operands
[0].reg
;
9570 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9577 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9578 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9579 inst
.instruction
|= inst
.operands
[2].reg
;
9580 if (inst
.operands
[3].present
)
9582 unsigned int val
= inst
.reloc
.exp
.X_add_number
;
9583 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9584 _("expression too complex"));
9585 inst
.instruction
|= (val
& 0x1c) << 10;
9586 inst
.instruction
|= (val
& 0x03) << 6;
9593 if (!inst
.operands
[3].present
)
9594 inst
.instruction
&= ~0x00000020;
9601 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
9605 do_t_push_pop (void)
9609 constraint (inst
.operands
[0].writeback
,
9610 _("push/pop do not support {reglist}^"));
9611 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
9612 _("expression too complex"));
9614 mask
= inst
.operands
[0].imm
;
9615 if ((mask
& ~0xff) == 0)
9616 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9617 else if ((inst
.instruction
== T_MNEM_push
9618 && (mask
& ~0xff) == 1 << REG_LR
)
9619 || (inst
.instruction
== T_MNEM_pop
9620 && (mask
& ~0xff) == 1 << REG_PC
))
9622 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9623 inst
.instruction
|= THUMB_PP_PC_LR
;
9626 else if (unified_syntax
)
9628 if (mask
& (1 << 13))
9629 inst
.error
= _("SP not allowed in register list");
9630 if (inst
.instruction
== T_MNEM_push
)
9632 if (mask
& (1 << 15))
9633 inst
.error
= _("PC not allowed in register list");
9637 if (mask
& (1 << 14)
9638 && mask
& (1 << 15))
9639 inst
.error
= _("LR and PC should not both be in register list");
9641 if ((mask
& (mask
- 1)) == 0)
9643 /* Single register push/pop implemented as str/ldr. */
9644 if (inst
.instruction
== T_MNEM_push
)
9645 inst
.instruction
= 0xf84d0d04; /* str reg, [sp, #-4]! */
9647 inst
.instruction
= 0xf85d0b04; /* ldr reg, [sp], #4 */
9648 mask
= ffs(mask
) - 1;
9652 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9656 inst
.error
= _("invalid register list to push/pop instruction");
9660 inst
.instruction
|= mask
;
9666 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9667 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9673 if (inst
.operands
[0].reg
<= 7 && inst
.operands
[1].reg
<= 7
9674 && inst
.size_req
!= 4)
9676 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9677 inst
.instruction
|= inst
.operands
[0].reg
;
9678 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9680 else if (unified_syntax
)
9682 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9683 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9684 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9685 inst
.instruction
|= inst
.operands
[1].reg
;
9688 inst
.error
= BAD_HIREG
;
9696 Rd
= inst
.operands
[0].reg
;
9697 Rs
= (inst
.operands
[1].present
9698 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9699 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9701 inst
.instruction
|= Rd
<< 8;
9702 inst
.instruction
|= Rs
<< 16;
9703 if (!inst
.operands
[2].isreg
)
9705 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9706 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9709 encode_thumb32_shifted_operand (2);
9715 constraint (current_it_mask
, BAD_NOT_IT
);
9716 if (inst
.operands
[0].imm
)
9717 inst
.instruction
|= 0x8;
9723 if (!inst
.operands
[1].present
)
9724 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9731 switch (inst
.instruction
)
9734 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
9736 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
9738 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
9740 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
9744 if (THUMB_SETS_FLAGS (inst
.instruction
))
9745 narrow
= (current_it_mask
== 0);
9747 narrow
= (current_it_mask
!= 0);
9748 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
9750 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
9752 if (inst
.operands
[2].isreg
9753 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
9754 || inst
.operands
[2].reg
> 7))
9756 if (inst
.size_req
== 4)
9761 if (inst
.operands
[2].isreg
)
9763 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9764 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9765 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9766 inst
.instruction
|= inst
.operands
[2].reg
;
9770 inst
.operands
[1].shifted
= 1;
9771 inst
.operands
[1].shift_kind
= shift_kind
;
9772 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
9773 ? T_MNEM_movs
: T_MNEM_mov
);
9774 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9775 encode_thumb32_shifted_operand (1);
9776 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9777 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9782 if (inst
.operands
[2].isreg
)
9786 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
9787 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
9788 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
9789 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
9793 inst
.instruction
|= inst
.operands
[0].reg
;
9794 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
9800 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
9801 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
9802 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
9805 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
9806 inst
.instruction
|= inst
.operands
[0].reg
;
9807 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9813 constraint (inst
.operands
[0].reg
> 7
9814 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
9815 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9817 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
9819 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
9820 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
9821 _("source1 and dest must be same register"));
9823 switch (inst
.instruction
)
9825 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
9826 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
9827 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
9828 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
9832 inst
.instruction
|= inst
.operands
[0].reg
;
9833 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
9837 switch (inst
.instruction
)
9839 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
9840 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
9841 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
9842 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
9845 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
9846 inst
.instruction
|= inst
.operands
[0].reg
;
9847 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9855 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9856 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9857 inst
.instruction
|= inst
.operands
[2].reg
;
9863 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
9864 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9865 _("expression too complex"));
9866 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9867 inst
.instruction
|= (value
& 0xf000) >> 12;
9868 inst
.instruction
|= (value
& 0x0ff0);
9869 inst
.instruction
|= (value
& 0x000f) << 16;
9875 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9876 inst
.instruction
|= inst
.operands
[1].imm
- 1;
9877 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9879 if (inst
.operands
[3].present
)
9881 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9882 _("expression too complex"));
9884 if (inst
.reloc
.exp
.X_add_number
!= 0)
9886 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
9887 inst
.instruction
|= 0x00200000; /* sh bit */
9888 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x1c) << 10;
9889 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x03) << 6;
9891 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9898 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9899 inst
.instruction
|= inst
.operands
[1].imm
- 1;
9900 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9906 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
9907 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
9908 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
9909 || inst
.operands
[2].negative
,
9912 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9913 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9914 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9915 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
9921 if (!inst
.operands
[2].present
)
9922 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
9924 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
9925 || inst
.operands
[0].reg
== inst
.operands
[2].reg
9926 || inst
.operands
[0].reg
== inst
.operands
[3].reg
9927 || inst
.operands
[1].reg
== inst
.operands
[2].reg
,
9930 inst
.instruction
|= inst
.operands
[0].reg
;
9931 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9932 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9933 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9939 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9940 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9941 inst
.instruction
|= inst
.operands
[2].reg
;
9942 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
9948 if (inst
.instruction
<= 0xffff && inst
.size_req
!= 4
9949 && inst
.operands
[0].reg
<= 7 && inst
.operands
[1].reg
<= 7
9950 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
9952 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9953 inst
.instruction
|= inst
.operands
[0].reg
;
9954 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9956 else if (unified_syntax
)
9958 if (inst
.instruction
<= 0xffff)
9959 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9960 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9961 inst
.instruction
|= inst
.operands
[1].reg
;
9962 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
9966 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
9967 _("Thumb encoding does not support rotation"));
9968 constraint (1, BAD_HIREG
);
9975 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
9983 half
= (inst
.instruction
& 0x10) != 0;
9984 constraint (current_it_mask
&& current_it_mask
!= 0x10, BAD_BRANCH
);
9985 constraint (inst
.operands
[0].immisreg
,
9986 _("instruction requires register index"));
9987 constraint (inst
.operands
[0].imm
== 15,
9988 _("PC is not a valid index register"));
9989 constraint (!half
&& inst
.operands
[0].shifted
,
9990 _("instruction does not allow shifted index"));
9991 inst
.instruction
|= (inst
.operands
[0].reg
<< 16) | inst
.operands
[0].imm
;
9997 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9998 inst
.instruction
|= inst
.operands
[1].imm
;
9999 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10001 if (inst
.operands
[3].present
)
10003 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
10004 _("expression too complex"));
10005 if (inst
.reloc
.exp
.X_add_number
!= 0)
10007 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
10008 inst
.instruction
|= 0x00200000; /* sh bit */
10010 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x1c) << 10;
10011 inst
.instruction
|= (inst
.reloc
.exp
.X_add_number
& 0x03) << 6;
10013 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10020 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10021 inst
.instruction
|= inst
.operands
[1].imm
;
10022 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10025 /* Neon instruction encoder helpers. */
10027 /* Encodings for the different types for various Neon opcodes. */
10029 /* An "invalid" code for the following tables. */
10032 struct neon_tab_entry
10035 unsigned float_or_poly
;
10036 unsigned scalar_or_imm
;
10039 /* Map overloaded Neon opcodes to their respective encodings. */
10040 #define NEON_ENC_TAB \
10041 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10042 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10043 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10044 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10045 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10046 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10047 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10048 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10049 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10050 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10051 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10052 /* Register variants of the following two instructions are encoded as
10053 vcge / vcgt with the operands reversed. */ \
10054 X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \
10055 X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \
10056 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10057 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10058 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10059 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10060 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10061 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10062 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10063 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10064 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10065 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10066 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10067 X(vshl, 0x0000400, N_INV, 0x0800510), \
10068 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10069 X(vand, 0x0000110, N_INV, 0x0800030), \
10070 X(vbic, 0x0100110, N_INV, 0x0800030), \
10071 X(veor, 0x1000110, N_INV, N_INV), \
10072 X(vorn, 0x0300110, N_INV, 0x0800010), \
10073 X(vorr, 0x0200110, N_INV, 0x0800010), \
10074 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10075 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10076 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10077 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10078 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10079 X(vst1, 0x0000000, 0x0800000, N_INV), \
10080 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10081 X(vst2, 0x0000100, 0x0800100, N_INV), \
10082 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10083 X(vst3, 0x0000200, 0x0800200, N_INV), \
10084 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10085 X(vst4, 0x0000300, 0x0800300, N_INV), \
10086 X(vmovn, 0x1b20200, N_INV, N_INV), \
10087 X(vtrn, 0x1b20080, N_INV, N_INV), \
10088 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10089 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10090 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10091 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10092 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10093 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10094 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10095 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10096 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10100 #define X(OPC,I,F,S) N_MNEM_##OPC
10105 static const struct neon_tab_entry neon_enc_tab
[] =
10107 #define X(OPC,I,F,S) { (I), (F), (S) }
10112 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10113 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10114 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10115 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10116 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10117 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10118 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10119 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10120 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10121 #define NEON_ENC_SINGLE(X) \
10122 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10123 #define NEON_ENC_DOUBLE(X) \
10124 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10126 /* Define shapes for instruction operands. The following mnemonic characters
10127 are used in this table:
10129 F - VFP S<n> register
10130 D - Neon D<n> register
10131 Q - Neon Q<n> register
10135 L - D<n> register list
10137 This table is used to generate various data:
10138 - enumerations of the form NS_DDR to be used as arguments to
10140 - a table classifying shapes into single, double, quad, mixed.
10141 - a table used to drive neon_select_shape.
10144 #define NEON_SHAPE_DEF \
10145 X(3, (D, D, D), DOUBLE), \
10146 X(3, (Q, Q, Q), QUAD), \
10147 X(3, (D, D, I), DOUBLE), \
10148 X(3, (Q, Q, I), QUAD), \
10149 X(3, (D, D, S), DOUBLE), \
10150 X(3, (Q, Q, S), QUAD), \
10151 X(2, (D, D), DOUBLE), \
10152 X(2, (Q, Q), QUAD), \
10153 X(2, (D, S), DOUBLE), \
10154 X(2, (Q, S), QUAD), \
10155 X(2, (D, R), DOUBLE), \
10156 X(2, (Q, R), QUAD), \
10157 X(2, (D, I), DOUBLE), \
10158 X(2, (Q, I), QUAD), \
10159 X(3, (D, L, D), DOUBLE), \
10160 X(2, (D, Q), MIXED), \
10161 X(2, (Q, D), MIXED), \
10162 X(3, (D, Q, I), MIXED), \
10163 X(3, (Q, D, I), MIXED), \
10164 X(3, (Q, D, D), MIXED), \
10165 X(3, (D, Q, Q), MIXED), \
10166 X(3, (Q, Q, D), MIXED), \
10167 X(3, (Q, D, S), MIXED), \
10168 X(3, (D, Q, S), MIXED), \
10169 X(4, (D, D, D, I), DOUBLE), \
10170 X(4, (Q, Q, Q, I), QUAD), \
10171 X(2, (F, F), SINGLE), \
10172 X(3, (F, F, F), SINGLE), \
10173 X(2, (F, I), SINGLE), \
10174 X(2, (F, D), MIXED), \
10175 X(2, (D, F), MIXED), \
10176 X(3, (F, F, I), MIXED), \
10177 X(4, (R, R, F, F), SINGLE), \
10178 X(4, (F, F, R, R), SINGLE), \
10179 X(3, (D, R, R), DOUBLE), \
10180 X(3, (R, R, D), DOUBLE), \
10181 X(2, (S, R), SINGLE), \
10182 X(2, (R, S), SINGLE), \
10183 X(2, (F, R), SINGLE), \
10184 X(2, (R, F), SINGLE)
10186 #define S2(A,B) NS_##A##B
10187 #define S3(A,B,C) NS_##A##B##C
10188 #define S4(A,B,C,D) NS_##A##B##C##D
10190 #define X(N, L, C) S##N L
10203 enum neon_shape_class
10211 #define X(N, L, C) SC_##C
10213 static enum neon_shape_class neon_shape_class
[] =
10231 /* Register widths of above. */
10232 static unsigned neon_shape_el_size
[] =
10243 struct neon_shape_info
10246 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
10249 #define S2(A,B) { SE_##A, SE_##B }
10250 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10251 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10253 #define X(N, L, C) { N, S##N L }
10255 static struct neon_shape_info neon_shape_tab
[] =
10265 /* Bit masks used in type checking given instructions.
10266 'N_EQK' means the type must be the same as (or based on in some way) the key
10267 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10268 set, various other bits can be set as well in order to modify the meaning of
10269 the type constraint. */
10271 enum neon_type_mask
10293 N_KEY
= 0x100000, /* key element (main type specifier). */
10294 N_EQK
= 0x200000, /* given operand has the same type & size as the key. */
10295 N_VFP
= 0x400000, /* VFP mode: operand size must match register width. */
10296 N_DBL
= 0x000001, /* if N_EQK, this operand is twice the size. */
10297 N_HLF
= 0x000002, /* if N_EQK, this operand is half the size. */
10298 N_SGN
= 0x000004, /* if N_EQK, this operand is forced to be signed. */
10299 N_UNS
= 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10300 N_INT
= 0x000010, /* if N_EQK, this operand is forced to be integer. */
10301 N_FLT
= 0x000020, /* if N_EQK, this operand is forced to be float. */
10302 N_SIZ
= 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10304 N_MAX_NONSPECIAL
= N_F64
10307 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10309 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10310 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10311 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10312 #define N_SUF_32 (N_SU_32 | N_F32)
10313 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10314 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10316 /* Pass this as the first type argument to neon_check_type to ignore types
10318 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10320 /* Select a "shape" for the current instruction (describing register types or
10321 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10322 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10323 function of operand parsing, so this function doesn't need to be called.
10324 Shapes should be listed in order of decreasing length. */
10326 static enum neon_shape
10327 neon_select_shape (enum neon_shape shape
, ...)
10330 enum neon_shape first_shape
= shape
;
10332 /* Fix missing optional operands. FIXME: we don't know at this point how
10333 many arguments we should have, so this makes the assumption that we have
10334 > 1. This is true of all current Neon opcodes, I think, but may not be
10335 true in the future. */
10336 if (!inst
.operands
[1].present
)
10337 inst
.operands
[1] = inst
.operands
[0];
10339 va_start (ap
, shape
);
10341 for (; shape
!= NS_NULL
; shape
= va_arg (ap
, int))
10346 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
10348 if (!inst
.operands
[j
].present
)
10354 switch (neon_shape_tab
[shape
].el
[j
])
10357 if (!(inst
.operands
[j
].isreg
10358 && inst
.operands
[j
].isvec
10359 && inst
.operands
[j
].issingle
10360 && !inst
.operands
[j
].isquad
))
10365 if (!(inst
.operands
[j
].isreg
10366 && inst
.operands
[j
].isvec
10367 && !inst
.operands
[j
].isquad
10368 && !inst
.operands
[j
].issingle
))
10373 if (!(inst
.operands
[j
].isreg
10374 && !inst
.operands
[j
].isvec
))
10379 if (!(inst
.operands
[j
].isreg
10380 && inst
.operands
[j
].isvec
10381 && inst
.operands
[j
].isquad
10382 && !inst
.operands
[j
].issingle
))
10387 if (!(!inst
.operands
[j
].isreg
10388 && !inst
.operands
[j
].isscalar
))
10393 if (!(!inst
.operands
[j
].isreg
10394 && inst
.operands
[j
].isscalar
))
10408 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
10409 first_error (_("invalid instruction shape"));
10414 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10415 means the Q bit should be set). */
10418 neon_quad (enum neon_shape shape
)
10420 return neon_shape_class
[shape
] == SC_QUAD
;
10424 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
10427 /* Allow modification to be made to types which are constrained to be
10428 based on the key element, based on bits set alongside N_EQK. */
10429 if ((typebits
& N_EQK
) != 0)
10431 if ((typebits
& N_HLF
) != 0)
10433 else if ((typebits
& N_DBL
) != 0)
10435 if ((typebits
& N_SGN
) != 0)
10436 *g_type
= NT_signed
;
10437 else if ((typebits
& N_UNS
) != 0)
10438 *g_type
= NT_unsigned
;
10439 else if ((typebits
& N_INT
) != 0)
10440 *g_type
= NT_integer
;
10441 else if ((typebits
& N_FLT
) != 0)
10442 *g_type
= NT_float
;
10443 else if ((typebits
& N_SIZ
) != 0)
10444 *g_type
= NT_untyped
;
10448 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10449 operand type, i.e. the single type specified in a Neon instruction when it
10450 is the only one given. */
10452 static struct neon_type_el
10453 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
10455 struct neon_type_el dest
= *key
;
10457 assert ((thisarg
& N_EQK
) != 0);
10459 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
10464 /* Convert Neon type and size into compact bitmask representation. */
10466 static enum neon_type_mask
10467 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
10474 case 8: return N_8
;
10475 case 16: return N_16
;
10476 case 32: return N_32
;
10477 case 64: return N_64
;
10485 case 8: return N_I8
;
10486 case 16: return N_I16
;
10487 case 32: return N_I32
;
10488 case 64: return N_I64
;
10496 case 32: return N_F32
;
10497 case 64: return N_F64
;
10505 case 8: return N_P8
;
10506 case 16: return N_P16
;
10514 case 8: return N_S8
;
10515 case 16: return N_S16
;
10516 case 32: return N_S32
;
10517 case 64: return N_S64
;
10525 case 8: return N_U8
;
10526 case 16: return N_U16
;
10527 case 32: return N_U32
;
10528 case 64: return N_U64
;
10539 /* Convert compact Neon bitmask type representation to a type and size. Only
10540 handles the case where a single bit is set in the mask. */
10543 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
10544 enum neon_type_mask mask
)
10546 if ((mask
& N_EQK
) != 0)
10549 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
10551 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_P16
)) != 0)
10553 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
10555 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
)) != 0)
10560 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
10562 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
10563 *type
= NT_unsigned
;
10564 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
10565 *type
= NT_integer
;
10566 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
10567 *type
= NT_untyped
;
10568 else if ((mask
& (N_P8
| N_P16
)) != 0)
10570 else if ((mask
& (N_F32
| N_F64
)) != 0)
10578 /* Modify a bitmask of allowed types. This is only needed for type
10582 modify_types_allowed (unsigned allowed
, unsigned mods
)
10585 enum neon_el_type type
;
10591 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
10593 if (el_type_of_type_chk (&type
, &size
, allowed
& i
) == SUCCESS
)
10595 neon_modify_type_size (mods
, &type
, &size
);
10596 destmask
|= type_chk_of_el_type (type
, size
);
10603 /* Check type and return type classification.
10604 The manual states (paraphrase): If one datatype is given, it indicates the
10606 - the second operand, if there is one
10607 - the operand, if there is no second operand
10608 - the result, if there are no operands.
10609 This isn't quite good enough though, so we use a concept of a "key" datatype
10610 which is set on a per-instruction basis, which is the one which matters when
10611 only one data type is written.
10612 Note: this function has side-effects (e.g. filling in missing operands). All
10613 Neon instructions should call it before performing bit encoding. */
10615 static struct neon_type_el
10616 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
10619 unsigned i
, pass
, key_el
= 0;
10620 unsigned types
[NEON_MAX_TYPE_ELS
];
10621 enum neon_el_type k_type
= NT_invtype
;
10622 unsigned k_size
= -1u;
10623 struct neon_type_el badtype
= {NT_invtype
, -1};
10624 unsigned key_allowed
= 0;
10626 /* Optional registers in Neon instructions are always (not) in operand 1.
10627 Fill in the missing operand here, if it was omitted. */
10628 if (els
> 1 && !inst
.operands
[1].present
)
10629 inst
.operands
[1] = inst
.operands
[0];
10631 /* Suck up all the varargs. */
10633 for (i
= 0; i
< els
; i
++)
10635 unsigned thisarg
= va_arg (ap
, unsigned);
10636 if (thisarg
== N_IGNORE_TYPE
)
10641 types
[i
] = thisarg
;
10642 if ((thisarg
& N_KEY
) != 0)
10647 if (inst
.vectype
.elems
> 0)
10648 for (i
= 0; i
< els
; i
++)
10649 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
10651 first_error (_("types specified in both the mnemonic and operands"));
10655 /* Duplicate inst.vectype elements here as necessary.
10656 FIXME: No idea if this is exactly the same as the ARM assembler,
10657 particularly when an insn takes one register and one non-register
10659 if (inst
.vectype
.elems
== 1 && els
> 1)
10662 inst
.vectype
.elems
= els
;
10663 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
10664 for (j
= 0; j
< els
; j
++)
10666 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
10669 else if (inst
.vectype
.elems
== 0 && els
> 0)
10672 /* No types were given after the mnemonic, so look for types specified
10673 after each operand. We allow some flexibility here; as long as the
10674 "key" operand has a type, we can infer the others. */
10675 for (j
= 0; j
< els
; j
++)
10676 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
10677 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
10679 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
10681 for (j
= 0; j
< els
; j
++)
10682 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
10683 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
10688 first_error (_("operand types can't be inferred"));
10692 else if (inst
.vectype
.elems
!= els
)
10694 first_error (_("type specifier has the wrong number of parts"));
10698 for (pass
= 0; pass
< 2; pass
++)
10700 for (i
= 0; i
< els
; i
++)
10702 unsigned thisarg
= types
[i
];
10703 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
10704 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
10705 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
10706 unsigned g_size
= inst
.vectype
.el
[i
].size
;
10708 /* Decay more-specific signed & unsigned types to sign-insensitive
10709 integer types if sign-specific variants are unavailable. */
10710 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
10711 && (types_allowed
& N_SU_ALL
) == 0)
10712 g_type
= NT_integer
;
10714 /* If only untyped args are allowed, decay any more specific types to
10715 them. Some instructions only care about signs for some element
10716 sizes, so handle that properly. */
10717 if ((g_size
== 8 && (types_allowed
& N_8
) != 0)
10718 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
10719 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
10720 || (g_size
== 64 && (types_allowed
& N_64
) != 0))
10721 g_type
= NT_untyped
;
10725 if ((thisarg
& N_KEY
) != 0)
10729 key_allowed
= thisarg
& ~N_KEY
;
10734 if ((thisarg
& N_VFP
) != 0)
10736 enum neon_shape_el regshape
= neon_shape_tab
[ns
].el
[i
];
10737 unsigned regwidth
= neon_shape_el_size
[regshape
], match
;
10739 /* In VFP mode, operands must match register widths. If we
10740 have a key operand, use its width, else use the width of
10741 the current operand. */
10747 if (regwidth
!= match
)
10749 first_error (_("operand size must match register width"));
10754 if ((thisarg
& N_EQK
) == 0)
10756 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
10758 if ((given_type
& types_allowed
) == 0)
10760 first_error (_("bad type in Neon instruction"));
10766 enum neon_el_type mod_k_type
= k_type
;
10767 unsigned mod_k_size
= k_size
;
10768 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
10769 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
10771 first_error (_("inconsistent types in Neon instruction"));
10779 return inst
.vectype
.el
[key_el
];
10782 /* Neon-style VFP instruction forwarding. */
10784 /* Thumb VFP instructions have 0xE in the condition field. */
10787 do_vfp_cond_or_thumb (void)
10790 inst
.instruction
|= 0xe0000000;
10792 inst
.instruction
|= inst
.cond
<< 28;
10795 /* Look up and encode a simple mnemonic, for use as a helper function for the
10796 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
10797 etc. It is assumed that operand parsing has already been done, and that the
10798 operands are in the form expected by the given opcode (this isn't necessarily
10799 the same as the form in which they were parsed, hence some massaging must
10800 take place before this function is called).
10801 Checks current arch version against that in the looked-up opcode. */
10804 do_vfp_nsyn_opcode (const char *opname
)
10806 const struct asm_opcode
*opcode
;
10808 opcode
= hash_find (arm_ops_hsh
, opname
);
10813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
10814 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
10819 inst
.instruction
= opcode
->tvalue
;
10820 opcode
->tencode ();
10824 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
10825 opcode
->aencode ();
10830 do_vfp_nsyn_add_sub (enum neon_shape rs
)
10832 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
10837 do_vfp_nsyn_opcode ("fadds");
10839 do_vfp_nsyn_opcode ("fsubs");
10844 do_vfp_nsyn_opcode ("faddd");
10846 do_vfp_nsyn_opcode ("fsubd");
10850 /* Check operand types to see if this is a VFP instruction, and if so call
10854 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
10856 enum neon_shape rs
;
10857 struct neon_type_el et
;
10862 rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
10863 et
= neon_check_type (2, rs
,
10864 N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
10868 rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
10869 et
= neon_check_type (3, rs
,
10870 N_EQK
| N_VFP
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
10877 if (et
.type
!= NT_invtype
)
10889 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
10891 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
10896 do_vfp_nsyn_opcode ("fmacs");
10898 do_vfp_nsyn_opcode ("fmscs");
10903 do_vfp_nsyn_opcode ("fmacd");
10905 do_vfp_nsyn_opcode ("fmscd");
10910 do_vfp_nsyn_mul (enum neon_shape rs
)
10913 do_vfp_nsyn_opcode ("fmuls");
10915 do_vfp_nsyn_opcode ("fmuld");
10919 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
10921 int is_neg
= (inst
.instruction
& 0x80) != 0;
10922 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_VFP
| N_KEY
);
10927 do_vfp_nsyn_opcode ("fnegs");
10929 do_vfp_nsyn_opcode ("fabss");
10934 do_vfp_nsyn_opcode ("fnegd");
10936 do_vfp_nsyn_opcode ("fabsd");
10940 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
10941 insns belong to Neon, and are handled elsewhere. */
10944 do_vfp_nsyn_ldm_stm (int is_dbmode
)
10946 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
10950 do_vfp_nsyn_opcode ("fldmdbs");
10952 do_vfp_nsyn_opcode ("fldmias");
10957 do_vfp_nsyn_opcode ("fstmdbs");
10959 do_vfp_nsyn_opcode ("fstmias");
10964 do_vfp_nsyn_sqrt (void)
10966 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
10967 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
10970 do_vfp_nsyn_opcode ("fsqrts");
10972 do_vfp_nsyn_opcode ("fsqrtd");
10976 do_vfp_nsyn_div (void)
10978 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
10979 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
10980 N_F32
| N_F64
| N_KEY
| N_VFP
);
10983 do_vfp_nsyn_opcode ("fdivs");
10985 do_vfp_nsyn_opcode ("fdivd");
10989 do_vfp_nsyn_nmul (void)
10991 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
10992 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
10993 N_F32
| N_F64
| N_KEY
| N_VFP
);
10997 inst
.instruction
= NEON_ENC_SINGLE (inst
.instruction
);
10998 do_vfp_sp_dyadic ();
11002 inst
.instruction
= NEON_ENC_DOUBLE (inst
.instruction
);
11003 do_vfp_dp_rd_rn_rm ();
11005 do_vfp_cond_or_thumb ();
11009 do_vfp_nsyn_cmp (void)
11011 if (inst
.operands
[1].isreg
)
11013 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
11014 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
11018 inst
.instruction
= NEON_ENC_SINGLE (inst
.instruction
);
11019 do_vfp_sp_monadic ();
11023 inst
.instruction
= NEON_ENC_DOUBLE (inst
.instruction
);
11024 do_vfp_dp_rd_rm ();
11029 enum neon_shape rs
= neon_select_shape (NS_FI
, NS_DI
, NS_NULL
);
11030 neon_check_type (2, rs
, N_F32
| N_F64
| N_KEY
| N_VFP
, N_EQK
);
11032 switch (inst
.instruction
& 0x0fffffff)
11035 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
11038 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
11046 inst
.instruction
= NEON_ENC_SINGLE (inst
.instruction
);
11047 do_vfp_sp_compare_z ();
11051 inst
.instruction
= NEON_ENC_DOUBLE (inst
.instruction
);
11055 do_vfp_cond_or_thumb ();
11059 nsyn_insert_sp (void)
11061 inst
.operands
[1] = inst
.operands
[0];
11062 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
11063 inst
.operands
[0].reg
= 13;
11064 inst
.operands
[0].isreg
= 1;
11065 inst
.operands
[0].writeback
= 1;
11066 inst
.operands
[0].present
= 1;
11070 do_vfp_nsyn_push (void)
11073 if (inst
.operands
[1].issingle
)
11074 do_vfp_nsyn_opcode ("fstmdbs");
11076 do_vfp_nsyn_opcode ("fstmdbd");
11080 do_vfp_nsyn_pop (void)
11083 if (inst
.operands
[1].issingle
)
11084 do_vfp_nsyn_opcode ("fldmdbs");
11086 do_vfp_nsyn_opcode ("fldmdbd");
11089 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11090 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11093 neon_dp_fixup (unsigned i
)
11097 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11111 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11115 neon_logbits (unsigned x
)
11117 return ffs (x
) - 4;
11120 #define LOW4(R) ((R) & 0xf)
11121 #define HI1(R) (((R) >> 4) & 1)
11123 /* Encode insns with bit pattern:
11125 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11126 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11128 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11129 different meaning for some instruction. */
11132 neon_three_same (int isquad
, int ubit
, int size
)
11134 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11135 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11136 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
11137 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
11138 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
11139 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
11140 inst
.instruction
|= (isquad
!= 0) << 6;
11141 inst
.instruction
|= (ubit
!= 0) << 24;
11143 inst
.instruction
|= neon_logbits (size
) << 20;
11145 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11148 /* Encode instructions of the form:
11150 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11151 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11153 Don't write size if SIZE == -1. */
11156 neon_two_same (int qbit
, int ubit
, int size
)
11158 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11159 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11160 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
11161 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
11162 inst
.instruction
|= (qbit
!= 0) << 6;
11163 inst
.instruction
|= (ubit
!= 0) << 24;
11166 inst
.instruction
|= neon_logbits (size
) << 18;
11168 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11171 /* Neon instruction encoders, in approximate order of appearance. */
11174 do_neon_dyadic_i_su (void)
11176 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11177 struct neon_type_el et
= neon_check_type (3, rs
,
11178 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
11179 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11183 do_neon_dyadic_i64_su (void)
11185 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11186 struct neon_type_el et
= neon_check_type (3, rs
,
11187 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
11188 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11192 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
11195 unsigned size
= et
.size
>> 3;
11196 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11197 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11198 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
11199 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
11200 inst
.instruction
|= (isquad
!= 0) << 6;
11201 inst
.instruction
|= immbits
<< 16;
11202 inst
.instruction
|= (size
>> 3) << 7;
11203 inst
.instruction
|= (size
& 0x7) << 19;
11205 inst
.instruction
|= (uval
!= 0) << 24;
11207 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11211 do_neon_shl_imm (void)
11213 if (!inst
.operands
[2].isreg
)
11215 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11216 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
11217 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11218 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, inst
.operands
[2].imm
);
11222 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11223 struct neon_type_el et
= neon_check_type (3, rs
,
11224 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
11225 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11226 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11231 do_neon_qshl_imm (void)
11233 if (!inst
.operands
[2].isreg
)
11235 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11236 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
11237 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11238 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
11239 inst
.operands
[2].imm
);
11243 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11244 struct neon_type_el et
= neon_check_type (3, rs
,
11245 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
11246 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11247 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
11252 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
11254 /* Handle .I8 and .I64 as pseudo-instructions. */
11258 /* Unfortunately, this will make everything apart from zero out-of-range.
11259 FIXME is this the intended semantics? There doesn't seem much point in
11260 accepting .I8 if so. */
11261 immediate
|= immediate
<< 8;
11265 /* Similarly, anything other than zero will be replicated in bits [63:32],
11266 which probably isn't want we want if we specified .I64. */
11267 if (immediate
!= 0)
11268 goto bad_immediate
;
11274 if (immediate
== (immediate
& 0x000000ff))
11276 *immbits
= immediate
;
11277 return (size
== 16) ? 0x9 : 0x1;
11279 else if (immediate
== (immediate
& 0x0000ff00))
11281 *immbits
= immediate
>> 8;
11282 return (size
== 16) ? 0xb : 0x3;
11284 else if (immediate
== (immediate
& 0x00ff0000))
11286 *immbits
= immediate
>> 16;
11289 else if (immediate
== (immediate
& 0xff000000))
11291 *immbits
= immediate
>> 24;
11296 first_error (_("immediate value out of range"));
11300 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11304 neon_bits_same_in_bytes (unsigned imm
)
11306 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
11307 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
11308 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
11309 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
11312 /* For immediate of above form, return 0bABCD. */
11315 neon_squash_bits (unsigned imm
)
11317 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
11318 | ((imm
& 0x01000000) >> 21);
11321 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11324 neon_qfloat_bits (unsigned imm
)
11326 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
11329 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11330 the instruction. *OP is passed as the initial value of the op field, and
11331 may be set to a different value depending on the constant (i.e.
11332 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11336 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, unsigned *immbits
,
11337 int *op
, int size
, enum neon_el_type type
)
11339 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
11341 if (size
!= 32 || *op
== 1)
11343 *immbits
= neon_qfloat_bits (immlo
);
11346 else if (size
== 64 && neon_bits_same_in_bytes (immhi
)
11347 && neon_bits_same_in_bytes (immlo
))
11349 /* Check this one first so we don't have to bother with immhi in later
11353 *immbits
= (neon_squash_bits (immhi
) << 4) | neon_squash_bits (immlo
);
11357 else if (immhi
!= 0)
11359 else if (immlo
== (immlo
& 0x000000ff))
11361 /* 64-bit case was already handled. Don't allow MVN with 8-bit
11363 if ((size
!= 8 && size
!= 16 && size
!= 32)
11364 || (size
== 8 && *op
== 1))
11367 return (size
== 8) ? 0xe : (size
== 16) ? 0x8 : 0x0;
11369 else if (immlo
== (immlo
& 0x0000ff00))
11371 if (size
!= 16 && size
!= 32)
11373 *immbits
= immlo
>> 8;
11374 return (size
== 16) ? 0xa : 0x2;
11376 else if (immlo
== (immlo
& 0x00ff0000))
11380 *immbits
= immlo
>> 16;
11383 else if (immlo
== (immlo
& 0xff000000))
11387 *immbits
= immlo
>> 24;
11390 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
11394 *immbits
= (immlo
>> 8) & 0xff;
11397 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
11401 *immbits
= (immlo
>> 16) & 0xff;
11408 /* Write immediate bits [7:0] to the following locations:
11410 |28/24|23 19|18 16|15 4|3 0|
11411 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11413 This function is used by VMOV/VMVN/VORR/VBIC. */
11416 neon_write_immbits (unsigned immbits
)
11418 inst
.instruction
|= immbits
& 0xf;
11419 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
11420 inst
.instruction
|= ((immbits
>> 7) & 0x1) << 24;
11423 /* Invert low-order SIZE bits of XHI:XLO. */
11426 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
11428 unsigned immlo
= xlo
? *xlo
: 0;
11429 unsigned immhi
= xhi
? *xhi
: 0;
11434 immlo
= (~immlo
) & 0xff;
11438 immlo
= (~immlo
) & 0xffff;
11442 immhi
= (~immhi
) & 0xffffffff;
11443 /* fall through. */
11446 immlo
= (~immlo
) & 0xffffffff;
11461 do_neon_logic (void)
11463 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
11465 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11466 neon_check_type (3, rs
, N_IGNORE_TYPE
);
11467 /* U bit and size field were set as part of the bitmask. */
11468 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11469 neon_three_same (neon_quad (rs
), 0, -1);
11473 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
11474 struct neon_type_el et
= neon_check_type (2, rs
,
11475 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
11476 enum neon_opc opcode
= inst
.instruction
& 0x0fffffff;
11480 if (et
.type
== NT_invtype
)
11483 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11488 cmode
= neon_cmode_for_logic_imm (inst
.operands
[1].imm
, &immbits
,
11493 cmode
= neon_cmode_for_logic_imm (inst
.operands
[1].imm
, &immbits
,
11498 /* Pseudo-instruction for VBIC. */
11499 immbits
= inst
.operands
[1].imm
;
11500 neon_invert_size (&immbits
, 0, et
.size
);
11501 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
11505 /* Pseudo-instruction for VORR. */
11506 immbits
= inst
.operands
[1].imm
;
11507 neon_invert_size (&immbits
, 0, et
.size
);
11508 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
11518 inst
.instruction
|= neon_quad (rs
) << 6;
11519 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11520 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11521 inst
.instruction
|= cmode
<< 8;
11522 neon_write_immbits (immbits
);
11524 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11529 do_neon_bitfield (void)
11531 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11532 neon_check_type (3, rs
, N_IGNORE_TYPE
);
11533 neon_three_same (neon_quad (rs
), 0, -1);
11537 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
11540 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11541 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
11543 if (et
.type
== NT_float
)
11545 inst
.instruction
= NEON_ENC_FLOAT (inst
.instruction
);
11546 neon_three_same (neon_quad (rs
), 0, -1);
11550 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11551 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
11556 do_neon_dyadic_if_su (void)
11558 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
11562 do_neon_dyadic_if_su_d (void)
11564 /* This version only allow D registers, but that constraint is enforced during
11565 operand parsing so we don't need to do anything extra here. */
11566 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
11570 do_neon_dyadic_if_i (void)
11572 neon_dyadic_misc (NT_unsigned
, N_IF_32
, 0);
11576 do_neon_dyadic_if_i_d (void)
11578 neon_dyadic_misc (NT_unsigned
, N_IF_32
, 0);
11581 enum vfp_or_neon_is_neon_bits
11584 NEON_CHECK_ARCH
= 2
11587 /* Call this function if an instruction which may have belonged to the VFP or
11588 Neon instruction sets, but turned out to be a Neon instruction (due to the
11589 operand types involved, etc.). We have to check and/or fix-up a couple of
11592 - Make sure the user hasn't attempted to make a Neon instruction
11594 - Alter the value in the condition code field if necessary.
11595 - Make sure that the arch supports Neon instructions.
11597 Which of these operations take place depends on bits from enum
11598 vfp_or_neon_is_neon_bits.
11600 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11601 current instruction's condition is COND_ALWAYS, the condition field is
11602 changed to inst.uncond_value. This is necessary because instructions shared
11603 between VFP and Neon may be conditional for the VFP variants only, and the
11604 unconditional Neon version must have, e.g., 0xF in the condition field. */
11607 vfp_or_neon_is_neon (unsigned check
)
11609 /* Conditions are always legal in Thumb mode (IT blocks). */
11610 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
11612 if (inst
.cond
!= COND_ALWAYS
)
11614 first_error (_(BAD_COND
));
11617 if (inst
.uncond_value
!= -1)
11618 inst
.instruction
|= inst
.uncond_value
<< 28;
11621 if ((check
& NEON_CHECK_ARCH
)
11622 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
11624 first_error (_(BAD_FPU
));
11632 do_neon_addsub_if_i (void)
11634 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
11637 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
11640 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11641 affected if we specify unsigned args. */
11642 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
11645 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11647 V<op> A,B (A is operand 0, B is operand 2)
11652 so handle that case specially. */
11655 neon_exchange_operands (void)
11657 void *scratch
= alloca (sizeof (inst
.operands
[0]));
11658 if (inst
.operands
[1].present
)
11660 /* Swap operands[1] and operands[2]. */
11661 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
11662 inst
.operands
[1] = inst
.operands
[2];
11663 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
11667 inst
.operands
[1] = inst
.operands
[2];
11668 inst
.operands
[2] = inst
.operands
[0];
11673 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
11675 if (inst
.operands
[2].isreg
)
11678 neon_exchange_operands ();
11679 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
11683 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11684 struct neon_type_el et
= neon_check_type (2, rs
,
11685 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
11687 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
11688 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11689 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11690 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
11691 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
11692 inst
.instruction
|= neon_quad (rs
) << 6;
11693 inst
.instruction
|= (et
.type
== NT_float
) << 10;
11694 inst
.instruction
|= neon_logbits (et
.size
) << 18;
11696 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11703 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, FALSE
);
11707 do_neon_cmp_inv (void)
11709 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, TRUE
);
11715 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
11718 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
11719 scalars, which are encoded in 5 bits, M : Rm.
11720 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
11721 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
11725 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
11727 unsigned regno
= NEON_SCALAR_REG (scalar
);
11728 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
11733 if (regno
> 7 || elno
> 3)
11735 return regno
| (elno
<< 3);
11738 if (regno
> 15 || elno
> 1)
11740 return regno
| (elno
<< 4);
11744 first_error (_("scalar out of range for multiply instruction"));
11750 /* Encode multiply / multiply-accumulate scalar instructions. */
11753 neon_mul_mac (struct neon_type_el et
, int ubit
)
11757 /* Give a more helpful error message if we have an invalid type. */
11758 if (et
.type
== NT_invtype
)
11761 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
11762 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11763 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11764 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
11765 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
11766 inst
.instruction
|= LOW4 (scalar
);
11767 inst
.instruction
|= HI1 (scalar
) << 5;
11768 inst
.instruction
|= (et
.type
== NT_float
) << 8;
11769 inst
.instruction
|= neon_logbits (et
.size
) << 20;
11770 inst
.instruction
|= (ubit
!= 0) << 24;
11772 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11776 do_neon_mac_maybe_scalar (void)
11778 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
11781 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
11784 if (inst
.operands
[2].isscalar
)
11786 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
11787 struct neon_type_el et
= neon_check_type (3, rs
,
11788 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F32
| N_KEY
);
11789 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
11790 neon_mul_mac (et
, neon_quad (rs
));
11793 do_neon_dyadic_if_i ();
11799 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11800 struct neon_type_el et
= neon_check_type (3, rs
,
11801 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
11802 neon_three_same (neon_quad (rs
), 0, et
.size
);
11805 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
11806 same types as the MAC equivalents. The polynomial type for this instruction
11807 is encoded the same as the integer type. */
11812 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
11815 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
11818 if (inst
.operands
[2].isscalar
)
11819 do_neon_mac_maybe_scalar ();
11821 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F32
| N_P8
, 0);
11825 do_neon_qdmulh (void)
11827 if (inst
.operands
[2].isscalar
)
11829 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
11830 struct neon_type_el et
= neon_check_type (3, rs
,
11831 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
11832 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
11833 neon_mul_mac (et
, neon_quad (rs
));
11837 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11838 struct neon_type_el et
= neon_check_type (3, rs
,
11839 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
11840 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11841 /* The U bit (rounding) comes from bit mask. */
11842 neon_three_same (neon_quad (rs
), 0, et
.size
);
11847 do_neon_fcmp_absolute (void)
11849 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11850 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
11851 /* Size field comes from bit mask. */
11852 neon_three_same (neon_quad (rs
), 1, -1);
11856 do_neon_fcmp_absolute_inv (void)
11858 neon_exchange_operands ();
11859 do_neon_fcmp_absolute ();
11863 do_neon_step (void)
11865 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
11866 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
11867 neon_three_same (neon_quad (rs
), 0, -1);
11871 do_neon_abs_neg (void)
11873 enum neon_shape rs
;
11874 struct neon_type_el et
;
11876 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
11879 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
11882 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
11883 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_F32
| N_KEY
);
11885 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
11886 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
11887 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
11888 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
11889 inst
.instruction
|= neon_quad (rs
) << 6;
11890 inst
.instruction
|= (et
.type
== NT_float
) << 10;
11891 inst
.instruction
|= neon_logbits (et
.size
) << 18;
11893 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
11899 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11900 struct neon_type_el et
= neon_check_type (2, rs
,
11901 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
11902 int imm
= inst
.operands
[2].imm
;
11903 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
11904 _("immediate out of range for insert"));
11905 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
11911 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11912 struct neon_type_el et
= neon_check_type (2, rs
,
11913 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
11914 int imm
= inst
.operands
[2].imm
;
11915 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
11916 _("immediate out of range for insert"));
11917 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
11921 do_neon_qshlu_imm (void)
11923 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
11924 struct neon_type_el et
= neon_check_type (2, rs
,
11925 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
11926 int imm
= inst
.operands
[2].imm
;
11927 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
11928 _("immediate out of range for shift"));
11929 /* Only encodes the 'U present' variant of the instruction.
11930 In this case, signed types have OP (bit 8) set to 0.
11931 Unsigned types have OP set to 1. */
11932 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
11933 /* The rest of the bits are the same as other immediate shifts. */
11934 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
11938 do_neon_qmovn (void)
11940 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
11941 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
11942 /* Saturating move where operands can be signed or unsigned, and the
11943 destination has the same signedness. */
11944 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11945 if (et
.type
== NT_unsigned
)
11946 inst
.instruction
|= 0xc0;
11948 inst
.instruction
|= 0x80;
11949 neon_two_same (0, 1, et
.size
/ 2);
11953 do_neon_qmovun (void)
11955 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
11956 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
11957 /* Saturating move with unsigned results. Operands must be signed. */
11958 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
11959 neon_two_same (0, 1, et
.size
/ 2);
11963 do_neon_rshift_sat_narrow (void)
11965 /* FIXME: Types for narrowing. If operands are signed, results can be signed
11966 or unsigned. If operands are unsigned, results must also be unsigned. */
11967 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
11968 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
11969 int imm
= inst
.operands
[2].imm
;
11970 /* This gets the bounds check, size encoding and immediate bits calculation
11974 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
11975 VQMOVN.I<size> <Dd>, <Qm>. */
11978 inst
.operands
[2].present
= 0;
11979 inst
.instruction
= N_MNEM_vqmovn
;
11984 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
11985 _("immediate out of range"));
11986 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
11990 do_neon_rshift_sat_narrow_u (void)
11992 /* FIXME: Types for narrowing. If operands are signed, results can be signed
11993 or unsigned. If operands are unsigned, results must also be unsigned. */
11994 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
11995 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
11996 int imm
= inst
.operands
[2].imm
;
11997 /* This gets the bounds check, size encoding and immediate bits calculation
12001 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12002 VQMOVUN.I<size> <Dd>, <Qm>. */
12005 inst
.operands
[2].present
= 0;
12006 inst
.instruction
= N_MNEM_vqmovun
;
12011 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12012 _("immediate out of range"));
12013 /* FIXME: The manual is kind of unclear about what value U should have in
12014 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12016 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
12020 do_neon_movn (void)
12022 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
12023 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
12024 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12025 neon_two_same (0, 1, et
.size
/ 2);
12029 do_neon_rshift_narrow (void)
12031 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
12032 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
12033 int imm
= inst
.operands
[2].imm
;
12034 /* This gets the bounds check, size encoding and immediate bits calculation
12038 /* If immediate is zero then we are a pseudo-instruction for
12039 VMOVN.I<size> <Dd>, <Qm> */
12042 inst
.operands
[2].present
= 0;
12043 inst
.instruction
= N_MNEM_vmovn
;
12048 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12049 _("immediate out of range for narrowing operation"));
12050 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
12054 do_neon_shll (void)
12056 /* FIXME: Type checking when lengthening. */
12057 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
12058 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
12059 unsigned imm
= inst
.operands
[2].imm
;
12061 if (imm
== et
.size
)
12063 /* Maximum shift variant. */
12064 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12065 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12066 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12067 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12068 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12069 inst
.instruction
|= neon_logbits (et
.size
) << 18;
12071 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12075 /* A more-specific type check for non-max versions. */
12076 et
= neon_check_type (2, NS_QDI
,
12077 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
12078 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12079 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
12083 /* Check the various types for the VCVT instruction, and return which version
12084 the current instruction is. */
12087 neon_cvt_flavour (enum neon_shape rs
)
12089 #define CVT_VAR(C,X,Y) \
12090 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12091 if (et.type != NT_invtype) \
12093 inst.error = NULL; \
12096 struct neon_type_el et
;
12097 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
12098 || rs
== NS_FF
) ? N_VFP
: 0;
12099 /* The instruction versions which take an immediate take one register
12100 argument, which is extended to the width of the full register. Thus the
12101 "source" and "destination" registers must have the same width. Hack that
12102 here by making the size equal to the key (wider, in this case) operand. */
12103 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
12105 CVT_VAR (0, N_S32
, N_F32
);
12106 CVT_VAR (1, N_U32
, N_F32
);
12107 CVT_VAR (2, N_F32
, N_S32
);
12108 CVT_VAR (3, N_F32
, N_U32
);
12112 /* VFP instructions. */
12113 CVT_VAR (4, N_F32
, N_F64
);
12114 CVT_VAR (5, N_F64
, N_F32
);
12115 CVT_VAR (6, N_S32
, N_F64
| key
);
12116 CVT_VAR (7, N_U32
, N_F64
| key
);
12117 CVT_VAR (8, N_F64
| key
, N_S32
);
12118 CVT_VAR (9, N_F64
| key
, N_U32
);
12119 /* VFP instructions with bitshift. */
12120 CVT_VAR (10, N_F32
| key
, N_S16
);
12121 CVT_VAR (11, N_F32
| key
, N_U16
);
12122 CVT_VAR (12, N_F64
| key
, N_S16
);
12123 CVT_VAR (13, N_F64
| key
, N_U16
);
12124 CVT_VAR (14, N_S16
, N_F32
| key
);
12125 CVT_VAR (15, N_U16
, N_F32
| key
);
12126 CVT_VAR (16, N_S16
, N_F64
| key
);
12127 CVT_VAR (17, N_U16
, N_F64
| key
);
12133 /* Neon-syntax VFP conversions. */
12136 do_vfp_nsyn_cvt (enum neon_shape rs
, int flavour
)
12138 const char *opname
= 0;
12140 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
)
12142 /* Conversions with immediate bitshift. */
12143 const char *enc
[] =
12165 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
12167 opname
= enc
[flavour
];
12168 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
12169 _("operands 0 and 1 must be the same register"));
12170 inst
.operands
[1] = inst
.operands
[2];
12171 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
12176 /* Conversions without bitshift. */
12177 const char *enc
[] =
12191 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
12192 opname
= enc
[flavour
];
12196 do_vfp_nsyn_opcode (opname
);
12200 do_vfp_nsyn_cvtz (void)
12202 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_FD
, NS_NULL
);
12203 int flavour
= neon_cvt_flavour (rs
);
12204 const char *enc
[] =
12216 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
12217 do_vfp_nsyn_opcode (enc
[flavour
]);
12223 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
12224 NS_FD
, NS_DF
, NS_FF
, NS_NULL
);
12225 int flavour
= neon_cvt_flavour (rs
);
12227 /* VFP rather than Neon conversions. */
12230 do_vfp_nsyn_cvt (rs
, flavour
);
12239 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12242 /* Fixed-point conversion with #0 immediate is encoded as an
12243 integer conversion. */
12244 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
12246 unsigned immbits
= 32 - inst
.operands
[2].imm
;
12247 unsigned enctab
[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12248 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12250 inst
.instruction
|= enctab
[flavour
];
12251 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12252 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12253 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12254 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12255 inst
.instruction
|= neon_quad (rs
) << 6;
12256 inst
.instruction
|= 1 << 21;
12257 inst
.instruction
|= immbits
<< 16;
12259 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12267 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080 };
12269 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12271 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12275 inst
.instruction
|= enctab
[flavour
];
12277 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12278 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12279 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12280 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12281 inst
.instruction
|= neon_quad (rs
) << 6;
12282 inst
.instruction
|= 2 << 18;
12284 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12289 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12290 do_vfp_nsyn_cvt (rs
, flavour
);
12295 neon_move_immediate (void)
12297 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
12298 struct neon_type_el et
= neon_check_type (2, rs
,
12299 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
12300 unsigned immlo
, immhi
= 0, immbits
;
12303 constraint (et
.type
== NT_invtype
,
12304 _("operand size must be specified for immediate VMOV"));
12306 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12307 op
= (inst
.instruction
& (1 << 5)) != 0;
12309 immlo
= inst
.operands
[1].imm
;
12310 if (inst
.operands
[1].regisimm
)
12311 immhi
= inst
.operands
[1].reg
;
12313 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
12314 _("immediate has bits set outside the operand size"));
12316 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, &immbits
, &op
,
12317 et
.size
, et
.type
)) == FAIL
)
12319 /* Invert relevant bits only. */
12320 neon_invert_size (&immlo
, &immhi
, et
.size
);
12321 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12322 with one or the other; those cases are caught by
12323 neon_cmode_for_move_imm. */
12325 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, &immbits
, &op
,
12326 et
.size
, et
.type
)) == FAIL
)
12328 first_error (_("immediate out of range"));
12333 inst
.instruction
&= ~(1 << 5);
12334 inst
.instruction
|= op
<< 5;
12336 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12337 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12338 inst
.instruction
|= neon_quad (rs
) << 6;
12339 inst
.instruction
|= cmode
<< 8;
12341 neon_write_immbits (immbits
);
12347 if (inst
.operands
[1].isreg
)
12349 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12351 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12352 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12353 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12354 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12355 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12356 inst
.instruction
|= neon_quad (rs
) << 6;
12360 inst
.instruction
= NEON_ENC_IMMED (inst
.instruction
);
12361 neon_move_immediate ();
12364 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12367 /* Encode instructions of form:
12369 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12370 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12375 neon_mixed_length (struct neon_type_el et
, unsigned size
)
12377 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12378 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12379 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12380 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12381 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12382 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12383 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
12384 inst
.instruction
|= neon_logbits (size
) << 20;
12386 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12390 do_neon_dyadic_long (void)
12392 /* FIXME: Type checking for lengthening op. */
12393 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12394 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
12395 neon_mixed_length (et
, et
.size
);
12399 do_neon_abal (void)
12401 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12402 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
12403 neon_mixed_length (et
, et
.size
);
12407 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
12409 if (inst
.operands
[2].isscalar
)
12411 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
12412 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
12413 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
12414 neon_mul_mac (et
, et
.type
== NT_unsigned
);
12418 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12419 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
12420 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12421 neon_mixed_length (et
, et
.size
);
12426 do_neon_mac_maybe_scalar_long (void)
12428 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
12432 do_neon_dyadic_wide (void)
12434 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
12435 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
12436 neon_mixed_length (et
, et
.size
);
12440 do_neon_dyadic_narrow (void)
12442 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12443 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
12444 neon_mixed_length (et
, et
.size
/ 2);
12448 do_neon_mul_sat_scalar_long (void)
12450 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
12454 do_neon_vmull (void)
12456 if (inst
.operands
[2].isscalar
)
12457 do_neon_mac_maybe_scalar_long ();
12460 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
12461 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_KEY
);
12462 if (et
.type
== NT_poly
)
12463 inst
.instruction
= NEON_ENC_POLY (inst
.instruction
);
12465 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12466 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12467 zero. Should be OK as-is. */
12468 neon_mixed_length (et
, et
.size
);
12475 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
12476 struct neon_type_el et
= neon_check_type (3, rs
,
12477 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
12478 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
12479 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12480 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12481 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12482 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12483 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12484 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12485 inst
.instruction
|= neon_quad (rs
) << 6;
12486 inst
.instruction
|= imm
<< 8;
12488 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12494 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12495 struct neon_type_el et
= neon_check_type (2, rs
,
12496 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12497 unsigned op
= (inst
.instruction
>> 7) & 3;
12498 /* N (width of reversed regions) is encoded as part of the bitmask. We
12499 extract it here to check the elements to be reversed are smaller.
12500 Otherwise we'd get a reserved instruction. */
12501 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
12502 assert (elsize
!= 0);
12503 constraint (et
.size
>= elsize
,
12504 _("elements must be smaller than reversal region"));
12505 neon_two_same (neon_quad (rs
), 1, et
.size
);
12511 if (inst
.operands
[1].isscalar
)
12513 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
12514 struct neon_type_el et
= neon_check_type (2, rs
,
12515 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12516 unsigned sizebits
= et
.size
>> 3;
12517 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
12518 int logsize
= neon_logbits (et
.size
);
12519 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
12521 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
12524 inst
.instruction
= NEON_ENC_SCALAR (inst
.instruction
);
12525 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12526 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12527 inst
.instruction
|= LOW4 (dm
);
12528 inst
.instruction
|= HI1 (dm
) << 5;
12529 inst
.instruction
|= neon_quad (rs
) << 6;
12530 inst
.instruction
|= x
<< 17;
12531 inst
.instruction
|= sizebits
<< 16;
12533 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12537 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
12538 struct neon_type_el et
= neon_check_type (2, rs
,
12539 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
12540 /* Duplicate ARM register to lanes of vector. */
12541 inst
.instruction
= NEON_ENC_ARMREG (inst
.instruction
);
12544 case 8: inst
.instruction
|= 0x400000; break;
12545 case 16: inst
.instruction
|= 0x000020; break;
12546 case 32: inst
.instruction
|= 0x000000; break;
12549 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
12550 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
12551 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
12552 inst
.instruction
|= neon_quad (rs
) << 21;
12553 /* The encoding for this instruction is identical for the ARM and Thumb
12554 variants, except for the condition field. */
12555 do_vfp_cond_or_thumb ();
12559 /* VMOV has particularly many variations. It can be one of:
12560 0. VMOV<c><q> <Qd>, <Qm>
12561 1. VMOV<c><q> <Dd>, <Dm>
12562 (Register operations, which are VORR with Rm = Rn.)
12563 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12564 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12566 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12567 (ARM register to scalar.)
12568 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12569 (Two ARM registers to vector.)
12570 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12571 (Scalar to ARM register.)
12572 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12573 (Vector to two ARM registers.)
12574 8. VMOV.F32 <Sd>, <Sm>
12575 9. VMOV.F64 <Dd>, <Dm>
12576 (VFP register moves.)
12577 10. VMOV.F32 <Sd>, #imm
12578 11. VMOV.F64 <Dd>, #imm
12579 (VFP float immediate load.)
12580 12. VMOV <Rd>, <Sm>
12581 (VFP single to ARM reg.)
12582 13. VMOV <Sd>, <Rm>
12583 (ARM reg to VFP single.)
12584 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12585 (Two ARM regs to two VFP singles.)
12586 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12587 (Two VFP singles to two ARM regs.)
12589 These cases can be disambiguated using neon_select_shape, except cases 1/9
12590 and 3/11 which depend on the operand type too.
12592 All the encoded bits are hardcoded by this function.
12594 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12595 Cases 5, 7 may be used with VFPv2 and above.
12597 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12598 can specify a type where it doesn't make sense to, and is ignored).
12604 enum neon_shape rs
= neon_select_shape (NS_RRFF
, NS_FFRR
, NS_DRR
, NS_RRD
,
12605 NS_QQ
, NS_DD
, NS_QI
, NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
, NS_RF
, NS_FR
,
12607 struct neon_type_el et
;
12608 const char *ldconst
= 0;
12612 case NS_DD
: /* case 1/9. */
12613 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
12614 /* It is not an error here if no type is given. */
12616 if (et
.type
== NT_float
&& et
.size
== 64)
12618 do_vfp_nsyn_opcode ("fcpyd");
12621 /* fall through. */
12623 case NS_QQ
: /* case 0/1. */
12625 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12627 /* The architecture manual I have doesn't explicitly state which
12628 value the U bit should have for register->register moves, but
12629 the equivalent VORR instruction has U = 0, so do that. */
12630 inst
.instruction
= 0x0200110;
12631 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12632 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12633 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12634 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12635 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12636 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12637 inst
.instruction
|= neon_quad (rs
) << 6;
12639 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12643 case NS_DI
: /* case 3/11. */
12644 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
12646 if (et
.type
== NT_float
&& et
.size
== 64)
12648 /* case 11 (fconstd). */
12649 ldconst
= "fconstd";
12650 goto encode_fconstd
;
12652 /* fall through. */
12654 case NS_QI
: /* case 2/3. */
12655 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
12657 inst
.instruction
= 0x0800010;
12658 neon_move_immediate ();
12659 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12662 case NS_SR
: /* case 4. */
12664 unsigned bcdebits
= 0;
12665 struct neon_type_el et
= neon_check_type (2, NS_NULL
,
12666 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
12667 int logsize
= neon_logbits (et
.size
);
12668 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
12669 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
12671 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
12673 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
12674 && et
.size
!= 32, _(BAD_FPU
));
12675 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
12676 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
12680 case 8: bcdebits
= 0x8; break;
12681 case 16: bcdebits
= 0x1; break;
12682 case 32: bcdebits
= 0x0; break;
12686 bcdebits
|= x
<< logsize
;
12688 inst
.instruction
= 0xe000b10;
12689 do_vfp_cond_or_thumb ();
12690 inst
.instruction
|= LOW4 (dn
) << 16;
12691 inst
.instruction
|= HI1 (dn
) << 7;
12692 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
12693 inst
.instruction
|= (bcdebits
& 3) << 5;
12694 inst
.instruction
|= (bcdebits
>> 2) << 21;
12698 case NS_DRR
: /* case 5 (fmdrr). */
12699 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
12702 inst
.instruction
= 0xc400b10;
12703 do_vfp_cond_or_thumb ();
12704 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
12705 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
12706 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
12707 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12710 case NS_RS
: /* case 6. */
12712 struct neon_type_el et
= neon_check_type (2, NS_NULL
,
12713 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
12714 unsigned logsize
= neon_logbits (et
.size
);
12715 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
12716 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
12717 unsigned abcdebits
= 0;
12719 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
12721 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
12722 && et
.size
!= 32, _(BAD_FPU
));
12723 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
12724 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
12728 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
12729 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
12730 case 32: abcdebits
= 0x00; break;
12734 abcdebits
|= x
<< logsize
;
12735 inst
.instruction
= 0xe100b10;
12736 do_vfp_cond_or_thumb ();
12737 inst
.instruction
|= LOW4 (dn
) << 16;
12738 inst
.instruction
|= HI1 (dn
) << 7;
12739 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12740 inst
.instruction
|= (abcdebits
& 3) << 5;
12741 inst
.instruction
|= (abcdebits
>> 2) << 21;
12745 case NS_RRD
: /* case 7 (fmrrd). */
12746 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
12749 inst
.instruction
= 0xc500b10;
12750 do_vfp_cond_or_thumb ();
12751 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12752 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
12753 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12754 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12757 case NS_FF
: /* case 8 (fcpys). */
12758 do_vfp_nsyn_opcode ("fcpys");
12761 case NS_FI
: /* case 10 (fconsts). */
12762 ldconst
= "fconsts";
12764 if (is_quarter_float (inst
.operands
[1].imm
))
12766 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
12767 do_vfp_nsyn_opcode (ldconst
);
12770 first_error (_("immediate out of range"));
12773 case NS_RF
: /* case 12 (fmrs). */
12774 do_vfp_nsyn_opcode ("fmrs");
12777 case NS_FR
: /* case 13 (fmsr). */
12778 do_vfp_nsyn_opcode ("fmsr");
12781 /* The encoders for the fmrrs and fmsrr instructions expect three operands
12782 (one of which is a list), but we have parsed four. Do some fiddling to
12783 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
12785 case NS_RRFF
: /* case 14 (fmrrs). */
12786 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
12787 _("VFP registers must be adjacent"));
12788 inst
.operands
[2].imm
= 2;
12789 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
12790 do_vfp_nsyn_opcode ("fmrrs");
12793 case NS_FFRR
: /* case 15 (fmsrr). */
12794 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
12795 _("VFP registers must be adjacent"));
12796 inst
.operands
[1] = inst
.operands
[2];
12797 inst
.operands
[2] = inst
.operands
[3];
12798 inst
.operands
[0].imm
= 2;
12799 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
12800 do_vfp_nsyn_opcode ("fmsrr");
12809 do_neon_rshift_round_imm (void)
12811 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12812 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
12813 int imm
= inst
.operands
[2].imm
;
12815 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
12818 inst
.operands
[2].present
= 0;
12823 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
12824 _("immediate out of range for shift"));
12825 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
12830 do_neon_movl (void)
12832 struct neon_type_el et
= neon_check_type (2, NS_QD
,
12833 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
12834 unsigned sizebits
= et
.size
>> 3;
12835 inst
.instruction
|= sizebits
<< 19;
12836 neon_two_same (0, et
.type
== NT_unsigned
, -1);
12842 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12843 struct neon_type_el et
= neon_check_type (2, rs
,
12844 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12845 inst
.instruction
= NEON_ENC_INTEGER (inst
.instruction
);
12846 neon_two_same (neon_quad (rs
), 1, et
.size
);
12850 do_neon_zip_uzp (void)
12852 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12853 struct neon_type_el et
= neon_check_type (2, rs
,
12854 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
12855 if (rs
== NS_DD
&& et
.size
== 32)
12857 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
12858 inst
.instruction
= N_MNEM_vtrn
;
12862 neon_two_same (neon_quad (rs
), 1, et
.size
);
12866 do_neon_sat_abs_neg (void)
12868 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12869 struct neon_type_el et
= neon_check_type (2, rs
,
12870 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
12871 neon_two_same (neon_quad (rs
), 1, et
.size
);
12875 do_neon_pair_long (void)
12877 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12878 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
12879 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
12880 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
12881 neon_two_same (neon_quad (rs
), 1, et
.size
);
12885 do_neon_recip_est (void)
12887 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12888 struct neon_type_el et
= neon_check_type (2, rs
,
12889 N_EQK
| N_FLT
, N_F32
| N_U32
| N_KEY
);
12890 inst
.instruction
|= (et
.type
== NT_float
) << 8;
12891 neon_two_same (neon_quad (rs
), 1, et
.size
);
12897 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12898 struct neon_type_el et
= neon_check_type (2, rs
,
12899 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
12900 neon_two_same (neon_quad (rs
), 1, et
.size
);
12906 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12907 struct neon_type_el et
= neon_check_type (2, rs
,
12908 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
12909 neon_two_same (neon_quad (rs
), 1, et
.size
);
12915 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12916 struct neon_type_el et
= neon_check_type (2, rs
,
12917 N_EQK
| N_INT
, N_8
| N_KEY
);
12918 neon_two_same (neon_quad (rs
), 1, et
.size
);
12924 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
12925 neon_two_same (neon_quad (rs
), 1, -1);
12929 do_neon_tbl_tbx (void)
12931 unsigned listlenbits
;
12932 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
12934 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
12936 first_error (_("bad list length for table lookup"));
12940 listlenbits
= inst
.operands
[1].imm
- 1;
12941 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12942 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12943 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12944 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12945 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12946 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12947 inst
.instruction
|= listlenbits
<< 8;
12949 inst
.instruction
= neon_dp_fixup (inst
.instruction
);
12953 do_neon_ldm_stm (void)
12955 /* P, U and L bits are part of bitmask. */
12956 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
12957 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
12959 if (inst
.operands
[1].issingle
)
12961 do_vfp_nsyn_ldm_stm (is_dbmode
);
12965 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
12966 _("writeback (!) must be used for VLDMDB and VSTMDB"));
12968 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
12969 _("register list must contain at least 1 and at most 16 "
12972 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
12973 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
12974 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
12975 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
12977 inst
.instruction
|= offsetbits
;
12979 do_vfp_cond_or_thumb ();
12983 do_neon_ldr_str (void)
12985 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
12987 if (inst
.operands
[0].issingle
)
12990 do_vfp_nsyn_opcode ("flds");
12992 do_vfp_nsyn_opcode ("fsts");
12997 do_vfp_nsyn_opcode ("fldd");
12999 do_vfp_nsyn_opcode ("fstd");
13003 /* "interleave" version also handles non-interleaving register VLD1/VST1
13007 do_neon_ld_st_interleave (void)
13009 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
13010 N_8
| N_16
| N_32
| N_64
);
13011 unsigned alignbits
= 0;
13013 /* The bits in this table go:
13014 0: register stride of one (0) or two (1)
13015 1,2: register list length, minus one (1, 2, 3, 4).
13016 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13017 We use -1 for invalid entries. */
13018 const int typetable
[] =
13020 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13021 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13022 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13023 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13027 if (et
.type
== NT_invtype
)
13030 if (inst
.operands
[1].immisalign
)
13031 switch (inst
.operands
[1].imm
>> 8)
13033 case 64: alignbits
= 1; break;
13035 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) == 3)
13036 goto bad_alignment
;
13040 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) == 3)
13041 goto bad_alignment
;
13046 first_error (_("bad alignment"));
13050 inst
.instruction
|= alignbits
<< 4;
13051 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13053 /* Bits [4:6] of the immediate in a list specifier encode register stride
13054 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13055 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13056 up the right value for "type" in a table based on this value and the given
13057 list style, then stick it back. */
13058 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
13059 | (((inst
.instruction
>> 8) & 3) << 3);
13061 typebits
= typetable
[idx
];
13063 constraint (typebits
== -1, _("bad list type for instruction"));
13065 inst
.instruction
&= ~0xf00;
13066 inst
.instruction
|= typebits
<< 8;
13069 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13070 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13071 otherwise. The variable arguments are a list of pairs of legal (size, align)
13072 values, terminated with -1. */
13075 neon_alignment_bit (int size
, int align
, int *do_align
, ...)
13078 int result
= FAIL
, thissize
, thisalign
;
13080 if (!inst
.operands
[1].immisalign
)
13086 va_start (ap
, do_align
);
13090 thissize
= va_arg (ap
, int);
13091 if (thissize
== -1)
13093 thisalign
= va_arg (ap
, int);
13095 if (size
== thissize
&& align
== thisalign
)
13098 while (result
!= SUCCESS
);
13102 if (result
== SUCCESS
)
13105 first_error (_("unsupported alignment for instruction"));
13111 do_neon_ld_st_lane (void)
13113 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
13114 int align_good
, do_align
= 0;
13115 int logsize
= neon_logbits (et
.size
);
13116 int align
= inst
.operands
[1].imm
>> 8;
13117 int n
= (inst
.instruction
>> 8) & 3;
13118 int max_el
= 64 / et
.size
;
13120 if (et
.type
== NT_invtype
)
13123 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
13124 _("bad list length"));
13125 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
13126 _("scalar index out of range"));
13127 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
13129 _("stride of 2 unavailable when element size is 8"));
13133 case 0: /* VLD1 / VST1. */
13134 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 16, 16,
13136 if (align_good
== FAIL
)
13140 unsigned alignbits
= 0;
13143 case 16: alignbits
= 0x1; break;
13144 case 32: alignbits
= 0x3; break;
13147 inst
.instruction
|= alignbits
<< 4;
13151 case 1: /* VLD2 / VST2. */
13152 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 16, 16, 32,
13154 if (align_good
== FAIL
)
13157 inst
.instruction
|= 1 << 4;
13160 case 2: /* VLD3 / VST3. */
13161 constraint (inst
.operands
[1].immisalign
,
13162 _("can't use alignment with this instruction"));
13165 case 3: /* VLD4 / VST4. */
13166 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
13167 16, 64, 32, 64, 32, 128, -1);
13168 if (align_good
== FAIL
)
13172 unsigned alignbits
= 0;
13175 case 8: alignbits
= 0x1; break;
13176 case 16: alignbits
= 0x1; break;
13177 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
13180 inst
.instruction
|= alignbits
<< 4;
13187 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13188 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13189 inst
.instruction
|= 1 << (4 + logsize
);
13191 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
13192 inst
.instruction
|= logsize
<< 10;
13195 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13198 do_neon_ld_dup (void)
13200 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
13201 int align_good
, do_align
= 0;
13203 if (et
.type
== NT_invtype
)
13206 switch ((inst
.instruction
>> 8) & 3)
13208 case 0: /* VLD1. */
13209 assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
13210 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
13211 &do_align
, 16, 16, 32, 32, -1);
13212 if (align_good
== FAIL
)
13214 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
13217 case 2: inst
.instruction
|= 1 << 5; break;
13218 default: first_error (_("bad list length")); return;
13220 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13223 case 1: /* VLD2. */
13224 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
13225 &do_align
, 8, 16, 16, 32, 32, 64, -1);
13226 if (align_good
== FAIL
)
13228 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
13229 _("bad list length"));
13230 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13231 inst
.instruction
|= 1 << 5;
13232 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13235 case 2: /* VLD3. */
13236 constraint (inst
.operands
[1].immisalign
,
13237 _("can't use alignment with this instruction"));
13238 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
13239 _("bad list length"));
13240 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13241 inst
.instruction
|= 1 << 5;
13242 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13245 case 3: /* VLD4. */
13247 int align
= inst
.operands
[1].imm
>> 8;
13248 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
13249 16, 64, 32, 64, 32, 128, -1);
13250 if (align_good
== FAIL
)
13252 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
13253 _("bad list length"));
13254 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
13255 inst
.instruction
|= 1 << 5;
13256 if (et
.size
== 32 && align
== 128)
13257 inst
.instruction
|= 0x3 << 6;
13259 inst
.instruction
|= neon_logbits (et
.size
) << 6;
13266 inst
.instruction
|= do_align
<< 4;
13269 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13270 apart from bits [11:4]. */
13273 do_neon_ldx_stx (void)
13275 switch (NEON_LANE (inst
.operands
[0].imm
))
13277 case NEON_INTERLEAVE_LANES
:
13278 inst
.instruction
= NEON_ENC_INTERLV (inst
.instruction
);
13279 do_neon_ld_st_interleave ();
13282 case NEON_ALL_LANES
:
13283 inst
.instruction
= NEON_ENC_DUP (inst
.instruction
);
13288 inst
.instruction
= NEON_ENC_LANE (inst
.instruction
);
13289 do_neon_ld_st_lane ();
13292 /* L bit comes from bit mask. */
13293 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13294 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13295 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13297 if (inst
.operands
[1].postind
)
13299 int postreg
= inst
.operands
[1].imm
& 0xf;
13300 constraint (!inst
.operands
[1].immisreg
,
13301 _("post-index must be a register"));
13302 constraint (postreg
== 0xd || postreg
== 0xf,
13303 _("bad register for post-index"));
13304 inst
.instruction
|= postreg
;
13306 else if (inst
.operands
[1].writeback
)
13308 inst
.instruction
|= 0xd;
13311 inst
.instruction
|= 0xf;
13314 inst
.instruction
|= 0xf9000000;
13316 inst
.instruction
|= 0xf4000000;
13320 /* Overall per-instruction processing. */
13322 /* We need to be able to fix up arbitrary expressions in some statements.
13323 This is so that we can handle symbols that are an arbitrary distance from
13324 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13325 which returns part of an address in a form which will be valid for
13326 a data instruction. We do this by pushing the expression into a symbol
13327 in the expr_section, and creating a fix for that. */
13330 fix_new_arm (fragS
* frag
,
13345 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
, reloc
);
13349 new_fix
= fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
13354 /* Mark whether the fix is to a THUMB instruction, or an ARM
13356 new_fix
->tc_fix_data
= thumb_mode
;
13359 /* Create a frg for an instruction requiring relaxation. */
13361 output_relax_insn (void)
13368 /* The size of the instruction is unknown, so tie the debug info to the
13369 start of the instruction. */
13370 dwarf2_emit_insn (0);
13373 switch (inst
.reloc
.exp
.X_op
)
13376 sym
= inst
.reloc
.exp
.X_add_symbol
;
13377 offset
= inst
.reloc
.exp
.X_add_number
;
13381 offset
= inst
.reloc
.exp
.X_add_number
;
13384 sym
= make_expr_symbol (&inst
.reloc
.exp
);
13388 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
13389 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
13390 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
13393 /* Write a 32-bit thumb instruction to buf. */
13395 put_thumb32_insn (char * buf
, unsigned long insn
)
13397 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
13398 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
13402 output_inst (const char * str
)
13408 as_bad ("%s -- `%s'", inst
.error
, str
);
13412 output_relax_insn();
13415 if (inst
.size
== 0)
13418 to
= frag_more (inst
.size
);
13420 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
13422 assert (inst
.size
== (2 * THUMB_SIZE
));
13423 put_thumb32_insn (to
, inst
.instruction
);
13425 else if (inst
.size
> INSN_SIZE
)
13427 assert (inst
.size
== (2 * INSN_SIZE
));
13428 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
13429 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
13432 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
13434 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
13435 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
13436 inst
.size
, & inst
.reloc
.exp
, inst
.reloc
.pc_rel
,
13440 dwarf2_emit_insn (inst
.size
);
13444 /* Tag values used in struct asm_opcode's tag field. */
13447 OT_unconditional
, /* Instruction cannot be conditionalized.
13448 The ARM condition field is still 0xE. */
13449 OT_unconditionalF
, /* Instruction cannot be conditionalized
13450 and carries 0xF in its ARM condition field. */
13451 OT_csuffix
, /* Instruction takes a conditional suffix. */
13452 OT_csuffixF
, /* Some forms of the instruction take a conditional
13453 suffix, others place 0xF where the condition field
13455 OT_cinfix3
, /* Instruction takes a conditional infix,
13456 beginning at character index 3. (In
13457 unified mode, it becomes a suffix.) */
13458 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
13459 tsts, cmps, cmns, and teqs. */
13460 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
13461 character index 3, even in unified mode. Used for
13462 legacy instructions where suffix and infix forms
13463 may be ambiguous. */
13464 OT_csuf_or_in3
, /* Instruction takes either a conditional
13465 suffix or an infix at character index 3. */
13466 OT_odd_infix_unc
, /* This is the unconditional variant of an
13467 instruction that takes a conditional infix
13468 at an unusual position. In unified mode,
13469 this variant will accept a suffix. */
13470 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
13471 are the conditional variants of instructions that
13472 take conditional infixes in unusual positions.
13473 The infix appears at character index
13474 (tag - OT_odd_infix_0). These are not accepted
13475 in unified mode. */
13478 /* Subroutine of md_assemble, responsible for looking up the primary
13479 opcode from the mnemonic the user wrote. STR points to the
13480 beginning of the mnemonic.
13482 This is not simply a hash table lookup, because of conditional
13483 variants. Most instructions have conditional variants, which are
13484 expressed with a _conditional affix_ to the mnemonic. If we were
13485 to encode each conditional variant as a literal string in the opcode
13486 table, it would have approximately 20,000 entries.
13488 Most mnemonics take this affix as a suffix, and in unified syntax,
13489 'most' is upgraded to 'all'. However, in the divided syntax, some
13490 instructions take the affix as an infix, notably the s-variants of
13491 the arithmetic instructions. Of those instructions, all but six
13492 have the infix appear after the third character of the mnemonic.
13494 Accordingly, the algorithm for looking up primary opcodes given
13497 1. Look up the identifier in the opcode table.
13498 If we find a match, go to step U.
13500 2. Look up the last two characters of the identifier in the
13501 conditions table. If we find a match, look up the first N-2
13502 characters of the identifier in the opcode table. If we
13503 find a match, go to step CE.
13505 3. Look up the fourth and fifth characters of the identifier in
13506 the conditions table. If we find a match, extract those
13507 characters from the identifier, and look up the remaining
13508 characters in the opcode table. If we find a match, go
13513 U. Examine the tag field of the opcode structure, in case this is
13514 one of the six instructions with its conditional infix in an
13515 unusual place. If it is, the tag tells us where to find the
13516 infix; look it up in the conditions table and set inst.cond
13517 accordingly. Otherwise, this is an unconditional instruction.
13518 Again set inst.cond accordingly. Return the opcode structure.
13520 CE. Examine the tag field to make sure this is an instruction that
13521 should receive a conditional suffix. If it is not, fail.
13522 Otherwise, set inst.cond from the suffix we already looked up,
13523 and return the opcode structure.
13525 CM. Examine the tag field to make sure this is an instruction that
13526 should receive a conditional infix after the third character.
13527 If it is not, fail. Otherwise, undo the edits to the current
13528 line of input and proceed as for case CE. */
13530 static const struct asm_opcode
*
13531 opcode_lookup (char **str
)
13535 const struct asm_opcode
*opcode
;
13536 const struct asm_cond
*cond
;
13539 /* Scan up to the end of the mnemonic, which must end in white space,
13540 '.' (in unified mode only), or end of string. */
13541 for (base
= end
= *str
; *end
!= '\0'; end
++)
13542 if (*end
== ' ' || (unified_syntax
&& *end
== '.'))
13548 /* Handle a possible width suffix and/or Neon type suffix. */
13555 else if (end
[1] == 'n')
13560 inst
.vectype
.elems
= 0;
13562 *str
= end
+ offset
;
13564 if (end
[offset
] == '.')
13566 /* See if we have a Neon type suffix. */
13567 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
13570 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
13576 /* Look for unaffixed or special-case affixed mnemonic. */
13577 opcode
= hash_find_n (arm_ops_hsh
, base
, end
- base
);
13581 if (opcode
->tag
< OT_odd_infix_0
)
13583 inst
.cond
= COND_ALWAYS
;
13587 if (unified_syntax
)
13588 as_warn (_("conditional infixes are deprecated in unified syntax"));
13589 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
13590 cond
= hash_find_n (arm_cond_hsh
, affix
, 2);
13593 inst
.cond
= cond
->value
;
13597 /* Cannot have a conditional suffix on a mnemonic of less than two
13599 if (end
- base
< 3)
13602 /* Look for suffixed mnemonic. */
13604 cond
= hash_find_n (arm_cond_hsh
, affix
, 2);
13605 opcode
= hash_find_n (arm_ops_hsh
, base
, affix
- base
);
13606 if (opcode
&& cond
)
13609 switch (opcode
->tag
)
13611 case OT_cinfix3_legacy
:
13612 /* Ignore conditional suffixes matched on infix only mnemonics. */
13616 case OT_cinfix3_deprecated
:
13617 case OT_odd_infix_unc
:
13618 if (!unified_syntax
)
13620 /* else fall through */
13624 case OT_csuf_or_in3
:
13625 inst
.cond
= cond
->value
;
13628 case OT_unconditional
:
13629 case OT_unconditionalF
:
13632 inst
.cond
= cond
->value
;
13636 /* delayed diagnostic */
13637 inst
.error
= BAD_COND
;
13638 inst
.cond
= COND_ALWAYS
;
13647 /* Cannot have a usual-position infix on a mnemonic of less than
13648 six characters (five would be a suffix). */
13649 if (end
- base
< 6)
13652 /* Look for infixed mnemonic in the usual position. */
13654 cond
= hash_find_n (arm_cond_hsh
, affix
, 2);
13658 memcpy (save
, affix
, 2);
13659 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
13660 opcode
= hash_find_n (arm_ops_hsh
, base
, (end
- base
) - 2);
13661 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
13662 memcpy (affix
, save
, 2);
13665 && (opcode
->tag
== OT_cinfix3
13666 || opcode
->tag
== OT_cinfix3_deprecated
13667 || opcode
->tag
== OT_csuf_or_in3
13668 || opcode
->tag
== OT_cinfix3_legacy
))
13672 && (opcode
->tag
== OT_cinfix3
13673 || opcode
->tag
== OT_cinfix3_deprecated
))
13674 as_warn (_("conditional infixes are deprecated in unified syntax"));
13676 inst
.cond
= cond
->value
;
13684 md_assemble (char *str
)
13687 const struct asm_opcode
* opcode
;
13689 /* Align the previous label if needed. */
13690 if (last_label_seen
!= NULL
)
13692 symbol_set_frag (last_label_seen
, frag_now
);
13693 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
13694 S_SET_SEGMENT (last_label_seen
, now_seg
);
13697 memset (&inst
, '\0', sizeof (inst
));
13698 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
13700 opcode
= opcode_lookup (&p
);
13703 /* It wasn't an instruction, but it might be a register alias of
13704 the form alias .req reg, or a Neon .dn/.qn directive. */
13705 if (!create_register_alias (str
, p
)
13706 && !create_neon_reg_alias (str
, p
))
13707 as_bad (_("bad instruction `%s'"), str
);
13712 if (opcode
->tag
== OT_cinfix3_deprecated
)
13713 as_warn (_("s suffix on comparison instruction is deprecated"));
13715 /* The value which unconditional instructions should have in place of the
13716 condition field. */
13717 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
13721 arm_feature_set variant
;
13723 variant
= cpu_variant
;
13724 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
13725 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
13726 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
13727 /* Check that this instruction is supported for this CPU. */
13728 if (!opcode
->tvariant
13729 || (thumb_mode
== 1
13730 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
13732 as_bad (_("selected processor does not support `%s'"), str
);
13735 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
13736 && opcode
->tencode
!= do_t_branch
)
13738 as_bad (_("Thumb does not support conditional execution"));
13742 /* Check conditional suffixes. */
13743 if (current_it_mask
)
13746 cond
= current_cc
^ ((current_it_mask
>> 4) & 1) ^ 1;
13747 current_it_mask
<<= 1;
13748 current_it_mask
&= 0x1f;
13749 /* The BKPT instruction is unconditional even in an IT block. */
13751 && cond
!= inst
.cond
&& opcode
->tencode
!= do_t_bkpt
)
13753 as_bad (_("incorrect condition in IT block"));
13757 else if (inst
.cond
!= COND_ALWAYS
&& opcode
->tencode
!= do_t_branch
)
13759 as_bad (_("thumb conditional instrunction not in IT block"));
13763 mapping_state (MAP_THUMB
);
13764 inst
.instruction
= opcode
->tvalue
;
13766 if (!parse_operands (p
, opcode
->operands
))
13767 opcode
->tencode ();
13769 /* Clear current_it_mask at the end of an IT block. */
13770 if (current_it_mask
== 0x10)
13771 current_it_mask
= 0;
13773 if (!(inst
.error
|| inst
.relax
))
13775 assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
13776 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
13777 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
13779 as_bad (_("cannot honor width suffix -- `%s'"), str
);
13783 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
13784 *opcode
->tvariant
);
13785 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
13786 set those bits when Thumb-2 32-bit instructions are seen. ie.
13787 anything other than bl/blx.
13788 This is overly pessimistic for relaxable instructions. */
13789 if ((inst
.size
== 4 && (inst
.instruction
& 0xf800e800) != 0xf000e800)
13791 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
13796 /* Check that this instruction is supported for this CPU. */
13797 if (!opcode
->avariant
||
13798 !ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
))
13800 as_bad (_("selected processor does not support `%s'"), str
);
13805 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
13809 mapping_state (MAP_ARM
);
13810 inst
.instruction
= opcode
->avalue
;
13811 if (opcode
->tag
== OT_unconditionalF
)
13812 inst
.instruction
|= 0xF << 28;
13814 inst
.instruction
|= inst
.cond
<< 28;
13815 inst
.size
= INSN_SIZE
;
13816 if (!parse_operands (p
, opcode
->operands
))
13817 opcode
->aencode ();
13818 /* Arm mode bx is marked as both v4T and v5 because it's still required
13819 on a hypothetical non-thumb v5 core. */
13820 if (ARM_CPU_HAS_FEATURE (*opcode
->avariant
, arm_ext_v4t
)
13821 || ARM_CPU_HAS_FEATURE (*opcode
->avariant
, arm_ext_v5
))
13822 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
13824 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
13825 *opcode
->avariant
);
13830 /* Various frobbings of labels and their addresses. */
13833 arm_start_line_hook (void)
13835 last_label_seen
= NULL
;
13839 arm_frob_label (symbolS
* sym
)
13841 last_label_seen
= sym
;
13843 ARM_SET_THUMB (sym
, thumb_mode
);
13845 #if defined OBJ_COFF || defined OBJ_ELF
13846 ARM_SET_INTERWORK (sym
, support_interwork
);
13849 /* Note - do not allow local symbols (.Lxxx) to be labeled
13850 as Thumb functions. This is because these labels, whilst
13851 they exist inside Thumb code, are not the entry points for
13852 possible ARM->Thumb calls. Also, these labels can be used
13853 as part of a computed goto or switch statement. eg gcc
13854 can generate code that looks like this:
13856 ldr r2, [pc, .Laaa]
13866 The first instruction loads the address of the jump table.
13867 The second instruction converts a table index into a byte offset.
13868 The third instruction gets the jump address out of the table.
13869 The fourth instruction performs the jump.
13871 If the address stored at .Laaa is that of a symbol which has the
13872 Thumb_Func bit set, then the linker will arrange for this address
13873 to have the bottom bit set, which in turn would mean that the
13874 address computation performed by the third instruction would end
13875 up with the bottom bit set. Since the ARM is capable of unaligned
13876 word loads, the instruction would then load the incorrect address
13877 out of the jump table, and chaos would ensue. */
13878 if (label_is_thumb_function_name
13879 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
13880 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
13882 /* When the address of a Thumb function is taken the bottom
13883 bit of that address should be set. This will allow
13884 interworking between Arm and Thumb functions to work
13887 THUMB_SET_FUNC (sym
, 1);
13889 label_is_thumb_function_name
= FALSE
;
13893 dwarf2_emit_label (sym
);
13898 arm_data_in_code (void)
13900 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
13902 *input_line_pointer
= '/';
13903 input_line_pointer
+= 5;
13904 *input_line_pointer
= 0;
13912 arm_canonicalize_symbol_name (char * name
)
13916 if (thumb_mode
&& (len
= strlen (name
)) > 5
13917 && streq (name
+ len
- 5, "/data"))
13918 *(name
+ len
- 5) = 0;
13923 /* Table of all register names defined by default. The user can
13924 define additional names with .req. Note that all register names
13925 should appear in both upper and lowercase variants. Some registers
13926 also have mixed-case names. */
13928 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
13929 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
13930 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
13931 #define REGSET(p,t) \
13932 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
13933 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
13934 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
13935 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
13936 #define REGSETH(p,t) \
13937 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
13938 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
13939 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
13940 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
13941 #define REGSET2(p,t) \
13942 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
13943 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
13944 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
13945 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
13947 static const struct reg_entry reg_names
[] =
13949 /* ARM integer registers. */
13950 REGSET(r
, RN
), REGSET(R
, RN
),
13952 /* ATPCS synonyms. */
13953 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
13954 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
13955 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
13957 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
13958 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
13959 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
13961 /* Well-known aliases. */
13962 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
13963 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
13965 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
13966 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
13968 /* Coprocessor numbers. */
13969 REGSET(p
, CP
), REGSET(P
, CP
),
13971 /* Coprocessor register numbers. The "cr" variants are for backward
13973 REGSET(c
, CN
), REGSET(C
, CN
),
13974 REGSET(cr
, CN
), REGSET(CR
, CN
),
13976 /* FPA registers. */
13977 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
13978 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
13980 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
13981 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
13983 /* VFP SP registers. */
13984 REGSET(s
,VFS
), REGSET(S
,VFS
),
13985 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
13987 /* VFP DP Registers. */
13988 REGSET(d
,VFD
), REGSET(D
,VFD
),
13989 /* Extra Neon DP registers. */
13990 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
13992 /* Neon QP registers. */
13993 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
13995 /* VFP control registers. */
13996 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
13997 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
13999 /* Maverick DSP coprocessor registers. */
14000 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
14001 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
14003 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
14004 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
14005 REGDEF(dspsc
,0,DSPSC
),
14007 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
14008 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
14009 REGDEF(DSPSC
,0,DSPSC
),
14011 /* iWMMXt data registers - p0, c0-15. */
14012 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
14014 /* iWMMXt control registers - p1, c0-3. */
14015 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
14016 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
14017 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
14018 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
14020 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14021 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
14022 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
14023 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
14024 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
14026 /* XScale accumulator registers. */
14027 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
14033 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14034 within psr_required_here. */
14035 static const struct asm_psr psrs
[] =
14037 /* Backward compatibility notation. Note that "all" is no longer
14038 truly all possible PSR bits. */
14039 {"all", PSR_c
| PSR_f
},
14043 /* Individual flags. */
14048 /* Combinations of flags. */
14049 {"fs", PSR_f
| PSR_s
},
14050 {"fx", PSR_f
| PSR_x
},
14051 {"fc", PSR_f
| PSR_c
},
14052 {"sf", PSR_s
| PSR_f
},
14053 {"sx", PSR_s
| PSR_x
},
14054 {"sc", PSR_s
| PSR_c
},
14055 {"xf", PSR_x
| PSR_f
},
14056 {"xs", PSR_x
| PSR_s
},
14057 {"xc", PSR_x
| PSR_c
},
14058 {"cf", PSR_c
| PSR_f
},
14059 {"cs", PSR_c
| PSR_s
},
14060 {"cx", PSR_c
| PSR_x
},
14061 {"fsx", PSR_f
| PSR_s
| PSR_x
},
14062 {"fsc", PSR_f
| PSR_s
| PSR_c
},
14063 {"fxs", PSR_f
| PSR_x
| PSR_s
},
14064 {"fxc", PSR_f
| PSR_x
| PSR_c
},
14065 {"fcs", PSR_f
| PSR_c
| PSR_s
},
14066 {"fcx", PSR_f
| PSR_c
| PSR_x
},
14067 {"sfx", PSR_s
| PSR_f
| PSR_x
},
14068 {"sfc", PSR_s
| PSR_f
| PSR_c
},
14069 {"sxf", PSR_s
| PSR_x
| PSR_f
},
14070 {"sxc", PSR_s
| PSR_x
| PSR_c
},
14071 {"scf", PSR_s
| PSR_c
| PSR_f
},
14072 {"scx", PSR_s
| PSR_c
| PSR_x
},
14073 {"xfs", PSR_x
| PSR_f
| PSR_s
},
14074 {"xfc", PSR_x
| PSR_f
| PSR_c
},
14075 {"xsf", PSR_x
| PSR_s
| PSR_f
},
14076 {"xsc", PSR_x
| PSR_s
| PSR_c
},
14077 {"xcf", PSR_x
| PSR_c
| PSR_f
},
14078 {"xcs", PSR_x
| PSR_c
| PSR_s
},
14079 {"cfs", PSR_c
| PSR_f
| PSR_s
},
14080 {"cfx", PSR_c
| PSR_f
| PSR_x
},
14081 {"csf", PSR_c
| PSR_s
| PSR_f
},
14082 {"csx", PSR_c
| PSR_s
| PSR_x
},
14083 {"cxf", PSR_c
| PSR_x
| PSR_f
},
14084 {"cxs", PSR_c
| PSR_x
| PSR_s
},
14085 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
14086 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
14087 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
14088 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
14089 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
14090 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
14091 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
14092 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
14093 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
14094 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
14095 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
14096 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
14097 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
14098 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
14099 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
14100 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
14101 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
14102 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
14103 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
14104 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
14105 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
14106 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
14107 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
14108 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
14111 /* Table of V7M psr names. */
14112 static const struct asm_psr v7m_psrs
[] =
14125 {"basepri_max", 18},
14130 /* Table of all shift-in-operand names. */
14131 static const struct asm_shift_name shift_names
[] =
14133 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
14134 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
14135 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
14136 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
14137 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
14138 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
}
14141 /* Table of all explicit relocation names. */
14143 static struct reloc_entry reloc_names
[] =
14145 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
14146 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
14147 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
14148 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
14149 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
14150 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
14151 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
14152 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
14153 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
14154 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
14155 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
}
14159 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14160 static const struct asm_cond conds
[] =
14164 {"cs", 0x2}, {"hs", 0x2},
14165 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14179 static struct asm_barrier_opt barrier_opt_names
[] =
14187 /* Table of ARM-format instructions. */
14189 /* Macros for gluing together operand strings. N.B. In all cases
14190 other than OPS0, the trailing OP_stop comes from default
14191 zero-initialization of the unspecified elements of the array. */
14192 #define OPS0() { OP_stop, }
14193 #define OPS1(a) { OP_##a, }
14194 #define OPS2(a,b) { OP_##a,OP_##b, }
14195 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14196 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14197 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14198 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14200 /* These macros abstract out the exact format of the mnemonic table and
14201 save some repeated characters. */
14203 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14204 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14205 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14206 THUMB_VARIANT, do_##ae, do_##te }
14208 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14209 a T_MNEM_xyz enumerator. */
14210 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14211 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14212 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14213 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14215 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14216 infix after the third character. */
14217 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14218 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14219 THUMB_VARIANT, do_##ae, do_##te }
14220 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14221 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14222 THUMB_VARIANT, do_##ae, do_##te }
14223 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14224 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14225 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14226 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14227 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14228 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14229 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14230 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14232 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14233 appear in the condition table. */
14234 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14235 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14236 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14238 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14239 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14240 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14241 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14242 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14243 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14244 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14245 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14246 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14247 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14248 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14249 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14250 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14251 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14252 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14253 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14254 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14255 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14256 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14257 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14259 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14260 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14261 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14262 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14264 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14265 field is still 0xE. Many of the Thumb variants can be executed
14266 conditionally, so this is checked separately. */
14267 #define TUE(mnem, op, top, nops, ops, ae, te) \
14268 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14269 THUMB_VARIANT, do_##ae, do_##te }
14271 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14272 condition code field. */
14273 #define TUF(mnem, op, top, nops, ops, ae, te) \
14274 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14275 THUMB_VARIANT, do_##ae, do_##te }
14277 /* ARM-only variants of all the above. */
14278 #define CE(mnem, op, nops, ops, ae) \
14279 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14281 #define C3(mnem, op, nops, ops, ae) \
14282 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14284 /* Legacy mnemonics that always have conditional infix after the third
14286 #define CL(mnem, op, nops, ops, ae) \
14287 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14288 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14290 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14291 #define cCE(mnem, op, nops, ops, ae) \
14292 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14294 /* Legacy coprocessor instructions where conditional infix and conditional
14295 suffix are ambiguous. For consistency this includes all FPA instructions,
14296 not just the potentially ambiguous ones. */
14297 #define cCL(mnem, op, nops, ops, ae) \
14298 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14299 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14301 /* Coprocessor, takes either a suffix or a position-3 infix
14302 (for an FPA corner case). */
14303 #define C3E(mnem, op, nops, ops, ae) \
14304 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14305 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14307 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14308 { #m1 #m2 #m3, OPS##nops ops, \
14309 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14310 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14312 #define CM(m1, m2, op, nops, ops, ae) \
14313 xCM_(m1, , m2, op, nops, ops, ae), \
14314 xCM_(m1, eq, m2, op, nops, ops, ae), \
14315 xCM_(m1, ne, m2, op, nops, ops, ae), \
14316 xCM_(m1, cs, m2, op, nops, ops, ae), \
14317 xCM_(m1, hs, m2, op, nops, ops, ae), \
14318 xCM_(m1, cc, m2, op, nops, ops, ae), \
14319 xCM_(m1, ul, m2, op, nops, ops, ae), \
14320 xCM_(m1, lo, m2, op, nops, ops, ae), \
14321 xCM_(m1, mi, m2, op, nops, ops, ae), \
14322 xCM_(m1, pl, m2, op, nops, ops, ae), \
14323 xCM_(m1, vs, m2, op, nops, ops, ae), \
14324 xCM_(m1, vc, m2, op, nops, ops, ae), \
14325 xCM_(m1, hi, m2, op, nops, ops, ae), \
14326 xCM_(m1, ls, m2, op, nops, ops, ae), \
14327 xCM_(m1, ge, m2, op, nops, ops, ae), \
14328 xCM_(m1, lt, m2, op, nops, ops, ae), \
14329 xCM_(m1, gt, m2, op, nops, ops, ae), \
14330 xCM_(m1, le, m2, op, nops, ops, ae), \
14331 xCM_(m1, al, m2, op, nops, ops, ae)
14333 #define UE(mnem, op, nops, ops, ae) \
14334 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14336 #define UF(mnem, op, nops, ops, ae) \
14337 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14339 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14340 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14341 use the same encoding function for each. */
14342 #define NUF(mnem, op, nops, ops, enc) \
14343 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14344 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14346 /* Neon data processing, version which indirects through neon_enc_tab for
14347 the various overloaded versions of opcodes. */
14348 #define nUF(mnem, op, nops, ops, enc) \
14349 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14350 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14352 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14354 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14355 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14356 THUMB_VARIANT, do_##enc, do_##enc }
14358 #define NCE(mnem, op, nops, ops, enc) \
14359 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14361 #define NCEF(mnem, op, nops, ops, enc) \
14362 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14364 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14365 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14366 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14367 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14369 #define nCE(mnem, op, nops, ops, enc) \
14370 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14372 #define nCEF(mnem, op, nops, ops, enc) \
14373 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14377 /* Thumb-only, unconditional. */
14378 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14380 static const struct asm_opcode insns
[] =
14382 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14383 #define THUMB_VARIANT &arm_ext_v4t
14384 tCE(and, 0000000, and, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14385 tC3(ands
, 0100000, ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14386 tCE(eor
, 0200000, eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14387 tC3(eors
, 0300000, eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14388 tCE(sub
, 0400000, sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
14389 tC3(subs
, 0500000, subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
14390 tCE(add
, 0800000, add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
14391 tC3(adds
, 0900000, adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
14392 tCE(adc
, 0a00000
, adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14393 tC3(adcs
, 0b00000, adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14394 tCE(sbc
, 0c00000
, sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14395 tC3(sbcs
, 0d00000
, sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14396 tCE(orr
, 1800000, orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14397 tC3(orrs
, 1900000, orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
14398 tCE(bic
, 1c00000
, bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14399 tC3(bics
, 1d00000
, bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
14401 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14402 for setting PSR flag bits. They are obsolete in V6 and do not
14403 have Thumb equivalents. */
14404 tCE(tst
, 1100000, tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14405 tC3w(tsts
, 1100000, tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14406 CL(tstp
, 110f000
, 2, (RR
, SH
), cmp
),
14407 tCE(cmp
, 1500000, cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
14408 tC3w(cmps
, 1500000, cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
14409 CL(cmpp
, 150f000
, 2, (RR
, SH
), cmp
),
14410 tCE(cmn
, 1700000, cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14411 tC3w(cmns
, 1700000, cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14412 CL(cmnp
, 170f000
, 2, (RR
, SH
), cmp
),
14414 tCE(mov
, 1a00000
, mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
14415 tC3(movs
, 1b00000
, movs
, 2, (RR
, SH
), mov
, t_mov_cmp
),
14416 tCE(mvn
, 1e00000
, mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
14417 tC3(mvns
, 1f00000
, mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
14419 tCE(ldr
, 4100000, ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14420 tC3(ldrb
, 4500000, ldrb
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14421 tCE(str
, 4000000, str
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14422 tC3(strb
, 4400000, strb
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
14424 tCE(stm
, 8800000, stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14425 tC3(stmia
, 8800000, stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14426 tC3(stmea
, 8800000, stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14427 tCE(ldm
, 8900000, ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14428 tC3(ldmia
, 8900000, ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14429 tC3(ldmfd
, 8900000, ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14431 TCE(swi
, f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
14432 TCE(svc
, f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
14433 tCE(b
, a000000
, b
, 1, (EXPr
), branch
, t_branch
),
14434 TCE(bl
, b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
14437 tCE(adr
, 28f0000
, adr
, 2, (RR
, EXP
), adr
, t_adr
),
14438 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
14439 tCE(nop
, 1a00000
, nop
, 1, (oI255c
), nop
, t_nop
),
14441 /* Thumb-compatibility pseudo ops. */
14442 tCE(lsl
, 1a00000
, lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14443 tC3(lsls
, 1b00000
, lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14444 tCE(lsr
, 1a00020
, lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14445 tC3(lsrs
, 1b00020
, lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14446 tCE(asr
, 1a00040
, asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14447 tC3(asrs
, 1b00040
, asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14448 tCE(ror
, 1a00060
, ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14449 tC3(rors
, 1b00060
, rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
14450 tCE(neg
, 2600000, neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
14451 tC3(negs
, 2700000, negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
14452 tCE(push
, 92d0000
, push
, 1, (REGLST
), push_pop
, t_push_pop
),
14453 tCE(pop
, 8bd0000
, pop
, 1, (REGLST
), push_pop
, t_push_pop
),
14455 #undef THUMB_VARIANT
14456 #define THUMB_VARIANT &arm_ext_v6
14457 TCE(cpy
, 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
14459 /* V1 instructions with no Thumb analogue prior to V6T2. */
14460 #undef THUMB_VARIANT
14461 #define THUMB_VARIANT &arm_ext_v6t2
14462 TCE(rsb
, 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
14463 TC3(rsbs
, 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
14464 TCE(teq
, 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14465 TC3w(teqs
, 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
14466 CL(teqp
, 130f000
, 2, (RR
, SH
), cmp
),
14468 TC3(ldrt
, 4300000, f8500e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14469 TC3(ldrbt
, 4700000, f8100e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14470 TC3(strt
, 4200000, f8400e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14471 TC3(strbt
, 4600000, f8000e00
, 2, (RR
, ADDR
), ldstt
, t_ldstt
),
14473 TC3(stmdb
, 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14474 TC3(stmfd
, 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14476 TC3(ldmdb
, 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14477 TC3(ldmea
, 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
14479 /* V1 instructions with no Thumb analogue at all. */
14480 CE(rsc
, 0e00000
, 3, (RR
, oRR
, SH
), arit
),
14481 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
14483 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
14484 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
14485 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
14486 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
14487 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
14488 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
14489 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
14490 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
14493 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14494 #undef THUMB_VARIANT
14495 #define THUMB_VARIANT &arm_ext_v4t
14496 tCE(mul
, 0000090, mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
14497 tC3(muls
, 0100090, muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
14499 #undef THUMB_VARIANT
14500 #define THUMB_VARIANT &arm_ext_v6t2
14501 TCE(mla
, 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
14502 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
14504 /* Generic coprocessor instructions. */
14505 TCE(cdp
, e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
14506 TCE(ldc
, c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14507 TC3(ldcl
, c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14508 TCE(stc
, c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14509 TC3(stcl
, c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14510 TCE(mcr
, e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
14511 TCE(mrc
, e100010
, ee100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
14514 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
14515 CE(swp
, 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
14516 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
14519 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
14520 TCE(mrs
, 10f0000
, f3ef8000
, 2, (APSR_RR
, RVC_PSR
), mrs
, t_mrs
),
14521 TCE(msr
, 120f000
, f3808000
, 2, (RVC_PSR
, RR_EXi
), msr
, t_msr
),
14524 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
14525 TCE(smull
, 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
14526 CM(smull
,s
, 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
14527 TCE(umull
, 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
14528 CM(umull
,s
, 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
14529 TCE(smlal
, 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
14530 CM(smlal
,s
, 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
14531 TCE(umlal
, 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
14532 CM(umlal
,s
, 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
14535 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
14536 #undef THUMB_VARIANT
14537 #define THUMB_VARIANT &arm_ext_v4t
14538 tC3(ldrh
, 01000b0
, ldrh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
14539 tC3(strh
, 00000b0
, strh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
14540 tC3(ldrsh
, 01000f0
, ldrsh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
14541 tC3(ldrsb
, 01000d0
, ldrsb
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
14542 tCM(ld
,sh
, 01000f0
, ldrsh
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
14543 tCM(ld
,sb
, 01000d0
, ldrsb
, 2, (RR
, ADDRGLDRS
), ldstv4
, t_ldst
),
14546 #define ARM_VARIANT &arm_ext_v4t_5
14547 /* ARM Architecture 4T. */
14548 /* Note: bx (and blx) are required on V5, even if the processor does
14549 not support Thumb. */
14550 TCE(bx
, 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
14553 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
14554 #undef THUMB_VARIANT
14555 #define THUMB_VARIANT &arm_ext_v5t
14556 /* Note: blx has 2 variants; the .value coded here is for
14557 BLX(2). Only this variant has conditional execution. */
14558 TCE(blx
, 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
14559 TUE(bkpt
, 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
14561 #undef THUMB_VARIANT
14562 #define THUMB_VARIANT &arm_ext_v6t2
14563 TCE(clz
, 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
14564 TUF(ldc2
, c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14565 TUF(ldc2l
, c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14566 TUF(stc2
, c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14567 TUF(stc2l
, c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
14568 TUF(cdp2
, e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
14569 TUF(mcr2
, e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
14570 TUF(mrc2
, e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
14573 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
14574 TCE(smlabb
, 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
14575 TCE(smlatb
, 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
14576 TCE(smlabt
, 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
14577 TCE(smlatt
, 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
14579 TCE(smlawb
, 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
14580 TCE(smlawt
, 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
14582 TCE(smlalbb
, 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
14583 TCE(smlaltb
, 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
14584 TCE(smlalbt
, 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
14585 TCE(smlaltt
, 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
14587 TCE(smulbb
, 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14588 TCE(smultb
, 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14589 TCE(smulbt
, 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14590 TCE(smultt
, 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14592 TCE(smulwb
, 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14593 TCE(smulwt
, 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14595 TCE(qadd
, 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
14596 TCE(qdadd
, 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
14597 TCE(qsub
, 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
14598 TCE(qdsub
, 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, rd_rm_rn
),
14601 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
14602 TUF(pld
, 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
14603 TC3(ldrd
, 00000d0
, e9500000
, 3, (RRnpc
, oRRnpc
, ADDRGLDRS
), ldrd
, t_ldstd
),
14604 TC3(strd
, 00000f0
, e9400000
, 3, (RRnpc
, oRRnpc
, ADDRGLDRS
), ldrd
, t_ldstd
),
14606 TCE(mcrr
, c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
14607 TCE(mrrc
, c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
14610 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
14611 TCE(bxj
, 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
14614 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
14615 #undef THUMB_VARIANT
14616 #define THUMB_VARIANT &arm_ext_v6
14617 TUF(cpsie
, 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
14618 TUF(cpsid
, 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
14619 tCE(rev
, 6bf0f30
, rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
14620 tCE(rev16
, 6bf0fb0
, rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
14621 tCE(revsh
, 6ff0fb0
, revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
14622 tCE(sxth
, 6bf0070
, sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
14623 tCE(uxth
, 6ff0070
, uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
14624 tCE(sxtb
, 6af0070
, sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
14625 tCE(uxtb
, 6ef0070
, uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
14626 TUF(setend
, 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
14628 #undef THUMB_VARIANT
14629 #define THUMB_VARIANT &arm_ext_v6t2
14630 TCE(ldrex
, 1900f9f
, e8500f00
, 2, (RRnpc
, ADDR
), ldrex
, t_ldrex
),
14631 TUF(mcrr2
, c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
14632 TUF(mrrc2
, c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
14634 TCE(ssat
, 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
14635 TCE(usat
, 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
14637 /* ARM V6 not included in V7M (eg. integer SIMD). */
14638 #undef THUMB_VARIANT
14639 #define THUMB_VARIANT &arm_ext_v6_notm
14640 TUF(cps
, 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
14641 TCE(pkhbt
, 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
14642 TCE(pkhtb
, 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
14643 TCE(qadd16
, 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14644 TCE(qadd8
, 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14645 TCE(qaddsubx
, 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14646 TCE(qsub16
, 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14647 TCE(qsub8
, 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14648 TCE(qsubaddx
, 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14649 TCE(sadd16
, 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14650 TCE(sadd8
, 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14651 TCE(saddsubx
, 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14652 TCE(shadd16
, 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14653 TCE(shadd8
, 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14654 TCE(shaddsubx
, 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14655 TCE(shsub16
, 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14656 TCE(shsub8
, 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14657 TCE(shsubaddx
, 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14658 TCE(ssub16
, 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14659 TCE(ssub8
, 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14660 TCE(ssubaddx
, 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14661 TCE(uadd16
, 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14662 TCE(uadd8
, 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14663 TCE(uaddsubx
, 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14664 TCE(uhadd16
, 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14665 TCE(uhadd8
, 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14666 TCE(uhaddsubx
, 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14667 TCE(uhsub16
, 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14668 TCE(uhsub8
, 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14669 TCE(uhsubaddx
, 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14670 TCE(uqadd16
, 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14671 TCE(uqadd8
, 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14672 TCE(uqaddsubx
, 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14673 TCE(uqsub16
, 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14674 TCE(uqsub8
, 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14675 TCE(uqsubaddx
, 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14676 TCE(usub16
, 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14677 TCE(usub8
, 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14678 TCE(usubaddx
, 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14679 TUF(rfeia
, 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
14680 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
14681 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
14682 TUF(rfedb
, 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
14683 TUF(rfefd
, 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
14684 UF(rfefa
, 9900a00
, 1, (RRw
), rfe
),
14685 UF(rfeea
, 8100a00
, 1, (RRw
), rfe
),
14686 TUF(rfeed
, 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
14687 TCE(sxtah
, 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
14688 TCE(sxtab16
, 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
14689 TCE(sxtab
, 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
14690 TCE(sxtb16
, 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
14691 TCE(uxtah
, 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
14692 TCE(uxtab16
, 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
14693 TCE(uxtab
, 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
14694 TCE(uxtb16
, 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
14695 TCE(sel
, 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
14696 TCE(smlad
, 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14697 TCE(smladx
, 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14698 TCE(smlald
, 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
14699 TCE(smlaldx
, 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
14700 TCE(smlsd
, 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14701 TCE(smlsdx
, 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14702 TCE(smlsld
, 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
14703 TCE(smlsldx
, 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
14704 TCE(smmla
, 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14705 TCE(smmlar
, 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14706 TCE(smmls
, 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14707 TCE(smmlsr
, 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14708 TCE(smmul
, 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14709 TCE(smmulr
, 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14710 TCE(smuad
, 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14711 TCE(smuadx
, 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14712 TCE(smusd
, 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14713 TCE(smusdx
, 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14714 TUF(srsia
, 8cd0500
, e980c000
, 1, (I31w
), srs
, srs
),
14715 UF(srsib
, 9cd0500
, 1, (I31w
), srs
),
14716 UF(srsda
, 84d0500
, 1, (I31w
), srs
),
14717 TUF(srsdb
, 94d0500
, e800c000
, 1, (I31w
), srs
, srs
),
14718 TCE(ssat16
, 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
14719 TCE(strex
, 1800f90
, e8400000
, 3, (RRnpc
, RRnpc
, ADDR
), strex
, t_strex
),
14720 TCE(umaal
, 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
14721 TCE(usad8
, 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
14722 TCE(usada8
, 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
14723 TCE(usat16
, 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
14726 #define ARM_VARIANT &arm_ext_v6k
14727 #undef THUMB_VARIANT
14728 #define THUMB_VARIANT &arm_ext_v6k
14729 tCE(yield
, 320f001
, yield
, 0, (), noargs
, t_hint
),
14730 tCE(wfe
, 320f002
, wfe
, 0, (), noargs
, t_hint
),
14731 tCE(wfi
, 320f003
, wfi
, 0, (), noargs
, t_hint
),
14732 tCE(sev
, 320f004
, sev
, 0, (), noargs
, t_hint
),
14734 #undef THUMB_VARIANT
14735 #define THUMB_VARIANT &arm_ext_v6_notm
14736 TCE(ldrexd
, 1b00f9f
, e8d0007f
, 3, (RRnpc
, oRRnpc
, RRnpcb
), ldrexd
, t_ldrexd
),
14737 TCE(strexd
, 1a00f90
, e8c00070
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
), strexd
, t_strexd
),
14739 #undef THUMB_VARIANT
14740 #define THUMB_VARIANT &arm_ext_v6t2
14741 TCE(ldrexb
, 1d00f9f
, e8d00f4f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
14742 TCE(ldrexh
, 1f00f9f
, e8d00f5f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
14743 TCE(strexb
, 1c00f90
, e8c00f40
, 3, (RRnpc
, RRnpc
, ADDR
), strex
, rm_rd_rn
),
14744 TCE(strexh
, 1e00f90
, e8c00f50
, 3, (RRnpc
, RRnpc
, ADDR
), strex
, rm_rd_rn
),
14745 TUF(clrex
, 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
14748 #define ARM_VARIANT &arm_ext_v6z
14749 TCE(smc
, 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
14752 #define ARM_VARIANT &arm_ext_v6t2
14753 TCE(bfc
, 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
14754 TCE(bfi
, 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
14755 TCE(sbfx
, 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
14756 TCE(ubfx
, 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
14758 TCE(mls
, 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
14759 TCE(movw
, 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
14760 TCE(movt
, 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
14761 TCE(rbit
, 3ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
14763 TC3(ldrht
, 03000b0
, f8300e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
14764 TC3(ldrsht
, 03000f0
, f9300e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
14765 TC3(ldrsbt
, 03000d0
, f9100e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
14766 TC3(strht
, 02000b0
, f8200e00
, 2, (RR
, ADDR
), ldsttv4
, t_ldstt
),
14768 UT(cbnz
, b900
, 2, (RR
, EXP
), t_czb
),
14769 UT(cbz
, b100
, 2, (RR
, EXP
), t_czb
),
14770 /* ARM does not really have an IT instruction. */
14771 TUE(it
, 0, bf08
, 1, (COND
), it
, t_it
),
14772 TUE(itt
, 0, bf0c
, 1, (COND
), it
, t_it
),
14773 TUE(ite
, 0, bf04
, 1, (COND
), it
, t_it
),
14774 TUE(ittt
, 0, bf0e
, 1, (COND
), it
, t_it
),
14775 TUE(itet
, 0, bf06
, 1, (COND
), it
, t_it
),
14776 TUE(itte
, 0, bf0a
, 1, (COND
), it
, t_it
),
14777 TUE(itee
, 0, bf02
, 1, (COND
), it
, t_it
),
14778 TUE(itttt
, 0, bf0f
, 1, (COND
), it
, t_it
),
14779 TUE(itett
, 0, bf07
, 1, (COND
), it
, t_it
),
14780 TUE(ittet
, 0, bf0b
, 1, (COND
), it
, t_it
),
14781 TUE(iteet
, 0, bf03
, 1, (COND
), it
, t_it
),
14782 TUE(ittte
, 0, bf0d
, 1, (COND
), it
, t_it
),
14783 TUE(itete
, 0, bf05
, 1, (COND
), it
, t_it
),
14784 TUE(ittee
, 0, bf09
, 1, (COND
), it
, t_it
),
14785 TUE(iteee
, 0, bf01
, 1, (COND
), it
, t_it
),
14787 /* Thumb2 only instructions. */
14789 #define ARM_VARIANT NULL
14791 TCE(addw
, 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
14792 TCE(subw
, 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
14793 TCE(tbb
, 0, e8d0f000
, 1, (TB
), 0, t_tb
),
14794 TCE(tbh
, 0, e8d0f010
, 1, (TB
), 0, t_tb
),
14796 /* Thumb-2 hardware division instructions (R and M profiles only). */
14797 #undef THUMB_VARIANT
14798 #define THUMB_VARIANT &arm_ext_div
14799 TCE(sdiv
, 0, fb90f0f0
, 3, (RR
, oRR
, RR
), 0, t_div
),
14800 TCE(udiv
, 0, fbb0f0f0
, 3, (RR
, oRR
, RR
), 0, t_div
),
14802 /* ARM V7 instructions. */
14804 #define ARM_VARIANT &arm_ext_v7
14805 #undef THUMB_VARIANT
14806 #define THUMB_VARIANT &arm_ext_v7
14807 TUF(pli
, 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
14808 TCE(dbg
, 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
14809 TUF(dmb
, 57ff050
, f3bf8f50
, 1, (oBARRIER
), barrier
, t_barrier
),
14810 TUF(dsb
, 57ff040
, f3bf8f40
, 1, (oBARRIER
), barrier
, t_barrier
),
14811 TUF(isb
, 57ff060
, f3bf8f60
, 1, (oBARRIER
), barrier
, t_barrier
),
14814 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
14815 cCE(wfs
, e200110
, 1, (RR
), rd
),
14816 cCE(rfs
, e300110
, 1, (RR
), rd
),
14817 cCE(wfc
, e400110
, 1, (RR
), rd
),
14818 cCE(rfc
, e500110
, 1, (RR
), rd
),
14820 cCL(ldfs
, c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14821 cCL(ldfd
, c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14822 cCL(ldfe
, c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14823 cCL(ldfp
, c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14825 cCL(stfs
, c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14826 cCL(stfd
, c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14827 cCL(stfe
, c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14828 cCL(stfp
, c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
14830 cCL(mvfs
, e008100
, 2, (RF
, RF_IF
), rd_rm
),
14831 cCL(mvfsp
, e008120
, 2, (RF
, RF_IF
), rd_rm
),
14832 cCL(mvfsm
, e008140
, 2, (RF
, RF_IF
), rd_rm
),
14833 cCL(mvfsz
, e008160
, 2, (RF
, RF_IF
), rd_rm
),
14834 cCL(mvfd
, e008180
, 2, (RF
, RF_IF
), rd_rm
),
14835 cCL(mvfdp
, e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
14836 cCL(mvfdm
, e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
14837 cCL(mvfdz
, e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
14838 cCL(mvfe
, e088100
, 2, (RF
, RF_IF
), rd_rm
),
14839 cCL(mvfep
, e088120
, 2, (RF
, RF_IF
), rd_rm
),
14840 cCL(mvfem
, e088140
, 2, (RF
, RF_IF
), rd_rm
),
14841 cCL(mvfez
, e088160
, 2, (RF
, RF_IF
), rd_rm
),
14843 cCL(mnfs
, e108100
, 2, (RF
, RF_IF
), rd_rm
),
14844 cCL(mnfsp
, e108120
, 2, (RF
, RF_IF
), rd_rm
),
14845 cCL(mnfsm
, e108140
, 2, (RF
, RF_IF
), rd_rm
),
14846 cCL(mnfsz
, e108160
, 2, (RF
, RF_IF
), rd_rm
),
14847 cCL(mnfd
, e108180
, 2, (RF
, RF_IF
), rd_rm
),
14848 cCL(mnfdp
, e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
14849 cCL(mnfdm
, e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
14850 cCL(mnfdz
, e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
14851 cCL(mnfe
, e188100
, 2, (RF
, RF_IF
), rd_rm
),
14852 cCL(mnfep
, e188120
, 2, (RF
, RF_IF
), rd_rm
),
14853 cCL(mnfem
, e188140
, 2, (RF
, RF_IF
), rd_rm
),
14854 cCL(mnfez
, e188160
, 2, (RF
, RF_IF
), rd_rm
),
14856 cCL(abss
, e208100
, 2, (RF
, RF_IF
), rd_rm
),
14857 cCL(abssp
, e208120
, 2, (RF
, RF_IF
), rd_rm
),
14858 cCL(abssm
, e208140
, 2, (RF
, RF_IF
), rd_rm
),
14859 cCL(abssz
, e208160
, 2, (RF
, RF_IF
), rd_rm
),
14860 cCL(absd
, e208180
, 2, (RF
, RF_IF
), rd_rm
),
14861 cCL(absdp
, e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
14862 cCL(absdm
, e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
14863 cCL(absdz
, e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
14864 cCL(abse
, e288100
, 2, (RF
, RF_IF
), rd_rm
),
14865 cCL(absep
, e288120
, 2, (RF
, RF_IF
), rd_rm
),
14866 cCL(absem
, e288140
, 2, (RF
, RF_IF
), rd_rm
),
14867 cCL(absez
, e288160
, 2, (RF
, RF_IF
), rd_rm
),
14869 cCL(rnds
, e308100
, 2, (RF
, RF_IF
), rd_rm
),
14870 cCL(rndsp
, e308120
, 2, (RF
, RF_IF
), rd_rm
),
14871 cCL(rndsm
, e308140
, 2, (RF
, RF_IF
), rd_rm
),
14872 cCL(rndsz
, e308160
, 2, (RF
, RF_IF
), rd_rm
),
14873 cCL(rndd
, e308180
, 2, (RF
, RF_IF
), rd_rm
),
14874 cCL(rnddp
, e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
14875 cCL(rnddm
, e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
14876 cCL(rnddz
, e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
14877 cCL(rnde
, e388100
, 2, (RF
, RF_IF
), rd_rm
),
14878 cCL(rndep
, e388120
, 2, (RF
, RF_IF
), rd_rm
),
14879 cCL(rndem
, e388140
, 2, (RF
, RF_IF
), rd_rm
),
14880 cCL(rndez
, e388160
, 2, (RF
, RF_IF
), rd_rm
),
14882 cCL(sqts
, e408100
, 2, (RF
, RF_IF
), rd_rm
),
14883 cCL(sqtsp
, e408120
, 2, (RF
, RF_IF
), rd_rm
),
14884 cCL(sqtsm
, e408140
, 2, (RF
, RF_IF
), rd_rm
),
14885 cCL(sqtsz
, e408160
, 2, (RF
, RF_IF
), rd_rm
),
14886 cCL(sqtd
, e408180
, 2, (RF
, RF_IF
), rd_rm
),
14887 cCL(sqtdp
, e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
14888 cCL(sqtdm
, e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
14889 cCL(sqtdz
, e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
14890 cCL(sqte
, e488100
, 2, (RF
, RF_IF
), rd_rm
),
14891 cCL(sqtep
, e488120
, 2, (RF
, RF_IF
), rd_rm
),
14892 cCL(sqtem
, e488140
, 2, (RF
, RF_IF
), rd_rm
),
14893 cCL(sqtez
, e488160
, 2, (RF
, RF_IF
), rd_rm
),
14895 cCL(logs
, e508100
, 2, (RF
, RF_IF
), rd_rm
),
14896 cCL(logsp
, e508120
, 2, (RF
, RF_IF
), rd_rm
),
14897 cCL(logsm
, e508140
, 2, (RF
, RF_IF
), rd_rm
),
14898 cCL(logsz
, e508160
, 2, (RF
, RF_IF
), rd_rm
),
14899 cCL(logd
, e508180
, 2, (RF
, RF_IF
), rd_rm
),
14900 cCL(logdp
, e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
14901 cCL(logdm
, e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
14902 cCL(logdz
, e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
14903 cCL(loge
, e588100
, 2, (RF
, RF_IF
), rd_rm
),
14904 cCL(logep
, e588120
, 2, (RF
, RF_IF
), rd_rm
),
14905 cCL(logem
, e588140
, 2, (RF
, RF_IF
), rd_rm
),
14906 cCL(logez
, e588160
, 2, (RF
, RF_IF
), rd_rm
),
14908 cCL(lgns
, e608100
, 2, (RF
, RF_IF
), rd_rm
),
14909 cCL(lgnsp
, e608120
, 2, (RF
, RF_IF
), rd_rm
),
14910 cCL(lgnsm
, e608140
, 2, (RF
, RF_IF
), rd_rm
),
14911 cCL(lgnsz
, e608160
, 2, (RF
, RF_IF
), rd_rm
),
14912 cCL(lgnd
, e608180
, 2, (RF
, RF_IF
), rd_rm
),
14913 cCL(lgndp
, e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
14914 cCL(lgndm
, e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
14915 cCL(lgndz
, e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
14916 cCL(lgne
, e688100
, 2, (RF
, RF_IF
), rd_rm
),
14917 cCL(lgnep
, e688120
, 2, (RF
, RF_IF
), rd_rm
),
14918 cCL(lgnem
, e688140
, 2, (RF
, RF_IF
), rd_rm
),
14919 cCL(lgnez
, e688160
, 2, (RF
, RF_IF
), rd_rm
),
14921 cCL(exps
, e708100
, 2, (RF
, RF_IF
), rd_rm
),
14922 cCL(expsp
, e708120
, 2, (RF
, RF_IF
), rd_rm
),
14923 cCL(expsm
, e708140
, 2, (RF
, RF_IF
), rd_rm
),
14924 cCL(expsz
, e708160
, 2, (RF
, RF_IF
), rd_rm
),
14925 cCL(expd
, e708180
, 2, (RF
, RF_IF
), rd_rm
),
14926 cCL(expdp
, e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
14927 cCL(expdm
, e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
14928 cCL(expdz
, e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
14929 cCL(expe
, e788100
, 2, (RF
, RF_IF
), rd_rm
),
14930 cCL(expep
, e788120
, 2, (RF
, RF_IF
), rd_rm
),
14931 cCL(expem
, e788140
, 2, (RF
, RF_IF
), rd_rm
),
14932 cCL(expdz
, e788160
, 2, (RF
, RF_IF
), rd_rm
),
14934 cCL(sins
, e808100
, 2, (RF
, RF_IF
), rd_rm
),
14935 cCL(sinsp
, e808120
, 2, (RF
, RF_IF
), rd_rm
),
14936 cCL(sinsm
, e808140
, 2, (RF
, RF_IF
), rd_rm
),
14937 cCL(sinsz
, e808160
, 2, (RF
, RF_IF
), rd_rm
),
14938 cCL(sind
, e808180
, 2, (RF
, RF_IF
), rd_rm
),
14939 cCL(sindp
, e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
14940 cCL(sindm
, e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
14941 cCL(sindz
, e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
14942 cCL(sine
, e888100
, 2, (RF
, RF_IF
), rd_rm
),
14943 cCL(sinep
, e888120
, 2, (RF
, RF_IF
), rd_rm
),
14944 cCL(sinem
, e888140
, 2, (RF
, RF_IF
), rd_rm
),
14945 cCL(sinez
, e888160
, 2, (RF
, RF_IF
), rd_rm
),
14947 cCL(coss
, e908100
, 2, (RF
, RF_IF
), rd_rm
),
14948 cCL(cossp
, e908120
, 2, (RF
, RF_IF
), rd_rm
),
14949 cCL(cossm
, e908140
, 2, (RF
, RF_IF
), rd_rm
),
14950 cCL(cossz
, e908160
, 2, (RF
, RF_IF
), rd_rm
),
14951 cCL(cosd
, e908180
, 2, (RF
, RF_IF
), rd_rm
),
14952 cCL(cosdp
, e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
14953 cCL(cosdm
, e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
14954 cCL(cosdz
, e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
14955 cCL(cose
, e988100
, 2, (RF
, RF_IF
), rd_rm
),
14956 cCL(cosep
, e988120
, 2, (RF
, RF_IF
), rd_rm
),
14957 cCL(cosem
, e988140
, 2, (RF
, RF_IF
), rd_rm
),
14958 cCL(cosez
, e988160
, 2, (RF
, RF_IF
), rd_rm
),
14960 cCL(tans
, ea08100
, 2, (RF
, RF_IF
), rd_rm
),
14961 cCL(tansp
, ea08120
, 2, (RF
, RF_IF
), rd_rm
),
14962 cCL(tansm
, ea08140
, 2, (RF
, RF_IF
), rd_rm
),
14963 cCL(tansz
, ea08160
, 2, (RF
, RF_IF
), rd_rm
),
14964 cCL(tand
, ea08180
, 2, (RF
, RF_IF
), rd_rm
),
14965 cCL(tandp
, ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
14966 cCL(tandm
, ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
14967 cCL(tandz
, ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
14968 cCL(tane
, ea88100
, 2, (RF
, RF_IF
), rd_rm
),
14969 cCL(tanep
, ea88120
, 2, (RF
, RF_IF
), rd_rm
),
14970 cCL(tanem
, ea88140
, 2, (RF
, RF_IF
), rd_rm
),
14971 cCL(tanez
, ea88160
, 2, (RF
, RF_IF
), rd_rm
),
14973 cCL(asns
, eb08100
, 2, (RF
, RF_IF
), rd_rm
),
14974 cCL(asnsp
, eb08120
, 2, (RF
, RF_IF
), rd_rm
),
14975 cCL(asnsm
, eb08140
, 2, (RF
, RF_IF
), rd_rm
),
14976 cCL(asnsz
, eb08160
, 2, (RF
, RF_IF
), rd_rm
),
14977 cCL(asnd
, eb08180
, 2, (RF
, RF_IF
), rd_rm
),
14978 cCL(asndp
, eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
14979 cCL(asndm
, eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
14980 cCL(asndz
, eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
14981 cCL(asne
, eb88100
, 2, (RF
, RF_IF
), rd_rm
),
14982 cCL(asnep
, eb88120
, 2, (RF
, RF_IF
), rd_rm
),
14983 cCL(asnem
, eb88140
, 2, (RF
, RF_IF
), rd_rm
),
14984 cCL(asnez
, eb88160
, 2, (RF
, RF_IF
), rd_rm
),
14986 cCL(acss
, ec08100
, 2, (RF
, RF_IF
), rd_rm
),
14987 cCL(acssp
, ec08120
, 2, (RF
, RF_IF
), rd_rm
),
14988 cCL(acssm
, ec08140
, 2, (RF
, RF_IF
), rd_rm
),
14989 cCL(acssz
, ec08160
, 2, (RF
, RF_IF
), rd_rm
),
14990 cCL(acsd
, ec08180
, 2, (RF
, RF_IF
), rd_rm
),
14991 cCL(acsdp
, ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
14992 cCL(acsdm
, ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
14993 cCL(acsdz
, ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
14994 cCL(acse
, ec88100
, 2, (RF
, RF_IF
), rd_rm
),
14995 cCL(acsep
, ec88120
, 2, (RF
, RF_IF
), rd_rm
),
14996 cCL(acsem
, ec88140
, 2, (RF
, RF_IF
), rd_rm
),
14997 cCL(acsez
, ec88160
, 2, (RF
, RF_IF
), rd_rm
),
14999 cCL(atns
, ed08100
, 2, (RF
, RF_IF
), rd_rm
),
15000 cCL(atnsp
, ed08120
, 2, (RF
, RF_IF
), rd_rm
),
15001 cCL(atnsm
, ed08140
, 2, (RF
, RF_IF
), rd_rm
),
15002 cCL(atnsz
, ed08160
, 2, (RF
, RF_IF
), rd_rm
),
15003 cCL(atnd
, ed08180
, 2, (RF
, RF_IF
), rd_rm
),
15004 cCL(atndp
, ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
15005 cCL(atndm
, ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
15006 cCL(atndz
, ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
15007 cCL(atne
, ed88100
, 2, (RF
, RF_IF
), rd_rm
),
15008 cCL(atnep
, ed88120
, 2, (RF
, RF_IF
), rd_rm
),
15009 cCL(atnem
, ed88140
, 2, (RF
, RF_IF
), rd_rm
),
15010 cCL(atnez
, ed88160
, 2, (RF
, RF_IF
), rd_rm
),
15012 cCL(urds
, ee08100
, 2, (RF
, RF_IF
), rd_rm
),
15013 cCL(urdsp
, ee08120
, 2, (RF
, RF_IF
), rd_rm
),
15014 cCL(urdsm
, ee08140
, 2, (RF
, RF_IF
), rd_rm
),
15015 cCL(urdsz
, ee08160
, 2, (RF
, RF_IF
), rd_rm
),
15016 cCL(urdd
, ee08180
, 2, (RF
, RF_IF
), rd_rm
),
15017 cCL(urddp
, ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
15018 cCL(urddm
, ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
15019 cCL(urddz
, ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
15020 cCL(urde
, ee88100
, 2, (RF
, RF_IF
), rd_rm
),
15021 cCL(urdep
, ee88120
, 2, (RF
, RF_IF
), rd_rm
),
15022 cCL(urdem
, ee88140
, 2, (RF
, RF_IF
), rd_rm
),
15023 cCL(urdez
, ee88160
, 2, (RF
, RF_IF
), rd_rm
),
15025 cCL(nrms
, ef08100
, 2, (RF
, RF_IF
), rd_rm
),
15026 cCL(nrmsp
, ef08120
, 2, (RF
, RF_IF
), rd_rm
),
15027 cCL(nrmsm
, ef08140
, 2, (RF
, RF_IF
), rd_rm
),
15028 cCL(nrmsz
, ef08160
, 2, (RF
, RF_IF
), rd_rm
),
15029 cCL(nrmd
, ef08180
, 2, (RF
, RF_IF
), rd_rm
),
15030 cCL(nrmdp
, ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
15031 cCL(nrmdm
, ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
15032 cCL(nrmdz
, ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
15033 cCL(nrme
, ef88100
, 2, (RF
, RF_IF
), rd_rm
),
15034 cCL(nrmep
, ef88120
, 2, (RF
, RF_IF
), rd_rm
),
15035 cCL(nrmem
, ef88140
, 2, (RF
, RF_IF
), rd_rm
),
15036 cCL(nrmez
, ef88160
, 2, (RF
, RF_IF
), rd_rm
),
15038 cCL(adfs
, e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15039 cCL(adfsp
, e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15040 cCL(adfsm
, e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15041 cCL(adfsz
, e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15042 cCL(adfd
, e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15043 cCL(adfdp
, e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15044 cCL(adfdm
, e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15045 cCL(adfdz
, e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15046 cCL(adfe
, e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15047 cCL(adfep
, e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15048 cCL(adfem
, e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15049 cCL(adfez
, e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15051 cCL(sufs
, e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15052 cCL(sufsp
, e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15053 cCL(sufsm
, e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15054 cCL(sufsz
, e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15055 cCL(sufd
, e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15056 cCL(sufdp
, e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15057 cCL(sufdm
, e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15058 cCL(sufdz
, e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15059 cCL(sufe
, e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15060 cCL(sufep
, e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15061 cCL(sufem
, e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15062 cCL(sufez
, e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15064 cCL(rsfs
, e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15065 cCL(rsfsp
, e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15066 cCL(rsfsm
, e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15067 cCL(rsfsz
, e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15068 cCL(rsfd
, e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15069 cCL(rsfdp
, e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15070 cCL(rsfdm
, e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15071 cCL(rsfdz
, e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15072 cCL(rsfe
, e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15073 cCL(rsfep
, e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15074 cCL(rsfem
, e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15075 cCL(rsfez
, e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15077 cCL(mufs
, e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15078 cCL(mufsp
, e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15079 cCL(mufsm
, e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15080 cCL(mufsz
, e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15081 cCL(mufd
, e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15082 cCL(mufdp
, e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15083 cCL(mufdm
, e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15084 cCL(mufdz
, e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15085 cCL(mufe
, e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15086 cCL(mufep
, e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15087 cCL(mufem
, e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15088 cCL(mufez
, e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15090 cCL(dvfs
, e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15091 cCL(dvfsp
, e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15092 cCL(dvfsm
, e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15093 cCL(dvfsz
, e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15094 cCL(dvfd
, e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15095 cCL(dvfdp
, e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15096 cCL(dvfdm
, e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15097 cCL(dvfdz
, e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15098 cCL(dvfe
, e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15099 cCL(dvfep
, e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15100 cCL(dvfem
, e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15101 cCL(dvfez
, e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15103 cCL(rdfs
, e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15104 cCL(rdfsp
, e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15105 cCL(rdfsm
, e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15106 cCL(rdfsz
, e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15107 cCL(rdfd
, e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15108 cCL(rdfdp
, e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15109 cCL(rdfdm
, e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15110 cCL(rdfdz
, e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15111 cCL(rdfe
, e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15112 cCL(rdfep
, e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15113 cCL(rdfem
, e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15114 cCL(rdfez
, e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15116 cCL(pows
, e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15117 cCL(powsp
, e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15118 cCL(powsm
, e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15119 cCL(powsz
, e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15120 cCL(powd
, e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15121 cCL(powdp
, e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15122 cCL(powdm
, e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15123 cCL(powdz
, e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15124 cCL(powe
, e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15125 cCL(powep
, e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15126 cCL(powem
, e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15127 cCL(powez
, e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15129 cCL(rpws
, e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15130 cCL(rpwsp
, e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15131 cCL(rpwsm
, e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15132 cCL(rpwsz
, e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15133 cCL(rpwd
, e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15134 cCL(rpwdp
, e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15135 cCL(rpwdm
, e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15136 cCL(rpwdz
, e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15137 cCL(rpwe
, e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15138 cCL(rpwep
, e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15139 cCL(rpwem
, e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15140 cCL(rpwez
, e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15142 cCL(rmfs
, e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15143 cCL(rmfsp
, e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15144 cCL(rmfsm
, e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15145 cCL(rmfsz
, e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15146 cCL(rmfd
, e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15147 cCL(rmfdp
, e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15148 cCL(rmfdm
, e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15149 cCL(rmfdz
, e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15150 cCL(rmfe
, e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15151 cCL(rmfep
, e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15152 cCL(rmfem
, e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15153 cCL(rmfez
, e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15155 cCL(fmls
, e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15156 cCL(fmlsp
, e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15157 cCL(fmlsm
, e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15158 cCL(fmlsz
, e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15159 cCL(fmld
, e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15160 cCL(fmldp
, e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15161 cCL(fmldm
, e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15162 cCL(fmldz
, e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15163 cCL(fmle
, e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15164 cCL(fmlep
, e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15165 cCL(fmlem
, e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15166 cCL(fmlez
, e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15168 cCL(fdvs
, ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15169 cCL(fdvsp
, ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15170 cCL(fdvsm
, ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15171 cCL(fdvsz
, ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15172 cCL(fdvd
, ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15173 cCL(fdvdp
, ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15174 cCL(fdvdm
, ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15175 cCL(fdvdz
, ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15176 cCL(fdve
, ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15177 cCL(fdvep
, ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15178 cCL(fdvem
, ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15179 cCL(fdvez
, ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15181 cCL(frds
, eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15182 cCL(frdsp
, eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15183 cCL(frdsm
, eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15184 cCL(frdsz
, eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15185 cCL(frdd
, eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15186 cCL(frddp
, eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15187 cCL(frddm
, eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15188 cCL(frddz
, eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15189 cCL(frde
, eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15190 cCL(frdep
, eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15191 cCL(frdem
, eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15192 cCL(frdez
, eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15194 cCL(pols
, ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15195 cCL(polsp
, ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15196 cCL(polsm
, ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15197 cCL(polsz
, ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15198 cCL(pold
, ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15199 cCL(poldp
, ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15200 cCL(poldm
, ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15201 cCL(poldz
, ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15202 cCL(pole
, ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15203 cCL(polep
, ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15204 cCL(polem
, ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15205 cCL(polez
, ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
15207 cCE(cmf
, e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15208 C3E(cmfe
, ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15209 cCE(cnf
, eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15210 C3E(cnfe
, ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
15212 cCL(flts
, e000110
, 2, (RF
, RR
), rn_rd
),
15213 cCL(fltsp
, e000130
, 2, (RF
, RR
), rn_rd
),
15214 cCL(fltsm
, e000150
, 2, (RF
, RR
), rn_rd
),
15215 cCL(fltsz
, e000170
, 2, (RF
, RR
), rn_rd
),
15216 cCL(fltd
, e000190
, 2, (RF
, RR
), rn_rd
),
15217 cCL(fltdp
, e0001b0
, 2, (RF
, RR
), rn_rd
),
15218 cCL(fltdm
, e0001d0
, 2, (RF
, RR
), rn_rd
),
15219 cCL(fltdz
, e0001f0
, 2, (RF
, RR
), rn_rd
),
15220 cCL(flte
, e080110
, 2, (RF
, RR
), rn_rd
),
15221 cCL(fltep
, e080130
, 2, (RF
, RR
), rn_rd
),
15222 cCL(fltem
, e080150
, 2, (RF
, RR
), rn_rd
),
15223 cCL(fltez
, e080170
, 2, (RF
, RR
), rn_rd
),
15225 /* The implementation of the FIX instruction is broken on some
15226 assemblers, in that it accepts a precision specifier as well as a
15227 rounding specifier, despite the fact that this is meaningless.
15228 To be more compatible, we accept it as well, though of course it
15229 does not set any bits. */
15230 cCE(fix
, e100110
, 2, (RR
, RF
), rd_rm
),
15231 cCL(fixp
, e100130
, 2, (RR
, RF
), rd_rm
),
15232 cCL(fixm
, e100150
, 2, (RR
, RF
), rd_rm
),
15233 cCL(fixz
, e100170
, 2, (RR
, RF
), rd_rm
),
15234 cCL(fixsp
, e100130
, 2, (RR
, RF
), rd_rm
),
15235 cCL(fixsm
, e100150
, 2, (RR
, RF
), rd_rm
),
15236 cCL(fixsz
, e100170
, 2, (RR
, RF
), rd_rm
),
15237 cCL(fixdp
, e100130
, 2, (RR
, RF
), rd_rm
),
15238 cCL(fixdm
, e100150
, 2, (RR
, RF
), rd_rm
),
15239 cCL(fixdz
, e100170
, 2, (RR
, RF
), rd_rm
),
15240 cCL(fixep
, e100130
, 2, (RR
, RF
), rd_rm
),
15241 cCL(fixem
, e100150
, 2, (RR
, RF
), rd_rm
),
15242 cCL(fixez
, e100170
, 2, (RR
, RF
), rd_rm
),
15244 /* Instructions that were new with the real FPA, call them V2. */
15246 #define ARM_VARIANT &fpu_fpa_ext_v2
15247 cCE(lfm
, c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15248 cCL(lfmfd
, c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15249 cCL(lfmea
, d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15250 cCE(sfm
, c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15251 cCL(sfmfd
, d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15252 cCL(sfmea
, c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
15255 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15256 /* Moves and type conversions. */
15257 cCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15258 cCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
15259 cCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
15260 cCE(fmstat
, ef1fa10
, 0, (), noargs
),
15261 cCE(fsitos
, eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15262 cCE(fuitos
, eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15263 cCE(ftosis
, ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15264 cCE(ftosizs
, ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15265 cCE(ftouis
, ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15266 cCE(ftouizs
, ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15267 cCE(fmrx
, ef00a10
, 2, (RR
, RVC
), rd_rn
),
15268 cCE(fmxr
, ee00a10
, 2, (RVC
, RR
), rn_rd
),
15270 /* Memory operations. */
15271 cCE(flds
, d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
15272 cCE(fsts
, d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
15273 cCE(fldmias
, c900a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15274 cCE(fldmfds
, c900a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15275 cCE(fldmdbs
, d300a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15276 cCE(fldmeas
, d300a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15277 cCE(fldmiax
, c900b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15278 cCE(fldmfdx
, c900b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15279 cCE(fldmdbx
, d300b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15280 cCE(fldmeax
, d300b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15281 cCE(fstmias
, c800a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15282 cCE(fstmeas
, c800a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
15283 cCE(fstmdbs
, d200a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15284 cCE(fstmfds
, d200a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
15285 cCE(fstmiax
, c800b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15286 cCE(fstmeax
, c800b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
15287 cCE(fstmdbx
, d200b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15288 cCE(fstmfdx
, d200b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
15290 /* Monadic operations. */
15291 cCE(fabss
, eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15292 cCE(fnegs
, eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15293 cCE(fsqrts
, eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15295 /* Dyadic operations. */
15296 cCE(fadds
, e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15297 cCE(fsubs
, e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15298 cCE(fmuls
, e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15299 cCE(fdivs
, e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15300 cCE(fmacs
, e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15301 cCE(fmscs
, e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15302 cCE(fnmuls
, e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15303 cCE(fnmacs
, e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15304 cCE(fnmscs
, e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
15307 cCE(fcmps
, eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15308 cCE(fcmpzs
, eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
15309 cCE(fcmpes
, eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
15310 cCE(fcmpezs
, eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
15313 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15314 /* Moves and type conversions. */
15315 cCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15316 cCE(fcvtds
, eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
15317 cCE(fcvtsd
, eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15318 cCE(fmdhr
, e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
15319 cCE(fmdlr
, e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
15320 cCE(fmrdh
, e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
15321 cCE(fmrdl
, e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
15322 cCE(fsitod
, eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
15323 cCE(fuitod
, eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
15324 cCE(ftosid
, ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15325 cCE(ftosizd
, ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15326 cCE(ftouid
, ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15327 cCE(ftouizd
, ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
15329 /* Memory operations. */
15330 cCE(fldd
, d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
15331 cCE(fstd
, d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
15332 cCE(fldmiad
, c900b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15333 cCE(fldmfdd
, c900b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15334 cCE(fldmdbd
, d300b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15335 cCE(fldmead
, d300b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15336 cCE(fstmiad
, c800b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15337 cCE(fstmead
, c800b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
15338 cCE(fstmdbd
, d200b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15339 cCE(fstmfdd
, d200b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
15341 /* Monadic operations. */
15342 cCE(fabsd
, eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15343 cCE(fnegd
, eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15344 cCE(fsqrtd
, eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15346 /* Dyadic operations. */
15347 cCE(faddd
, e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15348 cCE(fsubd
, e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15349 cCE(fmuld
, e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15350 cCE(fdivd
, e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15351 cCE(fmacd
, e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15352 cCE(fmscd
, e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15353 cCE(fnmuld
, e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15354 cCE(fnmacd
, e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15355 cCE(fnmscd
, e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
15358 cCE(fcmpd
, eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15359 cCE(fcmpzd
, eb50b40
, 1, (RVD
), vfp_dp_rd
),
15360 cCE(fcmped
, eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
15361 cCE(fcmpezd
, eb50bc0
, 1, (RVD
), vfp_dp_rd
),
15364 #define ARM_VARIANT &fpu_vfp_ext_v2
15365 cCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
15366 cCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
15367 cCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
15368 cCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
15370 /* Instructions which may belong to either the Neon or VFP instruction sets.
15371 Individual encoder functions perform additional architecture checks. */
15373 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15374 #undef THUMB_VARIANT
15375 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15376 /* These mnemonics are unique to VFP. */
15377 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
15378 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
15379 nCE(vnmul
, vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
15380 nCE(vnmla
, vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
15381 nCE(vnmls
, vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
15382 nCE(vcmp
, vcmp
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
15383 nCE(vcmpe
, vcmpe
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
15384 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
15385 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
15386 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
15388 /* Mnemonics shared by Neon and VFP. */
15389 nCEF(vmul
, vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
15390 nCEF(vmla
, vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
15391 nCEF(vmls
, vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
15393 nCEF(vadd
, vadd
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
15394 nCEF(vsub
, vsub
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
15396 NCEF(vabs
, 1b10300
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
15397 NCEF(vneg
, 1b10380
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
15399 NCE(vldm
, c900b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15400 NCE(vldmia
, c900b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15401 NCE(vldmdb
, d100b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15402 NCE(vstm
, c800b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15403 NCE(vstmia
, c800b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15404 NCE(vstmdb
, d000b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
15405 NCE(vldr
, d100b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
15406 NCE(vstr
, d000b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
15408 nCEF(vcvt
, vcvt
, 3, (RNSDQ
, RNSDQ
, oI32b
), neon_cvt
),
15410 /* NOTE: All VMOV encoding is special-cased! */
15411 NCE(vmov
, 0, 1, (VMOV
), neon_mov
),
15412 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
15414 #undef THUMB_VARIANT
15415 #define THUMB_VARIANT &fpu_neon_ext_v1
15417 #define ARM_VARIANT &fpu_neon_ext_v1
15418 /* Data processing with three registers of the same length. */
15419 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15420 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
15421 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
15422 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
15423 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
15424 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
15425 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
15426 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
15427 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
15428 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15429 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
15430 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
15431 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
15432 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
15433 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
15434 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
15435 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
15436 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
15437 /* If not immediate, fall back to neon_dyadic_i64_su.
15438 shl_imm should accept I8 I16 I32 I64,
15439 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15440 nUF(vshl
, vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
15441 nUF(vshlq
, vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
15442 nUF(vqshl
, vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
15443 nUF(vqshlq
, vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
15444 /* Logic ops, types optional & ignored. */
15445 nUF(vand
, vand
, 2, (RNDQ
, NILO
), neon_logic
),
15446 nUF(vandq
, vand
, 2, (RNQ
, NILO
), neon_logic
),
15447 nUF(vbic
, vbic
, 2, (RNDQ
, NILO
), neon_logic
),
15448 nUF(vbicq
, vbic
, 2, (RNQ
, NILO
), neon_logic
),
15449 nUF(vorr
, vorr
, 2, (RNDQ
, NILO
), neon_logic
),
15450 nUF(vorrq
, vorr
, 2, (RNQ
, NILO
), neon_logic
),
15451 nUF(vorn
, vorn
, 2, (RNDQ
, NILO
), neon_logic
),
15452 nUF(vornq
, vorn
, 2, (RNQ
, NILO
), neon_logic
),
15453 nUF(veor
, veor
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_logic
),
15454 nUF(veorq
, veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
15455 /* Bitfield ops, untyped. */
15456 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
15457 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
15458 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
15459 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
15460 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
15461 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
15462 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15463 nUF(vabd
, vabd
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
15464 nUF(vabdq
, vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
15465 nUF(vmax
, vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
15466 nUF(vmaxq
, vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
15467 nUF(vmin
, vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
15468 nUF(vminq
, vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
15469 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15470 back to neon_dyadic_if_su. */
15471 nUF(vcge
, vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
15472 nUF(vcgeq
, vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
15473 nUF(vcgt
, vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
15474 nUF(vcgtq
, vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
15475 nUF(vclt
, vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
15476 nUF(vcltq
, vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
15477 nUF(vcle
, vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
15478 nUF(vcleq
, vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
15479 /* Comparison. Type I8 I16 I32 F32. Non-immediate -> neon_dyadic_if_i. */
15480 nUF(vceq
, vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
15481 nUF(vceqq
, vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
15482 /* As above, D registers only. */
15483 nUF(vpmax
, vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
15484 nUF(vpmin
, vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
15485 /* Int and float variants, signedness unimportant. */
15486 /* If not scalar, fall back to neon_dyadic_if_i. */
15487 nUF(vmlaq
, vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
15488 nUF(vmlsq
, vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
15489 nUF(vpadd
, vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
15490 /* Add/sub take types I8 I16 I32 I64 F32. */
15491 nUF(vaddq
, vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
15492 nUF(vsubq
, vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
15493 /* vtst takes sizes 8, 16, 32. */
15494 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
15495 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
15496 /* VMUL takes I8 I16 I32 F32 P8. */
15497 nUF(vmulq
, vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
15498 /* VQD{R}MULH takes S16 S32. */
15499 nUF(vqdmulh
, vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
15500 nUF(vqdmulhq
, vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
15501 nUF(vqrdmulh
, vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
15502 nUF(vqrdmulhq
, vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
15503 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
15504 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
15505 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
15506 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
15507 NUF(vaclt
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
15508 NUF(vacltq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
15509 NUF(vacle
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
15510 NUF(vacleq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
15511 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
15512 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
15513 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
15514 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
15516 /* Two address, int/float. Types S8 S16 S32 F32. */
15517 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
15518 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
15520 /* Data processing with two registers and a shift amount. */
15521 /* Right shifts, and variants with rounding.
15522 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15523 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
15524 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
15525 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
15526 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
15527 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
15528 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
15529 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
15530 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
15531 /* Shift and insert. Sizes accepted 8 16 32 64. */
15532 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
15533 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
15534 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
15535 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
15536 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15537 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
15538 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
15539 /* Right shift immediate, saturating & narrowing, with rounding variants.
15540 Types accepted S16 S32 S64 U16 U32 U64. */
15541 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
15542 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
15543 /* As above, unsigned. Types accepted S16 S32 S64. */
15544 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
15545 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
15546 /* Right shift narrowing. Types accepted I16 I32 I64. */
15547 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
15548 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
15549 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15550 nUF(vshll
, vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
15551 /* CVT with optional immediate for fixed-point variant. */
15552 nUF(vcvtq
, vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
15554 nUF(vmvn
, vmvn
, 2, (RNDQ
, RNDQ_IMVNb
), neon_mvn
),
15555 nUF(vmvnq
, vmvn
, 2, (RNQ
, RNDQ_IMVNb
), neon_mvn
),
15557 /* Data processing, three registers of different lengths. */
15558 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15559 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
15560 NUF(vabdl
, 0800700, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
15561 NUF(vaddl
, 0800000, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
15562 NUF(vsubl
, 0800200, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
15563 /* If not scalar, fall back to neon_dyadic_long.
15564 Vector types as above, scalar types S16 S32 U16 U32. */
15565 nUF(vmlal
, vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
15566 nUF(vmlsl
, vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
15567 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15568 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
15569 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
15570 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15571 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
15572 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
15573 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
15574 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
15575 /* Saturating doubling multiplies. Types S16 S32. */
15576 nUF(vqdmlal
, vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
15577 nUF(vqdmlsl
, vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
15578 nUF(vqdmull
, vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
15579 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15580 S16 S32 U16 U32. */
15581 nUF(vmull
, vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
15583 /* Extract. Size 8. */
15584 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I7
), neon_ext
),
15585 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I7
), neon_ext
),
15587 /* Two registers, miscellaneous. */
15588 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15589 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
15590 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
15591 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
15592 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
15593 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
15594 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
15595 /* Vector replicate. Sizes 8 16 32. */
15596 nCE(vdup
, vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
15597 nCE(vdupq
, vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
15598 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15599 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
15600 /* VMOVN. Types I16 I32 I64. */
15601 nUF(vmovn
, vmovn
, 2, (RND
, RNQ
), neon_movn
),
15602 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15603 nUF(vqmovn
, vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
15604 /* VQMOVUN. Types S16 S32 S64. */
15605 nUF(vqmovun
, vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
15606 /* VZIP / VUZP. Sizes 8 16 32. */
15607 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
15608 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
15609 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
15610 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
15611 /* VQABS / VQNEG. Types S8 S16 S32. */
15612 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
15613 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
15614 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
15615 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
15616 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15617 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
15618 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
15619 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
15620 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
15621 /* Reciprocal estimates. Types U32 F32. */
15622 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
15623 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
15624 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
15625 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
15626 /* VCLS. Types S8 S16 S32. */
15627 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
15628 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
15629 /* VCLZ. Types I8 I16 I32. */
15630 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
15631 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
15632 /* VCNT. Size 8. */
15633 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
15634 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
15635 /* Two address, untyped. */
15636 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
15637 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
15638 /* VTRN. Sizes 8 16 32. */
15639 nUF(vtrn
, vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
15640 nUF(vtrnq
, vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
15642 /* Table lookup. Size 8. */
15643 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
15644 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
15646 #undef THUMB_VARIANT
15647 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15649 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
15650 /* Neon element/structure load/store. */
15651 nUF(vld1
, vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15652 nUF(vst1
, vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15653 nUF(vld2
, vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15654 nUF(vst2
, vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15655 nUF(vld3
, vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15656 nUF(vst3
, vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15657 nUF(vld4
, vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15658 nUF(vst4
, vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
15660 #undef THUMB_VARIANT
15661 #define THUMB_VARIANT &fpu_vfp_ext_v3
15663 #define ARM_VARIANT &fpu_vfp_ext_v3
15664 cCE(fconsts
, eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
15665 cCE(fconstd
, eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
15666 cCE(fshtos
, eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
15667 cCE(fshtod
, eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
15668 cCE(fsltos
, eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
15669 cCE(fsltod
, eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
15670 cCE(fuhtos
, ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
15671 cCE(fuhtod
, ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
15672 cCE(fultos
, ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
15673 cCE(fultod
, ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
15674 cCE(ftoshs
, ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
15675 cCE(ftoshd
, ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
15676 cCE(ftosls
, ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
15677 cCE(ftosld
, ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
15678 cCE(ftouhs
, ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
15679 cCE(ftouhd
, ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
15680 cCE(ftouls
, ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
15681 cCE(ftould
, ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
15683 #undef THUMB_VARIANT
15685 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
15686 cCE(mia
, e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
15687 cCE(miaph
, e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
15688 cCE(miabb
, e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
15689 cCE(miabt
, e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
15690 cCE(miatb
, e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
15691 cCE(miatt
, e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
15692 cCE(mar
, c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
15693 cCE(mra
, c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
15696 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
15697 cCE(tandcb
, e13f130
, 1, (RR
), iwmmxt_tandorc
),
15698 cCE(tandch
, e53f130
, 1, (RR
), iwmmxt_tandorc
),
15699 cCE(tandcw
, e93f130
, 1, (RR
), iwmmxt_tandorc
),
15700 cCE(tbcstb
, e400010
, 2, (RIWR
, RR
), rn_rd
),
15701 cCE(tbcsth
, e400050
, 2, (RIWR
, RR
), rn_rd
),
15702 cCE(tbcstw
, e400090
, 2, (RIWR
, RR
), rn_rd
),
15703 cCE(textrcb
, e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
15704 cCE(textrch
, e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
15705 cCE(textrcw
, e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
15706 cCE(textrmub
, e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
15707 cCE(textrmuh
, e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
15708 cCE(textrmuw
, e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
15709 cCE(textrmsb
, e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
15710 cCE(textrmsh
, e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
15711 cCE(textrmsw
, e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
15712 cCE(tinsrb
, e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
15713 cCE(tinsrh
, e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
15714 cCE(tinsrw
, e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
15715 cCE(tmcr
, e000110
, 2, (RIWC
, RR
), rn_rd
),
15716 cCE(tmcrr
, c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
15717 cCE(tmia
, e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
15718 cCE(tmiaph
, e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
15719 cCE(tmiabb
, e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
15720 cCE(tmiabt
, e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
15721 cCE(tmiatb
, e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
15722 cCE(tmiatt
, e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
15723 cCE(tmovmskb
, e100030
, 2, (RR
, RIWR
), rd_rn
),
15724 cCE(tmovmskh
, e500030
, 2, (RR
, RIWR
), rd_rn
),
15725 cCE(tmovmskw
, e900030
, 2, (RR
, RIWR
), rd_rn
),
15726 cCE(tmrc
, e100110
, 2, (RR
, RIWC
), rd_rn
),
15727 cCE(tmrrc
, c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
15728 cCE(torcb
, e13f150
, 1, (RR
), iwmmxt_tandorc
),
15729 cCE(torch
, e53f150
, 1, (RR
), iwmmxt_tandorc
),
15730 cCE(torcw
, e93f150
, 1, (RR
), iwmmxt_tandorc
),
15731 cCE(waccb
, e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
15732 cCE(wacch
, e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
15733 cCE(waccw
, e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
15734 cCE(waddbss
, e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15735 cCE(waddb
, e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15736 cCE(waddbus
, e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15737 cCE(waddhss
, e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15738 cCE(waddh
, e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15739 cCE(waddhus
, e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15740 cCE(waddwss
, eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15741 cCE(waddw
, e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15742 cCE(waddwus
, e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15743 cCE(waligni
, e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
15744 cCE(walignr0
, e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15745 cCE(walignr1
, e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15746 cCE(walignr2
, ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15747 cCE(walignr3
, eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15748 cCE(wand
, e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15749 cCE(wandn
, e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15750 cCE(wavg2b
, e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15751 cCE(wavg2br
, e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15752 cCE(wavg2h
, ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15753 cCE(wavg2hr
, ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15754 cCE(wcmpeqb
, e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15755 cCE(wcmpeqh
, e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15756 cCE(wcmpeqw
, e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15757 cCE(wcmpgtub
, e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15758 cCE(wcmpgtuh
, e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15759 cCE(wcmpgtuw
, e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15760 cCE(wcmpgtsb
, e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15761 cCE(wcmpgtsh
, e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15762 cCE(wcmpgtsw
, eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15763 cCE(wldrb
, c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
15764 cCE(wldrh
, c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
15765 cCE(wldrw
, c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
15766 cCE(wldrd
, c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
15767 cCE(wmacs
, e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15768 cCE(wmacsz
, e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15769 cCE(wmacu
, e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15770 cCE(wmacuz
, e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15771 cCE(wmadds
, ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15772 cCE(wmaddu
, e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15773 cCE(wmaxsb
, e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15774 cCE(wmaxsh
, e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15775 cCE(wmaxsw
, ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15776 cCE(wmaxub
, e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15777 cCE(wmaxuh
, e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15778 cCE(wmaxuw
, e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15779 cCE(wminsb
, e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15780 cCE(wminsh
, e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15781 cCE(wminsw
, eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15782 cCE(wminub
, e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15783 cCE(wminuh
, e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15784 cCE(wminuw
, e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15785 cCE(wmov
, e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
15786 cCE(wmulsm
, e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15787 cCE(wmulsl
, e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15788 cCE(wmulum
, e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15789 cCE(wmulul
, e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15790 cCE(wor
, e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15791 cCE(wpackhss
, e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15792 cCE(wpackhus
, e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15793 cCE(wpackwss
, eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15794 cCE(wpackwus
, e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15795 cCE(wpackdss
, ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15796 cCE(wpackdus
, ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15797 cCE(wrorh
, e700040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15798 cCE(wrorhg
, e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15799 cCE(wrorw
, eb00040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15800 cCE(wrorwg
, eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15801 cCE(wrord
, ef00040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15802 cCE(wrordg
, ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15803 cCE(wsadb
, e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15804 cCE(wsadbz
, e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15805 cCE(wsadh
, e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15806 cCE(wsadhz
, e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15807 cCE(wshufh
, e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
15808 cCE(wsllh
, e500040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15809 cCE(wsllhg
, e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15810 cCE(wsllw
, e900040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15811 cCE(wsllwg
, e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15812 cCE(wslld
, ed00040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15813 cCE(wslldg
, ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15814 cCE(wsrah
, e400040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15815 cCE(wsrahg
, e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15816 cCE(wsraw
, e800040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15817 cCE(wsrawg
, e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15818 cCE(wsrad
, ec00040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15819 cCE(wsradg
, ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15820 cCE(wsrlh
, e600040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15821 cCE(wsrlhg
, e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15822 cCE(wsrlw
, ea00040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15823 cCE(wsrlwg
, ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15824 cCE(wsrld
, ee00040
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15825 cCE(wsrldg
, ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
15826 cCE(wstrb
, c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
15827 cCE(wstrh
, c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
15828 cCE(wstrw
, c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
15829 cCE(wstrd
, c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
15830 cCE(wsubbss
, e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15831 cCE(wsubb
, e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15832 cCE(wsubbus
, e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15833 cCE(wsubhss
, e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15834 cCE(wsubh
, e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15835 cCE(wsubhus
, e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15836 cCE(wsubwss
, eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15837 cCE(wsubw
, e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15838 cCE(wsubwus
, e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15839 cCE(wunpckehub
,e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
15840 cCE(wunpckehuh
,e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
15841 cCE(wunpckehuw
,e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
15842 cCE(wunpckehsb
,e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
15843 cCE(wunpckehsh
,e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
15844 cCE(wunpckehsw
,ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
15845 cCE(wunpckihb
, e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15846 cCE(wunpckihh
, e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15847 cCE(wunpckihw
, e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15848 cCE(wunpckelub
,e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
15849 cCE(wunpckeluh
,e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
15850 cCE(wunpckeluw
,e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
15851 cCE(wunpckelsb
,e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
15852 cCE(wunpckelsh
,e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
15853 cCE(wunpckelsw
,ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
15854 cCE(wunpckilb
, e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15855 cCE(wunpckilh
, e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15856 cCE(wunpckilw
, e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15857 cCE(wxor
, e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
15858 cCE(wzero
, e300000
, 1, (RIWR
), iwmmxt_wzero
),
15861 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
15862 cCE(cfldrs
, c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
15863 cCE(cfldrd
, c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
15864 cCE(cfldr32
, c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
15865 cCE(cfldr64
, c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
15866 cCE(cfstrs
, c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
15867 cCE(cfstrd
, c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
15868 cCE(cfstr32
, c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
15869 cCE(cfstr64
, c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
15870 cCE(cfmvsr
, e000450
, 2, (RMF
, RR
), rn_rd
),
15871 cCE(cfmvrs
, e100450
, 2, (RR
, RMF
), rd_rn
),
15872 cCE(cfmvdlr
, e000410
, 2, (RMD
, RR
), rn_rd
),
15873 cCE(cfmvrdl
, e100410
, 2, (RR
, RMD
), rd_rn
),
15874 cCE(cfmvdhr
, e000430
, 2, (RMD
, RR
), rn_rd
),
15875 cCE(cfmvrdh
, e100430
, 2, (RR
, RMD
), rd_rn
),
15876 cCE(cfmv64lr
, e000510
, 2, (RMDX
, RR
), rn_rd
),
15877 cCE(cfmvr64l
, e100510
, 2, (RR
, RMDX
), rd_rn
),
15878 cCE(cfmv64hr
, e000530
, 2, (RMDX
, RR
), rn_rd
),
15879 cCE(cfmvr64h
, e100530
, 2, (RR
, RMDX
), rd_rn
),
15880 cCE(cfmval32
, e200440
, 2, (RMAX
, RMFX
), rd_rn
),
15881 cCE(cfmv32al
, e100440
, 2, (RMFX
, RMAX
), rd_rn
),
15882 cCE(cfmvam32
, e200460
, 2, (RMAX
, RMFX
), rd_rn
),
15883 cCE(cfmv32am
, e100460
, 2, (RMFX
, RMAX
), rd_rn
),
15884 cCE(cfmvah32
, e200480
, 2, (RMAX
, RMFX
), rd_rn
),
15885 cCE(cfmv32ah
, e100480
, 2, (RMFX
, RMAX
), rd_rn
),
15886 cCE(cfmva32
, e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
15887 cCE(cfmv32a
, e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
15888 cCE(cfmva64
, e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
15889 cCE(cfmv64a
, e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
15890 cCE(cfmvsc32
, e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
15891 cCE(cfmv32sc
, e1004e0
, 2, (RMDX
, RMDS
), rd
),
15892 cCE(cfcpys
, e000400
, 2, (RMF
, RMF
), rd_rn
),
15893 cCE(cfcpyd
, e000420
, 2, (RMD
, RMD
), rd_rn
),
15894 cCE(cfcvtsd
, e000460
, 2, (RMD
, RMF
), rd_rn
),
15895 cCE(cfcvtds
, e000440
, 2, (RMF
, RMD
), rd_rn
),
15896 cCE(cfcvt32s
, e000480
, 2, (RMF
, RMFX
), rd_rn
),
15897 cCE(cfcvt32d
, e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
15898 cCE(cfcvt64s
, e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
15899 cCE(cfcvt64d
, e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
15900 cCE(cfcvts32
, e100580
, 2, (RMFX
, RMF
), rd_rn
),
15901 cCE(cfcvtd32
, e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
15902 cCE(cftruncs32
,e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
15903 cCE(cftruncd32
,e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
15904 cCE(cfrshl32
, e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
15905 cCE(cfrshl64
, e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
15906 cCE(cfsh32
, e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
15907 cCE(cfsh64
, e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
15908 cCE(cfcmps
, e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
15909 cCE(cfcmpd
, e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
15910 cCE(cfcmp32
, e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
15911 cCE(cfcmp64
, e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
15912 cCE(cfabss
, e300400
, 2, (RMF
, RMF
), rd_rn
),
15913 cCE(cfabsd
, e300420
, 2, (RMD
, RMD
), rd_rn
),
15914 cCE(cfnegs
, e300440
, 2, (RMF
, RMF
), rd_rn
),
15915 cCE(cfnegd
, e300460
, 2, (RMD
, RMD
), rd_rn
),
15916 cCE(cfadds
, e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
15917 cCE(cfaddd
, e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
15918 cCE(cfsubs
, e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
15919 cCE(cfsubd
, e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
15920 cCE(cfmuls
, e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
15921 cCE(cfmuld
, e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
15922 cCE(cfabs32
, e300500
, 2, (RMFX
, RMFX
), rd_rn
),
15923 cCE(cfabs64
, e300520
, 2, (RMDX
, RMDX
), rd_rn
),
15924 cCE(cfneg32
, e300540
, 2, (RMFX
, RMFX
), rd_rn
),
15925 cCE(cfneg64
, e300560
, 2, (RMDX
, RMDX
), rd_rn
),
15926 cCE(cfadd32
, e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
15927 cCE(cfadd64
, e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
15928 cCE(cfsub32
, e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
15929 cCE(cfsub64
, e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
15930 cCE(cfmul32
, e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
15931 cCE(cfmul64
, e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
15932 cCE(cfmac32
, e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
15933 cCE(cfmsc32
, e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
15934 cCE(cfmadd32
, e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
15935 cCE(cfmsub32
, e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
15936 cCE(cfmadda32
, e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
15937 cCE(cfmsuba32
, e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
15940 #undef THUMB_VARIANT
15967 /* MD interface: bits in the object file. */
15969 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
15970 for use in the a.out file, and stores them in the array pointed to by buf.
15971 This knows about the endian-ness of the target machine and does
15972 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
15973 2 (short) and 4 (long) Floating numbers are put out as a series of
15974 LITTLENUMS (shorts, here at least). */
15977 md_number_to_chars (char * buf
, valueT val
, int n
)
15979 if (target_big_endian
)
15980 number_to_chars_bigendian (buf
, val
, n
);
15982 number_to_chars_littleendian (buf
, val
, n
);
15986 md_chars_to_number (char * buf
, int n
)
15989 unsigned char * where
= (unsigned char *) buf
;
15991 if (target_big_endian
)
15996 result
|= (*where
++ & 255);
16004 result
|= (where
[n
] & 255);
16011 /* MD interface: Sections. */
16013 /* Estimate the size of a frag before relaxing. Assume everything fits in
16017 md_estimate_size_before_relax (fragS
* fragp
,
16018 segT segtype ATTRIBUTE_UNUSED
)
16024 /* Convert a machine dependent frag. */
16027 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
16029 unsigned long insn
;
16030 unsigned long old_op
;
16038 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
16040 old_op
= bfd_get_16(abfd
, buf
);
16041 if (fragp
->fr_symbol
) {
16042 exp
.X_op
= O_symbol
;
16043 exp
.X_add_symbol
= fragp
->fr_symbol
;
16045 exp
.X_op
= O_constant
;
16047 exp
.X_add_number
= fragp
->fr_offset
;
16048 opcode
= fragp
->fr_subtype
;
16051 case T_MNEM_ldr_pc
:
16052 case T_MNEM_ldr_pc2
:
16053 case T_MNEM_ldr_sp
:
16054 case T_MNEM_str_sp
:
16061 if (fragp
->fr_var
== 4)
16063 insn
= THUMB_OP32(opcode
);
16064 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
16066 insn
|= (old_op
& 0x700) << 4;
16070 insn
|= (old_op
& 7) << 12;
16071 insn
|= (old_op
& 0x38) << 13;
16073 insn
|= 0x00000c00;
16074 put_thumb32_insn (buf
, insn
);
16075 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
16079 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
16081 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
16084 if (fragp
->fr_var
== 4)
16086 insn
= THUMB_OP32 (opcode
);
16087 insn
|= (old_op
& 0xf0) << 4;
16088 put_thumb32_insn (buf
, insn
);
16089 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
16093 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
16094 exp
.X_add_number
-= 4;
16102 if (fragp
->fr_var
== 4)
16104 int r0off
= (opcode
== T_MNEM_mov
16105 || opcode
== T_MNEM_movs
) ? 0 : 8;
16106 insn
= THUMB_OP32 (opcode
);
16107 insn
= (insn
& 0xe1ffffff) | 0x10000000;
16108 insn
|= (old_op
& 0x700) << r0off
;
16109 put_thumb32_insn (buf
, insn
);
16110 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
16114 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
16119 if (fragp
->fr_var
== 4)
16121 insn
= THUMB_OP32(opcode
);
16122 put_thumb32_insn (buf
, insn
);
16123 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
16126 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
16130 if (fragp
->fr_var
== 4)
16132 insn
= THUMB_OP32(opcode
);
16133 insn
|= (old_op
& 0xf00) << 14;
16134 put_thumb32_insn (buf
, insn
);
16135 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
16138 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
16141 case T_MNEM_add_sp
:
16142 case T_MNEM_add_pc
:
16143 case T_MNEM_inc_sp
:
16144 case T_MNEM_dec_sp
:
16145 if (fragp
->fr_var
== 4)
16147 /* ??? Choose between add and addw. */
16148 insn
= THUMB_OP32 (opcode
);
16149 insn
|= (old_op
& 0xf0) << 4;
16150 put_thumb32_insn (buf
, insn
);
16151 if (opcode
== T_MNEM_add_pc
)
16152 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
16154 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
16157 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
16165 if (fragp
->fr_var
== 4)
16167 insn
= THUMB_OP32 (opcode
);
16168 insn
|= (old_op
& 0xf0) << 4;
16169 insn
|= (old_op
& 0xf) << 16;
16170 put_thumb32_insn (buf
, insn
);
16171 if (insn
& (1 << 20))
16172 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
16174 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
16177 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
16183 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
16185 fixp
->fx_file
= fragp
->fr_file
;
16186 fixp
->fx_line
= fragp
->fr_line
;
16187 fragp
->fr_fix
+= fragp
->fr_var
;
16190 /* Return the size of a relaxable immediate operand instruction.
16191 SHIFT and SIZE specify the form of the allowable immediate. */
16193 relax_immediate (fragS
*fragp
, int size
, int shift
)
16199 /* ??? Should be able to do better than this. */
16200 if (fragp
->fr_symbol
)
16203 low
= (1 << shift
) - 1;
16204 mask
= (1 << (shift
+ size
)) - (1 << shift
);
16205 offset
= fragp
->fr_offset
;
16206 /* Force misaligned offsets to 32-bit variant. */
16209 if (offset
& ~mask
)
16214 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16217 relax_adr (fragS
*fragp
, asection
*sec
)
16222 /* Assume worst case for symbols not known to be in the same section. */
16223 if (!S_IS_DEFINED(fragp
->fr_symbol
)
16224 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
))
16227 val
= S_GET_VALUE(fragp
->fr_symbol
) + fragp
->fr_offset
;
16228 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
16229 addr
= (addr
+ 4) & ~3;
16230 /* Fix the insn as the 4-byte version if the target address is not
16231 sufficiently aligned. This is prevents an infinite loop when two
16232 instructions have contradictory range/alignment requirements. */
16236 if (val
< 0 || val
> 1020)
16241 /* Return the size of a relaxable add/sub immediate instruction. */
16243 relax_addsub (fragS
*fragp
, asection
*sec
)
16248 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
16249 op
= bfd_get_16(sec
->owner
, buf
);
16250 if ((op
& 0xf) == ((op
>> 4) & 0xf))
16251 return relax_immediate (fragp
, 8, 0);
16253 return relax_immediate (fragp
, 3, 0);
16257 /* Return the size of a relaxable branch instruction. BITS is the
16258 size of the offset field in the narrow instruction. */
16261 relax_branch (fragS
*fragp
, asection
*sec
, int bits
)
16267 /* Assume worst case for symbols not known to be in the same section. */
16268 if (!S_IS_DEFINED(fragp
->fr_symbol
)
16269 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
))
16272 val
= S_GET_VALUE(fragp
->fr_symbol
) + fragp
->fr_offset
;
16273 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
16276 /* Offset is a signed value *2 */
16278 if (val
>= limit
|| val
< -limit
)
16284 /* Relax a machine dependent frag. This returns the amount by which
16285 the current size of the frag should change. */
16288 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch ATTRIBUTE_UNUSED
)
16293 oldsize
= fragp
->fr_var
;
16294 switch (fragp
->fr_subtype
)
16296 case T_MNEM_ldr_pc2
:
16297 newsize
= relax_adr(fragp
, sec
);
16299 case T_MNEM_ldr_pc
:
16300 case T_MNEM_ldr_sp
:
16301 case T_MNEM_str_sp
:
16302 newsize
= relax_immediate(fragp
, 8, 2);
16306 newsize
= relax_immediate(fragp
, 5, 2);
16310 newsize
= relax_immediate(fragp
, 5, 1);
16314 newsize
= relax_immediate(fragp
, 5, 0);
16317 newsize
= relax_adr(fragp
, sec
);
16323 newsize
= relax_immediate(fragp
, 8, 0);
16326 newsize
= relax_branch(fragp
, sec
, 11);
16329 newsize
= relax_branch(fragp
, sec
, 8);
16331 case T_MNEM_add_sp
:
16332 case T_MNEM_add_pc
:
16333 newsize
= relax_immediate (fragp
, 8, 2);
16335 case T_MNEM_inc_sp
:
16336 case T_MNEM_dec_sp
:
16337 newsize
= relax_immediate (fragp
, 7, 2);
16343 newsize
= relax_addsub (fragp
, sec
);
16350 fragp
->fr_var
= -newsize
;
16351 md_convert_frag (sec
->owner
, sec
, fragp
);
16353 return -(newsize
+ oldsize
);
16355 fragp
->fr_var
= newsize
;
16356 return newsize
- oldsize
;
16359 /* Round up a section size to the appropriate boundary. */
16362 md_section_align (segT segment ATTRIBUTE_UNUSED
,
16368 /* Round all sects to multiple of 4. */
16369 return (size
+ 3) & ~3;
16373 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16374 of an rs_align_code fragment. */
16377 arm_handle_align (fragS
* fragP
)
16379 static char const arm_noop
[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16380 static char const thumb_noop
[2] = { 0xc0, 0x46 };
16381 static char const arm_bigend_noop
[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16382 static char const thumb_bigend_noop
[2] = { 0x46, 0xc0 };
16384 int bytes
, fix
, noop_size
;
16388 if (fragP
->fr_type
!= rs_align_code
)
16391 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
16392 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
16395 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
16396 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
16398 if (fragP
->tc_frag_data
)
16400 if (target_big_endian
)
16401 noop
= thumb_bigend_noop
;
16404 noop_size
= sizeof (thumb_noop
);
16408 if (target_big_endian
)
16409 noop
= arm_bigend_noop
;
16412 noop_size
= sizeof (arm_noop
);
16415 if (bytes
& (noop_size
- 1))
16417 fix
= bytes
& (noop_size
- 1);
16418 memset (p
, 0, fix
);
16423 while (bytes
>= noop_size
)
16425 memcpy (p
, noop
, noop_size
);
16427 bytes
-= noop_size
;
16431 fragP
->fr_fix
+= fix
;
16432 fragP
->fr_var
= noop_size
;
16435 /* Called from md_do_align. Used to create an alignment
16436 frag in a code section. */
16439 arm_frag_align_code (int n
, int max
)
16443 /* We assume that there will never be a requirement
16444 to support alignments greater than 32 bytes. */
16445 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
16446 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
16448 p
= frag_var (rs_align_code
,
16449 MAX_MEM_FOR_RS_ALIGN_CODE
,
16451 (relax_substateT
) max
,
16458 /* Perform target specific initialisation of a frag. */
16461 arm_init_frag (fragS
* fragP
)
16463 /* Record whether this frag is in an ARM or a THUMB area. */
16464 fragP
->tc_frag_data
= thumb_mode
;
16468 /* When we change sections we need to issue a new mapping symbol. */
16471 arm_elf_change_section (void)
16474 segment_info_type
*seginfo
;
16476 /* Link an unlinked unwind index table section to the .text section. */
16477 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
16478 && elf_linked_to_section (now_seg
) == NULL
)
16479 elf_linked_to_section (now_seg
) = text_section
;
16481 if (!SEG_NORMAL (now_seg
))
16484 flags
= bfd_get_section_flags (stdoutput
, now_seg
);
16486 /* We can ignore sections that only contain debug info. */
16487 if ((flags
& SEC_ALLOC
) == 0)
16490 seginfo
= seg_info (now_seg
);
16491 mapstate
= seginfo
->tc_segment_info_data
.mapstate
;
16492 marked_pr_dependency
= seginfo
->tc_segment_info_data
.marked_pr_dependency
;
16496 arm_elf_section_type (const char * str
, size_t len
)
16498 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
16499 return SHT_ARM_EXIDX
;
16504 /* Code to deal with unwinding tables. */
16506 static void add_unwind_adjustsp (offsetT
);
16508 /* Cenerate and deferred unwind frame offset. */
16511 flush_pending_unwind (void)
16515 offset
= unwind
.pending_offset
;
16516 unwind
.pending_offset
= 0;
16518 add_unwind_adjustsp (offset
);
16521 /* Add an opcode to this list for this function. Two-byte opcodes should
16522 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16526 add_unwind_opcode (valueT op
, int length
)
16528 /* Add any deferred stack adjustment. */
16529 if (unwind
.pending_offset
)
16530 flush_pending_unwind ();
16532 unwind
.sp_restored
= 0;
16534 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
16536 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
16537 if (unwind
.opcodes
)
16538 unwind
.opcodes
= xrealloc (unwind
.opcodes
,
16539 unwind
.opcode_alloc
);
16541 unwind
.opcodes
= xmalloc (unwind
.opcode_alloc
);
16546 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
16548 unwind
.opcode_count
++;
16552 /* Add unwind opcodes to adjust the stack pointer. */
16555 add_unwind_adjustsp (offsetT offset
)
16559 if (offset
> 0x200)
16561 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
16566 /* Long form: 0xb2, uleb128. */
16567 /* This might not fit in a word so add the individual bytes,
16568 remembering the list is built in reverse order. */
16569 o
= (valueT
) ((offset
- 0x204) >> 2);
16571 add_unwind_opcode (0, 1);
16573 /* Calculate the uleb128 encoding of the offset. */
16577 bytes
[n
] = o
& 0x7f;
16583 /* Add the insn. */
16585 add_unwind_opcode (bytes
[n
- 1], 1);
16586 add_unwind_opcode (0xb2, 1);
16588 else if (offset
> 0x100)
16590 /* Two short opcodes. */
16591 add_unwind_opcode (0x3f, 1);
16592 op
= (offset
- 0x104) >> 2;
16593 add_unwind_opcode (op
, 1);
16595 else if (offset
> 0)
16597 /* Short opcode. */
16598 op
= (offset
- 4) >> 2;
16599 add_unwind_opcode (op
, 1);
16601 else if (offset
< 0)
16604 while (offset
> 0x100)
16606 add_unwind_opcode (0x7f, 1);
16609 op
= ((offset
- 4) >> 2) | 0x40;
16610 add_unwind_opcode (op
, 1);
16614 /* Finish the list of unwind opcodes for this function. */
16616 finish_unwind_opcodes (void)
16620 if (unwind
.fp_used
)
16622 /* Adjust sp as necessary. */
16623 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
16624 flush_pending_unwind ();
16626 /* After restoring sp from the frame pointer. */
16627 op
= 0x90 | unwind
.fp_reg
;
16628 add_unwind_opcode (op
, 1);
16631 flush_pending_unwind ();
16635 /* Start an exception table entry. If idx is nonzero this is an index table
16639 start_unwind_section (const segT text_seg
, int idx
)
16641 const char * text_name
;
16642 const char * prefix
;
16643 const char * prefix_once
;
16644 const char * group_name
;
16648 size_t sec_name_len
;
16655 prefix
= ELF_STRING_ARM_unwind
;
16656 prefix_once
= ELF_STRING_ARM_unwind_once
;
16657 type
= SHT_ARM_EXIDX
;
16661 prefix
= ELF_STRING_ARM_unwind_info
;
16662 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
16663 type
= SHT_PROGBITS
;
16666 text_name
= segment_name (text_seg
);
16667 if (streq (text_name
, ".text"))
16670 if (strncmp (text_name
, ".gnu.linkonce.t.",
16671 strlen (".gnu.linkonce.t.")) == 0)
16673 prefix
= prefix_once
;
16674 text_name
+= strlen (".gnu.linkonce.t.");
16677 prefix_len
= strlen (prefix
);
16678 text_len
= strlen (text_name
);
16679 sec_name_len
= prefix_len
+ text_len
;
16680 sec_name
= xmalloc (sec_name_len
+ 1);
16681 memcpy (sec_name
, prefix
, prefix_len
);
16682 memcpy (sec_name
+ prefix_len
, text_name
, text_len
);
16683 sec_name
[prefix_len
+ text_len
] = '\0';
16689 /* Handle COMDAT group. */
16690 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
16692 group_name
= elf_group_name (text_seg
);
16693 if (group_name
== NULL
)
16695 as_bad ("Group section `%s' has no group signature",
16696 segment_name (text_seg
));
16697 ignore_rest_of_line ();
16700 flags
|= SHF_GROUP
;
16704 obj_elf_change_section (sec_name
, type
, flags
, 0, group_name
, linkonce
, 0);
16706 /* Set the setion link for index tables. */
16708 elf_linked_to_section (now_seg
) = text_seg
;
16712 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
16713 personality routine data. Returns zero, or the index table value for
16714 and inline entry. */
16717 create_unwind_entry (int have_data
)
16722 /* The current word of data. */
16724 /* The number of bytes left in this word. */
16727 finish_unwind_opcodes ();
16729 /* Remember the current text section. */
16730 unwind
.saved_seg
= now_seg
;
16731 unwind
.saved_subseg
= now_subseg
;
16733 start_unwind_section (now_seg
, 0);
16735 if (unwind
.personality_routine
== NULL
)
16737 if (unwind
.personality_index
== -2)
16740 as_bad (_("handerdata in cantunwind frame"));
16741 return 1; /* EXIDX_CANTUNWIND. */
16744 /* Use a default personality routine if none is specified. */
16745 if (unwind
.personality_index
== -1)
16747 if (unwind
.opcode_count
> 3)
16748 unwind
.personality_index
= 1;
16750 unwind
.personality_index
= 0;
16753 /* Space for the personality routine entry. */
16754 if (unwind
.personality_index
== 0)
16756 if (unwind
.opcode_count
> 3)
16757 as_bad (_("too many unwind opcodes for personality routine 0"));
16761 /* All the data is inline in the index table. */
16764 while (unwind
.opcode_count
> 0)
16766 unwind
.opcode_count
--;
16767 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
16771 /* Pad with "finish" opcodes. */
16773 data
= (data
<< 8) | 0xb0;
16780 /* We get two opcodes "free" in the first word. */
16781 size
= unwind
.opcode_count
- 2;
16784 /* An extra byte is required for the opcode count. */
16785 size
= unwind
.opcode_count
+ 1;
16787 size
= (size
+ 3) >> 2;
16789 as_bad (_("too many unwind opcodes"));
16791 frag_align (2, 0, 0);
16792 record_alignment (now_seg
, 2);
16793 unwind
.table_entry
= expr_build_dot ();
16795 /* Allocate the table entry. */
16796 ptr
= frag_more ((size
<< 2) + 4);
16797 where
= frag_now_fix () - ((size
<< 2) + 4);
16799 switch (unwind
.personality_index
)
16802 /* ??? Should this be a PLT generating relocation? */
16803 /* Custom personality routine. */
16804 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
16805 BFD_RELOC_ARM_PREL31
);
16810 /* Set the first byte to the number of additional words. */
16815 /* ABI defined personality routines. */
16817 /* Three opcodes bytes are packed into the first word. */
16824 /* The size and first two opcode bytes go in the first word. */
16825 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
16830 /* Should never happen. */
16834 /* Pack the opcodes into words (MSB first), reversing the list at the same
16836 while (unwind
.opcode_count
> 0)
16840 md_number_to_chars (ptr
, data
, 4);
16845 unwind
.opcode_count
--;
16847 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
16850 /* Finish off the last word. */
16853 /* Pad with "finish" opcodes. */
16855 data
= (data
<< 8) | 0xb0;
16857 md_number_to_chars (ptr
, data
, 4);
16862 /* Add an empty descriptor if there is no user-specified data. */
16863 ptr
= frag_more (4);
16864 md_number_to_chars (ptr
, 0, 4);
16870 /* Convert REGNAME to a DWARF-2 register number. */
16873 tc_arm_regname_to_dw2regnum (char *regname
)
16875 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
16883 /* Initialize the DWARF-2 unwind information for this procedure. */
16886 tc_arm_frame_initial_instructions (void)
16888 cfi_add_CFA_def_cfa (REG_SP
, 0);
16890 #endif /* OBJ_ELF */
16893 /* MD interface: Symbol and relocation handling. */
16895 /* Return the address within the segment that a PC-relative fixup is
16896 relative to. For ARM, PC-relative fixups applied to instructions
16897 are generally relative to the location of the fixup plus 8 bytes.
16898 Thumb branches are offset by 4, and Thumb loads relative to PC
16899 require special handling. */
16902 md_pcrel_from_section (fixS
* fixP
, segT seg
)
16904 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
16906 /* If this is pc-relative and we are going to emit a relocation
16907 then we just want to put out any pipeline compensation that the linker
16908 will need. Otherwise we want to use the calculated base.
16909 For WinCE we skip the bias for externals as well, since this
16910 is how the MS ARM-CE assembler behaves and we want to be compatible. */
16912 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
16913 || (arm_force_relocation (fixP
)
16915 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
16920 switch (fixP
->fx_r_type
)
16922 /* PC relative addressing on the Thumb is slightly odd as the
16923 bottom two bits of the PC are forced to zero for the
16924 calculation. This happens *after* application of the
16925 pipeline offset. However, Thumb adrl already adjusts for
16926 this, so we need not do it again. */
16927 case BFD_RELOC_ARM_THUMB_ADD
:
16930 case BFD_RELOC_ARM_THUMB_OFFSET
:
16931 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
16932 case BFD_RELOC_ARM_T32_ADD_PC12
:
16933 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
16934 return (base
+ 4) & ~3;
16936 /* Thumb branches are simply offset by +4. */
16937 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
16938 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
16939 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
16940 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
16941 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
16942 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
16943 case BFD_RELOC_THUMB_PCREL_BLX
:
16946 /* ARM mode branches are offset by +8. However, the Windows CE
16947 loader expects the relocation not to take this into account. */
16948 case BFD_RELOC_ARM_PCREL_BRANCH
:
16949 case BFD_RELOC_ARM_PCREL_CALL
:
16950 case BFD_RELOC_ARM_PCREL_JUMP
:
16951 case BFD_RELOC_ARM_PCREL_BLX
:
16952 case BFD_RELOC_ARM_PLT32
:
16954 /* When handling fixups immediately, because we have already
16955 discovered the value of a symbol, or the address of the frag involved
16956 we must account for the offset by +8, as the OS loader will never see the reloc.
16957 see fixup_segment() in write.c
16958 The S_IS_EXTERNAL test handles the case of global symbols.
16959 Those need the calculated base, not just the pipe compensation the linker will need. */
16961 && fixP
->fx_addsy
!= NULL
16962 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
16963 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
16970 /* ARM mode loads relative to PC are also offset by +8. Unlike
16971 branches, the Windows CE loader *does* expect the relocation
16972 to take this into account. */
16973 case BFD_RELOC_ARM_OFFSET_IMM
:
16974 case BFD_RELOC_ARM_OFFSET_IMM8
:
16975 case BFD_RELOC_ARM_HWLITERAL
:
16976 case BFD_RELOC_ARM_LITERAL
:
16977 case BFD_RELOC_ARM_CP_OFF_IMM
:
16981 /* Other PC-relative relocations are un-offset. */
16987 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
16988 Otherwise we have no need to default values of symbols. */
16991 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
16994 if (name
[0] == '_' && name
[1] == 'G'
16995 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
16999 if (symbol_find (name
))
17000 as_bad ("GOT already in the symbol table");
17002 GOT_symbol
= symbol_new (name
, undefined_section
,
17003 (valueT
) 0, & zero_address_frag
);
17013 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17014 computed as two separate immediate values, added together. We
17015 already know that this value cannot be computed by just one ARM
17018 static unsigned int
17019 validate_immediate_twopart (unsigned int val
,
17020 unsigned int * highpart
)
17025 for (i
= 0; i
< 32; i
+= 2)
17026 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
17032 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
17034 else if (a
& 0xff0000)
17036 if (a
& 0xff000000)
17038 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
17042 assert (a
& 0xff000000);
17043 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
17046 return (a
& 0xff) | (i
<< 7);
17053 validate_offset_imm (unsigned int val
, int hwse
)
17055 if ((hwse
&& val
> 255) || val
> 4095)
17060 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17061 negative immediate constant by altering the instruction. A bit of
17066 by inverting the second operand, and
17069 by negating the second operand. */
17072 negate_data_op (unsigned long * instruction
,
17073 unsigned long value
)
17076 unsigned long negated
, inverted
;
17078 negated
= encode_arm_immediate (-value
);
17079 inverted
= encode_arm_immediate (~value
);
17081 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
17084 /* First negates. */
17085 case OPCODE_SUB
: /* ADD <-> SUB */
17086 new_inst
= OPCODE_ADD
;
17091 new_inst
= OPCODE_SUB
;
17095 case OPCODE_CMP
: /* CMP <-> CMN */
17096 new_inst
= OPCODE_CMN
;
17101 new_inst
= OPCODE_CMP
;
17105 /* Now Inverted ops. */
17106 case OPCODE_MOV
: /* MOV <-> MVN */
17107 new_inst
= OPCODE_MVN
;
17112 new_inst
= OPCODE_MOV
;
17116 case OPCODE_AND
: /* AND <-> BIC */
17117 new_inst
= OPCODE_BIC
;
17122 new_inst
= OPCODE_AND
;
17126 case OPCODE_ADC
: /* ADC <-> SBC */
17127 new_inst
= OPCODE_SBC
;
17132 new_inst
= OPCODE_ADC
;
17136 /* We cannot do anything. */
17141 if (value
== (unsigned) FAIL
)
17144 *instruction
&= OPCODE_MASK
;
17145 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
17149 /* Like negate_data_op, but for Thumb-2. */
17151 static unsigned int
17152 thumb32_negate_data_op (offsetT
*instruction
, offsetT value
)
17156 offsetT negated
, inverted
;
17158 negated
= encode_thumb32_immediate (-value
);
17159 inverted
= encode_thumb32_immediate (~value
);
17161 rd
= (*instruction
>> 8) & 0xf;
17162 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
17165 /* ADD <-> SUB. Includes CMP <-> CMN. */
17166 case T2_OPCODE_SUB
:
17167 new_inst
= T2_OPCODE_ADD
;
17171 case T2_OPCODE_ADD
:
17172 new_inst
= T2_OPCODE_SUB
;
17176 /* ORR <-> ORN. Includes MOV <-> MVN. */
17177 case T2_OPCODE_ORR
:
17178 new_inst
= T2_OPCODE_ORN
;
17182 case T2_OPCODE_ORN
:
17183 new_inst
= T2_OPCODE_ORR
;
17187 /* AND <-> BIC. TST has no inverted equivalent. */
17188 case T2_OPCODE_AND
:
17189 new_inst
= T2_OPCODE_BIC
;
17196 case T2_OPCODE_BIC
:
17197 new_inst
= T2_OPCODE_AND
;
17202 case T2_OPCODE_ADC
:
17203 new_inst
= T2_OPCODE_SBC
;
17207 case T2_OPCODE_SBC
:
17208 new_inst
= T2_OPCODE_ADC
;
17212 /* We cannot do anything. */
17220 *instruction
&= T2_OPCODE_MASK
;
17221 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
17225 /* Read a 32-bit thumb instruction from buf. */
17226 static unsigned long
17227 get_thumb32_insn (char * buf
)
17229 unsigned long insn
;
17230 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
17231 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
17237 /* We usually want to set the low bit on the address of thumb function
17238 symbols. In particular .word foo - . should have the low bit set.
17239 Generic code tries to fold the difference of two symbols to
17240 a constant. Prevent this and force a relocation when the first symbols
17241 is a thumb function. */
17243 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
17245 if (op
== O_subtract
17246 && l
->X_op
== O_symbol
17247 && r
->X_op
== O_symbol
17248 && THUMB_IS_FUNC (l
->X_add_symbol
))
17250 l
->X_op
= O_subtract
;
17251 l
->X_op_symbol
= r
->X_add_symbol
;
17252 l
->X_add_number
-= r
->X_add_number
;
17255 /* Process as normal. */
17260 md_apply_fix (fixS
* fixP
,
17264 offsetT value
= * valP
;
17266 unsigned int newimm
;
17267 unsigned long temp
;
17269 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
17271 assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
17273 /* Note whether this will delete the relocation. */
17275 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
17278 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17279 consistency with the behavior on 32-bit hosts. Remember value
17281 value
&= 0xffffffff;
17282 value
^= 0x80000000;
17283 value
-= 0x80000000;
17286 fixP
->fx_addnumber
= value
;
17288 /* Same treatment for fixP->fx_offset. */
17289 fixP
->fx_offset
&= 0xffffffff;
17290 fixP
->fx_offset
^= 0x80000000;
17291 fixP
->fx_offset
-= 0x80000000;
17293 switch (fixP
->fx_r_type
)
17295 case BFD_RELOC_NONE
:
17296 /* This will need to go in the object file. */
17300 case BFD_RELOC_ARM_IMMEDIATE
:
17301 /* We claim that this fixup has been processed here,
17302 even if in fact we generate an error because we do
17303 not have a reloc for it, so tc_gen_reloc will reject it. */
17307 && ! S_IS_DEFINED (fixP
->fx_addsy
))
17309 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17310 _("undefined symbol %s used as an immediate value"),
17311 S_GET_NAME (fixP
->fx_addsy
));
17315 newimm
= encode_arm_immediate (value
);
17316 temp
= md_chars_to_number (buf
, INSN_SIZE
);
17318 /* If the instruction will fail, see if we can fix things up by
17319 changing the opcode. */
17320 if (newimm
== (unsigned int) FAIL
17321 && (newimm
= negate_data_op (&temp
, value
)) == (unsigned int) FAIL
)
17323 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17324 _("invalid constant (%lx) after fixup"),
17325 (unsigned long) value
);
17329 newimm
|= (temp
& 0xfffff000);
17330 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
17333 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
17335 unsigned int highpart
= 0;
17336 unsigned int newinsn
= 0xe1a00000; /* nop. */
17338 newimm
= encode_arm_immediate (value
);
17339 temp
= md_chars_to_number (buf
, INSN_SIZE
);
17341 /* If the instruction will fail, see if we can fix things up by
17342 changing the opcode. */
17343 if (newimm
== (unsigned int) FAIL
17344 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
17346 /* No ? OK - try using two ADD instructions to generate
17348 newimm
= validate_immediate_twopart (value
, & highpart
);
17350 /* Yes - then make sure that the second instruction is
17352 if (newimm
!= (unsigned int) FAIL
)
17354 /* Still No ? Try using a negated value. */
17355 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
17356 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
17357 /* Otherwise - give up. */
17360 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17361 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17366 /* Replace the first operand in the 2nd instruction (which
17367 is the PC) with the destination register. We have
17368 already added in the PC in the first instruction and we
17369 do not want to do it again. */
17370 newinsn
&= ~ 0xf0000;
17371 newinsn
|= ((newinsn
& 0x0f000) << 4);
17374 newimm
|= (temp
& 0xfffff000);
17375 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
17377 highpart
|= (newinsn
& 0xfffff000);
17378 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
17382 case BFD_RELOC_ARM_OFFSET_IMM
:
17383 if (!fixP
->fx_done
&& seg
->use_rela_p
)
17386 case BFD_RELOC_ARM_LITERAL
:
17392 if (validate_offset_imm (value
, 0) == FAIL
)
17394 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
17395 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17396 _("invalid literal constant: pool needs to be closer"));
17398 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17399 _("bad immediate value for offset (%ld)"),
17404 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17405 newval
&= 0xff7ff000;
17406 newval
|= value
| (sign
? INDEX_UP
: 0);
17407 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17410 case BFD_RELOC_ARM_OFFSET_IMM8
:
17411 case BFD_RELOC_ARM_HWLITERAL
:
17417 if (validate_offset_imm (value
, 1) == FAIL
)
17419 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
17420 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17421 _("invalid literal constant: pool needs to be closer"));
17423 as_bad (_("bad immediate value for half-word offset (%ld)"),
17428 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17429 newval
&= 0xff7ff0f0;
17430 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
17431 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17434 case BFD_RELOC_ARM_T32_OFFSET_U8
:
17435 if (value
< 0 || value
> 1020 || value
% 4 != 0)
17436 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17437 _("bad immediate value for offset (%ld)"), (long) value
);
17440 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
17442 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
17445 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
17446 /* This is a complicated relocation used for all varieties of Thumb32
17447 load/store instruction with immediate offset:
17449 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17450 *4, optional writeback(W)
17451 (doubleword load/store)
17453 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17454 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17455 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17456 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17457 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17459 Uppercase letters indicate bits that are already encoded at
17460 this point. Lowercase letters are our problem. For the
17461 second block of instructions, the secondary opcode nybble
17462 (bits 8..11) is present, and bit 23 is zero, even if this is
17463 a PC-relative operation. */
17464 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17466 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
17468 if ((newval
& 0xf0000000) == 0xe0000000)
17470 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17472 newval
|= (1 << 23);
17475 if (value
% 4 != 0)
17477 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17478 _("offset not a multiple of 4"));
17484 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17485 _("offset out of range"));
17490 else if ((newval
& 0x000f0000) == 0x000f0000)
17492 /* PC-relative, 12-bit offset. */
17494 newval
|= (1 << 23);
17499 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17500 _("offset out of range"));
17505 else if ((newval
& 0x00000100) == 0x00000100)
17507 /* Writeback: 8-bit, +/- offset. */
17509 newval
|= (1 << 9);
17514 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17515 _("offset out of range"));
17520 else if ((newval
& 0x00000f00) == 0x00000e00)
17522 /* T-instruction: positive 8-bit offset. */
17523 if (value
< 0 || value
> 0xff)
17525 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17526 _("offset out of range"));
17534 /* Positive 12-bit or negative 8-bit offset. */
17538 newval
|= (1 << 23);
17548 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17549 _("offset out of range"));
17556 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
17557 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
17560 case BFD_RELOC_ARM_SHIFT_IMM
:
17561 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17562 if (((unsigned long) value
) > 32
17564 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
17566 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17567 _("shift expression is too large"));
17572 /* Shifts of zero must be done as lsl. */
17574 else if (value
== 32)
17576 newval
&= 0xfffff07f;
17577 newval
|= (value
& 0x1f) << 7;
17578 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17581 case BFD_RELOC_ARM_T32_IMMEDIATE
:
17582 case BFD_RELOC_ARM_T32_ADD_IMM
:
17583 case BFD_RELOC_ARM_T32_IMM12
:
17584 case BFD_RELOC_ARM_T32_ADD_PC12
:
17585 /* We claim that this fixup has been processed here,
17586 even if in fact we generate an error because we do
17587 not have a reloc for it, so tc_gen_reloc will reject it. */
17591 && ! S_IS_DEFINED (fixP
->fx_addsy
))
17593 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17594 _("undefined symbol %s used as an immediate value"),
17595 S_GET_NAME (fixP
->fx_addsy
));
17599 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17601 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
17604 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
17605 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
17607 newimm
= encode_thumb32_immediate (value
);
17608 if (newimm
== (unsigned int) FAIL
)
17609 newimm
= thumb32_negate_data_op (&newval
, value
);
17611 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
17612 && newimm
== (unsigned int) FAIL
)
17614 /* Turn add/sum into addw/subw. */
17615 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
17616 newval
= (newval
& 0xfeffffff) | 0x02000000;
17618 /* 12 bit immediate for addw/subw. */
17622 newval
^= 0x00a00000;
17625 newimm
= (unsigned int) FAIL
;
17630 if (newimm
== (unsigned int)FAIL
)
17632 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17633 _("invalid constant (%lx) after fixup"),
17634 (unsigned long) value
);
17638 newval
|= (newimm
& 0x800) << 15;
17639 newval
|= (newimm
& 0x700) << 4;
17640 newval
|= (newimm
& 0x0ff);
17642 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
17643 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
17646 case BFD_RELOC_ARM_SMC
:
17647 if (((unsigned long) value
) > 0xffff)
17648 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17649 _("invalid smc expression"));
17650 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17651 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
17652 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17655 case BFD_RELOC_ARM_SWI
:
17656 if (fixP
->tc_fix_data
!= 0)
17658 if (((unsigned long) value
) > 0xff)
17659 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17660 _("invalid swi expression"));
17661 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17663 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17667 if (((unsigned long) value
) > 0x00ffffff)
17668 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17669 _("invalid swi expression"));
17670 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17672 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17676 case BFD_RELOC_ARM_MULTI
:
17677 if (((unsigned long) value
) > 0xffff)
17678 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17679 _("invalid expression in load/store multiple"));
17680 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
17681 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17685 case BFD_RELOC_ARM_PCREL_CALL
:
17686 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17687 if ((newval
& 0xf0000000) == 0xf0000000)
17691 goto arm_branch_common
;
17693 case BFD_RELOC_ARM_PCREL_JUMP
:
17694 case BFD_RELOC_ARM_PLT32
:
17696 case BFD_RELOC_ARM_PCREL_BRANCH
:
17698 goto arm_branch_common
;
17700 case BFD_RELOC_ARM_PCREL_BLX
:
17703 /* We are going to store value (shifted right by two) in the
17704 instruction, in a 24 bit, signed field. Bits 26 through 32 either
17705 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
17706 also be be clear. */
17708 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17709 _("misaligned branch destination"));
17710 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
17711 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
17712 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17713 _("branch out of range"));
17715 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17717 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17718 newval
|= (value
>> 2) & 0x00ffffff;
17719 /* Set the H bit on BLX instructions. */
17723 newval
|= 0x01000000;
17725 newval
&= ~0x01000000;
17727 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17731 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CZB */
17732 /* CZB can only branch forward. */
17734 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17735 _("branch out of range"));
17737 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17739 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17740 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
17741 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17745 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
17746 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
17747 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17748 _("branch out of range"));
17750 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17752 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17753 newval
|= (value
& 0x1ff) >> 1;
17754 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17758 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
17759 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
17760 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17761 _("branch out of range"));
17763 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17765 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17766 newval
|= (value
& 0xfff) >> 1;
17767 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17771 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
17772 if ((value
& ~0x1fffff) && ((value
& ~0x1fffff) != ~0x1fffff))
17773 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17774 _("conditional branch out of range"));
17776 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17779 addressT S
, J1
, J2
, lo
, hi
;
17781 S
= (value
& 0x00100000) >> 20;
17782 J2
= (value
& 0x00080000) >> 19;
17783 J1
= (value
& 0x00040000) >> 18;
17784 hi
= (value
& 0x0003f000) >> 12;
17785 lo
= (value
& 0x00000ffe) >> 1;
17787 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17788 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
17789 newval
|= (S
<< 10) | hi
;
17790 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
17791 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17792 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
17796 case BFD_RELOC_THUMB_PCREL_BLX
:
17797 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
17798 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
17799 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17800 _("branch out of range"));
17802 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
17803 /* For a BLX instruction, make sure that the relocation is rounded up
17804 to a word boundary. This follows the semantics of the instruction
17805 which specifies that bit 1 of the target address will come from bit
17806 1 of the base address. */
17807 value
= (value
+ 1) & ~ 1;
17809 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17813 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17814 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
17815 newval
|= (value
& 0x7fffff) >> 12;
17816 newval2
|= (value
& 0xfff) >> 1;
17817 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17818 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
17822 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
17823 if ((value
& ~0x1ffffff) && ((value
& ~0x1ffffff) != ~0x1ffffff))
17824 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17825 _("branch out of range"));
17827 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17830 addressT S
, I1
, I2
, lo
, hi
;
17832 S
= (value
& 0x01000000) >> 24;
17833 I1
= (value
& 0x00800000) >> 23;
17834 I2
= (value
& 0x00400000) >> 22;
17835 hi
= (value
& 0x003ff000) >> 12;
17836 lo
= (value
& 0x00000ffe) >> 1;
17841 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17842 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
17843 newval
|= (S
<< 10) | hi
;
17844 newval2
|= (I1
<< 13) | (I2
<< 11) | lo
;
17845 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
17846 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
17851 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17852 md_number_to_chars (buf
, value
, 1);
17856 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17857 md_number_to_chars (buf
, value
, 2);
17861 case BFD_RELOC_ARM_TLS_GD32
:
17862 case BFD_RELOC_ARM_TLS_LE32
:
17863 case BFD_RELOC_ARM_TLS_IE32
:
17864 case BFD_RELOC_ARM_TLS_LDM32
:
17865 case BFD_RELOC_ARM_TLS_LDO32
:
17866 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
17869 case BFD_RELOC_ARM_GOT32
:
17870 case BFD_RELOC_ARM_GOTOFF
:
17871 case BFD_RELOC_ARM_TARGET2
:
17872 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17873 md_number_to_chars (buf
, 0, 4);
17877 case BFD_RELOC_RVA
:
17879 case BFD_RELOC_ARM_TARGET1
:
17880 case BFD_RELOC_ARM_ROSEGREL32
:
17881 case BFD_RELOC_ARM_SBREL32
:
17882 case BFD_RELOC_32_PCREL
:
17883 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17885 /* For WinCE we only do this for pcrel fixups. */
17886 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
17888 md_number_to_chars (buf
, value
, 4);
17892 case BFD_RELOC_ARM_PREL31
:
17893 if (fixP
->fx_done
|| !seg
->use_rela_p
)
17895 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
17896 if ((value
^ (value
>> 1)) & 0x40000000)
17898 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17899 _("rel31 relocation overflow"));
17901 newval
|= value
& 0x7fffffff;
17902 md_number_to_chars (buf
, newval
, 4);
17907 case BFD_RELOC_ARM_CP_OFF_IMM
:
17908 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
17909 if (value
< -1023 || value
> 1023 || (value
& 3))
17910 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17911 _("co-processor offset out of range"));
17916 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
17917 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
17918 newval
= md_chars_to_number (buf
, INSN_SIZE
);
17920 newval
= get_thumb32_insn (buf
);
17921 newval
&= 0xff7fff00;
17922 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
17924 newval
&= ~WRITE_BACK
;
17925 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
17926 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
17927 md_number_to_chars (buf
, newval
, INSN_SIZE
);
17929 put_thumb32_insn (buf
, newval
);
17932 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
17933 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
17934 if (value
< -255 || value
> 255)
17935 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17936 _("co-processor offset out of range"));
17938 goto cp_off_common
;
17940 case BFD_RELOC_ARM_THUMB_OFFSET
:
17941 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
17942 /* Exactly what ranges, and where the offset is inserted depends
17943 on the type of instruction, we can establish this from the
17945 switch (newval
>> 12)
17947 case 4: /* PC load. */
17948 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
17949 forced to zero for these loads; md_pcrel_from has already
17950 compensated for this. */
17952 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17953 _("invalid offset, target not word aligned (0x%08lX)"),
17954 (((unsigned long) fixP
->fx_frag
->fr_address
17955 + (unsigned long) fixP
->fx_where
) & ~3)
17956 + (unsigned long) value
);
17958 if (value
& ~0x3fc)
17959 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17960 _("invalid offset, value too big (0x%08lX)"),
17963 newval
|= value
>> 2;
17966 case 9: /* SP load/store. */
17967 if (value
& ~0x3fc)
17968 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17969 _("invalid offset, value too big (0x%08lX)"),
17971 newval
|= value
>> 2;
17974 case 6: /* Word load/store. */
17976 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17977 _("invalid offset, value too big (0x%08lX)"),
17979 newval
|= value
<< 4; /* 6 - 2. */
17982 case 7: /* Byte load/store. */
17984 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17985 _("invalid offset, value too big (0x%08lX)"),
17987 newval
|= value
<< 6;
17990 case 8: /* Halfword load/store. */
17992 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
17993 _("invalid offset, value too big (0x%08lX)"),
17995 newval
|= value
<< 5; /* 6 - 1. */
17999 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18000 "Unable to process relocation for thumb opcode: %lx",
18001 (unsigned long) newval
);
18004 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18007 case BFD_RELOC_ARM_THUMB_ADD
:
18008 /* This is a complicated relocation, since we use it for all of
18009 the following immediate relocations:
18013 9bit ADD/SUB SP word-aligned
18014 10bit ADD PC/SP word-aligned
18016 The type of instruction being processed is encoded in the
18023 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18025 int rd
= (newval
>> 4) & 0xf;
18026 int rs
= newval
& 0xf;
18027 int subtract
= !!(newval
& 0x8000);
18029 /* Check for HI regs, only very restricted cases allowed:
18030 Adjusting SP, and using PC or SP to get an address. */
18031 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
18032 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
18033 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18034 _("invalid Hi register with immediate"));
18036 /* If value is negative, choose the opposite instruction. */
18040 subtract
= !subtract
;
18042 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18043 _("immediate value out of range"));
18048 if (value
& ~0x1fc)
18049 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18050 _("invalid immediate for stack address calculation"));
18051 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
18052 newval
|= value
>> 2;
18054 else if (rs
== REG_PC
|| rs
== REG_SP
)
18056 if (subtract
|| value
& ~0x3fc)
18057 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18058 _("invalid immediate for address calculation (value = 0x%08lX)"),
18059 (unsigned long) value
);
18060 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
18062 newval
|= value
>> 2;
18067 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18068 _("immediate value out of range"));
18069 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
18070 newval
|= (rd
<< 8) | value
;
18075 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18076 _("immediate value out of range"));
18077 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
18078 newval
|= rd
| (rs
<< 3) | (value
<< 6);
18081 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18084 case BFD_RELOC_ARM_THUMB_IMM
:
18085 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
18086 if (value
< 0 || value
> 255)
18087 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18088 _("invalid immediate: %ld is too large"),
18091 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18094 case BFD_RELOC_ARM_THUMB_SHIFT
:
18095 /* 5bit shift value (0..32). LSL cannot take 32. */
18096 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
18097 temp
= newval
& 0xf800;
18098 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
18099 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18100 _("invalid shift value: %ld"), (long) value
);
18101 /* Shifts of zero must be encoded as LSL. */
18103 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
18104 /* Shifts of 32 are encoded as zero. */
18105 else if (value
== 32)
18107 newval
|= value
<< 6;
18108 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
18111 case BFD_RELOC_VTABLE_INHERIT
:
18112 case BFD_RELOC_VTABLE_ENTRY
:
18116 case BFD_RELOC_ARM_MOVW
:
18117 case BFD_RELOC_ARM_MOVT
:
18118 case BFD_RELOC_ARM_THUMB_MOVW
:
18119 case BFD_RELOC_ARM_THUMB_MOVT
:
18120 if (fixP
->fx_done
|| !seg
->use_rela_p
)
18122 /* REL format relocations are limited to a 16-bit addend. */
18123 if (!fixP
->fx_done
)
18125 if (value
< -0x1000 || value
> 0xffff)
18126 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18127 _("offset too big"));
18129 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
18130 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
18135 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
18136 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
18138 newval
= get_thumb32_insn (buf
);
18139 newval
&= 0xfbf08f00;
18140 newval
|= (value
& 0xf000) << 4;
18141 newval
|= (value
& 0x0800) << 15;
18142 newval
|= (value
& 0x0700) << 4;
18143 newval
|= (value
& 0x00ff);
18144 put_thumb32_insn (buf
, newval
);
18148 newval
= md_chars_to_number (buf
, 4);
18149 newval
&= 0xfff0f000;
18150 newval
|= value
& 0x0fff;
18151 newval
|= (value
& 0xf000) << 4;
18152 md_number_to_chars (buf
, newval
, 4);
18157 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
18158 case BFD_RELOC_ARM_ALU_PC_G0
:
18159 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
18160 case BFD_RELOC_ARM_ALU_PC_G1
:
18161 case BFD_RELOC_ARM_ALU_PC_G2
:
18162 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
18163 case BFD_RELOC_ARM_ALU_SB_G0
:
18164 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
18165 case BFD_RELOC_ARM_ALU_SB_G1
:
18166 case BFD_RELOC_ARM_ALU_SB_G2
:
18167 assert (!fixP
->fx_done
);
18168 if (!seg
->use_rela_p
)
18171 bfd_vma encoded_addend
;
18172 bfd_vma addend_abs
= abs (value
);
18174 /* Check that the absolute value of the addend can be
18175 expressed as an 8-bit constant plus a rotation. */
18176 encoded_addend
= encode_arm_immediate (addend_abs
);
18177 if (encoded_addend
== (unsigned int) FAIL
)
18178 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18179 _("the offset 0x%08lX is not representable"),
18182 /* Extract the instruction. */
18183 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18185 /* If the addend is positive, use an ADD instruction.
18186 Otherwise use a SUB. Take care not to destroy the S bit. */
18187 insn
&= 0xff1fffff;
18193 /* Place the encoded addend into the first 12 bits of the
18195 insn
&= 0xfffff000;
18196 insn
|= encoded_addend
;
18198 /* Update the instruction. */
18199 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18203 case BFD_RELOC_ARM_LDR_PC_G0
:
18204 case BFD_RELOC_ARM_LDR_PC_G1
:
18205 case BFD_RELOC_ARM_LDR_PC_G2
:
18206 case BFD_RELOC_ARM_LDR_SB_G0
:
18207 case BFD_RELOC_ARM_LDR_SB_G1
:
18208 case BFD_RELOC_ARM_LDR_SB_G2
:
18209 assert (!fixP
->fx_done
);
18210 if (!seg
->use_rela_p
)
18213 bfd_vma addend_abs
= abs (value
);
18215 /* Check that the absolute value of the addend can be
18216 encoded in 12 bits. */
18217 if (addend_abs
>= 0x1000)
18218 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18219 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18222 /* Extract the instruction. */
18223 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18225 /* If the addend is negative, clear bit 23 of the instruction.
18226 Otherwise set it. */
18228 insn
&= ~(1 << 23);
18232 /* Place the absolute value of the addend into the first 12 bits
18233 of the instruction. */
18234 insn
&= 0xfffff000;
18235 insn
|= addend_abs
;
18237 /* Update the instruction. */
18238 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18242 case BFD_RELOC_ARM_LDRS_PC_G0
:
18243 case BFD_RELOC_ARM_LDRS_PC_G1
:
18244 case BFD_RELOC_ARM_LDRS_PC_G2
:
18245 case BFD_RELOC_ARM_LDRS_SB_G0
:
18246 case BFD_RELOC_ARM_LDRS_SB_G1
:
18247 case BFD_RELOC_ARM_LDRS_SB_G2
:
18248 assert (!fixP
->fx_done
);
18249 if (!seg
->use_rela_p
)
18252 bfd_vma addend_abs
= abs (value
);
18254 /* Check that the absolute value of the addend can be
18255 encoded in 8 bits. */
18256 if (addend_abs
>= 0x100)
18257 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18258 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18261 /* Extract the instruction. */
18262 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18264 /* If the addend is negative, clear bit 23 of the instruction.
18265 Otherwise set it. */
18267 insn
&= ~(1 << 23);
18271 /* Place the first four bits of the absolute value of the addend
18272 into the first 4 bits of the instruction, and the remaining
18273 four into bits 8 .. 11. */
18274 insn
&= 0xfffff0f0;
18275 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
18277 /* Update the instruction. */
18278 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18282 case BFD_RELOC_ARM_LDC_PC_G0
:
18283 case BFD_RELOC_ARM_LDC_PC_G1
:
18284 case BFD_RELOC_ARM_LDC_PC_G2
:
18285 case BFD_RELOC_ARM_LDC_SB_G0
:
18286 case BFD_RELOC_ARM_LDC_SB_G1
:
18287 case BFD_RELOC_ARM_LDC_SB_G2
:
18288 assert (!fixP
->fx_done
);
18289 if (!seg
->use_rela_p
)
18292 bfd_vma addend_abs
= abs (value
);
18294 /* Check that the absolute value of the addend is a multiple of
18295 four and, when divided by four, fits in 8 bits. */
18296 if (addend_abs
& 0x3)
18297 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18298 _("bad offset 0x%08lX (must be word-aligned)"),
18301 if ((addend_abs
>> 2) > 0xff)
18302 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18303 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18306 /* Extract the instruction. */
18307 insn
= md_chars_to_number (buf
, INSN_SIZE
);
18309 /* If the addend is negative, clear bit 23 of the instruction.
18310 Otherwise set it. */
18312 insn
&= ~(1 << 23);
18316 /* Place the addend (divided by four) into the first eight
18317 bits of the instruction. */
18318 insn
&= 0xfffffff0;
18319 insn
|= addend_abs
>> 2;
18321 /* Update the instruction. */
18322 md_number_to_chars (buf
, insn
, INSN_SIZE
);
18326 case BFD_RELOC_UNUSED
:
18328 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
18329 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
18333 /* Translate internal representation of relocation info to BFD target
18337 tc_gen_reloc (asection
*section
, fixS
*fixp
)
18340 bfd_reloc_code_real_type code
;
18342 reloc
= xmalloc (sizeof (arelent
));
18344 reloc
->sym_ptr_ptr
= xmalloc (sizeof (asymbol
*));
18345 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
18346 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
18348 if (fixp
->fx_pcrel
)
18350 if (section
->use_rela_p
)
18351 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
18353 fixp
->fx_offset
= reloc
->address
;
18355 reloc
->addend
= fixp
->fx_offset
;
18357 switch (fixp
->fx_r_type
)
18360 if (fixp
->fx_pcrel
)
18362 code
= BFD_RELOC_8_PCREL
;
18367 if (fixp
->fx_pcrel
)
18369 code
= BFD_RELOC_16_PCREL
;
18374 if (fixp
->fx_pcrel
)
18376 code
= BFD_RELOC_32_PCREL
;
18380 case BFD_RELOC_ARM_MOVW
:
18381 if (fixp
->fx_pcrel
)
18383 code
= BFD_RELOC_ARM_MOVW_PCREL
;
18387 case BFD_RELOC_ARM_MOVT
:
18388 if (fixp
->fx_pcrel
)
18390 code
= BFD_RELOC_ARM_MOVT_PCREL
;
18394 case BFD_RELOC_ARM_THUMB_MOVW
:
18395 if (fixp
->fx_pcrel
)
18397 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
18401 case BFD_RELOC_ARM_THUMB_MOVT
:
18402 if (fixp
->fx_pcrel
)
18404 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
18408 case BFD_RELOC_NONE
:
18409 case BFD_RELOC_ARM_PCREL_BRANCH
:
18410 case BFD_RELOC_ARM_PCREL_BLX
:
18411 case BFD_RELOC_RVA
:
18412 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
18413 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
18414 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
18415 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
18416 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
18417 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
18418 case BFD_RELOC_THUMB_PCREL_BLX
:
18419 case BFD_RELOC_VTABLE_ENTRY
:
18420 case BFD_RELOC_VTABLE_INHERIT
:
18421 code
= fixp
->fx_r_type
;
18424 case BFD_RELOC_ARM_LITERAL
:
18425 case BFD_RELOC_ARM_HWLITERAL
:
18426 /* If this is called then the a literal has
18427 been referenced across a section boundary. */
18428 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18429 _("literal referenced across section boundary"));
18433 case BFD_RELOC_ARM_GOT32
:
18434 case BFD_RELOC_ARM_GOTOFF
:
18435 case BFD_RELOC_ARM_PLT32
:
18436 case BFD_RELOC_ARM_TARGET1
:
18437 case BFD_RELOC_ARM_ROSEGREL32
:
18438 case BFD_RELOC_ARM_SBREL32
:
18439 case BFD_RELOC_ARM_PREL31
:
18440 case BFD_RELOC_ARM_TARGET2
:
18441 case BFD_RELOC_ARM_TLS_LE32
:
18442 case BFD_RELOC_ARM_TLS_LDO32
:
18443 case BFD_RELOC_ARM_PCREL_CALL
:
18444 case BFD_RELOC_ARM_PCREL_JUMP
:
18445 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
18446 case BFD_RELOC_ARM_ALU_PC_G0
:
18447 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
18448 case BFD_RELOC_ARM_ALU_PC_G1
:
18449 case BFD_RELOC_ARM_ALU_PC_G2
:
18450 case BFD_RELOC_ARM_LDR_PC_G0
:
18451 case BFD_RELOC_ARM_LDR_PC_G1
:
18452 case BFD_RELOC_ARM_LDR_PC_G2
:
18453 case BFD_RELOC_ARM_LDRS_PC_G0
:
18454 case BFD_RELOC_ARM_LDRS_PC_G1
:
18455 case BFD_RELOC_ARM_LDRS_PC_G2
:
18456 case BFD_RELOC_ARM_LDC_PC_G0
:
18457 case BFD_RELOC_ARM_LDC_PC_G1
:
18458 case BFD_RELOC_ARM_LDC_PC_G2
:
18459 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
18460 case BFD_RELOC_ARM_ALU_SB_G0
:
18461 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
18462 case BFD_RELOC_ARM_ALU_SB_G1
:
18463 case BFD_RELOC_ARM_ALU_SB_G2
:
18464 case BFD_RELOC_ARM_LDR_SB_G0
:
18465 case BFD_RELOC_ARM_LDR_SB_G1
:
18466 case BFD_RELOC_ARM_LDR_SB_G2
:
18467 case BFD_RELOC_ARM_LDRS_SB_G0
:
18468 case BFD_RELOC_ARM_LDRS_SB_G1
:
18469 case BFD_RELOC_ARM_LDRS_SB_G2
:
18470 case BFD_RELOC_ARM_LDC_SB_G0
:
18471 case BFD_RELOC_ARM_LDC_SB_G1
:
18472 case BFD_RELOC_ARM_LDC_SB_G2
:
18473 code
= fixp
->fx_r_type
;
18476 case BFD_RELOC_ARM_TLS_GD32
:
18477 case BFD_RELOC_ARM_TLS_IE32
:
18478 case BFD_RELOC_ARM_TLS_LDM32
:
18479 /* BFD will include the symbol's address in the addend.
18480 But we don't want that, so subtract it out again here. */
18481 if (!S_IS_COMMON (fixp
->fx_addsy
))
18482 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
18483 code
= fixp
->fx_r_type
;
18487 case BFD_RELOC_ARM_IMMEDIATE
:
18488 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18489 _("internal relocation (type: IMMEDIATE) not fixed up"));
18492 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
18493 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18494 _("ADRL used for a symbol not defined in the same file"));
18497 case BFD_RELOC_ARM_OFFSET_IMM
:
18498 if (section
->use_rela_p
)
18500 code
= fixp
->fx_r_type
;
18504 if (fixp
->fx_addsy
!= NULL
18505 && !S_IS_DEFINED (fixp
->fx_addsy
)
18506 && S_IS_LOCAL (fixp
->fx_addsy
))
18508 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18509 _("undefined local label `%s'"),
18510 S_GET_NAME (fixp
->fx_addsy
));
18514 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18515 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18522 switch (fixp
->fx_r_type
)
18524 case BFD_RELOC_NONE
: type
= "NONE"; break;
18525 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
18526 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
18527 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
18528 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
18529 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
18530 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
18531 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
18532 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
18533 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
18534 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
18535 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
18536 default: type
= _("<unknown>"); break;
18538 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18539 _("cannot represent %s relocation in this object file format"),
18546 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
18548 && fixp
->fx_addsy
== GOT_symbol
)
18550 code
= BFD_RELOC_ARM_GOTPC
;
18551 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
18555 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
18557 if (reloc
->howto
== NULL
)
18559 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18560 _("cannot represent %s relocation in this object file format"),
18561 bfd_get_reloc_code_name (code
));
18565 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
18566 vtable entry to be used in the relocation's section offset. */
18567 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
18568 reloc
->address
= fixp
->fx_offset
;
18573 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
18576 cons_fix_new_arm (fragS
* frag
,
18581 bfd_reloc_code_real_type type
;
18585 FIXME: @@ Should look at CPU word size. */
18589 type
= BFD_RELOC_8
;
18592 type
= BFD_RELOC_16
;
18596 type
= BFD_RELOC_32
;
18599 type
= BFD_RELOC_64
;
18603 fix_new_exp (frag
, where
, (int) size
, exp
, pcrel
, type
);
18606 #if defined OBJ_COFF || defined OBJ_ELF
18608 arm_validate_fix (fixS
* fixP
)
18610 /* If the destination of the branch is a defined symbol which does not have
18611 the THUMB_FUNC attribute, then we must be calling a function which has
18612 the (interfacearm) attribute. We look for the Thumb entry point to that
18613 function and change the branch to refer to that function instead. */
18614 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
18615 && fixP
->fx_addsy
!= NULL
18616 && S_IS_DEFINED (fixP
->fx_addsy
)
18617 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
18619 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
18625 arm_force_relocation (struct fix
* fixp
)
18627 #if defined (OBJ_COFF) && defined (TE_PE)
18628 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
18632 /* Resolve these relocations even if the symbol is extern or weak. */
18633 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
18634 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
18635 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
18636 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
18637 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
18638 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
18639 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
)
18642 /* Always leave these relocations for the linker. */
18643 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
18644 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
18645 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
18648 return generic_force_reloc (fixp
);
18653 arm_fix_adjustable (fixS
* fixP
)
18655 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
18656 local labels from being added to the output symbol table when they
18657 are used with the ADRL pseudo op. The ADRL relocation should always
18658 be resolved before the binbary is emitted, so it is safe to say that
18659 it is adjustable. */
18660 if (fixP
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
)
18663 /* This is a hack for the gas/all/redef2.s test. This test causes symbols
18664 to be cloned, and without this test relocs would still be generated
18665 against the original, pre-cloned symbol. Such symbols would not appear
18666 in the symbol table however, and so a valid reloc could not be
18667 generated. So check to see if the fixup is against a symbol which has
18668 been removed from the symbol chain, and if it is, then allow it to be
18669 adjusted into a reloc against a section symbol. */
18670 if (fixP
->fx_addsy
!= NULL
18671 && ! S_IS_LOCAL (fixP
->fx_addsy
)
18672 && symbol_next (fixP
->fx_addsy
) == NULL
18673 && symbol_next (fixP
->fx_addsy
) == symbol_previous (fixP
->fx_addsy
))
18681 /* Relocations against function names must be left unadjusted,
18682 so that the linker can use this information to generate interworking
18683 stubs. The MIPS version of this function
18684 also prevents relocations that are mips-16 specific, but I do not
18685 know why it does this.
18688 There is one other problem that ought to be addressed here, but
18689 which currently is not: Taking the address of a label (rather
18690 than a function) and then later jumping to that address. Such
18691 addresses also ought to have their bottom bit set (assuming that
18692 they reside in Thumb code), but at the moment they will not. */
18695 arm_fix_adjustable (fixS
* fixP
)
18697 if (fixP
->fx_addsy
== NULL
)
18700 /* Preserve relocations against symbols with function type. */
18701 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
18704 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
18705 && fixP
->fx_subsy
== NULL
)
18708 /* We need the symbol name for the VTABLE entries. */
18709 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
18710 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
18713 /* Don't allow symbols to be discarded on GOT related relocs. */
18714 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
18715 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
18716 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
18717 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
18718 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
18719 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
18720 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
18721 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
18722 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
18725 /* Similarly for group relocations. */
18726 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
18727 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
18728 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
18735 elf32_arm_target_format (void)
18738 return (target_big_endian
18739 ? "elf32-bigarm-symbian"
18740 : "elf32-littlearm-symbian");
18741 #elif defined (TE_VXWORKS)
18742 return (target_big_endian
18743 ? "elf32-bigarm-vxworks"
18744 : "elf32-littlearm-vxworks");
18746 if (target_big_endian
)
18747 return "elf32-bigarm";
18749 return "elf32-littlearm";
18754 armelf_frob_symbol (symbolS
* symp
,
18757 elf_frob_symbol (symp
, puntp
);
18761 /* MD interface: Finalization. */
18763 /* A good place to do this, although this was probably not intended
18764 for this kind of use. We need to dump the literal pool before
18765 references are made to a null symbol pointer. */
18770 literal_pool
* pool
;
18772 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
18774 /* Put it at the end of the relevent section. */
18775 subseg_set (pool
->section
, pool
->sub_section
);
18777 arm_elf_change_section ();
18783 /* Adjust the symbol table. This marks Thumb symbols as distinct from
18787 arm_adjust_symtab (void)
18792 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
18794 if (ARM_IS_THUMB (sym
))
18796 if (THUMB_IS_FUNC (sym
))
18798 /* Mark the symbol as a Thumb function. */
18799 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
18800 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
18801 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
18803 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
18804 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
18806 as_bad (_("%s: unexpected function type: %d"),
18807 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
18809 else switch (S_GET_STORAGE_CLASS (sym
))
18812 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
18815 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
18818 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
18826 if (ARM_IS_INTERWORK (sym
))
18827 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
18834 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
18836 if (ARM_IS_THUMB (sym
))
18838 elf_symbol_type
* elf_sym
;
18840 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
18841 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
18843 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
18844 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
18846 /* If it's a .thumb_func, declare it as so,
18847 otherwise tag label as .code 16. */
18848 if (THUMB_IS_FUNC (sym
))
18849 elf_sym
->internal_elf_sym
.st_info
=
18850 ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
18852 elf_sym
->internal_elf_sym
.st_info
=
18853 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
18860 /* MD interface: Initialization. */
18863 set_constant_flonums (void)
18867 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
18868 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
18878 if ( (arm_ops_hsh
= hash_new ()) == NULL
18879 || (arm_cond_hsh
= hash_new ()) == NULL
18880 || (arm_shift_hsh
= hash_new ()) == NULL
18881 || (arm_psr_hsh
= hash_new ()) == NULL
18882 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
18883 || (arm_reg_hsh
= hash_new ()) == NULL
18884 || (arm_reloc_hsh
= hash_new ()) == NULL
18885 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
18886 as_fatal (_("virtual memory exhausted"));
18888 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
18889 hash_insert (arm_ops_hsh
, insns
[i
].template, (PTR
) (insns
+ i
));
18890 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
18891 hash_insert (arm_cond_hsh
, conds
[i
].template, (PTR
) (conds
+ i
));
18892 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
18893 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (PTR
) (shift_names
+ i
));
18894 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
18895 hash_insert (arm_psr_hsh
, psrs
[i
].template, (PTR
) (psrs
+ i
));
18896 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
18897 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template, (PTR
) (v7m_psrs
+ i
));
18898 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
18899 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (PTR
) (reg_names
+ i
));
18901 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
18903 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template,
18904 (PTR
) (barrier_opt_names
+ i
));
18906 for (i
= 0; i
< sizeof (reloc_names
) / sizeof (struct reloc_entry
); i
++)
18907 hash_insert (arm_reloc_hsh
, reloc_names
[i
].name
, (PTR
) (reloc_names
+ i
));
18910 set_constant_flonums ();
18912 /* Set the cpu variant based on the command-line options. We prefer
18913 -mcpu= over -march= if both are set (as for GCC); and we prefer
18914 -mfpu= over any other way of setting the floating point unit.
18915 Use of legacy options with new options are faulted. */
18918 if (mcpu_cpu_opt
|| march_cpu_opt
)
18919 as_bad (_("use of old and new-style options to set CPU type"));
18921 mcpu_cpu_opt
= legacy_cpu
;
18923 else if (!mcpu_cpu_opt
)
18924 mcpu_cpu_opt
= march_cpu_opt
;
18929 as_bad (_("use of old and new-style options to set FPU type"));
18931 mfpu_opt
= legacy_fpu
;
18933 else if (!mfpu_opt
)
18935 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
18936 /* Some environments specify a default FPU. If they don't, infer it
18937 from the processor. */
18939 mfpu_opt
= mcpu_fpu_opt
;
18941 mfpu_opt
= march_fpu_opt
;
18943 mfpu_opt
= &fpu_default
;
18950 mfpu_opt
= &fpu_default
;
18951 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt
, arm_ext_v5
))
18952 mfpu_opt
= &fpu_arch_vfp_v2
;
18954 mfpu_opt
= &fpu_arch_fpa
;
18960 mcpu_cpu_opt
= &cpu_default
;
18961 selected_cpu
= cpu_default
;
18965 selected_cpu
= *mcpu_cpu_opt
;
18967 mcpu_cpu_opt
= &arm_arch_any
;
18970 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
18972 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
18974 #if defined OBJ_COFF || defined OBJ_ELF
18976 unsigned int flags
= 0;
18978 #if defined OBJ_ELF
18979 flags
= meabi_flags
;
18981 switch (meabi_flags
)
18983 case EF_ARM_EABI_UNKNOWN
:
18985 /* Set the flags in the private structure. */
18986 if (uses_apcs_26
) flags
|= F_APCS26
;
18987 if (support_interwork
) flags
|= F_INTERWORK
;
18988 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
18989 if (pic_code
) flags
|= F_PIC
;
18990 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
18991 flags
|= F_SOFT_FLOAT
;
18993 switch (mfloat_abi_opt
)
18995 case ARM_FLOAT_ABI_SOFT
:
18996 case ARM_FLOAT_ABI_SOFTFP
:
18997 flags
|= F_SOFT_FLOAT
;
19000 case ARM_FLOAT_ABI_HARD
:
19001 if (flags
& F_SOFT_FLOAT
)
19002 as_bad (_("hard-float conflicts with specified fpu"));
19006 /* Using pure-endian doubles (even if soft-float). */
19007 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
19008 flags
|= F_VFP_FLOAT
;
19010 #if defined OBJ_ELF
19011 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
19012 flags
|= EF_ARM_MAVERICK_FLOAT
;
19015 case EF_ARM_EABI_VER4
:
19016 case EF_ARM_EABI_VER5
:
19017 /* No additional flags to set. */
19024 bfd_set_private_flags (stdoutput
, flags
);
19026 /* We have run out flags in the COFF header to encode the
19027 status of ATPCS support, so instead we create a dummy,
19028 empty, debug section called .arm.atpcs. */
19033 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
19037 bfd_set_section_flags
19038 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
19039 bfd_set_section_size (stdoutput
, sec
, 0);
19040 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
19046 /* Record the CPU type as well. */
19047 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
19048 mach
= bfd_mach_arm_iWMMXt
;
19049 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
19050 mach
= bfd_mach_arm_XScale
;
19051 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
19052 mach
= bfd_mach_arm_ep9312
;
19053 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
19054 mach
= bfd_mach_arm_5TE
;
19055 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
19057 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
19058 mach
= bfd_mach_arm_5T
;
19060 mach
= bfd_mach_arm_5
;
19062 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
19064 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
19065 mach
= bfd_mach_arm_4T
;
19067 mach
= bfd_mach_arm_4
;
19069 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
19070 mach
= bfd_mach_arm_3M
;
19071 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
19072 mach
= bfd_mach_arm_3
;
19073 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
19074 mach
= bfd_mach_arm_2a
;
19075 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
19076 mach
= bfd_mach_arm_2
;
19078 mach
= bfd_mach_arm_unknown
;
19080 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
19083 /* Command line processing. */
19086 Invocation line includes a switch not recognized by the base assembler.
19087 See if it's a processor-specific option.
19089 This routine is somewhat complicated by the need for backwards
19090 compatibility (since older releases of gcc can't be changed).
19091 The new options try to make the interface as compatible as
19094 New options (supported) are:
19096 -mcpu=<cpu name> Assemble for selected processor
19097 -march=<architecture name> Assemble for selected architecture
19098 -mfpu=<fpu architecture> Assemble for selected FPU.
19099 -EB/-mbig-endian Big-endian
19100 -EL/-mlittle-endian Little-endian
19101 -k Generate PIC code
19102 -mthumb Start in Thumb mode
19103 -mthumb-interwork Code supports ARM/Thumb interworking
19105 For now we will also provide support for:
19107 -mapcs-32 32-bit Program counter
19108 -mapcs-26 26-bit Program counter
19109 -macps-float Floats passed in FP registers
19110 -mapcs-reentrant Reentrant code
19112 (sometime these will probably be replaced with -mapcs=<list of options>
19113 and -matpcs=<list of options>)
19115 The remaining options are only supported for back-wards compatibility.
19116 Cpu variants, the arm part is optional:
19117 -m[arm]1 Currently not supported.
19118 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19119 -m[arm]3 Arm 3 processor
19120 -m[arm]6[xx], Arm 6 processors
19121 -m[arm]7[xx][t][[d]m] Arm 7 processors
19122 -m[arm]8[10] Arm 8 processors
19123 -m[arm]9[20][tdmi] Arm 9 processors
19124 -mstrongarm[110[0]] StrongARM processors
19125 -mxscale XScale processors
19126 -m[arm]v[2345[t[e]]] Arm architectures
19127 -mall All (except the ARM1)
19129 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19130 -mfpe-old (No float load/store multiples)
19131 -mvfpxd VFP Single precision
19133 -mno-fpu Disable all floating point instructions
19135 The following CPU names are recognized:
19136 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19137 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19138 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19139 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19140 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19141 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19142 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19146 const char * md_shortopts
= "m:k";
19148 #ifdef ARM_BI_ENDIAN
19149 #define OPTION_EB (OPTION_MD_BASE + 0)
19150 #define OPTION_EL (OPTION_MD_BASE + 1)
19152 #if TARGET_BYTES_BIG_ENDIAN
19153 #define OPTION_EB (OPTION_MD_BASE + 0)
19155 #define OPTION_EL (OPTION_MD_BASE + 1)
19159 struct option md_longopts
[] =
19162 {"EB", no_argument
, NULL
, OPTION_EB
},
19165 {"EL", no_argument
, NULL
, OPTION_EL
},
19167 {NULL
, no_argument
, NULL
, 0}
19170 size_t md_longopts_size
= sizeof (md_longopts
);
19172 struct arm_option_table
19174 char *option
; /* Option name to match. */
19175 char *help
; /* Help information. */
19176 int *var
; /* Variable to change. */
19177 int value
; /* What to change it to. */
19178 char *deprecated
; /* If non-null, print this message. */
19181 struct arm_option_table arm_opts
[] =
19183 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
19184 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
19185 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19186 &support_interwork
, 1, NULL
},
19187 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
19188 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
19189 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
19191 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
19192 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
19193 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
19194 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
19197 /* These are recognized by the assembler, but have no affect on code. */
19198 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
19199 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
19200 {NULL
, NULL
, NULL
, 0, NULL
}
19203 struct arm_legacy_option_table
19205 char *option
; /* Option name to match. */
19206 const arm_feature_set
**var
; /* Variable to change. */
19207 const arm_feature_set value
; /* What to change it to. */
19208 char *deprecated
; /* If non-null, print this message. */
19211 const struct arm_legacy_option_table arm_legacy_opts
[] =
19213 /* DON'T add any new processors to this list -- we want the whole list
19214 to go away... Add them to the processors table instead. */
19215 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
19216 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
19217 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
19218 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
19219 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
19220 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
19221 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
19222 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
19223 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
19224 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
19225 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
19226 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
19227 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
19228 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
19229 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
19230 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
19231 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
19232 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
19233 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
19234 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
19235 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
19236 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
19237 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
19238 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
19239 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
19240 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
19241 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
19242 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
19243 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
19244 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
19245 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
19246 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
19247 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
19248 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
19249 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
19250 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
19251 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
19252 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
19253 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
19254 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
19255 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
19256 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
19257 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
19258 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
19259 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
19260 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
19261 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19262 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19263 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19264 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
19265 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
19266 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
19267 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
19268 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
19269 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
19270 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
19271 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
19272 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
19273 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
19274 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
19275 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
19276 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
19277 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
19278 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
19279 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
19280 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
19281 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
19282 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
19283 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
19284 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
19285 N_("use -mcpu=strongarm110")},
19286 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
19287 N_("use -mcpu=strongarm1100")},
19288 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
19289 N_("use -mcpu=strongarm1110")},
19290 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
19291 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
19292 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
19294 /* Architecture variants -- don't add any more to this list either. */
19295 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
19296 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
19297 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
19298 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
19299 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
19300 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
19301 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
19302 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
19303 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
19304 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
19305 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
19306 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
19307 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
19308 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
19309 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
19310 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
19311 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
19312 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
19314 /* Floating point variants -- don't add any more to this list either. */
19315 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
19316 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
19317 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
19318 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
19319 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19321 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
19324 struct arm_cpu_option_table
19327 const arm_feature_set value
;
19328 /* For some CPUs we assume an FPU unless the user explicitly sets
19330 const arm_feature_set default_fpu
;
19331 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19333 const char *canonical_name
;
19336 /* This list should, at a minimum, contain all the cpu names
19337 recognized by GCC. */
19338 static const struct arm_cpu_option_table arm_cpus
[] =
19340 {"all", ARM_ANY
, FPU_ARCH_FPA
, NULL
},
19341 {"arm1", ARM_ARCH_V1
, FPU_ARCH_FPA
, NULL
},
19342 {"arm2", ARM_ARCH_V2
, FPU_ARCH_FPA
, NULL
},
19343 {"arm250", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
19344 {"arm3", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
19345 {"arm6", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19346 {"arm60", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19347 {"arm600", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19348 {"arm610", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19349 {"arm620", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19350 {"arm7", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19351 {"arm7m", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
19352 {"arm7d", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19353 {"arm7dm", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
19354 {"arm7di", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19355 {"arm7dmi", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
19356 {"arm70", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19357 {"arm700", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19358 {"arm700i", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19359 {"arm710", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19360 {"arm710t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19361 {"arm720", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19362 {"arm720t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19363 {"arm740t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19364 {"arm710c", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19365 {"arm7100", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19366 {"arm7500", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19367 {"arm7500fe", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
19368 {"arm7t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19369 {"arm7tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19370 {"arm7tdmi-s", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19371 {"arm8", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19372 {"arm810", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19373 {"strongarm", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19374 {"strongarm1", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19375 {"strongarm110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19376 {"strongarm1100", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19377 {"strongarm1110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
19378 {"arm9", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19379 {"arm920", ARM_ARCH_V4T
, FPU_ARCH_FPA
, "ARM920T"},
19380 {"arm920t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19381 {"arm922t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19382 {"arm940t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19383 {"arm9tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
19384 /* For V5 or later processors we default to using VFP; but the user
19385 should really set the FPU type explicitly. */
19386 {"arm9e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
19387 {"arm9e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19388 {"arm926ej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
19389 {"arm926ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
19390 {"arm926ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
19391 {"arm946e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
19392 {"arm946e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM946E-S"},
19393 {"arm946e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19394 {"arm966e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
19395 {"arm966e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM966E-S"},
19396 {"arm966e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19397 {"arm968e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19398 {"arm10t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
19399 {"arm10tdmi", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
19400 {"arm10e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19401 {"arm1020", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM1020E"},
19402 {"arm1020t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
19403 {"arm1020e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19404 {"arm1022e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
19405 {"arm1026ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM1026EJ-S"},
19406 {"arm1026ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
19407 {"arm1136js", ARM_ARCH_V6
, FPU_NONE
, "ARM1136J-S"},
19408 {"arm1136j-s", ARM_ARCH_V6
, FPU_NONE
, NULL
},
19409 {"arm1136jfs", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, "ARM1136JF-S"},
19410 {"arm1136jf-s", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, NULL
},
19411 {"mpcore", ARM_ARCH_V6K
, FPU_ARCH_VFP_V2
, NULL
},
19412 {"mpcorenovfp", ARM_ARCH_V6K
, FPU_NONE
, NULL
},
19413 {"arm1156t2-s", ARM_ARCH_V6T2
, FPU_NONE
, NULL
},
19414 {"arm1156t2f-s", ARM_ARCH_V6T2
, FPU_ARCH_VFP_V2
, NULL
},
19415 {"arm1176jz-s", ARM_ARCH_V6ZK
, FPU_NONE
, NULL
},
19416 {"arm1176jzf-s", ARM_ARCH_V6ZK
, FPU_ARCH_VFP_V2
, NULL
},
19417 {"cortex-a8", ARM_ARCH_V7A
, ARM_FEATURE(0, FPU_VFP_V3
19418 | FPU_NEON_EXT_V1
),
19420 {"cortex-r4", ARM_ARCH_V7R
, FPU_NONE
, NULL
},
19421 {"cortex-m3", ARM_ARCH_V7M
, FPU_NONE
, NULL
},
19422 /* ??? XSCALE is really an architecture. */
19423 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
19424 /* ??? iwmmxt is not a processor. */
19425 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP_V2
, NULL
},
19426 {"i80200", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
19428 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
), FPU_ARCH_MAVERICK
, "ARM920T"},
19429 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
19432 struct arm_arch_option_table
19435 const arm_feature_set value
;
19436 const arm_feature_set default_fpu
;
19439 /* This list should, at a minimum, contain all the architecture names
19440 recognized by GCC. */
19441 static const struct arm_arch_option_table arm_archs
[] =
19443 {"all", ARM_ANY
, FPU_ARCH_FPA
},
19444 {"armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
},
19445 {"armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
},
19446 {"armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
19447 {"armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
19448 {"armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
},
19449 {"armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
},
19450 {"armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
},
19451 {"armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
},
19452 {"armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
},
19453 {"armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
},
19454 {"armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
},
19455 {"armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
},
19456 {"armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
},
19457 {"armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
},
19458 {"armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
},
19459 {"armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
},
19460 {"armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
},
19461 {"armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
},
19462 {"armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
},
19463 {"armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
},
19464 {"armv6zk", ARM_ARCH_V6ZK
, FPU_ARCH_VFP
},
19465 {"armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
},
19466 {"armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
},
19467 {"armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
},
19468 {"armv6zkt2", ARM_ARCH_V6ZKT2
, FPU_ARCH_VFP
},
19469 {"armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
},
19470 {"armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
19471 {"armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
19472 {"armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
19473 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
},
19474 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
},
19475 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
19478 /* ISA extensions in the co-processor space. */
19479 struct arm_option_cpu_value_table
19482 const arm_feature_set value
;
19485 static const struct arm_option_cpu_value_table arm_extensions
[] =
19487 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK
)},
19488 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE
)},
19489 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT
)},
19490 {NULL
, ARM_ARCH_NONE
}
19493 /* This list should, at a minimum, contain all the fpu names
19494 recognized by GCC. */
19495 static const struct arm_option_cpu_value_table arm_fpus
[] =
19497 {"softfpa", FPU_NONE
},
19498 {"fpe", FPU_ARCH_FPE
},
19499 {"fpe2", FPU_ARCH_FPE
},
19500 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
19501 {"fpa", FPU_ARCH_FPA
},
19502 {"fpa10", FPU_ARCH_FPA
},
19503 {"fpa11", FPU_ARCH_FPA
},
19504 {"arm7500fe", FPU_ARCH_FPA
},
19505 {"softvfp", FPU_ARCH_VFP
},
19506 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
19507 {"vfp", FPU_ARCH_VFP_V2
},
19508 {"vfp9", FPU_ARCH_VFP_V2
},
19509 {"vfp3", FPU_ARCH_VFP_V3
},
19510 {"vfp10", FPU_ARCH_VFP_V2
},
19511 {"vfp10-r0", FPU_ARCH_VFP_V1
},
19512 {"vfpxd", FPU_ARCH_VFP_V1xD
},
19513 {"arm1020t", FPU_ARCH_VFP_V1
},
19514 {"arm1020e", FPU_ARCH_VFP_V2
},
19515 {"arm1136jfs", FPU_ARCH_VFP_V2
},
19516 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
19517 {"maverick", FPU_ARCH_MAVERICK
},
19518 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
19519 {NULL
, ARM_ARCH_NONE
}
19522 struct arm_option_value_table
19528 static const struct arm_option_value_table arm_float_abis
[] =
19530 {"hard", ARM_FLOAT_ABI_HARD
},
19531 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
19532 {"soft", ARM_FLOAT_ABI_SOFT
},
19537 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
19538 static const struct arm_option_value_table arm_eabis
[] =
19540 {"gnu", EF_ARM_EABI_UNKNOWN
},
19541 {"4", EF_ARM_EABI_VER4
},
19542 {"5", EF_ARM_EABI_VER5
},
19547 struct arm_long_option_table
19549 char * option
; /* Substring to match. */
19550 char * help
; /* Help information. */
19551 int (* func
) (char * subopt
); /* Function to decode sub-option. */
19552 char * deprecated
; /* If non-null, print this message. */
19556 arm_parse_extension (char * str
, const arm_feature_set
**opt_p
)
19558 arm_feature_set
*ext_set
= xmalloc (sizeof (arm_feature_set
));
19560 /* Copy the feature set, so that we can modify it. */
19561 *ext_set
= **opt_p
;
19564 while (str
!= NULL
&& *str
!= 0)
19566 const struct arm_option_cpu_value_table
* opt
;
19572 as_bad (_("invalid architectural extension"));
19577 ext
= strchr (str
, '+');
19580 optlen
= ext
- str
;
19582 optlen
= strlen (str
);
19586 as_bad (_("missing architectural extension"));
19590 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
19591 if (strncmp (opt
->name
, str
, optlen
) == 0)
19593 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->value
);
19597 if (opt
->name
== NULL
)
19599 as_bad (_("unknown architectural extnsion `%s'"), str
);
19610 arm_parse_cpu (char * str
)
19612 const struct arm_cpu_option_table
* opt
;
19613 char * ext
= strchr (str
, '+');
19617 optlen
= ext
- str
;
19619 optlen
= strlen (str
);
19623 as_bad (_("missing cpu name `%s'"), str
);
19627 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
19628 if (strncmp (opt
->name
, str
, optlen
) == 0)
19630 mcpu_cpu_opt
= &opt
->value
;
19631 mcpu_fpu_opt
= &opt
->default_fpu
;
19632 if (opt
->canonical_name
)
19633 strcpy(selected_cpu_name
, opt
->canonical_name
);
19637 for (i
= 0; i
< optlen
; i
++)
19638 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
19639 selected_cpu_name
[i
] = 0;
19643 return arm_parse_extension (ext
, &mcpu_cpu_opt
);
19648 as_bad (_("unknown cpu `%s'"), str
);
19653 arm_parse_arch (char * str
)
19655 const struct arm_arch_option_table
*opt
;
19656 char *ext
= strchr (str
, '+');
19660 optlen
= ext
- str
;
19662 optlen
= strlen (str
);
19666 as_bad (_("missing architecture name `%s'"), str
);
19670 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
19671 if (streq (opt
->name
, str
))
19673 march_cpu_opt
= &opt
->value
;
19674 march_fpu_opt
= &opt
->default_fpu
;
19675 strcpy(selected_cpu_name
, opt
->name
);
19678 return arm_parse_extension (ext
, &march_cpu_opt
);
19683 as_bad (_("unknown architecture `%s'\n"), str
);
19688 arm_parse_fpu (char * str
)
19690 const struct arm_option_cpu_value_table
* opt
;
19692 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
19693 if (streq (opt
->name
, str
))
19695 mfpu_opt
= &opt
->value
;
19699 as_bad (_("unknown floating point format `%s'\n"), str
);
19704 arm_parse_float_abi (char * str
)
19706 const struct arm_option_value_table
* opt
;
19708 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
19709 if (streq (opt
->name
, str
))
19711 mfloat_abi_opt
= opt
->value
;
19715 as_bad (_("unknown floating point abi `%s'\n"), str
);
19721 arm_parse_eabi (char * str
)
19723 const struct arm_option_value_table
*opt
;
19725 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
19726 if (streq (opt
->name
, str
))
19728 meabi_flags
= opt
->value
;
19731 as_bad (_("unknown EABI `%s'\n"), str
);
19736 struct arm_long_option_table arm_long_opts
[] =
19738 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
19739 arm_parse_cpu
, NULL
},
19740 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
19741 arm_parse_arch
, NULL
},
19742 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
19743 arm_parse_fpu
, NULL
},
19744 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
19745 arm_parse_float_abi
, NULL
},
19747 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
19748 arm_parse_eabi
, NULL
},
19750 {NULL
, NULL
, 0, NULL
}
19754 md_parse_option (int c
, char * arg
)
19756 struct arm_option_table
*opt
;
19757 const struct arm_legacy_option_table
*fopt
;
19758 struct arm_long_option_table
*lopt
;
19764 target_big_endian
= 1;
19770 target_big_endian
= 0;
19775 /* Listing option. Just ignore these, we don't support additional
19780 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
19782 if (c
== opt
->option
[0]
19783 && ((arg
== NULL
&& opt
->option
[1] == 0)
19784 || streq (arg
, opt
->option
+ 1)))
19786 #if WARN_DEPRECATED
19787 /* If the option is deprecated, tell the user. */
19788 if (opt
->deprecated
!= NULL
)
19789 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
19790 arg
? arg
: "", _(opt
->deprecated
));
19793 if (opt
->var
!= NULL
)
19794 *opt
->var
= opt
->value
;
19800 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
19802 if (c
== fopt
->option
[0]
19803 && ((arg
== NULL
&& fopt
->option
[1] == 0)
19804 || streq (arg
, fopt
->option
+ 1)))
19806 #if WARN_DEPRECATED
19807 /* If the option is deprecated, tell the user. */
19808 if (fopt
->deprecated
!= NULL
)
19809 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
19810 arg
? arg
: "", _(fopt
->deprecated
));
19813 if (fopt
->var
!= NULL
)
19814 *fopt
->var
= &fopt
->value
;
19820 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
19822 /* These options are expected to have an argument. */
19823 if (c
== lopt
->option
[0]
19825 && strncmp (arg
, lopt
->option
+ 1,
19826 strlen (lopt
->option
+ 1)) == 0)
19828 #if WARN_DEPRECATED
19829 /* If the option is deprecated, tell the user. */
19830 if (lopt
->deprecated
!= NULL
)
19831 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
19832 _(lopt
->deprecated
));
19835 /* Call the sup-option parser. */
19836 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
19847 md_show_usage (FILE * fp
)
19849 struct arm_option_table
*opt
;
19850 struct arm_long_option_table
*lopt
;
19852 fprintf (fp
, _(" ARM-specific assembler options:\n"));
19854 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
19855 if (opt
->help
!= NULL
)
19856 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
19858 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
19859 if (lopt
->help
!= NULL
)
19860 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
19864 -EB assemble code for a big-endian cpu\n"));
19869 -EL assemble code for a little-endian cpu\n"));
19878 arm_feature_set flags
;
19879 } cpu_arch_ver_table
;
19881 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
19882 least features first. */
19883 static const cpu_arch_ver_table cpu_arch_ver
[] =
19888 {4, ARM_ARCH_V5TE
},
19889 {5, ARM_ARCH_V5TEJ
},
19893 {9, ARM_ARCH_V6T2
},
19894 {10, ARM_ARCH_V7A
},
19895 {10, ARM_ARCH_V7R
},
19896 {10, ARM_ARCH_V7M
},
19900 /* Set the public EABI object attributes. */
19902 aeabi_set_public_attributes (void)
19905 arm_feature_set flags
;
19906 arm_feature_set tmp
;
19907 const cpu_arch_ver_table
*p
;
19909 /* Choose the architecture based on the capabilities of the requested cpu
19910 (if any) and/or the instructions actually used. */
19911 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
19912 ARM_MERGE_FEATURE_SETS (flags
, flags
, *mfpu_opt
);
19913 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_cpu
);
19917 for (p
= cpu_arch_ver
; p
->val
; p
++)
19919 if (ARM_CPU_HAS_FEATURE (tmp
, p
->flags
))
19922 ARM_CLEAR_FEATURE (tmp
, tmp
, p
->flags
);
19926 /* Tag_CPU_name. */
19927 if (selected_cpu_name
[0])
19931 p
= selected_cpu_name
;
19932 if (strncmp(p
, "armv", 4) == 0)
19937 for (i
= 0; p
[i
]; i
++)
19938 p
[i
] = TOUPPER (p
[i
]);
19940 elf32_arm_add_eabi_attr_string (stdoutput
, 5, p
);
19942 /* Tag_CPU_arch. */
19943 elf32_arm_add_eabi_attr_int (stdoutput
, 6, arch
);
19944 /* Tag_CPU_arch_profile. */
19945 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
))
19946 elf32_arm_add_eabi_attr_int (stdoutput
, 7, 'A');
19947 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7r
))
19948 elf32_arm_add_eabi_attr_int (stdoutput
, 7, 'R');
19949 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7m
))
19950 elf32_arm_add_eabi_attr_int (stdoutput
, 7, 'M');
19951 /* Tag_ARM_ISA_use. */
19952 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_full
))
19953 elf32_arm_add_eabi_attr_int (stdoutput
, 8, 1);
19954 /* Tag_THUMB_ISA_use. */
19955 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_full
))
19956 elf32_arm_add_eabi_attr_int (stdoutput
, 9,
19957 ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
) ? 2 : 1);
19958 /* Tag_VFP_arch. */
19959 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v3
)
19960 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v3
))
19961 elf32_arm_add_eabi_attr_int (stdoutput
, 10, 3);
19962 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v2
)
19963 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v2
))
19964 elf32_arm_add_eabi_attr_int (stdoutput
, 10, 2);
19965 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v1
)
19966 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v1
)
19967 || ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_vfp_ext_v1xd
)
19968 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_vfp_ext_v1xd
))
19969 elf32_arm_add_eabi_attr_int (stdoutput
, 10, 1);
19970 /* Tag_WMMX_arch. */
19971 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_cext_iwmmxt
)
19972 || ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_cext_iwmmxt
))
19973 elf32_arm_add_eabi_attr_int (stdoutput
, 11, 1);
19974 /* Tag_NEON_arch. */
19975 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, fpu_neon_ext_v1
)
19976 || ARM_CPU_HAS_FEATURE (arm_arch_used
, fpu_neon_ext_v1
))
19977 elf32_arm_add_eabi_attr_int (stdoutput
, 12, 1);
19980 /* Add the .ARM.attributes section. */
19989 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
19992 aeabi_set_public_attributes ();
19993 size
= elf32_arm_eabi_attr_size (stdoutput
);
19994 s
= subseg_new (".ARM.attributes", 0);
19995 bfd_set_section_flags (stdoutput
, s
, SEC_READONLY
| SEC_DATA
);
19996 addr
= frag_now_fix ();
19997 p
= frag_more (size
);
19998 elf32_arm_set_eabi_attr_contents (stdoutput
, (bfd_byte
*)p
, size
);
20000 #endif /* OBJ_ELF */
20003 /* Parse a .cpu directive. */
20006 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
20008 const struct arm_cpu_option_table
*opt
;
20012 name
= input_line_pointer
;
20013 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20014 input_line_pointer
++;
20015 saved_char
= *input_line_pointer
;
20016 *input_line_pointer
= 0;
20018 /* Skip the first "all" entry. */
20019 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
20020 if (streq (opt
->name
, name
))
20022 mcpu_cpu_opt
= &opt
->value
;
20023 selected_cpu
= opt
->value
;
20024 if (opt
->canonical_name
)
20025 strcpy(selected_cpu_name
, opt
->canonical_name
);
20029 for (i
= 0; opt
->name
[i
]; i
++)
20030 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
20031 selected_cpu_name
[i
] = 0;
20033 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
20034 *input_line_pointer
= saved_char
;
20035 demand_empty_rest_of_line ();
20038 as_bad (_("unknown cpu `%s'"), name
);
20039 *input_line_pointer
= saved_char
;
20040 ignore_rest_of_line ();
20044 /* Parse a .arch directive. */
20047 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
20049 const struct arm_arch_option_table
*opt
;
20053 name
= input_line_pointer
;
20054 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20055 input_line_pointer
++;
20056 saved_char
= *input_line_pointer
;
20057 *input_line_pointer
= 0;
20059 /* Skip the first "all" entry. */
20060 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
20061 if (streq (opt
->name
, name
))
20063 mcpu_cpu_opt
= &opt
->value
;
20064 selected_cpu
= opt
->value
;
20065 strcpy(selected_cpu_name
, opt
->name
);
20066 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
20067 *input_line_pointer
= saved_char
;
20068 demand_empty_rest_of_line ();
20072 as_bad (_("unknown architecture `%s'\n"), name
);
20073 *input_line_pointer
= saved_char
;
20074 ignore_rest_of_line ();
20078 /* Parse a .fpu directive. */
20081 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
20083 const struct arm_option_cpu_value_table
*opt
;
20087 name
= input_line_pointer
;
20088 while (*input_line_pointer
&& !ISSPACE(*input_line_pointer
))
20089 input_line_pointer
++;
20090 saved_char
= *input_line_pointer
;
20091 *input_line_pointer
= 0;
20093 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
20094 if (streq (opt
->name
, name
))
20096 mfpu_opt
= &opt
->value
;
20097 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
20098 *input_line_pointer
= saved_char
;
20099 demand_empty_rest_of_line ();
20103 as_bad (_("unknown floating point format `%s'\n"), name
);
20104 *input_line_pointer
= saved_char
;
20105 ignore_rest_of_line ();