1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V
2 Copyright (C) 1997, 1998, 1999 Free Software Foundation.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
25 #include "opcode/d30v.h"
27 const char comment_chars
[] = ";";
28 const char line_comment_chars
[] = "#";
29 const char line_separator_chars
[] = "";
30 const char *md_shortopts
= "OnNcC";
31 const char EXP_CHARS
[] = "eE";
32 const char FLT_CHARS
[] = "dD";
42 #define NOP_MULTIPLY 1
44 static int warn_nops
= 0;
45 static int Optimizing
= 0;
46 static int warn_register_name_conflicts
= 1;
52 typedef enum _exec_type
54 EXEC_UNKNOWN
, /* no order specified */
55 EXEC_PARALLEL
, /* done in parallel (FM=00) */
56 EXEC_SEQ
, /* sequential (FM=01) */
57 EXEC_REVSEQ
/* reverse sequential (FM=10) */
61 #define MAX_INSN_FIXUPS (5)
68 bfd_reloc_code_real_type reloc
;
71 typedef struct _fixups
74 struct d30v_fixup fix
[MAX_INSN_FIXUPS
];
78 static Fixups FixUps
[2];
79 static Fixups
*fixups
;
81 /* Whether current and previous instruction are word multiply insns. */
82 static int cur_mul32_p
= 0;
83 static int prev_mul32_p
= 0;
85 /* The flag_explicitly_parallel is true iff the instruction being assembled
86 has been explicitly written as a parallel short-instruction pair by the
87 human programmer. It is used in parallel_ok() to distinguish between
88 those dangerous parallelizations attempted by the human, which are to be
89 allowed, and those attempted by the assembler, which are not. It is set
90 from md_assemble(). */
91 static int flag_explicitly_parallel
= 0;
92 static int flag_xp_state
= 0;
94 /* Whether current and previous left sub-instruction disables
95 execution of right sub-instruction. */
96 static int cur_left_kills_right_p
= 0;
97 static int prev_left_kills_right_p
= 0;
99 /* The known current alignment of the current section. */
100 static int d30v_current_align
;
101 static segT d30v_current_align_seg
;
103 /* The last seen label in the current section. This is used to auto-align
104 labels preceeding instructions. */
105 static symbolS
*d30v_last_label
;
108 #define NOP_LEFT ((long long) NOP << 32)
109 #define NOP_RIGHT ((long long) NOP)
110 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
112 /* local functions */
113 static int reg_name_search
PARAMS ((char *name
));
114 static int register_name
PARAMS ((expressionS
*expressionP
));
115 static int check_range
PARAMS ((unsigned long num
, int bits
, int flags
));
116 static int postfix
PARAMS ((char *p
));
117 static bfd_reloc_code_real_type get_reloc
PARAMS ((struct d30v_operand
*op
, int rel_flag
));
118 static int get_operands
PARAMS ((expressionS exp
[], int cmp_hack
));
119 static struct d30v_format
*find_format
PARAMS ((struct d30v_opcode
*opcode
,
120 expressionS ops
[],int fsize
, int cmp_hack
));
121 static long long build_insn
PARAMS ((struct d30v_insn
*opcode
, expressionS
*opers
));
122 static void write_long
PARAMS ((struct d30v_insn
*opcode
, long long insn
, Fixups
*fx
));
123 static void write_1_short
PARAMS ((struct d30v_insn
*opcode
, long long insn
,
124 Fixups
*fx
, int use_sequential
));
125 static int write_2_short
PARAMS ((struct d30v_insn
*opcode1
, long long insn1
,
126 struct d30v_insn
*opcode2
, long long insn2
, exec_type_enum exec_type
, Fixups
*fx
));
127 static long long do_assemble
PARAMS ((char *str
, struct d30v_insn
*opcode
,
128 int shortp
, int is_parallel
));
129 static int parallel_ok
PARAMS ((struct d30v_insn
*opcode1
, unsigned long insn1
,
130 struct d30v_insn
*opcode2
, unsigned long insn2
,
131 exec_type_enum exec_type
));
132 static void d30v_number_to_chars
PARAMS ((char *buf
, long long value
, int nbytes
));
133 static void check_size
PARAMS ((long value
, int bits
, char *file
, int line
));
134 static void d30v_align
PARAMS ((int, char *, symbolS
*));
135 static void s_d30v_align
PARAMS ((int));
136 static void s_d30v_text
PARAMS ((int));
137 static void s_d30v_data
PARAMS ((int));
138 static void s_d30v_section
PARAMS ((int));
140 struct option md_longopts
[] = {
141 {NULL
, no_argument
, NULL
, 0}
143 size_t md_longopts_size
= sizeof(md_longopts
);
146 /* The target specific pseudo-ops which we support. */
147 const pseudo_typeS md_pseudo_table
[] =
150 { "hword", cons
, 2 },
151 { "align", s_d30v_align
, 0 },
152 { "text", s_d30v_text
, 0 },
153 { "data", s_d30v_data
, 0 },
154 { "section", s_d30v_section
, 0 },
155 { "section.s", s_d30v_section
, 0 },
156 { "sect", s_d30v_section
, 0 },
157 { "sect.s", s_d30v_section
, 0 },
161 /* Opcode hash table. */
162 static struct hash_control
*d30v_hash
;
164 /* reg_name_search does a binary search of the pre_defined_registers
165 array to see if "name" is a valid regiter name. Returns the register
166 number from the array on success, or -1 on failure. */
169 reg_name_search (name
)
172 int middle
, low
, high
;
176 high
= reg_name_cnt () - 1;
180 middle
= (low
+ high
) / 2;
181 cmp
= strcasecmp (name
, pre_defined_registers
[middle
].name
);
188 if (symbol_find (name
) != NULL
)
190 if (warn_register_name_conflicts
)
191 as_warn (_("Register name %s conflicts with symbol of the same name"),
195 return pre_defined_registers
[middle
].value
;
203 /* register_name() checks the string at input_line_pointer
204 to see if it is a valid register name. */
207 register_name (expressionP
)
208 expressionS
*expressionP
;
211 char c
, *p
= input_line_pointer
;
213 while (*p
&& *p
!='\n' && *p
!='\r' && *p
!=',' && *p
!=' ' && *p
!=')')
220 /* look to see if it's in the register table */
221 reg_number
= reg_name_search (input_line_pointer
);
224 expressionP
->X_op
= O_register
;
225 /* temporarily store a pointer to the string here */
226 expressionP
->X_op_symbol
= (symbolS
*)input_line_pointer
;
227 expressionP
->X_add_number
= reg_number
;
228 input_line_pointer
= p
;
238 check_range (num
, bits
, flags
)
246 /* don't bother checking 32-bit values */
247 if (bits
== 32 && sizeof(unsigned long) * CHAR_BIT
== 32)
250 /* Sign extend signed values to unsigned long */
251 if ((flags
& OPERAND_SIGNED
) && (num
& ((unsigned long)1 << (bits
- 1))))
252 num
|= ((long)-1 << (bits
- 1));
254 if (flags
& OPERAND_SHIFT
)
256 /* We know that all shifts are right by three bits.... */
258 if (flags
& OPERAND_SIGNED
)
259 num
= (unsigned long) ( (long) num
>= 0)
260 ? ( ((long) num
) >> 3 )
261 : ( (num
>> 3) | ((unsigned long)-1 << (32 - 3)) );
266 if (flags
& OPERAND_SIGNED
)
268 max
= ((unsigned long)1 << (bits
- 1)) - 1;
269 min
= - ((unsigned long)1 << (bits
- 1));
270 if (((long)num
> max
) || ((long)num
< min
))
275 max
= ((unsigned long)1 << bits
) - 1;
277 if ((num
> max
) || (num
< min
))
286 md_show_usage (stream
)
289 fprintf (stream
, _("\nD30V options:\n\
290 -O Make adjacent short instructions parallel if possible.\n\
291 -n Warn about all NOPs inserted by the assembler.\n\
292 -N Warn about NOPs inserted after word multiplies.\n\
293 -c Warn about symbols whoes names match register names.\n\
294 -C Opposite of -C. -c is the default.\n"));
298 md_parse_option (c
, arg
)
304 /* Optimize. Will attempt to parallelize operations */
309 /* Warn about all NOPS that the assembler inserts. */
314 /* Warn about the NOPS that the assembler inserts because of the
317 warn_nops
= NOP_MULTIPLY
;
321 warn_register_name_conflicts
= 1;
325 warn_register_name_conflicts
= 0;
335 md_undefined_symbol (name
)
341 /* Turn a string in input_line_pointer into a floating point constant of type
342 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
343 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
346 md_atof (type
, litP
, sizeP
)
352 LITTLENUM_TYPE words
[4];
366 return _("bad call to md_atof");
369 t
= atof_ieee (input_line_pointer
, type
, words
);
371 input_line_pointer
= t
;
375 for (i
= 0; i
< prec
; i
++)
377 md_number_to_chars (litP
, (valueT
) words
[i
], 2);
384 md_convert_frag (abfd
, sec
, fragP
)
393 md_section_align (seg
, addr
)
397 int align
= bfd_get_section_alignment (stdoutput
, seg
);
398 return ((addr
+ (1 << align
) - 1) & (-1 << align
));
405 struct d30v_opcode
* opcode
;
406 d30v_hash
= hash_new ();
408 /* Insert opcode names into a hash table. */
409 for (opcode
= (struct d30v_opcode
*)d30v_opcode_table
; opcode
->name
; opcode
++)
410 hash_insert (d30v_hash
, opcode
->name
, (char *) opcode
);
413 FixUps
[0].next
= &FixUps
[1];
414 FixUps
[1].next
= &FixUps
[0];
416 d30v_current_align_seg
= now_seg
;
420 /* this function removes the postincrement or postdecrement
421 operator ( '+' or '-' ) from an expression */
423 static int postfix (p
)
426 while (*p
!= '-' && *p
!= '+')
428 if (*p
==0 || *p
=='\n' || *p
=='\r' || *p
==' ' || *p
==',')
448 static bfd_reloc_code_real_type
449 get_reloc (op
, rel_flag
)
450 struct d30v_operand
*op
;
456 if (op
->flags
& OPERAND_SHIFT
)
457 return BFD_RELOC_D30V_9_PCREL
;
459 return BFD_RELOC_D30V_6
;
462 if (!(op
->flags
& OPERAND_SHIFT
))
463 as_warn (_("unexpected 12-bit reloc type"));
464 if (rel_flag
== RELOC_PCREL
)
465 return BFD_RELOC_D30V_15_PCREL
;
467 return BFD_RELOC_D30V_15
;
469 if (!(op
->flags
& OPERAND_SHIFT
))
470 as_warn (_("unexpected 18-bit reloc type"));
471 if (rel_flag
== RELOC_PCREL
)
472 return BFD_RELOC_D30V_21_PCREL
;
474 return BFD_RELOC_D30V_21
;
476 if (rel_flag
== RELOC_PCREL
)
477 return BFD_RELOC_D30V_32_PCREL
;
479 return BFD_RELOC_D30V_32
;
485 /* get_operands parses a string of operands and returns
486 an array of expressions */
489 get_operands (exp
, cmp_hack
)
493 char *p
= input_line_pointer
;
499 exp
[numops
].X_op
= O_absent
;
500 exp
[numops
++].X_add_number
= cmp_hack
- 1;
505 while (*p
== ' ' || *p
== '\t' || *p
== ',')
507 if (*p
==0 || *p
=='\n' || *p
=='\r')
513 exp
[numops
].X_op
= O_absent
;
517 exp
[numops
].X_add_number
= OPERAND_ATPAR
;
523 exp
[numops
].X_add_number
= OPERAND_ATMINUS
;
527 exp
[numops
].X_add_number
= OPERAND_ATSIGN
;
536 /* just skip the trailing paren */
541 input_line_pointer
= p
;
543 /* check to see if it might be a register name */
544 if (!register_name (&exp
[numops
]))
546 /* parse as an expression */
547 expression (&exp
[numops
]);
550 if (exp
[numops
].X_op
== O_illegal
)
551 as_bad (_("illegal operand"));
552 else if (exp
[numops
].X_op
== O_absent
)
553 as_bad (_("missing operand"));
556 p
= input_line_pointer
;
560 case -1: /* postdecrement mode */
561 exp
[numops
].X_op
= O_absent
;
562 exp
[numops
++].X_add_number
= OPERAND_MINUS
;
564 case 1: /* postincrement mode */
565 exp
[numops
].X_op
= O_absent
;
566 exp
[numops
++].X_add_number
= OPERAND_PLUS
;
572 exp
[numops
].X_op
= 0;
576 /* build_insn generates the instruction. It does everything */
577 /* but write the FM bits. */
580 build_insn (opcode
, opers
)
581 struct d30v_insn
*opcode
;
584 int i
, length
, bits
, shift
, flags
;
585 unsigned int number
, id
=0;
587 struct d30v_opcode
*op
= opcode
->op
;
588 struct d30v_format
*form
= opcode
->form
;
590 insn
= opcode
->ecc
<< 28 | op
->op1
<< 25 | op
->op2
<< 20 | form
->modifier
<< 18;
592 for (i
=0; form
->operands
[i
]; i
++)
594 flags
= d30v_operand_table
[form
->operands
[i
]].flags
;
596 /* must be a register or number */
597 if (!(flags
& OPERAND_REG
) && !(flags
& OPERAND_NUM
) &&
598 !(flags
& OPERAND_NAME
) && !(flags
& OPERAND_SPECIAL
))
601 bits
= d30v_operand_table
[form
->operands
[i
]].bits
;
602 if (flags
& OPERAND_SHIFT
)
605 length
= d30v_operand_table
[form
->operands
[i
]].length
;
606 shift
= 12 - d30v_operand_table
[form
->operands
[i
]].position
;
607 if (opers
[i
].X_op
!= O_symbol
)
608 number
= opers
[i
].X_add_number
;
611 if (flags
& OPERAND_REG
)
613 /* check for mvfsys or mvtsys control registers */
614 if (flags
& OPERAND_CONTROL
&& (number
& 0x7f) > MAX_CONTROL_REG
)
617 id
= (number
& 0x7f) - MAX_CONTROL_REG
;
620 else if (number
& OPERAND_FLAG
)
622 id
= 3; /* number is a flag register */
626 else if (flags
& OPERAND_SPECIAL
)
631 if (opers
[i
].X_op
!= O_register
&& opers
[i
].X_op
!= O_constant
&& !(flags
& OPERAND_NAME
))
633 /* now create a fixup */
635 if (fixups
->fc
>= MAX_INSN_FIXUPS
)
636 as_fatal (_("too many fixups"));
638 fixups
->fix
[fixups
->fc
].reloc
=
639 get_reloc ((struct d30v_operand
*)&d30v_operand_table
[form
->operands
[i
]], op
->reloc_flag
);
640 fixups
->fix
[fixups
->fc
].size
= 4;
641 fixups
->fix
[fixups
->fc
].exp
= opers
[i
];
642 fixups
->fix
[fixups
->fc
].operand
= form
->operands
[i
];
643 if (fixups
->fix
[fixups
->fc
].reloc
== BFD_RELOC_D30V_9_PCREL
)
644 fixups
->fix
[fixups
->fc
].pcrel
= RELOC_PCREL
;
646 fixups
->fix
[fixups
->fc
].pcrel
= op
->reloc_flag
;
650 /* truncate to the proper number of bits */
651 if ((opers
[i
].X_op
== O_constant
) && check_range (number
, bits
, flags
))
652 as_bad (_("operand out of range: %d"),number
);
654 number
&= 0x7FFFFFFF >> (31 - bits
);
655 if (flags
& OPERAND_SHIFT
)
659 /* it's a LONG instruction */
660 insn
|= (number
>> 26); /* top 6 bits */
661 insn
<<= 32; /* shift the first word over */
662 insn
|= ((number
& 0x03FC0000) << 2); /* next 8 bits */
663 insn
|= number
& 0x0003FFFF; /* bottom 18 bits */
666 insn
|= number
<< shift
;
672 /* write out a long form instruction */
674 write_long (opcode
, insn
, fx
)
675 struct d30v_insn
*opcode
;
680 char *f
= frag_more (8);
683 d30v_number_to_chars (f
, insn
, 8);
685 for (i
=0; i
< fx
->fc
; i
++)
687 if (fx
->fix
[i
].reloc
)
689 where
= f
- frag_now
->fr_literal
;
690 fix_new_exp (frag_now
,
702 /* Write out a short form instruction by itself. */
704 write_1_short (opcode
, insn
, fx
, use_sequential
)
705 struct d30v_insn
*opcode
;
710 char *f
= frag_more (8);
713 if (warn_nops
== NOP_ALL
)
714 as_warn (_("%s NOP inserted"), use_sequential
?
715 _("sequential") : _("parallel"));
717 /* The other container needs to be NOP. */
720 /* Use a sequential NOP rather than a parallel one,
721 as the current instruction is a FLAG_MUL32 type one
722 and the next instruction is a load. */
724 /* According to 4.3.1: for FM=01, sub-instructions performed
725 only by IU cannot be encoded in L-container. */
727 if (opcode
->op
->unit
== IU
)
728 insn
|= FM10
| NOP_LEFT
; /* right then left */
730 insn
= FM01
| (insn
<< 32) | NOP_RIGHT
; /* left then right */
734 /* According to 4.3.1: for FM=00, sub-instructions performed
735 only by IU cannot be encoded in L-container. */
737 if (opcode
->op
->unit
== IU
)
738 insn
|= FM00
| NOP_LEFT
; /* right container */
740 insn
= FM00
| (insn
<< 32) | NOP_RIGHT
; /* left container */
743 d30v_number_to_chars (f
, insn
, 8);
745 for (i
=0; i
< fx
->fc
; i
++)
747 if (fx
->fix
[i
].reloc
)
749 where
= f
- frag_now
->fr_literal
;
750 fix_new_exp (frag_now
,
761 /* Write out a short form instruction if possible.
762 Return number of instructions not written out. */
764 write_2_short (opcode1
, insn1
, opcode2
, insn2
, exec_type
, fx
)
765 struct d30v_insn
*opcode1
, *opcode2
;
766 long long insn1
, insn2
;
767 exec_type_enum exec_type
;
770 long long insn
= NOP2
;
774 if (exec_type
== EXEC_SEQ
775 && (opcode1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
))
776 && ((opcode1
->op
->flags_used
& FLAG_DELAY
) == 0)
777 && ((opcode1
->ecc
== ECC_AL
) || ! Optimizing
))
779 /* Unconditional, non-delayed branches kill instructions in
780 the right bin. Conditional branches don't always but if
781 we are not optimizing, then we have been asked to produce
782 an error about such constructs. For the purposes of this
783 test, subroutine calls are considered to be branches. */
784 write_1_short (opcode1
, insn1
, fx
->next
, false);
788 /* Note: we do not have to worry about subroutine calls occuring
789 in the right hand container. The return address is always
790 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
794 case EXEC_UNKNOWN
: /* Order not specified. */
796 && parallel_ok (opcode1
, insn1
, opcode2
, insn2
, exec_type
)
797 && ! ( (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
798 || opcode1
->op
->unit
== MU
)
800 ( opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
801 || opcode2
->op
->unit
== MU
)))
804 exec_type
= EXEC_PARALLEL
;
806 if (opcode1
->op
->unit
== IU
807 || opcode2
->op
->unit
== MU
808 || opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
809 insn
= FM00
| (insn2
<< 32) | insn1
;
812 insn
= FM00
| (insn1
<< 32) | insn2
;
816 else if ((opcode1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
)
817 && ((opcode1
->op
->flags_used
& FLAG_DELAY
) == 0)
818 && ((opcode1
->ecc
== ECC_AL
) || ! Optimizing
))
819 || opcode1
->op
->flags_used
& FLAG_RP
)
821 /* We must emit (non-delayed) branch type instructions
822 on their own with nothing in the right container. */
823 /* We must treat repeat instructions likewise, since the
824 following instruction has to be separate from the repeat
825 in order to be repeated. */
826 write_1_short (opcode1
, insn1
, fx
->next
, false);
829 else if (prev_left_kills_right_p
)
831 /* The left instruction kils the right slot, so we
832 must leave it empty. */
833 write_1_short (opcode1
, insn1
, fx
->next
, false);
836 else if (opcode1
->op
->unit
== IU
837 || (opcode1
->op
->unit
== EITHER
838 && opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
))
840 /* reverse sequential */
841 insn
= FM10
| (insn2
<< 32) | insn1
;
842 exec_type
= EXEC_REVSEQ
;
847 insn
= FM01
| (insn1
<< 32) | insn2
;
849 exec_type
= EXEC_SEQ
;
853 case EXEC_PARALLEL
: /* parallel */
854 flag_explicitly_parallel
= flag_xp_state
;
855 if (! parallel_ok (opcode1
, insn1
, opcode2
, insn2
, exec_type
))
856 as_bad (_("Instructions may not be executed in parallel"));
857 else if (opcode1
->op
->unit
== IU
)
859 if (opcode2
->op
->unit
== IU
)
860 as_bad (_("Two IU instructions may not be executed in parallel"));
861 as_warn (_("Swapping instruction order"));
862 insn
= FM00
| (insn2
<< 32) | insn1
;
864 else if (opcode2
->op
->unit
== MU
)
866 if (opcode1
->op
->unit
== MU
)
867 as_bad (_("Two MU instructions may not be executed in parallel"));
868 else if (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
)
869 as_warn (_("Executing %s in IU may not work"), opcode1
->op
->name
);
870 as_warn (_("Swapping instruction order"));
871 insn
= FM00
| (insn2
<< 32) | insn1
;
875 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
876 as_warn (_("Executing %s in IU may not work"), opcode2
->op
->name
);
878 insn
= FM00
| (insn1
<< 32) | insn2
;
881 flag_explicitly_parallel
= 0;
884 case EXEC_SEQ
: /* sequential */
885 if (opcode1
->op
->unit
== IU
)
886 as_bad (_("IU instruction may not be in the left container"));
887 if (prev_left_kills_right_p
)
888 as_bad (_("special left instruction `%s' kills instruction "
889 "`%s' in right container"),
890 opcode1
->op
->name
, opcode2
->op
->name
);
891 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
892 as_warn (_("Executing %s in IU may not work"), opcode2
->op
->name
);
893 insn
= FM01
| (insn1
<< 32) | insn2
;
897 case EXEC_REVSEQ
: /* reverse sequential */
898 if (opcode2
->op
->unit
== MU
)
899 as_bad (_("MU instruction may not be in the right container"));
900 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
901 as_warn (_("Executing %s in IU may not work"), opcode2
->op
->name
);
902 insn
= FM10
| (insn1
<< 32) | insn2
;
907 as_fatal (_("unknown execution type passed to write_2_short()"));
910 /* printf ("writing out %llx\n",insn); */
912 d30v_number_to_chars (f
, insn
, 8);
914 /* If the previous instruction was a 32-bit multiply but it is put into a
915 parallel container, mark the current instruction as being a 32-bit
917 if (prev_mul32_p
&& exec_type
== EXEC_PARALLEL
)
922 for (i
=0; i
< fx
->fc
; i
++)
924 if (fx
->fix
[i
].reloc
)
926 where
= (f
- frag_now
->fr_literal
) + 4*j
;
928 fix_new_exp (frag_now
,
945 /* Check 2 instructions and determine if they can be safely */
946 /* executed in parallel. Returns 1 if they can be. */
948 parallel_ok (op1
, insn1
, op2
, insn2
, exec_type
)
949 struct d30v_insn
*op1
, *op2
;
950 unsigned long insn1
, insn2
;
951 exec_type_enum exec_type
;
953 int i
, j
, shift
, regno
, bits
, ecc
;
954 unsigned long flags
, mask
, flags_set1
, flags_set2
, flags_used1
, flags_used2
;
955 unsigned long ins
, mod_reg
[2][3], used_reg
[2][3], flag_reg
[2];
956 struct d30v_format
*f
;
957 struct d30v_opcode
*op
;
959 /* section 4.3: both instructions must not be IU or MU only */
960 if ((op1
->op
->unit
== IU
&& op2
->op
->unit
== IU
)
961 || (op1
->op
->unit
== MU
&& op2
->op
->unit
== MU
))
964 /* first instruction must not be a jump to safely optimize, unless this
965 is an explicit parallel operation. */
966 if (exec_type
!= EXEC_PARALLEL
967 && (op1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
)))
970 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
971 then it is safe to allow the two to be done as parallel ops, since only
972 one will ever be executed at a time. */
973 if ((op1
->ecc
== ECC_TX
&& op2
->ecc
== ECC_FX
)
974 || (op1
->ecc
== ECC_FX
&& op2
->ecc
== ECC_TX
)
975 || (op1
->ecc
== ECC_XT
&& op2
->ecc
== ECC_XF
)
976 || (op1
->ecc
== ECC_XF
&& op2
->ecc
== ECC_XT
))
981 [2] a0, a1, flag registers */
983 for (j
= 0; j
< 2; j
++)
1000 mod_reg
[j
][0] = mod_reg
[j
][1] = 0;
1001 used_reg
[j
][0] = used_reg
[j
][1] = 0;
1003 if (flag_explicitly_parallel
)
1005 /* For human specified parallel instructions we have been asked
1006 to ignore the possibility that both instructions could modify
1007 bits in the PSW, so we initialise the mod & used arrays to 0.
1008 We have been asked, however, to refuse to allow parallel
1009 instructions which explicitly set the same flag register,
1010 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
1011 for the use of a flag register and set a bit in the mod or used
1012 array appropriately. */
1019 mod_reg
[j
][2] = (op
->flags_set
& FLAG_ALL
);
1020 used_reg
[j
][2] = (op
->flags_used
& FLAG_ALL
);
1023 /* BSR/JSR always sets R62 */
1024 if (op
->flags_used
& FLAG_JSR
)
1025 mod_reg
[j
][1] = (1L << (62-32));
1027 /* conditional execution affects the flags_used */
1032 used_reg
[j
][2] |= flag_reg
[j
] = FLAG_0
;
1037 used_reg
[j
][2] |= flag_reg
[j
] = FLAG_1
;
1042 used_reg
[j
][2] |= flag_reg
[j
] = (FLAG_0
| FLAG_1
);
1046 for (i
= 0; f
->operands
[i
]; i
++)
1048 flags
= d30v_operand_table
[f
->operands
[i
]].flags
;
1049 shift
= 12 - d30v_operand_table
[f
->operands
[i
]].position
;
1050 bits
= d30v_operand_table
[f
->operands
[i
]].bits
;
1054 mask
= 0x7FFFFFFF >> (31 - bits
);
1056 if ((flags
& OPERAND_PLUS
) || (flags
& OPERAND_MINUS
))
1058 /* this is a post-increment or post-decrement */
1059 /* the previous register needs to be marked as modified */
1061 shift
= 12 - d30v_operand_table
[f
->operands
[i
-1]].position
;
1062 regno
= (ins
>> shift
) & 0x3f;
1064 mod_reg
[j
][1] |= 1L << (regno
- 32);
1066 mod_reg
[j
][0] |= 1L << regno
;
1068 else if (flags
& OPERAND_REG
)
1070 regno
= (ins
>> shift
) & mask
;
1071 /* the memory write functions don't have a destination register */
1072 if ((flags
& OPERAND_DEST
) && !(op
->flags_set
& FLAG_MEM
))
1074 /* MODIFIED registers and flags */
1075 if (flags
& OPERAND_ACC
)
1078 mod_reg
[j
][2] |= FLAG_A0
;
1079 else if (regno
== 1)
1080 mod_reg
[j
][2] |= FLAG_A1
;
1084 else if (flags
& OPERAND_FLAG
)
1085 mod_reg
[j
][2] |= 1L << regno
;
1086 else if (!(flags
& OPERAND_CONTROL
))
1090 /* need to check if there are two destination */
1091 /* registers, for example ld2w */
1092 if (flags
& OPERAND_2REG
)
1097 for (r
= regno
; r
<= regno
+ z
; r
++)
1100 mod_reg
[j
][1] |= 1L << (r
- 32);
1102 mod_reg
[j
][0] |= 1L << r
;
1108 /* USED, but not modified registers and flags */
1109 if (flags
& OPERAND_ACC
)
1112 used_reg
[j
][2] |= FLAG_A0
;
1113 else if (regno
== 1)
1114 used_reg
[j
][2] |= FLAG_A1
;
1118 else if (flags
& OPERAND_FLAG
)
1119 used_reg
[j
][2] |= 1L << regno
;
1120 else if (!(flags
& OPERAND_CONTROL
))
1124 /* need to check if there are two source */
1125 /* registers, for example st2w */
1126 if (flags
& OPERAND_2REG
)
1131 for (r
= regno
; r
<= regno
+ z
; r
++)
1134 used_reg
[j
][1] |= 1L << (r
- 32);
1136 used_reg
[j
][0] |= 1L << r
;
1144 flags_set1
= op1
->op
->flags_set
;
1145 flags_set2
= op2
->op
->flags_set
;
1146 flags_used1
= op1
->op
->flags_used
;
1147 flags_used2
= op2
->op
->flags_used
;
1149 /* ST2W/ST4HB combined with ADDppp/SUBppp is illegal. */
1150 if (((flags_set1
& (FLAG_MEM
| FLAG_2WORD
)) == (FLAG_MEM
| FLAG_2WORD
)
1151 && (flags_used2
& FLAG_ADDSUBppp
) != 0)
1152 || ((flags_set2
& (FLAG_MEM
| FLAG_2WORD
)) == (FLAG_MEM
| FLAG_2WORD
)
1153 && (flags_used1
& FLAG_ADDSUBppp
) != 0))
1156 /* Load instruction combined with half-word multiply is illegal. */
1157 if (((flags_used1
& FLAG_MEM
) != 0 && (flags_used2
& FLAG_MUL16
))
1158 || ((flags_used2
& FLAG_MEM
) != 0 && (flags_used1
& FLAG_MUL16
)))
1161 /* Specifically allow add || add by removing carry, overflow bits dependency.
1162 This is safe, even if an addc follows since the IU takes the argument in
1163 the right container, and it writes its results last.
1164 However, don't paralellize add followed by addc or sub followed by
1167 if (mod_reg
[0][2] == FLAG_CVVA
&& mod_reg
[1][2] == FLAG_CVVA
1168 && (used_reg
[0][2] & ~flag_reg
[0]) == 0
1169 && (used_reg
[1][2] & ~flag_reg
[1]) == 0
1170 && op1
->op
->unit
== EITHER
&& op2
->op
->unit
== EITHER
)
1172 mod_reg
[0][2] = mod_reg
[1][2] = 0;
1175 for (j
= 0; j
< 3; j
++)
1177 /* If the second instruction depends on the first, we obviously
1178 cannot parallelize. Note, the mod flag implies use, so
1179 check that as well. */
1180 /* If flag_explicitly_parallel is set, then the case of the
1181 second instruction using a register the first instruction
1182 modifies is assumed to be okay; we trust the human. We
1183 don't trust the human if both instructions modify the same
1184 register but we do trust the human if they modify the same
1186 /* We have now been requested not to trust the human if the
1187 instructions modify the same flag registers either. */
1188 if (flag_explicitly_parallel
)
1190 if ((mod_reg
[0][j
] & mod_reg
[1][j
]) != 0)
1194 if ((mod_reg
[0][j
] & (mod_reg
[1][j
] | used_reg
[1][j
])) != 0)
1202 /* This is the main entry point for the machine-dependent assembler. str points to a
1203 machine-dependent instruction. This function is supposed to emit the frags/bytes
1204 it assembles to. For the D30V, it mostly handles the special VLIW parsing and packing
1205 and leaves the difficult stuff to do_assemble(). */
1207 static long long prev_insn
= -1;
1208 static struct d30v_insn prev_opcode
;
1209 static subsegT prev_subseg
;
1210 static segT prev_seg
= 0;
1216 struct d30v_insn opcode
;
1218 exec_type_enum extype
= EXEC_UNKNOWN
; /* execution type; parallel, etc */
1219 static exec_type_enum etype
= EXEC_UNKNOWN
; /* saved extype. used for multiline instructions */
1222 if ((prev_insn
!= -1) && prev_seg
1223 && ((prev_seg
!= now_seg
) || (prev_subseg
!= now_subseg
)))
1224 d30v_cleanup (false);
1226 if (d30v_current_align
< 3)
1227 d30v_align (3, NULL
, d30v_last_label
);
1228 else if (d30v_current_align
> 3)
1229 d30v_current_align
= 3;
1230 d30v_last_label
= NULL
;
1232 flag_explicitly_parallel
= 0;
1234 if (etype
== EXEC_UNKNOWN
)
1236 /* look for the special multiple instruction separators */
1237 str2
= strstr (str
, "||");
1240 extype
= EXEC_PARALLEL
;
1245 str2
= strstr (str
, "->");
1250 str2
= strstr (str
, "<-");
1252 extype
= EXEC_REVSEQ
;
1255 /* str2 points to the separator, if one */
1260 /* if two instructions are present and we already have one saved
1261 then first write it out */
1262 d30v_cleanup (false);
1264 /* Assemble first instruction and save it. */
1265 prev_insn
= do_assemble (str
, &prev_opcode
, 1, 0);
1266 if (prev_insn
== -1)
1267 as_bad (_("Cannot assemble instruction"));
1268 if (prev_opcode
.form
!= NULL
&& prev_opcode
.form
->form
>= LONG
)
1269 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1270 fixups
= fixups
->next
;
1273 prev_subseg
= now_subseg
;
1277 insn
= do_assemble (str
, &opcode
,
1278 (extype
!= EXEC_UNKNOWN
|| etype
!= EXEC_UNKNOWN
),
1279 extype
== EXEC_PARALLEL
);
1282 if (extype
!= EXEC_UNKNOWN
)
1284 as_bad (_("Cannot assemble instruction"));
1288 if (etype
!= EXEC_UNKNOWN
)
1291 etype
= EXEC_UNKNOWN
;
1294 /* Word multiply instructions must not be followed by either a load or a
1295 16-bit multiply instruction in the next cycle. */
1296 if ( (extype
!= EXEC_REVSEQ
)
1298 && (opcode
.op
->flags_used
& (FLAG_MEM
| FLAG_MUL16
)))
1300 /* However, load and multiply should able to be combined in a parallel
1301 operation, so check for that first. */
1303 && (opcode
.op
->flags_used
& FLAG_MEM
)
1304 && opcode
.form
->form
< LONG
1305 && (extype
== EXEC_PARALLEL
|| (Optimizing
&& extype
== EXEC_UNKNOWN
))
1306 && parallel_ok (&prev_opcode
, (long)prev_insn
,
1307 &opcode
, (long)insn
, extype
)
1308 && write_2_short (&prev_opcode
, (long)prev_insn
,
1309 &opcode
, (long)insn
, extype
, fixups
) == 0)
1311 /* no instructions saved */
1317 /* Can't parallelize, flush previous instruction and emit a word of NOPS,
1318 unless the previous instruction is a NOP, in which case just flush it,
1319 as this will generate a word of NOPs for us. */
1321 if (prev_insn
!= -1 && (strcmp (prev_opcode
.op
->name
, "nop") == 0))
1322 d30v_cleanup (false);
1327 if (prev_insn
!= -1)
1328 d30v_cleanup (true);
1332 d30v_number_to_chars (f
, NOP2
, 8);
1334 if (warn_nops
== NOP_ALL
|| warn_nops
== NOP_MULTIPLY
)
1336 if (opcode
.op
->flags_used
& FLAG_MEM
)
1337 as_warn (_("word of NOPs added between word multiply and load"));
1339 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
1344 extype
= EXEC_UNKNOWN
;
1347 else if ( (extype
== EXEC_REVSEQ
)
1349 && (prev_opcode
.op
->flags_used
& (FLAG_MEM
| FLAG_MUL16
)))
1351 /* Can't parallelize, flush current instruction and add a sequential NOP. */
1352 write_1_short (& opcode
, (long) insn
, fixups
->next
->next
, true);
1354 /* Make the previous instruction the current one. */
1355 extype
= EXEC_UNKNOWN
;
1358 now_subseg
= prev_subseg
;
1360 cur_mul32_p
= prev_mul32_p
;
1362 memcpy (&opcode
, &prev_opcode
, sizeof (prev_opcode
));
1365 /* If this is a long instruction, write it and any previous short instruction. */
1366 if (opcode
.form
->form
>= LONG
)
1368 if (extype
!= EXEC_UNKNOWN
)
1369 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1370 d30v_cleanup (false);
1371 write_long (& opcode
, insn
, fixups
);
1374 else if ((prev_insn
!= -1)
1376 (& prev_opcode
, (long) prev_insn
, & opcode
,
1377 (long) insn
, extype
, fixups
) == 0))
1379 /* No instructions saved. */
1384 if (extype
!= EXEC_UNKNOWN
)
1385 as_bad (_("Unable to mix instructions as specified"));
1387 /* Save off last instruction so it may be packed on next pass. */
1388 memcpy (&prev_opcode
, &opcode
, sizeof (prev_opcode
));
1391 prev_subseg
= now_subseg
;
1392 fixups
= fixups
->next
;
1393 prev_mul32_p
= cur_mul32_p
;
1398 /* do_assemble assembles a single instruction and returns an opcode */
1399 /* it returns -1 (an invalid opcode) on error */
1401 #define NAME_BUF_LEN 20
1404 do_assemble (str
, opcode
, shortp
, is_parallel
)
1406 struct d30v_insn
*opcode
;
1410 unsigned char * op_start
;
1411 unsigned char * save
;
1412 unsigned char * op_end
;
1413 char name
[NAME_BUF_LEN
];
1416 int fsize
= (shortp
? FORCE_SHORT
: 0);
1417 expressionS myops
[6];
1420 /* Drop leading whitespace */
1421 while (* str
== ' ')
1424 /* find the opcode end */
1425 for (op_start
= op_end
= (unsigned char *) (str
);
1427 && nlen
< (NAME_BUF_LEN
- 1)
1429 && !is_end_of_line
[*op_end
] && *op_end
!= ' ';
1432 name
[nlen
] = tolower (op_start
[nlen
]);
1441 /* if there is an execution condition code, handle it */
1445 while ( (i
< ECC_MAX
) && strncasecmp (d30v_ecc_names
[i
], op_end
+ 1, 2))
1451 strncpy (tmp
, op_end
+ 1, 2);
1453 as_bad (_("unknown condition code: %s"),tmp
);
1456 /* printf ("condition code=%d\n",i); */
1461 opcode
->ecc
= ECC_AL
;
1464 /* CMP and CMPU change their name based on condition codes */
1465 if (!strncmp (name
, "cmp", 3))
1468 char **str
= (char **)d30v_cc_names
;
1474 for (i
=1; *str
&& strncmp (*str
, & name
[p
], 2); i
++, str
++)
1477 /* cmpu only supports some condition codes */
1483 as_bad (_("cmpu doesn't support condition code %s"),&name
[p
]);
1490 as_bad (_("unknown condition code: %s"),&name
[p
]);
1499 /* printf("cmp_hack=%d\n",cmp_hack); */
1501 /* need to look for .s or .l */
1502 if (name
[nlen
-2] == '.')
1504 switch (name
[nlen
-1])
1507 fsize
= FORCE_SHORT
;
1516 /* find the first opcode with the proper name */
1517 opcode
->op
= (struct d30v_opcode
*)hash_find (d30v_hash
, name
);
1518 if (opcode
->op
== NULL
)
1520 as_bad (_("unknown opcode: %s"),name
);
1524 save
= input_line_pointer
;
1525 input_line_pointer
= op_end
;
1526 while (!(opcode
->form
= find_format (opcode
->op
, myops
, fsize
, cmp_hack
)))
1529 if (opcode
->op
->name
== NULL
|| strcmp (opcode
->op
->name
, name
))
1531 as_bad (_("operands for opcode `%s' do not match any valid format"), name
);
1535 input_line_pointer
= save
;
1537 insn
= build_insn (opcode
, myops
);
1539 /* Propigate multiply status */
1542 if (is_parallel
&& prev_mul32_p
)
1546 prev_mul32_p
= cur_mul32_p
;
1547 cur_mul32_p
= (opcode
->op
->flags_used
& FLAG_MUL32
) != 0;
1551 /* Propagate left_kills_right status */
1554 prev_left_kills_right_p
= cur_left_kills_right_p
;
1556 if (opcode
->op
->flags_set
& FLAG_LKR
)
1558 cur_left_kills_right_p
= 1;
1560 if (strcmp (opcode
->op
->name
, "mvtsys") == 0)
1562 /* Left kills right for only mvtsys only for PSW/PSWH/PSWL/flags target. */
1563 if ((myops
[0].X_op
== O_register
) &&
1564 ((myops
[0].X_add_number
== OPERAND_CONTROL
) || /* psw */
1565 (myops
[0].X_add_number
== OPERAND_CONTROL
+MAX_CONTROL_REG
+2) || /* pswh */
1566 (myops
[0].X_add_number
== OPERAND_CONTROL
+MAX_CONTROL_REG
+1) || /* pswl */
1567 (myops
[0].X_add_number
== OPERAND_FLAG
+0) || /* f0 */
1568 (myops
[0].X_add_number
== OPERAND_FLAG
+1) || /* f1 */
1569 (myops
[0].X_add_number
== OPERAND_FLAG
+2) || /* f2 */
1570 (myops
[0].X_add_number
== OPERAND_FLAG
+3) || /* f3 */
1571 (myops
[0].X_add_number
== OPERAND_FLAG
+4) || /* f4 */
1572 (myops
[0].X_add_number
== OPERAND_FLAG
+5) || /* f5 */
1573 (myops
[0].X_add_number
== OPERAND_FLAG
+6) || /* f6 */
1574 (myops
[0].X_add_number
== OPERAND_FLAG
+7))) /* f7 */
1576 cur_left_kills_right_p
= 1;
1580 /* Other mvtsys target registers don't kill right instruction. */
1581 cur_left_kills_right_p
= 0;
1586 cur_left_kills_right_p
= 0;
1593 /* find_format() gets a pointer to an entry in the format table.
1594 It must look at all formats for an opcode and use the operands
1595 to choose the correct one. Returns NULL on error. */
1597 static struct d30v_format
*
1598 find_format (opcode
, myops
, fsize
, cmp_hack
)
1599 struct d30v_opcode
*opcode
;
1600 expressionS myops
[];
1604 int numops
, match
, index
, i
=0, j
, k
;
1605 struct d30v_format
*fm
;
1610 /* Get all the operands and save them as expressions. */
1611 numops
= get_operands (myops
, cmp_hack
);
1613 while ((index
= opcode
->format
[i
++]) != 0)
1615 if (fsize
== FORCE_SHORT
&& index
>= LONG
)
1618 if (fsize
== FORCE_LONG
&& index
< LONG
)
1621 fm
= (struct d30v_format
*)&d30v_format_table
[index
];
1623 while (fm
->form
== index
)
1626 /* Now check the operands for compatibility. */
1627 for (j
= 0; match
&& fm
->operands
[j
]; j
++)
1629 int flags
= d30v_operand_table
[fm
->operands
[j
]].flags
;
1630 int bits
= d30v_operand_table
[fm
->operands
[j
]].bits
;
1631 int X_op
= myops
[j
].X_op
;
1632 int num
= myops
[j
].X_add_number
;
1634 if (flags
& OPERAND_SPECIAL
)
1636 else if (X_op
== O_illegal
)
1638 else if (flags
& OPERAND_REG
)
1640 if (X_op
!= O_register
1641 || ((flags
& OPERAND_ACC
) && !(num
& OPERAND_ACC
))
1642 || (!(flags
& OPERAND_ACC
) && (num
& OPERAND_ACC
))
1643 || ((flags
& OPERAND_FLAG
) && !(num
& OPERAND_FLAG
))
1644 || (!(flags
& (OPERAND_FLAG
| OPERAND_CONTROL
)) && (num
& OPERAND_FLAG
))
1645 || ((flags
& OPERAND_CONTROL
)
1646 && !(num
& (OPERAND_CONTROL
| OPERAND_FLAG
))))
1651 else if (((flags
& OPERAND_MINUS
)
1652 && (X_op
!= O_absent
|| num
!= OPERAND_MINUS
))
1653 || ((flags
& OPERAND_PLUS
)
1654 && (X_op
!= O_absent
|| num
!= OPERAND_PLUS
))
1655 || ((flags
& OPERAND_ATMINUS
)
1656 && (X_op
!= O_absent
|| num
!= OPERAND_ATMINUS
))
1657 || ((flags
& OPERAND_ATPAR
)
1658 && (X_op
!= O_absent
|| num
!= OPERAND_ATPAR
))
1659 || ((flags
& OPERAND_ATSIGN
)
1660 && (X_op
!= O_absent
|| num
!= OPERAND_ATSIGN
)))
1664 else if (flags
& OPERAND_NUM
)
1666 /* A number can be a constant or symbol expression. */
1668 /* If we have found a register name, but that name also
1669 matches a symbol, then re-parse the name as an expression. */
1670 if (X_op
== O_register
1671 && symbol_find ((char *) myops
[j
].X_op_symbol
))
1673 input_line_pointer
= (char *) myops
[j
].X_op_symbol
;
1674 expression (& myops
[j
]);
1677 /* Turn an expression into a symbol for later resolution. */
1678 if (X_op
!= O_absent
&& X_op
!= O_constant
1679 && X_op
!= O_symbol
&& X_op
!= O_register
1682 symbolS
*sym
= make_expr_symbol (&myops
[j
]);
1683 myops
[j
].X_op
= X_op
= O_symbol
;
1684 myops
[j
].X_add_symbol
= sym
;
1685 myops
[j
].X_add_number
= num
= 0;
1688 if (fm
->form
>= LONG
)
1690 /* If we're testing for a LONG format, either fits. */
1691 if (X_op
!= O_constant
&& X_op
!= O_symbol
)
1694 else if (fm
->form
< LONG
1695 && ((fsize
== FORCE_SHORT
&& X_op
== O_symbol
)
1696 || (fm
->form
== SHORT_D2
&& j
== 0)))
1698 /* This is the tricky part. Will the constant or symbol
1699 fit into the space in the current format? */
1700 else if (X_op
== O_constant
)
1702 if (check_range (num
, bits
, flags
))
1705 else if (X_op
== O_symbol
1706 && S_IS_DEFINED (myops
[j
].X_add_symbol
)
1707 && S_GET_SEGMENT (myops
[j
].X_add_symbol
) == now_seg
1708 && opcode
->reloc_flag
== RELOC_PCREL
)
1710 /* If the symbol is defined, see if the value will fit
1711 into the form we're considering. */
1715 /* Calculate the current address by running through the
1716 previous frags and adding our current offset. */
1718 for (f
= frchain_now
->frch_root
; f
; f
= f
->fr_next
)
1719 value
+= f
->fr_fix
+ f
->fr_offset
;
1720 value
= (S_GET_VALUE (myops
[j
].X_add_symbol
) - value
1721 - (obstack_next_free (&frchain_now
->frch_obstack
)
1722 - frag_now
->fr_literal
));
1723 if (check_range (value
, bits
, flags
))
1730 /* printf("through the loop: match=%d\n",match); */
1731 /* We're only done if the operands matched so far AND there
1732 are no more to check. */
1733 if (match
&& myops
[j
].X_op
== 0)
1735 /* Final check - issue a warning if an odd numbered register
1736 is used as the first register in an instruction that reads
1737 or writes 2 registers. */
1739 for (j
= 0; fm
->operands
[j
]; j
++)
1740 if (myops
[j
].X_op
== O_register
1741 && (myops
[j
].X_add_number
& 1)
1742 && (d30v_operand_table
[fm
->operands
[j
]].flags
& OPERAND_2REG
))
1744 _("Odd numbered register used as target of multi-register instruction"));
1748 fm
= (struct d30v_format
*)&d30v_format_table
[++k
];
1750 /* printf("trying another format: i=%d\n",i); */
1755 /* if while processing a fixup, a reloc really needs to be created */
1756 /* then it is done here */
1759 tc_gen_reloc (seg
, fixp
)
1764 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
1765 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
1766 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
1767 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1768 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, fixp
->fx_r_type
);
1769 if (reloc
->howto
== (reloc_howto_type
*) NULL
)
1771 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
1772 _("reloc %d not supported by object file format"), (int)fixp
->fx_r_type
);
1775 reloc
->addend
= fixp
->fx_addnumber
;
1780 md_estimate_size_before_relax (fragp
, seg
)
1789 md_pcrel_from_section (fixp
, sec
)
1793 if (fixp
->fx_addsy
!= (symbolS
*)NULL
&& (!S_IS_DEFINED (fixp
->fx_addsy
) ||
1794 (S_GET_SEGMENT (fixp
->fx_addsy
) != sec
)))
1796 return fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1800 md_apply_fix3 (fixp
, valuep
, seg
)
1806 unsigned long insn
, insn2
;
1809 if (fixp
->fx_addsy
== (symbolS
*) NULL
)
1814 else if (fixp
->fx_pcrel
)
1818 value
= fixp
->fx_offset
;
1820 if (fixp
->fx_subsy
!= (symbolS
*) NULL
)
1822 if (S_GET_SEGMENT (fixp
->fx_subsy
) == absolute_section
)
1823 value
-= S_GET_VALUE (fixp
->fx_subsy
);
1826 /* We don't actually support subtracting a symbol. */
1827 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
1828 _("expression too complex"));
1833 /* Fetch the instruction, insert the fully resolved operand
1834 value, and stuff the instruction back again. */
1835 where
= fixp
->fx_frag
->fr_literal
+ fixp
->fx_where
;
1836 insn
= bfd_getb32 ((unsigned char *) where
);
1838 switch (fixp
->fx_r_type
)
1840 case BFD_RELOC_8
: /* Check for a bad .byte directive. */
1841 if (fixp
->fx_addsy
!= NULL
)
1842 as_bad (_("line %d: unable to place address of symbol '%s' into a byte"),
1843 fixp
->fx_line
, S_GET_NAME (fixp
->fx_addsy
));
1844 else if (((unsigned)value
) > 0xff)
1845 as_bad (_("line %d: unable to place value %x into a byte"),
1846 fixp
->fx_line
, value
);
1848 * (unsigned char *) where
= value
;
1851 case BFD_RELOC_16
: /* Check for a bad .short directive. */
1852 if (fixp
->fx_addsy
!= NULL
)
1853 as_bad (_("line %d: unable to place address of symbol '%s' into a short"),
1854 fixp
->fx_line
, S_GET_NAME (fixp
->fx_addsy
));
1855 else if (((unsigned)value
) > 0xffff)
1856 as_bad (_("line %d: unable to place value %x into a short"),
1857 fixp
->fx_line
, value
);
1859 bfd_putb16 ((bfd_vma
) value
, (unsigned char *) where
);
1862 case BFD_RELOC_64
: /* Check for a bad .quad directive. */
1863 if (fixp
->fx_addsy
!= NULL
)
1864 as_bad (_("line %d: unable to place address of symbol '%s' into a quad"),
1865 fixp
->fx_line
, S_GET_NAME (fixp
->fx_addsy
));
1868 bfd_putb32 ((bfd_vma
) value
, (unsigned char *) where
);
1869 bfd_putb32 (0, ((unsigned char *) where
) + 4);
1873 case BFD_RELOC_D30V_6
:
1874 check_size (value
, 6, fixp
->fx_file
, fixp
->fx_line
);
1875 insn
|= value
& 0x3F;
1876 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1879 case BFD_RELOC_D30V_9_PCREL
:
1880 if (fixp
->fx_where
& 0x7)
1885 fixp
->fx_r_type
= BFD_RELOC_D30V_9_PCREL_R
;
1887 check_size (value
, 9, fixp
->fx_file
, fixp
->fx_line
);
1888 insn
|= ((value
>> 3) & 0x3F) << 12;
1889 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1892 case BFD_RELOC_D30V_15
:
1893 check_size (value
, 15, fixp
->fx_file
, fixp
->fx_line
);
1894 insn
|= (value
>> 3) & 0xFFF;
1895 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1898 case BFD_RELOC_D30V_15_PCREL
:
1899 if (fixp
->fx_where
& 0x7)
1904 fixp
->fx_r_type
= BFD_RELOC_D30V_15_PCREL_R
;
1906 check_size (value
, 15, fixp
->fx_file
, fixp
->fx_line
);
1907 insn
|= (value
>> 3) & 0xFFF;
1908 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1911 case BFD_RELOC_D30V_21
:
1912 check_size (value
, 21, fixp
->fx_file
, fixp
->fx_line
);
1913 insn
|= (value
>> 3) & 0x3FFFF;
1914 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1917 case BFD_RELOC_D30V_21_PCREL
:
1918 if (fixp
->fx_where
& 0x7)
1923 fixp
->fx_r_type
= BFD_RELOC_D30V_21_PCREL_R
;
1925 check_size (value
, 21, fixp
->fx_file
, fixp
->fx_line
);
1926 insn
|= (value
>> 3) & 0x3FFFF;
1927 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1930 case BFD_RELOC_D30V_32
:
1931 insn2
= bfd_getb32 ((unsigned char *) where
+ 4);
1932 insn
|= (value
>> 26) & 0x3F; /* top 6 bits */
1933 insn2
|= ((value
& 0x03FC0000) << 2); /* next 8 bits */
1934 insn2
|= value
& 0x0003FFFF; /* bottom 18 bits */
1935 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1936 bfd_putb32 ((bfd_vma
) insn2
, (unsigned char *) where
+ 4);
1939 case BFD_RELOC_D30V_32_PCREL
:
1940 insn2
= bfd_getb32 ((unsigned char *) where
+ 4);
1941 insn
|= (value
>> 26) & 0x3F; /* top 6 bits */
1942 insn2
|= ((value
& 0x03FC0000) << 2); /* next 8 bits */
1943 insn2
|= value
& 0x0003FFFF; /* bottom 18 bits */
1944 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1945 bfd_putb32 ((bfd_vma
) insn2
, (unsigned char *) where
+ 4);
1949 bfd_putb32 ((bfd_vma
) value
, (unsigned char *) where
);
1953 as_bad (_("line %d: unknown relocation type: 0x%x"),
1954 fixp
->fx_line
,fixp
->fx_r_type
);
1961 /* d30v_cleanup() is called after the assembler has finished parsing the input
1962 file or after a label is defined. Because the D30V assembler sometimes saves short
1963 instructions to see if it can package them with the next instruction, there may
1964 be a short instruction that still needs written. */
1966 d30v_cleanup (use_sequential
)
1972 if (prev_insn
!= -1)
1975 subseg
= now_subseg
;
1976 subseg_set (prev_seg
, prev_subseg
);
1977 write_1_short (&prev_opcode
, (long)prev_insn
, fixups
->next
, use_sequential
);
1978 subseg_set (seg
, subseg
);
1981 prev_mul32_p
= false;
1987 d30v_number_to_chars (buf
, value
, n
)
1988 char *buf
; /* Return 'nbytes' of chars here. */
1989 long long value
; /* The value of the bits. */
1990 int n
; /* Number of bytes in the output. */
1994 buf
[n
] = value
& 0xff;
2000 /* This function is called at the start of every line. */
2001 /* it checks to see if the first character is a '.' */
2002 /* which indicates the start of a pseudo-op. If it is, */
2003 /* then write out any unwritten instructions */
2008 char *c
= input_line_pointer
;
2010 while (isspace (*c
))
2014 d30v_cleanup (false);
2018 check_size (value
, bits
, file
, line
)
2031 max
= (1 << (bits
- 1)) - 1;
2034 as_bad_where (file
, line
, _("value too large to fit in %d bits"), bits
);
2039 /* d30v_frob_label() is called when after a label is recognized. */
2042 d30v_frob_label (lab
)
2045 /* Emit any pending instructions. */
2046 d30v_cleanup (false);
2048 /* Update the label's address with the current output pointer. */
2049 symbol_set_frag (lab
, frag_now
);
2050 S_SET_VALUE (lab
, (valueT
) frag_now_fix ());
2052 /* Record this label for future adjustment after we find out what
2053 kind of data it references, and the required alignment therewith. */
2054 d30v_last_label
= lab
;
2057 /* Hook into cons for capturing alignment changes. */
2060 d30v_cons_align (size
)
2066 while ((size
>>= 1) != 0)
2069 if (d30v_current_align
< log_size
)
2070 d30v_align (log_size
, (char *) NULL
, NULL
);
2071 else if (d30v_current_align
> log_size
)
2072 d30v_current_align
= log_size
;
2073 d30v_last_label
= NULL
;
2076 /* Called internally to handle all alignment needs. This takes care
2077 of eliding calls to frag_align if'n the cached current alignment
2078 says we've already got it, as well as taking care of the auto-aligning
2082 d30v_align (n
, pfill
, label
)
2087 /* The front end is prone to changing segments out from under us
2088 temporarily when -g is in effect. */
2089 int switched_seg_p
= (d30v_current_align_seg
!= now_seg
);
2091 /* Do not assume that if 'd30v_current_align >= n' and
2092 '! switched_seg_p' that it is safe to avoid performing
2093 this alignement request. The alignment of the current frag
2094 can be changed under our feet, for example by a .ascii
2095 directive in the source code. cf testsuite/gas/d30v/reloc.s */
2097 d30v_cleanup (false);
2102 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
2104 static char const nop
[4] = { 0x00, 0xf0, 0x00, 0x00 };
2106 /* First, make sure we're on a four-byte boundary, in case
2107 someone has been putting .byte values the text section. */
2108 if (d30v_current_align
< 2 || switched_seg_p
)
2109 frag_align (2, 0, 0);
2110 frag_align_pattern (n
, nop
, sizeof nop
, 0);
2113 frag_align (n
, 0, 0);
2116 frag_align (n
, *pfill
, 0);
2118 if (!switched_seg_p
)
2119 d30v_current_align
= n
;
2124 int label_seen
= false;
2125 struct frag
* old_frag
;
2129 assert (S_GET_SEGMENT (label
) == now_seg
);
2131 old_frag
= symbol_get_frag (label
);
2132 old_value
= S_GET_VALUE (label
);
2133 new_value
= (valueT
) frag_now_fix ();
2135 /* It is possible to have more than one label at a particular
2136 address, especially if debugging is enabled, so we must
2137 take care to adjust all the labels at this address in this
2138 fragment. To save time we search from the end of the symbol
2139 list, backwards, since the symbols we are interested in are
2140 almost certainly the ones that were most recently added.
2141 Also to save time we stop searching once we have seen at least
2142 one matching label, and we encounter a label that is no longer
2143 in the target fragment. Note, this search is guaranteed to
2144 find at least one match when sym == label, so no special case
2145 code is necessary. */
2146 for (sym
= symbol_lastP
; sym
!= NULL
; sym
= symbol_previous (sym
))
2148 if (symbol_get_frag (sym
) == old_frag
2149 && S_GET_VALUE (sym
) == old_value
)
2152 symbol_set_frag (sym
, frag_now
);
2153 S_SET_VALUE (sym
, new_value
);
2155 else if (label_seen
&& symbol_get_frag (sym
) != old_frag
)
2160 record_alignment (now_seg
, n
);
2163 /* Handle the .align pseudo-op. This aligns to a power of two. We
2164 hook here to latch the current alignment. */
2167 s_d30v_align (ignore
)
2171 char fill
, *pfill
= NULL
;
2172 long max_alignment
= 15;
2174 align
= get_absolute_expression ();
2175 if (align
> max_alignment
)
2177 align
= max_alignment
;
2178 as_warn (_("Alignment too large: %d assumed"), align
);
2182 as_warn (_("Alignment negative: 0 assumed"));
2186 if (*input_line_pointer
== ',')
2188 input_line_pointer
++;
2189 fill
= get_absolute_expression ();
2193 d30v_last_label
= NULL
;
2194 d30v_align (align
, pfill
, NULL
);
2196 demand_empty_rest_of_line ();
2199 /* Handle the .text pseudo-op. This is like the usual one, but it
2200 clears the saved last label and resets known alignment. */
2208 d30v_last_label
= NULL
;
2209 d30v_current_align
= 0;
2210 d30v_current_align_seg
= now_seg
;
2213 /* Handle the .data pseudo-op. This is like the usual one, but it
2214 clears the saved last label and resets known alignment. */
2221 d30v_last_label
= NULL
;
2222 d30v_current_align
= 0;
2223 d30v_current_align_seg
= now_seg
;
2226 /* Handle the .section pseudo-op. This is like the usual one, but it
2227 clears the saved last label and resets known alignment. */
2230 s_d30v_section (ignore
)
2233 obj_elf_section (ignore
);
2234 d30v_last_label
= NULL
;
2235 d30v_current_align
= 0;
2236 d30v_current_align_seg
= now_seg
;