2004-06-29 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / gas / config / tc-i386.c
blob823435f110120c30a3cd2ca55765a1f862b7eb29
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
65 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
66 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
67 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
69 static INLINE int fits_in_signed_word PARAMS ((offsetT));
70 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
71 static INLINE int fits_in_signed_long PARAMS ((offsetT));
72 static int smallest_imm_type PARAMS ((offsetT));
73 static offsetT offset_in_range PARAMS ((offsetT, int));
74 static int add_prefix PARAMS ((unsigned int));
75 static void set_code_flag PARAMS ((int));
76 static void set_16bit_gcc_code_flag PARAMS ((int));
77 static void set_intel_syntax PARAMS ((int));
78 static void set_cpu_arch PARAMS ((int));
79 #ifdef TE_PE
80 static void pe_directive_secrel PARAMS ((int));
81 #endif
82 static char *output_invalid PARAMS ((int c));
83 static int i386_operand PARAMS ((char *operand_string));
84 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
85 static const reg_entry *parse_register PARAMS ((char *reg_string,
86 char **end_op));
87 static char *parse_insn PARAMS ((char *, char *));
88 static char *parse_operands PARAMS ((char *, const char *));
89 static void swap_operands PARAMS ((void));
90 static void optimize_imm PARAMS ((void));
91 static void optimize_disp PARAMS ((void));
92 static int match_template PARAMS ((void));
93 static int check_string PARAMS ((void));
94 static int process_suffix PARAMS ((void));
95 static int check_byte_reg PARAMS ((void));
96 static int check_long_reg PARAMS ((void));
97 static int check_qword_reg PARAMS ((void));
98 static int check_word_reg PARAMS ((void));
99 static int finalize_imm PARAMS ((void));
100 static int process_operands PARAMS ((void));
101 static const seg_entry *build_modrm_byte PARAMS ((void));
102 static void output_insn PARAMS ((void));
103 static void output_branch PARAMS ((void));
104 static void output_jump PARAMS ((void));
105 static void output_interseg_jump PARAMS ((void));
106 static void output_imm PARAMS ((fragS *insn_start_frag,
107 offsetT insn_start_off));
108 static void output_disp PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 #ifndef I386COFF
111 static void s_bss PARAMS ((int));
112 #endif
114 static const char *default_arch = DEFAULT_ARCH;
116 /* 'md_assemble ()' gathers together information and puts it into a
117 i386_insn. */
119 union i386_op
121 expressionS *disps;
122 expressionS *imms;
123 const reg_entry *regs;
126 struct _i386_insn
128 /* TM holds the template for the insn were currently assembling. */
129 template tm;
131 /* SUFFIX holds the instruction mnemonic suffix if given.
132 (e.g. 'l' for 'movl') */
133 char suffix;
135 /* OPERANDS gives the number of given operands. */
136 unsigned int operands;
138 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
139 of given register, displacement, memory operands and immediate
140 operands. */
141 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143 /* TYPES [i] is the type (see above #defines) which tells us how to
144 use OP[i] for the corresponding operand. */
145 unsigned int types[MAX_OPERANDS];
147 /* Displacement expression, immediate expression, or register for each
148 operand. */
149 union i386_op op[MAX_OPERANDS];
151 /* Flags for operands. */
152 unsigned int flags[MAX_OPERANDS];
153 #define Operand_PCrel 1
155 /* Relocation type for operand */
156 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
158 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
159 the base index byte below. */
160 const reg_entry *base_reg;
161 const reg_entry *index_reg;
162 unsigned int log2_scale_factor;
164 /* SEG gives the seg_entries of this insn. They are zero unless
165 explicit segment overrides are given. */
166 const seg_entry *seg[2];
168 /* PREFIX holds all the given prefix opcodes (usually null).
169 PREFIXES is the number of prefix opcodes. */
170 unsigned int prefixes;
171 unsigned char prefix[MAX_PREFIXES];
173 /* RM and SIB are the modrm byte and the sib byte where the
174 addressing modes of this insn are encoded. */
176 modrm_byte rm;
177 rex_byte rex;
178 sib_byte sib;
181 typedef struct _i386_insn i386_insn;
183 /* List of chars besides those in app.c:symbol_chars that can start an
184 operand. Used to prevent the scrubber eating vital white-space. */
185 const char extra_symbol_chars[] = "*%-(["
186 #ifdef LEX_AT
188 #endif
189 #ifdef LEX_QM
191 #endif
194 #if (defined (TE_I386AIX) \
195 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
196 && !defined (TE_LINUX) \
197 && !defined (TE_NETWARE) \
198 && !defined (TE_FreeBSD) \
199 && !defined (TE_NetBSD)))
200 /* This array holds the chars that always start a comment. If the
201 pre-processor is disabled, these aren't very useful. */
202 const char comment_chars[] = "#/";
203 #define PREFIX_SEPARATOR '\\'
205 /* This array holds the chars that only start a comment at the beginning of
206 a line. If the line seems to have the form '# 123 filename'
207 .line and .file directives will appear in the pre-processed output.
208 Note that input_file.c hand checks for '#' at the beginning of the
209 first line of the input file. This is because the compiler outputs
210 #NO_APP at the beginning of its output.
211 Also note that comments started like this one will always work if
212 '/' isn't otherwise defined. */
213 const char line_comment_chars[] = "#";
215 #else
216 /* Putting '/' here makes it impossible to use the divide operator.
217 However, we need it for compatibility with SVR4 systems. */
218 const char comment_chars[] = "#";
219 #define PREFIX_SEPARATOR '/'
221 const char line_comment_chars[] = "/#";
222 #endif
224 const char line_separator_chars[] = ";";
226 /* Chars that can be used to separate mant from exp in floating point
227 nums. */
228 const char EXP_CHARS[] = "eE";
230 /* Chars that mean this number is a floating point constant
231 As in 0f12.456
232 or 0d1.2345e12. */
233 const char FLT_CHARS[] = "fFdDxX";
235 /* Tables for lexical analysis. */
236 static char mnemonic_chars[256];
237 static char register_chars[256];
238 static char operand_chars[256];
239 static char identifier_chars[256];
240 static char digit_chars[256];
242 /* Lexical macros. */
243 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
244 #define is_operand_char(x) (operand_chars[(unsigned char) x])
245 #define is_register_char(x) (register_chars[(unsigned char) x])
246 #define is_space_char(x) ((x) == ' ')
247 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
248 #define is_digit_char(x) (digit_chars[(unsigned char) x])
250 /* All non-digit non-letter characters that may occur in an operand. */
251 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253 /* md_assemble() always leaves the strings it's passed unaltered. To
254 effect this we maintain a stack of saved characters that we've smashed
255 with '\0's (indicating end of strings for various sub-fields of the
256 assembler instruction). */
257 static char save_stack[32];
258 static char *save_stack_p;
259 #define END_STRING_AND_SAVE(s) \
260 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
261 #define RESTORE_END_STRING(s) \
262 do { *(s) = *--save_stack_p; } while (0)
264 /* The instruction we're assembling. */
265 static i386_insn i;
267 /* Possible templates for current insn. */
268 static const templates *current_templates;
270 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
271 static expressionS disp_expressions[2], im_expressions[2];
273 /* Current operand we are working on. */
274 static int this_operand;
276 /* We support four different modes. FLAG_CODE variable is used to distinguish
277 these. */
279 enum flag_code {
280 CODE_32BIT,
281 CODE_16BIT,
282 CODE_64BIT };
283 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
285 static enum flag_code flag_code;
286 static int use_rela_relocations = 0;
288 /* The names used to print error messages. */
289 static const char *flag_code_names[] =
291 "32",
292 "16",
293 "64"
296 /* 1 for intel syntax,
297 0 if att syntax. */
298 static int intel_syntax = 0;
300 /* 1 if register prefix % not required. */
301 static int allow_naked_reg = 0;
303 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
304 leave, push, and pop instructions so that gcc has the same stack
305 frame as in 32 bit mode. */
306 static char stackop_size = '\0';
308 /* Non-zero to optimize code alignment. */
309 int optimize_align_code = 1;
311 /* Non-zero to quieten some warnings. */
312 static int quiet_warnings = 0;
314 /* CPU name. */
315 static const char *cpu_arch_name = NULL;
317 /* CPU feature flags. */
318 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
320 /* If set, conditional jumps are not automatically promoted to handle
321 larger than a byte offset. */
322 static unsigned int no_cond_jump_promotion = 0;
324 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
325 symbolS *GOT_symbol;
327 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
328 unsigned int x86_dwarf2_return_column;
330 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
331 int x86_cie_data_alignment;
333 /* Interface to relax_segment.
334 There are 3 major relax states for 386 jump insns because the
335 different types of jumps add different sizes to frags when we're
336 figuring out what sort of jump to choose to reach a given label. */
338 /* Types. */
339 #define UNCOND_JUMP 0
340 #define COND_JUMP 1
341 #define COND_JUMP86 2
343 /* Sizes. */
344 #define CODE16 1
345 #define SMALL 0
346 #define SMALL16 (SMALL | CODE16)
347 #define BIG 2
348 #define BIG16 (BIG | CODE16)
350 #ifndef INLINE
351 #ifdef __GNUC__
352 #define INLINE __inline__
353 #else
354 #define INLINE
355 #endif
356 #endif
358 #define ENCODE_RELAX_STATE(type, size) \
359 ((relax_substateT) (((type) << 2) | (size)))
360 #define TYPE_FROM_RELAX_STATE(s) \
361 ((s) >> 2)
362 #define DISP_SIZE_FROM_RELAX_STATE(s) \
363 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
365 /* This table is used by relax_frag to promote short jumps to long
366 ones where necessary. SMALL (short) jumps may be promoted to BIG
367 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
368 don't allow a short jump in a 32 bit code segment to be promoted to
369 a 16 bit offset jump because it's slower (requires data size
370 prefix), and doesn't work, unless the destination is in the bottom
371 64k of the code segment (The top 16 bits of eip are zeroed). */
373 const relax_typeS md_relax_table[] =
375 /* The fields are:
376 1) most positive reach of this state,
377 2) most negative reach of this state,
378 3) how many bytes this mode will have in the variable part of the frag
379 4) which index into the table to try if we can't fit into this one. */
381 /* UNCOND_JUMP states. */
382 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
383 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
384 /* dword jmp adds 4 bytes to frag:
385 0 extra opcode bytes, 4 displacement bytes. */
386 {0, 0, 4, 0},
387 /* word jmp adds 2 byte2 to frag:
388 0 extra opcode bytes, 2 displacement bytes. */
389 {0, 0, 2, 0},
391 /* COND_JUMP states. */
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
394 /* dword conditionals adds 5 bytes to frag:
395 1 extra opcode byte, 4 displacement bytes. */
396 {0, 0, 5, 0},
397 /* word conditionals add 3 bytes to frag:
398 1 extra opcode byte, 2 displacement bytes. */
399 {0, 0, 3, 0},
401 /* COND_JUMP86 states. */
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
404 /* dword conditionals adds 5 bytes to frag:
405 1 extra opcode byte, 4 displacement bytes. */
406 {0, 0, 5, 0},
407 /* word conditionals add 4 bytes to frag:
408 1 displacement byte and a 3 byte long branch insn. */
409 {0, 0, 4, 0}
412 static const arch_entry cpu_arch[] = {
413 {"i8086", Cpu086 },
414 {"i186", Cpu086|Cpu186 },
415 {"i286", Cpu086|Cpu186|Cpu286 },
416 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
417 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
418 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
420 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
421 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
422 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
423 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
424 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
425 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
426 {NULL, 0 }
429 const pseudo_typeS md_pseudo_table[] =
431 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
432 {"align", s_align_bytes, 0},
433 #else
434 {"align", s_align_ptwo, 0},
435 #endif
436 {"arch", set_cpu_arch, 0},
437 #ifndef I386COFF
438 {"bss", s_bss, 0},
439 #endif
440 {"ffloat", float_cons, 'f'},
441 {"dfloat", float_cons, 'd'},
442 {"tfloat", float_cons, 'x'},
443 {"value", cons, 2},
444 {"noopt", s_ignore, 0},
445 {"optim", s_ignore, 0},
446 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
447 {"code16", set_code_flag, CODE_16BIT},
448 {"code32", set_code_flag, CODE_32BIT},
449 {"code64", set_code_flag, CODE_64BIT},
450 {"intel_syntax", set_intel_syntax, 1},
451 {"att_syntax", set_intel_syntax, 0},
452 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
453 {"loc", dwarf2_directive_loc, 0},
454 #ifdef TE_PE
455 {"secrel32", pe_directive_secrel, 0},
456 #endif
457 {0, 0, 0}
460 /* For interface with expression (). */
461 extern char *input_line_pointer;
463 /* Hash table for instruction mnemonic lookup. */
464 static struct hash_control *op_hash;
466 /* Hash table for register lookup. */
467 static struct hash_control *reg_hash;
469 void
470 i386_align_code (fragP, count)
471 fragS *fragP;
472 int count;
474 /* Various efficient no-op patterns for aligning code labels.
475 Note: Don't try to assemble the instructions in the comments.
476 0L and 0w are not legal. */
477 static const char f32_1[] =
478 {0x90}; /* nop */
479 static const char f32_2[] =
480 {0x89,0xf6}; /* movl %esi,%esi */
481 static const char f32_3[] =
482 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
483 static const char f32_4[] =
484 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
485 static const char f32_5[] =
486 {0x90, /* nop */
487 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
488 static const char f32_6[] =
489 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
490 static const char f32_7[] =
491 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
492 static const char f32_8[] =
493 {0x90, /* nop */
494 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
495 static const char f32_9[] =
496 {0x89,0xf6, /* movl %esi,%esi */
497 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
498 static const char f32_10[] =
499 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
500 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
501 static const char f32_11[] =
502 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
503 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
504 static const char f32_12[] =
505 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
506 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
507 static const char f32_13[] =
508 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_14[] =
511 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_15[] =
514 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
515 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
516 static const char f16_3[] =
517 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
518 static const char f16_4[] =
519 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
520 static const char f16_5[] =
521 {0x90, /* nop */
522 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
523 static const char f16_6[] =
524 {0x89,0xf6, /* mov %si,%si */
525 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
526 static const char f16_7[] =
527 {0x8d,0x74,0x00, /* lea 0(%si),%si */
528 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
529 static const char f16_8[] =
530 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
531 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
532 static const char *const f32_patt[] = {
533 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
534 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
536 static const char *const f16_patt[] = {
537 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
538 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
541 if (count <= 0 || count > 15)
542 return;
544 /* The recommended way to pad 64bit code is to use NOPs preceded by
545 maximally four 0x66 prefixes. Balance the size of nops. */
546 if (flag_code == CODE_64BIT)
548 int i;
549 int nnops = (count + 3) / 4;
550 int len = count / nnops;
551 int remains = count - nnops * len;
552 int pos = 0;
554 for (i = 0; i < remains; i++)
556 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
557 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
558 pos += len + 1;
560 for (; i < nnops; i++)
562 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
563 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
564 pos += len;
567 else
568 if (flag_code == CODE_16BIT)
570 memcpy (fragP->fr_literal + fragP->fr_fix,
571 f16_patt[count - 1], count);
572 if (count > 8)
573 /* Adjust jump offset. */
574 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
576 else
577 memcpy (fragP->fr_literal + fragP->fr_fix,
578 f32_patt[count - 1], count);
579 fragP->fr_var = count;
582 static INLINE unsigned int
583 mode_from_disp_size (t)
584 unsigned int t;
586 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
589 static INLINE int
590 fits_in_signed_byte (num)
591 offsetT num;
593 return (num >= -128) && (num <= 127);
596 static INLINE int
597 fits_in_unsigned_byte (num)
598 offsetT num;
600 return (num & 0xff) == num;
603 static INLINE int
604 fits_in_unsigned_word (num)
605 offsetT num;
607 return (num & 0xffff) == num;
610 static INLINE int
611 fits_in_signed_word (num)
612 offsetT num;
614 return (-32768 <= num) && (num <= 32767);
616 static INLINE int
617 fits_in_signed_long (num)
618 offsetT num ATTRIBUTE_UNUSED;
620 #ifndef BFD64
621 return 1;
622 #else
623 return (!(((offsetT) -1 << 31) & num)
624 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
625 #endif
626 } /* fits_in_signed_long() */
627 static INLINE int
628 fits_in_unsigned_long (num)
629 offsetT num ATTRIBUTE_UNUSED;
631 #ifndef BFD64
632 return 1;
633 #else
634 return (num & (((offsetT) 2 << 31) - 1)) == num;
635 #endif
636 } /* fits_in_unsigned_long() */
638 static int
639 smallest_imm_type (num)
640 offsetT num;
642 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
644 /* This code is disabled on the 486 because all the Imm1 forms
645 in the opcode table are slower on the i486. They're the
646 versions with the implicitly specified single-position
647 displacement, which has another syntax if you really want to
648 use that form. */
649 if (num == 1)
650 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
652 return (fits_in_signed_byte (num)
653 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
654 : fits_in_unsigned_byte (num)
655 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
656 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
657 ? (Imm16 | Imm32 | Imm32S | Imm64)
658 : fits_in_signed_long (num)
659 ? (Imm32 | Imm32S | Imm64)
660 : fits_in_unsigned_long (num)
661 ? (Imm32 | Imm64)
662 : Imm64);
665 static offsetT
666 offset_in_range (val, size)
667 offsetT val;
668 int size;
670 addressT mask;
672 switch (size)
674 case 1: mask = ((addressT) 1 << 8) - 1; break;
675 case 2: mask = ((addressT) 1 << 16) - 1; break;
676 case 4: mask = ((addressT) 2 << 31) - 1; break;
677 #ifdef BFD64
678 case 8: mask = ((addressT) 2 << 63) - 1; break;
679 #endif
680 default: abort ();
683 /* If BFD64, sign extend val. */
684 if (!use_rela_relocations)
685 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
686 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
688 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
690 char buf1[40], buf2[40];
692 sprint_value (buf1, val);
693 sprint_value (buf2, val & mask);
694 as_warn (_("%s shortened to %s"), buf1, buf2);
696 return val & mask;
699 /* Returns 0 if attempting to add a prefix where one from the same
700 class already exists, 1 if non rep/repne added, 2 if rep/repne
701 added. */
702 static int
703 add_prefix (prefix)
704 unsigned int prefix;
706 int ret = 1;
707 int q;
709 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
710 && flag_code == CODE_64BIT)
711 q = REX_PREFIX;
712 else
713 switch (prefix)
715 default:
716 abort ();
718 case CS_PREFIX_OPCODE:
719 case DS_PREFIX_OPCODE:
720 case ES_PREFIX_OPCODE:
721 case FS_PREFIX_OPCODE:
722 case GS_PREFIX_OPCODE:
723 case SS_PREFIX_OPCODE:
724 q = SEG_PREFIX;
725 break;
727 case REPNE_PREFIX_OPCODE:
728 case REPE_PREFIX_OPCODE:
729 ret = 2;
730 /* fall thru */
731 case LOCK_PREFIX_OPCODE:
732 q = LOCKREP_PREFIX;
733 break;
735 case FWAIT_OPCODE:
736 q = WAIT_PREFIX;
737 break;
739 case ADDR_PREFIX_OPCODE:
740 q = ADDR_PREFIX;
741 break;
743 case DATA_PREFIX_OPCODE:
744 q = DATA_PREFIX;
745 break;
748 if (i.prefix[q] != 0)
750 as_bad (_("same type of prefix used twice"));
751 return 0;
754 i.prefixes += 1;
755 i.prefix[q] = prefix;
756 return ret;
759 static void
760 set_code_flag (value)
761 int value;
763 flag_code = value;
764 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
765 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
766 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
768 as_bad (_("64bit mode not supported on this CPU."));
770 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
772 as_bad (_("32bit mode not supported on this CPU."));
774 stackop_size = '\0';
777 static void
778 set_16bit_gcc_code_flag (new_code_flag)
779 int new_code_flag;
781 flag_code = new_code_flag;
782 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
783 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
784 stackop_size = 'l';
787 static void
788 set_intel_syntax (syntax_flag)
789 int syntax_flag;
791 /* Find out if register prefixing is specified. */
792 int ask_naked_reg = 0;
794 SKIP_WHITESPACE ();
795 if (!is_end_of_line[(unsigned char) *input_line_pointer])
797 char *string = input_line_pointer;
798 int e = get_symbol_end ();
800 if (strcmp (string, "prefix") == 0)
801 ask_naked_reg = 1;
802 else if (strcmp (string, "noprefix") == 0)
803 ask_naked_reg = -1;
804 else
805 as_bad (_("bad argument to syntax directive."));
806 *input_line_pointer = e;
808 demand_empty_rest_of_line ();
810 intel_syntax = syntax_flag;
812 if (ask_naked_reg == 0)
813 allow_naked_reg = (intel_syntax
814 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
815 else
816 allow_naked_reg = (ask_naked_reg < 0);
819 static void
820 set_cpu_arch (dummy)
821 int dummy ATTRIBUTE_UNUSED;
823 SKIP_WHITESPACE ();
825 if (!is_end_of_line[(unsigned char) *input_line_pointer])
827 char *string = input_line_pointer;
828 int e = get_symbol_end ();
829 int i;
831 for (i = 0; cpu_arch[i].name; i++)
833 if (strcmp (string, cpu_arch[i].name) == 0)
835 cpu_arch_name = cpu_arch[i].name;
836 cpu_arch_flags = (cpu_arch[i].flags
837 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
838 break;
841 if (!cpu_arch[i].name)
842 as_bad (_("no such architecture: `%s'"), string);
844 *input_line_pointer = e;
846 else
847 as_bad (_("missing cpu architecture"));
849 no_cond_jump_promotion = 0;
850 if (*input_line_pointer == ','
851 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
853 char *string = ++input_line_pointer;
854 int e = get_symbol_end ();
856 if (strcmp (string, "nojumps") == 0)
857 no_cond_jump_promotion = 1;
858 else if (strcmp (string, "jumps") == 0)
860 else
861 as_bad (_("no such architecture modifier: `%s'"), string);
863 *input_line_pointer = e;
866 demand_empty_rest_of_line ();
869 unsigned long
870 i386_mach ()
872 if (!strcmp (default_arch, "x86_64"))
873 return bfd_mach_x86_64;
874 else if (!strcmp (default_arch, "i386"))
875 return bfd_mach_i386_i386;
876 else
877 as_fatal (_("Unknown architecture"));
880 void
881 md_begin ()
883 const char *hash_err;
885 /* Initialize op_hash hash table. */
886 op_hash = hash_new ();
889 const template *optab;
890 templates *core_optab;
892 /* Setup for loop. */
893 optab = i386_optab;
894 core_optab = (templates *) xmalloc (sizeof (templates));
895 core_optab->start = optab;
897 while (1)
899 ++optab;
900 if (optab->name == NULL
901 || strcmp (optab->name, (optab - 1)->name) != 0)
903 /* different name --> ship out current template list;
904 add to hash table; & begin anew. */
905 core_optab->end = optab;
906 hash_err = hash_insert (op_hash,
907 (optab - 1)->name,
908 (PTR) core_optab);
909 if (hash_err)
911 as_fatal (_("Internal Error: Can't hash %s: %s"),
912 (optab - 1)->name,
913 hash_err);
915 if (optab->name == NULL)
916 break;
917 core_optab = (templates *) xmalloc (sizeof (templates));
918 core_optab->start = optab;
923 /* Initialize reg_hash hash table. */
924 reg_hash = hash_new ();
926 const reg_entry *regtab;
928 for (regtab = i386_regtab;
929 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
930 regtab++)
932 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
933 if (hash_err)
934 as_fatal (_("Internal Error: Can't hash %s: %s"),
935 regtab->reg_name,
936 hash_err);
940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
942 int c;
943 char *p;
945 for (c = 0; c < 256; c++)
947 if (ISDIGIT (c))
949 digit_chars[c] = c;
950 mnemonic_chars[c] = c;
951 register_chars[c] = c;
952 operand_chars[c] = c;
954 else if (ISLOWER (c))
956 mnemonic_chars[c] = c;
957 register_chars[c] = c;
958 operand_chars[c] = c;
960 else if (ISUPPER (c))
962 mnemonic_chars[c] = TOLOWER (c);
963 register_chars[c] = mnemonic_chars[c];
964 operand_chars[c] = c;
967 if (ISALPHA (c) || ISDIGIT (c))
968 identifier_chars[c] = c;
969 else if (c >= 128)
971 identifier_chars[c] = c;
972 operand_chars[c] = c;
976 #ifdef LEX_AT
977 identifier_chars['@'] = '@';
978 #endif
979 #ifdef LEX_QM
980 identifier_chars['?'] = '?';
981 operand_chars['?'] = '?';
982 #endif
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
998 #endif
1000 if (flag_code == CODE_64BIT)
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1005 else
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1012 void
1013 i386_print_statistics (file)
1014 FILE *file;
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1020 #ifdef DEBUG386
1022 /* Debugging routines for md_assemble. */
1023 static void pi PARAMS ((char *, i386_insn *));
1024 static void pte PARAMS ((template *));
1025 static void pt PARAMS ((unsigned int));
1026 static void pe PARAMS ((expressionS *));
1027 static void ps PARAMS ((symbolS *));
1029 static void
1030 pi (line, x)
1031 char *line;
1032 i386_insn *x;
1034 unsigned int i;
1036 fprintf (stdout, "%s: template ", line);
1037 pte (&x->tm);
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1043 x->rm.mode, x->rm.reg, x->rm.regmem);
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
1051 for (i = 0; i < x->operands; i++)
1053 fprintf (stdout, " #%d: ", i + 1);
1054 pt (x->types[i]);
1055 fprintf (stdout, "\n");
1056 if (x->types[i]
1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1059 if (x->types[i] & Imm)
1060 pe (x->op[i].imms);
1061 if (x->types[i] & Disp)
1062 pe (x->op[i].disps);
1066 static void
1067 pte (t)
1068 template *t;
1070 unsigned int i;
1071 fprintf (stdout, " %d operands ", t->operands);
1072 fprintf (stdout, "opcode %x ", t->base_opcode);
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1088 static void
1089 pe (e)
1090 expressionS *e;
1092 fprintf (stdout, " operation %d\n", e->X_op);
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
1095 if (e->X_add_symbol)
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1101 if (e->X_op_symbol)
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1109 static void
1110 ps (s)
1111 symbolS *s;
1113 fprintf (stdout, "%s type %s%s",
1114 S_GET_NAME (s),
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1119 struct type_name
1121 unsigned int mask;
1122 char *tname;
1125 static const type_names[] =
1127 { Reg8, "r8" },
1128 { Reg16, "r16" },
1129 { Reg32, "r32" },
1130 { Reg64, "r64" },
1131 { Imm8, "i8" },
1132 { Imm8S, "i8s" },
1133 { Imm16, "i16" },
1134 { Imm32, "i32" },
1135 { Imm32S, "i32s" },
1136 { Imm64, "i64" },
1137 { Imm1, "i1" },
1138 { BaseIndex, "BaseIndex" },
1139 { Disp8, "d8" },
1140 { Disp16, "d16" },
1141 { Disp32, "d32" },
1142 { Disp32S, "d32s" },
1143 { Disp64, "d64" },
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1151 { SReg2, "SReg2" },
1152 { SReg3, "SReg3" },
1153 { Acc, "Acc" },
1154 { JumpAbsolute, "Jump Absolute" },
1155 { RegMMX, "rMMX" },
1156 { RegXMM, "rXMM" },
1157 { EsSeg, "es" },
1158 { 0, "" }
1161 static void
1162 pt (t)
1163 unsigned int t;
1165 const struct type_name *ty;
1167 for (ty = type_names; ty->mask; ty++)
1168 if (t & ty->mask)
1169 fprintf (stdout, "%s, ", ty->tname);
1170 fflush (stdout);
1173 #endif /* DEBUG386 */
1175 static bfd_reloc_code_real_type reloc
1176 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1178 static bfd_reloc_code_real_type
1179 reloc (size, pcrel, sign, other)
1180 int size;
1181 int pcrel;
1182 int sign;
1183 bfd_reloc_code_real_type other;
1185 if (other != NO_RELOC)
1186 return other;
1188 if (pcrel)
1190 if (!sign)
1191 as_bad (_("There are no unsigned pc-relative relocations"));
1192 switch (size)
1194 case 1: return BFD_RELOC_8_PCREL;
1195 case 2: return BFD_RELOC_16_PCREL;
1196 case 4: return BFD_RELOC_32_PCREL;
1198 as_bad (_("can not do %d byte pc-relative relocation"), size);
1200 else
1202 if (sign)
1203 switch (size)
1205 case 4: return BFD_RELOC_X86_64_32S;
1207 else
1208 switch (size)
1210 case 1: return BFD_RELOC_8;
1211 case 2: return BFD_RELOC_16;
1212 case 4: return BFD_RELOC_32;
1213 case 8: return BFD_RELOC_64;
1215 as_bad (_("can not do %s %d byte relocation"),
1216 sign ? "signed" : "unsigned", size);
1219 abort ();
1220 return BFD_RELOC_NONE;
1223 /* Here we decide which fixups can be adjusted to make them relative to
1224 the beginning of the section instead of the symbol. Basically we need
1225 to make sure that the dynamic relocations are done correctly, so in
1226 some cases we force the original symbol to be used. */
1229 tc_i386_fix_adjustable (fixP)
1230 fixS *fixP ATTRIBUTE_UNUSED;
1232 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1233 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1234 return 1;
1236 /* Don't adjust pc-relative references to merge sections in 64-bit
1237 mode. */
1238 if (use_rela_relocations
1239 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1240 && fixP->fx_pcrel)
1241 return 0;
1243 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1244 and changed later by validate_fix. */
1245 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1246 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1247 return 0;
1249 /* adjust_reloc_syms doesn't know about the GOT. */
1250 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1251 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1252 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1256 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1257 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1258 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1259 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1260 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1264 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1265 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1266 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1267 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1268 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1269 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1270 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1271 return 0;
1272 #endif
1273 return 1;
1276 static int intel_float_operand PARAMS ((const char *mnemonic));
1278 static int
1279 intel_float_operand (mnemonic)
1280 const char *mnemonic;
1282 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1283 return 2;
1285 if (mnemonic[0] == 'f')
1286 return 1;
1288 return 0;
1291 /* This is the guts of the machine-dependent assembler. LINE points to a
1292 machine dependent instruction. This function is supposed to emit
1293 the frags/bytes it assembles to. */
1295 void
1296 md_assemble (line)
1297 char *line;
1299 int j;
1300 char mnemonic[MAX_MNEM_SIZE];
1302 /* Initialize globals. */
1303 memset (&i, '\0', sizeof (i));
1304 for (j = 0; j < MAX_OPERANDS; j++)
1305 i.reloc[j] = NO_RELOC;
1306 memset (disp_expressions, '\0', sizeof (disp_expressions));
1307 memset (im_expressions, '\0', sizeof (im_expressions));
1308 save_stack_p = save_stack;
1310 /* First parse an instruction mnemonic & call i386_operand for the operands.
1311 We assume that the scrubber has arranged it so that line[0] is the valid
1312 start of a (possibly prefixed) mnemonic. */
1314 line = parse_insn (line, mnemonic);
1315 if (line == NULL)
1316 return;
1318 line = parse_operands (line, mnemonic);
1319 if (line == NULL)
1320 return;
1322 /* Now we've parsed the mnemonic into a set of templates, and have the
1323 operands at hand. */
1325 /* All intel opcodes have reversed operands except for "bound" and
1326 "enter". We also don't reverse intersegment "jmp" and "call"
1327 instructions with 2 immediate operands so that the immediate segment
1328 precedes the offset, as it does when in AT&T mode. "enter" and the
1329 intersegment "jmp" and "call" instructions are the only ones that
1330 have two immediate operands. */
1331 if (intel_syntax && i.operands > 1
1332 && (strcmp (mnemonic, "bound") != 0)
1333 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1334 swap_operands ();
1336 if (i.imm_operands)
1337 optimize_imm ();
1339 if (i.disp_operands)
1340 optimize_disp ();
1342 /* Next, we find a template that matches the given insn,
1343 making sure the overlap of the given operands types is consistent
1344 with the template operand types. */
1346 if (!match_template ())
1347 return;
1349 if (intel_syntax)
1351 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1352 if (SYSV386_COMPAT
1353 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1354 i.tm.base_opcode ^= FloatR;
1356 /* Zap movzx and movsx suffix. The suffix may have been set from
1357 "word ptr" or "byte ptr" on the source operand, but we'll use
1358 the suffix later to choose the destination register. */
1359 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1360 i.suffix = 0;
1363 if (i.tm.opcode_modifier & FWait)
1364 if (!add_prefix (FWAIT_OPCODE))
1365 return;
1367 /* Check string instruction segment overrides. */
1368 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1370 if (!check_string ())
1371 return;
1374 if (!process_suffix ())
1375 return;
1377 /* Make still unresolved immediate matches conform to size of immediate
1378 given in i.suffix. */
1379 if (!finalize_imm ())
1380 return;
1382 if (i.types[0] & Imm1)
1383 i.imm_operands = 0; /* kludge for shift insns. */
1384 if (i.types[0] & ImplicitRegister)
1385 i.reg_operands--;
1386 if (i.types[1] & ImplicitRegister)
1387 i.reg_operands--;
1388 if (i.types[2] & ImplicitRegister)
1389 i.reg_operands--;
1391 if (i.tm.opcode_modifier & ImmExt)
1393 expressionS *exp;
1395 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1397 /* These Intel Prescott New Instructions have the fixed
1398 operands with an opcode suffix which is coded in the same
1399 place as an 8-bit immediate field would be. Here we check
1400 those operands and remove them afterwards. */
1401 unsigned int x;
1403 for (x = 0; x < i.operands; x++)
1404 if (i.op[x].regs->reg_num != x)
1405 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1406 i.op[x].regs->reg_name, x + 1, i.tm.name);
1407 i.operands = 0;
1410 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1411 opcode suffix which is coded in the same place as an 8-bit
1412 immediate field would be. Here we fake an 8-bit immediate
1413 operand from the opcode suffix stored in tm.extension_opcode. */
1415 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1417 exp = &im_expressions[i.imm_operands++];
1418 i.op[i.operands].imms = exp;
1419 i.types[i.operands++] = Imm8;
1420 exp->X_op = O_constant;
1421 exp->X_add_number = i.tm.extension_opcode;
1422 i.tm.extension_opcode = None;
1425 /* For insns with operands there are more diddles to do to the opcode. */
1426 if (i.operands)
1428 if (!process_operands ())
1429 return;
1431 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1433 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1434 as_warn (_("translating to `%sp'"), i.tm.name);
1437 /* Handle conversion of 'int $3' --> special int3 insn. */
1438 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1440 i.tm.base_opcode = INT3_OPCODE;
1441 i.imm_operands = 0;
1444 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1445 && i.op[0].disps->X_op == O_constant)
1447 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1448 the absolute address given by the constant. Since ix86 jumps and
1449 calls are pc relative, we need to generate a reloc. */
1450 i.op[0].disps->X_add_symbol = &abs_symbol;
1451 i.op[0].disps->X_op = O_symbol;
1454 if ((i.tm.opcode_modifier & Rex64) != 0)
1455 i.rex |= REX_MODE64;
1457 /* For 8 bit registers we need an empty rex prefix. Also if the
1458 instruction already has a prefix, we need to convert old
1459 registers to new ones. */
1461 if (((i.types[0] & Reg8) != 0
1462 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1463 || ((i.types[1] & Reg8) != 0
1464 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1465 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1466 && i.rex != 0))
1468 int x;
1470 i.rex |= REX_OPCODE;
1471 for (x = 0; x < 2; x++)
1473 /* Look for 8 bit operand that uses old registers. */
1474 if ((i.types[x] & Reg8) != 0
1475 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1477 /* In case it is "hi" register, give up. */
1478 if (i.op[x].regs->reg_num > 3)
1479 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1480 i.op[x].regs->reg_name);
1482 /* Otherwise it is equivalent to the extended register.
1483 Since the encoding doesn't change this is merely
1484 cosmetic cleanup for debug output. */
1486 i.op[x].regs = i.op[x].regs + 8;
1491 if (i.rex != 0)
1492 add_prefix (REX_OPCODE | i.rex);
1494 /* We are ready to output the insn. */
1495 output_insn ();
1498 static char *
1499 parse_insn (line, mnemonic)
1500 char *line;
1501 char *mnemonic;
1503 char *l = line;
1504 char *token_start = l;
1505 char *mnem_p;
1507 /* Non-zero if we found a prefix only acceptable with string insns. */
1508 const char *expecting_string_instruction = NULL;
1510 while (1)
1512 mnem_p = mnemonic;
1513 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1515 mnem_p++;
1516 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1518 as_bad (_("no such instruction: `%s'"), token_start);
1519 return NULL;
1521 l++;
1523 if (!is_space_char (*l)
1524 && *l != END_OF_INSN
1525 && *l != PREFIX_SEPARATOR
1526 && *l != ',')
1528 as_bad (_("invalid character %s in mnemonic"),
1529 output_invalid (*l));
1530 return NULL;
1532 if (token_start == l)
1534 if (*l == PREFIX_SEPARATOR)
1535 as_bad (_("expecting prefix; got nothing"));
1536 else
1537 as_bad (_("expecting mnemonic; got nothing"));
1538 return NULL;
1541 /* Look up instruction (or prefix) via hash table. */
1542 current_templates = hash_find (op_hash, mnemonic);
1544 if (*l != END_OF_INSN
1545 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1546 && current_templates
1547 && (current_templates->start->opcode_modifier & IsPrefix))
1549 /* If we are in 16-bit mode, do not allow addr16 or data16.
1550 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1551 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1552 && flag_code != CODE_64BIT
1553 && (((current_templates->start->opcode_modifier & Size32) != 0)
1554 ^ (flag_code == CODE_16BIT)))
1556 as_bad (_("redundant %s prefix"),
1557 current_templates->start->name);
1558 return NULL;
1560 /* Add prefix, checking for repeated prefixes. */
1561 switch (add_prefix (current_templates->start->base_opcode))
1563 case 0:
1564 return NULL;
1565 case 2:
1566 expecting_string_instruction = current_templates->start->name;
1567 break;
1569 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1570 token_start = ++l;
1572 else
1573 break;
1576 if (!current_templates)
1578 /* See if we can get a match by trimming off a suffix. */
1579 switch (mnem_p[-1])
1581 case WORD_MNEM_SUFFIX:
1582 case BYTE_MNEM_SUFFIX:
1583 case QWORD_MNEM_SUFFIX:
1584 i.suffix = mnem_p[-1];
1585 mnem_p[-1] = '\0';
1586 current_templates = hash_find (op_hash, mnemonic);
1587 break;
1588 case SHORT_MNEM_SUFFIX:
1589 case LONG_MNEM_SUFFIX:
1590 if (!intel_syntax)
1592 i.suffix = mnem_p[-1];
1593 mnem_p[-1] = '\0';
1594 current_templates = hash_find (op_hash, mnemonic);
1596 break;
1598 /* Intel Syntax. */
1599 case 'd':
1600 if (intel_syntax)
1602 if (intel_float_operand (mnemonic))
1603 i.suffix = SHORT_MNEM_SUFFIX;
1604 else
1605 i.suffix = LONG_MNEM_SUFFIX;
1606 mnem_p[-1] = '\0';
1607 current_templates = hash_find (op_hash, mnemonic);
1609 break;
1611 if (!current_templates)
1613 as_bad (_("no such instruction: `%s'"), token_start);
1614 return NULL;
1618 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1620 /* Check for a branch hint. We allow ",pt" and ",pn" for
1621 predict taken and predict not taken respectively.
1622 I'm not sure that branch hints actually do anything on loop
1623 and jcxz insns (JumpByte) for current Pentium4 chips. They
1624 may work in the future and it doesn't hurt to accept them
1625 now. */
1626 if (l[0] == ',' && l[1] == 'p')
1628 if (l[2] == 't')
1630 if (!add_prefix (DS_PREFIX_OPCODE))
1631 return NULL;
1632 l += 3;
1634 else if (l[2] == 'n')
1636 if (!add_prefix (CS_PREFIX_OPCODE))
1637 return NULL;
1638 l += 3;
1642 /* Any other comma loses. */
1643 if (*l == ',')
1645 as_bad (_("invalid character %s in mnemonic"),
1646 output_invalid (*l));
1647 return NULL;
1650 /* Check if instruction is supported on specified architecture. */
1651 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1652 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1654 as_warn (_("`%s' is not supported on `%s'"),
1655 current_templates->start->name, cpu_arch_name);
1657 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1659 as_warn (_("use .code16 to ensure correct addressing mode"));
1662 /* Check for rep/repne without a string instruction. */
1663 if (expecting_string_instruction
1664 && !(current_templates->start->opcode_modifier & IsString))
1666 as_bad (_("expecting string instruction after `%s'"),
1667 expecting_string_instruction);
1668 return NULL;
1671 return l;
1674 static char *
1675 parse_operands (l, mnemonic)
1676 char *l;
1677 const char *mnemonic;
1679 char *token_start;
1681 /* 1 if operand is pending after ','. */
1682 unsigned int expecting_operand = 0;
1684 /* Non-zero if operand parens not balanced. */
1685 unsigned int paren_not_balanced;
1687 while (*l != END_OF_INSN)
1689 /* Skip optional white space before operand. */
1690 if (is_space_char (*l))
1691 ++l;
1692 if (!is_operand_char (*l) && *l != END_OF_INSN)
1694 as_bad (_("invalid character %s before operand %d"),
1695 output_invalid (*l),
1696 i.operands + 1);
1697 return NULL;
1699 token_start = l; /* after white space */
1700 paren_not_balanced = 0;
1701 while (paren_not_balanced || *l != ',')
1703 if (*l == END_OF_INSN)
1705 if (paren_not_balanced)
1707 if (!intel_syntax)
1708 as_bad (_("unbalanced parenthesis in operand %d."),
1709 i.operands + 1);
1710 else
1711 as_bad (_("unbalanced brackets in operand %d."),
1712 i.operands + 1);
1713 return NULL;
1715 else
1716 break; /* we are done */
1718 else if (!is_operand_char (*l) && !is_space_char (*l))
1720 as_bad (_("invalid character %s in operand %d"),
1721 output_invalid (*l),
1722 i.operands + 1);
1723 return NULL;
1725 if (!intel_syntax)
1727 if (*l == '(')
1728 ++paren_not_balanced;
1729 if (*l == ')')
1730 --paren_not_balanced;
1732 else
1734 if (*l == '[')
1735 ++paren_not_balanced;
1736 if (*l == ']')
1737 --paren_not_balanced;
1739 l++;
1741 if (l != token_start)
1742 { /* Yes, we've read in another operand. */
1743 unsigned int operand_ok;
1744 this_operand = i.operands++;
1745 if (i.operands > MAX_OPERANDS)
1747 as_bad (_("spurious operands; (%d operands/instruction max)"),
1748 MAX_OPERANDS);
1749 return NULL;
1751 /* Now parse operand adding info to 'i' as we go along. */
1752 END_STRING_AND_SAVE (l);
1754 if (intel_syntax)
1755 operand_ok =
1756 i386_intel_operand (token_start,
1757 intel_float_operand (mnemonic));
1758 else
1759 operand_ok = i386_operand (token_start);
1761 RESTORE_END_STRING (l);
1762 if (!operand_ok)
1763 return NULL;
1765 else
1767 if (expecting_operand)
1769 expecting_operand_after_comma:
1770 as_bad (_("expecting operand after ','; got nothing"));
1771 return NULL;
1773 if (*l == ',')
1775 as_bad (_("expecting operand before ','; got nothing"));
1776 return NULL;
1780 /* Now *l must be either ',' or END_OF_INSN. */
1781 if (*l == ',')
1783 if (*++l == END_OF_INSN)
1785 /* Just skip it, if it's \n complain. */
1786 goto expecting_operand_after_comma;
1788 expecting_operand = 1;
1791 return l;
1794 static void
1795 swap_operands ()
1797 union i386_op temp_op;
1798 unsigned int temp_type;
1799 enum bfd_reloc_code_real temp_reloc;
1800 int xchg1 = 0;
1801 int xchg2 = 0;
1803 if (i.operands == 2)
1805 xchg1 = 0;
1806 xchg2 = 1;
1808 else if (i.operands == 3)
1810 xchg1 = 0;
1811 xchg2 = 2;
1813 temp_type = i.types[xchg2];
1814 i.types[xchg2] = i.types[xchg1];
1815 i.types[xchg1] = temp_type;
1816 temp_op = i.op[xchg2];
1817 i.op[xchg2] = i.op[xchg1];
1818 i.op[xchg1] = temp_op;
1819 temp_reloc = i.reloc[xchg2];
1820 i.reloc[xchg2] = i.reloc[xchg1];
1821 i.reloc[xchg1] = temp_reloc;
1823 if (i.mem_operands == 2)
1825 const seg_entry *temp_seg;
1826 temp_seg = i.seg[0];
1827 i.seg[0] = i.seg[1];
1828 i.seg[1] = temp_seg;
1832 /* Try to ensure constant immediates are represented in the smallest
1833 opcode possible. */
1834 static void
1835 optimize_imm ()
1837 char guess_suffix = 0;
1838 int op;
1840 if (i.suffix)
1841 guess_suffix = i.suffix;
1842 else if (i.reg_operands)
1844 /* Figure out a suffix from the last register operand specified.
1845 We can't do this properly yet, ie. excluding InOutPortReg,
1846 but the following works for instructions with immediates.
1847 In any case, we can't set i.suffix yet. */
1848 for (op = i.operands; --op >= 0;)
1849 if (i.types[op] & Reg)
1851 if (i.types[op] & Reg8)
1852 guess_suffix = BYTE_MNEM_SUFFIX;
1853 else if (i.types[op] & Reg16)
1854 guess_suffix = WORD_MNEM_SUFFIX;
1855 else if (i.types[op] & Reg32)
1856 guess_suffix = LONG_MNEM_SUFFIX;
1857 else if (i.types[op] & Reg64)
1858 guess_suffix = QWORD_MNEM_SUFFIX;
1859 break;
1862 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1863 guess_suffix = WORD_MNEM_SUFFIX;
1865 for (op = i.operands; --op >= 0;)
1866 if (i.types[op] & Imm)
1868 switch (i.op[op].imms->X_op)
1870 case O_constant:
1871 /* If a suffix is given, this operand may be shortened. */
1872 switch (guess_suffix)
1874 case LONG_MNEM_SUFFIX:
1875 i.types[op] |= Imm32 | Imm64;
1876 break;
1877 case WORD_MNEM_SUFFIX:
1878 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1879 break;
1880 case BYTE_MNEM_SUFFIX:
1881 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1882 break;
1885 /* If this operand is at most 16 bits, convert it
1886 to a signed 16 bit number before trying to see
1887 whether it will fit in an even smaller size.
1888 This allows a 16-bit operand such as $0xffe0 to
1889 be recognised as within Imm8S range. */
1890 if ((i.types[op] & Imm16)
1891 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1893 i.op[op].imms->X_add_number =
1894 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1896 if ((i.types[op] & Imm32)
1897 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1898 == 0))
1900 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1901 ^ ((offsetT) 1 << 31))
1902 - ((offsetT) 1 << 31));
1904 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1906 /* We must avoid matching of Imm32 templates when 64bit
1907 only immediate is available. */
1908 if (guess_suffix == QWORD_MNEM_SUFFIX)
1909 i.types[op] &= ~Imm32;
1910 break;
1912 case O_absent:
1913 case O_register:
1914 abort ();
1916 /* Symbols and expressions. */
1917 default:
1918 /* Convert symbolic operand to proper sizes for matching. */
1919 switch (guess_suffix)
1921 case QWORD_MNEM_SUFFIX:
1922 i.types[op] = Imm64 | Imm32S;
1923 break;
1924 case LONG_MNEM_SUFFIX:
1925 i.types[op] = Imm32 | Imm64;
1926 break;
1927 case WORD_MNEM_SUFFIX:
1928 i.types[op] = Imm16 | Imm32 | Imm64;
1929 break;
1930 break;
1931 case BYTE_MNEM_SUFFIX:
1932 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1933 break;
1934 break;
1936 break;
1941 /* Try to use the smallest displacement type too. */
1942 static void
1943 optimize_disp ()
1945 int op;
1947 for (op = i.operands; --op >= 0;)
1948 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1950 offsetT disp = i.op[op].disps->X_add_number;
1952 if (i.types[op] & Disp16)
1954 /* We know this operand is at most 16 bits, so
1955 convert to a signed 16 bit number before trying
1956 to see whether it will fit in an even smaller
1957 size. */
1959 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1961 else if (i.types[op] & Disp32)
1963 /* We know this operand is at most 32 bits, so convert to a
1964 signed 32 bit number before trying to see whether it will
1965 fit in an even smaller size. */
1966 disp &= (((offsetT) 2 << 31) - 1);
1967 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1969 if (flag_code == CODE_64BIT)
1971 if (fits_in_signed_long (disp))
1972 i.types[op] |= Disp32S;
1973 if (fits_in_unsigned_long (disp))
1974 i.types[op] |= Disp32;
1976 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1977 && fits_in_signed_byte (disp))
1978 i.types[op] |= Disp8;
1982 static int
1983 match_template ()
1985 /* Points to template once we've found it. */
1986 const template *t;
1987 unsigned int overlap0, overlap1, overlap2;
1988 unsigned int found_reverse_match;
1989 int suffix_check;
1991 #define MATCH(overlap, given, template) \
1992 ((overlap & ~JumpAbsolute) \
1993 && (((given) & (BaseIndex | JumpAbsolute)) \
1994 == ((overlap) & (BaseIndex | JumpAbsolute))))
1996 /* If given types r0 and r1 are registers they must be of the same type
1997 unless the expected operand type register overlap is null.
1998 Note that Acc in a template matches every size of reg. */
1999 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2000 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2001 || ((g0) & Reg) == ((g1) & Reg) \
2002 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2004 overlap0 = 0;
2005 overlap1 = 0;
2006 overlap2 = 0;
2007 found_reverse_match = 0;
2008 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2009 ? No_bSuf
2010 : (i.suffix == WORD_MNEM_SUFFIX
2011 ? No_wSuf
2012 : (i.suffix == SHORT_MNEM_SUFFIX
2013 ? No_sSuf
2014 : (i.suffix == LONG_MNEM_SUFFIX
2015 ? No_lSuf
2016 : (i.suffix == QWORD_MNEM_SUFFIX
2017 ? No_qSuf
2018 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2019 ? No_xSuf : 0))))));
2021 for (t = current_templates->start;
2022 t < current_templates->end;
2023 t++)
2025 /* Must have right number of operands. */
2026 if (i.operands != t->operands)
2027 continue;
2029 /* Check the suffix, except for some instructions in intel mode. */
2030 if ((t->opcode_modifier & suffix_check)
2031 && !(intel_syntax
2032 && (t->opcode_modifier & IgnoreSize))
2033 && !(intel_syntax
2034 && t->base_opcode == 0xd9
2035 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2036 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2037 continue;
2039 /* Do not verify operands when there are none. */
2040 else if (!t->operands)
2042 if (t->cpu_flags & ~cpu_arch_flags)
2043 continue;
2044 /* We've found a match; break out of loop. */
2045 break;
2048 overlap0 = i.types[0] & t->operand_types[0];
2049 switch (t->operands)
2051 case 1:
2052 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2053 continue;
2054 break;
2055 case 2:
2056 case 3:
2057 overlap1 = i.types[1] & t->operand_types[1];
2058 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2059 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2060 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2061 t->operand_types[0],
2062 overlap1, i.types[1],
2063 t->operand_types[1]))
2065 /* Check if other direction is valid ... */
2066 if ((t->opcode_modifier & (D | FloatD)) == 0)
2067 continue;
2069 /* Try reversing direction of operands. */
2070 overlap0 = i.types[0] & t->operand_types[1];
2071 overlap1 = i.types[1] & t->operand_types[0];
2072 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2073 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2074 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2075 t->operand_types[1],
2076 overlap1, i.types[1],
2077 t->operand_types[0]))
2079 /* Does not match either direction. */
2080 continue;
2082 /* found_reverse_match holds which of D or FloatDR
2083 we've found. */
2084 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2086 /* Found a forward 2 operand match here. */
2087 else if (t->operands == 3)
2089 /* Here we make use of the fact that there are no
2090 reverse match 3 operand instructions, and all 3
2091 operand instructions only need to be checked for
2092 register consistency between operands 2 and 3. */
2093 overlap2 = i.types[2] & t->operand_types[2];
2094 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2095 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2096 t->operand_types[1],
2097 overlap2, i.types[2],
2098 t->operand_types[2]))
2100 continue;
2102 /* Found either forward/reverse 2 or 3 operand match here:
2103 slip through to break. */
2105 if (t->cpu_flags & ~cpu_arch_flags)
2107 found_reverse_match = 0;
2108 continue;
2110 /* We've found a match; break out of loop. */
2111 break;
2114 if (t == current_templates->end)
2116 /* We found no match. */
2117 as_bad (_("suffix or operands invalid for `%s'"),
2118 current_templates->start->name);
2119 return 0;
2122 if (!quiet_warnings)
2124 if (!intel_syntax
2125 && ((i.types[0] & JumpAbsolute)
2126 != (t->operand_types[0] & JumpAbsolute)))
2128 as_warn (_("indirect %s without `*'"), t->name);
2131 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2132 == (IsPrefix | IgnoreSize))
2134 /* Warn them that a data or address size prefix doesn't
2135 affect assembly of the next line of code. */
2136 as_warn (_("stand-alone `%s' prefix"), t->name);
2140 /* Copy the template we found. */
2141 i.tm = *t;
2142 if (found_reverse_match)
2144 /* If we found a reverse match we must alter the opcode
2145 direction bit. found_reverse_match holds bits to change
2146 (different for int & float insns). */
2148 i.tm.base_opcode ^= found_reverse_match;
2150 i.tm.operand_types[0] = t->operand_types[1];
2151 i.tm.operand_types[1] = t->operand_types[0];
2154 return 1;
2157 static int
2158 check_string ()
2160 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2161 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2163 if (i.seg[0] != NULL && i.seg[0] != &es)
2165 as_bad (_("`%s' operand %d must use `%%es' segment"),
2166 i.tm.name,
2167 mem_op + 1);
2168 return 0;
2170 /* There's only ever one segment override allowed per instruction.
2171 This instruction possibly has a legal segment override on the
2172 second operand, so copy the segment to where non-string
2173 instructions store it, allowing common code. */
2174 i.seg[0] = i.seg[1];
2176 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2178 if (i.seg[1] != NULL && i.seg[1] != &es)
2180 as_bad (_("`%s' operand %d must use `%%es' segment"),
2181 i.tm.name,
2182 mem_op + 2);
2183 return 0;
2186 return 1;
2189 static int
2190 process_suffix ()
2192 /* If matched instruction specifies an explicit instruction mnemonic
2193 suffix, use it. */
2194 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2196 if (i.tm.opcode_modifier & Size16)
2197 i.suffix = WORD_MNEM_SUFFIX;
2198 else if (i.tm.opcode_modifier & Size64)
2199 i.suffix = QWORD_MNEM_SUFFIX;
2200 else
2201 i.suffix = LONG_MNEM_SUFFIX;
2203 else if (i.reg_operands)
2205 /* If there's no instruction mnemonic suffix we try to invent one
2206 based on register operands. */
2207 if (!i.suffix)
2209 /* We take i.suffix from the last register operand specified,
2210 Destination register type is more significant than source
2211 register type. */
2212 int op;
2213 for (op = i.operands; --op >= 0;)
2214 if ((i.types[op] & Reg)
2215 && !(i.tm.operand_types[op] & InOutPortReg))
2217 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2218 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2219 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2220 LONG_MNEM_SUFFIX);
2221 break;
2224 else if (i.suffix == BYTE_MNEM_SUFFIX)
2226 if (!check_byte_reg ())
2227 return 0;
2229 else if (i.suffix == LONG_MNEM_SUFFIX)
2231 if (!check_long_reg ())
2232 return 0;
2234 else if (i.suffix == QWORD_MNEM_SUFFIX)
2236 if (!check_qword_reg ())
2237 return 0;
2239 else if (i.suffix == WORD_MNEM_SUFFIX)
2241 if (!check_word_reg ())
2242 return 0;
2244 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2245 /* Do nothing if the instruction is going to ignore the prefix. */
2247 else
2248 abort ();
2250 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2252 i.suffix = stackop_size;
2255 /* Change the opcode based on the operand size given by i.suffix;
2256 We need not change things for byte insns. */
2258 if (!i.suffix && (i.tm.opcode_modifier & W))
2260 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2261 return 0;
2264 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2266 /* It's not a byte, select word/dword operation. */
2267 if (i.tm.opcode_modifier & W)
2269 if (i.tm.opcode_modifier & ShortForm)
2270 i.tm.base_opcode |= 8;
2271 else
2272 i.tm.base_opcode |= 1;
2275 /* Now select between word & dword operations via the operand
2276 size prefix, except for instructions that will ignore this
2277 prefix anyway. */
2278 if (i.suffix != QWORD_MNEM_SUFFIX
2279 && !(i.tm.opcode_modifier & IgnoreSize)
2280 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2281 || (flag_code == CODE_64BIT
2282 && (i.tm.opcode_modifier & JumpByte))))
2284 unsigned int prefix = DATA_PREFIX_OPCODE;
2285 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2286 prefix = ADDR_PREFIX_OPCODE;
2288 if (!add_prefix (prefix))
2289 return 0;
2292 /* Set mode64 for an operand. */
2293 if (i.suffix == QWORD_MNEM_SUFFIX
2294 && flag_code == CODE_64BIT
2295 && (i.tm.opcode_modifier & NoRex64) == 0)
2296 i.rex |= REX_MODE64;
2298 /* Size floating point instruction. */
2299 if (i.suffix == LONG_MNEM_SUFFIX)
2301 if (i.tm.opcode_modifier & FloatMF)
2302 i.tm.base_opcode ^= 4;
2306 return 1;
2309 static int
2310 check_byte_reg ()
2312 int op;
2313 for (op = i.operands; --op >= 0;)
2315 /* If this is an eight bit register, it's OK. If it's the 16 or
2316 32 bit version of an eight bit register, we will just use the
2317 low portion, and that's OK too. */
2318 if (i.types[op] & Reg8)
2319 continue;
2321 /* movzx and movsx should not generate this warning. */
2322 if (intel_syntax
2323 && (i.tm.base_opcode == 0xfb7
2324 || i.tm.base_opcode == 0xfb6
2325 || i.tm.base_opcode == 0x63
2326 || i.tm.base_opcode == 0xfbe
2327 || i.tm.base_opcode == 0xfbf))
2328 continue;
2330 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2331 #if 0
2332 /* Check that the template allows eight bit regs. This
2333 kills insns such as `orb $1,%edx', which maybe should be
2334 allowed. */
2335 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2336 #endif
2339 /* Prohibit these changes in the 64bit mode, since the
2340 lowering is more complicated. */
2341 if (flag_code == CODE_64BIT
2342 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2344 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2345 i.op[op].regs->reg_name,
2346 i.suffix);
2347 return 0;
2349 #if REGISTER_WARNINGS
2350 if (!quiet_warnings
2351 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2352 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2353 (i.op[op].regs + (i.types[op] & Reg16
2354 ? REGNAM_AL - REGNAM_AX
2355 : REGNAM_AL - REGNAM_EAX))->reg_name,
2356 i.op[op].regs->reg_name,
2357 i.suffix);
2358 #endif
2359 continue;
2361 /* Any other register is bad. */
2362 if (i.types[op] & (Reg | RegMMX | RegXMM
2363 | SReg2 | SReg3
2364 | Control | Debug | Test
2365 | FloatReg | FloatAcc))
2367 as_bad (_("`%%%s' not allowed with `%s%c'"),
2368 i.op[op].regs->reg_name,
2369 i.tm.name,
2370 i.suffix);
2371 return 0;
2374 return 1;
2377 static int
2378 check_long_reg ()
2380 int op;
2382 for (op = i.operands; --op >= 0;)
2383 /* Reject eight bit registers, except where the template requires
2384 them. (eg. movzb) */
2385 if ((i.types[op] & Reg8) != 0
2386 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2388 as_bad (_("`%%%s' not allowed with `%s%c'"),
2389 i.op[op].regs->reg_name,
2390 i.tm.name,
2391 i.suffix);
2392 return 0;
2394 /* Warn if the e prefix on a general reg is missing. */
2395 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2396 && (i.types[op] & Reg16) != 0
2397 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2399 /* Prohibit these changes in the 64bit mode, since the
2400 lowering is more complicated. */
2401 if (flag_code == CODE_64BIT)
2403 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2404 i.op[op].regs->reg_name,
2405 i.suffix);
2406 return 0;
2408 #if REGISTER_WARNINGS
2409 else
2410 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2411 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2412 i.op[op].regs->reg_name,
2413 i.suffix);
2414 #endif
2416 /* Warn if the r prefix on a general reg is missing. */
2417 else if ((i.types[op] & Reg64) != 0
2418 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2420 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2421 i.op[op].regs->reg_name,
2422 i.suffix);
2423 return 0;
2425 return 1;
2428 static int
2429 check_qword_reg ()
2431 int op;
2433 for (op = i.operands; --op >= 0; )
2434 /* Reject eight bit registers, except where the template requires
2435 them. (eg. movzb) */
2436 if ((i.types[op] & Reg8) != 0
2437 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2439 as_bad (_("`%%%s' not allowed with `%s%c'"),
2440 i.op[op].regs->reg_name,
2441 i.tm.name,
2442 i.suffix);
2443 return 0;
2445 /* Warn if the e prefix on a general reg is missing. */
2446 else if (((i.types[op] & Reg16) != 0
2447 || (i.types[op] & Reg32) != 0)
2448 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2450 /* Prohibit these changes in the 64bit mode, since the
2451 lowering is more complicated. */
2452 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2453 i.op[op].regs->reg_name,
2454 i.suffix);
2455 return 0;
2457 return 1;
2460 static int
2461 check_word_reg ()
2463 int op;
2464 for (op = i.operands; --op >= 0;)
2465 /* Reject eight bit registers, except where the template requires
2466 them. (eg. movzb) */
2467 if ((i.types[op] & Reg8) != 0
2468 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2470 as_bad (_("`%%%s' not allowed with `%s%c'"),
2471 i.op[op].regs->reg_name,
2472 i.tm.name,
2473 i.suffix);
2474 return 0;
2476 /* Warn if the e prefix on a general reg is present. */
2477 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2478 && (i.types[op] & Reg32) != 0
2479 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2481 /* Prohibit these changes in the 64bit mode, since the
2482 lowering is more complicated. */
2483 if (flag_code == CODE_64BIT)
2485 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2486 i.op[op].regs->reg_name,
2487 i.suffix);
2488 return 0;
2490 else
2491 #if REGISTER_WARNINGS
2492 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2493 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2494 i.op[op].regs->reg_name,
2495 i.suffix);
2496 #endif
2498 return 1;
2501 static int
2502 finalize_imm ()
2504 unsigned int overlap0, overlap1, overlap2;
2506 overlap0 = i.types[0] & i.tm.operand_types[0];
2507 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2508 && overlap0 != Imm8 && overlap0 != Imm8S
2509 && overlap0 != Imm16 && overlap0 != Imm32S
2510 && overlap0 != Imm32 && overlap0 != Imm64)
2512 if (i.suffix)
2514 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2515 ? Imm8 | Imm8S
2516 : (i.suffix == WORD_MNEM_SUFFIX
2517 ? Imm16
2518 : (i.suffix == QWORD_MNEM_SUFFIX
2519 ? Imm64 | Imm32S
2520 : Imm32)));
2522 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2523 || overlap0 == (Imm16 | Imm32)
2524 || overlap0 == (Imm16 | Imm32S))
2526 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2527 ? Imm16 : Imm32S);
2529 if (overlap0 != Imm8 && overlap0 != Imm8S
2530 && overlap0 != Imm16 && overlap0 != Imm32S
2531 && overlap0 != Imm32 && overlap0 != Imm64)
2533 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2534 return 0;
2537 i.types[0] = overlap0;
2539 overlap1 = i.types[1] & i.tm.operand_types[1];
2540 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2541 && overlap1 != Imm8 && overlap1 != Imm8S
2542 && overlap1 != Imm16 && overlap1 != Imm32S
2543 && overlap1 != Imm32 && overlap1 != Imm64)
2545 if (i.suffix)
2547 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2548 ? Imm8 | Imm8S
2549 : (i.suffix == WORD_MNEM_SUFFIX
2550 ? Imm16
2551 : (i.suffix == QWORD_MNEM_SUFFIX
2552 ? Imm64 | Imm32S
2553 : Imm32)));
2555 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2556 || overlap1 == (Imm16 | Imm32)
2557 || overlap1 == (Imm16 | Imm32S))
2559 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2560 ? Imm16 : Imm32S);
2562 if (overlap1 != Imm8 && overlap1 != Imm8S
2563 && overlap1 != Imm16 && overlap1 != Imm32S
2564 && overlap1 != Imm32 && overlap1 != Imm64)
2566 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2567 return 0;
2570 i.types[1] = overlap1;
2572 overlap2 = i.types[2] & i.tm.operand_types[2];
2573 assert ((overlap2 & Imm) == 0);
2574 i.types[2] = overlap2;
2576 return 1;
2579 static int
2580 process_operands ()
2582 /* Default segment register this instruction will use for memory
2583 accesses. 0 means unknown. This is only for optimizing out
2584 unnecessary segment overrides. */
2585 const seg_entry *default_seg = 0;
2587 /* The imul $imm, %reg instruction is converted into
2588 imul $imm, %reg, %reg, and the clr %reg instruction
2589 is converted into xor %reg, %reg. */
2590 if (i.tm.opcode_modifier & regKludge)
2592 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2593 /* Pretend we saw the extra register operand. */
2594 assert (i.op[first_reg_op + 1].regs == 0);
2595 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2596 i.types[first_reg_op + 1] = i.types[first_reg_op];
2597 i.reg_operands = 2;
2600 if (i.tm.opcode_modifier & ShortForm)
2602 /* The register or float register operand is in operand 0 or 1. */
2603 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2604 /* Register goes in low 3 bits of opcode. */
2605 i.tm.base_opcode |= i.op[op].regs->reg_num;
2606 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2607 i.rex |= REX_EXTZ;
2608 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2610 /* Warn about some common errors, but press on regardless.
2611 The first case can be generated by gcc (<= 2.8.1). */
2612 if (i.operands == 2)
2614 /* Reversed arguments on faddp, fsubp, etc. */
2615 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2616 i.op[1].regs->reg_name,
2617 i.op[0].regs->reg_name);
2619 else
2621 /* Extraneous `l' suffix on fp insn. */
2622 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2623 i.op[0].regs->reg_name);
2627 else if (i.tm.opcode_modifier & Modrm)
2629 /* The opcode is completed (modulo i.tm.extension_opcode which
2630 must be put into the modrm byte). Now, we make the modrm and
2631 index base bytes based on all the info we've collected. */
2633 default_seg = build_modrm_byte ();
2635 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2637 if (i.tm.base_opcode == POP_SEG_SHORT
2638 && i.op[0].regs->reg_num == 1)
2640 as_bad (_("you can't `pop %%cs'"));
2641 return 0;
2643 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2644 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2645 i.rex |= REX_EXTZ;
2647 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2649 default_seg = &ds;
2651 else if ((i.tm.opcode_modifier & IsString) != 0)
2653 /* For the string instructions that allow a segment override
2654 on one of their operands, the default segment is ds. */
2655 default_seg = &ds;
2658 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2659 as_warn (_("segment override on `lea' is ineffectual"));
2661 /* If a segment was explicitly specified, and the specified segment
2662 is not the default, use an opcode prefix to select it. If we
2663 never figured out what the default segment is, then default_seg
2664 will be zero at this point, and the specified segment prefix will
2665 always be used. */
2666 if ((i.seg[0]) && (i.seg[0] != default_seg))
2668 if (!add_prefix (i.seg[0]->seg_prefix))
2669 return 0;
2671 return 1;
2674 static const seg_entry *
2675 build_modrm_byte ()
2677 const seg_entry *default_seg = 0;
2679 /* i.reg_operands MUST be the number of real register operands;
2680 implicit registers do not count. */
2681 if (i.reg_operands == 2)
2683 unsigned int source, dest;
2684 source = ((i.types[0]
2685 & (Reg | RegMMX | RegXMM
2686 | SReg2 | SReg3
2687 | Control | Debug | Test))
2688 ? 0 : 1);
2689 dest = source + 1;
2691 i.rm.mode = 3;
2692 /* One of the register operands will be encoded in the i.tm.reg
2693 field, the other in the combined i.tm.mode and i.tm.regmem
2694 fields. If no form of this instruction supports a memory
2695 destination operand, then we assume the source operand may
2696 sometimes be a memory operand and so we need to store the
2697 destination in the i.rm.reg field. */
2698 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2700 i.rm.reg = i.op[dest].regs->reg_num;
2701 i.rm.regmem = i.op[source].regs->reg_num;
2702 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2703 i.rex |= REX_EXTX;
2704 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2705 i.rex |= REX_EXTZ;
2707 else
2709 i.rm.reg = i.op[source].regs->reg_num;
2710 i.rm.regmem = i.op[dest].regs->reg_num;
2711 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2712 i.rex |= REX_EXTZ;
2713 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2714 i.rex |= REX_EXTX;
2717 else
2718 { /* If it's not 2 reg operands... */
2719 if (i.mem_operands)
2721 unsigned int fake_zero_displacement = 0;
2722 unsigned int op = ((i.types[0] & AnyMem)
2724 : (i.types[1] & AnyMem) ? 1 : 2);
2726 default_seg = &ds;
2728 if (i.base_reg == 0)
2730 i.rm.mode = 0;
2731 if (!i.disp_operands)
2732 fake_zero_displacement = 1;
2733 if (i.index_reg == 0)
2735 /* Operand is just <disp> */
2736 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2737 && (flag_code != CODE_64BIT))
2739 i.rm.regmem = NO_BASE_REGISTER_16;
2740 i.types[op] &= ~Disp;
2741 i.types[op] |= Disp16;
2743 else if (flag_code != CODE_64BIT
2744 || (i.prefix[ADDR_PREFIX] != 0))
2746 i.rm.regmem = NO_BASE_REGISTER;
2747 i.types[op] &= ~Disp;
2748 i.types[op] |= Disp32;
2750 else
2752 /* 64bit mode overwrites the 32bit absolute
2753 addressing by RIP relative addressing and
2754 absolute addressing is encoded by one of the
2755 redundant SIB forms. */
2756 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2757 i.sib.base = NO_BASE_REGISTER;
2758 i.sib.index = NO_INDEX_REGISTER;
2759 i.types[op] &= ~Disp;
2760 i.types[op] |= Disp32S;
2763 else /* !i.base_reg && i.index_reg */
2765 i.sib.index = i.index_reg->reg_num;
2766 i.sib.base = NO_BASE_REGISTER;
2767 i.sib.scale = i.log2_scale_factor;
2768 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2769 i.types[op] &= ~Disp;
2770 if (flag_code != CODE_64BIT)
2771 i.types[op] |= Disp32; /* Must be 32 bit */
2772 else
2773 i.types[op] |= Disp32S;
2774 if ((i.index_reg->reg_flags & RegRex) != 0)
2775 i.rex |= REX_EXTY;
2778 /* RIP addressing for 64bit mode. */
2779 else if (i.base_reg->reg_type == BaseIndex)
2781 i.rm.regmem = NO_BASE_REGISTER;
2782 i.types[op] &= ~Disp;
2783 i.types[op] |= Disp32S;
2784 i.flags[op] = Operand_PCrel;
2786 else if (i.base_reg->reg_type & Reg16)
2788 switch (i.base_reg->reg_num)
2790 case 3: /* (%bx) */
2791 if (i.index_reg == 0)
2792 i.rm.regmem = 7;
2793 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2794 i.rm.regmem = i.index_reg->reg_num - 6;
2795 break;
2796 case 5: /* (%bp) */
2797 default_seg = &ss;
2798 if (i.index_reg == 0)
2800 i.rm.regmem = 6;
2801 if ((i.types[op] & Disp) == 0)
2803 /* fake (%bp) into 0(%bp) */
2804 i.types[op] |= Disp8;
2805 fake_zero_displacement = 1;
2808 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2809 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2810 break;
2811 default: /* (%si) -> 4 or (%di) -> 5 */
2812 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2814 i.rm.mode = mode_from_disp_size (i.types[op]);
2816 else /* i.base_reg and 32/64 bit mode */
2818 if (flag_code == CODE_64BIT
2819 && (i.types[op] & Disp))
2821 if (i.types[op] & Disp8)
2822 i.types[op] = Disp8 | Disp32S;
2823 else
2824 i.types[op] = Disp32S;
2826 i.rm.regmem = i.base_reg->reg_num;
2827 if ((i.base_reg->reg_flags & RegRex) != 0)
2828 i.rex |= REX_EXTZ;
2829 i.sib.base = i.base_reg->reg_num;
2830 /* x86-64 ignores REX prefix bit here to avoid decoder
2831 complications. */
2832 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2834 default_seg = &ss;
2835 if (i.disp_operands == 0)
2837 fake_zero_displacement = 1;
2838 i.types[op] |= Disp8;
2841 else if (i.base_reg->reg_num == ESP_REG_NUM)
2843 default_seg = &ss;
2845 i.sib.scale = i.log2_scale_factor;
2846 if (i.index_reg == 0)
2848 /* <disp>(%esp) becomes two byte modrm with no index
2849 register. We've already stored the code for esp
2850 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2851 Any base register besides %esp will not use the
2852 extra modrm byte. */
2853 i.sib.index = NO_INDEX_REGISTER;
2854 #if !SCALE1_WHEN_NO_INDEX
2855 /* Another case where we force the second modrm byte. */
2856 if (i.log2_scale_factor)
2857 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2858 #endif
2860 else
2862 i.sib.index = i.index_reg->reg_num;
2863 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2864 if ((i.index_reg->reg_flags & RegRex) != 0)
2865 i.rex |= REX_EXTY;
2867 i.rm.mode = mode_from_disp_size (i.types[op]);
2870 if (fake_zero_displacement)
2872 /* Fakes a zero displacement assuming that i.types[op]
2873 holds the correct displacement size. */
2874 expressionS *exp;
2876 assert (i.op[op].disps == 0);
2877 exp = &disp_expressions[i.disp_operands++];
2878 i.op[op].disps = exp;
2879 exp->X_op = O_constant;
2880 exp->X_add_number = 0;
2881 exp->X_add_symbol = (symbolS *) 0;
2882 exp->X_op_symbol = (symbolS *) 0;
2886 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2887 (if any) based on i.tm.extension_opcode. Again, we must be
2888 careful to make sure that segment/control/debug/test/MMX
2889 registers are coded into the i.rm.reg field. */
2890 if (i.reg_operands)
2892 unsigned int op =
2893 ((i.types[0]
2894 & (Reg | RegMMX | RegXMM
2895 | SReg2 | SReg3
2896 | Control | Debug | Test))
2898 : ((i.types[1]
2899 & (Reg | RegMMX | RegXMM
2900 | SReg2 | SReg3
2901 | Control | Debug | Test))
2903 : 2));
2904 /* If there is an extension opcode to put here, the register
2905 number must be put into the regmem field. */
2906 if (i.tm.extension_opcode != None)
2908 i.rm.regmem = i.op[op].regs->reg_num;
2909 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2910 i.rex |= REX_EXTZ;
2912 else
2914 i.rm.reg = i.op[op].regs->reg_num;
2915 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2916 i.rex |= REX_EXTX;
2919 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2920 must set it to 3 to indicate this is a register operand
2921 in the regmem field. */
2922 if (!i.mem_operands)
2923 i.rm.mode = 3;
2926 /* Fill in i.rm.reg field with extension opcode (if any). */
2927 if (i.tm.extension_opcode != None)
2928 i.rm.reg = i.tm.extension_opcode;
2930 return default_seg;
2933 static void
2934 output_branch ()
2936 char *p;
2937 int code16;
2938 int prefix;
2939 relax_substateT subtype;
2940 symbolS *sym;
2941 offsetT off;
2943 code16 = 0;
2944 if (flag_code == CODE_16BIT)
2945 code16 = CODE16;
2947 prefix = 0;
2948 if (i.prefix[DATA_PREFIX] != 0)
2950 prefix = 1;
2951 i.prefixes -= 1;
2952 code16 ^= CODE16;
2954 /* Pentium4 branch hints. */
2955 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2956 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2958 prefix++;
2959 i.prefixes--;
2961 if (i.prefix[REX_PREFIX] != 0)
2963 prefix++;
2964 i.prefixes--;
2967 if (i.prefixes != 0 && !intel_syntax)
2968 as_warn (_("skipping prefixes on this instruction"));
2970 /* It's always a symbol; End frag & setup for relax.
2971 Make sure there is enough room in this frag for the largest
2972 instruction we may generate in md_convert_frag. This is 2
2973 bytes for the opcode and room for the prefix and largest
2974 displacement. */
2975 frag_grow (prefix + 2 + 4);
2976 /* Prefix and 1 opcode byte go in fr_fix. */
2977 p = frag_more (prefix + 1);
2978 if (i.prefix[DATA_PREFIX] != 0)
2979 *p++ = DATA_PREFIX_OPCODE;
2980 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2981 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2982 *p++ = i.prefix[SEG_PREFIX];
2983 if (i.prefix[REX_PREFIX] != 0)
2984 *p++ = i.prefix[REX_PREFIX];
2985 *p = i.tm.base_opcode;
2987 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2988 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2989 else if ((cpu_arch_flags & Cpu386) != 0)
2990 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2991 else
2992 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2993 subtype |= code16;
2995 sym = i.op[0].disps->X_add_symbol;
2996 off = i.op[0].disps->X_add_number;
2998 if (i.op[0].disps->X_op != O_constant
2999 && i.op[0].disps->X_op != O_symbol)
3001 /* Handle complex expressions. */
3002 sym = make_expr_symbol (i.op[0].disps);
3003 off = 0;
3006 /* 1 possible extra opcode + 4 byte displacement go in var part.
3007 Pass reloc in fr_var. */
3008 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3011 static void
3012 output_jump ()
3014 char *p;
3015 int size;
3016 fixS *fixP;
3018 if (i.tm.opcode_modifier & JumpByte)
3020 /* This is a loop or jecxz type instruction. */
3021 size = 1;
3022 if (i.prefix[ADDR_PREFIX] != 0)
3024 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3025 i.prefixes -= 1;
3027 /* Pentium4 branch hints. */
3028 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3029 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3031 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3032 i.prefixes--;
3035 else
3037 int code16;
3039 code16 = 0;
3040 if (flag_code == CODE_16BIT)
3041 code16 = CODE16;
3043 if (i.prefix[DATA_PREFIX] != 0)
3045 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3046 i.prefixes -= 1;
3047 code16 ^= CODE16;
3050 size = 4;
3051 if (code16)
3052 size = 2;
3055 if (i.prefix[REX_PREFIX] != 0)
3057 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3058 i.prefixes -= 1;
3061 if (i.prefixes != 0 && !intel_syntax)
3062 as_warn (_("skipping prefixes on this instruction"));
3064 p = frag_more (1 + size);
3065 *p++ = i.tm.base_opcode;
3067 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3068 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3070 /* All jumps handled here are signed, but don't use a signed limit
3071 check for 32 and 16 bit jumps as we want to allow wrap around at
3072 4G and 64k respectively. */
3073 if (size == 1)
3074 fixP->fx_signed = 1;
3077 static void
3078 output_interseg_jump ()
3080 char *p;
3081 int size;
3082 int prefix;
3083 int code16;
3085 code16 = 0;
3086 if (flag_code == CODE_16BIT)
3087 code16 = CODE16;
3089 prefix = 0;
3090 if (i.prefix[DATA_PREFIX] != 0)
3092 prefix = 1;
3093 i.prefixes -= 1;
3094 code16 ^= CODE16;
3096 if (i.prefix[REX_PREFIX] != 0)
3098 prefix++;
3099 i.prefixes -= 1;
3102 size = 4;
3103 if (code16)
3104 size = 2;
3106 if (i.prefixes != 0 && !intel_syntax)
3107 as_warn (_("skipping prefixes on this instruction"));
3109 /* 1 opcode; 2 segment; offset */
3110 p = frag_more (prefix + 1 + 2 + size);
3112 if (i.prefix[DATA_PREFIX] != 0)
3113 *p++ = DATA_PREFIX_OPCODE;
3115 if (i.prefix[REX_PREFIX] != 0)
3116 *p++ = i.prefix[REX_PREFIX];
3118 *p++ = i.tm.base_opcode;
3119 if (i.op[1].imms->X_op == O_constant)
3121 offsetT n = i.op[1].imms->X_add_number;
3123 if (size == 2
3124 && !fits_in_unsigned_word (n)
3125 && !fits_in_signed_word (n))
3127 as_bad (_("16-bit jump out of range"));
3128 return;
3130 md_number_to_chars (p, n, size);
3132 else
3133 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3134 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3135 if (i.op[0].imms->X_op != O_constant)
3136 as_bad (_("can't handle non absolute segment in `%s'"),
3137 i.tm.name);
3138 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3141 static void
3142 output_insn ()
3144 fragS *insn_start_frag;
3145 offsetT insn_start_off;
3147 /* Tie dwarf2 debug info to the address at the start of the insn.
3148 We can't do this after the insn has been output as the current
3149 frag may have been closed off. eg. by frag_var. */
3150 dwarf2_emit_insn (0);
3152 insn_start_frag = frag_now;
3153 insn_start_off = frag_now_fix ();
3155 /* Output jumps. */
3156 if (i.tm.opcode_modifier & Jump)
3157 output_branch ();
3158 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3159 output_jump ();
3160 else if (i.tm.opcode_modifier & JumpInterSegment)
3161 output_interseg_jump ();
3162 else
3164 /* Output normal instructions here. */
3165 char *p;
3166 unsigned char *q;
3168 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3169 have 3 bytes. We may use one more higher byte to specify a prefix
3170 the instruction requires. */
3171 if ((i.tm.cpu_flags & CpuPadLock) != 0
3172 && (i.tm.base_opcode & 0xff000000) != 0)
3174 unsigned int prefix;
3175 prefix = (i.tm.base_opcode >> 24) & 0xff;
3177 if (prefix != REPE_PREFIX_OPCODE
3178 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3179 add_prefix (prefix);
3181 else
3182 if ((i.tm.cpu_flags & CpuPadLock) == 0
3183 && (i.tm.base_opcode & 0xff0000) != 0)
3184 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3186 /* The prefix bytes. */
3187 for (q = i.prefix;
3188 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3189 q++)
3191 if (*q)
3193 p = frag_more (1);
3194 md_number_to_chars (p, (valueT) *q, 1);
3198 /* Now the opcode; be careful about word order here! */
3199 if (fits_in_unsigned_byte (i.tm.base_opcode))
3201 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3203 else
3205 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3207 p = frag_more (3);
3208 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3210 else
3211 p = frag_more (2);
3213 /* Put out high byte first: can't use md_number_to_chars! */
3214 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3215 *p = i.tm.base_opcode & 0xff;
3218 /* Now the modrm byte and sib byte (if present). */
3219 if (i.tm.opcode_modifier & Modrm)
3221 p = frag_more (1);
3222 md_number_to_chars (p,
3223 (valueT) (i.rm.regmem << 0
3224 | i.rm.reg << 3
3225 | i.rm.mode << 6),
3227 /* If i.rm.regmem == ESP (4)
3228 && i.rm.mode != (Register mode)
3229 && not 16 bit
3230 ==> need second modrm byte. */
3231 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3232 && i.rm.mode != 3
3233 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3235 p = frag_more (1);
3236 md_number_to_chars (p,
3237 (valueT) (i.sib.base << 0
3238 | i.sib.index << 3
3239 | i.sib.scale << 6),
3244 if (i.disp_operands)
3245 output_disp (insn_start_frag, insn_start_off);
3247 if (i.imm_operands)
3248 output_imm (insn_start_frag, insn_start_off);
3251 #ifdef DEBUG386
3252 if (flag_debug)
3254 pi (line, &i);
3256 #endif /* DEBUG386 */
3259 static void
3260 output_disp (insn_start_frag, insn_start_off)
3261 fragS *insn_start_frag;
3262 offsetT insn_start_off;
3264 char *p;
3265 unsigned int n;
3267 for (n = 0; n < i.operands; n++)
3269 if (i.types[n] & Disp)
3271 if (i.op[n].disps->X_op == O_constant)
3273 int size;
3274 offsetT val;
3276 size = 4;
3277 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3279 size = 2;
3280 if (i.types[n] & Disp8)
3281 size = 1;
3282 if (i.types[n] & Disp64)
3283 size = 8;
3285 val = offset_in_range (i.op[n].disps->X_add_number,
3286 size);
3287 p = frag_more (size);
3288 md_number_to_chars (p, val, size);
3290 else
3292 enum bfd_reloc_code_real reloc_type;
3293 int size = 4;
3294 int sign = 0;
3295 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3297 /* The PC relative address is computed relative
3298 to the instruction boundary, so in case immediate
3299 fields follows, we need to adjust the value. */
3300 if (pcrel && i.imm_operands)
3302 int imm_size = 4;
3303 unsigned int n1;
3305 for (n1 = 0; n1 < i.operands; n1++)
3306 if (i.types[n1] & Imm)
3308 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3310 imm_size = 2;
3311 if (i.types[n1] & (Imm8 | Imm8S))
3312 imm_size = 1;
3313 if (i.types[n1] & Imm64)
3314 imm_size = 8;
3316 break;
3318 /* We should find the immediate. */
3319 if (n1 == i.operands)
3320 abort ();
3321 i.op[n].disps->X_add_number -= imm_size;
3324 if (i.types[n] & Disp32S)
3325 sign = 1;
3327 if (i.types[n] & (Disp16 | Disp64))
3329 size = 2;
3330 if (i.types[n] & Disp64)
3331 size = 8;
3334 p = frag_more (size);
3335 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3336 if (reloc_type == BFD_RELOC_32
3337 && GOT_symbol
3338 && GOT_symbol == i.op[n].disps->X_add_symbol
3339 && (i.op[n].disps->X_op == O_symbol
3340 || (i.op[n].disps->X_op == O_add
3341 && ((symbol_get_value_expression
3342 (i.op[n].disps->X_op_symbol)->X_op)
3343 == O_subtract))))
3345 offsetT add;
3347 if (insn_start_frag == frag_now)
3348 add = (p - frag_now->fr_literal) - insn_start_off;
3349 else
3351 fragS *fr;
3353 add = insn_start_frag->fr_fix - insn_start_off;
3354 for (fr = insn_start_frag->fr_next;
3355 fr && fr != frag_now; fr = fr->fr_next)
3356 add += fr->fr_fix;
3357 add += p - frag_now->fr_literal;
3360 /* We don't support dynamic linking on x86-64 yet. */
3361 if (flag_code == CODE_64BIT)
3362 abort ();
3363 reloc_type = BFD_RELOC_386_GOTPC;
3364 i.op[n].disps->X_add_number += add;
3366 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3367 i.op[n].disps, pcrel, reloc_type);
3373 static void
3374 output_imm (insn_start_frag, insn_start_off)
3375 fragS *insn_start_frag;
3376 offsetT insn_start_off;
3378 char *p;
3379 unsigned int n;
3381 for (n = 0; n < i.operands; n++)
3383 if (i.types[n] & Imm)
3385 if (i.op[n].imms->X_op == O_constant)
3387 int size;
3388 offsetT val;
3390 size = 4;
3391 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3393 size = 2;
3394 if (i.types[n] & (Imm8 | Imm8S))
3395 size = 1;
3396 else if (i.types[n] & Imm64)
3397 size = 8;
3399 val = offset_in_range (i.op[n].imms->X_add_number,
3400 size);
3401 p = frag_more (size);
3402 md_number_to_chars (p, val, size);
3404 else
3406 /* Not absolute_section.
3407 Need a 32-bit fixup (don't support 8bit
3408 non-absolute imms). Try to support other
3409 sizes ... */
3410 enum bfd_reloc_code_real reloc_type;
3411 int size = 4;
3412 int sign = 0;
3414 if ((i.types[n] & (Imm32S))
3415 && i.suffix == QWORD_MNEM_SUFFIX)
3416 sign = 1;
3417 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3419 size = 2;
3420 if (i.types[n] & (Imm8 | Imm8S))
3421 size = 1;
3422 if (i.types[n] & Imm64)
3423 size = 8;
3426 p = frag_more (size);
3427 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3429 /* This is tough to explain. We end up with this one if we
3430 * have operands that look like
3431 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3432 * obtain the absolute address of the GOT, and it is strongly
3433 * preferable from a performance point of view to avoid using
3434 * a runtime relocation for this. The actual sequence of
3435 * instructions often look something like:
3437 * call .L66
3438 * .L66:
3439 * popl %ebx
3440 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3442 * The call and pop essentially return the absolute address
3443 * of the label .L66 and store it in %ebx. The linker itself
3444 * will ultimately change the first operand of the addl so
3445 * that %ebx points to the GOT, but to keep things simple, the
3446 * .o file must have this operand set so that it generates not
3447 * the absolute address of .L66, but the absolute address of
3448 * itself. This allows the linker itself simply treat a GOTPC
3449 * relocation as asking for a pcrel offset to the GOT to be
3450 * added in, and the addend of the relocation is stored in the
3451 * operand field for the instruction itself.
3453 * Our job here is to fix the operand so that it would add
3454 * the correct offset so that %ebx would point to itself. The
3455 * thing that is tricky is that .-.L66 will point to the
3456 * beginning of the instruction, so we need to further modify
3457 * the operand so that it will point to itself. There are
3458 * other cases where you have something like:
3460 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3462 * and here no correction would be required. Internally in
3463 * the assembler we treat operands of this form as not being
3464 * pcrel since the '.' is explicitly mentioned, and I wonder
3465 * whether it would simplify matters to do it this way. Who
3466 * knows. In earlier versions of the PIC patches, the
3467 * pcrel_adjust field was used to store the correction, but
3468 * since the expression is not pcrel, I felt it would be
3469 * confusing to do it this way. */
3471 if (reloc_type == BFD_RELOC_32
3472 && GOT_symbol
3473 && GOT_symbol == i.op[n].imms->X_add_symbol
3474 && (i.op[n].imms->X_op == O_symbol
3475 || (i.op[n].imms->X_op == O_add
3476 && ((symbol_get_value_expression
3477 (i.op[n].imms->X_op_symbol)->X_op)
3478 == O_subtract))))
3480 offsetT add;
3482 if (insn_start_frag == frag_now)
3483 add = (p - frag_now->fr_literal) - insn_start_off;
3484 else
3486 fragS *fr;
3488 add = insn_start_frag->fr_fix - insn_start_off;
3489 for (fr = insn_start_frag->fr_next;
3490 fr && fr != frag_now; fr = fr->fr_next)
3491 add += fr->fr_fix;
3492 add += p - frag_now->fr_literal;
3495 /* We don't support dynamic linking on x86-64 yet. */
3496 if (flag_code == CODE_64BIT)
3497 abort ();
3498 reloc_type = BFD_RELOC_386_GOTPC;
3499 i.op[n].imms->X_add_number += add;
3501 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3502 i.op[n].imms, 0, reloc_type);
3508 #ifndef LEX_AT
3509 static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3511 /* Parse operands of the form
3512 <symbol>@GOTOFF+<nnn>
3513 and similar .plt or .got references.
3515 If we find one, set up the correct relocation in RELOC and copy the
3516 input string, minus the `@GOTOFF' into a malloc'd buffer for
3517 parsing by the calling routine. Return this buffer, and if ADJUST
3518 is non-null set it to the length of the string we removed from the
3519 input line. Otherwise return NULL. */
3520 static char *
3521 lex_got (reloc, adjust)
3522 enum bfd_reloc_code_real *reloc;
3523 int *adjust;
3525 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3526 static const struct {
3527 const char *str;
3528 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3529 } gotrel[] = {
3530 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3531 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3532 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3533 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3534 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3535 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3536 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3537 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3538 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3539 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3540 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3541 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3542 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3544 char *cp;
3545 unsigned int j;
3547 for (cp = input_line_pointer; *cp != '@'; cp++)
3548 if (is_end_of_line[(unsigned char) *cp])
3549 return NULL;
3551 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3553 int len;
3555 len = strlen (gotrel[j].str);
3556 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3558 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3560 int first, second;
3561 char *tmpbuf, *past_reloc;
3563 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3564 if (adjust)
3565 *adjust = len;
3567 if (GOT_symbol == NULL)
3568 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3570 /* Replace the relocation token with ' ', so that
3571 errors like foo@GOTOFF1 will be detected. */
3573 /* The length of the first part of our input line. */
3574 first = cp - input_line_pointer;
3576 /* The second part goes from after the reloc token until
3577 (and including) an end_of_line char. Don't use strlen
3578 here as the end_of_line char may not be a NUL. */
3579 past_reloc = cp + 1 + len;
3580 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3582 second = cp - past_reloc;
3584 /* Allocate and copy string. The trailing NUL shouldn't
3585 be necessary, but be safe. */
3586 tmpbuf = xmalloc (first + second + 2);
3587 memcpy (tmpbuf, input_line_pointer, first);
3588 tmpbuf[first] = ' ';
3589 memcpy (tmpbuf + first + 1, past_reloc, second);
3590 tmpbuf[first + second + 1] = '\0';
3591 return tmpbuf;
3594 as_bad (_("@%s reloc is not supported in %s bit mode"),
3595 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3596 return NULL;
3600 /* Might be a symbol version string. Don't as_bad here. */
3601 return NULL;
3604 /* x86_cons_fix_new is called via the expression parsing code when a
3605 reloc is needed. We use this hook to get the correct .got reloc. */
3606 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3608 void
3609 x86_cons_fix_new (frag, off, len, exp)
3610 fragS *frag;
3611 unsigned int off;
3612 unsigned int len;
3613 expressionS *exp;
3615 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3616 got_reloc = NO_RELOC;
3617 fix_new_exp (frag, off, len, exp, 0, r);
3620 void
3621 x86_cons (exp, size)
3622 expressionS *exp;
3623 int size;
3625 if (size == 4)
3627 /* Handle @GOTOFF and the like in an expression. */
3628 char *save;
3629 char *gotfree_input_line;
3630 int adjust;
3632 save = input_line_pointer;
3633 gotfree_input_line = lex_got (&got_reloc, &adjust);
3634 if (gotfree_input_line)
3635 input_line_pointer = gotfree_input_line;
3637 expression (exp);
3639 if (gotfree_input_line)
3641 /* expression () has merrily parsed up to the end of line,
3642 or a comma - in the wrong buffer. Transfer how far
3643 input_line_pointer has moved to the right buffer. */
3644 input_line_pointer = (save
3645 + (input_line_pointer - gotfree_input_line)
3646 + adjust);
3647 free (gotfree_input_line);
3650 else
3651 expression (exp);
3653 #endif
3655 #ifdef TE_PE
3657 #define O_secrel (O_max + 1)
3659 void
3660 x86_pe_cons_fix_new (frag, off, len, exp)
3661 fragS *frag;
3662 unsigned int off;
3663 unsigned int len;
3664 expressionS *exp;
3666 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3668 if (exp->X_op == O_secrel)
3670 exp->X_op = O_symbol;
3671 r = BFD_RELOC_32_SECREL;
3674 fix_new_exp (frag, off, len, exp, 0, r);
3677 static void
3678 pe_directive_secrel (dummy)
3679 int dummy ATTRIBUTE_UNUSED;
3681 expressionS exp;
3685 expression (&exp);
3686 if (exp.X_op == O_symbol)
3687 exp.X_op = O_secrel;
3689 emit_expr (&exp, 4);
3691 while (*input_line_pointer++ == ',');
3693 input_line_pointer--;
3694 demand_empty_rest_of_line ();
3697 #endif
3699 static int i386_immediate PARAMS ((char *));
3701 static int
3702 i386_immediate (imm_start)
3703 char *imm_start;
3705 char *save_input_line_pointer;
3706 #ifndef LEX_AT
3707 char *gotfree_input_line;
3708 #endif
3709 segT exp_seg = 0;
3710 expressionS *exp;
3712 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3714 as_bad (_("only 1 or 2 immediate operands are allowed"));
3715 return 0;
3718 exp = &im_expressions[i.imm_operands++];
3719 i.op[this_operand].imms = exp;
3721 if (is_space_char (*imm_start))
3722 ++imm_start;
3724 save_input_line_pointer = input_line_pointer;
3725 input_line_pointer = imm_start;
3727 #ifndef LEX_AT
3728 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3729 if (gotfree_input_line)
3730 input_line_pointer = gotfree_input_line;
3731 #endif
3733 exp_seg = expression (exp);
3735 SKIP_WHITESPACE ();
3736 if (*input_line_pointer)
3737 as_bad (_("junk `%s' after expression"), input_line_pointer);
3739 input_line_pointer = save_input_line_pointer;
3740 #ifndef LEX_AT
3741 if (gotfree_input_line)
3742 free (gotfree_input_line);
3743 #endif
3745 if (exp->X_op == O_absent || exp->X_op == O_big)
3747 /* Missing or bad expr becomes absolute 0. */
3748 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3749 imm_start);
3750 exp->X_op = O_constant;
3751 exp->X_add_number = 0;
3752 exp->X_add_symbol = (symbolS *) 0;
3753 exp->X_op_symbol = (symbolS *) 0;
3755 else if (exp->X_op == O_constant)
3757 /* Size it properly later. */
3758 i.types[this_operand] |= Imm64;
3759 /* If BFD64, sign extend val. */
3760 if (!use_rela_relocations)
3761 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3762 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3764 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3765 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3766 && exp_seg != absolute_section
3767 && exp_seg != text_section
3768 && exp_seg != data_section
3769 && exp_seg != bss_section
3770 && exp_seg != undefined_section
3771 && !bfd_is_com_section (exp_seg))
3773 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3774 return 0;
3776 #endif
3777 else
3779 /* This is an address. The size of the address will be
3780 determined later, depending on destination register,
3781 suffix, or the default for the section. */
3782 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3785 return 1;
3788 static char *i386_scale PARAMS ((char *));
3790 static char *
3791 i386_scale (scale)
3792 char *scale;
3794 offsetT val;
3795 char *save = input_line_pointer;
3797 input_line_pointer = scale;
3798 val = get_absolute_expression ();
3800 switch (val)
3802 case 0:
3803 case 1:
3804 i.log2_scale_factor = 0;
3805 break;
3806 case 2:
3807 i.log2_scale_factor = 1;
3808 break;
3809 case 4:
3810 i.log2_scale_factor = 2;
3811 break;
3812 case 8:
3813 i.log2_scale_factor = 3;
3814 break;
3815 default:
3816 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3817 scale);
3818 input_line_pointer = save;
3819 return NULL;
3821 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3823 as_warn (_("scale factor of %d without an index register"),
3824 1 << i.log2_scale_factor);
3825 #if SCALE1_WHEN_NO_INDEX
3826 i.log2_scale_factor = 0;
3827 #endif
3829 scale = input_line_pointer;
3830 input_line_pointer = save;
3831 return scale;
3834 static int i386_displacement PARAMS ((char *, char *));
3836 static int
3837 i386_displacement (disp_start, disp_end)
3838 char *disp_start;
3839 char *disp_end;
3841 expressionS *exp;
3842 segT exp_seg = 0;
3843 char *save_input_line_pointer;
3844 #ifndef LEX_AT
3845 char *gotfree_input_line;
3846 #endif
3847 int bigdisp = Disp32;
3849 if (flag_code == CODE_64BIT)
3851 if (i.prefix[ADDR_PREFIX] == 0)
3852 bigdisp = Disp64;
3854 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3855 bigdisp = Disp16;
3856 i.types[this_operand] |= bigdisp;
3858 exp = &disp_expressions[i.disp_operands];
3859 i.op[this_operand].disps = exp;
3860 i.disp_operands++;
3861 save_input_line_pointer = input_line_pointer;
3862 input_line_pointer = disp_start;
3863 END_STRING_AND_SAVE (disp_end);
3865 #ifndef GCC_ASM_O_HACK
3866 #define GCC_ASM_O_HACK 0
3867 #endif
3868 #if GCC_ASM_O_HACK
3869 END_STRING_AND_SAVE (disp_end + 1);
3870 if ((i.types[this_operand] & BaseIndex) != 0
3871 && displacement_string_end[-1] == '+')
3873 /* This hack is to avoid a warning when using the "o"
3874 constraint within gcc asm statements.
3875 For instance:
3877 #define _set_tssldt_desc(n,addr,limit,type) \
3878 __asm__ __volatile__ ( \
3879 "movw %w2,%0\n\t" \
3880 "movw %w1,2+%0\n\t" \
3881 "rorl $16,%1\n\t" \
3882 "movb %b1,4+%0\n\t" \
3883 "movb %4,5+%0\n\t" \
3884 "movb $0,6+%0\n\t" \
3885 "movb %h1,7+%0\n\t" \
3886 "rorl $16,%1" \
3887 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3889 This works great except that the output assembler ends
3890 up looking a bit weird if it turns out that there is
3891 no offset. You end up producing code that looks like:
3893 #APP
3894 movw $235,(%eax)
3895 movw %dx,2+(%eax)
3896 rorl $16,%edx
3897 movb %dl,4+(%eax)
3898 movb $137,5+(%eax)
3899 movb $0,6+(%eax)
3900 movb %dh,7+(%eax)
3901 rorl $16,%edx
3902 #NO_APP
3904 So here we provide the missing zero. */
3906 *displacement_string_end = '0';
3908 #endif
3909 #ifndef LEX_AT
3910 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3911 if (gotfree_input_line)
3912 input_line_pointer = gotfree_input_line;
3913 #endif
3915 exp_seg = expression (exp);
3917 SKIP_WHITESPACE ();
3918 if (*input_line_pointer)
3919 as_bad (_("junk `%s' after expression"), input_line_pointer);
3920 #if GCC_ASM_O_HACK
3921 RESTORE_END_STRING (disp_end + 1);
3922 #endif
3923 RESTORE_END_STRING (disp_end);
3924 input_line_pointer = save_input_line_pointer;
3925 #ifndef LEX_AT
3926 if (gotfree_input_line)
3927 free (gotfree_input_line);
3928 #endif
3930 /* We do this to make sure that the section symbol is in
3931 the symbol table. We will ultimately change the relocation
3932 to be relative to the beginning of the section. */
3933 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3934 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3936 if (exp->X_op != O_symbol)
3938 as_bad (_("bad expression used with @%s"),
3939 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3940 ? "GOTPCREL"
3941 : "GOTOFF"));
3942 return 0;
3945 if (S_IS_LOCAL (exp->X_add_symbol)
3946 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3947 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3948 exp->X_op = O_subtract;
3949 exp->X_op_symbol = GOT_symbol;
3950 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3951 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3952 else
3953 i.reloc[this_operand] = BFD_RELOC_32;
3956 if (exp->X_op == O_absent || exp->X_op == O_big)
3958 /* Missing or bad expr becomes absolute 0. */
3959 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3960 disp_start);
3961 exp->X_op = O_constant;
3962 exp->X_add_number = 0;
3963 exp->X_add_symbol = (symbolS *) 0;
3964 exp->X_op_symbol = (symbolS *) 0;
3967 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3968 if (exp->X_op != O_constant
3969 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3970 && exp_seg != absolute_section
3971 && exp_seg != text_section
3972 && exp_seg != data_section
3973 && exp_seg != bss_section
3974 && exp_seg != undefined_section
3975 && !bfd_is_com_section (exp_seg))
3977 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3978 return 0;
3980 #endif
3981 else if (flag_code == CODE_64BIT)
3982 i.types[this_operand] |= Disp32S | Disp32;
3983 return 1;
3986 static int i386_index_check PARAMS ((const char *));
3988 /* Make sure the memory operand we've been dealt is valid.
3989 Return 1 on success, 0 on a failure. */
3991 static int
3992 i386_index_check (operand_string)
3993 const char *operand_string;
3995 int ok;
3996 #if INFER_ADDR_PREFIX
3997 int fudged = 0;
3999 tryprefix:
4000 #endif
4001 ok = 1;
4002 if (flag_code == CODE_64BIT)
4004 if (i.prefix[ADDR_PREFIX] == 0)
4006 /* 64bit checks. */
4007 if ((i.base_reg
4008 && ((i.base_reg->reg_type & Reg64) == 0)
4009 && (i.base_reg->reg_type != BaseIndex
4010 || i.index_reg))
4011 || (i.index_reg
4012 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
4013 != (Reg64 | BaseIndex))))
4014 ok = 0;
4016 else
4018 /* 32bit checks. */
4019 if ((i.base_reg
4020 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4021 || (i.index_reg
4022 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4023 != (Reg32 | BaseIndex))))
4024 ok = 0;
4027 else
4029 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4031 /* 16bit checks. */
4032 if ((i.base_reg
4033 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4034 != (Reg16 | BaseIndex)))
4035 || (i.index_reg
4036 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4037 != (Reg16 | BaseIndex))
4038 || !(i.base_reg
4039 && i.base_reg->reg_num < 6
4040 && i.index_reg->reg_num >= 6
4041 && i.log2_scale_factor == 0))))
4042 ok = 0;
4044 else
4046 /* 32bit checks. */
4047 if ((i.base_reg
4048 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4049 || (i.index_reg
4050 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4051 != (Reg32 | BaseIndex))))
4052 ok = 0;
4055 if (!ok)
4057 #if INFER_ADDR_PREFIX
4058 if (flag_code != CODE_64BIT
4059 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
4061 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4062 i.prefixes += 1;
4063 /* Change the size of any displacement too. At most one of
4064 Disp16 or Disp32 is set.
4065 FIXME. There doesn't seem to be any real need for separate
4066 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4067 Removing them would probably clean up the code quite a lot. */
4068 if (i.types[this_operand] & (Disp16 | Disp32))
4069 i.types[this_operand] ^= (Disp16 | Disp32);
4070 fudged = 1;
4071 goto tryprefix;
4073 if (fudged)
4074 as_bad (_("`%s' is not a valid base/index expression"),
4075 operand_string);
4076 else
4077 #endif
4078 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4079 operand_string,
4080 flag_code_names[flag_code]);
4081 return 0;
4083 return 1;
4086 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4087 on error. */
4089 static int
4090 i386_operand (operand_string)
4091 char *operand_string;
4093 const reg_entry *r;
4094 char *end_op;
4095 char *op_string = operand_string;
4097 if (is_space_char (*op_string))
4098 ++op_string;
4100 /* We check for an absolute prefix (differentiating,
4101 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4102 if (*op_string == ABSOLUTE_PREFIX)
4104 ++op_string;
4105 if (is_space_char (*op_string))
4106 ++op_string;
4107 i.types[this_operand] |= JumpAbsolute;
4110 /* Check if operand is a register. */
4111 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4112 && (r = parse_register (op_string, &end_op)) != NULL)
4114 /* Check for a segment override by searching for ':' after a
4115 segment register. */
4116 op_string = end_op;
4117 if (is_space_char (*op_string))
4118 ++op_string;
4119 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4121 switch (r->reg_num)
4123 case 0:
4124 i.seg[i.mem_operands] = &es;
4125 break;
4126 case 1:
4127 i.seg[i.mem_operands] = &cs;
4128 break;
4129 case 2:
4130 i.seg[i.mem_operands] = &ss;
4131 break;
4132 case 3:
4133 i.seg[i.mem_operands] = &ds;
4134 break;
4135 case 4:
4136 i.seg[i.mem_operands] = &fs;
4137 break;
4138 case 5:
4139 i.seg[i.mem_operands] = &gs;
4140 break;
4143 /* Skip the ':' and whitespace. */
4144 ++op_string;
4145 if (is_space_char (*op_string))
4146 ++op_string;
4148 if (!is_digit_char (*op_string)
4149 && !is_identifier_char (*op_string)
4150 && *op_string != '('
4151 && *op_string != ABSOLUTE_PREFIX)
4153 as_bad (_("bad memory operand `%s'"), op_string);
4154 return 0;
4156 /* Handle case of %es:*foo. */
4157 if (*op_string == ABSOLUTE_PREFIX)
4159 ++op_string;
4160 if (is_space_char (*op_string))
4161 ++op_string;
4162 i.types[this_operand] |= JumpAbsolute;
4164 goto do_memory_reference;
4166 if (*op_string)
4168 as_bad (_("junk `%s' after register"), op_string);
4169 return 0;
4171 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4172 i.op[this_operand].regs = r;
4173 i.reg_operands++;
4175 else if (*op_string == REGISTER_PREFIX)
4177 as_bad (_("bad register name `%s'"), op_string);
4178 return 0;
4180 else if (*op_string == IMMEDIATE_PREFIX)
4182 ++op_string;
4183 if (i.types[this_operand] & JumpAbsolute)
4185 as_bad (_("immediate operand illegal with absolute jump"));
4186 return 0;
4188 if (!i386_immediate (op_string))
4189 return 0;
4191 else if (is_digit_char (*op_string)
4192 || is_identifier_char (*op_string)
4193 || *op_string == '(')
4195 /* This is a memory reference of some sort. */
4196 char *base_string;
4198 /* Start and end of displacement string expression (if found). */
4199 char *displacement_string_start;
4200 char *displacement_string_end;
4202 do_memory_reference:
4203 if ((i.mem_operands == 1
4204 && (current_templates->start->opcode_modifier & IsString) == 0)
4205 || i.mem_operands == 2)
4207 as_bad (_("too many memory references for `%s'"),
4208 current_templates->start->name);
4209 return 0;
4212 /* Check for base index form. We detect the base index form by
4213 looking for an ')' at the end of the operand, searching
4214 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4215 after the '('. */
4216 base_string = op_string + strlen (op_string);
4218 --base_string;
4219 if (is_space_char (*base_string))
4220 --base_string;
4222 /* If we only have a displacement, set-up for it to be parsed later. */
4223 displacement_string_start = op_string;
4224 displacement_string_end = base_string + 1;
4226 if (*base_string == ')')
4228 char *temp_string;
4229 unsigned int parens_balanced = 1;
4230 /* We've already checked that the number of left & right ()'s are
4231 equal, so this loop will not be infinite. */
4234 base_string--;
4235 if (*base_string == ')')
4236 parens_balanced++;
4237 if (*base_string == '(')
4238 parens_balanced--;
4240 while (parens_balanced);
4242 temp_string = base_string;
4244 /* Skip past '(' and whitespace. */
4245 ++base_string;
4246 if (is_space_char (*base_string))
4247 ++base_string;
4249 if (*base_string == ','
4250 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4251 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4253 displacement_string_end = temp_string;
4255 i.types[this_operand] |= BaseIndex;
4257 if (i.base_reg)
4259 base_string = end_op;
4260 if (is_space_char (*base_string))
4261 ++base_string;
4264 /* There may be an index reg or scale factor here. */
4265 if (*base_string == ',')
4267 ++base_string;
4268 if (is_space_char (*base_string))
4269 ++base_string;
4271 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4272 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4274 base_string = end_op;
4275 if (is_space_char (*base_string))
4276 ++base_string;
4277 if (*base_string == ',')
4279 ++base_string;
4280 if (is_space_char (*base_string))
4281 ++base_string;
4283 else if (*base_string != ')')
4285 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4286 operand_string);
4287 return 0;
4290 else if (*base_string == REGISTER_PREFIX)
4292 as_bad (_("bad register name `%s'"), base_string);
4293 return 0;
4296 /* Check for scale factor. */
4297 if (*base_string != ')')
4299 char *end_scale = i386_scale (base_string);
4301 if (!end_scale)
4302 return 0;
4304 base_string = end_scale;
4305 if (is_space_char (*base_string))
4306 ++base_string;
4307 if (*base_string != ')')
4309 as_bad (_("expecting `)' after scale factor in `%s'"),
4310 operand_string);
4311 return 0;
4314 else if (!i.index_reg)
4316 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4317 *base_string);
4318 return 0;
4321 else if (*base_string != ')')
4323 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4324 operand_string);
4325 return 0;
4328 else if (*base_string == REGISTER_PREFIX)
4330 as_bad (_("bad register name `%s'"), base_string);
4331 return 0;
4335 /* If there's an expression beginning the operand, parse it,
4336 assuming displacement_string_start and
4337 displacement_string_end are meaningful. */
4338 if (displacement_string_start != displacement_string_end)
4340 if (!i386_displacement (displacement_string_start,
4341 displacement_string_end))
4342 return 0;
4345 /* Special case for (%dx) while doing input/output op. */
4346 if (i.base_reg
4347 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4348 && i.index_reg == 0
4349 && i.log2_scale_factor == 0
4350 && i.seg[i.mem_operands] == 0
4351 && (i.types[this_operand] & Disp) == 0)
4353 i.types[this_operand] = InOutPortReg;
4354 return 1;
4357 if (i386_index_check (operand_string) == 0)
4358 return 0;
4359 i.mem_operands++;
4361 else
4363 /* It's not a memory operand; argh! */
4364 as_bad (_("invalid char %s beginning operand %d `%s'"),
4365 output_invalid (*op_string),
4366 this_operand + 1,
4367 op_string);
4368 return 0;
4370 return 1; /* Normal return. */
4373 /* md_estimate_size_before_relax()
4375 Called just before relax() for rs_machine_dependent frags. The x86
4376 assembler uses these frags to handle variable size jump
4377 instructions.
4379 Any symbol that is now undefined will not become defined.
4380 Return the correct fr_subtype in the frag.
4381 Return the initial "guess for variable size of frag" to caller.
4382 The guess is actually the growth beyond the fixed part. Whatever
4383 we do to grow the fixed or variable part contributes to our
4384 returned value. */
4387 md_estimate_size_before_relax (fragP, segment)
4388 fragS *fragP;
4389 segT segment;
4391 /* We've already got fragP->fr_subtype right; all we have to do is
4392 check for un-relaxable symbols. On an ELF system, we can't relax
4393 an externally visible symbol, because it may be overridden by a
4394 shared library. */
4395 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4396 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4397 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4398 && (S_IS_EXTERNAL (fragP->fr_symbol)
4399 || S_IS_WEAK (fragP->fr_symbol)))
4400 #endif
4403 /* Symbol is undefined in this segment, or we need to keep a
4404 reloc so that weak symbols can be overridden. */
4405 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4406 enum bfd_reloc_code_real reloc_type;
4407 unsigned char *opcode;
4408 int old_fr_fix;
4410 if (fragP->fr_var != NO_RELOC)
4411 reloc_type = fragP->fr_var;
4412 else if (size == 2)
4413 reloc_type = BFD_RELOC_16_PCREL;
4414 else
4415 reloc_type = BFD_RELOC_32_PCREL;
4417 old_fr_fix = fragP->fr_fix;
4418 opcode = (unsigned char *) fragP->fr_opcode;
4420 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4422 case UNCOND_JUMP:
4423 /* Make jmp (0xeb) a (d)word displacement jump. */
4424 opcode[0] = 0xe9;
4425 fragP->fr_fix += size;
4426 fix_new (fragP, old_fr_fix, size,
4427 fragP->fr_symbol,
4428 fragP->fr_offset, 1,
4429 reloc_type);
4430 break;
4432 case COND_JUMP86:
4433 if (size == 2
4434 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4436 /* Negate the condition, and branch past an
4437 unconditional jump. */
4438 opcode[0] ^= 1;
4439 opcode[1] = 3;
4440 /* Insert an unconditional jump. */
4441 opcode[2] = 0xe9;
4442 /* We added two extra opcode bytes, and have a two byte
4443 offset. */
4444 fragP->fr_fix += 2 + 2;
4445 fix_new (fragP, old_fr_fix + 2, 2,
4446 fragP->fr_symbol,
4447 fragP->fr_offset, 1,
4448 reloc_type);
4449 break;
4451 /* Fall through. */
4453 case COND_JUMP:
4454 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4456 fixS *fixP;
4458 fragP->fr_fix += 1;
4459 fixP = fix_new (fragP, old_fr_fix, 1,
4460 fragP->fr_symbol,
4461 fragP->fr_offset, 1,
4462 BFD_RELOC_8_PCREL);
4463 fixP->fx_signed = 1;
4464 break;
4467 /* This changes the byte-displacement jump 0x7N
4468 to the (d)word-displacement jump 0x0f,0x8N. */
4469 opcode[1] = opcode[0] + 0x10;
4470 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4471 /* We've added an opcode byte. */
4472 fragP->fr_fix += 1 + size;
4473 fix_new (fragP, old_fr_fix + 1, size,
4474 fragP->fr_symbol,
4475 fragP->fr_offset, 1,
4476 reloc_type);
4477 break;
4479 default:
4480 BAD_CASE (fragP->fr_subtype);
4481 break;
4483 frag_wane (fragP);
4484 return fragP->fr_fix - old_fr_fix;
4487 /* Guess size depending on current relax state. Initially the relax
4488 state will correspond to a short jump and we return 1, because
4489 the variable part of the frag (the branch offset) is one byte
4490 long. However, we can relax a section more than once and in that
4491 case we must either set fr_subtype back to the unrelaxed state,
4492 or return the value for the appropriate branch. */
4493 return md_relax_table[fragP->fr_subtype].rlx_length;
4496 /* Called after relax() is finished.
4498 In: Address of frag.
4499 fr_type == rs_machine_dependent.
4500 fr_subtype is what the address relaxed to.
4502 Out: Any fixSs and constants are set up.
4503 Caller will turn frag into a ".space 0". */
4505 void
4506 md_convert_frag (abfd, sec, fragP)
4507 bfd *abfd ATTRIBUTE_UNUSED;
4508 segT sec ATTRIBUTE_UNUSED;
4509 fragS *fragP;
4511 unsigned char *opcode;
4512 unsigned char *where_to_put_displacement = NULL;
4513 offsetT target_address;
4514 offsetT opcode_address;
4515 unsigned int extension = 0;
4516 offsetT displacement_from_opcode_start;
4518 opcode = (unsigned char *) fragP->fr_opcode;
4520 /* Address we want to reach in file space. */
4521 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4523 /* Address opcode resides at in file space. */
4524 opcode_address = fragP->fr_address + fragP->fr_fix;
4526 /* Displacement from opcode start to fill into instruction. */
4527 displacement_from_opcode_start = target_address - opcode_address;
4529 if ((fragP->fr_subtype & BIG) == 0)
4531 /* Don't have to change opcode. */
4532 extension = 1; /* 1 opcode + 1 displacement */
4533 where_to_put_displacement = &opcode[1];
4535 else
4537 if (no_cond_jump_promotion
4538 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4539 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4541 switch (fragP->fr_subtype)
4543 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4544 extension = 4; /* 1 opcode + 4 displacement */
4545 opcode[0] = 0xe9;
4546 where_to_put_displacement = &opcode[1];
4547 break;
4549 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4550 extension = 2; /* 1 opcode + 2 displacement */
4551 opcode[0] = 0xe9;
4552 where_to_put_displacement = &opcode[1];
4553 break;
4555 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4556 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4557 extension = 5; /* 2 opcode + 4 displacement */
4558 opcode[1] = opcode[0] + 0x10;
4559 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4560 where_to_put_displacement = &opcode[2];
4561 break;
4563 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4564 extension = 3; /* 2 opcode + 2 displacement */
4565 opcode[1] = opcode[0] + 0x10;
4566 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4567 where_to_put_displacement = &opcode[2];
4568 break;
4570 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4571 extension = 4;
4572 opcode[0] ^= 1;
4573 opcode[1] = 3;
4574 opcode[2] = 0xe9;
4575 where_to_put_displacement = &opcode[3];
4576 break;
4578 default:
4579 BAD_CASE (fragP->fr_subtype);
4580 break;
4584 /* Now put displacement after opcode. */
4585 md_number_to_chars ((char *) where_to_put_displacement,
4586 (valueT) (displacement_from_opcode_start - extension),
4587 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4588 fragP->fr_fix += extension;
4591 /* Size of byte displacement jmp. */
4592 int md_short_jump_size = 2;
4594 /* Size of dword displacement jmp. */
4595 int md_long_jump_size = 5;
4597 /* Size of relocation record. */
4598 const int md_reloc_size = 8;
4600 void
4601 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4602 char *ptr;
4603 addressT from_addr, to_addr;
4604 fragS *frag ATTRIBUTE_UNUSED;
4605 symbolS *to_symbol ATTRIBUTE_UNUSED;
4607 offsetT offset;
4609 offset = to_addr - (from_addr + 2);
4610 /* Opcode for byte-disp jump. */
4611 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4612 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4615 void
4616 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4617 char *ptr;
4618 addressT from_addr, to_addr;
4619 fragS *frag ATTRIBUTE_UNUSED;
4620 symbolS *to_symbol ATTRIBUTE_UNUSED;
4622 offsetT offset;
4624 offset = to_addr - (from_addr + 5);
4625 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4626 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4629 /* Apply a fixup (fixS) to segment data, once it has been determined
4630 by our caller that we have all the info we need to fix it up.
4632 On the 386, immediates, displacements, and data pointers are all in
4633 the same (little-endian) format, so we don't need to care about which
4634 we are handling. */
4636 void
4637 md_apply_fix3 (fixP, valP, seg)
4638 /* The fix we're to put in. */
4639 fixS *fixP;
4640 /* Pointer to the value of the bits. */
4641 valueT *valP;
4642 /* Segment fix is from. */
4643 segT seg ATTRIBUTE_UNUSED;
4645 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4646 valueT value = *valP;
4648 #if !defined (TE_Mach)
4649 if (fixP->fx_pcrel)
4651 switch (fixP->fx_r_type)
4653 default:
4654 break;
4656 case BFD_RELOC_32:
4657 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4658 break;
4659 case BFD_RELOC_16:
4660 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4661 break;
4662 case BFD_RELOC_8:
4663 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4664 break;
4668 if (fixP->fx_addsy != NULL
4669 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4670 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4671 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4672 && !use_rela_relocations)
4674 /* This is a hack. There should be a better way to handle this.
4675 This covers for the fact that bfd_install_relocation will
4676 subtract the current location (for partial_inplace, PC relative
4677 relocations); see more below. */
4678 #ifndef OBJ_AOUT
4679 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4680 #ifdef TE_PE
4681 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4682 #endif
4684 value += fixP->fx_where + fixP->fx_frag->fr_address;
4685 #endif
4686 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4687 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4689 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4691 if ((sym_seg == seg
4692 || (symbol_section_p (fixP->fx_addsy)
4693 && sym_seg != absolute_section))
4694 && !generic_force_reloc (fixP))
4696 /* Yes, we add the values in twice. This is because
4697 bfd_install_relocation subtracts them out again. I think
4698 bfd_install_relocation is broken, but I don't dare change
4699 it. FIXME. */
4700 value += fixP->fx_where + fixP->fx_frag->fr_address;
4703 #endif
4704 #if defined (OBJ_COFF) && defined (TE_PE)
4705 /* For some reason, the PE format does not store a section
4706 address offset for a PC relative symbol. */
4707 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4708 value += md_pcrel_from (fixP);
4709 #endif
4712 /* Fix a few things - the dynamic linker expects certain values here,
4713 and we must not disappoint it. */
4714 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4715 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4716 && fixP->fx_addsy)
4717 switch (fixP->fx_r_type)
4719 case BFD_RELOC_386_PLT32:
4720 case BFD_RELOC_X86_64_PLT32:
4721 /* Make the jump instruction point to the address of the operand. At
4722 runtime we merely add the offset to the actual PLT entry. */
4723 value = -4;
4724 break;
4726 case BFD_RELOC_386_TLS_GD:
4727 case BFD_RELOC_386_TLS_LDM:
4728 case BFD_RELOC_386_TLS_IE_32:
4729 case BFD_RELOC_386_TLS_IE:
4730 case BFD_RELOC_386_TLS_GOTIE:
4731 case BFD_RELOC_X86_64_TLSGD:
4732 case BFD_RELOC_X86_64_TLSLD:
4733 case BFD_RELOC_X86_64_GOTTPOFF:
4734 value = 0; /* Fully resolved at runtime. No addend. */
4735 /* Fallthrough */
4736 case BFD_RELOC_386_TLS_LE:
4737 case BFD_RELOC_386_TLS_LDO_32:
4738 case BFD_RELOC_386_TLS_LE_32:
4739 case BFD_RELOC_X86_64_DTPOFF32:
4740 case BFD_RELOC_X86_64_TPOFF32:
4741 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4742 break;
4744 case BFD_RELOC_386_GOT32:
4745 case BFD_RELOC_X86_64_GOT32:
4746 value = 0; /* Fully resolved at runtime. No addend. */
4747 break;
4749 case BFD_RELOC_VTABLE_INHERIT:
4750 case BFD_RELOC_VTABLE_ENTRY:
4751 fixP->fx_done = 0;
4752 return;
4754 default:
4755 break;
4757 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4758 *valP = value;
4759 #endif /* !defined (TE_Mach) */
4761 /* Are we finished with this relocation now? */
4762 if (fixP->fx_addsy == NULL)
4763 fixP->fx_done = 1;
4764 else if (use_rela_relocations)
4766 fixP->fx_no_overflow = 1;
4767 /* Remember value for tc_gen_reloc. */
4768 fixP->fx_addnumber = value;
4769 value = 0;
4772 md_number_to_chars (p, value, fixP->fx_size);
4775 #define MAX_LITTLENUMS 6
4777 /* Turn the string pointed to by litP into a floating point constant
4778 of type TYPE, and emit the appropriate bytes. The number of
4779 LITTLENUMS emitted is stored in *SIZEP. An error message is
4780 returned, or NULL on OK. */
4782 char *
4783 md_atof (type, litP, sizeP)
4784 int type;
4785 char *litP;
4786 int *sizeP;
4788 int prec;
4789 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4790 LITTLENUM_TYPE *wordP;
4791 char *t;
4793 switch (type)
4795 case 'f':
4796 case 'F':
4797 prec = 2;
4798 break;
4800 case 'd':
4801 case 'D':
4802 prec = 4;
4803 break;
4805 case 'x':
4806 case 'X':
4807 prec = 5;
4808 break;
4810 default:
4811 *sizeP = 0;
4812 return _("Bad call to md_atof ()");
4814 t = atof_ieee (input_line_pointer, type, words);
4815 if (t)
4816 input_line_pointer = t;
4818 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4819 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4820 the bigendian 386. */
4821 for (wordP = words + prec - 1; prec--;)
4823 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4824 litP += sizeof (LITTLENUM_TYPE);
4826 return 0;
4829 char output_invalid_buf[8];
4831 static char *
4832 output_invalid (c)
4833 int c;
4835 if (ISPRINT (c))
4836 sprintf (output_invalid_buf, "'%c'", c);
4837 else
4838 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4839 return output_invalid_buf;
4842 /* REG_STRING starts *before* REGISTER_PREFIX. */
4844 static const reg_entry *
4845 parse_register (reg_string, end_op)
4846 char *reg_string;
4847 char **end_op;
4849 char *s = reg_string;
4850 char *p;
4851 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4852 const reg_entry *r;
4854 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4855 if (*s == REGISTER_PREFIX)
4856 ++s;
4858 if (is_space_char (*s))
4859 ++s;
4861 p = reg_name_given;
4862 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4864 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4865 return (const reg_entry *) NULL;
4866 s++;
4869 /* For naked regs, make sure that we are not dealing with an identifier.
4870 This prevents confusing an identifier like `eax_var' with register
4871 `eax'. */
4872 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4873 return (const reg_entry *) NULL;
4875 *end_op = s;
4877 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4879 /* Handle floating point regs, allowing spaces in the (i) part. */
4880 if (r == i386_regtab /* %st is first entry of table */)
4882 if (is_space_char (*s))
4883 ++s;
4884 if (*s == '(')
4886 ++s;
4887 if (is_space_char (*s))
4888 ++s;
4889 if (*s >= '0' && *s <= '7')
4891 r = &i386_float_regtab[*s - '0'];
4892 ++s;
4893 if (is_space_char (*s))
4894 ++s;
4895 if (*s == ')')
4897 *end_op = s + 1;
4898 return r;
4901 /* We have "%st(" then garbage. */
4902 return (const reg_entry *) NULL;
4906 if (r != NULL
4907 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4908 && flag_code != CODE_64BIT)
4910 return (const reg_entry *) NULL;
4913 return r;
4916 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4917 const char *md_shortopts = "kVQ:sqn";
4918 #else
4919 const char *md_shortopts = "qn";
4920 #endif
4922 struct option md_longopts[] = {
4923 #define OPTION_32 (OPTION_MD_BASE + 0)
4924 {"32", no_argument, NULL, OPTION_32},
4925 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4926 #define OPTION_64 (OPTION_MD_BASE + 1)
4927 {"64", no_argument, NULL, OPTION_64},
4928 #endif
4929 {NULL, no_argument, NULL, 0}
4931 size_t md_longopts_size = sizeof (md_longopts);
4934 md_parse_option (c, arg)
4935 int c;
4936 char *arg ATTRIBUTE_UNUSED;
4938 switch (c)
4940 case 'n':
4941 optimize_align_code = 0;
4942 break;
4944 case 'q':
4945 quiet_warnings = 1;
4946 break;
4948 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4949 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4950 should be emitted or not. FIXME: Not implemented. */
4951 case 'Q':
4952 break;
4954 /* -V: SVR4 argument to print version ID. */
4955 case 'V':
4956 print_version_id ();
4957 break;
4959 /* -k: Ignore for FreeBSD compatibility. */
4960 case 'k':
4961 break;
4963 case 's':
4964 /* -s: On i386 Solaris, this tells the native assembler to use
4965 .stab instead of .stab.excl. We always use .stab anyhow. */
4966 break;
4968 case OPTION_64:
4970 const char **list, **l;
4972 list = bfd_target_list ();
4973 for (l = list; *l != NULL; l++)
4974 if (strcmp (*l, "elf64-x86-64") == 0)
4976 default_arch = "x86_64";
4977 break;
4979 if (*l == NULL)
4980 as_fatal (_("No compiled in support for x86_64"));
4981 free (list);
4983 break;
4984 #endif
4986 case OPTION_32:
4987 default_arch = "i386";
4988 break;
4990 default:
4991 return 0;
4993 return 1;
4996 void
4997 md_show_usage (stream)
4998 FILE *stream;
5000 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5001 fprintf (stream, _("\
5002 -Q ignored\n\
5003 -V print assembler version number\n\
5004 -k ignored\n\
5005 -n Do not optimize code alignment\n\
5006 -q quieten some warnings\n\
5007 -s ignored\n"));
5008 #else
5009 fprintf (stream, _("\
5010 -n Do not optimize code alignment\n\
5011 -q quieten some warnings\n"));
5012 #endif
5015 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5016 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5018 /* Pick the target format to use. */
5020 const char *
5021 i386_target_format ()
5023 if (!strcmp (default_arch, "x86_64"))
5024 set_code_flag (CODE_64BIT);
5025 else if (!strcmp (default_arch, "i386"))
5026 set_code_flag (CODE_32BIT);
5027 else
5028 as_fatal (_("Unknown architecture"));
5029 switch (OUTPUT_FLAVOR)
5031 #ifdef OBJ_MAYBE_AOUT
5032 case bfd_target_aout_flavour:
5033 return AOUT_TARGET_FORMAT;
5034 #endif
5035 #ifdef OBJ_MAYBE_COFF
5036 case bfd_target_coff_flavour:
5037 return "coff-i386";
5038 #endif
5039 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5040 case bfd_target_elf_flavour:
5042 if (flag_code == CODE_64BIT)
5043 use_rela_relocations = 1;
5044 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5046 #endif
5047 default:
5048 abort ();
5049 return NULL;
5053 #endif /* OBJ_MAYBE_ more than one */
5055 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5056 void i386_elf_emit_arch_note ()
5058 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5059 && cpu_arch_name != NULL)
5061 char *p;
5062 asection *seg = now_seg;
5063 subsegT subseg = now_subseg;
5064 Elf_Internal_Note i_note;
5065 Elf_External_Note e_note;
5066 asection *note_secp;
5067 int len;
5069 /* Create the .note section. */
5070 note_secp = subseg_new (".note", 0);
5071 bfd_set_section_flags (stdoutput,
5072 note_secp,
5073 SEC_HAS_CONTENTS | SEC_READONLY);
5075 /* Process the arch string. */
5076 len = strlen (cpu_arch_name);
5078 i_note.namesz = len + 1;
5079 i_note.descsz = 0;
5080 i_note.type = NT_ARCH;
5081 p = frag_more (sizeof (e_note.namesz));
5082 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5083 p = frag_more (sizeof (e_note.descsz));
5084 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5085 p = frag_more (sizeof (e_note.type));
5086 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5087 p = frag_more (len + 1);
5088 strcpy (p, cpu_arch_name);
5090 frag_align (2, 0, 0);
5092 subseg_set (seg, subseg);
5095 #endif
5097 symbolS *
5098 md_undefined_symbol (name)
5099 char *name;
5101 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5102 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5103 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5104 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5106 if (!GOT_symbol)
5108 if (symbol_find (name))
5109 as_bad (_("GOT already in symbol table"));
5110 GOT_symbol = symbol_new (name, undefined_section,
5111 (valueT) 0, &zero_address_frag);
5113 return GOT_symbol;
5115 return 0;
5118 /* Round up a section size to the appropriate boundary. */
5120 valueT
5121 md_section_align (segment, size)
5122 segT segment ATTRIBUTE_UNUSED;
5123 valueT size;
5125 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5126 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5128 /* For a.out, force the section size to be aligned. If we don't do
5129 this, BFD will align it for us, but it will not write out the
5130 final bytes of the section. This may be a bug in BFD, but it is
5131 easier to fix it here since that is how the other a.out targets
5132 work. */
5133 int align;
5135 align = bfd_get_section_alignment (stdoutput, segment);
5136 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5138 #endif
5140 return size;
5143 /* On the i386, PC-relative offsets are relative to the start of the
5144 next instruction. That is, the address of the offset, plus its
5145 size, since the offset is always the last part of the insn. */
5147 long
5148 md_pcrel_from (fixP)
5149 fixS *fixP;
5151 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5154 #ifndef I386COFF
5156 static void
5157 s_bss (ignore)
5158 int ignore ATTRIBUTE_UNUSED;
5160 int temp;
5162 temp = get_absolute_expression ();
5163 subseg_set (bss_section, (subsegT) temp);
5164 demand_empty_rest_of_line ();
5167 #endif
5169 void
5170 i386_validate_fix (fixp)
5171 fixS *fixp;
5173 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5175 /* GOTOFF relocation are nonsense in 64bit mode. */
5176 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5178 if (flag_code != CODE_64BIT)
5179 abort ();
5180 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5182 else
5184 if (flag_code == CODE_64BIT)
5185 abort ();
5186 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5188 fixp->fx_subsy = 0;
5192 arelent *
5193 tc_gen_reloc (section, fixp)
5194 asection *section ATTRIBUTE_UNUSED;
5195 fixS *fixp;
5197 arelent *rel;
5198 bfd_reloc_code_real_type code;
5200 switch (fixp->fx_r_type)
5202 case BFD_RELOC_X86_64_PLT32:
5203 case BFD_RELOC_X86_64_GOT32:
5204 case BFD_RELOC_X86_64_GOTPCREL:
5205 case BFD_RELOC_386_PLT32:
5206 case BFD_RELOC_386_GOT32:
5207 case BFD_RELOC_386_GOTOFF:
5208 case BFD_RELOC_386_GOTPC:
5209 case BFD_RELOC_386_TLS_GD:
5210 case BFD_RELOC_386_TLS_LDM:
5211 case BFD_RELOC_386_TLS_LDO_32:
5212 case BFD_RELOC_386_TLS_IE_32:
5213 case BFD_RELOC_386_TLS_IE:
5214 case BFD_RELOC_386_TLS_GOTIE:
5215 case BFD_RELOC_386_TLS_LE_32:
5216 case BFD_RELOC_386_TLS_LE:
5217 case BFD_RELOC_X86_64_32S:
5218 case BFD_RELOC_X86_64_TLSGD:
5219 case BFD_RELOC_X86_64_TLSLD:
5220 case BFD_RELOC_X86_64_DTPOFF32:
5221 case BFD_RELOC_X86_64_GOTTPOFF:
5222 case BFD_RELOC_X86_64_TPOFF32:
5223 case BFD_RELOC_RVA:
5224 case BFD_RELOC_VTABLE_ENTRY:
5225 case BFD_RELOC_VTABLE_INHERIT:
5226 #ifdef TE_PE
5227 case BFD_RELOC_32_SECREL:
5228 #endif
5229 code = fixp->fx_r_type;
5230 break;
5231 default:
5232 if (fixp->fx_pcrel)
5234 switch (fixp->fx_size)
5236 default:
5237 as_bad_where (fixp->fx_file, fixp->fx_line,
5238 _("can not do %d byte pc-relative relocation"),
5239 fixp->fx_size);
5240 code = BFD_RELOC_32_PCREL;
5241 break;
5242 case 1: code = BFD_RELOC_8_PCREL; break;
5243 case 2: code = BFD_RELOC_16_PCREL; break;
5244 case 4: code = BFD_RELOC_32_PCREL; break;
5247 else
5249 switch (fixp->fx_size)
5251 default:
5252 as_bad_where (fixp->fx_file, fixp->fx_line,
5253 _("can not do %d byte relocation"),
5254 fixp->fx_size);
5255 code = BFD_RELOC_32;
5256 break;
5257 case 1: code = BFD_RELOC_8; break;
5258 case 2: code = BFD_RELOC_16; break;
5259 case 4: code = BFD_RELOC_32; break;
5260 #ifdef BFD64
5261 case 8: code = BFD_RELOC_64; break;
5262 #endif
5265 break;
5268 if (code == BFD_RELOC_32
5269 && GOT_symbol
5270 && fixp->fx_addsy == GOT_symbol)
5272 /* We don't support GOTPC on 64bit targets. */
5273 if (flag_code == CODE_64BIT)
5274 abort ();
5275 code = BFD_RELOC_386_GOTPC;
5278 rel = (arelent *) xmalloc (sizeof (arelent));
5279 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5280 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5282 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5283 if (!use_rela_relocations)
5285 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5286 vtable entry to be used in the relocation's section offset. */
5287 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5288 rel->address = fixp->fx_offset;
5290 rel->addend = 0;
5292 /* Use the rela in 64bit mode. */
5293 else
5295 if (!fixp->fx_pcrel)
5296 rel->addend = fixp->fx_offset;
5297 else
5298 switch (code)
5300 case BFD_RELOC_X86_64_PLT32:
5301 case BFD_RELOC_X86_64_GOT32:
5302 case BFD_RELOC_X86_64_GOTPCREL:
5303 case BFD_RELOC_X86_64_TLSGD:
5304 case BFD_RELOC_X86_64_TLSLD:
5305 case BFD_RELOC_X86_64_GOTTPOFF:
5306 rel->addend = fixp->fx_offset - fixp->fx_size;
5307 break;
5308 default:
5309 rel->addend = (section->vma
5310 - fixp->fx_size
5311 + fixp->fx_addnumber
5312 + md_pcrel_from (fixp));
5313 break;
5317 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5318 if (rel->howto == NULL)
5320 as_bad_where (fixp->fx_file, fixp->fx_line,
5321 _("cannot represent relocation type %s"),
5322 bfd_get_reloc_code_name (code));
5323 /* Set howto to a garbage value so that we can keep going. */
5324 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5325 assert (rel->howto != NULL);
5328 return rel;
5332 /* Parse operands using Intel syntax. This implements a recursive descent
5333 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5334 Programmer's Guide.
5336 FIXME: We do not recognize the full operand grammar defined in the MASM
5337 documentation. In particular, all the structure/union and
5338 high-level macro operands are missing.
5340 Uppercase words are terminals, lower case words are non-terminals.
5341 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5342 bars '|' denote choices. Most grammar productions are implemented in
5343 functions called 'intel_<production>'.
5345 Initial production is 'expr'.
5347 addOp + | -
5349 alpha [a-zA-Z]
5351 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5353 constant digits [[ radixOverride ]]
5355 dataType BYTE | WORD | DWORD | QWORD | XWORD
5357 digits decdigit
5358 | digits decdigit
5359 | digits hexdigit
5361 decdigit [0-9]
5363 e05 e05 addOp e06
5364 | e06
5366 e06 e06 mulOp e09
5367 | e09
5369 e09 OFFSET e10
5370 | e09 PTR e10
5371 | e09 : e10
5372 | e10
5374 e10 e10 [ expr ]
5375 | e11
5377 e11 ( expr )
5378 | [ expr ]
5379 | constant
5380 | dataType
5381 | id
5383 | register
5385 => expr SHORT e05
5386 | e05
5388 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5389 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5391 hexdigit a | b | c | d | e | f
5392 | A | B | C | D | E | F
5394 id alpha
5395 | id alpha
5396 | id decdigit
5398 mulOp * | / | MOD
5400 quote " | '
5402 register specialRegister
5403 | gpRegister
5404 | byteRegister
5406 segmentRegister CS | DS | ES | FS | GS | SS
5408 specialRegister CR0 | CR2 | CR3
5409 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5410 | TR3 | TR4 | TR5 | TR6 | TR7
5412 We simplify the grammar in obvious places (e.g., register parsing is
5413 done by calling parse_register) and eliminate immediate left recursion
5414 to implement a recursive-descent parser.
5416 expr SHORT e05
5417 | e05
5419 e05 e06 e05'
5421 e05' addOp e06 e05'
5422 | Empty
5424 e06 e09 e06'
5426 e06' mulOp e09 e06'
5427 | Empty
5429 e09 OFFSET e10 e09'
5430 | e10 e09'
5432 e09' PTR e10 e09'
5433 | : e10 e09'
5434 | Empty
5436 e10 e11 e10'
5438 e10' [ expr ] e10'
5439 | Empty
5441 e11 ( expr )
5442 | [ expr ]
5443 | BYTE
5444 | WORD
5445 | DWORD
5446 | QWORD
5447 | XWORD
5450 | register
5451 | id
5452 | constant */
5454 /* Parsing structure for the intel syntax parser. Used to implement the
5455 semantic actions for the operand grammar. */
5456 struct intel_parser_s
5458 char *op_string; /* The string being parsed. */
5459 int got_a_float; /* Whether the operand is a float. */
5460 int op_modifier; /* Operand modifier. */
5461 int is_mem; /* 1 if operand is memory reference. */
5462 const reg_entry *reg; /* Last register reference found. */
5463 char *disp; /* Displacement string being built. */
5466 static struct intel_parser_s intel_parser;
5468 /* Token structure for parsing intel syntax. */
5469 struct intel_token
5471 int code; /* Token code. */
5472 const reg_entry *reg; /* Register entry for register tokens. */
5473 char *str; /* String representation. */
5476 static struct intel_token cur_token, prev_token;
5478 /* Token codes for the intel parser. Since T_SHORT is already used
5479 by COFF, undefine it first to prevent a warning. */
5480 #define T_NIL -1
5481 #define T_CONST 1
5482 #define T_REG 2
5483 #define T_BYTE 3
5484 #define T_WORD 4
5485 #define T_DWORD 5
5486 #define T_QWORD 6
5487 #define T_XWORD 7
5488 #undef T_SHORT
5489 #define T_SHORT 8
5490 #define T_OFFSET 9
5491 #define T_PTR 10
5492 #define T_ID 11
5494 /* Prototypes for intel parser functions. */
5495 static int intel_match_token PARAMS ((int code));
5496 static void intel_get_token PARAMS ((void));
5497 static void intel_putback_token PARAMS ((void));
5498 static int intel_expr PARAMS ((void));
5499 static int intel_e05 PARAMS ((void));
5500 static int intel_e05_1 PARAMS ((void));
5501 static int intel_e06 PARAMS ((void));
5502 static int intel_e06_1 PARAMS ((void));
5503 static int intel_e09 PARAMS ((void));
5504 static int intel_e09_1 PARAMS ((void));
5505 static int intel_e10 PARAMS ((void));
5506 static int intel_e10_1 PARAMS ((void));
5507 static int intel_e11 PARAMS ((void));
5509 static int
5510 i386_intel_operand (operand_string, got_a_float)
5511 char *operand_string;
5512 int got_a_float;
5514 int ret;
5515 char *p;
5517 /* Initialize token holders. */
5518 cur_token.code = prev_token.code = T_NIL;
5519 cur_token.reg = prev_token.reg = NULL;
5520 cur_token.str = prev_token.str = NULL;
5522 /* Initialize parser structure. */
5523 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5524 if (p == NULL)
5525 abort ();
5526 strcpy (intel_parser.op_string, operand_string);
5527 intel_parser.got_a_float = got_a_float;
5528 intel_parser.op_modifier = -1;
5529 intel_parser.is_mem = 0;
5530 intel_parser.reg = NULL;
5531 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5532 if (intel_parser.disp == NULL)
5533 abort ();
5534 intel_parser.disp[0] = '\0';
5536 /* Read the first token and start the parser. */
5537 intel_get_token ();
5538 ret = intel_expr ();
5540 if (ret)
5542 /* If we found a memory reference, hand it over to i386_displacement
5543 to fill in the rest of the operand fields. */
5544 if (intel_parser.is_mem)
5546 if ((i.mem_operands == 1
5547 && (current_templates->start->opcode_modifier & IsString) == 0)
5548 || i.mem_operands == 2)
5550 as_bad (_("too many memory references for '%s'"),
5551 current_templates->start->name);
5552 ret = 0;
5554 else
5556 char *s = intel_parser.disp;
5557 i.mem_operands++;
5559 /* Add the displacement expression. */
5560 if (*s != '\0')
5561 ret = i386_displacement (s, s + strlen (s));
5562 if (ret)
5563 ret = i386_index_check (operand_string);
5567 /* Constant and OFFSET expressions are handled by i386_immediate. */
5568 else if (intel_parser.op_modifier == OFFSET_FLAT
5569 || intel_parser.reg == NULL)
5570 ret = i386_immediate (intel_parser.disp);
5573 free (p);
5574 free (intel_parser.disp);
5576 return ret;
5579 /* expr SHORT e05
5580 | e05 */
5581 static int
5582 intel_expr ()
5584 /* expr SHORT e05 */
5585 if (cur_token.code == T_SHORT)
5587 intel_parser.op_modifier = SHORT;
5588 intel_match_token (T_SHORT);
5590 return (intel_e05 ());
5593 /* expr e05 */
5594 else
5595 return intel_e05 ();
5598 /* e05 e06 e05'
5600 e05' addOp e06 e05'
5601 | Empty */
5602 static int
5603 intel_e05 ()
5605 return (intel_e06 () && intel_e05_1 ());
5608 static int
5609 intel_e05_1 ()
5611 /* e05' addOp e06 e05' */
5612 if (cur_token.code == '+' || cur_token.code == '-')
5614 strcat (intel_parser.disp, cur_token.str);
5615 intel_match_token (cur_token.code);
5617 return (intel_e06 () && intel_e05_1 ());
5620 /* e05' Empty */
5621 else
5622 return 1;
5625 /* e06 e09 e06'
5627 e06' mulOp e09 e06'
5628 | Empty */
5629 static int
5630 intel_e06 ()
5632 return (intel_e09 () && intel_e06_1 ());
5635 static int
5636 intel_e06_1 ()
5638 /* e06' mulOp e09 e06' */
5639 if (cur_token.code == '*' || cur_token.code == '/')
5641 strcat (intel_parser.disp, cur_token.str);
5642 intel_match_token (cur_token.code);
5644 return (intel_e09 () && intel_e06_1 ());
5647 /* e06' Empty */
5648 else
5649 return 1;
5652 /* e09 OFFSET e10 e09'
5653 | e10 e09'
5655 e09' PTR e10 e09'
5656 | : e10 e09'
5657 | Empty */
5658 static int
5659 intel_e09 ()
5661 /* e09 OFFSET e10 e09' */
5662 if (cur_token.code == T_OFFSET)
5664 intel_parser.is_mem = 0;
5665 intel_parser.op_modifier = OFFSET_FLAT;
5666 intel_match_token (T_OFFSET);
5668 return (intel_e10 () && intel_e09_1 ());
5671 /* e09 e10 e09' */
5672 else
5673 return (intel_e10 () && intel_e09_1 ());
5676 static int
5677 intel_e09_1 ()
5679 /* e09' PTR e10 e09' */
5680 if (cur_token.code == T_PTR)
5682 if (prev_token.code == T_BYTE)
5683 i.suffix = BYTE_MNEM_SUFFIX;
5685 else if (prev_token.code == T_WORD)
5687 if (intel_parser.got_a_float == 2) /* "fi..." */
5688 i.suffix = SHORT_MNEM_SUFFIX;
5689 else
5690 i.suffix = WORD_MNEM_SUFFIX;
5693 else if (prev_token.code == T_DWORD)
5695 if (intel_parser.got_a_float == 1) /* "f..." */
5696 i.suffix = SHORT_MNEM_SUFFIX;
5697 else
5698 i.suffix = LONG_MNEM_SUFFIX;
5701 else if (prev_token.code == T_QWORD)
5703 if (intel_parser.got_a_float == 1) /* "f..." */
5704 i.suffix = LONG_MNEM_SUFFIX;
5705 else
5706 i.suffix = QWORD_MNEM_SUFFIX;
5709 else if (prev_token.code == T_XWORD)
5710 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5712 else
5714 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5715 return 0;
5718 intel_match_token (T_PTR);
5720 return (intel_e10 () && intel_e09_1 ());
5723 /* e09 : e10 e09' */
5724 else if (cur_token.code == ':')
5726 /* Mark as a memory operand only if it's not already known to be an
5727 offset expression. */
5728 if (intel_parser.op_modifier != OFFSET_FLAT)
5729 intel_parser.is_mem = 1;
5731 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5734 /* e09' Empty */
5735 else
5736 return 1;
5739 /* e10 e11 e10'
5741 e10' [ expr ] e10'
5742 | Empty */
5743 static int
5744 intel_e10 ()
5746 return (intel_e11 () && intel_e10_1 ());
5749 static int
5750 intel_e10_1 ()
5752 /* e10' [ expr ] e10' */
5753 if (cur_token.code == '[')
5755 intel_match_token ('[');
5757 /* Mark as a memory operand only if it's not already known to be an
5758 offset expression. If it's an offset expression, we need to keep
5759 the brace in. */
5760 if (intel_parser.op_modifier != OFFSET_FLAT)
5761 intel_parser.is_mem = 1;
5762 else
5763 strcat (intel_parser.disp, "[");
5765 /* Add a '+' to the displacement string if necessary. */
5766 if (*intel_parser.disp != '\0'
5767 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5768 strcat (intel_parser.disp, "+");
5770 if (intel_expr () && intel_match_token (']'))
5772 /* Preserve brackets when the operand is an offset expression. */
5773 if (intel_parser.op_modifier == OFFSET_FLAT)
5774 strcat (intel_parser.disp, "]");
5776 return intel_e10_1 ();
5778 else
5779 return 0;
5782 /* e10' Empty */
5783 else
5784 return 1;
5787 /* e11 ( expr )
5788 | [ expr ]
5789 | BYTE
5790 | WORD
5791 | DWORD
5792 | QWORD
5793 | XWORD
5796 | register
5797 | id
5798 | constant */
5799 static int
5800 intel_e11 ()
5802 /* e11 ( expr ) */
5803 if (cur_token.code == '(')
5805 intel_match_token ('(');
5806 strcat (intel_parser.disp, "(");
5808 if (intel_expr () && intel_match_token (')'))
5810 strcat (intel_parser.disp, ")");
5811 return 1;
5813 else
5814 return 0;
5817 /* e11 [ expr ] */
5818 else if (cur_token.code == '[')
5820 intel_match_token ('[');
5822 /* Mark as a memory operand only if it's not already known to be an
5823 offset expression. If it's an offset expression, we need to keep
5824 the brace in. */
5825 if (intel_parser.op_modifier != OFFSET_FLAT)
5826 intel_parser.is_mem = 1;
5827 else
5828 strcat (intel_parser.disp, "[");
5830 /* Operands for jump/call inside brackets denote absolute addresses. */
5831 if (current_templates->start->opcode_modifier & Jump
5832 || current_templates->start->opcode_modifier & JumpDword
5833 || current_templates->start->opcode_modifier & JumpByte
5834 || current_templates->start->opcode_modifier & JumpInterSegment)
5835 i.types[this_operand] |= JumpAbsolute;
5837 /* Add a '+' to the displacement string if necessary. */
5838 if (*intel_parser.disp != '\0'
5839 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5840 strcat (intel_parser.disp, "+");
5842 if (intel_expr () && intel_match_token (']'))
5844 /* Preserve brackets when the operand is an offset expression. */
5845 if (intel_parser.op_modifier == OFFSET_FLAT)
5846 strcat (intel_parser.disp, "]");
5848 return 1;
5850 else
5851 return 0;
5854 /* e11 BYTE
5855 | WORD
5856 | DWORD
5857 | QWORD
5858 | XWORD */
5859 else if (cur_token.code == T_BYTE
5860 || cur_token.code == T_WORD
5861 || cur_token.code == T_DWORD
5862 || cur_token.code == T_QWORD
5863 || cur_token.code == T_XWORD)
5865 intel_match_token (cur_token.code);
5867 return 1;
5870 /* e11 $
5871 | . */
5872 else if (cur_token.code == '$' || cur_token.code == '.')
5874 strcat (intel_parser.disp, cur_token.str);
5875 intel_match_token (cur_token.code);
5877 /* Mark as a memory operand only if it's not already known to be an
5878 offset expression. */
5879 if (intel_parser.op_modifier != OFFSET_FLAT)
5880 intel_parser.is_mem = 1;
5882 return 1;
5885 /* e11 register */
5886 else if (cur_token.code == T_REG)
5888 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5890 intel_match_token (T_REG);
5892 /* Check for segment change. */
5893 if (cur_token.code == ':')
5895 if (reg->reg_type & (SReg2 | SReg3))
5897 switch (reg->reg_num)
5899 case 0:
5900 i.seg[i.mem_operands] = &es;
5901 break;
5902 case 1:
5903 i.seg[i.mem_operands] = &cs;
5904 break;
5905 case 2:
5906 i.seg[i.mem_operands] = &ss;
5907 break;
5908 case 3:
5909 i.seg[i.mem_operands] = &ds;
5910 break;
5911 case 4:
5912 i.seg[i.mem_operands] = &fs;
5913 break;
5914 case 5:
5915 i.seg[i.mem_operands] = &gs;
5916 break;
5919 else
5921 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5922 return 0;
5926 /* Not a segment register. Check for register scaling. */
5927 else if (cur_token.code == '*')
5929 if (!intel_parser.is_mem)
5931 as_bad (_("Register scaling only allowed in memory operands."));
5932 return 0;
5935 /* What follows must be a valid scale. */
5936 if (intel_match_token ('*')
5937 && strchr ("01248", *cur_token.str))
5939 i.index_reg = reg;
5940 i.types[this_operand] |= BaseIndex;
5942 /* Set the scale after setting the register (otherwise,
5943 i386_scale will complain) */
5944 i386_scale (cur_token.str);
5945 intel_match_token (T_CONST);
5947 else
5949 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5950 cur_token.str);
5951 return 0;
5955 /* No scaling. If this is a memory operand, the register is either a
5956 base register (first occurrence) or an index register (second
5957 occurrence). */
5958 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5960 if (i.base_reg && i.index_reg)
5962 as_bad (_("Too many register references in memory operand.\n"));
5963 return 0;
5966 if (i.base_reg == NULL)
5967 i.base_reg = reg;
5968 else
5969 i.index_reg = reg;
5971 i.types[this_operand] |= BaseIndex;
5974 /* Offset modifier. Add the register to the displacement string to be
5975 parsed as an immediate expression after we're done. */
5976 else if (intel_parser.op_modifier == OFFSET_FLAT)
5977 strcat (intel_parser.disp, reg->reg_name);
5979 /* It's neither base nor index nor offset. */
5980 else
5982 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5983 i.op[this_operand].regs = reg;
5984 i.reg_operands++;
5987 /* Since registers are not part of the displacement string (except
5988 when we're parsing offset operands), we may need to remove any
5989 preceding '+' from the displacement string. */
5990 if (*intel_parser.disp != '\0'
5991 && intel_parser.op_modifier != OFFSET_FLAT)
5993 char *s = intel_parser.disp;
5994 s += strlen (s) - 1;
5995 if (*s == '+')
5996 *s = '\0';
5999 return 1;
6002 /* e11 id */
6003 else if (cur_token.code == T_ID)
6005 /* Add the identifier to the displacement string. */
6006 strcat (intel_parser.disp, cur_token.str);
6007 intel_match_token (T_ID);
6009 /* The identifier represents a memory reference only if it's not
6010 preceded by an offset modifier. */
6011 if (intel_parser.op_modifier != OFFSET_FLAT)
6012 intel_parser.is_mem = 1;
6014 return 1;
6017 /* e11 constant */
6018 else if (cur_token.code == T_CONST
6019 || cur_token.code == '-'
6020 || cur_token.code == '+')
6022 char *save_str;
6024 /* Allow constants that start with `+' or `-'. */
6025 if (cur_token.code == '-' || cur_token.code == '+')
6027 strcat (intel_parser.disp, cur_token.str);
6028 intel_match_token (cur_token.code);
6029 if (cur_token.code != T_CONST)
6031 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6032 cur_token.str);
6033 return 0;
6037 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6038 if (save_str == NULL)
6039 abort ();
6040 strcpy (save_str, cur_token.str);
6042 /* Get the next token to check for register scaling. */
6043 intel_match_token (cur_token.code);
6045 /* Check if this constant is a scaling factor for an index register. */
6046 if (cur_token.code == '*')
6048 if (intel_match_token ('*') && cur_token.code == T_REG)
6050 if (!intel_parser.is_mem)
6052 as_bad (_("Register scaling only allowed in memory operands."));
6053 return 0;
6056 /* The constant is followed by `* reg', so it must be
6057 a valid scale. */
6058 if (strchr ("01248", *save_str))
6060 i.index_reg = cur_token.reg;
6061 i.types[this_operand] |= BaseIndex;
6063 /* Set the scale after setting the register (otherwise,
6064 i386_scale will complain) */
6065 i386_scale (save_str);
6066 intel_match_token (T_REG);
6068 /* Since registers are not part of the displacement
6069 string, we may need to remove any preceding '+' from
6070 the displacement string. */
6071 if (*intel_parser.disp != '\0')
6073 char *s = intel_parser.disp;
6074 s += strlen (s) - 1;
6075 if (*s == '+')
6076 *s = '\0';
6079 free (save_str);
6081 return 1;
6083 else
6084 return 0;
6087 /* The constant was not used for register scaling. Since we have
6088 already consumed the token following `*' we now need to put it
6089 back in the stream. */
6090 else
6091 intel_putback_token ();
6094 /* Add the constant to the displacement string. */
6095 strcat (intel_parser.disp, save_str);
6096 free (save_str);
6098 return 1;
6101 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6102 return 0;
6105 /* Match the given token against cur_token. If they match, read the next
6106 token from the operand string. */
6107 static int
6108 intel_match_token (code)
6109 int code;
6111 if (cur_token.code == code)
6113 intel_get_token ();
6114 return 1;
6116 else
6118 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6119 return 0;
6123 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6124 static void
6125 intel_get_token ()
6127 char *end_op;
6128 const reg_entry *reg;
6129 struct intel_token new_token;
6131 new_token.code = T_NIL;
6132 new_token.reg = NULL;
6133 new_token.str = NULL;
6135 /* Free the memory allocated to the previous token and move
6136 cur_token to prev_token. */
6137 if (prev_token.str)
6138 free (prev_token.str);
6140 prev_token = cur_token;
6142 /* Skip whitespace. */
6143 while (is_space_char (*intel_parser.op_string))
6144 intel_parser.op_string++;
6146 /* Return an empty token if we find nothing else on the line. */
6147 if (*intel_parser.op_string == '\0')
6149 cur_token = new_token;
6150 return;
6153 /* The new token cannot be larger than the remainder of the operand
6154 string. */
6155 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6156 if (new_token.str == NULL)
6157 abort ();
6158 new_token.str[0] = '\0';
6160 if (strchr ("0123456789", *intel_parser.op_string))
6162 char *p = new_token.str;
6163 char *q = intel_parser.op_string;
6164 new_token.code = T_CONST;
6166 /* Allow any kind of identifier char to encompass floating point and
6167 hexadecimal numbers. */
6168 while (is_identifier_char (*q))
6169 *p++ = *q++;
6170 *p = '\0';
6172 /* Recognize special symbol names [0-9][bf]. */
6173 if (strlen (intel_parser.op_string) == 2
6174 && (intel_parser.op_string[1] == 'b'
6175 || intel_parser.op_string[1] == 'f'))
6176 new_token.code = T_ID;
6179 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6181 new_token.code = *intel_parser.op_string;
6182 new_token.str[0] = *intel_parser.op_string;
6183 new_token.str[1] = '\0';
6186 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6187 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6189 new_token.code = T_REG;
6190 new_token.reg = reg;
6192 if (*intel_parser.op_string == REGISTER_PREFIX)
6194 new_token.str[0] = REGISTER_PREFIX;
6195 new_token.str[1] = '\0';
6198 strcat (new_token.str, reg->reg_name);
6201 else if (is_identifier_char (*intel_parser.op_string))
6203 char *p = new_token.str;
6204 char *q = intel_parser.op_string;
6206 /* A '.' or '$' followed by an identifier char is an identifier.
6207 Otherwise, it's operator '.' followed by an expression. */
6208 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6210 new_token.code = *q;
6211 new_token.str[0] = *q;
6212 new_token.str[1] = '\0';
6214 else
6216 while (is_identifier_char (*q) || *q == '@')
6217 *p++ = *q++;
6218 *p = '\0';
6220 if (strcasecmp (new_token.str, "BYTE") == 0)
6221 new_token.code = T_BYTE;
6223 else if (strcasecmp (new_token.str, "WORD") == 0)
6224 new_token.code = T_WORD;
6226 else if (strcasecmp (new_token.str, "DWORD") == 0)
6227 new_token.code = T_DWORD;
6229 else if (strcasecmp (new_token.str, "QWORD") == 0)
6230 new_token.code = T_QWORD;
6232 else if (strcasecmp (new_token.str, "XWORD") == 0)
6233 new_token.code = T_XWORD;
6235 else if (strcasecmp (new_token.str, "PTR") == 0)
6236 new_token.code = T_PTR;
6238 else if (strcasecmp (new_token.str, "SHORT") == 0)
6239 new_token.code = T_SHORT;
6241 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6243 new_token.code = T_OFFSET;
6245 /* ??? This is not mentioned in the MASM grammar but gcc
6246 makes use of it with -mintel-syntax. OFFSET may be
6247 followed by FLAT: */
6248 if (strncasecmp (q, " FLAT:", 6) == 0)
6249 strcat (new_token.str, " FLAT:");
6252 /* ??? This is not mentioned in the MASM grammar. */
6253 else if (strcasecmp (new_token.str, "FLAT") == 0)
6254 new_token.code = T_OFFSET;
6256 else
6257 new_token.code = T_ID;
6261 else
6262 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6264 intel_parser.op_string += strlen (new_token.str);
6265 cur_token = new_token;
6268 /* Put cur_token back into the token stream and make cur_token point to
6269 prev_token. */
6270 static void
6271 intel_putback_token ()
6273 intel_parser.op_string -= strlen (cur_token.str);
6274 free (cur_token.str);
6275 cur_token = prev_token;
6277 /* Forget prev_token. */
6278 prev_token.code = T_NIL;
6279 prev_token.reg = NULL;
6280 prev_token.str = NULL;
6284 tc_x86_regname_to_dw2regnum (const char *regname)
6286 unsigned int regnum;
6287 unsigned int regnames_count;
6288 char *regnames_32[] =
6290 "eax", "ecx", "edx", "ebx",
6291 "esp", "ebp", "esi", "edi",
6292 "eip"
6294 char *regnames_64[] =
6296 "rax", "rbx", "rcx", "rdx",
6297 "rdi", "rsi", "rbp", "rsp",
6298 "r8", "r9", "r10", "r11",
6299 "r12", "r13", "r14", "r15",
6300 "rip"
6302 char **regnames;
6304 if (flag_code == CODE_64BIT)
6306 regnames = regnames_64;
6307 regnames_count = ARRAY_SIZE (regnames_64);
6309 else
6311 regnames = regnames_32;
6312 regnames_count = ARRAY_SIZE (regnames_32);
6315 for (regnum = 0; regnum < regnames_count; regnum++)
6316 if (strcmp (regname, regnames[regnum]) == 0)
6317 return regnum;
6319 return -1;
6322 void
6323 tc_x86_frame_initial_instructions (void)
6325 static unsigned int sp_regno;
6327 if (!sp_regno)
6328 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6329 ? "rsp" : "esp");
6331 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6332 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);