1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
28 #include "safe-ctype.h"
29 #include "libiberty.h"
32 /* Define a symbol in a dynamic linkage section. */
34 struct elf_link_hash_entry
*
35 _bfd_elf_define_linkage_sym (bfd
*abfd
,
36 struct bfd_link_info
*info
,
40 struct elf_link_hash_entry
*h
;
41 struct bfd_link_hash_entry
*bh
;
42 const struct elf_backend_data
*bed
;
44 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h
->root
.type
= bfd_link_hash_new
;
55 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
57 get_elf_backend_data (abfd
)->collect
,
60 h
= (struct elf_link_hash_entry
*) bh
;
63 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
65 bed
= get_elf_backend_data (abfd
);
66 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
71 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
75 struct elf_link_hash_entry
*h
;
76 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
79 /* This function may be called more than once. */
80 s
= bfd_get_section_by_name (abfd
, ".got");
81 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
84 switch (bed
->s
->arch_size
)
95 bfd_set_error (bfd_error_bad_value
);
99 flags
= bed
->dynamic_sec_flags
;
101 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
103 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
106 if (bed
->want_got_plt
)
108 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
110 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
114 if (bed
->want_got_sym
)
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info
)->hgot
= h
;
126 /* The first bit of the global offset table is the header. */
127 s
->size
+= bed
->got_header_size
;
132 /* Create a strtab to hold the dynamic symbol names. */
134 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
136 struct elf_link_hash_table
*hash_table
;
138 hash_table
= elf_hash_table (info
);
139 if (hash_table
->dynobj
== NULL
)
140 hash_table
->dynobj
= abfd
;
142 if (hash_table
->dynstr
== NULL
)
144 hash_table
->dynstr
= _bfd_elf_strtab_init ();
145 if (hash_table
->dynstr
== NULL
)
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
159 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
162 register asection
*s
;
163 const struct elf_backend_data
*bed
;
165 if (! is_elf_hash_table (info
->hash
))
168 if (elf_hash_table (info
)->dynamic_sections_created
)
171 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
174 abfd
= elf_hash_table (info
)->dynobj
;
175 bed
= get_elf_backend_data (abfd
);
177 flags
= bed
->dynamic_sec_flags
;
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info
->executable
)
183 s
= bfd_make_section_with_flags (abfd
, ".interp",
184 flags
| SEC_READONLY
);
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
192 flags
| SEC_READONLY
);
194 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
197 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
198 flags
| SEC_READONLY
);
200 || ! bfd_set_section_alignment (abfd
, s
, 1))
203 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
204 flags
| SEC_READONLY
);
206 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
209 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
210 flags
| SEC_READONLY
);
212 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
215 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
216 flags
| SEC_READONLY
);
220 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
222 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
236 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
240 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
243 if (info
->emit_gnu_hash
)
245 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
246 flags
| SEC_READONLY
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed
->s
->arch_size
== 64)
254 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
256 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
265 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
270 /* Create dynamic sections when linking against a dynamic object. */
273 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
275 flagword flags
, pltflags
;
276 struct elf_link_hash_entry
*h
;
278 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags
= bed
->dynamic_sec_flags
;
285 if (bed
->plt_not_loaded
)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
291 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
292 if (bed
->plt_readonly
)
293 pltflags
|= SEC_READONLY
;
295 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
297 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
302 if (bed
->want_plt_sym
)
304 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info
)->hplt
= h
;
311 s
= bfd_make_section_with_flags (abfd
,
312 (bed
->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags
| SEC_READONLY
);
316 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
319 if (! _bfd_elf_create_got_section (abfd
, info
))
322 if (bed
->want_dynbss
)
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
332 | SEC_LINKER_CREATED
));
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
349 s
= bfd_make_section_with_flags (abfd
,
350 (bed
->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags
| SEC_READONLY
);
354 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
372 struct elf_link_hash_entry
*h
)
374 if (h
->dynindx
== -1)
376 struct elf_strtab_hash
*dynstr
;
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h
->other
))
389 if (h
->root
.type
!= bfd_link_hash_undefined
390 && h
->root
.type
!= bfd_link_hash_undefweak
)
393 if (!elf_hash_table (info
)->is_relocatable_executable
)
401 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
402 ++elf_hash_table (info
)->dynsymcount
;
404 dynstr
= elf_hash_table (info
)->dynstr
;
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
413 /* We don't put any version information in the dynamic string
415 name
= h
->root
.root
.string
;
416 p
= strchr (name
, ELF_VER_CHR
);
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
425 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
430 if (indx
== (bfd_size_type
) -1)
432 h
->dynstr_index
= indx
;
438 /* Mark a symbol dynamic. */
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
442 struct elf_link_hash_entry
*h
,
443 Elf_Internal_Sym
*sym
)
445 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
447 /* It may be called more than once on the same H. */
448 if(h
->dynamic
|| info
->relocatable
)
451 if ((info
->dynamic_data
452 && (h
->type
== STT_OBJECT
454 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
456 && h
->root
.type
== bfd_link_hash_new
457 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
465 bfd_elf_record_link_assignment (bfd
*output_bfd
,
466 struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
, *hv
;
472 struct elf_link_hash_table
*htab
;
473 const struct elf_backend_data
*bed
;
475 if (!is_elf_hash_table (info
->hash
))
478 htab
= elf_hash_table (info
);
479 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
483 switch (h
->root
.type
)
485 case bfd_link_hash_defined
:
486 case bfd_link_hash_defweak
:
487 case bfd_link_hash_common
:
489 case bfd_link_hash_undefweak
:
490 case bfd_link_hash_undefined
:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h
->root
.type
= bfd_link_hash_new
;
495 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
496 bfd_link_repair_undef_list (&htab
->root
);
498 case bfd_link_hash_new
:
499 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
502 case bfd_link_hash_indirect
:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed
= get_elf_backend_data (output_bfd
);
507 while (hv
->root
.type
== bfd_link_hash_indirect
508 || hv
->root
.type
== bfd_link_hash_warning
)
509 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
510 /* We don't need to update h->root.u since linker will set them
512 h
->root
.type
= bfd_link_hash_undefined
;
513 hv
->root
.type
= bfd_link_hash_indirect
;
514 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
515 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
517 case bfd_link_hash_warning
:
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
529 h
->root
.type
= bfd_link_hash_undefined
;
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
538 h
->verinfo
.verdef
= NULL
;
542 if (provide
&& hidden
)
544 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
546 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
547 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
552 if (!info
->relocatable
554 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
561 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
564 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h
->u
.weakdef
!= NULL
571 && h
->u
.weakdef
->dynindx
== -1)
573 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
591 struct elf_link_local_dynamic_entry
*entry
;
592 struct elf_link_hash_table
*eht
;
593 struct elf_strtab_hash
*dynstr
;
594 unsigned long dynstr_index
;
596 Elf_External_Sym_Shndx eshndx
;
597 char esym
[sizeof (Elf64_External_Sym
)];
599 if (! is_elf_hash_table (info
->hash
))
602 /* See if the entry exists already. */
603 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
604 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
607 amt
= sizeof (*entry
);
608 entry
= bfd_alloc (input_bfd
, amt
);
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
614 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
616 bfd_release (input_bfd
, entry
);
620 if (entry
->isym
.st_shndx
!= SHN_UNDEF
621 && (entry
->isym
.st_shndx
< SHN_LORESERVE
622 || entry
->isym
.st_shndx
> SHN_HIRESERVE
))
626 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
627 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd
, entry
);
636 name
= (bfd_elf_string_from_elf_section
637 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
638 entry
->isym
.st_name
));
640 dynstr
= elf_hash_table (info
)->dynstr
;
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
649 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
650 if (dynstr_index
== (unsigned long) -1)
652 entry
->isym
.st_name
= dynstr_index
;
654 eht
= elf_hash_table (info
);
656 entry
->next
= eht
->dynlocal
;
657 eht
->dynlocal
= entry
;
658 entry
->input_bfd
= input_bfd
;
659 entry
->input_indx
= input_indx
;
662 /* Whatever binding the symbol had before, it's now local. */
664 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
666 /* The dynindx will be set at the end of size_dynamic_sections. */
671 /* Return the dynindex of a local dynamic symbol. */
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
678 struct elf_link_local_dynamic_entry
*e
;
680 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
681 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
694 size_t *count
= data
;
696 if (h
->root
.type
== bfd_link_hash_warning
)
697 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
702 if (h
->dynindx
!= -1)
703 h
->dynindx
= ++(*count
);
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
716 size_t *count
= data
;
718 if (h
->root
.type
== bfd_link_hash_warning
)
719 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
721 if (!h
->forced_local
)
724 if (h
->dynindx
!= -1)
725 h
->dynindx
= ++(*count
);
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
733 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
734 struct bfd_link_info
*info
,
737 struct elf_link_hash_table
*htab
;
739 switch (elf_section_data (p
)->this_hdr
.sh_type
)
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
746 htab
= elf_hash_table (info
);
747 if (p
== htab
->tls_sec
)
750 if (htab
->text_index_section
!= NULL
)
751 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
753 if (strcmp (p
->name
, ".got") == 0
754 || strcmp (p
->name
, ".got.plt") == 0
755 || strcmp (p
->name
, ".plt") == 0)
759 if (htab
->dynobj
!= NULL
760 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
761 && (ip
->flags
& SEC_LINKER_CREATED
)
762 && ip
->output_section
== p
)
767 /* There shouldn't be section relative relocations
768 against any other section. */
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
781 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
782 struct bfd_link_info
*info
,
783 unsigned long *section_sym_count
)
785 unsigned long dynsymcount
= 0;
787 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
789 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
791 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
792 if ((p
->flags
& SEC_EXCLUDE
) == 0
793 && (p
->flags
& SEC_ALLOC
) != 0
794 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
795 elf_section_data (p
)->dynindx
= ++dynsymcount
;
797 elf_section_data (p
)->dynindx
= 0;
799 *section_sym_count
= dynsymcount
;
801 elf_link_hash_traverse (elf_hash_table (info
),
802 elf_link_renumber_local_hash_table_dynsyms
,
805 if (elf_hash_table (info
)->dynlocal
)
807 struct elf_link_local_dynamic_entry
*p
;
808 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
809 p
->dynindx
= ++dynsymcount
;
812 elf_link_hash_traverse (elf_hash_table (info
),
813 elf_link_renumber_hash_table_dynsyms
,
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount
!= 0)
822 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
839 _bfd_elf_merge_symbol (bfd
*abfd
,
840 struct bfd_link_info
*info
,
842 Elf_Internal_Sym
*sym
,
845 unsigned int *pold_alignment
,
846 struct elf_link_hash_entry
**sym_hash
,
848 bfd_boolean
*override
,
849 bfd_boolean
*type_change_ok
,
850 bfd_boolean
*size_change_ok
)
852 asection
*sec
, *oldsec
;
853 struct elf_link_hash_entry
*h
;
854 struct elf_link_hash_entry
*flip
;
857 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
858 bfd_boolean newweak
, oldweak
;
859 const struct elf_backend_data
*bed
;
865 bind
= ELF_ST_BIND (sym
->st_info
);
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
870 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
876 if (! bfd_is_und_section (sec
))
877 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
879 h
= ((struct elf_link_hash_entry
*)
880 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info
->hash
->creator
!= abfd
->xvec
)
890 /* For merging, we only care about real symbols. */
892 while (h
->root
.type
== bfd_link_hash_indirect
893 || h
->root
.type
== bfd_link_hash_warning
)
894 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
899 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
905 if (h
->root
.type
== bfd_link_hash_new
)
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
914 switch (h
->root
.type
)
921 case bfd_link_hash_undefined
:
922 case bfd_link_hash_undefweak
:
923 oldbfd
= h
->root
.u
.undef
.abfd
;
927 case bfd_link_hash_defined
:
928 case bfd_link_hash_defweak
:
929 oldbfd
= h
->root
.u
.def
.section
->owner
;
930 oldsec
= h
->root
.u
.def
.section
;
933 case bfd_link_hash_common
:
934 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
935 oldsec
= h
->root
.u
.c
.p
->section
;
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
946 && ((abfd
->flags
& DYNAMIC
) == 0
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
953 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
957 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
958 else if (oldsec
!= NULL
)
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
968 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
970 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
971 && h
->root
.type
!= bfd_link_hash_undefweak
972 && h
->root
.type
!= bfd_link_hash_common
);
974 bed
= get_elf_backend_data (abfd
);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment
== NULL
981 && !info
->export_dynamic
986 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
987 && ELF_ST_TYPE (sym
->st_info
) != h
->type
988 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
989 && h
->type
!= STT_NOTYPE
990 && !(bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
))
991 && bed
->is_function_type (h
->type
)))
997 /* Check TLS symbol. We don't check undefined symbol introduced by
999 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1000 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1004 bfd_boolean ntdef
, tdef
;
1005 asection
*ntsec
, *tsec
;
1007 if (h
->type
== STT_TLS
)
1027 (*_bfd_error_handler
)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1030 else if (!tdef
&& !ntdef
)
1031 (*_bfd_error_handler
)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd
, ntbfd
, h
->root
.root
.string
);
1035 (*_bfd_error_handler
)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1039 (*_bfd_error_handler
)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1043 bfd_set_error (bfd_error_bad_value
);
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn
&& !h
->dynamic_def
)
1052 if (!bfd_is_und_section (sec
))
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h
->ref_dynamic
)
1061 if (bind
== STB_WEAK
)
1062 h
->dynamic_weak
= 1;
1064 else if (bind
!= STB_WEAK
)
1065 h
->dynamic_weak
= 0;
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1072 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1073 && !bfd_is_und_section (sec
))
1076 /* Make sure this symbol is dynamic. */
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1083 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1088 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1102 const struct elf_backend_data
*bed
1103 = get_elf_backend_data (abfd
);
1104 struct elf_link_hash_entry
*vh
= *sym_hash
;
1105 vh
->root
.type
= h
->root
.type
;
1106 h
->root
.type
= bfd_link_hash_indirect
;
1107 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1112 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1113 vh
->dynamic_def
= 1;
1114 vh
->ref_dynamic
= 1;
1118 h
->root
.type
= vh
->root
.type
;
1119 vh
->ref_dynamic
= 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1131 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1132 && bfd_is_und_section (sec
))
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1140 h
->root
.type
= bfd_link_hash_undefined
;
1141 h
->root
.u
.undef
.abfd
= abfd
;
1145 h
->root
.type
= bfd_link_hash_new
;
1146 h
->root
.u
.undef
.abfd
= NULL
;
1155 /* FIXME: Should we check type and size for protected symbol? */
1161 /* Differentiate strong and weak symbols. */
1162 newweak
= bind
== STB_WEAK
;
1163 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1164 || h
->root
.type
== bfd_link_hash_undefweak
);
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1177 if (newdef
&& !newdyn
&& olddyn
)
1179 if (olddef
&& newdyn
)
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
))
1184 && bed
->is_function_type (h
->type
))
1185 *type_change_ok
= TRUE
;
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1194 && h
->root
.type
== bfd_link_hash_undefined
))
1195 *type_change_ok
= TRUE
;
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1201 || h
->root
.type
== bfd_link_hash_undefined
)
1202 *size_change_ok
= TRUE
;
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1230 && (sec
->flags
& SEC_ALLOC
) != 0
1231 && (sec
->flags
& SEC_LOAD
) == 0
1233 && !bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
1234 newdyncommon
= TRUE
;
1236 newdyncommon
= FALSE
;
1240 && h
->root
.type
== bfd_link_hash_defined
1242 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1243 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1245 && !bed
->is_function_type (h
->type
))
1246 olddyncommon
= TRUE
;
1248 olddyncommon
= FALSE
;
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed
->merge_symbol
1253 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1254 pold_alignment
, skip
, override
,
1255 type_change_ok
, size_change_ok
,
1256 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1258 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1268 && sym
->st_size
!= h
->size
)
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1276 if (! ((*info
->callbacks
->multiple_common
)
1277 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1278 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1281 if (sym
->st_size
> h
->size
)
1282 h
->size
= sym
->st_size
;
1284 *size_change_ok
= TRUE
;
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1304 || (h
->root
.type
== bfd_link_hash_common
1306 || bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
))))))
1310 newdyncommon
= FALSE
;
1312 *psec
= sec
= bfd_und_section_ptr
;
1313 *size_change_ok
= TRUE
;
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1321 if (h
->root
.type
== bfd_link_hash_common
)
1322 *type_change_ok
= TRUE
;
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1332 && h
->root
.type
== bfd_link_hash_common
)
1336 newdyncommon
= FALSE
;
1337 *pvalue
= sym
->st_size
;
1338 *psec
= sec
= bed
->common_section (oldsec
);
1339 *size_change_ok
= TRUE
;
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef
&& olddef
&& newweak
)
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1359 || (bfd_is_com_section (sec
)
1361 || bed
->is_function_type (h
->type
))))
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1370 h
->root
.type
= bfd_link_hash_undefined
;
1371 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1372 *size_change_ok
= TRUE
;
1375 olddyncommon
= FALSE
;
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1380 if (bfd_is_com_section (sec
))
1381 *type_change_ok
= TRUE
;
1383 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h
->verinfo
.vertree
= NULL
;
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1399 && bfd_is_com_section (sec
)
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info
->callbacks
->multiple_common
)
1406 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1407 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1413 if (h
->size
> *pvalue
)
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment
);
1419 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1422 olddyncommon
= FALSE
;
1424 h
->root
.type
= bfd_link_hash_undefined
;
1425 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1427 *size_change_ok
= TRUE
;
1428 *type_change_ok
= TRUE
;
1430 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1433 h
->verinfo
.vertree
= NULL
;
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1442 flip
->root
.type
= h
->root
.type
;
1443 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1444 h
->root
.type
= bfd_link_hash_indirect
;
1445 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1446 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1450 flip
->ref_dynamic
= 1;
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1463 _bfd_elf_add_default_symbol (bfd
*abfd
,
1464 struct bfd_link_info
*info
,
1465 struct elf_link_hash_entry
*h
,
1467 Elf_Internal_Sym
*sym
,
1470 bfd_boolean
*dynsym
,
1471 bfd_boolean override
)
1473 bfd_boolean type_change_ok
;
1474 bfd_boolean size_change_ok
;
1477 struct elf_link_hash_entry
*hi
;
1478 struct bfd_link_hash_entry
*bh
;
1479 const struct elf_backend_data
*bed
;
1480 bfd_boolean collect
;
1481 bfd_boolean dynamic
;
1483 size_t len
, shortlen
;
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p
= strchr (name
, ELF_VER_CHR
);
1491 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1500 BFD_ASSERT (hi
!= NULL
);
1503 while (hi
->root
.type
== bfd_link_hash_indirect
1504 || hi
->root
.type
== bfd_link_hash_warning
)
1506 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1512 bed
= get_elf_backend_data (abfd
);
1513 collect
= bed
->collect
;
1514 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1516 shortlen
= p
- name
;
1517 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1518 if (shortname
== NULL
)
1520 memcpy (shortname
, name
, shortlen
);
1521 shortname
[shortlen
] = '\0';
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok
= FALSE
;
1528 size_change_ok
= FALSE
;
1530 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1531 NULL
, &hi
, &skip
, &override
,
1532 &type_change_ok
, &size_change_ok
))
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1543 0, name
, FALSE
, collect
, &bh
)))
1545 hi
= (struct elf_link_hash_entry
*) bh
;
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1567 while (hi
->root
.type
== bfd_link_hash_indirect
1568 || hi
->root
.type
== bfd_link_hash_warning
)
1569 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1571 h
->root
.type
= bfd_link_hash_indirect
;
1572 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1576 hi
->ref_dynamic
= 1;
1580 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1590 /* Check if HI is a warning symbol. */
1591 if (hi
->root
.type
== bfd_link_hash_warning
)
1592 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1598 if (hi
->root
.type
== bfd_link_hash_indirect
)
1600 struct elf_link_hash_entry
*ht
;
1602 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1603 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1605 /* See if the new flags lead us to realize that the symbol must
1617 if (hi
->ref_regular
)
1623 /* We also need to define an indirection from the nondefault version
1627 len
= strlen (name
);
1628 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1629 if (shortname
== NULL
)
1631 memcpy (shortname
, name
, shortlen
);
1632 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok
= FALSE
;
1636 size_change_ok
= FALSE
;
1638 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1639 NULL
, &hi
, &skip
, &override
,
1640 &type_change_ok
, &size_change_ok
))
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi
->root
.type
!= bfd_link_hash_defined
1652 && hi
->root
.type
!= bfd_link_hash_defweak
)
1653 (*_bfd_error_handler
)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info
, abfd
, shortname
, BSF_INDIRECT
,
1662 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1664 hi
= (struct elf_link_hash_entry
*) bh
;
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1670 if (hi
->root
.type
== bfd_link_hash_indirect
)
1672 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1674 /* See if the new flags lead us to realize that the symbol
1686 if (hi
->ref_regular
)
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1702 struct elf_info_failed
*eif
= data
;
1704 /* Ignore this if we won't export it. */
1705 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h
->root
.type
== bfd_link_hash_indirect
)
1712 if (h
->root
.type
== bfd_link_hash_warning
)
1713 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1715 if (h
->dynindx
== -1
1719 struct bfd_elf_version_tree
*t
;
1720 struct bfd_elf_version_expr
*d
;
1722 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
1724 if (t
->globals
.list
!= NULL
)
1726 d
= (*t
->match
) (&t
->globals
, NULL
, h
->root
.root
.string
);
1731 if (t
->locals
.list
!= NULL
)
1733 d
= (*t
->match
) (&t
->locals
, NULL
, h
->root
.root
.string
);
1742 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1762 struct elf_find_verdep_info
*rinfo
= data
;
1763 Elf_Internal_Verneed
*t
;
1764 Elf_Internal_Vernaux
*a
;
1767 if (h
->root
.type
== bfd_link_hash_warning
)
1768 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1770 /* We only care about symbols defined in shared objects with version
1775 || h
->verinfo
.verdef
== NULL
)
1778 /* See if we already know about this version. */
1779 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1781 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1784 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1785 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1791 /* This is a new version. Add it to tree we are building. */
1796 t
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1799 rinfo
->failed
= TRUE
;
1803 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1804 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
1805 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
1809 a
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1812 rinfo
->failed
= TRUE
;
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1820 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1822 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1823 a
->vna_nextptr
= t
->vn_auxptr
;
1825 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1828 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1843 struct elf_assign_sym_version_info
*sinfo
;
1844 struct bfd_link_info
*info
;
1845 const struct elf_backend_data
*bed
;
1846 struct elf_info_failed eif
;
1853 if (h
->root
.type
== bfd_link_hash_warning
)
1854 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1856 /* Fix the symbol flags. */
1859 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1862 sinfo
->failed
= TRUE
;
1866 /* We only need version numbers for symbols defined in regular
1868 if (!h
->def_regular
)
1871 bed
= get_elf_backend_data (sinfo
->output_bfd
);
1872 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1873 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1875 struct bfd_elf_version_tree
*t
;
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1883 if (*p
== ELF_VER_CHR
)
1889 /* If there is no version string, we can just return out. */
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1900 if (strcmp (t
->name
, p
) == 0)
1904 struct bfd_elf_version_expr
*d
;
1906 len
= p
- h
->root
.root
.string
;
1907 alc
= bfd_malloc (len
);
1910 sinfo
->failed
= TRUE
;
1913 memcpy (alc
, h
->root
.root
.string
, len
- 1);
1914 alc
[len
- 1] = '\0';
1915 if (alc
[len
- 2] == ELF_VER_CHR
)
1916 alc
[len
- 2] = '\0';
1918 h
->verinfo
.vertree
= t
;
1922 if (t
->globals
.list
!= NULL
)
1923 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
1925 /* See if there is anything to force this symbol to
1927 if (d
== NULL
&& t
->locals
.list
!= NULL
)
1929 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
1932 && ! info
->export_dynamic
)
1933 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t
== NULL
&& info
->executable
)
1945 struct bfd_elf_version_tree
**pp
;
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h
->dynindx
== -1)
1954 t
= bfd_zalloc (sinfo
->output_bfd
, amt
);
1957 sinfo
->failed
= TRUE
;
1962 t
->name_indx
= (unsigned int) -1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
1969 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1971 t
->vernum
= version_index
;
1975 h
->verinfo
.vertree
= t
;
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler
)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo
->output_bfd
, h
->root
.root
.string
);
1984 bfd_set_error (bfd_error_bad_value
);
1985 sinfo
->failed
= TRUE
;
1993 /* If we don't have a version for this symbol, see if we can find
1995 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
1997 struct bfd_elf_version_tree
*t
;
1998 struct bfd_elf_version_tree
*local_ver
;
1999 struct bfd_elf_version_expr
*d
;
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2005 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
2007 if (t
->globals
.list
!= NULL
)
2009 bfd_boolean matched
;
2013 while ((d
= (*t
->match
) (&t
->globals
, d
,
2014 h
->root
.root
.string
)) != NULL
)
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2022 h
->verinfo
.vertree
= t
;
2030 /* There is no undefined version for this symbol. Hide the
2032 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2035 if (t
->locals
.list
!= NULL
)
2038 while ((d
= (*t
->match
) (&t
->locals
, d
,
2039 h
->root
.root
.string
)) != NULL
)
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d
->pattern
[0] != '*' || d
->pattern
[1] != '\0')
2054 if (local_ver
!= NULL
)
2056 h
->verinfo
.vertree
= local_ver
;
2057 if (h
->dynindx
!= -1
2058 && ! info
->export_dynamic
)
2060 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2075 Returns FALSE if something goes wrong. */
2078 elf_link_read_relocs_from_section (bfd
*abfd
,
2080 Elf_Internal_Shdr
*shdr
,
2081 void *external_relocs
,
2082 Elf_Internal_Rela
*internal_relocs
)
2084 const struct elf_backend_data
*bed
;
2085 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2086 const bfd_byte
*erela
;
2087 const bfd_byte
*erelaend
;
2088 Elf_Internal_Rela
*irela
;
2089 Elf_Internal_Shdr
*symtab_hdr
;
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2100 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2101 nsyms
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
2103 bed
= get_elf_backend_data (abfd
);
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2107 swap_in
= bed
->s
->swap_reloc_in
;
2108 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2109 swap_in
= bed
->s
->swap_reloca_in
;
2112 bfd_set_error (bfd_error_wrong_format
);
2116 erela
= external_relocs
;
2117 erelaend
= erela
+ shdr
->sh_size
;
2118 irela
= internal_relocs
;
2119 while (erela
< erelaend
)
2123 (*swap_in
) (abfd
, erela
, irela
);
2124 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2125 if (bed
->s
->arch_size
== 64)
2127 if ((size_t) r_symndx
>= nsyms
)
2129 (*_bfd_error_handler
)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2133 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2134 bfd_set_error (bfd_error_bad_value
);
2137 irela
+= bed
->s
->int_rels_per_ext_rel
;
2138 erela
+= shdr
->sh_entsize
;
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2155 _bfd_elf_link_read_relocs (bfd
*abfd
,
2157 void *external_relocs
,
2158 Elf_Internal_Rela
*internal_relocs
,
2159 bfd_boolean keep_memory
)
2161 Elf_Internal_Shdr
*rel_hdr
;
2162 void *alloc1
= NULL
;
2163 Elf_Internal_Rela
*alloc2
= NULL
;
2164 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2166 if (elf_section_data (o
)->relocs
!= NULL
)
2167 return elf_section_data (o
)->relocs
;
2169 if (o
->reloc_count
== 0)
2172 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2174 if (internal_relocs
== NULL
)
2178 size
= o
->reloc_count
;
2179 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2181 internal_relocs
= bfd_alloc (abfd
, size
);
2183 internal_relocs
= alloc2
= bfd_malloc (size
);
2184 if (internal_relocs
== NULL
)
2188 if (external_relocs
== NULL
)
2190 bfd_size_type size
= rel_hdr
->sh_size
;
2192 if (elf_section_data (o
)->rel_hdr2
)
2193 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2194 alloc1
= bfd_malloc (size
);
2197 external_relocs
= alloc1
;
2200 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2204 if (elf_section_data (o
)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2207 elf_section_data (o
)->rel_hdr2
,
2208 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2209 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2210 * bed
->s
->int_rels_per_ext_rel
))))
2213 /* Cache the results for next time, if we can. */
2215 elf_section_data (o
)->relocs
= internal_relocs
;
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2223 return internal_relocs
;
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2237 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2238 Elf_Internal_Shdr
*rel_hdr
,
2241 bfd_size_type reloc_count
;
2242 bfd_size_type num_rel_hashes
;
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2246 reloc_count
= elf_section_data (o
)->rel_count
;
2248 reloc_count
= elf_section_data (o
)->rel_count2
;
2250 num_rel_hashes
= o
->reloc_count
;
2251 if (num_rel_hashes
< reloc_count
)
2252 num_rel_hashes
= reloc_count
;
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2262 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o
)->rel_hashes
== NULL
2270 struct elf_link_hash_entry
**p
;
2272 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2276 elf_section_data (o
)->rel_hashes
= p
;
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2287 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2288 asection
*input_section
,
2289 Elf_Internal_Shdr
*input_rel_hdr
,
2290 Elf_Internal_Rela
*internal_relocs
,
2291 struct elf_link_hash_entry
**rel_hash
2294 Elf_Internal_Rela
*irela
;
2295 Elf_Internal_Rela
*irelaend
;
2297 Elf_Internal_Shdr
*output_rel_hdr
;
2298 asection
*output_section
;
2299 unsigned int *rel_countp
= NULL
;
2300 const struct elf_backend_data
*bed
;
2301 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2303 output_section
= input_section
->output_section
;
2304 output_rel_hdr
= NULL
;
2306 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2307 == input_rel_hdr
->sh_entsize
)
2309 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2310 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2312 else if (elf_section_data (output_section
)->rel_hdr2
2313 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2314 == input_rel_hdr
->sh_entsize
))
2316 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2317 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2321 (*_bfd_error_handler
)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd
, input_section
->owner
, input_section
);
2324 bfd_set_error (bfd_error_wrong_object_format
);
2328 bed
= get_elf_backend_data (output_bfd
);
2329 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2330 swap_out
= bed
->s
->swap_reloc_out
;
2331 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2332 swap_out
= bed
->s
->swap_reloca_out
;
2336 erel
= output_rel_hdr
->contents
;
2337 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2338 irela
= internal_relocs
;
2339 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2340 * bed
->s
->int_rels_per_ext_rel
);
2341 while (irela
< irelaend
)
2343 (*swap_out
) (output_bfd
, irela
, erel
);
2344 irela
+= bed
->s
->int_rels_per_ext_rel
;
2345 erel
+= input_rel_hdr
->sh_entsize
;
2348 /* Bump the counter, so that we know where to add the next set of
2350 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2355 /* Make weak undefined symbols in PIE dynamic. */
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2359 struct elf_link_hash_entry
*h
)
2363 && h
->root
.type
== bfd_link_hash_undefweak
)
2364 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2377 struct elf_info_failed
*eif
)
2379 const struct elf_backend_data
*bed
;
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2387 while (h
->root
.type
== bfd_link_hash_indirect
)
2388 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2390 if (h
->root
.type
!= bfd_link_hash_defined
2391 && h
->root
.type
!= bfd_link_hash_defweak
)
2394 h
->ref_regular_nonweak
= 1;
2398 if (h
->root
.u
.def
.section
->owner
!= NULL
2399 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2400 == bfd_target_elf_flavour
))
2403 h
->ref_regular_nonweak
= 1;
2409 if (h
->dynindx
== -1
2413 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h
->root
.type
== bfd_link_hash_defined
2429 || h
->root
.type
== bfd_link_hash_defweak
)
2431 && (h
->root
.u
.def
.section
->owner
!= NULL
2432 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2433 != bfd_target_elf_flavour
)
2434 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2435 && !h
->def_dynamic
)))
2439 /* Backend specific symbol fixup. */
2440 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2441 if (bed
->elf_backend_fixup_symbol
2442 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h
->root
.type
== bfd_link_hash_defined
2454 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2464 && eif
->info
->shared
2465 && is_elf_hash_table (eif
->info
->hash
)
2466 && (SYMBOLIC_BIND (eif
->info
, h
)
2467 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2470 bfd_boolean force_local
;
2472 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2474 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2480 && h
->root
.type
== bfd_link_hash_undefweak
)
2481 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h
->u
.weakdef
!= NULL
)
2488 struct elf_link_hash_entry
*weakdef
;
2490 weakdef
= h
->u
.weakdef
;
2491 if (h
->root
.type
== bfd_link_hash_indirect
)
2492 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2494 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2495 || h
->root
.type
== bfd_link_hash_defweak
);
2496 BFD_ASSERT (weakdef
->def_dynamic
);
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef
->def_regular
)
2502 h
->u
.weakdef
= NULL
;
2505 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2506 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2507 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2521 struct elf_info_failed
*eif
= data
;
2523 const struct elf_backend_data
*bed
;
2525 if (! is_elf_hash_table (eif
->info
->hash
))
2528 if (h
->root
.type
== bfd_link_hash_warning
)
2530 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2531 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h
->root
.type
== bfd_link_hash_indirect
)
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2558 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2560 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h
->dynamic_adjusted
)
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h
->dynamic_adjusted
= 1;
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2603 if (h
->u
.weakdef
!= NULL
)
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h
->u
.weakdef
->ref_regular
= 1;
2611 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2621 && h
->type
== STT_NOTYPE
2623 (*_bfd_error_handler
)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h
->root
.root
.string
);
2627 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2628 bed
= get_elf_backend_data (dynobj
);
2629 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2645 unsigned int power_of_two
;
2647 asection
*sec
= h
->root
.u
.def
.section
;
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2655 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2656 while ((h
->root
.u
.def
.value
& mask
) != 0)
2662 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h
->root
.u
.def
.section
= dynbss
;
2676 h
->root
.u
.def
.value
= dynbss
->size
;
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss
->size
+= h
->size
;
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2692 if (h
->root
.type
== bfd_link_hash_warning
)
2693 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2695 if ((h
->root
.type
== bfd_link_hash_defined
2696 || h
->root
.type
== bfd_link_hash_defweak
)
2697 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2698 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2700 bfd
*output_bfd
= data
;
2702 h
->root
.u
.def
.value
=
2703 _bfd_merged_section_offset (output_bfd
,
2704 &h
->root
.u
.def
.section
,
2705 elf_section_data (sec
)->sec_info
,
2706 h
->root
.u
.def
.value
);
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2718 struct bfd_link_info
*info
,
2719 bfd_boolean ignore_protected
)
2721 bfd_boolean binding_stays_local_p
;
2722 const struct elf_backend_data
*bed
;
2723 struct elf_link_hash_table
*hash_table
;
2728 while (h
->root
.type
== bfd_link_hash_indirect
2729 || h
->root
.type
== bfd_link_hash_warning
)
2730 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h
->dynindx
== -1)
2735 if (h
->forced_local
)
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2742 switch (ELF_ST_VISIBILITY (h
->other
))
2749 hash_table
= elf_hash_table (info
);
2750 if (!is_elf_hash_table (hash_table
))
2753 bed
= get_elf_backend_data (hash_table
->dynobj
);
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2759 binding_stays_local_p
= TRUE
;
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h
->def_regular
)
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p
;
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2782 struct bfd_link_info
*info
,
2783 bfd_boolean local_protected
)
2785 const struct elf_backend_data
*bed
;
2786 struct elf_link_hash_table
*hash_table
;
2788 /* If it's a local sym, of course we resolve locally. */
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h
))
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h
->def_regular
)
2801 /* Forced local symbols resolve locally. */
2802 if (h
->forced_local
)
2805 /* As do non-dynamic symbols. */
2806 if (h
->dynindx
== -1)
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h
->other
) != STV_PROTECTED
)
2824 hash_table
= elf_hash_table (info
);
2825 if (!is_elf_hash_table (hash_table
))
2828 bed
= get_elf_backend_data (hash_table
->dynobj
);
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed
->is_function_type (h
->type
))
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected
;
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2843 struct bfd_section
*
2844 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2846 struct bfd_section
*sec
, *tls
;
2847 unsigned int align
= 0;
2849 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2850 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2854 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2855 if (sec
->alignment_power
> align
)
2856 align
= sec
->alignment_power
;
2858 elf_hash_table (info
)->tls_sec
= tls
;
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2863 tls
->alignment_power
= align
;
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2870 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2871 Elf_Internal_Sym
*sym
)
2873 const struct elf_backend_data
*bed
;
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2877 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2880 bed
= get_elf_backend_data (abfd
);
2881 /* Function symbols do not count. */
2882 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym
->st_shndx
== SHN_UNDEF
)
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed
->common_definition (sym
))
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2897 /* FIXME - this function is not coded yet:
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2913 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2915 Elf_Internal_Shdr
* hdr
;
2916 bfd_size_type symcount
;
2917 bfd_size_type extsymcount
;
2918 bfd_size_type extsymoff
;
2919 Elf_Internal_Sym
*isymbuf
;
2920 Elf_Internal_Sym
*isym
;
2921 Elf_Internal_Sym
*isymend
;
2924 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2928 if (! bfd_check_format (abfd
, bfd_object
))
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd
->archive_pass
)
2938 /* Select the appropriate symbol table. */
2939 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2940 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2942 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2944 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd
))
2950 extsymcount
= symcount
;
2955 extsymcount
= symcount
- hdr
->sh_info
;
2956 extsymoff
= hdr
->sh_info
;
2959 if (extsymcount
== 0)
2962 /* Read in the symbol table. */
2963 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
2965 if (isymbuf
== NULL
)
2968 /* Scan the symbol table looking for SYMDEF. */
2970 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
2974 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
2979 if (strcmp (name
, symdef
->name
) == 0)
2981 result
= is_global_data_symbol_definition (abfd
, isym
);
2991 /* Add an entry to the .dynamic table. */
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
2998 struct elf_link_hash_table
*hash_table
;
2999 const struct elf_backend_data
*bed
;
3001 bfd_size_type newsize
;
3002 bfd_byte
*newcontents
;
3003 Elf_Internal_Dyn dyn
;
3005 hash_table
= elf_hash_table (info
);
3006 if (! is_elf_hash_table (hash_table
))
3009 bed
= get_elf_backend_data (hash_table
->dynobj
);
3010 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3011 BFD_ASSERT (s
!= NULL
);
3013 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3014 newcontents
= bfd_realloc (s
->contents
, newsize
);
3015 if (newcontents
== NULL
)
3019 dyn
.d_un
.d_val
= val
;
3020 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3023 s
->contents
= newcontents
;
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3033 elf_add_dt_needed_tag (bfd
*abfd
,
3034 struct bfd_link_info
*info
,
3038 struct elf_link_hash_table
*hash_table
;
3039 bfd_size_type oldsize
;
3040 bfd_size_type strindex
;
3042 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3045 hash_table
= elf_hash_table (info
);
3046 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3047 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3048 if (strindex
== (bfd_size_type
) -1)
3051 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3054 const struct elf_backend_data
*bed
;
3057 bed
= get_elf_backend_data (hash_table
->dynobj
);
3058 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3060 for (extdyn
= sdyn
->contents
;
3061 extdyn
< sdyn
->contents
+ sdyn
->size
;
3062 extdyn
+= bed
->s
->sizeof_dyn
)
3064 Elf_Internal_Dyn dyn
;
3066 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3067 if (dyn
.d_tag
== DT_NEEDED
3068 && dyn
.d_un
.d_val
== strindex
)
3070 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3081 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3091 /* Sort symbol by value and section. */
3093 elf_sort_symbol (const void *arg1
, const void *arg2
)
3095 const struct elf_link_hash_entry
*h1
;
3096 const struct elf_link_hash_entry
*h2
;
3097 bfd_signed_vma vdiff
;
3099 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3100 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3101 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3103 return vdiff
> 0 ? 1 : -1;
3106 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3108 return sdiff
> 0 ? 1 : -1;
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3119 struct elf_strtab_hash
*dynstr
= data
;
3121 if (h
->root
.type
== bfd_link_hash_warning
)
3122 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3124 if (h
->dynindx
!= -1)
3125 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3129 /* Assign string offsets in .dynstr, update all structures referencing
3133 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3135 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3136 struct elf_link_local_dynamic_entry
*entry
;
3137 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3138 bfd
*dynobj
= hash_table
->dynobj
;
3141 const struct elf_backend_data
*bed
;
3144 _bfd_elf_strtab_finalize (dynstr
);
3145 size
= _bfd_elf_strtab_size (dynstr
);
3147 bed
= get_elf_backend_data (dynobj
);
3148 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3149 BFD_ASSERT (sdyn
!= NULL
);
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn
= sdyn
->contents
;
3153 extdyn
< sdyn
->contents
+ sdyn
->size
;
3154 extdyn
+= bed
->s
->sizeof_dyn
)
3156 Elf_Internal_Dyn dyn
;
3158 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3162 dyn
.d_un
.d_val
= size
;
3170 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3175 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3178 /* Now update local dynamic symbols. */
3179 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3180 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3181 entry
->isym
.st_name
);
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd
)->cverdefs
)
3192 Elf_Internal_Verdef def
;
3193 Elf_Internal_Verdaux defaux
;
3195 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3199 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3201 p
+= sizeof (Elf_External_Verdef
);
3202 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3204 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3206 _bfd_elf_swap_verdaux_in (output_bfd
,
3207 (Elf_External_Verdaux
*) p
, &defaux
);
3208 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3210 _bfd_elf_swap_verdaux_out (output_bfd
,
3211 &defaux
, (Elf_External_Verdaux
*) p
);
3212 p
+= sizeof (Elf_External_Verdaux
);
3215 while (def
.vd_next
);
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd
)->verref
)
3224 Elf_Internal_Verneed need
;
3225 Elf_Internal_Vernaux needaux
;
3227 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3231 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3233 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3234 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3235 (Elf_External_Verneed
*) p
);
3236 p
+= sizeof (Elf_External_Verneed
);
3237 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3239 _bfd_elf_swap_vernaux_in (output_bfd
,
3240 (Elf_External_Vernaux
*) p
, &needaux
);
3241 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3243 _bfd_elf_swap_vernaux_out (output_bfd
,
3245 (Elf_External_Vernaux
*) p
);
3246 p
+= sizeof (Elf_External_Vernaux
);
3249 while (need
.vn_next
);
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3260 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3261 const bfd_target
*output
)
3263 return input
== output
;
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3271 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3272 const bfd_target
*output
)
3274 const struct elf_backend_data
*obed
, *ibed
;
3276 if (input
== output
)
3279 ibed
= xvec_get_elf_backend_data (input
);
3280 obed
= xvec_get_elf_backend_data (output
);
3282 if (ibed
->arch
!= obed
->arch
)
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3289 /* Add symbols from an ELF object file to the linker hash table. */
3292 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3294 Elf_Internal_Shdr
*hdr
;
3295 bfd_size_type symcount
;
3296 bfd_size_type extsymcount
;
3297 bfd_size_type extsymoff
;
3298 struct elf_link_hash_entry
**sym_hash
;
3299 bfd_boolean dynamic
;
3300 Elf_External_Versym
*extversym
= NULL
;
3301 Elf_External_Versym
*ever
;
3302 struct elf_link_hash_entry
*weaks
;
3303 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3304 bfd_size_type nondeflt_vers_cnt
= 0;
3305 Elf_Internal_Sym
*isymbuf
= NULL
;
3306 Elf_Internal_Sym
*isym
;
3307 Elf_Internal_Sym
*isymend
;
3308 const struct elf_backend_data
*bed
;
3309 bfd_boolean add_needed
;
3310 struct elf_link_hash_table
*htab
;
3312 void *alloc_mark
= NULL
;
3313 struct bfd_hash_entry
**old_table
= NULL
;
3314 unsigned int old_size
= 0;
3315 unsigned int old_count
= 0;
3316 void *old_tab
= NULL
;
3319 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3320 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3321 long old_dynsymcount
= 0;
3323 size_t hashsize
= 0;
3325 htab
= elf_hash_table (info
);
3326 bed
= get_elf_backend_data (abfd
);
3328 if ((abfd
->flags
& DYNAMIC
) == 0)
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info
->relocatable
3338 || !is_elf_hash_table (htab
)
3339 || htab
->root
.creator
!= abfd
->xvec
)
3341 if (info
->relocatable
)
3342 bfd_set_error (bfd_error_invalid_operation
);
3344 bfd_set_error (bfd_error_wrong_format
);
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info
->executable
)
3357 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3361 name
= bfd_get_section_name (abfd
, s
);
3362 if (CONST_STRNEQ (name
, ".gnu.warning."))
3367 name
+= sizeof ".gnu.warning." - 1;
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3380 struct elf_link_hash_entry
*h
;
3382 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3384 /* FIXME: What about bfd_link_hash_common? */
3386 && (h
->root
.type
== bfd_link_hash_defined
3387 || h
->root
.type
== bfd_link_hash_defweak
))
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3398 msg
= bfd_alloc (abfd
, sz
+ 1);
3402 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3409 FALSE
, bed
->collect
, NULL
)))
3412 if (! info
->relocatable
)
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s
->flags
|= SEC_EXCLUDE
;
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3435 && is_elf_hash_table (htab
)
3436 && htab
->root
.creator
== abfd
->xvec
3437 && !htab
->dynamic_sections_created
)
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3443 else if (!is_elf_hash_table (htab
))
3448 const char *soname
= NULL
;
3449 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s
= abfd
->sections
) != NULL
3455 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3465 add_needed
= (elf_dyn_lib_class (abfd
)
3466 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3467 | DYN_NO_NEEDED
)) == 0;
3469 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3475 unsigned long shlink
;
3477 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3478 goto error_free_dyn
;
3480 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3482 goto error_free_dyn
;
3483 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3485 for (extdyn
= dynbuf
;
3486 extdyn
< dynbuf
+ s
->size
;
3487 extdyn
+= bed
->s
->sizeof_dyn
)
3489 Elf_Internal_Dyn dyn
;
3491 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3492 if (dyn
.d_tag
== DT_SONAME
)
3494 unsigned int tagv
= dyn
.d_un
.d_val
;
3495 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3497 goto error_free_dyn
;
3499 if (dyn
.d_tag
== DT_NEEDED
)
3501 struct bfd_link_needed_list
*n
, **pn
;
3503 unsigned int tagv
= dyn
.d_un
.d_val
;
3505 amt
= sizeof (struct bfd_link_needed_list
);
3506 n
= bfd_alloc (abfd
, amt
);
3507 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3508 if (n
== NULL
|| fnm
== NULL
)
3509 goto error_free_dyn
;
3510 amt
= strlen (fnm
) + 1;
3511 anm
= bfd_alloc (abfd
, amt
);
3513 goto error_free_dyn
;
3514 memcpy (anm
, fnm
, amt
);
3518 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3522 if (dyn
.d_tag
== DT_RUNPATH
)
3524 struct bfd_link_needed_list
*n
, **pn
;
3526 unsigned int tagv
= dyn
.d_un
.d_val
;
3528 amt
= sizeof (struct bfd_link_needed_list
);
3529 n
= bfd_alloc (abfd
, amt
);
3530 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3531 if (n
== NULL
|| fnm
== NULL
)
3532 goto error_free_dyn
;
3533 amt
= strlen (fnm
) + 1;
3534 anm
= bfd_alloc (abfd
, amt
);
3536 goto error_free_dyn
;
3537 memcpy (anm
, fnm
, amt
);
3541 for (pn
= & runpath
;
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3550 struct bfd_link_needed_list
*n
, **pn
;
3552 unsigned int tagv
= dyn
.d_un
.d_val
;
3554 amt
= sizeof (struct bfd_link_needed_list
);
3555 n
= bfd_alloc (abfd
, amt
);
3556 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3557 if (n
== NULL
|| fnm
== NULL
)
3558 goto error_free_dyn
;
3559 amt
= strlen (fnm
) + 1;
3560 anm
= bfd_alloc (abfd
, amt
);
3567 memcpy (anm
, fnm
, amt
);
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3589 struct bfd_link_needed_list
**pn
;
3590 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3602 bfd_section_list_clear (abfd
);
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3609 if (soname
== NULL
|| *soname
== '\0')
3611 soname
= elf_dt_name (abfd
);
3612 if (soname
== NULL
|| *soname
== '\0')
3613 soname
= bfd_get_filename (abfd
);
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd
) = soname
;
3620 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3636 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3637 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3639 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3641 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3646 if (elf_bad_symtab (abfd
))
3648 extsymcount
= symcount
;
3653 extsymcount
= symcount
- hdr
->sh_info
;
3654 extsymoff
= hdr
->sh_info
;
3658 if (extsymcount
!= 0)
3660 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3662 if (isymbuf
== NULL
)
3665 /* We store a pointer to the hash table entry for each external
3667 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3668 sym_hash
= bfd_alloc (abfd
, amt
);
3669 if (sym_hash
== NULL
)
3670 goto error_free_sym
;
3671 elf_sym_hashes (abfd
) = sym_hash
;
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd
,
3678 info
->default_imported_symver
))
3679 goto error_free_sym
;
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd
) != 0)
3685 Elf_Internal_Shdr
*versymhdr
;
3687 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3688 extversym
= bfd_malloc (versymhdr
->sh_size
);
3689 if (extversym
== NULL
)
3690 goto error_free_sym
;
3691 amt
= versymhdr
->sh_size
;
3692 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3693 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3694 goto error_free_vers
;
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3706 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3708 struct bfd_hash_entry
*p
;
3709 struct elf_link_hash_entry
*h
;
3711 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3713 h
= (struct elf_link_hash_entry
*) p
;
3714 entsize
+= htab
->root
.table
.entsize
;
3715 if (h
->root
.type
== bfd_link_hash_warning
)
3716 entsize
+= htab
->root
.table
.entsize
;
3720 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3721 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3722 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3723 if (old_tab
== NULL
)
3724 goto error_free_vers
;
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3729 if (alloc_mark
== NULL
)
3730 goto error_free_vers
;
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3736 goto error_free_vers
;
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash
= (char *) old_tab
+ tabsize
;
3741 old_ent
= (char *) old_hash
+ hashsize
;
3742 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3743 memcpy (old_hash
, sym_hash
, hashsize
);
3744 old_undefs
= htab
->root
.undefs
;
3745 old_undefs_tail
= htab
->root
.undefs_tail
;
3746 old_table
= htab
->root
.table
.table
;
3747 old_size
= htab
->root
.table
.size
;
3748 old_count
= htab
->root
.table
.count
;
3749 old_dynsymcount
= htab
->dynsymcount
;
3751 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3753 struct bfd_hash_entry
*p
;
3754 struct elf_link_hash_entry
*h
;
3756 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3758 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3759 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3760 h
= (struct elf_link_hash_entry
*) p
;
3761 if (h
->root
.type
== bfd_link_hash_warning
)
3763 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3764 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3771 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3772 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3774 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3778 asection
*sec
, *new_sec
;
3781 struct elf_link_hash_entry
*h
;
3782 bfd_boolean definition
;
3783 bfd_boolean size_change_ok
;
3784 bfd_boolean type_change_ok
;
3785 bfd_boolean new_weakdef
;
3786 bfd_boolean override
;
3788 unsigned int old_alignment
;
3793 flags
= BSF_NO_FLAGS
;
3795 value
= isym
->st_value
;
3797 common
= bed
->common_definition (isym
);
3799 bind
= ELF_ST_BIND (isym
->st_info
);
3800 if (bind
== STB_LOCAL
)
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3808 else if (bind
== STB_GLOBAL
)
3810 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3813 else if (bind
== STB_WEAK
)
3817 /* Leave it up to the processor backend. */
3820 if (isym
->st_shndx
== SHN_UNDEF
)
3821 sec
= bfd_und_section_ptr
;
3822 else if (isym
->st_shndx
< SHN_LORESERVE
3823 || isym
->st_shndx
> SHN_HIRESERVE
)
3825 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3827 sec
= bfd_abs_section_ptr
;
3828 else if (sec
->kept_section
)
3830 /* Symbols from discarded section are undefined. We keep
3832 sec
= bfd_und_section_ptr
;
3833 isym
->st_shndx
= SHN_UNDEF
;
3835 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3838 else if (isym
->st_shndx
== SHN_ABS
)
3839 sec
= bfd_abs_section_ptr
;
3840 else if (isym
->st_shndx
== SHN_COMMON
)
3842 sec
= bfd_com_section_ptr
;
3843 /* What ELF calls the size we call the value. What ELF
3844 calls the value we call the alignment. */
3845 value
= isym
->st_size
;
3849 /* Leave it up to the processor backend. */
3852 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3855 goto error_free_vers
;
3857 if (isym
->st_shndx
== SHN_COMMON
3858 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3859 && !info
->relocatable
)
3861 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3865 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3868 | SEC_LINKER_CREATED
3869 | SEC_THREAD_LOCAL
));
3871 goto error_free_vers
;
3875 else if (bed
->elf_add_symbol_hook
)
3877 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3879 goto error_free_vers
;
3881 /* The hook function sets the name to NULL if this symbol
3882 should be skipped for some reason. */
3887 /* Sanity check that all possibilities were handled. */
3890 bfd_set_error (bfd_error_bad_value
);
3891 goto error_free_vers
;
3894 if (bfd_is_und_section (sec
)
3895 || bfd_is_com_section (sec
))
3900 size_change_ok
= FALSE
;
3901 type_change_ok
= bed
->type_change_ok
;
3906 if (is_elf_hash_table (htab
))
3908 Elf_Internal_Versym iver
;
3909 unsigned int vernum
= 0;
3914 if (info
->default_imported_symver
)
3915 /* Use the default symbol version created earlier. */
3916 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
3921 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
3923 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
3925 /* If this is a hidden symbol, or if it is not version
3926 1, we append the version name to the symbol name.
3927 However, we do not modify a non-hidden absolute symbol
3928 if it is not a function, because it might be the version
3929 symbol itself. FIXME: What if it isn't? */
3930 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
3932 && (!bfd_is_abs_section (sec
)
3933 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
3936 size_t namelen
, verlen
, newlen
;
3939 if (isym
->st_shndx
!= SHN_UNDEF
)
3941 if (vernum
> elf_tdata (abfd
)->cverdefs
)
3943 else if (vernum
> 1)
3945 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
3951 (*_bfd_error_handler
)
3952 (_("%B: %s: invalid version %u (max %d)"),
3954 elf_tdata (abfd
)->cverdefs
);
3955 bfd_set_error (bfd_error_bad_value
);
3956 goto error_free_vers
;
3961 /* We cannot simply test for the number of
3962 entries in the VERNEED section since the
3963 numbers for the needed versions do not start
3965 Elf_Internal_Verneed
*t
;
3968 for (t
= elf_tdata (abfd
)->verref
;
3972 Elf_Internal_Vernaux
*a
;
3974 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3976 if (a
->vna_other
== vernum
)
3978 verstr
= a
->vna_nodename
;
3987 (*_bfd_error_handler
)
3988 (_("%B: %s: invalid needed version %d"),
3989 abfd
, name
, vernum
);
3990 bfd_set_error (bfd_error_bad_value
);
3991 goto error_free_vers
;
3995 namelen
= strlen (name
);
3996 verlen
= strlen (verstr
);
3997 newlen
= namelen
+ verlen
+ 2;
3998 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
3999 && isym
->st_shndx
!= SHN_UNDEF
)
4002 newname
= bfd_hash_allocate (&htab
->root
.table
, newlen
);
4003 if (newname
== NULL
)
4004 goto error_free_vers
;
4005 memcpy (newname
, name
, namelen
);
4006 p
= newname
+ namelen
;
4008 /* If this is a defined non-hidden version symbol,
4009 we add another @ to the name. This indicates the
4010 default version of the symbol. */
4011 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4012 && isym
->st_shndx
!= SHN_UNDEF
)
4014 memcpy (p
, verstr
, verlen
+ 1);
4019 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4020 &value
, &old_alignment
,
4021 sym_hash
, &skip
, &override
,
4022 &type_change_ok
, &size_change_ok
))
4023 goto error_free_vers
;
4032 while (h
->root
.type
== bfd_link_hash_indirect
4033 || h
->root
.type
== bfd_link_hash_warning
)
4034 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4036 /* Remember the old alignment if this is a common symbol, so
4037 that we don't reduce the alignment later on. We can't
4038 check later, because _bfd_generic_link_add_one_symbol
4039 will set a default for the alignment which we want to
4040 override. We also remember the old bfd where the existing
4041 definition comes from. */
4042 switch (h
->root
.type
)
4047 case bfd_link_hash_defined
:
4048 case bfd_link_hash_defweak
:
4049 old_bfd
= h
->root
.u
.def
.section
->owner
;
4052 case bfd_link_hash_common
:
4053 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4054 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4058 if (elf_tdata (abfd
)->verdef
!= NULL
4062 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4065 if (! (_bfd_generic_link_add_one_symbol
4066 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4067 (struct bfd_link_hash_entry
**) sym_hash
)))
4068 goto error_free_vers
;
4071 while (h
->root
.type
== bfd_link_hash_indirect
4072 || h
->root
.type
== bfd_link_hash_warning
)
4073 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4076 new_weakdef
= FALSE
;
4079 && (flags
& BSF_WEAK
) != 0
4080 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4081 && is_elf_hash_table (htab
)
4082 && h
->u
.weakdef
== NULL
)
4084 /* Keep a list of all weak defined non function symbols from
4085 a dynamic object, using the weakdef field. Later in this
4086 function we will set the weakdef field to the correct
4087 value. We only put non-function symbols from dynamic
4088 objects on this list, because that happens to be the only
4089 time we need to know the normal symbol corresponding to a
4090 weak symbol, and the information is time consuming to
4091 figure out. If the weakdef field is not already NULL,
4092 then this symbol was already defined by some previous
4093 dynamic object, and we will be using that previous
4094 definition anyhow. */
4096 h
->u
.weakdef
= weaks
;
4101 /* Set the alignment of a common symbol. */
4102 if ((common
|| bfd_is_com_section (sec
))
4103 && h
->root
.type
== bfd_link_hash_common
)
4108 align
= bfd_log2 (isym
->st_value
);
4111 /* The new symbol is a common symbol in a shared object.
4112 We need to get the alignment from the section. */
4113 align
= new_sec
->alignment_power
;
4115 if (align
> old_alignment
4116 /* Permit an alignment power of zero if an alignment of one
4117 is specified and no other alignments have been specified. */
4118 || (isym
->st_value
== 1 && old_alignment
== 0))
4119 h
->root
.u
.c
.p
->alignment_power
= align
;
4121 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4124 if (is_elf_hash_table (htab
))
4128 /* Check the alignment when a common symbol is involved. This
4129 can change when a common symbol is overridden by a normal
4130 definition or a common symbol is ignored due to the old
4131 normal definition. We need to make sure the maximum
4132 alignment is maintained. */
4133 if ((old_alignment
|| common
)
4134 && h
->root
.type
!= bfd_link_hash_common
)
4136 unsigned int common_align
;
4137 unsigned int normal_align
;
4138 unsigned int symbol_align
;
4142 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4143 if (h
->root
.u
.def
.section
->owner
!= NULL
4144 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4146 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4147 if (normal_align
> symbol_align
)
4148 normal_align
= symbol_align
;
4151 normal_align
= symbol_align
;
4155 common_align
= old_alignment
;
4156 common_bfd
= old_bfd
;
4161 common_align
= bfd_log2 (isym
->st_value
);
4163 normal_bfd
= old_bfd
;
4166 if (normal_align
< common_align
)
4168 /* PR binutils/2735 */
4169 if (normal_bfd
== NULL
)
4170 (*_bfd_error_handler
)
4171 (_("Warning: alignment %u of common symbol `%s' in %B"
4172 " is greater than the alignment (%u) of its section %A"),
4173 common_bfd
, h
->root
.u
.def
.section
,
4174 1 << common_align
, name
, 1 << normal_align
);
4176 (*_bfd_error_handler
)
4177 (_("Warning: alignment %u of symbol `%s' in %B"
4178 " is smaller than %u in %B"),
4179 normal_bfd
, common_bfd
,
4180 1 << normal_align
, name
, 1 << common_align
);
4184 /* Remember the symbol size if it isn't undefined. */
4185 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4186 && (definition
|| h
->size
== 0))
4189 && h
->size
!= isym
->st_size
4190 && ! size_change_ok
)
4191 (*_bfd_error_handler
)
4192 (_("Warning: size of symbol `%s' changed"
4193 " from %lu in %B to %lu in %B"),
4195 name
, (unsigned long) h
->size
,
4196 (unsigned long) isym
->st_size
);
4198 h
->size
= isym
->st_size
;
4201 /* If this is a common symbol, then we always want H->SIZE
4202 to be the size of the common symbol. The code just above
4203 won't fix the size if a common symbol becomes larger. We
4204 don't warn about a size change here, because that is
4205 covered by --warn-common. Allow changed between different
4207 if (h
->root
.type
== bfd_link_hash_common
)
4208 h
->size
= h
->root
.u
.c
.size
;
4210 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4211 && (definition
|| h
->type
== STT_NOTYPE
))
4213 if (h
->type
!= STT_NOTYPE
4214 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
4215 && ! type_change_ok
)
4216 (*_bfd_error_handler
)
4217 (_("Warning: type of symbol `%s' changed"
4218 " from %d to %d in %B"),
4219 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
4221 h
->type
= ELF_ST_TYPE (isym
->st_info
);
4224 /* If st_other has a processor-specific meaning, specific
4225 code might be needed here. We never merge the visibility
4226 attribute with the one from a dynamic object. */
4227 if (bed
->elf_backend_merge_symbol_attribute
)
4228 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
4231 /* If this symbol has default visibility and the user has requested
4232 we not re-export it, then mark it as hidden. */
4233 if (definition
&& !dynamic
4235 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
4236 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
4237 isym
->st_other
= (STV_HIDDEN
4238 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
4240 if (ELF_ST_VISIBILITY (isym
->st_other
) != 0 && !dynamic
)
4242 unsigned char hvis
, symvis
, other
, nvis
;
4244 /* Only merge the visibility. Leave the remainder of the
4245 st_other field to elf_backend_merge_symbol_attribute. */
4246 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
4248 /* Combine visibilities, using the most constraining one. */
4249 hvis
= ELF_ST_VISIBILITY (h
->other
);
4250 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
4256 nvis
= hvis
< symvis
? hvis
: symvis
;
4258 h
->other
= other
| nvis
;
4261 /* Set a flag in the hash table entry indicating the type of
4262 reference or definition we just found. Keep a count of
4263 the number of dynamic symbols we find. A dynamic symbol
4264 is one which is referenced or defined by both a regular
4265 object and a shared object. */
4272 if (bind
!= STB_WEAK
)
4273 h
->ref_regular_nonweak
= 1;
4277 if (! info
->executable
4290 || (h
->u
.weakdef
!= NULL
4292 && h
->u
.weakdef
->dynindx
!= -1))
4296 if (definition
&& (sec
->flags
& SEC_DEBUGGING
))
4298 /* We don't want to make debug symbol dynamic. */
4299 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4303 /* Check to see if we need to add an indirect symbol for
4304 the default name. */
4305 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4306 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4307 &sec
, &value
, &dynsym
,
4309 goto error_free_vers
;
4311 if (definition
&& !dynamic
)
4313 char *p
= strchr (name
, ELF_VER_CHR
);
4314 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4316 /* Queue non-default versions so that .symver x, x@FOO
4317 aliases can be checked. */
4320 amt
= ((isymend
- isym
+ 1)
4321 * sizeof (struct elf_link_hash_entry
*));
4322 nondeflt_vers
= bfd_malloc (amt
);
4324 goto error_free_vers
;
4326 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4330 if (dynsym
&& h
->dynindx
== -1)
4332 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4333 goto error_free_vers
;
4334 if (h
->u
.weakdef
!= NULL
4336 && h
->u
.weakdef
->dynindx
== -1)
4338 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4339 goto error_free_vers
;
4342 else if (dynsym
&& h
->dynindx
!= -1)
4343 /* If the symbol already has a dynamic index, but
4344 visibility says it should not be visible, turn it into
4346 switch (ELF_ST_VISIBILITY (h
->other
))
4350 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4361 const char *soname
= elf_dt_name (abfd
);
4363 /* A symbol from a library loaded via DT_NEEDED of some
4364 other library is referenced by a regular object.
4365 Add a DT_NEEDED entry for it. Issue an error if
4366 --no-add-needed is used. */
4367 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4369 (*_bfd_error_handler
)
4370 (_("%s: invalid DSO for symbol `%s' definition"),
4372 bfd_set_error (bfd_error_bad_value
);
4373 goto error_free_vers
;
4376 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4379 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4381 goto error_free_vers
;
4383 BFD_ASSERT (ret
== 0);
4388 if (extversym
!= NULL
)
4394 if (isymbuf
!= NULL
)
4400 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4404 /* Restore the symbol table. */
4405 if (bed
->as_needed_cleanup
)
4406 (*bed
->as_needed_cleanup
) (abfd
, info
);
4407 old_hash
= (char *) old_tab
+ tabsize
;
4408 old_ent
= (char *) old_hash
+ hashsize
;
4409 sym_hash
= elf_sym_hashes (abfd
);
4410 htab
->root
.table
.table
= old_table
;
4411 htab
->root
.table
.size
= old_size
;
4412 htab
->root
.table
.count
= old_count
;
4413 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4414 memcpy (sym_hash
, old_hash
, hashsize
);
4415 htab
->root
.undefs
= old_undefs
;
4416 htab
->root
.undefs_tail
= old_undefs_tail
;
4417 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4419 struct bfd_hash_entry
*p
;
4420 struct elf_link_hash_entry
*h
;
4422 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4424 h
= (struct elf_link_hash_entry
*) p
;
4425 if (h
->root
.type
== bfd_link_hash_warning
)
4426 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4427 if (h
->dynindx
>= old_dynsymcount
)
4428 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4430 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4431 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4432 h
= (struct elf_link_hash_entry
*) p
;
4433 if (h
->root
.type
== bfd_link_hash_warning
)
4435 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4436 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4441 /* Make a special call to the linker "notice" function to
4442 tell it that symbols added for crefs may need to be removed. */
4443 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4445 goto error_free_vers
;
4448 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4450 if (nondeflt_vers
!= NULL
)
4451 free (nondeflt_vers
);
4455 if (old_tab
!= NULL
)
4457 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4459 goto error_free_vers
;
4464 /* Now that all the symbols from this input file are created, handle
4465 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4466 if (nondeflt_vers
!= NULL
)
4468 bfd_size_type cnt
, symidx
;
4470 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4472 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4473 char *shortname
, *p
;
4475 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4477 || (h
->root
.type
!= bfd_link_hash_defined
4478 && h
->root
.type
!= bfd_link_hash_defweak
))
4481 amt
= p
- h
->root
.root
.string
;
4482 shortname
= bfd_malloc (amt
+ 1);
4484 goto error_free_vers
;
4485 memcpy (shortname
, h
->root
.root
.string
, amt
);
4486 shortname
[amt
] = '\0';
4488 hi
= (struct elf_link_hash_entry
*)
4489 bfd_link_hash_lookup (&htab
->root
, shortname
,
4490 FALSE
, FALSE
, FALSE
);
4492 && hi
->root
.type
== h
->root
.type
4493 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4494 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4496 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4497 hi
->root
.type
= bfd_link_hash_indirect
;
4498 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4499 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4500 sym_hash
= elf_sym_hashes (abfd
);
4502 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4503 if (sym_hash
[symidx
] == hi
)
4505 sym_hash
[symidx
] = h
;
4511 free (nondeflt_vers
);
4512 nondeflt_vers
= NULL
;
4515 /* Now set the weakdefs field correctly for all the weak defined
4516 symbols we found. The only way to do this is to search all the
4517 symbols. Since we only need the information for non functions in
4518 dynamic objects, that's the only time we actually put anything on
4519 the list WEAKS. We need this information so that if a regular
4520 object refers to a symbol defined weakly in a dynamic object, the
4521 real symbol in the dynamic object is also put in the dynamic
4522 symbols; we also must arrange for both symbols to point to the
4523 same memory location. We could handle the general case of symbol
4524 aliasing, but a general symbol alias can only be generated in
4525 assembler code, handling it correctly would be very time
4526 consuming, and other ELF linkers don't handle general aliasing
4530 struct elf_link_hash_entry
**hpp
;
4531 struct elf_link_hash_entry
**hppend
;
4532 struct elf_link_hash_entry
**sorted_sym_hash
;
4533 struct elf_link_hash_entry
*h
;
4536 /* Since we have to search the whole symbol list for each weak
4537 defined symbol, search time for N weak defined symbols will be
4538 O(N^2). Binary search will cut it down to O(NlogN). */
4539 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4540 sorted_sym_hash
= bfd_malloc (amt
);
4541 if (sorted_sym_hash
== NULL
)
4543 sym_hash
= sorted_sym_hash
;
4544 hpp
= elf_sym_hashes (abfd
);
4545 hppend
= hpp
+ extsymcount
;
4547 for (; hpp
< hppend
; hpp
++)
4551 && h
->root
.type
== bfd_link_hash_defined
4552 && !bed
->is_function_type (h
->type
))
4560 qsort (sorted_sym_hash
, sym_count
,
4561 sizeof (struct elf_link_hash_entry
*),
4564 while (weaks
!= NULL
)
4566 struct elf_link_hash_entry
*hlook
;
4573 weaks
= hlook
->u
.weakdef
;
4574 hlook
->u
.weakdef
= NULL
;
4576 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4577 || hlook
->root
.type
== bfd_link_hash_defweak
4578 || hlook
->root
.type
== bfd_link_hash_common
4579 || hlook
->root
.type
== bfd_link_hash_indirect
);
4580 slook
= hlook
->root
.u
.def
.section
;
4581 vlook
= hlook
->root
.u
.def
.value
;
4588 bfd_signed_vma vdiff
;
4590 h
= sorted_sym_hash
[idx
];
4591 vdiff
= vlook
- h
->root
.u
.def
.value
;
4598 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4611 /* We didn't find a value/section match. */
4615 for (i
= ilook
; i
< sym_count
; i
++)
4617 h
= sorted_sym_hash
[i
];
4619 /* Stop if value or section doesn't match. */
4620 if (h
->root
.u
.def
.value
!= vlook
4621 || h
->root
.u
.def
.section
!= slook
)
4623 else if (h
!= hlook
)
4625 hlook
->u
.weakdef
= h
;
4627 /* If the weak definition is in the list of dynamic
4628 symbols, make sure the real definition is put
4630 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4632 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4636 /* If the real definition is in the list of dynamic
4637 symbols, make sure the weak definition is put
4638 there as well. If we don't do this, then the
4639 dynamic loader might not merge the entries for the
4640 real definition and the weak definition. */
4641 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4643 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4651 free (sorted_sym_hash
);
4654 if (bed
->check_directives
)
4655 (*bed
->check_directives
) (abfd
, info
);
4657 /* If this object is the same format as the output object, and it is
4658 not a shared library, then let the backend look through the
4661 This is required to build global offset table entries and to
4662 arrange for dynamic relocs. It is not required for the
4663 particular common case of linking non PIC code, even when linking
4664 against shared libraries, but unfortunately there is no way of
4665 knowing whether an object file has been compiled PIC or not.
4666 Looking through the relocs is not particularly time consuming.
4667 The problem is that we must either (1) keep the relocs in memory,
4668 which causes the linker to require additional runtime memory or
4669 (2) read the relocs twice from the input file, which wastes time.
4670 This would be a good case for using mmap.
4672 I have no idea how to handle linking PIC code into a file of a
4673 different format. It probably can't be done. */
4675 && is_elf_hash_table (htab
)
4676 && bed
->check_relocs
!= NULL
4677 && (*bed
->relocs_compatible
) (abfd
->xvec
, htab
->root
.creator
))
4681 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4683 Elf_Internal_Rela
*internal_relocs
;
4686 if ((o
->flags
& SEC_RELOC
) == 0
4687 || o
->reloc_count
== 0
4688 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4689 && (o
->flags
& SEC_DEBUGGING
) != 0)
4690 || bfd_is_abs_section (o
->output_section
))
4693 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4695 if (internal_relocs
== NULL
)
4698 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4700 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4701 free (internal_relocs
);
4708 /* If this is a non-traditional link, try to optimize the handling
4709 of the .stab/.stabstr sections. */
4711 && ! info
->traditional_format
4712 && is_elf_hash_table (htab
)
4713 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4717 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4718 if (stabstr
!= NULL
)
4720 bfd_size_type string_offset
= 0;
4723 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4724 if (CONST_STRNEQ (stab
->name
, ".stab")
4725 && (!stab
->name
[5] ||
4726 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4727 && (stab
->flags
& SEC_MERGE
) == 0
4728 && !bfd_is_abs_section (stab
->output_section
))
4730 struct bfd_elf_section_data
*secdata
;
4732 secdata
= elf_section_data (stab
);
4733 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4734 stabstr
, &secdata
->sec_info
,
4737 if (secdata
->sec_info
)
4738 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4743 if (is_elf_hash_table (htab
) && add_needed
)
4745 /* Add this bfd to the loaded list. */
4746 struct elf_link_loaded_list
*n
;
4748 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4752 n
->next
= htab
->loaded
;
4759 if (old_tab
!= NULL
)
4761 if (nondeflt_vers
!= NULL
)
4762 free (nondeflt_vers
);
4763 if (extversym
!= NULL
)
4766 if (isymbuf
!= NULL
)
4772 /* Return the linker hash table entry of a symbol that might be
4773 satisfied by an archive symbol. Return -1 on error. */
4775 struct elf_link_hash_entry
*
4776 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4777 struct bfd_link_info
*info
,
4780 struct elf_link_hash_entry
*h
;
4784 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4788 /* If this is a default version (the name contains @@), look up the
4789 symbol again with only one `@' as well as without the version.
4790 The effect is that references to the symbol with and without the
4791 version will be matched by the default symbol in the archive. */
4793 p
= strchr (name
, ELF_VER_CHR
);
4794 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4797 /* First check with only one `@'. */
4798 len
= strlen (name
);
4799 copy
= bfd_alloc (abfd
, len
);
4801 return (struct elf_link_hash_entry
*) 0 - 1;
4803 first
= p
- name
+ 1;
4804 memcpy (copy
, name
, first
);
4805 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4807 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4810 /* We also need to check references to the symbol without the
4812 copy
[first
- 1] = '\0';
4813 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4814 FALSE
, FALSE
, FALSE
);
4817 bfd_release (abfd
, copy
);
4821 /* Add symbols from an ELF archive file to the linker hash table. We
4822 don't use _bfd_generic_link_add_archive_symbols because of a
4823 problem which arises on UnixWare. The UnixWare libc.so is an
4824 archive which includes an entry libc.so.1 which defines a bunch of
4825 symbols. The libc.so archive also includes a number of other
4826 object files, which also define symbols, some of which are the same
4827 as those defined in libc.so.1. Correct linking requires that we
4828 consider each object file in turn, and include it if it defines any
4829 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4830 this; it looks through the list of undefined symbols, and includes
4831 any object file which defines them. When this algorithm is used on
4832 UnixWare, it winds up pulling in libc.so.1 early and defining a
4833 bunch of symbols. This means that some of the other objects in the
4834 archive are not included in the link, which is incorrect since they
4835 precede libc.so.1 in the archive.
4837 Fortunately, ELF archive handling is simpler than that done by
4838 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4839 oddities. In ELF, if we find a symbol in the archive map, and the
4840 symbol is currently undefined, we know that we must pull in that
4843 Unfortunately, we do have to make multiple passes over the symbol
4844 table until nothing further is resolved. */
4847 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4850 bfd_boolean
*defined
= NULL
;
4851 bfd_boolean
*included
= NULL
;
4855 const struct elf_backend_data
*bed
;
4856 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4857 (bfd
*, struct bfd_link_info
*, const char *);
4859 if (! bfd_has_map (abfd
))
4861 /* An empty archive is a special case. */
4862 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4864 bfd_set_error (bfd_error_no_armap
);
4868 /* Keep track of all symbols we know to be already defined, and all
4869 files we know to be already included. This is to speed up the
4870 second and subsequent passes. */
4871 c
= bfd_ardata (abfd
)->symdef_count
;
4875 amt
*= sizeof (bfd_boolean
);
4876 defined
= bfd_zmalloc (amt
);
4877 included
= bfd_zmalloc (amt
);
4878 if (defined
== NULL
|| included
== NULL
)
4881 symdefs
= bfd_ardata (abfd
)->symdefs
;
4882 bed
= get_elf_backend_data (abfd
);
4883 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4896 symdefend
= symdef
+ c
;
4897 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4899 struct elf_link_hash_entry
*h
;
4901 struct bfd_link_hash_entry
*undefs_tail
;
4904 if (defined
[i
] || included
[i
])
4906 if (symdef
->file_offset
== last
)
4912 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4913 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
4919 if (h
->root
.type
== bfd_link_hash_common
)
4921 /* We currently have a common symbol. The archive map contains
4922 a reference to this symbol, so we may want to include it. We
4923 only want to include it however, if this archive element
4924 contains a definition of the symbol, not just another common
4927 Unfortunately some archivers (including GNU ar) will put
4928 declarations of common symbols into their archive maps, as
4929 well as real definitions, so we cannot just go by the archive
4930 map alone. Instead we must read in the element's symbol
4931 table and check that to see what kind of symbol definition
4933 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
4936 else if (h
->root
.type
!= bfd_link_hash_undefined
)
4938 if (h
->root
.type
!= bfd_link_hash_undefweak
)
4943 /* We need to include this archive member. */
4944 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
4945 if (element
== NULL
)
4948 if (! bfd_check_format (element
, bfd_object
))
4951 /* Doublecheck that we have not included this object
4952 already--it should be impossible, but there may be
4953 something wrong with the archive. */
4954 if (element
->archive_pass
!= 0)
4956 bfd_set_error (bfd_error_bad_value
);
4959 element
->archive_pass
= 1;
4961 undefs_tail
= info
->hash
->undefs_tail
;
4963 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
4966 if (! bfd_link_add_symbols (element
, info
))
4969 /* If there are any new undefined symbols, we need to make
4970 another pass through the archive in order to see whether
4971 they can be defined. FIXME: This isn't perfect, because
4972 common symbols wind up on undefs_tail and because an
4973 undefined symbol which is defined later on in this pass
4974 does not require another pass. This isn't a bug, but it
4975 does make the code less efficient than it could be. */
4976 if (undefs_tail
!= info
->hash
->undefs_tail
)
4979 /* Look backward to mark all symbols from this object file
4980 which we have already seen in this pass. */
4984 included
[mark
] = TRUE
;
4989 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
4991 /* We mark subsequent symbols from this object file as we go
4992 on through the loop. */
4993 last
= symdef
->file_offset
;
5004 if (defined
!= NULL
)
5006 if (included
!= NULL
)
5011 /* Given an ELF BFD, add symbols to the global hash table as
5015 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5017 switch (bfd_get_format (abfd
))
5020 return elf_link_add_object_symbols (abfd
, info
);
5022 return elf_link_add_archive_symbols (abfd
, info
);
5024 bfd_set_error (bfd_error_wrong_format
);
5029 struct hash_codes_info
5031 unsigned long *hashcodes
;
5035 /* This function will be called though elf_link_hash_traverse to store
5036 all hash value of the exported symbols in an array. */
5039 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5041 struct hash_codes_info
*inf
= data
;
5047 if (h
->root
.type
== bfd_link_hash_warning
)
5048 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5050 /* Ignore indirect symbols. These are added by the versioning code. */
5051 if (h
->dynindx
== -1)
5054 name
= h
->root
.root
.string
;
5055 p
= strchr (name
, ELF_VER_CHR
);
5058 alc
= bfd_malloc (p
- name
+ 1);
5064 memcpy (alc
, name
, p
- name
);
5065 alc
[p
- name
] = '\0';
5069 /* Compute the hash value. */
5070 ha
= bfd_elf_hash (name
);
5072 /* Store the found hash value in the array given as the argument. */
5073 *(inf
->hashcodes
)++ = ha
;
5075 /* And store it in the struct so that we can put it in the hash table
5077 h
->u
.elf_hash_value
= ha
;
5085 struct collect_gnu_hash_codes
5088 const struct elf_backend_data
*bed
;
5089 unsigned long int nsyms
;
5090 unsigned long int maskbits
;
5091 unsigned long int *hashcodes
;
5092 unsigned long int *hashval
;
5093 unsigned long int *indx
;
5094 unsigned long int *counts
;
5097 long int min_dynindx
;
5098 unsigned long int bucketcount
;
5099 unsigned long int symindx
;
5100 long int local_indx
;
5101 long int shift1
, shift2
;
5102 unsigned long int mask
;
5106 /* This function will be called though elf_link_hash_traverse to store
5107 all hash value of the exported symbols in an array. */
5110 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5112 struct collect_gnu_hash_codes
*s
= data
;
5118 if (h
->root
.type
== bfd_link_hash_warning
)
5119 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5121 /* Ignore indirect symbols. These are added by the versioning code. */
5122 if (h
->dynindx
== -1)
5125 /* Ignore also local symbols and undefined symbols. */
5126 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5129 name
= h
->root
.root
.string
;
5130 p
= strchr (name
, ELF_VER_CHR
);
5133 alc
= bfd_malloc (p
- name
+ 1);
5139 memcpy (alc
, name
, p
- name
);
5140 alc
[p
- name
] = '\0';
5144 /* Compute the hash value. */
5145 ha
= bfd_elf_gnu_hash (name
);
5147 /* Store the found hash value in the array for compute_bucket_count,
5148 and also for .dynsym reordering purposes. */
5149 s
->hashcodes
[s
->nsyms
] = ha
;
5150 s
->hashval
[h
->dynindx
] = ha
;
5152 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5153 s
->min_dynindx
= h
->dynindx
;
5161 /* This function will be called though elf_link_hash_traverse to do
5162 final dynaminc symbol renumbering. */
5165 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5167 struct collect_gnu_hash_codes
*s
= data
;
5168 unsigned long int bucket
;
5169 unsigned long int val
;
5171 if (h
->root
.type
== bfd_link_hash_warning
)
5172 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5174 /* Ignore indirect symbols. */
5175 if (h
->dynindx
== -1)
5178 /* Ignore also local symbols and undefined symbols. */
5179 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5181 if (h
->dynindx
>= s
->min_dynindx
)
5182 h
->dynindx
= s
->local_indx
++;
5186 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5187 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5188 & ((s
->maskbits
>> s
->shift1
) - 1);
5189 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5191 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5192 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5193 if (s
->counts
[bucket
] == 1)
5194 /* Last element terminates the chain. */
5196 bfd_put_32 (s
->output_bfd
, val
,
5197 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5198 --s
->counts
[bucket
];
5199 h
->dynindx
= s
->indx
[bucket
]++;
5203 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5206 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5208 return !(h
->forced_local
5209 || h
->root
.type
== bfd_link_hash_undefined
5210 || h
->root
.type
== bfd_link_hash_undefweak
5211 || ((h
->root
.type
== bfd_link_hash_defined
5212 || h
->root
.type
== bfd_link_hash_defweak
)
5213 && h
->root
.u
.def
.section
->output_section
== NULL
));
5216 /* Array used to determine the number of hash table buckets to use
5217 based on the number of symbols there are. If there are fewer than
5218 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5219 fewer than 37 we use 17 buckets, and so forth. We never use more
5220 than 32771 buckets. */
5222 static const size_t elf_buckets
[] =
5224 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5228 /* Compute bucket count for hashing table. We do not use a static set
5229 of possible tables sizes anymore. Instead we determine for all
5230 possible reasonable sizes of the table the outcome (i.e., the
5231 number of collisions etc) and choose the best solution. The
5232 weighting functions are not too simple to allow the table to grow
5233 without bounds. Instead one of the weighting factors is the size.
5234 Therefore the result is always a good payoff between few collisions
5235 (= short chain lengths) and table size. */
5237 compute_bucket_count (struct bfd_link_info
*info
, unsigned long int *hashcodes
,
5238 unsigned long int nsyms
, int gnu_hash
)
5240 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5241 size_t best_size
= 0;
5242 unsigned long int i
;
5245 /* We have a problem here. The following code to optimize the table
5246 size requires an integer type with more the 32 bits. If
5247 BFD_HOST_U_64_BIT is set we know about such a type. */
5248 #ifdef BFD_HOST_U_64_BIT
5253 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5254 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5255 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5256 unsigned long int *counts
;
5258 /* Possible optimization parameters: if we have NSYMS symbols we say
5259 that the hashing table must at least have NSYMS/4 and at most
5261 minsize
= nsyms
/ 4;
5264 best_size
= maxsize
= nsyms
* 2;
5269 if ((best_size
& 31) == 0)
5273 /* Create array where we count the collisions in. We must use bfd_malloc
5274 since the size could be large. */
5276 amt
*= sizeof (unsigned long int);
5277 counts
= bfd_malloc (amt
);
5281 /* Compute the "optimal" size for the hash table. The criteria is a
5282 minimal chain length. The minor criteria is (of course) the size
5284 for (i
= minsize
; i
< maxsize
; ++i
)
5286 /* Walk through the array of hashcodes and count the collisions. */
5287 BFD_HOST_U_64_BIT max
;
5288 unsigned long int j
;
5289 unsigned long int fact
;
5291 if (gnu_hash
&& (i
& 31) == 0)
5294 memset (counts
, '\0', i
* sizeof (unsigned long int));
5296 /* Determine how often each hash bucket is used. */
5297 for (j
= 0; j
< nsyms
; ++j
)
5298 ++counts
[hashcodes
[j
] % i
];
5300 /* For the weight function we need some information about the
5301 pagesize on the target. This is information need not be 100%
5302 accurate. Since this information is not available (so far) we
5303 define it here to a reasonable default value. If it is crucial
5304 to have a better value some day simply define this value. */
5305 # ifndef BFD_TARGET_PAGESIZE
5306 # define BFD_TARGET_PAGESIZE (4096)
5309 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5311 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5314 /* Variant 1: optimize for short chains. We add the squares
5315 of all the chain lengths (which favors many small chain
5316 over a few long chains). */
5317 for (j
= 0; j
< i
; ++j
)
5318 max
+= counts
[j
] * counts
[j
];
5320 /* This adds penalties for the overall size of the table. */
5321 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5324 /* Variant 2: Optimize a lot more for small table. Here we
5325 also add squares of the size but we also add penalties for
5326 empty slots (the +1 term). */
5327 for (j
= 0; j
< i
; ++j
)
5328 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5330 /* The overall size of the table is considered, but not as
5331 strong as in variant 1, where it is squared. */
5332 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5336 /* Compare with current best results. */
5337 if (max
< best_chlen
)
5347 #endif /* defined (BFD_HOST_U_64_BIT) */
5349 /* This is the fallback solution if no 64bit type is available or if we
5350 are not supposed to spend much time on optimizations. We select the
5351 bucket count using a fixed set of numbers. */
5352 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5354 best_size
= elf_buckets
[i
];
5355 if (nsyms
< elf_buckets
[i
+ 1])
5358 if (gnu_hash
&& best_size
< 2)
5365 /* Set up the sizes and contents of the ELF dynamic sections. This is
5366 called by the ELF linker emulation before_allocation routine. We
5367 must set the sizes of the sections before the linker sets the
5368 addresses of the various sections. */
5371 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5374 const char *filter_shlib
,
5375 const char * const *auxiliary_filters
,
5376 struct bfd_link_info
*info
,
5377 asection
**sinterpptr
,
5378 struct bfd_elf_version_tree
*verdefs
)
5380 bfd_size_type soname_indx
;
5382 const struct elf_backend_data
*bed
;
5383 struct elf_assign_sym_version_info asvinfo
;
5387 soname_indx
= (bfd_size_type
) -1;
5389 if (!is_elf_hash_table (info
->hash
))
5392 bed
= get_elf_backend_data (output_bfd
);
5393 if (info
->execstack
)
5394 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5395 else if (info
->noexecstack
)
5396 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5400 asection
*notesec
= NULL
;
5403 for (inputobj
= info
->input_bfds
;
5405 inputobj
= inputobj
->link_next
)
5409 if (inputobj
->flags
& (DYNAMIC
| BFD_LINKER_CREATED
))
5411 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5414 if (s
->flags
& SEC_CODE
)
5418 else if (bed
->default_execstack
)
5423 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5424 if (exec
&& info
->relocatable
5425 && notesec
->output_section
!= bfd_abs_section_ptr
)
5426 notesec
->output_section
->flags
|= SEC_CODE
;
5430 /* Any syms created from now on start with -1 in
5431 got.refcount/offset and plt.refcount/offset. */
5432 elf_hash_table (info
)->init_got_refcount
5433 = elf_hash_table (info
)->init_got_offset
;
5434 elf_hash_table (info
)->init_plt_refcount
5435 = elf_hash_table (info
)->init_plt_offset
;
5437 /* The backend may have to create some sections regardless of whether
5438 we're dynamic or not. */
5439 if (bed
->elf_backend_always_size_sections
5440 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5443 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5446 dynobj
= elf_hash_table (info
)->dynobj
;
5448 /* If there were no dynamic objects in the link, there is nothing to
5453 if (elf_hash_table (info
)->dynamic_sections_created
)
5455 struct elf_info_failed eif
;
5456 struct elf_link_hash_entry
*h
;
5458 struct bfd_elf_version_tree
*t
;
5459 struct bfd_elf_version_expr
*d
;
5461 bfd_boolean all_defined
;
5463 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5464 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5468 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5470 if (soname_indx
== (bfd_size_type
) -1
5471 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5477 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5479 info
->flags
|= DF_SYMBOLIC
;
5486 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5488 if (indx
== (bfd_size_type
) -1
5489 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5492 if (info
->new_dtags
)
5494 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5495 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5500 if (filter_shlib
!= NULL
)
5504 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5505 filter_shlib
, TRUE
);
5506 if (indx
== (bfd_size_type
) -1
5507 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5511 if (auxiliary_filters
!= NULL
)
5513 const char * const *p
;
5515 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5519 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5521 if (indx
== (bfd_size_type
) -1
5522 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5528 eif
.verdefs
= verdefs
;
5531 /* If we are supposed to export all symbols into the dynamic symbol
5532 table (this is not the normal case), then do so. */
5533 if (info
->export_dynamic
5534 || (info
->executable
&& info
->dynamic
))
5536 elf_link_hash_traverse (elf_hash_table (info
),
5537 _bfd_elf_export_symbol
,
5543 /* Make all global versions with definition. */
5544 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5545 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5546 if (!d
->symver
&& d
->symbol
)
5548 const char *verstr
, *name
;
5549 size_t namelen
, verlen
, newlen
;
5551 struct elf_link_hash_entry
*newh
;
5554 namelen
= strlen (name
);
5556 verlen
= strlen (verstr
);
5557 newlen
= namelen
+ verlen
+ 3;
5559 newname
= bfd_malloc (newlen
);
5560 if (newname
== NULL
)
5562 memcpy (newname
, name
, namelen
);
5564 /* Check the hidden versioned definition. */
5565 p
= newname
+ namelen
;
5567 memcpy (p
, verstr
, verlen
+ 1);
5568 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5569 newname
, FALSE
, FALSE
,
5572 || (newh
->root
.type
!= bfd_link_hash_defined
5573 && newh
->root
.type
!= bfd_link_hash_defweak
))
5575 /* Check the default versioned definition. */
5577 memcpy (p
, verstr
, verlen
+ 1);
5578 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5579 newname
, FALSE
, FALSE
,
5584 /* Mark this version if there is a definition and it is
5585 not defined in a shared object. */
5587 && !newh
->def_dynamic
5588 && (newh
->root
.type
== bfd_link_hash_defined
5589 || newh
->root
.type
== bfd_link_hash_defweak
))
5593 /* Attach all the symbols to their version information. */
5594 asvinfo
.output_bfd
= output_bfd
;
5595 asvinfo
.info
= info
;
5596 asvinfo
.verdefs
= verdefs
;
5597 asvinfo
.failed
= FALSE
;
5599 elf_link_hash_traverse (elf_hash_table (info
),
5600 _bfd_elf_link_assign_sym_version
,
5605 if (!info
->allow_undefined_version
)
5607 /* Check if all global versions have a definition. */
5609 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5610 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5611 if (!d
->symver
&& !d
->script
)
5613 (*_bfd_error_handler
)
5614 (_("%s: undefined version: %s"),
5615 d
->pattern
, t
->name
);
5616 all_defined
= FALSE
;
5621 bfd_set_error (bfd_error_bad_value
);
5626 /* Find all symbols which were defined in a dynamic object and make
5627 the backend pick a reasonable value for them. */
5628 elf_link_hash_traverse (elf_hash_table (info
),
5629 _bfd_elf_adjust_dynamic_symbol
,
5634 /* Add some entries to the .dynamic section. We fill in some of the
5635 values later, in bfd_elf_final_link, but we must add the entries
5636 now so that we know the final size of the .dynamic section. */
5638 /* If there are initialization and/or finalization functions to
5639 call then add the corresponding DT_INIT/DT_FINI entries. */
5640 h
= (info
->init_function
5641 ? elf_link_hash_lookup (elf_hash_table (info
),
5642 info
->init_function
, FALSE
,
5649 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5652 h
= (info
->fini_function
5653 ? elf_link_hash_lookup (elf_hash_table (info
),
5654 info
->fini_function
, FALSE
,
5661 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5665 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5666 if (s
!= NULL
&& s
->linker_has_input
)
5668 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5669 if (! info
->executable
)
5674 for (sub
= info
->input_bfds
; sub
!= NULL
;
5675 sub
= sub
->link_next
)
5676 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5677 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5678 if (elf_section_data (o
)->this_hdr
.sh_type
5679 == SHT_PREINIT_ARRAY
)
5681 (*_bfd_error_handler
)
5682 (_("%B: .preinit_array section is not allowed in DSO"),
5687 bfd_set_error (bfd_error_nonrepresentable_section
);
5691 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5692 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5695 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5696 if (s
!= NULL
&& s
->linker_has_input
)
5698 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5699 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5702 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5703 if (s
!= NULL
&& s
->linker_has_input
)
5705 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5706 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5710 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5711 /* If .dynstr is excluded from the link, we don't want any of
5712 these tags. Strictly, we should be checking each section
5713 individually; This quick check covers for the case where
5714 someone does a /DISCARD/ : { *(*) }. */
5715 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5717 bfd_size_type strsize
;
5719 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5720 if ((info
->emit_hash
5721 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5722 || (info
->emit_gnu_hash
5723 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5724 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5725 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5726 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5727 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5728 bed
->s
->sizeof_sym
))
5733 /* The backend must work out the sizes of all the other dynamic
5735 if (bed
->elf_backend_size_dynamic_sections
5736 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5739 if (elf_hash_table (info
)->dynamic_sections_created
)
5741 unsigned long section_sym_count
;
5744 /* Set up the version definition section. */
5745 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5746 BFD_ASSERT (s
!= NULL
);
5748 /* We may have created additional version definitions if we are
5749 just linking a regular application. */
5750 verdefs
= asvinfo
.verdefs
;
5752 /* Skip anonymous version tag. */
5753 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5754 verdefs
= verdefs
->next
;
5756 if (verdefs
== NULL
&& !info
->create_default_symver
)
5757 s
->flags
|= SEC_EXCLUDE
;
5762 struct bfd_elf_version_tree
*t
;
5764 Elf_Internal_Verdef def
;
5765 Elf_Internal_Verdaux defaux
;
5766 struct bfd_link_hash_entry
*bh
;
5767 struct elf_link_hash_entry
*h
;
5773 /* Make space for the base version. */
5774 size
+= sizeof (Elf_External_Verdef
);
5775 size
+= sizeof (Elf_External_Verdaux
);
5778 /* Make space for the default version. */
5779 if (info
->create_default_symver
)
5781 size
+= sizeof (Elf_External_Verdef
);
5785 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5787 struct bfd_elf_version_deps
*n
;
5789 size
+= sizeof (Elf_External_Verdef
);
5790 size
+= sizeof (Elf_External_Verdaux
);
5793 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5794 size
+= sizeof (Elf_External_Verdaux
);
5798 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5799 if (s
->contents
== NULL
&& s
->size
!= 0)
5802 /* Fill in the version definition section. */
5806 def
.vd_version
= VER_DEF_CURRENT
;
5807 def
.vd_flags
= VER_FLG_BASE
;
5810 if (info
->create_default_symver
)
5812 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5813 def
.vd_next
= sizeof (Elf_External_Verdef
);
5817 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5818 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5819 + sizeof (Elf_External_Verdaux
));
5822 if (soname_indx
!= (bfd_size_type
) -1)
5824 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5826 def
.vd_hash
= bfd_elf_hash (soname
);
5827 defaux
.vda_name
= soname_indx
;
5834 name
= lbasename (output_bfd
->filename
);
5835 def
.vd_hash
= bfd_elf_hash (name
);
5836 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5838 if (indx
== (bfd_size_type
) -1)
5840 defaux
.vda_name
= indx
;
5842 defaux
.vda_next
= 0;
5844 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5845 (Elf_External_Verdef
*) p
);
5846 p
+= sizeof (Elf_External_Verdef
);
5847 if (info
->create_default_symver
)
5849 /* Add a symbol representing this version. */
5851 if (! (_bfd_generic_link_add_one_symbol
5852 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5854 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5856 h
= (struct elf_link_hash_entry
*) bh
;
5859 h
->type
= STT_OBJECT
;
5860 h
->verinfo
.vertree
= NULL
;
5862 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5865 /* Create a duplicate of the base version with the same
5866 aux block, but different flags. */
5869 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5871 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5872 + sizeof (Elf_External_Verdaux
));
5875 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5876 (Elf_External_Verdef
*) p
);
5877 p
+= sizeof (Elf_External_Verdef
);
5879 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5880 (Elf_External_Verdaux
*) p
);
5881 p
+= sizeof (Elf_External_Verdaux
);
5883 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5886 struct bfd_elf_version_deps
*n
;
5889 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5892 /* Add a symbol representing this version. */
5894 if (! (_bfd_generic_link_add_one_symbol
5895 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5897 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5899 h
= (struct elf_link_hash_entry
*) bh
;
5902 h
->type
= STT_OBJECT
;
5903 h
->verinfo
.vertree
= t
;
5905 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5908 def
.vd_version
= VER_DEF_CURRENT
;
5910 if (t
->globals
.list
== NULL
5911 && t
->locals
.list
== NULL
5913 def
.vd_flags
|= VER_FLG_WEAK
;
5914 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
5915 def
.vd_cnt
= cdeps
+ 1;
5916 def
.vd_hash
= bfd_elf_hash (t
->name
);
5917 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5919 if (t
->next
!= NULL
)
5920 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5921 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
5923 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5924 (Elf_External_Verdef
*) p
);
5925 p
+= sizeof (Elf_External_Verdef
);
5927 defaux
.vda_name
= h
->dynstr_index
;
5928 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5930 defaux
.vda_next
= 0;
5931 if (t
->deps
!= NULL
)
5932 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5933 t
->name_indx
= defaux
.vda_name
;
5935 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5936 (Elf_External_Verdaux
*) p
);
5937 p
+= sizeof (Elf_External_Verdaux
);
5939 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5941 if (n
->version_needed
== NULL
)
5943 /* This can happen if there was an error in the
5945 defaux
.vda_name
= 0;
5949 defaux
.vda_name
= n
->version_needed
->name_indx
;
5950 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5953 if (n
->next
== NULL
)
5954 defaux
.vda_next
= 0;
5956 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5958 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5959 (Elf_External_Verdaux
*) p
);
5960 p
+= sizeof (Elf_External_Verdaux
);
5964 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
5965 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
5968 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
5971 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
5973 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
5976 else if (info
->flags
& DF_BIND_NOW
)
5978 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
5984 if (info
->executable
)
5985 info
->flags_1
&= ~ (DF_1_INITFIRST
5988 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
5992 /* Work out the size of the version reference section. */
5994 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
5995 BFD_ASSERT (s
!= NULL
);
5997 struct elf_find_verdep_info sinfo
;
5999 sinfo
.output_bfd
= output_bfd
;
6001 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6002 if (sinfo
.vers
== 0)
6004 sinfo
.failed
= FALSE
;
6006 elf_link_hash_traverse (elf_hash_table (info
),
6007 _bfd_elf_link_find_version_dependencies
,
6012 if (elf_tdata (output_bfd
)->verref
== NULL
)
6013 s
->flags
|= SEC_EXCLUDE
;
6016 Elf_Internal_Verneed
*t
;
6021 /* Build the version definition section. */
6024 for (t
= elf_tdata (output_bfd
)->verref
;
6028 Elf_Internal_Vernaux
*a
;
6030 size
+= sizeof (Elf_External_Verneed
);
6032 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6033 size
+= sizeof (Elf_External_Vernaux
);
6037 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6038 if (s
->contents
== NULL
)
6042 for (t
= elf_tdata (output_bfd
)->verref
;
6047 Elf_Internal_Vernaux
*a
;
6051 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6054 t
->vn_version
= VER_NEED_CURRENT
;
6056 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6057 elf_dt_name (t
->vn_bfd
) != NULL
6058 ? elf_dt_name (t
->vn_bfd
)
6059 : lbasename (t
->vn_bfd
->filename
),
6061 if (indx
== (bfd_size_type
) -1)
6064 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6065 if (t
->vn_nextref
== NULL
)
6068 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6069 + caux
* sizeof (Elf_External_Vernaux
));
6071 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6072 (Elf_External_Verneed
*) p
);
6073 p
+= sizeof (Elf_External_Verneed
);
6075 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6077 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6078 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6079 a
->vna_nodename
, FALSE
);
6080 if (indx
== (bfd_size_type
) -1)
6083 if (a
->vna_nextptr
== NULL
)
6086 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6088 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6089 (Elf_External_Vernaux
*) p
);
6090 p
+= sizeof (Elf_External_Vernaux
);
6094 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6095 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6098 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6102 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6103 && elf_tdata (output_bfd
)->cverdefs
== 0)
6104 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6105 §ion_sym_count
) == 0)
6107 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6108 s
->flags
|= SEC_EXCLUDE
;
6114 /* Find the first non-excluded output section. We'll use its
6115 section symbol for some emitted relocs. */
6117 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6121 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6122 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6123 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6125 elf_hash_table (info
)->text_index_section
= s
;
6130 /* Find two non-excluded output sections, one for code, one for data.
6131 We'll use their section symbols for some emitted relocs. */
6133 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6137 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6138 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6139 == (SEC_ALLOC
| SEC_READONLY
))
6140 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6142 elf_hash_table (info
)->text_index_section
= s
;
6146 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6147 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6148 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6150 elf_hash_table (info
)->data_index_section
= s
;
6154 if (elf_hash_table (info
)->text_index_section
== NULL
)
6155 elf_hash_table (info
)->text_index_section
6156 = elf_hash_table (info
)->data_index_section
;
6160 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6162 const struct elf_backend_data
*bed
;
6164 if (!is_elf_hash_table (info
->hash
))
6167 bed
= get_elf_backend_data (output_bfd
);
6168 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6170 if (elf_hash_table (info
)->dynamic_sections_created
)
6174 bfd_size_type dynsymcount
;
6175 unsigned long section_sym_count
;
6176 unsigned int dtagcount
;
6178 dynobj
= elf_hash_table (info
)->dynobj
;
6180 /* Assign dynsym indicies. In a shared library we generate a
6181 section symbol for each output section, which come first.
6182 Next come all of the back-end allocated local dynamic syms,
6183 followed by the rest of the global symbols. */
6185 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6186 §ion_sym_count
);
6188 /* Work out the size of the symbol version section. */
6189 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6190 BFD_ASSERT (s
!= NULL
);
6191 if (dynsymcount
!= 0
6192 && (s
->flags
& SEC_EXCLUDE
) == 0)
6194 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6195 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6196 if (s
->contents
== NULL
)
6199 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6203 /* Set the size of the .dynsym and .hash sections. We counted
6204 the number of dynamic symbols in elf_link_add_object_symbols.
6205 We will build the contents of .dynsym and .hash when we build
6206 the final symbol table, because until then we do not know the
6207 correct value to give the symbols. We built the .dynstr
6208 section as we went along in elf_link_add_object_symbols. */
6209 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6210 BFD_ASSERT (s
!= NULL
);
6211 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6213 if (dynsymcount
!= 0)
6215 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6216 if (s
->contents
== NULL
)
6219 /* The first entry in .dynsym is a dummy symbol.
6220 Clear all the section syms, in case we don't output them all. */
6221 ++section_sym_count
;
6222 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6225 elf_hash_table (info
)->bucketcount
= 0;
6227 /* Compute the size of the hashing table. As a side effect this
6228 computes the hash values for all the names we export. */
6229 if (info
->emit_hash
)
6231 unsigned long int *hashcodes
;
6232 struct hash_codes_info hashinf
;
6234 unsigned long int nsyms
;
6236 size_t hash_entry_size
;
6238 /* Compute the hash values for all exported symbols. At the same
6239 time store the values in an array so that we could use them for
6241 amt
= dynsymcount
* sizeof (unsigned long int);
6242 hashcodes
= bfd_malloc (amt
);
6243 if (hashcodes
== NULL
)
6245 hashinf
.hashcodes
= hashcodes
;
6246 hashinf
.error
= FALSE
;
6248 /* Put all hash values in HASHCODES. */
6249 elf_link_hash_traverse (elf_hash_table (info
),
6250 elf_collect_hash_codes
, &hashinf
);
6254 nsyms
= hashinf
.hashcodes
- hashcodes
;
6256 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6259 if (bucketcount
== 0)
6262 elf_hash_table (info
)->bucketcount
= bucketcount
;
6264 s
= bfd_get_section_by_name (dynobj
, ".hash");
6265 BFD_ASSERT (s
!= NULL
);
6266 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6267 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6268 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6269 if (s
->contents
== NULL
)
6272 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6273 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6274 s
->contents
+ hash_entry_size
);
6277 if (info
->emit_gnu_hash
)
6280 unsigned char *contents
;
6281 struct collect_gnu_hash_codes cinfo
;
6285 memset (&cinfo
, 0, sizeof (cinfo
));
6287 /* Compute the hash values for all exported symbols. At the same
6288 time store the values in an array so that we could use them for
6290 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6291 cinfo
.hashcodes
= bfd_malloc (amt
);
6292 if (cinfo
.hashcodes
== NULL
)
6295 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6296 cinfo
.min_dynindx
= -1;
6297 cinfo
.output_bfd
= output_bfd
;
6300 /* Put all hash values in HASHCODES. */
6301 elf_link_hash_traverse (elf_hash_table (info
),
6302 elf_collect_gnu_hash_codes
, &cinfo
);
6307 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6309 if (bucketcount
== 0)
6311 free (cinfo
.hashcodes
);
6315 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6316 BFD_ASSERT (s
!= NULL
);
6318 if (cinfo
.nsyms
== 0)
6320 /* Empty .gnu.hash section is special. */
6321 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6322 free (cinfo
.hashcodes
);
6323 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6324 contents
= bfd_zalloc (output_bfd
, s
->size
);
6325 if (contents
== NULL
)
6327 s
->contents
= contents
;
6328 /* 1 empty bucket. */
6329 bfd_put_32 (output_bfd
, 1, contents
);
6330 /* SYMIDX above the special symbol 0. */
6331 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6332 /* Just one word for bitmask. */
6333 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6334 /* Only hash fn bloom filter. */
6335 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6336 /* No hashes are valid - empty bitmask. */
6337 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6338 /* No hashes in the only bucket. */
6339 bfd_put_32 (output_bfd
, 0,
6340 contents
+ 16 + bed
->s
->arch_size
/ 8);
6344 unsigned long int maskwords
, maskbitslog2
;
6345 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6347 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6348 if (maskbitslog2
< 3)
6350 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6351 maskbitslog2
= maskbitslog2
+ 3;
6353 maskbitslog2
= maskbitslog2
+ 2;
6354 if (bed
->s
->arch_size
== 64)
6356 if (maskbitslog2
== 5)
6362 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6363 cinfo
.shift2
= maskbitslog2
;
6364 cinfo
.maskbits
= 1 << maskbitslog2
;
6365 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6366 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6367 amt
+= maskwords
* sizeof (bfd_vma
);
6368 cinfo
.bitmask
= bfd_malloc (amt
);
6369 if (cinfo
.bitmask
== NULL
)
6371 free (cinfo
.hashcodes
);
6375 cinfo
.counts
= (void *) (cinfo
.bitmask
+ maskwords
);
6376 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6377 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6378 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6380 /* Determine how often each hash bucket is used. */
6381 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6382 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6383 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6385 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6386 if (cinfo
.counts
[i
] != 0)
6388 cinfo
.indx
[i
] = cnt
;
6389 cnt
+= cinfo
.counts
[i
];
6391 BFD_ASSERT (cnt
== dynsymcount
);
6392 cinfo
.bucketcount
= bucketcount
;
6393 cinfo
.local_indx
= cinfo
.min_dynindx
;
6395 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6396 s
->size
+= cinfo
.maskbits
/ 8;
6397 contents
= bfd_zalloc (output_bfd
, s
->size
);
6398 if (contents
== NULL
)
6400 free (cinfo
.bitmask
);
6401 free (cinfo
.hashcodes
);
6405 s
->contents
= contents
;
6406 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6407 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6408 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6409 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6410 contents
+= 16 + cinfo
.maskbits
/ 8;
6412 for (i
= 0; i
< bucketcount
; ++i
)
6414 if (cinfo
.counts
[i
] == 0)
6415 bfd_put_32 (output_bfd
, 0, contents
);
6417 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6421 cinfo
.contents
= contents
;
6423 /* Renumber dynamic symbols, populate .gnu.hash section. */
6424 elf_link_hash_traverse (elf_hash_table (info
),
6425 elf_renumber_gnu_hash_syms
, &cinfo
);
6427 contents
= s
->contents
+ 16;
6428 for (i
= 0; i
< maskwords
; ++i
)
6430 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6432 contents
+= bed
->s
->arch_size
/ 8;
6435 free (cinfo
.bitmask
);
6436 free (cinfo
.hashcodes
);
6440 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6441 BFD_ASSERT (s
!= NULL
);
6443 elf_finalize_dynstr (output_bfd
, info
);
6445 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6447 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6448 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6455 /* Indicate that we are only retrieving symbol values from this
6459 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6461 if (is_elf_hash_table (info
->hash
))
6462 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6463 _bfd_generic_link_just_syms (sec
, info
);
6466 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6469 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6472 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6473 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6476 /* Finish SHF_MERGE section merging. */
6479 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6484 if (!is_elf_hash_table (info
->hash
))
6487 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6488 if ((ibfd
->flags
& DYNAMIC
) == 0)
6489 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6490 if ((sec
->flags
& SEC_MERGE
) != 0
6491 && !bfd_is_abs_section (sec
->output_section
))
6493 struct bfd_elf_section_data
*secdata
;
6495 secdata
= elf_section_data (sec
);
6496 if (! _bfd_add_merge_section (abfd
,
6497 &elf_hash_table (info
)->merge_info
,
6498 sec
, &secdata
->sec_info
))
6500 else if (secdata
->sec_info
)
6501 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6504 if (elf_hash_table (info
)->merge_info
!= NULL
)
6505 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6506 merge_sections_remove_hook
);
6510 /* Create an entry in an ELF linker hash table. */
6512 struct bfd_hash_entry
*
6513 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6514 struct bfd_hash_table
*table
,
6517 /* Allocate the structure if it has not already been allocated by a
6521 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6526 /* Call the allocation method of the superclass. */
6527 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6530 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6531 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6533 /* Set local fields. */
6536 ret
->got
= htab
->init_got_refcount
;
6537 ret
->plt
= htab
->init_plt_refcount
;
6538 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6539 - offsetof (struct elf_link_hash_entry
, size
)));
6540 /* Assume that we have been called by a non-ELF symbol reader.
6541 This flag is then reset by the code which reads an ELF input
6542 file. This ensures that a symbol created by a non-ELF symbol
6543 reader will have the flag set correctly. */
6550 /* Copy data from an indirect symbol to its direct symbol, hiding the
6551 old indirect symbol. Also used for copying flags to a weakdef. */
6554 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6555 struct elf_link_hash_entry
*dir
,
6556 struct elf_link_hash_entry
*ind
)
6558 struct elf_link_hash_table
*htab
;
6560 /* Copy down any references that we may have already seen to the
6561 symbol which just became indirect. */
6563 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6564 dir
->ref_regular
|= ind
->ref_regular
;
6565 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6566 dir
->non_got_ref
|= ind
->non_got_ref
;
6567 dir
->needs_plt
|= ind
->needs_plt
;
6568 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6570 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6573 /* Copy over the global and procedure linkage table refcount entries.
6574 These may have been already set up by a check_relocs routine. */
6575 htab
= elf_hash_table (info
);
6576 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6578 if (dir
->got
.refcount
< 0)
6579 dir
->got
.refcount
= 0;
6580 dir
->got
.refcount
+= ind
->got
.refcount
;
6581 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6584 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6586 if (dir
->plt
.refcount
< 0)
6587 dir
->plt
.refcount
= 0;
6588 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6589 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6592 if (ind
->dynindx
!= -1)
6594 if (dir
->dynindx
!= -1)
6595 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6596 dir
->dynindx
= ind
->dynindx
;
6597 dir
->dynstr_index
= ind
->dynstr_index
;
6599 ind
->dynstr_index
= 0;
6604 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6605 struct elf_link_hash_entry
*h
,
6606 bfd_boolean force_local
)
6608 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6612 h
->forced_local
= 1;
6613 if (h
->dynindx
!= -1)
6616 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6622 /* Initialize an ELF linker hash table. */
6625 _bfd_elf_link_hash_table_init
6626 (struct elf_link_hash_table
*table
,
6628 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6629 struct bfd_hash_table
*,
6631 unsigned int entsize
)
6634 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6636 memset (table
, 0, sizeof * table
);
6637 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6638 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6639 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6640 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6641 /* The first dynamic symbol is a dummy. */
6642 table
->dynsymcount
= 1;
6644 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6645 table
->root
.type
= bfd_link_elf_hash_table
;
6650 /* Create an ELF linker hash table. */
6652 struct bfd_link_hash_table
*
6653 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6655 struct elf_link_hash_table
*ret
;
6656 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6658 ret
= bfd_malloc (amt
);
6662 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6663 sizeof (struct elf_link_hash_entry
)))
6672 /* This is a hook for the ELF emulation code in the generic linker to
6673 tell the backend linker what file name to use for the DT_NEEDED
6674 entry for a dynamic object. */
6677 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6679 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6680 && bfd_get_format (abfd
) == bfd_object
)
6681 elf_dt_name (abfd
) = name
;
6685 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6688 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6689 && bfd_get_format (abfd
) == bfd_object
)
6690 lib_class
= elf_dyn_lib_class (abfd
);
6697 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6699 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6700 && bfd_get_format (abfd
) == bfd_object
)
6701 elf_dyn_lib_class (abfd
) = lib_class
;
6704 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6705 the linker ELF emulation code. */
6707 struct bfd_link_needed_list
*
6708 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6709 struct bfd_link_info
*info
)
6711 if (! is_elf_hash_table (info
->hash
))
6713 return elf_hash_table (info
)->needed
;
6716 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6717 hook for the linker ELF emulation code. */
6719 struct bfd_link_needed_list
*
6720 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6721 struct bfd_link_info
*info
)
6723 if (! is_elf_hash_table (info
->hash
))
6725 return elf_hash_table (info
)->runpath
;
6728 /* Get the name actually used for a dynamic object for a link. This
6729 is the SONAME entry if there is one. Otherwise, it is the string
6730 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6733 bfd_elf_get_dt_soname (bfd
*abfd
)
6735 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6736 && bfd_get_format (abfd
) == bfd_object
)
6737 return elf_dt_name (abfd
);
6741 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6742 the ELF linker emulation code. */
6745 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6746 struct bfd_link_needed_list
**pneeded
)
6749 bfd_byte
*dynbuf
= NULL
;
6751 unsigned long shlink
;
6752 bfd_byte
*extdyn
, *extdynend
;
6754 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6758 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6759 || bfd_get_format (abfd
) != bfd_object
)
6762 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6763 if (s
== NULL
|| s
->size
== 0)
6766 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6769 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6773 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6775 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6776 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6779 extdynend
= extdyn
+ s
->size
;
6780 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6782 Elf_Internal_Dyn dyn
;
6784 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6786 if (dyn
.d_tag
== DT_NULL
)
6789 if (dyn
.d_tag
== DT_NEEDED
)
6792 struct bfd_link_needed_list
*l
;
6793 unsigned int tagv
= dyn
.d_un
.d_val
;
6796 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6801 l
= bfd_alloc (abfd
, amt
);
6822 struct elf_symbuf_symbol
6824 unsigned long st_name
; /* Symbol name, index in string tbl */
6825 unsigned char st_info
; /* Type and binding attributes */
6826 unsigned char st_other
; /* Visibilty, and target specific */
6829 struct elf_symbuf_head
6831 struct elf_symbuf_symbol
*ssym
;
6832 bfd_size_type count
;
6833 unsigned int st_shndx
;
6840 Elf_Internal_Sym
*isym
;
6841 struct elf_symbuf_symbol
*ssym
;
6846 /* Sort references to symbols by ascending section number. */
6849 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6851 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6852 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6854 return s1
->st_shndx
- s2
->st_shndx
;
6858 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6860 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6861 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6862 return strcmp (s1
->name
, s2
->name
);
6865 static struct elf_symbuf_head
*
6866 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6868 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6869 struct elf_symbuf_symbol
*ssym
;
6870 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6871 bfd_size_type i
, shndx_count
;
6873 indbuf
= bfd_malloc2 (symcount
, sizeof (*indbuf
));
6877 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6878 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6879 *ind
++ = &isymbuf
[i
];
6882 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
6883 elf_sort_elf_symbol
);
6886 if (indbufend
> indbuf
)
6887 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
6888 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
6891 ssymbuf
= bfd_malloc ((shndx_count
+ 1) * sizeof (*ssymbuf
)
6892 + (indbufend
- indbuf
) * sizeof (*ssymbuf
));
6893 if (ssymbuf
== NULL
)
6899 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
);
6900 ssymbuf
->ssym
= NULL
;
6901 ssymbuf
->count
= shndx_count
;
6902 ssymbuf
->st_shndx
= 0;
6903 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
6905 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
6908 ssymhead
->ssym
= ssym
;
6909 ssymhead
->count
= 0;
6910 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
6912 ssym
->st_name
= (*ind
)->st_name
;
6913 ssym
->st_info
= (*ind
)->st_info
;
6914 ssym
->st_other
= (*ind
)->st_other
;
6917 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
);
6923 /* Check if 2 sections define the same set of local and global
6927 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
6928 struct bfd_link_info
*info
)
6931 const struct elf_backend_data
*bed1
, *bed2
;
6932 Elf_Internal_Shdr
*hdr1
, *hdr2
;
6933 bfd_size_type symcount1
, symcount2
;
6934 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
6935 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
6936 Elf_Internal_Sym
*isym
, *isymend
;
6937 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
6938 bfd_size_type count1
, count2
, i
;
6945 /* Both sections have to be in ELF. */
6946 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
6947 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
6950 if (elf_section_type (sec1
) != elf_section_type (sec2
))
6953 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
6954 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
6955 if (shndx1
== -1 || shndx2
== -1)
6958 bed1
= get_elf_backend_data (bfd1
);
6959 bed2
= get_elf_backend_data (bfd2
);
6960 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
6961 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
6962 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
6963 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
6965 if (symcount1
== 0 || symcount2
== 0)
6971 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
6972 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
6974 if (ssymbuf1
== NULL
)
6976 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
6978 if (isymbuf1
== NULL
)
6981 if (!info
->reduce_memory_overheads
)
6982 elf_tdata (bfd1
)->symbuf
= ssymbuf1
6983 = elf_create_symbuf (symcount1
, isymbuf1
);
6986 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
6988 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
6990 if (isymbuf2
== NULL
)
6993 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
6994 elf_tdata (bfd2
)->symbuf
= ssymbuf2
6995 = elf_create_symbuf (symcount2
, isymbuf2
);
6998 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7000 /* Optimized faster version. */
7001 bfd_size_type lo
, hi
, mid
;
7002 struct elf_symbol
*symp
;
7003 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7006 hi
= ssymbuf1
->count
;
7011 mid
= (lo
+ hi
) / 2;
7012 if ((unsigned int) shndx1
< ssymbuf1
[mid
].st_shndx
)
7014 else if ((unsigned int) shndx1
> ssymbuf1
[mid
].st_shndx
)
7018 count1
= ssymbuf1
[mid
].count
;
7025 hi
= ssymbuf2
->count
;
7030 mid
= (lo
+ hi
) / 2;
7031 if ((unsigned int) shndx2
< ssymbuf2
[mid
].st_shndx
)
7033 else if ((unsigned int) shndx2
> ssymbuf2
[mid
].st_shndx
)
7037 count2
= ssymbuf2
[mid
].count
;
7043 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7046 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7047 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
7048 if (symtable1
== NULL
|| symtable2
== NULL
)
7052 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7053 ssym
< ssymend
; ssym
++, symp
++)
7055 symp
->u
.ssym
= ssym
;
7056 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7062 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7063 ssym
< ssymend
; ssym
++, symp
++)
7065 symp
->u
.ssym
= ssym
;
7066 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7071 /* Sort symbol by name. */
7072 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7073 elf_sym_name_compare
);
7074 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7075 elf_sym_name_compare
);
7077 for (i
= 0; i
< count1
; i
++)
7078 /* Two symbols must have the same binding, type and name. */
7079 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7080 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7081 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7088 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7089 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7090 if (symtable1
== NULL
|| symtable2
== NULL
)
7093 /* Count definitions in the section. */
7095 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7096 if (isym
->st_shndx
== (unsigned int) shndx1
)
7097 symtable1
[count1
++].u
.isym
= isym
;
7100 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7101 if (isym
->st_shndx
== (unsigned int) shndx2
)
7102 symtable2
[count2
++].u
.isym
= isym
;
7104 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7107 for (i
= 0; i
< count1
; i
++)
7109 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7110 symtable1
[i
].u
.isym
->st_name
);
7112 for (i
= 0; i
< count2
; i
++)
7114 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7115 symtable2
[i
].u
.isym
->st_name
);
7117 /* Sort symbol by name. */
7118 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7119 elf_sym_name_compare
);
7120 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7121 elf_sym_name_compare
);
7123 for (i
= 0; i
< count1
; i
++)
7124 /* Two symbols must have the same binding, type and name. */
7125 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7126 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7127 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7145 /* Return TRUE if 2 section types are compatible. */
7148 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7149 bfd
*bbfd
, const asection
*bsec
)
7153 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7154 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7157 return elf_section_type (asec
) == elf_section_type (bsec
);
7160 /* Final phase of ELF linker. */
7162 /* A structure we use to avoid passing large numbers of arguments. */
7164 struct elf_final_link_info
7166 /* General link information. */
7167 struct bfd_link_info
*info
;
7170 /* Symbol string table. */
7171 struct bfd_strtab_hash
*symstrtab
;
7172 /* .dynsym section. */
7173 asection
*dynsym_sec
;
7174 /* .hash section. */
7176 /* symbol version section (.gnu.version). */
7177 asection
*symver_sec
;
7178 /* Buffer large enough to hold contents of any section. */
7180 /* Buffer large enough to hold external relocs of any section. */
7181 void *external_relocs
;
7182 /* Buffer large enough to hold internal relocs of any section. */
7183 Elf_Internal_Rela
*internal_relocs
;
7184 /* Buffer large enough to hold external local symbols of any input
7186 bfd_byte
*external_syms
;
7187 /* And a buffer for symbol section indices. */
7188 Elf_External_Sym_Shndx
*locsym_shndx
;
7189 /* Buffer large enough to hold internal local symbols of any input
7191 Elf_Internal_Sym
*internal_syms
;
7192 /* Array large enough to hold a symbol index for each local symbol
7193 of any input BFD. */
7195 /* Array large enough to hold a section pointer for each local
7196 symbol of any input BFD. */
7197 asection
**sections
;
7198 /* Buffer to hold swapped out symbols. */
7200 /* And one for symbol section indices. */
7201 Elf_External_Sym_Shndx
*symshndxbuf
;
7202 /* Number of swapped out symbols in buffer. */
7203 size_t symbuf_count
;
7204 /* Number of symbols which fit in symbuf. */
7206 /* And same for symshndxbuf. */
7207 size_t shndxbuf_size
;
7210 /* This struct is used to pass information to elf_link_output_extsym. */
7212 struct elf_outext_info
7215 bfd_boolean localsyms
;
7216 struct elf_final_link_info
*finfo
;
7220 /* Support for evaluating a complex relocation.
7222 Complex relocations are generalized, self-describing relocations. The
7223 implementation of them consists of two parts: complex symbols, and the
7224 relocations themselves.
7226 The relocations are use a reserved elf-wide relocation type code (R_RELC
7227 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7228 information (start bit, end bit, word width, etc) into the addend. This
7229 information is extracted from CGEN-generated operand tables within gas.
7231 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7232 internal) representing prefix-notation expressions, including but not
7233 limited to those sorts of expressions normally encoded as addends in the
7234 addend field. The symbol mangling format is:
7237 | <unary-operator> ':' <node>
7238 | <binary-operator> ':' <node> ':' <node>
7241 <literal> := 's' <digits=N> ':' <N character symbol name>
7242 | 'S' <digits=N> ':' <N character section name>
7246 <binary-operator> := as in C
7247 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7250 set_symbol_value (bfd
*bfd_with_globals
,
7251 Elf_Internal_Sym
*isymbuf
,
7256 struct elf_link_hash_entry
**sym_hashes
;
7257 struct elf_link_hash_entry
*h
;
7258 size_t extsymoff
= locsymcount
;
7260 if (symidx
< locsymcount
)
7262 Elf_Internal_Sym
*sym
;
7264 sym
= isymbuf
+ symidx
;
7265 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7267 /* It is a local symbol: move it to the
7268 "absolute" section and give it a value. */
7269 sym
->st_shndx
= SHN_ABS
;
7270 sym
->st_value
= val
;
7273 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7277 /* It is a global symbol: set its link type
7278 to "defined" and give it a value. */
7280 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7281 h
= sym_hashes
[symidx
- extsymoff
];
7282 while (h
->root
.type
== bfd_link_hash_indirect
7283 || h
->root
.type
== bfd_link_hash_warning
)
7284 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7285 h
->root
.type
= bfd_link_hash_defined
;
7286 h
->root
.u
.def
.value
= val
;
7287 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7291 resolve_symbol (const char *name
,
7293 struct elf_final_link_info
*finfo
,
7295 Elf_Internal_Sym
*isymbuf
,
7298 Elf_Internal_Sym
*sym
;
7299 struct bfd_link_hash_entry
*global_entry
;
7300 const char *candidate
= NULL
;
7301 Elf_Internal_Shdr
*symtab_hdr
;
7304 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7306 for (i
= 0; i
< locsymcount
; ++ i
)
7310 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7313 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7314 symtab_hdr
->sh_link
,
7317 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7318 name
, candidate
, (unsigned long) sym
->st_value
);
7320 if (candidate
&& strcmp (candidate
, name
) == 0)
7322 asection
*sec
= finfo
->sections
[i
];
7324 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7325 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7327 printf ("Found symbol with value %8.8lx\n",
7328 (unsigned long) *result
);
7334 /* Hmm, haven't found it yet. perhaps it is a global. */
7335 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7336 FALSE
, FALSE
, TRUE
);
7340 if (global_entry
->type
== bfd_link_hash_defined
7341 || global_entry
->type
== bfd_link_hash_defweak
)
7343 *result
= (global_entry
->u
.def
.value
7344 + global_entry
->u
.def
.section
->output_section
->vma
7345 + global_entry
->u
.def
.section
->output_offset
);
7347 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7348 global_entry
->root
.string
, (unsigned long) *result
);
7357 resolve_section (const char *name
,
7364 for (curr
= sections
; curr
; curr
= curr
->next
)
7365 if (strcmp (curr
->name
, name
) == 0)
7367 *result
= curr
->vma
;
7371 /* Hmm. still haven't found it. try pseudo-section names. */
7372 for (curr
= sections
; curr
; curr
= curr
->next
)
7374 len
= strlen (curr
->name
);
7375 if (len
> strlen (name
))
7378 if (strncmp (curr
->name
, name
, len
) == 0)
7380 if (strncmp (".end", name
+ len
, 4) == 0)
7382 *result
= curr
->vma
+ curr
->size
;
7386 /* Insert more pseudo-section names here, if you like. */
7394 undefined_reference (const char *reftype
, const char *name
)
7396 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7401 eval_symbol (bfd_vma
*result
,
7404 struct elf_final_link_info
*finfo
,
7406 Elf_Internal_Sym
*isymbuf
,
7415 const char *sym
= *symp
;
7417 bfd_boolean symbol_is_section
= FALSE
;
7422 if (len
< 1 || len
> sizeof (symbuf
))
7424 bfd_set_error (bfd_error_invalid_operation
);
7437 *result
= strtoul (sym
, (char **) symp
, 16);
7441 symbol_is_section
= TRUE
;
7444 symlen
= strtol (sym
, (char **) symp
, 10);
7445 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7447 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7449 bfd_set_error (bfd_error_invalid_operation
);
7453 memcpy (symbuf
, sym
, symlen
);
7454 symbuf
[symlen
] = '\0';
7455 *symp
= sym
+ symlen
;
7457 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7458 the symbol as a section, or vice-versa. so we're pretty liberal in our
7459 interpretation here; section means "try section first", not "must be a
7460 section", and likewise with symbol. */
7462 if (symbol_is_section
)
7464 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7465 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7466 isymbuf
, locsymcount
))
7468 undefined_reference ("section", symbuf
);
7474 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7475 isymbuf
, locsymcount
)
7476 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7479 undefined_reference ("symbol", symbuf
);
7486 /* All that remains are operators. */
7488 #define UNARY_OP(op) \
7489 if (strncmp (sym, #op, strlen (#op)) == 0) \
7491 sym += strlen (#op); \
7495 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7496 isymbuf, locsymcount, signed_p)) \
7499 *result = op ((bfd_signed_vma) a); \
7505 #define BINARY_OP(op) \
7506 if (strncmp (sym, #op, strlen (#op)) == 0) \
7508 sym += strlen (#op); \
7512 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7513 isymbuf, locsymcount, signed_p)) \
7516 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7517 isymbuf, locsymcount, signed_p)) \
7520 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7550 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7551 bfd_set_error (bfd_error_invalid_operation
);
7557 put_value (bfd_vma size
,
7558 unsigned long chunksz
,
7563 location
+= (size
- chunksz
);
7565 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7573 bfd_put_8 (input_bfd
, x
, location
);
7576 bfd_put_16 (input_bfd
, x
, location
);
7579 bfd_put_32 (input_bfd
, x
, location
);
7583 bfd_put_64 (input_bfd
, x
, location
);
7593 get_value (bfd_vma size
,
7594 unsigned long chunksz
,
7600 for (; size
; size
-= chunksz
, location
+= chunksz
)
7608 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7611 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7614 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7618 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7629 decode_complex_addend (unsigned long *start
, /* in bits */
7630 unsigned long *oplen
, /* in bits */
7631 unsigned long *len
, /* in bits */
7632 unsigned long *wordsz
, /* in bytes */
7633 unsigned long *chunksz
, /* in bytes */
7634 unsigned long *lsb0_p
,
7635 unsigned long *signed_p
,
7636 unsigned long *trunc_p
,
7637 unsigned long encoded
)
7639 * start
= encoded
& 0x3F;
7640 * len
= (encoded
>> 6) & 0x3F;
7641 * oplen
= (encoded
>> 12) & 0x3F;
7642 * wordsz
= (encoded
>> 18) & 0xF;
7643 * chunksz
= (encoded
>> 22) & 0xF;
7644 * lsb0_p
= (encoded
>> 27) & 1;
7645 * signed_p
= (encoded
>> 28) & 1;
7646 * trunc_p
= (encoded
>> 29) & 1;
7649 bfd_reloc_status_type
7650 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7651 asection
*input_section ATTRIBUTE_UNUSED
,
7653 Elf_Internal_Rela
*rel
,
7656 bfd_vma shift
, x
, mask
;
7657 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7658 bfd_reloc_status_type r
;
7660 /* Perform this reloc, since it is complex.
7661 (this is not to say that it necessarily refers to a complex
7662 symbol; merely that it is a self-describing CGEN based reloc.
7663 i.e. the addend has the complete reloc information (bit start, end,
7664 word size, etc) encoded within it.). */
7666 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7667 &chunksz
, &lsb0_p
, &signed_p
,
7668 &trunc_p
, rel
->r_addend
);
7670 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7673 shift
= (start
+ 1) - len
;
7675 shift
= (8 * wordsz
) - (start
+ len
);
7677 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7680 printf ("Doing complex reloc: "
7681 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7682 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7683 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7684 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7685 oplen
, x
, mask
, relocation
);
7690 /* Now do an overflow check. */
7691 r
= bfd_check_overflow ((signed_p
7692 ? complain_overflow_signed
7693 : complain_overflow_unsigned
),
7694 len
, 0, (8 * wordsz
),
7698 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7701 printf (" relocation: %8.8lx\n"
7702 " shifted mask: %8.8lx\n"
7703 " shifted/masked reloc: %8.8lx\n"
7704 " result: %8.8lx\n",
7705 relocation
, (mask
<< shift
),
7706 ((relocation
& mask
) << shift
), x
);
7708 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7712 /* When performing a relocatable link, the input relocations are
7713 preserved. But, if they reference global symbols, the indices
7714 referenced must be updated. Update all the relocations in
7715 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7718 elf_link_adjust_relocs (bfd
*abfd
,
7719 Elf_Internal_Shdr
*rel_hdr
,
7721 struct elf_link_hash_entry
**rel_hash
)
7724 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7726 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7727 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7728 bfd_vma r_type_mask
;
7731 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7733 swap_in
= bed
->s
->swap_reloc_in
;
7734 swap_out
= bed
->s
->swap_reloc_out
;
7736 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7738 swap_in
= bed
->s
->swap_reloca_in
;
7739 swap_out
= bed
->s
->swap_reloca_out
;
7744 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7747 if (bed
->s
->arch_size
== 32)
7754 r_type_mask
= 0xffffffff;
7758 erela
= rel_hdr
->contents
;
7759 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7761 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7764 if (*rel_hash
== NULL
)
7767 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7769 (*swap_in
) (abfd
, erela
, irela
);
7770 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7771 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7772 | (irela
[j
].r_info
& r_type_mask
));
7773 (*swap_out
) (abfd
, irela
, erela
);
7777 struct elf_link_sort_rela
7783 enum elf_reloc_type_class type
;
7784 /* We use this as an array of size int_rels_per_ext_rel. */
7785 Elf_Internal_Rela rela
[1];
7789 elf_link_sort_cmp1 (const void *A
, const void *B
)
7791 const struct elf_link_sort_rela
*a
= A
;
7792 const struct elf_link_sort_rela
*b
= B
;
7793 int relativea
, relativeb
;
7795 relativea
= a
->type
== reloc_class_relative
;
7796 relativeb
= b
->type
== reloc_class_relative
;
7798 if (relativea
< relativeb
)
7800 if (relativea
> relativeb
)
7802 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7804 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7806 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7808 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7814 elf_link_sort_cmp2 (const void *A
, const void *B
)
7816 const struct elf_link_sort_rela
*a
= A
;
7817 const struct elf_link_sort_rela
*b
= B
;
7820 if (a
->u
.offset
< b
->u
.offset
)
7822 if (a
->u
.offset
> b
->u
.offset
)
7824 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7825 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7830 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7832 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7838 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7840 asection
*dynamic_relocs
;
7843 bfd_size_type count
, size
;
7844 size_t i
, ret
, sort_elt
, ext_size
;
7845 bfd_byte
*sort
, *s_non_relative
, *p
;
7846 struct elf_link_sort_rela
*sq
;
7847 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7848 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7849 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7850 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7851 struct bfd_link_order
*lo
;
7853 bfd_boolean use_rela
;
7855 /* Find a dynamic reloc section. */
7856 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7857 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7858 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7859 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7861 bfd_boolean use_rela_initialised
= FALSE
;
7863 /* This is just here to stop gcc from complaining.
7864 It's initialization checking code is not perfect. */
7867 /* Both sections are present. Examine the sizes
7868 of the indirect sections to help us choose. */
7869 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7870 if (lo
->type
== bfd_indirect_link_order
)
7872 asection
*o
= lo
->u
.indirect
.section
;
7874 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7876 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7877 /* Section size is divisible by both rel and rela sizes.
7878 It is of no help to us. */
7882 /* Section size is only divisible by rela. */
7883 if (use_rela_initialised
&& (use_rela
== FALSE
))
7886 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7887 bfd_set_error (bfd_error_invalid_operation
);
7893 use_rela_initialised
= TRUE
;
7897 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7899 /* Section size is only divisible by rel. */
7900 if (use_rela_initialised
&& (use_rela
== TRUE
))
7903 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7904 bfd_set_error (bfd_error_invalid_operation
);
7910 use_rela_initialised
= TRUE
;
7915 /* The section size is not divisible by either - something is wrong. */
7917 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
7918 bfd_set_error (bfd_error_invalid_operation
);
7923 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7924 if (lo
->type
== bfd_indirect_link_order
)
7926 asection
*o
= lo
->u
.indirect
.section
;
7928 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7930 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7931 /* Section size is divisible by both rel and rela sizes.
7932 It is of no help to us. */
7936 /* Section size is only divisible by rela. */
7937 if (use_rela_initialised
&& (use_rela
== FALSE
))
7940 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7941 bfd_set_error (bfd_error_invalid_operation
);
7947 use_rela_initialised
= TRUE
;
7951 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7953 /* Section size is only divisible by rel. */
7954 if (use_rela_initialised
&& (use_rela
== TRUE
))
7957 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7958 bfd_set_error (bfd_error_invalid_operation
);
7964 use_rela_initialised
= TRUE
;
7969 /* The section size is not divisible by either - something is wrong. */
7971 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
7972 bfd_set_error (bfd_error_invalid_operation
);
7977 if (! use_rela_initialised
)
7981 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
7983 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7990 dynamic_relocs
= rela_dyn
;
7991 ext_size
= bed
->s
->sizeof_rela
;
7992 swap_in
= bed
->s
->swap_reloca_in
;
7993 swap_out
= bed
->s
->swap_reloca_out
;
7997 dynamic_relocs
= rel_dyn
;
7998 ext_size
= bed
->s
->sizeof_rel
;
7999 swap_in
= bed
->s
->swap_reloc_in
;
8000 swap_out
= bed
->s
->swap_reloc_out
;
8004 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8005 if (lo
->type
== bfd_indirect_link_order
)
8006 size
+= lo
->u
.indirect
.section
->size
;
8008 if (size
!= dynamic_relocs
->size
)
8011 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8012 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8014 count
= dynamic_relocs
->size
/ ext_size
;
8015 sort
= bfd_zmalloc (sort_elt
* count
);
8019 (*info
->callbacks
->warning
)
8020 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8024 if (bed
->s
->arch_size
== 32)
8025 r_sym_mask
= ~(bfd_vma
) 0xff;
8027 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8029 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8030 if (lo
->type
== bfd_indirect_link_order
)
8032 bfd_byte
*erel
, *erelend
;
8033 asection
*o
= lo
->u
.indirect
.section
;
8035 if (o
->contents
== NULL
&& o
->size
!= 0)
8037 /* This is a reloc section that is being handled as a normal
8038 section. See bfd_section_from_shdr. We can't combine
8039 relocs in this case. */
8044 erelend
= o
->contents
+ o
->size
;
8045 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8047 while (erel
< erelend
)
8049 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8051 (*swap_in
) (abfd
, erel
, s
->rela
);
8052 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8053 s
->u
.sym_mask
= r_sym_mask
;
8059 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8061 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8063 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8064 if (s
->type
!= reloc_class_relative
)
8070 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8071 for (; i
< count
; i
++, p
+= sort_elt
)
8073 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8074 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8076 sp
->u
.offset
= sq
->rela
->r_offset
;
8079 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8081 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8082 if (lo
->type
== bfd_indirect_link_order
)
8084 bfd_byte
*erel
, *erelend
;
8085 asection
*o
= lo
->u
.indirect
.section
;
8088 erelend
= o
->contents
+ o
->size
;
8089 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8090 while (erel
< erelend
)
8092 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8093 (*swap_out
) (abfd
, s
->rela
, erel
);
8100 *psec
= dynamic_relocs
;
8104 /* Flush the output symbols to the file. */
8107 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8108 const struct elf_backend_data
*bed
)
8110 if (finfo
->symbuf_count
> 0)
8112 Elf_Internal_Shdr
*hdr
;
8116 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8117 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8118 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8119 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8120 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8123 hdr
->sh_size
+= amt
;
8124 finfo
->symbuf_count
= 0;
8130 /* Add a symbol to the output symbol table. */
8133 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8135 Elf_Internal_Sym
*elfsym
,
8136 asection
*input_sec
,
8137 struct elf_link_hash_entry
*h
)
8140 Elf_External_Sym_Shndx
*destshndx
;
8141 bfd_boolean (*output_symbol_hook
)
8142 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8143 struct elf_link_hash_entry
*);
8144 const struct elf_backend_data
*bed
;
8146 bed
= get_elf_backend_data (finfo
->output_bfd
);
8147 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8148 if (output_symbol_hook
!= NULL
)
8150 if (! (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
))
8154 if (name
== NULL
|| *name
== '\0')
8155 elfsym
->st_name
= 0;
8156 else if (input_sec
->flags
& SEC_EXCLUDE
)
8157 elfsym
->st_name
= 0;
8160 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8162 if (elfsym
->st_name
== (unsigned long) -1)
8166 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8168 if (! elf_link_flush_output_syms (finfo
, bed
))
8172 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8173 destshndx
= finfo
->symshndxbuf
;
8174 if (destshndx
!= NULL
)
8176 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8180 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8181 finfo
->symshndxbuf
= destshndx
= bfd_realloc (destshndx
, amt
* 2);
8182 if (destshndx
== NULL
)
8184 memset ((char *) destshndx
+ amt
, 0, amt
);
8185 finfo
->shndxbuf_size
*= 2;
8187 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8190 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8191 finfo
->symbuf_count
+= 1;
8192 bfd_get_symcount (finfo
->output_bfd
) += 1;
8197 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8200 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8202 if (sym
->st_shndx
> SHN_HIRESERVE
)
8204 /* The gABI doesn't support dynamic symbols in output sections
8206 (*_bfd_error_handler
)
8207 (_("%B: Too many sections: %d (>= %d)"),
8208 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
);
8209 bfd_set_error (bfd_error_nonrepresentable_section
);
8215 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8216 allowing an unsatisfied unversioned symbol in the DSO to match a
8217 versioned symbol that would normally require an explicit version.
8218 We also handle the case that a DSO references a hidden symbol
8219 which may be satisfied by a versioned symbol in another DSO. */
8222 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8223 const struct elf_backend_data
*bed
,
8224 struct elf_link_hash_entry
*h
)
8227 struct elf_link_loaded_list
*loaded
;
8229 if (!is_elf_hash_table (info
->hash
))
8232 switch (h
->root
.type
)
8238 case bfd_link_hash_undefined
:
8239 case bfd_link_hash_undefweak
:
8240 abfd
= h
->root
.u
.undef
.abfd
;
8241 if ((abfd
->flags
& DYNAMIC
) == 0
8242 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8246 case bfd_link_hash_defined
:
8247 case bfd_link_hash_defweak
:
8248 abfd
= h
->root
.u
.def
.section
->owner
;
8251 case bfd_link_hash_common
:
8252 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8255 BFD_ASSERT (abfd
!= NULL
);
8257 for (loaded
= elf_hash_table (info
)->loaded
;
8259 loaded
= loaded
->next
)
8262 Elf_Internal_Shdr
*hdr
;
8263 bfd_size_type symcount
;
8264 bfd_size_type extsymcount
;
8265 bfd_size_type extsymoff
;
8266 Elf_Internal_Shdr
*versymhdr
;
8267 Elf_Internal_Sym
*isym
;
8268 Elf_Internal_Sym
*isymend
;
8269 Elf_Internal_Sym
*isymbuf
;
8270 Elf_External_Versym
*ever
;
8271 Elf_External_Versym
*extversym
;
8273 input
= loaded
->abfd
;
8275 /* We check each DSO for a possible hidden versioned definition. */
8277 || (input
->flags
& DYNAMIC
) == 0
8278 || elf_dynversym (input
) == 0)
8281 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8283 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8284 if (elf_bad_symtab (input
))
8286 extsymcount
= symcount
;
8291 extsymcount
= symcount
- hdr
->sh_info
;
8292 extsymoff
= hdr
->sh_info
;
8295 if (extsymcount
== 0)
8298 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8300 if (isymbuf
== NULL
)
8303 /* Read in any version definitions. */
8304 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8305 extversym
= bfd_malloc (versymhdr
->sh_size
);
8306 if (extversym
== NULL
)
8309 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8310 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8311 != versymhdr
->sh_size
))
8319 ever
= extversym
+ extsymoff
;
8320 isymend
= isymbuf
+ extsymcount
;
8321 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8324 Elf_Internal_Versym iver
;
8325 unsigned short version_index
;
8327 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8328 || isym
->st_shndx
== SHN_UNDEF
)
8331 name
= bfd_elf_string_from_elf_section (input
,
8334 if (strcmp (name
, h
->root
.root
.string
) != 0)
8337 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8339 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8341 /* If we have a non-hidden versioned sym, then it should
8342 have provided a definition for the undefined sym. */
8346 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8347 if (version_index
== 1 || version_index
== 2)
8349 /* This is the base or first version. We can use it. */
8363 /* Add an external symbol to the symbol table. This is called from
8364 the hash table traversal routine. When generating a shared object,
8365 we go through the symbol table twice. The first time we output
8366 anything that might have been forced to local scope in a version
8367 script. The second time we output the symbols that are still
8371 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8373 struct elf_outext_info
*eoinfo
= data
;
8374 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8376 Elf_Internal_Sym sym
;
8377 asection
*input_sec
;
8378 const struct elf_backend_data
*bed
;
8380 if (h
->root
.type
== bfd_link_hash_warning
)
8382 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8383 if (h
->root
.type
== bfd_link_hash_new
)
8387 /* Decide whether to output this symbol in this pass. */
8388 if (eoinfo
->localsyms
)
8390 if (!h
->forced_local
)
8395 if (h
->forced_local
)
8399 bed
= get_elf_backend_data (finfo
->output_bfd
);
8401 if (h
->root
.type
== bfd_link_hash_undefined
)
8403 /* If we have an undefined symbol reference here then it must have
8404 come from a shared library that is being linked in. (Undefined
8405 references in regular files have already been handled). */
8406 bfd_boolean ignore_undef
= FALSE
;
8408 /* Some symbols may be special in that the fact that they're
8409 undefined can be safely ignored - let backend determine that. */
8410 if (bed
->elf_backend_ignore_undef_symbol
)
8411 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8413 /* If we are reporting errors for this situation then do so now. */
8414 if (ignore_undef
== FALSE
8417 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8418 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8420 if (! (finfo
->info
->callbacks
->undefined_symbol
8421 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8422 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8424 eoinfo
->failed
= TRUE
;
8430 /* We should also warn if a forced local symbol is referenced from
8431 shared libraries. */
8432 if (! finfo
->info
->relocatable
8433 && (! finfo
->info
->shared
)
8438 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8440 (*_bfd_error_handler
)
8441 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8443 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8444 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8445 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8447 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8448 ? "hidden" : "local",
8449 h
->root
.root
.string
);
8450 eoinfo
->failed
= TRUE
;
8454 /* We don't want to output symbols that have never been mentioned by
8455 a regular file, or that we have been told to strip. However, if
8456 h->indx is set to -2, the symbol is used by a reloc and we must
8460 else if ((h
->def_dynamic
8462 || h
->root
.type
== bfd_link_hash_new
)
8466 else if (finfo
->info
->strip
== strip_all
)
8468 else if (finfo
->info
->strip
== strip_some
8469 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8470 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8472 else if (finfo
->info
->strip_discarded
8473 && (h
->root
.type
== bfd_link_hash_defined
8474 || h
->root
.type
== bfd_link_hash_defweak
)
8475 && elf_discarded_section (h
->root
.u
.def
.section
))
8480 /* If we're stripping it, and it's not a dynamic symbol, there's
8481 nothing else to do unless it is a forced local symbol. */
8484 && !h
->forced_local
)
8488 sym
.st_size
= h
->size
;
8489 sym
.st_other
= h
->other
;
8490 if (h
->forced_local
)
8491 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8492 else if (h
->root
.type
== bfd_link_hash_undefweak
8493 || h
->root
.type
== bfd_link_hash_defweak
)
8494 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8496 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8498 switch (h
->root
.type
)
8501 case bfd_link_hash_new
:
8502 case bfd_link_hash_warning
:
8506 case bfd_link_hash_undefined
:
8507 case bfd_link_hash_undefweak
:
8508 input_sec
= bfd_und_section_ptr
;
8509 sym
.st_shndx
= SHN_UNDEF
;
8512 case bfd_link_hash_defined
:
8513 case bfd_link_hash_defweak
:
8515 input_sec
= h
->root
.u
.def
.section
;
8516 if (input_sec
->output_section
!= NULL
)
8519 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8520 input_sec
->output_section
);
8521 if (sym
.st_shndx
== SHN_BAD
)
8523 (*_bfd_error_handler
)
8524 (_("%B: could not find output section %A for input section %A"),
8525 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8526 eoinfo
->failed
= TRUE
;
8530 /* ELF symbols in relocatable files are section relative,
8531 but in nonrelocatable files they are virtual
8533 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8534 if (! finfo
->info
->relocatable
)
8536 sym
.st_value
+= input_sec
->output_section
->vma
;
8537 if (h
->type
== STT_TLS
)
8539 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8540 if (tls_sec
!= NULL
)
8541 sym
.st_value
-= tls_sec
->vma
;
8544 /* The TLS section may have been garbage collected. */
8545 BFD_ASSERT (finfo
->info
->gc_sections
8546 && !input_sec
->gc_mark
);
8553 BFD_ASSERT (input_sec
->owner
== NULL
8554 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8555 sym
.st_shndx
= SHN_UNDEF
;
8556 input_sec
= bfd_und_section_ptr
;
8561 case bfd_link_hash_common
:
8562 input_sec
= h
->root
.u
.c
.p
->section
;
8563 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8564 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8567 case bfd_link_hash_indirect
:
8568 /* These symbols are created by symbol versioning. They point
8569 to the decorated version of the name. For example, if the
8570 symbol foo@@GNU_1.2 is the default, which should be used when
8571 foo is used with no version, then we add an indirect symbol
8572 foo which points to foo@@GNU_1.2. We ignore these symbols,
8573 since the indirected symbol is already in the hash table. */
8577 /* Give the processor backend a chance to tweak the symbol value,
8578 and also to finish up anything that needs to be done for this
8579 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8580 forced local syms when non-shared is due to a historical quirk. */
8581 if ((h
->dynindx
!= -1
8583 && ((finfo
->info
->shared
8584 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8585 || h
->root
.type
!= bfd_link_hash_undefweak
))
8586 || !h
->forced_local
)
8587 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8589 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8590 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8592 eoinfo
->failed
= TRUE
;
8597 /* If we are marking the symbol as undefined, and there are no
8598 non-weak references to this symbol from a regular object, then
8599 mark the symbol as weak undefined; if there are non-weak
8600 references, mark the symbol as strong. We can't do this earlier,
8601 because it might not be marked as undefined until the
8602 finish_dynamic_symbol routine gets through with it. */
8603 if (sym
.st_shndx
== SHN_UNDEF
8605 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8606 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8610 if (h
->ref_regular_nonweak
)
8611 bindtype
= STB_GLOBAL
;
8613 bindtype
= STB_WEAK
;
8614 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
8617 /* If a non-weak symbol with non-default visibility is not defined
8618 locally, it is a fatal error. */
8619 if (! finfo
->info
->relocatable
8620 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8621 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8622 && h
->root
.type
== bfd_link_hash_undefined
8625 (*_bfd_error_handler
)
8626 (_("%B: %s symbol `%s' isn't defined"),
8628 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8630 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8631 ? "internal" : "hidden",
8632 h
->root
.root
.string
);
8633 eoinfo
->failed
= TRUE
;
8637 /* If this symbol should be put in the .dynsym section, then put it
8638 there now. We already know the symbol index. We also fill in
8639 the entry in the .hash section. */
8640 if (h
->dynindx
!= -1
8641 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8645 sym
.st_name
= h
->dynstr_index
;
8646 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8647 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8649 eoinfo
->failed
= TRUE
;
8652 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8654 if (finfo
->hash_sec
!= NULL
)
8656 size_t hash_entry_size
;
8657 bfd_byte
*bucketpos
;
8662 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8663 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8666 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8667 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8668 + (bucket
+ 2) * hash_entry_size
);
8669 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8670 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8671 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8672 ((bfd_byte
*) finfo
->hash_sec
->contents
8673 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8676 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8678 Elf_Internal_Versym iversym
;
8679 Elf_External_Versym
*eversym
;
8681 if (!h
->def_regular
)
8683 if (h
->verinfo
.verdef
== NULL
)
8684 iversym
.vs_vers
= 0;
8686 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8690 if (h
->verinfo
.vertree
== NULL
)
8691 iversym
.vs_vers
= 1;
8693 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8694 if (finfo
->info
->create_default_symver
)
8699 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8701 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8702 eversym
+= h
->dynindx
;
8703 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8707 /* If we're stripping it, then it was just a dynamic symbol, and
8708 there's nothing else to do. */
8709 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8712 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
8714 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
))
8716 eoinfo
->failed
= TRUE
;
8723 /* Return TRUE if special handling is done for relocs in SEC against
8724 symbols defined in discarded sections. */
8727 elf_section_ignore_discarded_relocs (asection
*sec
)
8729 const struct elf_backend_data
*bed
;
8731 switch (sec
->sec_info_type
)
8733 case ELF_INFO_TYPE_STABS
:
8734 case ELF_INFO_TYPE_EH_FRAME
:
8740 bed
= get_elf_backend_data (sec
->owner
);
8741 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8742 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8748 /* Return a mask saying how ld should treat relocations in SEC against
8749 symbols defined in discarded sections. If this function returns
8750 COMPLAIN set, ld will issue a warning message. If this function
8751 returns PRETEND set, and the discarded section was link-once and the
8752 same size as the kept link-once section, ld will pretend that the
8753 symbol was actually defined in the kept section. Otherwise ld will
8754 zero the reloc (at least that is the intent, but some cooperation by
8755 the target dependent code is needed, particularly for REL targets). */
8758 _bfd_elf_default_action_discarded (asection
*sec
)
8760 if (sec
->flags
& SEC_DEBUGGING
)
8763 if (strcmp (".eh_frame", sec
->name
) == 0)
8766 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8769 return COMPLAIN
| PRETEND
;
8772 /* Find a match between a section and a member of a section group. */
8775 match_group_member (asection
*sec
, asection
*group
,
8776 struct bfd_link_info
*info
)
8778 asection
*first
= elf_next_in_group (group
);
8779 asection
*s
= first
;
8783 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8786 s
= elf_next_in_group (s
);
8794 /* Check if the kept section of a discarded section SEC can be used
8795 to replace it. Return the replacement if it is OK. Otherwise return
8799 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8803 kept
= sec
->kept_section
;
8806 if ((kept
->flags
& SEC_GROUP
) != 0)
8807 kept
= match_group_member (sec
, kept
, info
);
8809 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8810 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8812 sec
->kept_section
= kept
;
8817 /* Link an input file into the linker output file. This function
8818 handles all the sections and relocations of the input file at once.
8819 This is so that we only have to read the local symbols once, and
8820 don't have to keep them in memory. */
8823 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8825 int (*relocate_section
)
8826 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8827 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8829 Elf_Internal_Shdr
*symtab_hdr
;
8832 Elf_Internal_Sym
*isymbuf
;
8833 Elf_Internal_Sym
*isym
;
8834 Elf_Internal_Sym
*isymend
;
8836 asection
**ppsection
;
8838 const struct elf_backend_data
*bed
;
8839 struct elf_link_hash_entry
**sym_hashes
;
8841 output_bfd
= finfo
->output_bfd
;
8842 bed
= get_elf_backend_data (output_bfd
);
8843 relocate_section
= bed
->elf_backend_relocate_section
;
8845 /* If this is a dynamic object, we don't want to do anything here:
8846 we don't want the local symbols, and we don't want the section
8848 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8851 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8852 if (elf_bad_symtab (input_bfd
))
8854 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8859 locsymcount
= symtab_hdr
->sh_info
;
8860 extsymoff
= symtab_hdr
->sh_info
;
8863 /* Read the local symbols. */
8864 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8865 if (isymbuf
== NULL
&& locsymcount
!= 0)
8867 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
8868 finfo
->internal_syms
,
8869 finfo
->external_syms
,
8870 finfo
->locsym_shndx
);
8871 if (isymbuf
== NULL
)
8875 /* Find local symbol sections and adjust values of symbols in
8876 SEC_MERGE sections. Write out those local symbols we know are
8877 going into the output file. */
8878 isymend
= isymbuf
+ locsymcount
;
8879 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
8881 isym
++, pindex
++, ppsection
++)
8885 Elf_Internal_Sym osym
;
8889 if (elf_bad_symtab (input_bfd
))
8891 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
8898 if (isym
->st_shndx
== SHN_UNDEF
)
8899 isec
= bfd_und_section_ptr
;
8900 else if (isym
->st_shndx
< SHN_LORESERVE
8901 || isym
->st_shndx
> SHN_HIRESERVE
)
8903 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
8905 && isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
8906 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
8908 _bfd_merged_section_offset (output_bfd
, &isec
,
8909 elf_section_data (isec
)->sec_info
,
8912 else if (isym
->st_shndx
== SHN_ABS
)
8913 isec
= bfd_abs_section_ptr
;
8914 else if (isym
->st_shndx
== SHN_COMMON
)
8915 isec
= bfd_com_section_ptr
;
8918 /* Don't attempt to output symbols with st_shnx in the
8919 reserved range other than SHN_ABS and SHN_COMMON. */
8926 /* Don't output the first, undefined, symbol. */
8927 if (ppsection
== finfo
->sections
)
8930 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
8932 /* We never output section symbols. Instead, we use the
8933 section symbol of the corresponding section in the output
8938 /* If we are stripping all symbols, we don't want to output this
8940 if (finfo
->info
->strip
== strip_all
)
8943 /* If we are discarding all local symbols, we don't want to
8944 output this one. If we are generating a relocatable output
8945 file, then some of the local symbols may be required by
8946 relocs; we output them below as we discover that they are
8948 if (finfo
->info
->discard
== discard_all
)
8951 /* If this symbol is defined in a section which we are
8952 discarding, we don't need to keep it. */
8953 if (isym
->st_shndx
!= SHN_UNDEF
8954 && (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
8956 || bfd_section_removed_from_list (output_bfd
,
8957 isec
->output_section
)))
8960 /* Get the name of the symbol. */
8961 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
8966 /* See if we are discarding symbols with this name. */
8967 if ((finfo
->info
->strip
== strip_some
8968 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
8970 || (((finfo
->info
->discard
== discard_sec_merge
8971 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
8972 || finfo
->info
->discard
== discard_l
)
8973 && bfd_is_local_label_name (input_bfd
, name
)))
8976 /* If we get here, we are going to output this symbol. */
8980 /* Adjust the section index for the output file. */
8981 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
8982 isec
->output_section
);
8983 if (osym
.st_shndx
== SHN_BAD
)
8986 *pindex
= bfd_get_symcount (output_bfd
);
8988 /* ELF symbols in relocatable files are section relative, but
8989 in executable files they are virtual addresses. Note that
8990 this code assumes that all ELF sections have an associated
8991 BFD section with a reasonable value for output_offset; below
8992 we assume that they also have a reasonable value for
8993 output_section. Any special sections must be set up to meet
8994 these requirements. */
8995 osym
.st_value
+= isec
->output_offset
;
8996 if (! finfo
->info
->relocatable
)
8998 osym
.st_value
+= isec
->output_section
->vma
;
8999 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9001 /* STT_TLS symbols are relative to PT_TLS segment base. */
9002 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9003 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9007 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
))
9011 /* Relocate the contents of each section. */
9012 sym_hashes
= elf_sym_hashes (input_bfd
);
9013 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9017 if (! o
->linker_mark
)
9019 /* This section was omitted from the link. */
9023 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9024 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9027 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9029 /* Section was created by _bfd_elf_link_create_dynamic_sections
9034 /* Get the contents of the section. They have been cached by a
9035 relaxation routine. Note that o is a section in an input
9036 file, so the contents field will not have been set by any of
9037 the routines which work on output files. */
9038 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9039 contents
= elf_section_data (o
)->this_hdr
.contents
;
9042 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9044 contents
= finfo
->contents
;
9045 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9049 if ((o
->flags
& SEC_RELOC
) != 0)
9051 Elf_Internal_Rela
*internal_relocs
;
9052 Elf_Internal_Rela
*rel
, *relend
;
9053 bfd_vma r_type_mask
;
9055 int action_discarded
;
9058 /* Get the swapped relocs. */
9060 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9061 finfo
->internal_relocs
, FALSE
);
9062 if (internal_relocs
== NULL
9063 && o
->reloc_count
> 0)
9066 if (bed
->s
->arch_size
== 32)
9073 r_type_mask
= 0xffffffff;
9077 action_discarded
= -1;
9078 if (!elf_section_ignore_discarded_relocs (o
))
9079 action_discarded
= (*bed
->action_discarded
) (o
);
9081 /* Run through the relocs evaluating complex reloc symbols and
9082 looking for relocs against symbols from discarded sections
9083 or section symbols from removed link-once sections.
9084 Complain about relocs against discarded sections. Zero
9085 relocs against removed link-once sections. */
9087 rel
= internal_relocs
;
9088 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9089 for ( ; rel
< relend
; rel
++)
9091 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9092 unsigned int s_type
;
9093 asection
**ps
, *sec
;
9094 struct elf_link_hash_entry
*h
= NULL
;
9095 const char *sym_name
;
9097 if (r_symndx
== STN_UNDEF
)
9100 if (r_symndx
>= locsymcount
9101 || (elf_bad_symtab (input_bfd
)
9102 && finfo
->sections
[r_symndx
] == NULL
))
9104 h
= sym_hashes
[r_symndx
- extsymoff
];
9106 /* Badly formatted input files can contain relocs that
9107 reference non-existant symbols. Check here so that
9108 we do not seg fault. */
9113 sprintf_vma (buffer
, rel
->r_info
);
9114 (*_bfd_error_handler
)
9115 (_("error: %B contains a reloc (0x%s) for section %A "
9116 "that references a non-existent global symbol"),
9117 input_bfd
, o
, buffer
);
9118 bfd_set_error (bfd_error_bad_value
);
9122 while (h
->root
.type
== bfd_link_hash_indirect
9123 || h
->root
.type
== bfd_link_hash_warning
)
9124 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9129 if (h
->root
.type
== bfd_link_hash_defined
9130 || h
->root
.type
== bfd_link_hash_defweak
)
9131 ps
= &h
->root
.u
.def
.section
;
9133 sym_name
= h
->root
.root
.string
;
9137 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9139 s_type
= ELF_ST_TYPE (sym
->st_info
);
9140 ps
= &finfo
->sections
[r_symndx
];
9141 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9145 if (s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9148 bfd_vma dot
= (rel
->r_offset
9149 + o
->output_offset
+ o
->output_section
->vma
);
9151 printf ("Encountered a complex symbol!");
9152 printf (" (input_bfd %s, section %s, reloc %ld\n",
9153 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9154 printf (" symbol: idx %8.8lx, name %s\n",
9155 r_symndx
, sym_name
);
9156 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9157 (unsigned long) rel
->r_info
,
9158 (unsigned long) rel
->r_offset
);
9160 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9161 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9164 /* Symbol evaluated OK. Update to absolute value. */
9165 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9170 if (action_discarded
!= -1 && ps
!= NULL
)
9172 /* Complain if the definition comes from a
9173 discarded section. */
9174 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9176 BFD_ASSERT (r_symndx
!= 0);
9177 if (action_discarded
& COMPLAIN
)
9178 (*finfo
->info
->callbacks
->einfo
)
9179 (_("%X`%s' referenced in section `%A' of %B: "
9180 "defined in discarded section `%A' of %B\n"),
9181 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9183 /* Try to do the best we can to support buggy old
9184 versions of gcc. Pretend that the symbol is
9185 really defined in the kept linkonce section.
9186 FIXME: This is quite broken. Modifying the
9187 symbol here means we will be changing all later
9188 uses of the symbol, not just in this section. */
9189 if (action_discarded
& PRETEND
)
9193 kept
= _bfd_elf_check_kept_section (sec
,
9205 /* Relocate the section by invoking a back end routine.
9207 The back end routine is responsible for adjusting the
9208 section contents as necessary, and (if using Rela relocs
9209 and generating a relocatable output file) adjusting the
9210 reloc addend as necessary.
9212 The back end routine does not have to worry about setting
9213 the reloc address or the reloc symbol index.
9215 The back end routine is given a pointer to the swapped in
9216 internal symbols, and can access the hash table entries
9217 for the external symbols via elf_sym_hashes (input_bfd).
9219 When generating relocatable output, the back end routine
9220 must handle STB_LOCAL/STT_SECTION symbols specially. The
9221 output symbol is going to be a section symbol
9222 corresponding to the output section, which will require
9223 the addend to be adjusted. */
9225 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9226 input_bfd
, o
, contents
,
9234 || finfo
->info
->relocatable
9235 || finfo
->info
->emitrelocations
)
9237 Elf_Internal_Rela
*irela
;
9238 Elf_Internal_Rela
*irelaend
;
9239 bfd_vma last_offset
;
9240 struct elf_link_hash_entry
**rel_hash
;
9241 struct elf_link_hash_entry
**rel_hash_list
;
9242 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9243 unsigned int next_erel
;
9244 bfd_boolean rela_normal
;
9246 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9247 rela_normal
= (bed
->rela_normal
9248 && (input_rel_hdr
->sh_entsize
9249 == bed
->s
->sizeof_rela
));
9251 /* Adjust the reloc addresses and symbol indices. */
9253 irela
= internal_relocs
;
9254 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9255 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9256 + elf_section_data (o
->output_section
)->rel_count
9257 + elf_section_data (o
->output_section
)->rel_count2
);
9258 rel_hash_list
= rel_hash
;
9259 last_offset
= o
->output_offset
;
9260 if (!finfo
->info
->relocatable
)
9261 last_offset
+= o
->output_section
->vma
;
9262 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9264 unsigned long r_symndx
;
9266 Elf_Internal_Sym sym
;
9268 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9274 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9277 if (irela
->r_offset
>= (bfd_vma
) -2)
9279 /* This is a reloc for a deleted entry or somesuch.
9280 Turn it into an R_*_NONE reloc, at the same
9281 offset as the last reloc. elf_eh_frame.c and
9282 bfd_elf_discard_info rely on reloc offsets
9284 irela
->r_offset
= last_offset
;
9286 irela
->r_addend
= 0;
9290 irela
->r_offset
+= o
->output_offset
;
9292 /* Relocs in an executable have to be virtual addresses. */
9293 if (!finfo
->info
->relocatable
)
9294 irela
->r_offset
+= o
->output_section
->vma
;
9296 last_offset
= irela
->r_offset
;
9298 r_symndx
= irela
->r_info
>> r_sym_shift
;
9299 if (r_symndx
== STN_UNDEF
)
9302 if (r_symndx
>= locsymcount
9303 || (elf_bad_symtab (input_bfd
)
9304 && finfo
->sections
[r_symndx
] == NULL
))
9306 struct elf_link_hash_entry
*rh
;
9309 /* This is a reloc against a global symbol. We
9310 have not yet output all the local symbols, so
9311 we do not know the symbol index of any global
9312 symbol. We set the rel_hash entry for this
9313 reloc to point to the global hash table entry
9314 for this symbol. The symbol index is then
9315 set at the end of bfd_elf_final_link. */
9316 indx
= r_symndx
- extsymoff
;
9317 rh
= elf_sym_hashes (input_bfd
)[indx
];
9318 while (rh
->root
.type
== bfd_link_hash_indirect
9319 || rh
->root
.type
== bfd_link_hash_warning
)
9320 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9322 /* Setting the index to -2 tells
9323 elf_link_output_extsym that this symbol is
9325 BFD_ASSERT (rh
->indx
< 0);
9333 /* This is a reloc against a local symbol. */
9336 sym
= isymbuf
[r_symndx
];
9337 sec
= finfo
->sections
[r_symndx
];
9338 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9340 /* I suppose the backend ought to fill in the
9341 section of any STT_SECTION symbol against a
9342 processor specific section. */
9344 if (bfd_is_abs_section (sec
))
9346 else if (sec
== NULL
|| sec
->owner
== NULL
)
9348 bfd_set_error (bfd_error_bad_value
);
9353 asection
*osec
= sec
->output_section
;
9355 /* If we have discarded a section, the output
9356 section will be the absolute section. In
9357 case of discarded SEC_MERGE sections, use
9358 the kept section. relocate_section should
9359 have already handled discarded linkonce
9361 if (bfd_is_abs_section (osec
)
9362 && sec
->kept_section
!= NULL
9363 && sec
->kept_section
->output_section
!= NULL
)
9365 osec
= sec
->kept_section
->output_section
;
9366 irela
->r_addend
-= osec
->vma
;
9369 if (!bfd_is_abs_section (osec
))
9371 r_symndx
= osec
->target_index
;
9374 struct elf_link_hash_table
*htab
;
9377 htab
= elf_hash_table (finfo
->info
);
9378 oi
= htab
->text_index_section
;
9379 if ((osec
->flags
& SEC_READONLY
) == 0
9380 && htab
->data_index_section
!= NULL
)
9381 oi
= htab
->data_index_section
;
9385 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9386 r_symndx
= oi
->target_index
;
9390 BFD_ASSERT (r_symndx
!= 0);
9394 /* Adjust the addend according to where the
9395 section winds up in the output section. */
9397 irela
->r_addend
+= sec
->output_offset
;
9401 if (finfo
->indices
[r_symndx
] == -1)
9403 unsigned long shlink
;
9407 if (finfo
->info
->strip
== strip_all
)
9409 /* You can't do ld -r -s. */
9410 bfd_set_error (bfd_error_invalid_operation
);
9414 /* This symbol was skipped earlier, but
9415 since it is needed by a reloc, we
9416 must output it now. */
9417 shlink
= symtab_hdr
->sh_link
;
9418 name
= (bfd_elf_string_from_elf_section
9419 (input_bfd
, shlink
, sym
.st_name
));
9423 osec
= sec
->output_section
;
9425 _bfd_elf_section_from_bfd_section (output_bfd
,
9427 if (sym
.st_shndx
== SHN_BAD
)
9430 sym
.st_value
+= sec
->output_offset
;
9431 if (! finfo
->info
->relocatable
)
9433 sym
.st_value
+= osec
->vma
;
9434 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9436 /* STT_TLS symbols are relative to PT_TLS
9438 BFD_ASSERT (elf_hash_table (finfo
->info
)
9440 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9445 finfo
->indices
[r_symndx
]
9446 = bfd_get_symcount (output_bfd
);
9448 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
,
9453 r_symndx
= finfo
->indices
[r_symndx
];
9456 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9457 | (irela
->r_info
& r_type_mask
));
9460 /* Swap out the relocs. */
9461 if (input_rel_hdr
->sh_size
!= 0
9462 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9468 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9469 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9471 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9472 * bed
->s
->int_rels_per_ext_rel
);
9473 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9474 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9483 /* Write out the modified section contents. */
9484 if (bed
->elf_backend_write_section
9485 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9488 /* Section written out. */
9490 else switch (o
->sec_info_type
)
9492 case ELF_INFO_TYPE_STABS
:
9493 if (! (_bfd_write_section_stabs
9495 &elf_hash_table (finfo
->info
)->stab_info
,
9496 o
, &elf_section_data (o
)->sec_info
, contents
)))
9499 case ELF_INFO_TYPE_MERGE
:
9500 if (! _bfd_write_merged_section (output_bfd
, o
,
9501 elf_section_data (o
)->sec_info
))
9504 case ELF_INFO_TYPE_EH_FRAME
:
9506 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9513 if (! (o
->flags
& SEC_EXCLUDE
)
9514 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9516 (file_ptr
) o
->output_offset
,
9527 /* Generate a reloc when linking an ELF file. This is a reloc
9528 requested by the linker, and does not come from any input file. This
9529 is used to build constructor and destructor tables when linking
9533 elf_reloc_link_order (bfd
*output_bfd
,
9534 struct bfd_link_info
*info
,
9535 asection
*output_section
,
9536 struct bfd_link_order
*link_order
)
9538 reloc_howto_type
*howto
;
9542 struct elf_link_hash_entry
**rel_hash_ptr
;
9543 Elf_Internal_Shdr
*rel_hdr
;
9544 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9545 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9549 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9552 bfd_set_error (bfd_error_bad_value
);
9556 addend
= link_order
->u
.reloc
.p
->addend
;
9558 /* Figure out the symbol index. */
9559 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9560 + elf_section_data (output_section
)->rel_count
9561 + elf_section_data (output_section
)->rel_count2
);
9562 if (link_order
->type
== bfd_section_reloc_link_order
)
9564 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9565 BFD_ASSERT (indx
!= 0);
9566 *rel_hash_ptr
= NULL
;
9570 struct elf_link_hash_entry
*h
;
9572 /* Treat a reloc against a defined symbol as though it were
9573 actually against the section. */
9574 h
= ((struct elf_link_hash_entry
*)
9575 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9576 link_order
->u
.reloc
.p
->u
.name
,
9577 FALSE
, FALSE
, TRUE
));
9579 && (h
->root
.type
== bfd_link_hash_defined
9580 || h
->root
.type
== bfd_link_hash_defweak
))
9584 section
= h
->root
.u
.def
.section
;
9585 indx
= section
->output_section
->target_index
;
9586 *rel_hash_ptr
= NULL
;
9587 /* It seems that we ought to add the symbol value to the
9588 addend here, but in practice it has already been added
9589 because it was passed to constructor_callback. */
9590 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9594 /* Setting the index to -2 tells elf_link_output_extsym that
9595 this symbol is used by a reloc. */
9602 if (! ((*info
->callbacks
->unattached_reloc
)
9603 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9609 /* If this is an inplace reloc, we must write the addend into the
9611 if (howto
->partial_inplace
&& addend
!= 0)
9614 bfd_reloc_status_type rstat
;
9617 const char *sym_name
;
9619 size
= bfd_get_reloc_size (howto
);
9620 buf
= bfd_zmalloc (size
);
9623 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9630 case bfd_reloc_outofrange
:
9633 case bfd_reloc_overflow
:
9634 if (link_order
->type
== bfd_section_reloc_link_order
)
9635 sym_name
= bfd_section_name (output_bfd
,
9636 link_order
->u
.reloc
.p
->u
.section
);
9638 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9639 if (! ((*info
->callbacks
->reloc_overflow
)
9640 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9641 NULL
, (bfd_vma
) 0)))
9648 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9649 link_order
->offset
, size
);
9655 /* The address of a reloc is relative to the section in a
9656 relocatable file, and is a virtual address in an executable
9658 offset
= link_order
->offset
;
9659 if (! info
->relocatable
)
9660 offset
+= output_section
->vma
;
9662 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9664 irel
[i
].r_offset
= offset
;
9666 irel
[i
].r_addend
= 0;
9668 if (bed
->s
->arch_size
== 32)
9669 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9671 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9673 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9674 erel
= rel_hdr
->contents
;
9675 if (rel_hdr
->sh_type
== SHT_REL
)
9677 erel
+= (elf_section_data (output_section
)->rel_count
9678 * bed
->s
->sizeof_rel
);
9679 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9683 irel
[0].r_addend
= addend
;
9684 erel
+= (elf_section_data (output_section
)->rel_count
9685 * bed
->s
->sizeof_rela
);
9686 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9689 ++elf_section_data (output_section
)->rel_count
;
9695 /* Get the output vma of the section pointed to by the sh_link field. */
9698 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9700 Elf_Internal_Shdr
**elf_shdrp
;
9704 s
= p
->u
.indirect
.section
;
9705 elf_shdrp
= elf_elfsections (s
->owner
);
9706 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9707 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9709 The Intel C compiler generates SHT_IA_64_UNWIND with
9710 SHF_LINK_ORDER. But it doesn't set the sh_link or
9711 sh_info fields. Hence we could get the situation
9712 where elfsec is 0. */
9715 const struct elf_backend_data
*bed
9716 = get_elf_backend_data (s
->owner
);
9717 if (bed
->link_order_error_handler
)
9718 bed
->link_order_error_handler
9719 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9724 s
= elf_shdrp
[elfsec
]->bfd_section
;
9725 return s
->output_section
->vma
+ s
->output_offset
;
9730 /* Compare two sections based on the locations of the sections they are
9731 linked to. Used by elf_fixup_link_order. */
9734 compare_link_order (const void * a
, const void * b
)
9739 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9740 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9747 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9748 order as their linked sections. Returns false if this could not be done
9749 because an output section includes both ordered and unordered
9750 sections. Ideally we'd do this in the linker proper. */
9753 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9758 struct bfd_link_order
*p
;
9760 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9762 struct bfd_link_order
**sections
;
9763 asection
*s
, *other_sec
, *linkorder_sec
;
9767 linkorder_sec
= NULL
;
9770 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9772 if (p
->type
== bfd_indirect_link_order
)
9774 s
= p
->u
.indirect
.section
;
9776 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9777 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9778 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9779 && elfsec
< elf_numsections (sub
)
9780 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
)
9794 if (seen_other
&& seen_linkorder
)
9796 if (other_sec
&& linkorder_sec
)
9797 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9799 linkorder_sec
->owner
, other_sec
,
9802 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
9804 bfd_set_error (bfd_error_bad_value
);
9809 if (!seen_linkorder
)
9812 sections
= (struct bfd_link_order
**)
9813 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
9814 if (sections
== NULL
)
9818 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9820 sections
[seen_linkorder
++] = p
;
9822 /* Sort the input sections in the order of their linked section. */
9823 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
9824 compare_link_order
);
9826 /* Change the offsets of the sections. */
9828 for (n
= 0; n
< seen_linkorder
; n
++)
9830 s
= sections
[n
]->u
.indirect
.section
;
9831 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
9832 s
->output_offset
= offset
;
9833 sections
[n
]->offset
= offset
;
9834 offset
+= sections
[n
]->size
;
9841 /* Do the final step of an ELF link. */
9844 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9846 bfd_boolean dynamic
;
9847 bfd_boolean emit_relocs
;
9849 struct elf_final_link_info finfo
;
9850 register asection
*o
;
9851 register struct bfd_link_order
*p
;
9853 bfd_size_type max_contents_size
;
9854 bfd_size_type max_external_reloc_size
;
9855 bfd_size_type max_internal_reloc_count
;
9856 bfd_size_type max_sym_count
;
9857 bfd_size_type max_sym_shndx_count
;
9859 Elf_Internal_Sym elfsym
;
9861 Elf_Internal_Shdr
*symtab_hdr
;
9862 Elf_Internal_Shdr
*symtab_shndx_hdr
;
9863 Elf_Internal_Shdr
*symstrtab_hdr
;
9864 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9865 struct elf_outext_info eoinfo
;
9867 size_t relativecount
= 0;
9868 asection
*reldyn
= 0;
9870 asection
*attr_section
= NULL
;
9871 bfd_vma attr_size
= 0;
9872 const char *std_attrs_section
;
9874 if (! is_elf_hash_table (info
->hash
))
9878 abfd
->flags
|= DYNAMIC
;
9880 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
9881 dynobj
= elf_hash_table (info
)->dynobj
;
9883 emit_relocs
= (info
->relocatable
9884 || info
->emitrelocations
);
9887 finfo
.output_bfd
= abfd
;
9888 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
9889 if (finfo
.symstrtab
== NULL
)
9894 finfo
.dynsym_sec
= NULL
;
9895 finfo
.hash_sec
= NULL
;
9896 finfo
.symver_sec
= NULL
;
9900 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
9901 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
9902 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
9903 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
9904 /* Note that it is OK if symver_sec is NULL. */
9907 finfo
.contents
= NULL
;
9908 finfo
.external_relocs
= NULL
;
9909 finfo
.internal_relocs
= NULL
;
9910 finfo
.external_syms
= NULL
;
9911 finfo
.locsym_shndx
= NULL
;
9912 finfo
.internal_syms
= NULL
;
9913 finfo
.indices
= NULL
;
9914 finfo
.sections
= NULL
;
9915 finfo
.symbuf
= NULL
;
9916 finfo
.symshndxbuf
= NULL
;
9917 finfo
.symbuf_count
= 0;
9918 finfo
.shndxbuf_size
= 0;
9920 /* The object attributes have been merged. Remove the input
9921 sections from the link, and set the contents of the output
9923 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
9924 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9926 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
9927 || strcmp (o
->name
, ".gnu.attributes") == 0)
9929 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9931 asection
*input_section
;
9933 if (p
->type
!= bfd_indirect_link_order
)
9935 input_section
= p
->u
.indirect
.section
;
9936 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9937 elf_link_input_bfd ignores this section. */
9938 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9941 attr_size
= bfd_elf_obj_attr_size (abfd
);
9944 bfd_set_section_size (abfd
, o
, attr_size
);
9946 /* Skip this section later on. */
9947 o
->map_head
.link_order
= NULL
;
9950 o
->flags
|= SEC_EXCLUDE
;
9954 /* Count up the number of relocations we will output for each output
9955 section, so that we know the sizes of the reloc sections. We
9956 also figure out some maximum sizes. */
9957 max_contents_size
= 0;
9958 max_external_reloc_size
= 0;
9959 max_internal_reloc_count
= 0;
9961 max_sym_shndx_count
= 0;
9963 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9965 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
9968 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9970 unsigned int reloc_count
= 0;
9971 struct bfd_elf_section_data
*esdi
= NULL
;
9972 unsigned int *rel_count1
;
9974 if (p
->type
== bfd_section_reloc_link_order
9975 || p
->type
== bfd_symbol_reloc_link_order
)
9977 else if (p
->type
== bfd_indirect_link_order
)
9981 sec
= p
->u
.indirect
.section
;
9982 esdi
= elf_section_data (sec
);
9984 /* Mark all sections which are to be included in the
9985 link. This will normally be every section. We need
9986 to do this so that we can identify any sections which
9987 the linker has decided to not include. */
9988 sec
->linker_mark
= TRUE
;
9990 if (sec
->flags
& SEC_MERGE
)
9993 if (info
->relocatable
|| info
->emitrelocations
)
9994 reloc_count
= sec
->reloc_count
;
9995 else if (bed
->elf_backend_count_relocs
)
9997 Elf_Internal_Rela
* relocs
;
9999 relocs
= _bfd_elf_link_read_relocs (sec
->owner
, sec
,
10001 info
->keep_memory
);
10003 if (relocs
!= NULL
)
10006 = (*bed
->elf_backend_count_relocs
) (sec
, relocs
);
10008 if (elf_section_data (sec
)->relocs
!= relocs
)
10013 if (sec
->rawsize
> max_contents_size
)
10014 max_contents_size
= sec
->rawsize
;
10015 if (sec
->size
> max_contents_size
)
10016 max_contents_size
= sec
->size
;
10018 /* We are interested in just local symbols, not all
10020 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10021 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10025 if (elf_bad_symtab (sec
->owner
))
10026 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10027 / bed
->s
->sizeof_sym
);
10029 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10031 if (sym_count
> max_sym_count
)
10032 max_sym_count
= sym_count
;
10034 if (sym_count
> max_sym_shndx_count
10035 && elf_symtab_shndx (sec
->owner
) != 0)
10036 max_sym_shndx_count
= sym_count
;
10038 if ((sec
->flags
& SEC_RELOC
) != 0)
10042 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10043 if (ext_size
> max_external_reloc_size
)
10044 max_external_reloc_size
= ext_size
;
10045 if (sec
->reloc_count
> max_internal_reloc_count
)
10046 max_internal_reloc_count
= sec
->reloc_count
;
10051 if (reloc_count
== 0)
10054 o
->reloc_count
+= reloc_count
;
10056 /* MIPS may have a mix of REL and RELA relocs on sections.
10057 To support this curious ABI we keep reloc counts in
10058 elf_section_data too. We must be careful to add the
10059 relocations from the input section to the right output
10060 count. FIXME: Get rid of one count. We have
10061 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10062 rel_count1
= &esdo
->rel_count
;
10065 bfd_boolean same_size
;
10066 bfd_size_type entsize1
;
10068 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10069 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10070 || entsize1
== bed
->s
->sizeof_rela
);
10071 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10074 rel_count1
= &esdo
->rel_count2
;
10076 if (esdi
->rel_hdr2
!= NULL
)
10078 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10079 unsigned int alt_count
;
10080 unsigned int *rel_count2
;
10082 BFD_ASSERT (entsize2
!= entsize1
10083 && (entsize2
== bed
->s
->sizeof_rel
10084 || entsize2
== bed
->s
->sizeof_rela
));
10086 rel_count2
= &esdo
->rel_count2
;
10088 rel_count2
= &esdo
->rel_count
;
10090 /* The following is probably too simplistic if the
10091 backend counts output relocs unusually. */
10092 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10093 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10094 *rel_count2
+= alt_count
;
10095 reloc_count
-= alt_count
;
10098 *rel_count1
+= reloc_count
;
10101 if (o
->reloc_count
> 0)
10102 o
->flags
|= SEC_RELOC
;
10105 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10106 set it (this is probably a bug) and if it is set
10107 assign_section_numbers will create a reloc section. */
10108 o
->flags
&=~ SEC_RELOC
;
10111 /* If the SEC_ALLOC flag is not set, force the section VMA to
10112 zero. This is done in elf_fake_sections as well, but forcing
10113 the VMA to 0 here will ensure that relocs against these
10114 sections are handled correctly. */
10115 if ((o
->flags
& SEC_ALLOC
) == 0
10116 && ! o
->user_set_vma
)
10120 if (! info
->relocatable
&& merged
)
10121 elf_link_hash_traverse (elf_hash_table (info
),
10122 _bfd_elf_link_sec_merge_syms
, abfd
);
10124 /* Figure out the file positions for everything but the symbol table
10125 and the relocs. We set symcount to force assign_section_numbers
10126 to create a symbol table. */
10127 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10128 BFD_ASSERT (! abfd
->output_has_begun
);
10129 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10132 /* Set sizes, and assign file positions for reloc sections. */
10133 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10135 if ((o
->flags
& SEC_RELOC
) != 0)
10137 if (!(_bfd_elf_link_size_reloc_section
10138 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10141 if (elf_section_data (o
)->rel_hdr2
10142 && !(_bfd_elf_link_size_reloc_section
10143 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10147 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10148 to count upwards while actually outputting the relocations. */
10149 elf_section_data (o
)->rel_count
= 0;
10150 elf_section_data (o
)->rel_count2
= 0;
10153 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10155 /* We have now assigned file positions for all the sections except
10156 .symtab and .strtab. We start the .symtab section at the current
10157 file position, and write directly to it. We build the .strtab
10158 section in memory. */
10159 bfd_get_symcount (abfd
) = 0;
10160 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10161 /* sh_name is set in prep_headers. */
10162 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10163 /* sh_flags, sh_addr and sh_size all start off zero. */
10164 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10165 /* sh_link is set in assign_section_numbers. */
10166 /* sh_info is set below. */
10167 /* sh_offset is set just below. */
10168 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
10170 off
= elf_tdata (abfd
)->next_file_pos
;
10171 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10173 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10174 incorrect. We do not yet know the size of the .symtab section.
10175 We correct next_file_pos below, after we do know the size. */
10177 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10178 continuously seeking to the right position in the file. */
10179 if (! info
->keep_memory
|| max_sym_count
< 20)
10180 finfo
.symbuf_size
= 20;
10182 finfo
.symbuf_size
= max_sym_count
;
10183 amt
= finfo
.symbuf_size
;
10184 amt
*= bed
->s
->sizeof_sym
;
10185 finfo
.symbuf
= bfd_malloc (amt
);
10186 if (finfo
.symbuf
== NULL
)
10188 if (elf_numsections (abfd
) > SHN_LORESERVE
)
10190 /* Wild guess at number of output symbols. realloc'd as needed. */
10191 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10192 finfo
.shndxbuf_size
= amt
;
10193 amt
*= sizeof (Elf_External_Sym_Shndx
);
10194 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
10195 if (finfo
.symshndxbuf
== NULL
)
10199 /* Start writing out the symbol table. The first symbol is always a
10201 if (info
->strip
!= strip_all
10204 elfsym
.st_value
= 0;
10205 elfsym
.st_size
= 0;
10206 elfsym
.st_info
= 0;
10207 elfsym
.st_other
= 0;
10208 elfsym
.st_shndx
= SHN_UNDEF
;
10209 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10214 /* Output a symbol for each section. We output these even if we are
10215 discarding local symbols, since they are used for relocs. These
10216 symbols have no names. We store the index of each one in the
10217 index field of the section, so that we can find it again when
10218 outputting relocs. */
10219 if (info
->strip
!= strip_all
10222 elfsym
.st_size
= 0;
10223 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10224 elfsym
.st_other
= 0;
10225 elfsym
.st_value
= 0;
10226 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10228 o
= bfd_section_from_elf_index (abfd
, i
);
10231 o
->target_index
= bfd_get_symcount (abfd
);
10232 elfsym
.st_shndx
= i
;
10233 if (!info
->relocatable
)
10234 elfsym
.st_value
= o
->vma
;
10235 if (!elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
))
10238 if (i
== SHN_LORESERVE
- 1)
10239 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
10243 /* Allocate some memory to hold information read in from the input
10245 if (max_contents_size
!= 0)
10247 finfo
.contents
= bfd_malloc (max_contents_size
);
10248 if (finfo
.contents
== NULL
)
10252 if (max_external_reloc_size
!= 0)
10254 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10255 if (finfo
.external_relocs
== NULL
)
10259 if (max_internal_reloc_count
!= 0)
10261 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10262 amt
*= sizeof (Elf_Internal_Rela
);
10263 finfo
.internal_relocs
= bfd_malloc (amt
);
10264 if (finfo
.internal_relocs
== NULL
)
10268 if (max_sym_count
!= 0)
10270 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10271 finfo
.external_syms
= bfd_malloc (amt
);
10272 if (finfo
.external_syms
== NULL
)
10275 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10276 finfo
.internal_syms
= bfd_malloc (amt
);
10277 if (finfo
.internal_syms
== NULL
)
10280 amt
= max_sym_count
* sizeof (long);
10281 finfo
.indices
= bfd_malloc (amt
);
10282 if (finfo
.indices
== NULL
)
10285 amt
= max_sym_count
* sizeof (asection
*);
10286 finfo
.sections
= bfd_malloc (amt
);
10287 if (finfo
.sections
== NULL
)
10291 if (max_sym_shndx_count
!= 0)
10293 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10294 finfo
.locsym_shndx
= bfd_malloc (amt
);
10295 if (finfo
.locsym_shndx
== NULL
)
10299 if (elf_hash_table (info
)->tls_sec
)
10301 bfd_vma base
, end
= 0;
10304 for (sec
= elf_hash_table (info
)->tls_sec
;
10305 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10308 bfd_size_type size
= sec
->size
;
10311 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10313 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10315 size
= o
->offset
+ o
->size
;
10317 end
= sec
->vma
+ size
;
10319 base
= elf_hash_table (info
)->tls_sec
->vma
;
10320 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10321 elf_hash_table (info
)->tls_size
= end
- base
;
10324 /* Reorder SHF_LINK_ORDER sections. */
10325 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10327 if (!elf_fixup_link_order (abfd
, o
))
10331 /* Since ELF permits relocations to be against local symbols, we
10332 must have the local symbols available when we do the relocations.
10333 Since we would rather only read the local symbols once, and we
10334 would rather not keep them in memory, we handle all the
10335 relocations for a single input file at the same time.
10337 Unfortunately, there is no way to know the total number of local
10338 symbols until we have seen all of them, and the local symbol
10339 indices precede the global symbol indices. This means that when
10340 we are generating relocatable output, and we see a reloc against
10341 a global symbol, we can not know the symbol index until we have
10342 finished examining all the local symbols to see which ones we are
10343 going to output. To deal with this, we keep the relocations in
10344 memory, and don't output them until the end of the link. This is
10345 an unfortunate waste of memory, but I don't see a good way around
10346 it. Fortunately, it only happens when performing a relocatable
10347 link, which is not the common case. FIXME: If keep_memory is set
10348 we could write the relocs out and then read them again; I don't
10349 know how bad the memory loss will be. */
10351 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10352 sub
->output_has_begun
= FALSE
;
10353 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10355 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10357 if (p
->type
== bfd_indirect_link_order
10358 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10359 == bfd_target_elf_flavour
)
10360 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10362 if (! sub
->output_has_begun
)
10364 if (! elf_link_input_bfd (&finfo
, sub
))
10366 sub
->output_has_begun
= TRUE
;
10369 else if (p
->type
== bfd_section_reloc_link_order
10370 || p
->type
== bfd_symbol_reloc_link_order
)
10372 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10377 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10383 /* Free symbol buffer if needed. */
10384 if (!info
->reduce_memory_overheads
)
10386 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10387 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10388 && elf_tdata (sub
)->symbuf
)
10390 free (elf_tdata (sub
)->symbuf
);
10391 elf_tdata (sub
)->symbuf
= NULL
;
10395 /* Output any global symbols that got converted to local in a
10396 version script or due to symbol visibility. We do this in a
10397 separate step since ELF requires all local symbols to appear
10398 prior to any global symbols. FIXME: We should only do this if
10399 some global symbols were, in fact, converted to become local.
10400 FIXME: Will this work correctly with the Irix 5 linker? */
10401 eoinfo
.failed
= FALSE
;
10402 eoinfo
.finfo
= &finfo
;
10403 eoinfo
.localsyms
= TRUE
;
10404 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10409 /* If backend needs to output some local symbols not present in the hash
10410 table, do it now. */
10411 if (bed
->elf_backend_output_arch_local_syms
)
10413 typedef bfd_boolean (*out_sym_func
)
10414 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10415 struct elf_link_hash_entry
*);
10417 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10418 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10422 /* That wrote out all the local symbols. Finish up the symbol table
10423 with the global symbols. Even if we want to strip everything we
10424 can, we still need to deal with those global symbols that got
10425 converted to local in a version script. */
10427 /* The sh_info field records the index of the first non local symbol. */
10428 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10431 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10433 Elf_Internal_Sym sym
;
10434 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10435 long last_local
= 0;
10437 /* Write out the section symbols for the output sections. */
10438 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10444 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10447 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10453 dynindx
= elf_section_data (s
)->dynindx
;
10456 indx
= elf_section_data (s
)->this_idx
;
10457 BFD_ASSERT (indx
> 0);
10458 sym
.st_shndx
= indx
;
10459 if (! check_dynsym (abfd
, &sym
))
10461 sym
.st_value
= s
->vma
;
10462 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10463 if (last_local
< dynindx
)
10464 last_local
= dynindx
;
10465 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10469 /* Write out the local dynsyms. */
10470 if (elf_hash_table (info
)->dynlocal
)
10472 struct elf_link_local_dynamic_entry
*e
;
10473 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10478 sym
.st_size
= e
->isym
.st_size
;
10479 sym
.st_other
= e
->isym
.st_other
;
10481 /* Copy the internal symbol as is.
10482 Note that we saved a word of storage and overwrote
10483 the original st_name with the dynstr_index. */
10486 if (e
->isym
.st_shndx
!= SHN_UNDEF
10487 && (e
->isym
.st_shndx
< SHN_LORESERVE
10488 || e
->isym
.st_shndx
> SHN_HIRESERVE
))
10490 s
= bfd_section_from_elf_index (e
->input_bfd
,
10494 elf_section_data (s
->output_section
)->this_idx
;
10495 if (! check_dynsym (abfd
, &sym
))
10497 sym
.st_value
= (s
->output_section
->vma
10499 + e
->isym
.st_value
);
10502 if (last_local
< e
->dynindx
)
10503 last_local
= e
->dynindx
;
10505 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10506 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10510 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10514 /* We get the global symbols from the hash table. */
10515 eoinfo
.failed
= FALSE
;
10516 eoinfo
.localsyms
= FALSE
;
10517 eoinfo
.finfo
= &finfo
;
10518 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10523 /* If backend needs to output some symbols not present in the hash
10524 table, do it now. */
10525 if (bed
->elf_backend_output_arch_syms
)
10527 typedef bfd_boolean (*out_sym_func
)
10528 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10529 struct elf_link_hash_entry
*);
10531 if (! ((*bed
->elf_backend_output_arch_syms
)
10532 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10536 /* Flush all symbols to the file. */
10537 if (! elf_link_flush_output_syms (&finfo
, bed
))
10540 /* Now we know the size of the symtab section. */
10541 off
+= symtab_hdr
->sh_size
;
10543 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10544 if (symtab_shndx_hdr
->sh_name
!= 0)
10546 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10547 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10548 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10549 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10550 symtab_shndx_hdr
->sh_size
= amt
;
10552 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10555 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10556 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10561 /* Finish up and write out the symbol string table (.strtab)
10563 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10564 /* sh_name was set in prep_headers. */
10565 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10566 symstrtab_hdr
->sh_flags
= 0;
10567 symstrtab_hdr
->sh_addr
= 0;
10568 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10569 symstrtab_hdr
->sh_entsize
= 0;
10570 symstrtab_hdr
->sh_link
= 0;
10571 symstrtab_hdr
->sh_info
= 0;
10572 /* sh_offset is set just below. */
10573 symstrtab_hdr
->sh_addralign
= 1;
10575 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10576 elf_tdata (abfd
)->next_file_pos
= off
;
10578 if (bfd_get_symcount (abfd
) > 0)
10580 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10581 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10585 /* Adjust the relocs to have the correct symbol indices. */
10586 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10588 if ((o
->flags
& SEC_RELOC
) == 0)
10591 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10592 elf_section_data (o
)->rel_count
,
10593 elf_section_data (o
)->rel_hashes
);
10594 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10595 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10596 elf_section_data (o
)->rel_count2
,
10597 (elf_section_data (o
)->rel_hashes
10598 + elf_section_data (o
)->rel_count
));
10600 /* Set the reloc_count field to 0 to prevent write_relocs from
10601 trying to swap the relocs out itself. */
10602 o
->reloc_count
= 0;
10605 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10606 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10608 /* If we are linking against a dynamic object, or generating a
10609 shared library, finish up the dynamic linking information. */
10612 bfd_byte
*dyncon
, *dynconend
;
10614 /* Fix up .dynamic entries. */
10615 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10616 BFD_ASSERT (o
!= NULL
);
10618 dyncon
= o
->contents
;
10619 dynconend
= o
->contents
+ o
->size
;
10620 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10622 Elf_Internal_Dyn dyn
;
10626 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10633 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10635 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10637 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10638 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10641 dyn
.d_un
.d_val
= relativecount
;
10648 name
= info
->init_function
;
10651 name
= info
->fini_function
;
10654 struct elf_link_hash_entry
*h
;
10656 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10657 FALSE
, FALSE
, TRUE
);
10659 && (h
->root
.type
== bfd_link_hash_defined
10660 || h
->root
.type
== bfd_link_hash_defweak
))
10662 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
10663 o
= h
->root
.u
.def
.section
;
10664 if (o
->output_section
!= NULL
)
10665 dyn
.d_un
.d_val
+= (o
->output_section
->vma
10666 + o
->output_offset
);
10669 /* The symbol is imported from another shared
10670 library and does not apply to this one. */
10671 dyn
.d_un
.d_val
= 0;
10678 case DT_PREINIT_ARRAYSZ
:
10679 name
= ".preinit_array";
10681 case DT_INIT_ARRAYSZ
:
10682 name
= ".init_array";
10684 case DT_FINI_ARRAYSZ
:
10685 name
= ".fini_array";
10687 o
= bfd_get_section_by_name (abfd
, name
);
10690 (*_bfd_error_handler
)
10691 (_("%B: could not find output section %s"), abfd
, name
);
10695 (*_bfd_error_handler
)
10696 (_("warning: %s section has zero size"), name
);
10697 dyn
.d_un
.d_val
= o
->size
;
10700 case DT_PREINIT_ARRAY
:
10701 name
= ".preinit_array";
10703 case DT_INIT_ARRAY
:
10704 name
= ".init_array";
10706 case DT_FINI_ARRAY
:
10707 name
= ".fini_array";
10714 name
= ".gnu.hash";
10723 name
= ".gnu.version_d";
10726 name
= ".gnu.version_r";
10729 name
= ".gnu.version";
10731 o
= bfd_get_section_by_name (abfd
, name
);
10734 (*_bfd_error_handler
)
10735 (_("%B: could not find output section %s"), abfd
, name
);
10738 dyn
.d_un
.d_ptr
= o
->vma
;
10745 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10749 dyn
.d_un
.d_val
= 0;
10750 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10752 Elf_Internal_Shdr
*hdr
;
10754 hdr
= elf_elfsections (abfd
)[i
];
10755 if (hdr
->sh_type
== type
10756 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10758 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10759 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10762 if (dyn
.d_un
.d_val
== 0
10763 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
10764 dyn
.d_un
.d_val
= hdr
->sh_addr
;
10770 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10774 /* If we have created any dynamic sections, then output them. */
10775 if (dynobj
!= NULL
)
10777 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10780 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10781 if (info
->warn_shared_textrel
&& info
->shared
)
10783 bfd_byte
*dyncon
, *dynconend
;
10785 /* Fix up .dynamic entries. */
10786 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10787 BFD_ASSERT (o
!= NULL
);
10789 dyncon
= o
->contents
;
10790 dynconend
= o
->contents
+ o
->size
;
10791 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10793 Elf_Internal_Dyn dyn
;
10795 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10797 if (dyn
.d_tag
== DT_TEXTREL
)
10799 info
->callbacks
->einfo
10800 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10806 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
10808 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10810 || o
->output_section
== bfd_abs_section_ptr
)
10812 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
10814 /* At this point, we are only interested in sections
10815 created by _bfd_elf_link_create_dynamic_sections. */
10818 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
10820 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
10822 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
10824 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
10826 if (! bfd_set_section_contents (abfd
, o
->output_section
,
10828 (file_ptr
) o
->output_offset
,
10834 /* The contents of the .dynstr section are actually in a
10836 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
10837 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
10838 || ! _bfd_elf_strtab_emit (abfd
,
10839 elf_hash_table (info
)->dynstr
))
10845 if (info
->relocatable
)
10847 bfd_boolean failed
= FALSE
;
10849 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
10854 /* If we have optimized stabs strings, output them. */
10855 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
10857 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
10861 if (info
->eh_frame_hdr
)
10863 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
10867 if (finfo
.symstrtab
!= NULL
)
10868 _bfd_stringtab_free (finfo
.symstrtab
);
10869 if (finfo
.contents
!= NULL
)
10870 free (finfo
.contents
);
10871 if (finfo
.external_relocs
!= NULL
)
10872 free (finfo
.external_relocs
);
10873 if (finfo
.internal_relocs
!= NULL
)
10874 free (finfo
.internal_relocs
);
10875 if (finfo
.external_syms
!= NULL
)
10876 free (finfo
.external_syms
);
10877 if (finfo
.locsym_shndx
!= NULL
)
10878 free (finfo
.locsym_shndx
);
10879 if (finfo
.internal_syms
!= NULL
)
10880 free (finfo
.internal_syms
);
10881 if (finfo
.indices
!= NULL
)
10882 free (finfo
.indices
);
10883 if (finfo
.sections
!= NULL
)
10884 free (finfo
.sections
);
10885 if (finfo
.symbuf
!= NULL
)
10886 free (finfo
.symbuf
);
10887 if (finfo
.symshndxbuf
!= NULL
)
10888 free (finfo
.symshndxbuf
);
10889 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10891 if ((o
->flags
& SEC_RELOC
) != 0
10892 && elf_section_data (o
)->rel_hashes
!= NULL
)
10893 free (elf_section_data (o
)->rel_hashes
);
10896 elf_tdata (abfd
)->linker
= TRUE
;
10900 bfd_byte
*contents
= bfd_malloc (attr_size
);
10901 if (contents
== NULL
)
10902 return FALSE
; /* Bail out and fail. */
10903 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
10904 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
10911 if (finfo
.symstrtab
!= NULL
)
10912 _bfd_stringtab_free (finfo
.symstrtab
);
10913 if (finfo
.contents
!= NULL
)
10914 free (finfo
.contents
);
10915 if (finfo
.external_relocs
!= NULL
)
10916 free (finfo
.external_relocs
);
10917 if (finfo
.internal_relocs
!= NULL
)
10918 free (finfo
.internal_relocs
);
10919 if (finfo
.external_syms
!= NULL
)
10920 free (finfo
.external_syms
);
10921 if (finfo
.locsym_shndx
!= NULL
)
10922 free (finfo
.locsym_shndx
);
10923 if (finfo
.internal_syms
!= NULL
)
10924 free (finfo
.internal_syms
);
10925 if (finfo
.indices
!= NULL
)
10926 free (finfo
.indices
);
10927 if (finfo
.sections
!= NULL
)
10928 free (finfo
.sections
);
10929 if (finfo
.symbuf
!= NULL
)
10930 free (finfo
.symbuf
);
10931 if (finfo
.symshndxbuf
!= NULL
)
10932 free (finfo
.symshndxbuf
);
10933 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10935 if ((o
->flags
& SEC_RELOC
) != 0
10936 && elf_section_data (o
)->rel_hashes
!= NULL
)
10937 free (elf_section_data (o
)->rel_hashes
);
10943 /* Initialize COOKIE for input bfd ABFD. */
10946 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
10947 struct bfd_link_info
*info
, bfd
*abfd
)
10949 Elf_Internal_Shdr
*symtab_hdr
;
10950 const struct elf_backend_data
*bed
;
10952 bed
= get_elf_backend_data (abfd
);
10953 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10955 cookie
->abfd
= abfd
;
10956 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
10957 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
10958 if (cookie
->bad_symtab
)
10960 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
10961 cookie
->extsymoff
= 0;
10965 cookie
->locsymcount
= symtab_hdr
->sh_info
;
10966 cookie
->extsymoff
= symtab_hdr
->sh_info
;
10969 if (bed
->s
->arch_size
== 32)
10970 cookie
->r_sym_shift
= 8;
10972 cookie
->r_sym_shift
= 32;
10974 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
10975 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
10977 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
10978 cookie
->locsymcount
, 0,
10980 if (cookie
->locsyms
== NULL
)
10982 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
10985 if (info
->keep_memory
)
10986 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
10991 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10994 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
10996 Elf_Internal_Shdr
*symtab_hdr
;
10998 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10999 if (cookie
->locsyms
!= NULL
11000 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11001 free (cookie
->locsyms
);
11004 /* Initialize the relocation information in COOKIE for input section SEC
11005 of input bfd ABFD. */
11008 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11009 struct bfd_link_info
*info
, bfd
*abfd
,
11012 const struct elf_backend_data
*bed
;
11014 if (sec
->reloc_count
== 0)
11016 cookie
->rels
= NULL
;
11017 cookie
->relend
= NULL
;
11021 bed
= get_elf_backend_data (abfd
);
11023 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11024 info
->keep_memory
);
11025 if (cookie
->rels
== NULL
)
11027 cookie
->rel
= cookie
->rels
;
11028 cookie
->relend
= (cookie
->rels
11029 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11031 cookie
->rel
= cookie
->rels
;
11035 /* Free the memory allocated by init_reloc_cookie_rels,
11039 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11042 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11043 free (cookie
->rels
);
11046 /* Initialize the whole of COOKIE for input section SEC. */
11049 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11050 struct bfd_link_info
*info
,
11053 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11055 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11060 fini_reloc_cookie (cookie
, sec
->owner
);
11065 /* Free the memory allocated by init_reloc_cookie_for_section,
11069 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11072 fini_reloc_cookie_rels (cookie
, sec
);
11073 fini_reloc_cookie (cookie
, sec
->owner
);
11076 /* Garbage collect unused sections. */
11078 /* Default gc_mark_hook. */
11081 _bfd_elf_gc_mark_hook (asection
*sec
,
11082 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11083 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11084 struct elf_link_hash_entry
*h
,
11085 Elf_Internal_Sym
*sym
)
11089 switch (h
->root
.type
)
11091 case bfd_link_hash_defined
:
11092 case bfd_link_hash_defweak
:
11093 return h
->root
.u
.def
.section
;
11095 case bfd_link_hash_common
:
11096 return h
->root
.u
.c
.p
->section
;
11103 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11108 /* COOKIE->rel describes a relocation against section SEC, which is
11109 a section we've decided to keep. Return the section that contains
11110 the relocation symbol, or NULL if no section contains it. */
11113 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11114 elf_gc_mark_hook_fn gc_mark_hook
,
11115 struct elf_reloc_cookie
*cookie
)
11117 unsigned long r_symndx
;
11118 struct elf_link_hash_entry
*h
;
11120 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11124 if (r_symndx
>= cookie
->locsymcount
11125 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11127 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11128 while (h
->root
.type
== bfd_link_hash_indirect
11129 || h
->root
.type
== bfd_link_hash_warning
)
11130 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11131 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11134 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11135 &cookie
->locsyms
[r_symndx
]);
11138 /* COOKIE->rel describes a relocation against section SEC, which is
11139 a section we've decided to keep. Mark the section that contains
11140 the relocation symbol. */
11143 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11145 elf_gc_mark_hook_fn gc_mark_hook
,
11146 struct elf_reloc_cookie
*cookie
)
11150 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11151 if (rsec
&& !rsec
->gc_mark
)
11153 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11155 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11161 /* The mark phase of garbage collection. For a given section, mark
11162 it and any sections in this section's group, and all the sections
11163 which define symbols to which it refers. */
11166 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11168 elf_gc_mark_hook_fn gc_mark_hook
)
11171 asection
*group_sec
, *eh_frame
;
11175 /* Mark all the sections in the group. */
11176 group_sec
= elf_section_data (sec
)->next_in_group
;
11177 if (group_sec
&& !group_sec
->gc_mark
)
11178 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11181 /* Look through the section relocs. */
11183 eh_frame
= elf_eh_frame_section (sec
->owner
);
11184 if ((sec
->flags
& SEC_RELOC
) != 0
11185 && sec
->reloc_count
> 0
11186 && sec
!= eh_frame
)
11188 struct elf_reloc_cookie cookie
;
11190 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11194 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11195 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11200 fini_reloc_cookie_for_section (&cookie
, sec
);
11204 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11206 struct elf_reloc_cookie cookie
;
11208 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11212 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11213 gc_mark_hook
, &cookie
))
11215 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11222 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11224 struct elf_gc_sweep_symbol_info
11226 struct bfd_link_info
*info
;
11227 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11232 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11234 if (h
->root
.type
== bfd_link_hash_warning
)
11235 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11237 if ((h
->root
.type
== bfd_link_hash_defined
11238 || h
->root
.type
== bfd_link_hash_defweak
)
11239 && !h
->root
.u
.def
.section
->gc_mark
11240 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11242 struct elf_gc_sweep_symbol_info
*inf
= data
;
11243 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11249 /* The sweep phase of garbage collection. Remove all garbage sections. */
11251 typedef bfd_boolean (*gc_sweep_hook_fn
)
11252 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11255 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11258 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11259 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11260 unsigned long section_sym_count
;
11261 struct elf_gc_sweep_symbol_info sweep_info
;
11263 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11267 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11270 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11272 /* Keep debug and special sections. */
11273 if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11274 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11280 /* Skip sweeping sections already excluded. */
11281 if (o
->flags
& SEC_EXCLUDE
)
11284 /* Since this is early in the link process, it is simple
11285 to remove a section from the output. */
11286 o
->flags
|= SEC_EXCLUDE
;
11288 if (info
->print_gc_sections
&& o
->size
!= 0)
11289 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11291 /* But we also have to update some of the relocation
11292 info we collected before. */
11294 && (o
->flags
& SEC_RELOC
) != 0
11295 && o
->reloc_count
> 0
11296 && !bfd_is_abs_section (o
->output_section
))
11298 Elf_Internal_Rela
*internal_relocs
;
11302 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11303 info
->keep_memory
);
11304 if (internal_relocs
== NULL
)
11307 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11309 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11310 free (internal_relocs
);
11318 /* Remove the symbols that were in the swept sections from the dynamic
11319 symbol table. GCFIXME: Anyone know how to get them out of the
11320 static symbol table as well? */
11321 sweep_info
.info
= info
;
11322 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11323 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11326 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11330 /* Propagate collected vtable information. This is called through
11331 elf_link_hash_traverse. */
11334 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11336 if (h
->root
.type
== bfd_link_hash_warning
)
11337 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11339 /* Those that are not vtables. */
11340 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11343 /* Those vtables that do not have parents, we cannot merge. */
11344 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11347 /* If we've already been done, exit. */
11348 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11351 /* Make sure the parent's table is up to date. */
11352 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11354 if (h
->vtable
->used
== NULL
)
11356 /* None of this table's entries were referenced. Re-use the
11358 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11359 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11364 bfd_boolean
*cu
, *pu
;
11366 /* Or the parent's entries into ours. */
11367 cu
= h
->vtable
->used
;
11369 pu
= h
->vtable
->parent
->vtable
->used
;
11372 const struct elf_backend_data
*bed
;
11373 unsigned int log_file_align
;
11375 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11376 log_file_align
= bed
->s
->log_file_align
;
11377 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11392 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11395 bfd_vma hstart
, hend
;
11396 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11397 const struct elf_backend_data
*bed
;
11398 unsigned int log_file_align
;
11400 if (h
->root
.type
== bfd_link_hash_warning
)
11401 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11403 /* Take care of both those symbols that do not describe vtables as
11404 well as those that are not loaded. */
11405 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11408 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11409 || h
->root
.type
== bfd_link_hash_defweak
);
11411 sec
= h
->root
.u
.def
.section
;
11412 hstart
= h
->root
.u
.def
.value
;
11413 hend
= hstart
+ h
->size
;
11415 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11417 return *(bfd_boolean
*) okp
= FALSE
;
11418 bed
= get_elf_backend_data (sec
->owner
);
11419 log_file_align
= bed
->s
->log_file_align
;
11421 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11423 for (rel
= relstart
; rel
< relend
; ++rel
)
11424 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11426 /* If the entry is in use, do nothing. */
11427 if (h
->vtable
->used
11428 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11430 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11431 if (h
->vtable
->used
[entry
])
11434 /* Otherwise, kill it. */
11435 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11441 /* Mark sections containing dynamically referenced symbols. When
11442 building shared libraries, we must assume that any visible symbol is
11446 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11448 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11450 if (h
->root
.type
== bfd_link_hash_warning
)
11451 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11453 if ((h
->root
.type
== bfd_link_hash_defined
11454 || h
->root
.type
== bfd_link_hash_defweak
)
11456 || (!info
->executable
11458 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11459 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11460 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11465 /* Do mark and sweep of unused sections. */
11468 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11470 bfd_boolean ok
= TRUE
;
11472 elf_gc_mark_hook_fn gc_mark_hook
;
11473 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11475 if (!bed
->can_gc_sections
11476 || info
->relocatable
11477 || info
->emitrelocations
11478 || !is_elf_hash_table (info
->hash
))
11480 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11484 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11485 at the .eh_frame section if we can mark the FDEs individually. */
11486 _bfd_elf_begin_eh_frame_parsing (info
);
11487 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11490 struct elf_reloc_cookie cookie
;
11492 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11493 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11495 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11496 if (elf_section_data (sec
)->sec_info
)
11497 elf_eh_frame_section (sub
) = sec
;
11498 fini_reloc_cookie_for_section (&cookie
, sec
);
11501 _bfd_elf_end_eh_frame_parsing (info
);
11503 /* Apply transitive closure to the vtable entry usage info. */
11504 elf_link_hash_traverse (elf_hash_table (info
),
11505 elf_gc_propagate_vtable_entries_used
,
11510 /* Kill the vtable relocations that were not used. */
11511 elf_link_hash_traverse (elf_hash_table (info
),
11512 elf_gc_smash_unused_vtentry_relocs
,
11517 /* Mark dynamically referenced symbols. */
11518 if (elf_hash_table (info
)->dynamic_sections_created
)
11519 elf_link_hash_traverse (elf_hash_table (info
),
11520 bed
->gc_mark_dynamic_ref
,
11523 /* Grovel through relocs to find out who stays ... */
11524 gc_mark_hook
= bed
->gc_mark_hook
;
11525 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11529 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11532 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11533 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11534 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11538 /* Allow the backend to mark additional target specific sections. */
11539 if (bed
->gc_mark_extra_sections
)
11540 bed
->gc_mark_extra_sections(info
, gc_mark_hook
);
11542 /* ... and mark SEC_EXCLUDE for those that go. */
11543 return elf_gc_sweep (abfd
, info
);
11546 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11549 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11551 struct elf_link_hash_entry
*h
,
11554 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11555 struct elf_link_hash_entry
**search
, *child
;
11556 bfd_size_type extsymcount
;
11557 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11559 /* The sh_info field of the symtab header tells us where the
11560 external symbols start. We don't care about the local symbols at
11562 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11563 if (!elf_bad_symtab (abfd
))
11564 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11566 sym_hashes
= elf_sym_hashes (abfd
);
11567 sym_hashes_end
= sym_hashes
+ extsymcount
;
11569 /* Hunt down the child symbol, which is in this section at the same
11570 offset as the relocation. */
11571 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11573 if ((child
= *search
) != NULL
11574 && (child
->root
.type
== bfd_link_hash_defined
11575 || child
->root
.type
== bfd_link_hash_defweak
)
11576 && child
->root
.u
.def
.section
== sec
11577 && child
->root
.u
.def
.value
== offset
)
11581 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11582 abfd
, sec
, (unsigned long) offset
);
11583 bfd_set_error (bfd_error_invalid_operation
);
11587 if (!child
->vtable
)
11589 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11590 if (!child
->vtable
)
11595 /* This *should* only be the absolute section. It could potentially
11596 be that someone has defined a non-global vtable though, which
11597 would be bad. It isn't worth paging in the local symbols to be
11598 sure though; that case should simply be handled by the assembler. */
11600 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11603 child
->vtable
->parent
= h
;
11608 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11611 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11612 asection
*sec ATTRIBUTE_UNUSED
,
11613 struct elf_link_hash_entry
*h
,
11616 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11617 unsigned int log_file_align
= bed
->s
->log_file_align
;
11621 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11626 if (addend
>= h
->vtable
->size
)
11628 size_t size
, bytes
, file_align
;
11629 bfd_boolean
*ptr
= h
->vtable
->used
;
11631 /* While the symbol is undefined, we have to be prepared to handle
11633 file_align
= 1 << log_file_align
;
11634 if (h
->root
.type
== bfd_link_hash_undefined
)
11635 size
= addend
+ file_align
;
11639 if (addend
>= size
)
11641 /* Oops! We've got a reference past the defined end of
11642 the table. This is probably a bug -- shall we warn? */
11643 size
= addend
+ file_align
;
11646 size
= (size
+ file_align
- 1) & -file_align
;
11648 /* Allocate one extra entry for use as a "done" flag for the
11649 consolidation pass. */
11650 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11654 ptr
= bfd_realloc (ptr
- 1, bytes
);
11660 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11661 * sizeof (bfd_boolean
));
11662 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11666 ptr
= bfd_zmalloc (bytes
);
11671 /* And arrange for that done flag to be at index -1. */
11672 h
->vtable
->used
= ptr
+ 1;
11673 h
->vtable
->size
= size
;
11676 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11681 struct alloc_got_off_arg
{
11683 unsigned int got_elt_size
;
11686 /* We need a special top-level link routine to convert got reference counts
11687 to real got offsets. */
11690 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11692 struct alloc_got_off_arg
*gofarg
= arg
;
11694 if (h
->root
.type
== bfd_link_hash_warning
)
11695 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11697 if (h
->got
.refcount
> 0)
11699 h
->got
.offset
= gofarg
->gotoff
;
11700 gofarg
->gotoff
+= gofarg
->got_elt_size
;
11703 h
->got
.offset
= (bfd_vma
) -1;
11708 /* And an accompanying bit to work out final got entry offsets once
11709 we're done. Should be called from final_link. */
11712 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11713 struct bfd_link_info
*info
)
11716 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11718 unsigned int got_elt_size
= bed
->s
->arch_size
/ 8;
11719 struct alloc_got_off_arg gofarg
;
11721 if (! is_elf_hash_table (info
->hash
))
11724 /* The GOT offset is relative to the .got section, but the GOT header is
11725 put into the .got.plt section, if the backend uses it. */
11726 if (bed
->want_got_plt
)
11729 gotoff
= bed
->got_header_size
;
11731 /* Do the local .got entries first. */
11732 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11734 bfd_signed_vma
*local_got
;
11735 bfd_size_type j
, locsymcount
;
11736 Elf_Internal_Shdr
*symtab_hdr
;
11738 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11741 local_got
= elf_local_got_refcounts (i
);
11745 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11746 if (elf_bad_symtab (i
))
11747 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11749 locsymcount
= symtab_hdr
->sh_info
;
11751 for (j
= 0; j
< locsymcount
; ++j
)
11753 if (local_got
[j
] > 0)
11755 local_got
[j
] = gotoff
;
11756 gotoff
+= got_elt_size
;
11759 local_got
[j
] = (bfd_vma
) -1;
11763 /* Then the global .got entries. .plt refcounts are handled by
11764 adjust_dynamic_symbol */
11765 gofarg
.gotoff
= gotoff
;
11766 gofarg
.got_elt_size
= got_elt_size
;
11767 elf_link_hash_traverse (elf_hash_table (info
),
11768 elf_gc_allocate_got_offsets
,
11773 /* Many folk need no more in the way of final link than this, once
11774 got entry reference counting is enabled. */
11777 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11779 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
11782 /* Invoke the regular ELF backend linker to do all the work. */
11783 return bfd_elf_final_link (abfd
, info
);
11787 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
11789 struct elf_reloc_cookie
*rcookie
= cookie
;
11791 if (rcookie
->bad_symtab
)
11792 rcookie
->rel
= rcookie
->rels
;
11794 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
11796 unsigned long r_symndx
;
11798 if (! rcookie
->bad_symtab
)
11799 if (rcookie
->rel
->r_offset
> offset
)
11801 if (rcookie
->rel
->r_offset
!= offset
)
11804 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
11805 if (r_symndx
== SHN_UNDEF
)
11808 if (r_symndx
>= rcookie
->locsymcount
11809 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11811 struct elf_link_hash_entry
*h
;
11813 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
11815 while (h
->root
.type
== bfd_link_hash_indirect
11816 || h
->root
.type
== bfd_link_hash_warning
)
11817 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11819 if ((h
->root
.type
== bfd_link_hash_defined
11820 || h
->root
.type
== bfd_link_hash_defweak
)
11821 && elf_discarded_section (h
->root
.u
.def
.section
))
11828 /* It's not a relocation against a global symbol,
11829 but it could be a relocation against a local
11830 symbol for a discarded section. */
11832 Elf_Internal_Sym
*isym
;
11834 /* Need to: get the symbol; get the section. */
11835 isym
= &rcookie
->locsyms
[r_symndx
];
11836 if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
11838 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
11839 if (isec
!= NULL
&& elf_discarded_section (isec
))
11848 /* Discard unneeded references to discarded sections.
11849 Returns TRUE if any section's size was changed. */
11850 /* This function assumes that the relocations are in sorted order,
11851 which is true for all known assemblers. */
11854 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
11856 struct elf_reloc_cookie cookie
;
11857 asection
*stab
, *eh
;
11858 const struct elf_backend_data
*bed
;
11860 bfd_boolean ret
= FALSE
;
11862 if (info
->traditional_format
11863 || !is_elf_hash_table (info
->hash
))
11866 _bfd_elf_begin_eh_frame_parsing (info
);
11867 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
11869 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
11872 bed
= get_elf_backend_data (abfd
);
11874 if ((abfd
->flags
& DYNAMIC
) != 0)
11878 if (!info
->relocatable
)
11880 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
11883 || bfd_is_abs_section (eh
->output_section
)))
11887 stab
= bfd_get_section_by_name (abfd
, ".stab");
11889 && (stab
->size
== 0
11890 || bfd_is_abs_section (stab
->output_section
)
11891 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
11896 && bed
->elf_backend_discard_info
== NULL
)
11899 if (!init_reloc_cookie (&cookie
, info
, abfd
))
11903 && stab
->reloc_count
> 0
11904 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
11906 if (_bfd_discard_section_stabs (abfd
, stab
,
11907 elf_section_data (stab
)->sec_info
,
11908 bfd_elf_reloc_symbol_deleted_p
,
11911 fini_reloc_cookie_rels (&cookie
, stab
);
11915 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
11917 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
11918 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
11919 bfd_elf_reloc_symbol_deleted_p
,
11922 fini_reloc_cookie_rels (&cookie
, eh
);
11925 if (bed
->elf_backend_discard_info
!= NULL
11926 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
11929 fini_reloc_cookie (&cookie
, abfd
);
11931 _bfd_elf_end_eh_frame_parsing (info
);
11933 if (info
->eh_frame_hdr
11934 && !info
->relocatable
11935 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
11942 _bfd_elf_section_already_linked (bfd
*abfd
, struct bfd_section
*sec
,
11943 struct bfd_link_info
*info
)
11946 const char *name
, *p
;
11947 struct bfd_section_already_linked
*l
;
11948 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
11950 if (sec
->output_section
== bfd_abs_section_ptr
)
11953 flags
= sec
->flags
;
11955 /* Return if it isn't a linkonce section. A comdat group section
11956 also has SEC_LINK_ONCE set. */
11957 if ((flags
& SEC_LINK_ONCE
) == 0)
11960 /* Don't put group member sections on our list of already linked
11961 sections. They are handled as a group via their group section. */
11962 if (elf_sec_group (sec
) != NULL
)
11965 /* FIXME: When doing a relocatable link, we may have trouble
11966 copying relocations in other sections that refer to local symbols
11967 in the section being discarded. Those relocations will have to
11968 be converted somehow; as of this writing I'm not sure that any of
11969 the backends handle that correctly.
11971 It is tempting to instead not discard link once sections when
11972 doing a relocatable link (technically, they should be discarded
11973 whenever we are building constructors). However, that fails,
11974 because the linker winds up combining all the link once sections
11975 into a single large link once section, which defeats the purpose
11976 of having link once sections in the first place.
11978 Also, not merging link once sections in a relocatable link
11979 causes trouble for MIPS ELF, which relies on link once semantics
11980 to handle the .reginfo section correctly. */
11982 name
= bfd_get_section_name (abfd
, sec
);
11984 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
11985 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
11990 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
11992 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
11994 /* We may have 2 different types of sections on the list: group
11995 sections and linkonce sections. Match like sections. */
11996 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
11997 && strcmp (name
, l
->sec
->name
) == 0
11998 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12000 /* The section has already been linked. See if we should
12001 issue a warning. */
12002 switch (flags
& SEC_LINK_DUPLICATES
)
12007 case SEC_LINK_DUPLICATES_DISCARD
:
12010 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12011 (*_bfd_error_handler
)
12012 (_("%B: ignoring duplicate section `%A'"),
12016 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12017 if (sec
->size
!= l
->sec
->size
)
12018 (*_bfd_error_handler
)
12019 (_("%B: duplicate section `%A' has different size"),
12023 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12024 if (sec
->size
!= l
->sec
->size
)
12025 (*_bfd_error_handler
)
12026 (_("%B: duplicate section `%A' has different size"),
12028 else if (sec
->size
!= 0)
12030 bfd_byte
*sec_contents
, *l_sec_contents
;
12032 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12033 (*_bfd_error_handler
)
12034 (_("%B: warning: could not read contents of section `%A'"),
12036 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12038 (*_bfd_error_handler
)
12039 (_("%B: warning: could not read contents of section `%A'"),
12040 l
->sec
->owner
, l
->sec
);
12041 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12042 (*_bfd_error_handler
)
12043 (_("%B: warning: duplicate section `%A' has different contents"),
12047 free (sec_contents
);
12048 if (l_sec_contents
)
12049 free (l_sec_contents
);
12054 /* Set the output_section field so that lang_add_section
12055 does not create a lang_input_section structure for this
12056 section. Since there might be a symbol in the section
12057 being discarded, we must retain a pointer to the section
12058 which we are really going to use. */
12059 sec
->output_section
= bfd_abs_section_ptr
;
12060 sec
->kept_section
= l
->sec
;
12062 if (flags
& SEC_GROUP
)
12064 asection
*first
= elf_next_in_group (sec
);
12065 asection
*s
= first
;
12069 s
->output_section
= bfd_abs_section_ptr
;
12070 /* Record which group discards it. */
12071 s
->kept_section
= l
->sec
;
12072 s
= elf_next_in_group (s
);
12073 /* These lists are circular. */
12083 /* A single member comdat group section may be discarded by a
12084 linkonce section and vice versa. */
12086 if ((flags
& SEC_GROUP
) != 0)
12088 asection
*first
= elf_next_in_group (sec
);
12090 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12091 /* Check this single member group against linkonce sections. */
12092 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12093 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12094 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12095 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12097 first
->output_section
= bfd_abs_section_ptr
;
12098 first
->kept_section
= l
->sec
;
12099 sec
->output_section
= bfd_abs_section_ptr
;
12104 /* Check this linkonce section against single member groups. */
12105 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12106 if (l
->sec
->flags
& SEC_GROUP
)
12108 asection
*first
= elf_next_in_group (l
->sec
);
12111 && elf_next_in_group (first
) == first
12112 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12114 sec
->output_section
= bfd_abs_section_ptr
;
12115 sec
->kept_section
= first
;
12120 /* This is the first section with this name. Record it. */
12121 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12122 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E"));
12126 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12128 return sym
->st_shndx
== SHN_COMMON
;
12132 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12138 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12140 return bfd_com_section_ptr
;