1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
30 #include "elf/x86-64.h"
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table
[] =
40 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
41 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
43 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
44 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
46 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
47 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
50 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
53 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
56 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
58 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
59 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
61 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
62 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
64 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
65 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
67 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
68 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
70 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
71 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
74 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
76 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
77 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
78 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
80 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
81 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
82 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
83 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
84 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
85 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
87 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
88 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
90 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
91 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
93 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
94 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
96 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
97 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
99 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
100 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
102 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
103 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
105 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
106 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
108 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
109 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
111 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
112 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
113 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
114 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
115 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
116 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
117 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
118 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
120 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
121 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
123 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
124 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
125 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
126 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
127 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
129 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
130 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
134 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
135 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
138 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
139 complain_overflow_dont
, bfd_elf_generic_reloc
,
140 "R_X86_64_TLSDESC_CALL",
142 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
143 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
145 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
156 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
160 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
164 /* Map BFD relocs to the x86_64 elf relocs. */
167 bfd_reloc_code_real_type bfd_reloc_val
;
168 unsigned char elf_reloc_val
;
171 static const struct elf_reloc_map x86_64_reloc_map
[] =
173 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
174 { BFD_RELOC_64
, R_X86_64_64
, },
175 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
176 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
177 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
178 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
179 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
180 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
181 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
182 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
183 { BFD_RELOC_32
, R_X86_64_32
, },
184 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
185 { BFD_RELOC_16
, R_X86_64_16
, },
186 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
187 { BFD_RELOC_8
, R_X86_64_8
, },
188 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
189 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
190 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
191 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
192 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
193 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
194 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
195 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
196 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
197 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
198 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
199 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
200 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
201 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
202 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
203 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
204 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
207 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
208 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
209 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
212 static reloc_howto_type
*
213 elf64_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
217 if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type
>= (unsigned int) R_X86_64_max
)
220 if (r_type
>= (unsigned int) R_X86_64_standard
)
222 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
224 r_type
= R_X86_64_NONE
;
229 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
230 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
231 return &x86_64_elf_howto_table
[i
];
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type
*
236 elf64_x86_64_reloc_type_lookup (bfd
*abfd
,
237 bfd_reloc_code_real_type code
)
241 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
244 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
245 return elf64_x86_64_rtype_to_howto (abfd
,
246 x86_64_reloc_map
[i
].elf_reloc_val
);
251 static reloc_howto_type
*
252 elf64_x86_64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
258 i
< (sizeof (x86_64_elf_howto_table
)
259 / sizeof (x86_64_elf_howto_table
[0]));
261 if (x86_64_elf_howto_table
[i
].name
!= NULL
262 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
263 return &x86_64_elf_howto_table
[i
];
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
271 elf64_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
272 Elf_Internal_Rela
*dst
)
276 r_type
= ELF64_R_TYPE (dst
->r_info
);
277 cache_ptr
->howto
= elf64_x86_64_rtype_to_howto (abfd
, r_type
);
278 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
281 /* Support for core dump NOTE sections. */
283 elf64_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
288 switch (note
->descsz
)
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
295 elf_tdata (abfd
)->core_signal
296 = bfd_get_16 (abfd
, note
->descdata
+ 12);
299 elf_tdata (abfd
)->core_pid
300 = bfd_get_32 (abfd
, note
->descdata
+ 32);
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
311 size
, note
->descpos
+ offset
);
315 elf64_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
317 switch (note
->descsz
)
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd
)->core_program
324 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
325 elf_tdata (abfd
)->core_command
326 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
334 char *command
= elf_tdata (abfd
)->core_command
;
335 int n
= strlen (command
);
337 if (0 < n
&& command
[n
- 1] == ' ')
338 command
[n
- 1] = '\0';
344 /* Functions for the x86-64 ELF linker. */
346 /* The name of the dynamic interpreter. This is put in the .interp
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
355 #define ELIMINATE_COPY_RELOCS 1
357 /* The size in bytes of an entry in the global offset table. */
359 #define GOT_ENTRY_SIZE 8
361 /* The size in bytes of an entry in the procedure linkage table. */
363 #define PLT_ENTRY_SIZE 16
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
368 static const bfd_byte elf64_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
375 /* Subsequent entries in a procedure linkage table look like this. */
377 static const bfd_byte elf64_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
393 struct elf64_x86_64_dyn_relocs
396 struct elf64_x86_64_dyn_relocs
*next
;
398 /* The input section of the reloc. */
401 /* Total number of relocs copied for the input section. */
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count
;
408 /* x86-64 ELF linker hash entry. */
410 struct elf64_x86_64_link_hash_entry
412 struct elf_link_hash_entry elf
;
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs
*dyn_relocs
;
417 #define GOT_UNKNOWN 0
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type
;
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
440 struct elf64_x86_64_obj_tdata
442 struct elf_obj_tdata root
;
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type
;
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma
*local_tlsdesc_gotent
;
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
460 /* x86-64 ELF linker hash table. */
462 struct elf64_x86_64_link_hash_table
464 struct elf_link_hash_table elf
;
466 /* Short-cuts to get to dynamic linker sections. */
475 /* The offset into splt of the PLT entry for the TLS descriptor
476 resolver. Special values are 0, if not necessary (or not found
477 to be necessary yet), and -1 if needed but not determined
480 /* The offset into sgot of the GOT entry used by the PLT entry
485 bfd_signed_vma refcount
;
489 /* The amount of space used by the jump slots in the GOT. */
490 bfd_vma sgotplt_jump_table_size
;
492 /* Small local sym to section mapping cache. */
493 struct sym_sec_cache sym_sec
;
496 /* Get the x86-64 ELF linker hash table from a link_info structure. */
498 #define elf64_x86_64_hash_table(p) \
499 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
501 #define elf64_x86_64_compute_jump_table_size(htab) \
502 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
504 /* Create an entry in an x86-64 ELF linker hash table. */
506 static struct bfd_hash_entry
*
507 link_hash_newfunc (struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
510 /* Allocate the structure if it has not already been allocated by a
514 entry
= bfd_hash_allocate (table
,
515 sizeof (struct elf64_x86_64_link_hash_entry
));
520 /* Call the allocation method of the superclass. */
521 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
524 struct elf64_x86_64_link_hash_entry
*eh
;
526 eh
= (struct elf64_x86_64_link_hash_entry
*) entry
;
527 eh
->dyn_relocs
= NULL
;
528 eh
->tls_type
= GOT_UNKNOWN
;
529 eh
->tlsdesc_got
= (bfd_vma
) -1;
535 /* Create an X86-64 ELF linker hash table. */
537 static struct bfd_link_hash_table
*
538 elf64_x86_64_link_hash_table_create (bfd
*abfd
)
540 struct elf64_x86_64_link_hash_table
*ret
;
541 bfd_size_type amt
= sizeof (struct elf64_x86_64_link_hash_table
);
543 ret
= (struct elf64_x86_64_link_hash_table
*) bfd_malloc (amt
);
547 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, link_hash_newfunc
,
548 sizeof (struct elf64_x86_64_link_hash_entry
)))
561 ret
->sym_sec
.abfd
= NULL
;
562 ret
->tlsdesc_plt
= 0;
563 ret
->tlsdesc_got
= 0;
564 ret
->tls_ld_got
.refcount
= 0;
565 ret
->sgotplt_jump_table_size
= 0;
567 return &ret
->elf
.root
;
570 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
571 shortcuts to them in our hash table. */
574 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
576 struct elf64_x86_64_link_hash_table
*htab
;
578 if (! _bfd_elf_create_got_section (dynobj
, info
))
581 htab
= elf64_x86_64_hash_table (info
);
582 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
583 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
584 if (!htab
->sgot
|| !htab
->sgotplt
)
587 htab
->srelgot
= bfd_make_section_with_flags (dynobj
, ".rela.got",
588 (SEC_ALLOC
| SEC_LOAD
593 if (htab
->srelgot
== NULL
594 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 3))
599 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
600 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
604 elf64_x86_64_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
606 struct elf64_x86_64_link_hash_table
*htab
;
608 htab
= elf64_x86_64_hash_table (info
);
609 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
612 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
615 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
616 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
617 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
619 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
621 if (!htab
->splt
|| !htab
->srelplt
|| !htab
->sdynbss
622 || (!info
->shared
&& !htab
->srelbss
))
628 /* Copy the extra info we tack onto an elf_link_hash_entry. */
631 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
632 struct elf_link_hash_entry
*dir
,
633 struct elf_link_hash_entry
*ind
)
635 struct elf64_x86_64_link_hash_entry
*edir
, *eind
;
637 edir
= (struct elf64_x86_64_link_hash_entry
*) dir
;
638 eind
= (struct elf64_x86_64_link_hash_entry
*) ind
;
640 if (eind
->dyn_relocs
!= NULL
)
642 if (edir
->dyn_relocs
!= NULL
)
644 struct elf64_x86_64_dyn_relocs
**pp
;
645 struct elf64_x86_64_dyn_relocs
*p
;
647 /* Add reloc counts against the indirect sym to the direct sym
648 list. Merge any entries against the same section. */
649 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
651 struct elf64_x86_64_dyn_relocs
*q
;
653 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
654 if (q
->sec
== p
->sec
)
656 q
->pc_count
+= p
->pc_count
;
657 q
->count
+= p
->count
;
664 *pp
= edir
->dyn_relocs
;
667 edir
->dyn_relocs
= eind
->dyn_relocs
;
668 eind
->dyn_relocs
= NULL
;
671 if (ind
->root
.type
== bfd_link_hash_indirect
672 && dir
->got
.refcount
<= 0)
674 edir
->tls_type
= eind
->tls_type
;
675 eind
->tls_type
= GOT_UNKNOWN
;
678 if (ELIMINATE_COPY_RELOCS
679 && ind
->root
.type
!= bfd_link_hash_indirect
680 && dir
->dynamic_adjusted
)
682 /* If called to transfer flags for a weakdef during processing
683 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
684 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
685 dir
->ref_dynamic
|= ind
->ref_dynamic
;
686 dir
->ref_regular
|= ind
->ref_regular
;
687 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
688 dir
->needs_plt
|= ind
->needs_plt
;
689 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
692 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
696 elf64_x86_64_mkobject (bfd
*abfd
)
698 if (abfd
->tdata
.any
== NULL
)
700 bfd_size_type amt
= sizeof (struct elf64_x86_64_obj_tdata
);
701 abfd
->tdata
.any
= bfd_zalloc (abfd
, amt
);
702 if (abfd
->tdata
.any
== NULL
)
705 return bfd_elf_mkobject (abfd
);
709 elf64_x86_64_elf_object_p (bfd
*abfd
)
711 /* Set the right machine number for an x86-64 elf64 file. */
712 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
730 /* Return TRUE if the TLS access code sequence support transition
734 elf64_x86_64_check_tls_transition (bfd
*abfd
, asection
*sec
,
736 Elf_Internal_Shdr
*symtab_hdr
,
737 struct elf_link_hash_entry
**sym_hashes
,
739 const Elf_Internal_Rela
*rel
,
740 const Elf_Internal_Rela
*relend
)
743 unsigned long r_symndx
;
744 struct elf_link_hash_entry
*h
;
747 /* Get the section contents. */
748 if (contents
== NULL
)
750 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
751 contents
= elf_section_data (sec
)->this_hdr
.contents
;
754 /* FIXME: How to better handle error condition? */
755 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
758 /* Cache the section contents for elf_link_input_bfd. */
759 elf_section_data (sec
)->this_hdr
.contents
= contents
;
763 offset
= rel
->r_offset
;
768 if ((rel
+ 1) >= relend
)
771 if (r_type
== R_X86_64_TLSGD
)
773 /* Check transition from GD access model. Only
774 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
775 .word 0x6666; rex64; call __tls_get_addr
776 can transit to different access model. */
778 static x86_64_opcode32 leaq
= { { 0x66, 0x48, 0x8d, 0x3d } },
779 call
= { { 0x66, 0x66, 0x48, 0xe8 } };
781 || (offset
+ 12) > sec
->size
782 || bfd_get_32 (abfd
, contents
+ offset
- 4) != leaq
.i
783 || bfd_get_32 (abfd
, contents
+ offset
+ 4) != call
.i
)
788 /* Check transition from LD access model. Only
789 leaq foo@tlsld(%rip), %rdi;
791 can transit to different access model. */
793 static x86_64_opcode32 ld
= { { 0x48, 0x8d, 0x3d, 0xe8 } };
796 if (offset
< 3 || (offset
+ 9) > sec
->size
)
799 op
.i
= bfd_get_32 (abfd
, contents
+ offset
- 3);
800 op
.c
[3] = bfd_get_8 (abfd
, contents
+ offset
+ 4);
805 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
806 if (r_symndx
< symtab_hdr
->sh_info
)
809 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
811 && h
->root
.root
.string
!= NULL
812 && (ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
813 || ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
814 && (strcmp (h
->root
.root
.string
, "__tls_get_addr") == 0));
816 case R_X86_64_GOTTPOFF
:
817 /* Check transition from IE access model:
818 movq foo@gottpoff(%rip), %reg
819 addq foo@gottpoff(%rip), %reg
822 if (offset
< 3 || (offset
+ 4) > sec
->size
)
825 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
826 if (val
!= 0x48 && val
!= 0x4c)
829 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
830 if (val
!= 0x8b && val
!= 0x03)
833 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
834 return (val
& 0xc7) == 5;
836 case R_X86_64_GOTPC32_TLSDESC
:
837 /* Check transition from GDesc access model:
838 leaq x@tlsdesc(%rip), %rax
840 Make sure it's a leaq adding rip to a 32-bit offset
841 into any register, although it's probably almost always
844 if (offset
< 3 || (offset
+ 4) > sec
->size
)
847 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
848 if ((val
& 0xfb) != 0x48)
851 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
854 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
855 return (val
& 0xc7) == 0x05;
857 case R_X86_64_TLSDESC_CALL
:
858 /* Check transition from GDesc access model:
859 call *x@tlsdesc(%rax)
861 if (offset
+ 2 <= sec
->size
)
863 /* Make sure that it's a call *x@tlsdesc(%rax). */
864 static x86_64_opcode16 call
= { { 0xff, 0x10 } };
865 return bfd_get_16 (abfd
, contents
+ offset
) == call
.i
;
875 /* Return TRUE if the TLS access transition is OK or no transition
876 will be performed. Update R_TYPE if there is a transition. */
879 elf64_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
880 asection
*sec
, bfd_byte
*contents
,
881 Elf_Internal_Shdr
*symtab_hdr
,
882 struct elf_link_hash_entry
**sym_hashes
,
883 unsigned int *r_type
, int tls_type
,
884 const Elf_Internal_Rela
*rel
,
885 const Elf_Internal_Rela
*relend
,
886 struct elf_link_hash_entry
*h
)
888 unsigned int from_type
= *r_type
;
889 unsigned int to_type
= from_type
;
890 bfd_boolean check
= TRUE
;
895 case R_X86_64_GOTPC32_TLSDESC
:
896 case R_X86_64_TLSDESC_CALL
:
897 case R_X86_64_GOTTPOFF
:
901 to_type
= R_X86_64_TPOFF32
;
903 to_type
= R_X86_64_GOTTPOFF
;
906 /* When we are called from elf64_x86_64_relocate_section,
907 CONTENTS isn't NULL and there may be additional transitions
908 based on TLS_TYPE. */
909 if (contents
!= NULL
)
911 unsigned int new_to_type
= to_type
;
916 && tls_type
== GOT_TLS_IE
)
917 new_to_type
= R_X86_64_TPOFF32
;
919 if (to_type
== R_X86_64_TLSGD
920 || to_type
== R_X86_64_GOTPC32_TLSDESC
921 || to_type
== R_X86_64_TLSDESC_CALL
)
923 if (tls_type
== GOT_TLS_IE
)
924 new_to_type
= R_X86_64_GOTTPOFF
;
927 /* We checked the transition before when we were called from
928 elf64_x86_64_check_relocs. We only want to check the new
929 transition which hasn't been checked before. */
930 check
= new_to_type
!= to_type
&& from_type
== to_type
;
931 to_type
= new_to_type
;
938 to_type
= R_X86_64_TPOFF32
;
945 /* Return TRUE if there is no transition. */
946 if (from_type
== to_type
)
949 /* Check if the transition can be performed. */
951 && ! elf64_x86_64_check_tls_transition (abfd
, sec
, contents
,
952 symtab_hdr
, sym_hashes
,
953 from_type
, rel
, relend
))
955 reloc_howto_type
*from
, *to
;
957 from
= elf64_x86_64_rtype_to_howto (abfd
, from_type
);
958 to
= elf64_x86_64_rtype_to_howto (abfd
, to_type
);
960 (*_bfd_error_handler
)
961 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
962 "in section `%A' failed"),
963 abfd
, sec
, from
->name
, to
->name
,
964 h
? h
->root
.root
.string
: "a local symbol",
965 (unsigned long) rel
->r_offset
);
966 bfd_set_error (bfd_error_bad_value
);
974 /* Look through the relocs for a section during the first phase, and
975 calculate needed space in the global offset table, procedure
976 linkage table, and dynamic reloc sections. */
979 elf64_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
981 const Elf_Internal_Rela
*relocs
)
983 struct elf64_x86_64_link_hash_table
*htab
;
984 Elf_Internal_Shdr
*symtab_hdr
;
985 struct elf_link_hash_entry
**sym_hashes
;
986 const Elf_Internal_Rela
*rel
;
987 const Elf_Internal_Rela
*rel_end
;
990 if (info
->relocatable
)
993 htab
= elf64_x86_64_hash_table (info
);
994 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
995 sym_hashes
= elf_sym_hashes (abfd
);
999 rel_end
= relocs
+ sec
->reloc_count
;
1000 for (rel
= relocs
; rel
< rel_end
; rel
++)
1002 unsigned int r_type
;
1003 unsigned long r_symndx
;
1004 struct elf_link_hash_entry
*h
;
1006 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1007 r_type
= ELF64_R_TYPE (rel
->r_info
);
1009 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1011 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1016 if (r_symndx
< symtab_hdr
->sh_info
)
1020 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1021 while (h
->root
.type
== bfd_link_hash_indirect
1022 || h
->root
.type
== bfd_link_hash_warning
)
1023 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1026 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1027 symtab_hdr
, sym_hashes
,
1028 &r_type
, GOT_UNKNOWN
,
1034 case R_X86_64_TLSLD
:
1035 htab
->tls_ld_got
.refcount
+= 1;
1038 case R_X86_64_TPOFF32
:
1041 (*_bfd_error_handler
)
1042 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1044 x86_64_elf_howto_table
[r_type
].name
,
1045 (h
) ? h
->root
.root
.string
: "a local symbol");
1046 bfd_set_error (bfd_error_bad_value
);
1051 case R_X86_64_GOTTPOFF
:
1053 info
->flags
|= DF_STATIC_TLS
;
1056 case R_X86_64_GOT32
:
1057 case R_X86_64_GOTPCREL
:
1058 case R_X86_64_TLSGD
:
1059 case R_X86_64_GOT64
:
1060 case R_X86_64_GOTPCREL64
:
1061 case R_X86_64_GOTPLT64
:
1062 case R_X86_64_GOTPC32_TLSDESC
:
1063 case R_X86_64_TLSDESC_CALL
:
1064 /* This symbol requires a global offset table entry. */
1066 int tls_type
, old_tls_type
;
1070 default: tls_type
= GOT_NORMAL
; break;
1071 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1072 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1073 case R_X86_64_GOTPC32_TLSDESC
:
1074 case R_X86_64_TLSDESC_CALL
:
1075 tls_type
= GOT_TLS_GDESC
; break;
1080 if (r_type
== R_X86_64_GOTPLT64
)
1082 /* This relocation indicates that we also need
1083 a PLT entry, as this is a function. We don't need
1084 a PLT entry for local symbols. */
1086 h
->plt
.refcount
+= 1;
1088 h
->got
.refcount
+= 1;
1089 old_tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1093 bfd_signed_vma
*local_got_refcounts
;
1095 /* This is a global offset table entry for a local symbol. */
1096 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1097 if (local_got_refcounts
== NULL
)
1101 size
= symtab_hdr
->sh_info
;
1102 size
*= sizeof (bfd_signed_vma
)
1103 + sizeof (bfd_vma
) + sizeof (char);
1104 local_got_refcounts
= ((bfd_signed_vma
*)
1105 bfd_zalloc (abfd
, size
));
1106 if (local_got_refcounts
== NULL
)
1108 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1109 elf64_x86_64_local_tlsdesc_gotent (abfd
)
1110 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1111 elf64_x86_64_local_got_tls_type (abfd
)
1112 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1114 local_got_refcounts
[r_symndx
] += 1;
1116 = elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1119 /* If a TLS symbol is accessed using IE at least once,
1120 there is no point to use dynamic model for it. */
1121 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1122 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1123 || tls_type
!= GOT_TLS_IE
))
1125 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1126 tls_type
= old_tls_type
;
1127 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1128 && GOT_TLS_GD_ANY_P (tls_type
))
1129 tls_type
|= old_tls_type
;
1132 (*_bfd_error_handler
)
1133 (_("%B: '%s' accessed both as normal and thread local symbol"),
1134 abfd
, h
? h
->root
.root
.string
: "<local>");
1139 if (old_tls_type
!= tls_type
)
1142 elf64_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1144 elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1149 case R_X86_64_GOTOFF64
:
1150 case R_X86_64_GOTPC32
:
1151 case R_X86_64_GOTPC64
:
1153 if (htab
->sgot
== NULL
)
1155 if (htab
->elf
.dynobj
== NULL
)
1156 htab
->elf
.dynobj
= abfd
;
1157 if (!create_got_section (htab
->elf
.dynobj
, info
))
1162 case R_X86_64_PLT32
:
1163 /* This symbol requires a procedure linkage table entry. We
1164 actually build the entry in adjust_dynamic_symbol,
1165 because this might be a case of linking PIC code which is
1166 never referenced by a dynamic object, in which case we
1167 don't need to generate a procedure linkage table entry
1170 /* If this is a local symbol, we resolve it directly without
1171 creating a procedure linkage table entry. */
1176 h
->plt
.refcount
+= 1;
1179 case R_X86_64_PLTOFF64
:
1180 /* This tries to form the 'address' of a function relative
1181 to GOT. For global symbols we need a PLT entry. */
1185 h
->plt
.refcount
+= 1;
1193 /* Let's help debug shared library creation. These relocs
1194 cannot be used in shared libs. Don't error out for
1195 sections we don't care about, such as debug sections or
1196 non-constant sections. */
1198 && (sec
->flags
& SEC_ALLOC
) != 0
1199 && (sec
->flags
& SEC_READONLY
) != 0)
1201 (*_bfd_error_handler
)
1202 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1204 x86_64_elf_howto_table
[r_type
].name
,
1205 (h
) ? h
->root
.root
.string
: "a local symbol");
1206 bfd_set_error (bfd_error_bad_value
);
1216 if (h
!= NULL
&& !info
->shared
)
1218 /* If this reloc is in a read-only section, we might
1219 need a copy reloc. We can't check reliably at this
1220 stage whether the section is read-only, as input
1221 sections have not yet been mapped to output sections.
1222 Tentatively set the flag for now, and correct in
1223 adjust_dynamic_symbol. */
1226 /* We may need a .plt entry if the function this reloc
1227 refers to is in a shared lib. */
1228 h
->plt
.refcount
+= 1;
1229 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1230 h
->pointer_equality_needed
= 1;
1233 /* If we are creating a shared library, and this is a reloc
1234 against a global symbol, or a non PC relative reloc
1235 against a local symbol, then we need to copy the reloc
1236 into the shared library. However, if we are linking with
1237 -Bsymbolic, we do not need to copy a reloc against a
1238 global symbol which is defined in an object we are
1239 including in the link (i.e., DEF_REGULAR is set). At
1240 this point we have not seen all the input files, so it is
1241 possible that DEF_REGULAR is not set now but will be set
1242 later (it is never cleared). In case of a weak definition,
1243 DEF_REGULAR may be cleared later by a strong definition in
1244 a shared library. We account for that possibility below by
1245 storing information in the relocs_copied field of the hash
1246 table entry. A similar situation occurs when creating
1247 shared libraries and symbol visibility changes render the
1250 If on the other hand, we are creating an executable, we
1251 may need to keep relocations for symbols satisfied by a
1252 dynamic library if we manage to avoid copy relocs for the
1255 && (sec
->flags
& SEC_ALLOC
) != 0
1256 && (((r_type
!= R_X86_64_PC8
)
1257 && (r_type
!= R_X86_64_PC16
)
1258 && (r_type
!= R_X86_64_PC32
)
1259 && (r_type
!= R_X86_64_PC64
))
1261 && (! SYMBOLIC_BIND (info
, h
)
1262 || h
->root
.type
== bfd_link_hash_defweak
1263 || !h
->def_regular
))))
1264 || (ELIMINATE_COPY_RELOCS
1266 && (sec
->flags
& SEC_ALLOC
) != 0
1268 && (h
->root
.type
== bfd_link_hash_defweak
1269 || !h
->def_regular
)))
1271 struct elf64_x86_64_dyn_relocs
*p
;
1272 struct elf64_x86_64_dyn_relocs
**head
;
1274 /* We must copy these reloc types into the output file.
1275 Create a reloc section in dynobj and make room for
1282 name
= (bfd_elf_string_from_elf_section
1284 elf_elfheader (abfd
)->e_shstrndx
,
1285 elf_section_data (sec
)->rel_hdr
.sh_name
));
1289 if (! CONST_STRNEQ (name
, ".rela")
1290 || strcmp (bfd_get_section_name (abfd
, sec
),
1293 (*_bfd_error_handler
)
1294 (_("%B: bad relocation section name `%s\'"),
1298 if (htab
->elf
.dynobj
== NULL
)
1299 htab
->elf
.dynobj
= abfd
;
1301 dynobj
= htab
->elf
.dynobj
;
1303 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1308 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1309 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1310 if ((sec
->flags
& SEC_ALLOC
) != 0)
1311 flags
|= SEC_ALLOC
| SEC_LOAD
;
1312 sreloc
= bfd_make_section_with_flags (dynobj
,
1316 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1319 elf_section_data (sec
)->sreloc
= sreloc
;
1322 /* If this is a global symbol, we count the number of
1323 relocations we need for this symbol. */
1326 head
= &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1331 /* Track dynamic relocs needed for local syms too.
1332 We really need local syms available to do this
1336 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1341 /* Beware of type punned pointers vs strict aliasing
1343 vpp
= &(elf_section_data (s
)->local_dynrel
);
1344 head
= (struct elf64_x86_64_dyn_relocs
**)vpp
;
1348 if (p
== NULL
|| p
->sec
!= sec
)
1350 bfd_size_type amt
= sizeof *p
;
1351 p
= ((struct elf64_x86_64_dyn_relocs
*)
1352 bfd_alloc (htab
->elf
.dynobj
, amt
));
1363 if (r_type
== R_X86_64_PC8
1364 || r_type
== R_X86_64_PC16
1365 || r_type
== R_X86_64_PC32
1366 || r_type
== R_X86_64_PC64
)
1371 /* This relocation describes the C++ object vtable hierarchy.
1372 Reconstruct it for later use during GC. */
1373 case R_X86_64_GNU_VTINHERIT
:
1374 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1378 /* This relocation describes which C++ vtable entries are actually
1379 used. Record for later use during GC. */
1380 case R_X86_64_GNU_VTENTRY
:
1381 BFD_ASSERT (h
!= NULL
);
1383 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1395 /* Return the section that should be marked against GC for a given
1399 elf64_x86_64_gc_mark_hook (asection
*sec
,
1400 struct bfd_link_info
*info
,
1401 Elf_Internal_Rela
*rel
,
1402 struct elf_link_hash_entry
*h
,
1403 Elf_Internal_Sym
*sym
)
1406 switch (ELF64_R_TYPE (rel
->r_info
))
1408 case R_X86_64_GNU_VTINHERIT
:
1409 case R_X86_64_GNU_VTENTRY
:
1413 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1416 /* Update the got entry reference counts for the section being removed. */
1419 elf64_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1421 const Elf_Internal_Rela
*relocs
)
1423 Elf_Internal_Shdr
*symtab_hdr
;
1424 struct elf_link_hash_entry
**sym_hashes
;
1425 bfd_signed_vma
*local_got_refcounts
;
1426 const Elf_Internal_Rela
*rel
, *relend
;
1428 elf_section_data (sec
)->local_dynrel
= NULL
;
1430 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1431 sym_hashes
= elf_sym_hashes (abfd
);
1432 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1434 relend
= relocs
+ sec
->reloc_count
;
1435 for (rel
= relocs
; rel
< relend
; rel
++)
1437 unsigned long r_symndx
;
1438 unsigned int r_type
;
1439 struct elf_link_hash_entry
*h
= NULL
;
1441 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1442 if (r_symndx
>= symtab_hdr
->sh_info
)
1444 struct elf64_x86_64_link_hash_entry
*eh
;
1445 struct elf64_x86_64_dyn_relocs
**pp
;
1446 struct elf64_x86_64_dyn_relocs
*p
;
1448 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1449 while (h
->root
.type
== bfd_link_hash_indirect
1450 || h
->root
.type
== bfd_link_hash_warning
)
1451 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1452 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1454 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1457 /* Everything must go for SEC. */
1463 r_type
= ELF64_R_TYPE (rel
->r_info
);
1464 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1465 symtab_hdr
, sym_hashes
,
1466 &r_type
, GOT_UNKNOWN
,
1472 case R_X86_64_TLSLD
:
1473 if (elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
> 0)
1474 elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
-= 1;
1477 case R_X86_64_TLSGD
:
1478 case R_X86_64_GOTPC32_TLSDESC
:
1479 case R_X86_64_TLSDESC_CALL
:
1480 case R_X86_64_GOTTPOFF
:
1481 case R_X86_64_GOT32
:
1482 case R_X86_64_GOTPCREL
:
1483 case R_X86_64_GOT64
:
1484 case R_X86_64_GOTPCREL64
:
1485 case R_X86_64_GOTPLT64
:
1488 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
1489 h
->plt
.refcount
-= 1;
1490 if (h
->got
.refcount
> 0)
1491 h
->got
.refcount
-= 1;
1493 else if (local_got_refcounts
!= NULL
)
1495 if (local_got_refcounts
[r_symndx
] > 0)
1496 local_got_refcounts
[r_symndx
] -= 1;
1513 case R_X86_64_PLT32
:
1514 case R_X86_64_PLTOFF64
:
1517 if (h
->plt
.refcount
> 0)
1518 h
->plt
.refcount
-= 1;
1530 /* Adjust a symbol defined by a dynamic object and referenced by a
1531 regular object. The current definition is in some section of the
1532 dynamic object, but we're not including those sections. We have to
1533 change the definition to something the rest of the link can
1537 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1538 struct elf_link_hash_entry
*h
)
1540 struct elf64_x86_64_link_hash_table
*htab
;
1543 /* If this is a function, put it in the procedure linkage table. We
1544 will fill in the contents of the procedure linkage table later,
1545 when we know the address of the .got section. */
1546 if (h
->type
== STT_FUNC
1549 if (h
->plt
.refcount
<= 0
1550 || SYMBOL_CALLS_LOCAL (info
, h
)
1551 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1552 && h
->root
.type
== bfd_link_hash_undefweak
))
1554 /* This case can occur if we saw a PLT32 reloc in an input
1555 file, but the symbol was never referred to by a dynamic
1556 object, or if all references were garbage collected. In
1557 such a case, we don't actually need to build a procedure
1558 linkage table, and we can just do a PC32 reloc instead. */
1559 h
->plt
.offset
= (bfd_vma
) -1;
1566 /* It's possible that we incorrectly decided a .plt reloc was
1567 needed for an R_X86_64_PC32 reloc to a non-function sym in
1568 check_relocs. We can't decide accurately between function and
1569 non-function syms in check-relocs; Objects loaded later in
1570 the link may change h->type. So fix it now. */
1571 h
->plt
.offset
= (bfd_vma
) -1;
1573 /* If this is a weak symbol, and there is a real definition, the
1574 processor independent code will have arranged for us to see the
1575 real definition first, and we can just use the same value. */
1576 if (h
->u
.weakdef
!= NULL
)
1578 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1579 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1580 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1581 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1582 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
1583 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
1587 /* This is a reference to a symbol defined by a dynamic object which
1588 is not a function. */
1590 /* If we are creating a shared library, we must presume that the
1591 only references to the symbol are via the global offset table.
1592 For such cases we need not do anything here; the relocations will
1593 be handled correctly by relocate_section. */
1597 /* If there are no references to this symbol that do not use the
1598 GOT, we don't need to generate a copy reloc. */
1599 if (!h
->non_got_ref
)
1602 /* If -z nocopyreloc was given, we won't generate them either. */
1603 if (info
->nocopyreloc
)
1609 if (ELIMINATE_COPY_RELOCS
)
1611 struct elf64_x86_64_link_hash_entry
* eh
;
1612 struct elf64_x86_64_dyn_relocs
*p
;
1614 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1615 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1617 s
= p
->sec
->output_section
;
1618 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1622 /* If we didn't find any dynamic relocs in read-only sections, then
1623 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1633 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1634 h
->root
.root
.string
);
1638 /* We must allocate the symbol in our .dynbss section, which will
1639 become part of the .bss section of the executable. There will be
1640 an entry for this symbol in the .dynsym section. The dynamic
1641 object will contain position independent code, so all references
1642 from the dynamic object to this symbol will go through the global
1643 offset table. The dynamic linker will use the .dynsym entry to
1644 determine the address it must put in the global offset table, so
1645 both the dynamic object and the regular object will refer to the
1646 same memory location for the variable. */
1648 htab
= elf64_x86_64_hash_table (info
);
1650 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1651 to copy the initial value out of the dynamic object and into the
1652 runtime process image. */
1653 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1655 htab
->srelbss
->size
+= sizeof (Elf64_External_Rela
);
1661 return _bfd_elf_adjust_dynamic_copy (h
, s
);
1664 /* Allocate space in .plt, .got and associated reloc sections for
1668 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1670 struct bfd_link_info
*info
;
1671 struct elf64_x86_64_link_hash_table
*htab
;
1672 struct elf64_x86_64_link_hash_entry
*eh
;
1673 struct elf64_x86_64_dyn_relocs
*p
;
1675 if (h
->root
.type
== bfd_link_hash_indirect
)
1678 if (h
->root
.type
== bfd_link_hash_warning
)
1679 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1681 info
= (struct bfd_link_info
*) inf
;
1682 htab
= elf64_x86_64_hash_table (info
);
1684 if (htab
->elf
.dynamic_sections_created
1685 && h
->plt
.refcount
> 0)
1687 /* Make sure this symbol is output as a dynamic symbol.
1688 Undefined weak syms won't yet be marked as dynamic. */
1689 if (h
->dynindx
== -1
1690 && !h
->forced_local
)
1692 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1697 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
1699 asection
*s
= htab
->splt
;
1701 /* If this is the first .plt entry, make room for the special
1704 s
->size
+= PLT_ENTRY_SIZE
;
1706 h
->plt
.offset
= s
->size
;
1708 /* If this symbol is not defined in a regular file, and we are
1709 not generating a shared library, then set the symbol to this
1710 location in the .plt. This is required to make function
1711 pointers compare as equal between the normal executable and
1712 the shared library. */
1716 h
->root
.u
.def
.section
= s
;
1717 h
->root
.u
.def
.value
= h
->plt
.offset
;
1720 /* Make room for this entry. */
1721 s
->size
+= PLT_ENTRY_SIZE
;
1723 /* We also need to make an entry in the .got.plt section, which
1724 will be placed in the .got section by the linker script. */
1725 htab
->sgotplt
->size
+= GOT_ENTRY_SIZE
;
1727 /* We also need to make an entry in the .rela.plt section. */
1728 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
1729 htab
->srelplt
->reloc_count
++;
1733 h
->plt
.offset
= (bfd_vma
) -1;
1739 h
->plt
.offset
= (bfd_vma
) -1;
1743 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1744 eh
->tlsdesc_got
= (bfd_vma
) -1;
1746 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1747 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1748 if (h
->got
.refcount
> 0
1751 && elf64_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
1752 h
->got
.offset
= (bfd_vma
) -1;
1753 else if (h
->got
.refcount
> 0)
1757 int tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1759 /* Make sure this symbol is output as a dynamic symbol.
1760 Undefined weak syms won't yet be marked as dynamic. */
1761 if (h
->dynindx
== -1
1762 && !h
->forced_local
)
1764 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1768 if (GOT_TLS_GDESC_P (tls_type
))
1770 eh
->tlsdesc_got
= htab
->sgotplt
->size
1771 - elf64_x86_64_compute_jump_table_size (htab
);
1772 htab
->sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
1773 h
->got
.offset
= (bfd_vma
) -2;
1775 if (! GOT_TLS_GDESC_P (tls_type
)
1776 || GOT_TLS_GD_P (tls_type
))
1779 h
->got
.offset
= s
->size
;
1780 s
->size
+= GOT_ENTRY_SIZE
;
1781 if (GOT_TLS_GD_P (tls_type
))
1782 s
->size
+= GOT_ENTRY_SIZE
;
1784 dyn
= htab
->elf
.dynamic_sections_created
;
1785 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1787 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1788 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
1789 || tls_type
== GOT_TLS_IE
)
1790 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
1791 else if (GOT_TLS_GD_P (tls_type
))
1792 htab
->srelgot
->size
+= 2 * sizeof (Elf64_External_Rela
);
1793 else if (! GOT_TLS_GDESC_P (tls_type
)
1794 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1795 || h
->root
.type
!= bfd_link_hash_undefweak
)
1797 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
1798 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
1799 if (GOT_TLS_GDESC_P (tls_type
))
1801 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
1802 htab
->tlsdesc_plt
= (bfd_vma
) -1;
1806 h
->got
.offset
= (bfd_vma
) -1;
1808 if (eh
->dyn_relocs
== NULL
)
1811 /* In the shared -Bsymbolic case, discard space allocated for
1812 dynamic pc-relative relocs against symbols which turn out to be
1813 defined in regular objects. For the normal shared case, discard
1814 space for pc-relative relocs that have become local due to symbol
1815 visibility changes. */
1819 /* Relocs that use pc_count are those that appear on a call
1820 insn, or certain REL relocs that can generated via assembly.
1821 We want calls to protected symbols to resolve directly to the
1822 function rather than going via the plt. If people want
1823 function pointer comparisons to work as expected then they
1824 should avoid writing weird assembly. */
1825 if (SYMBOL_CALLS_LOCAL (info
, h
))
1827 struct elf64_x86_64_dyn_relocs
**pp
;
1829 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1831 p
->count
-= p
->pc_count
;
1840 /* Also discard relocs on undefined weak syms with non-default
1842 if (eh
->dyn_relocs
!= NULL
1843 && h
->root
.type
== bfd_link_hash_undefweak
)
1845 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
1846 eh
->dyn_relocs
= NULL
;
1848 /* Make sure undefined weak symbols are output as a dynamic
1850 else if (h
->dynindx
== -1
1851 && !h
->forced_local
)
1853 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1858 else if (ELIMINATE_COPY_RELOCS
)
1860 /* For the non-shared case, discard space for relocs against
1861 symbols which turn out to need copy relocs or are not
1867 || (htab
->elf
.dynamic_sections_created
1868 && (h
->root
.type
== bfd_link_hash_undefweak
1869 || h
->root
.type
== bfd_link_hash_undefined
))))
1871 /* Make sure this symbol is output as a dynamic symbol.
1872 Undefined weak syms won't yet be marked as dynamic. */
1873 if (h
->dynindx
== -1
1874 && !h
->forced_local
)
1876 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1880 /* If that succeeded, we know we'll be keeping all the
1882 if (h
->dynindx
!= -1)
1886 eh
->dyn_relocs
= NULL
;
1891 /* Finally, allocate space. */
1892 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1894 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1895 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
1901 /* Find any dynamic relocs that apply to read-only sections. */
1904 readonly_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1906 struct elf64_x86_64_link_hash_entry
*eh
;
1907 struct elf64_x86_64_dyn_relocs
*p
;
1909 if (h
->root
.type
== bfd_link_hash_warning
)
1910 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1912 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1913 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1915 asection
*s
= p
->sec
->output_section
;
1917 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1919 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
1921 info
->flags
|= DF_TEXTREL
;
1923 /* Not an error, just cut short the traversal. */
1930 /* Set the sizes of the dynamic sections. */
1933 elf64_x86_64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1934 struct bfd_link_info
*info
)
1936 struct elf64_x86_64_link_hash_table
*htab
;
1942 htab
= elf64_x86_64_hash_table (info
);
1943 dynobj
= htab
->elf
.dynobj
;
1947 if (htab
->elf
.dynamic_sections_created
)
1949 /* Set the contents of the .interp section to the interpreter. */
1950 if (info
->executable
)
1952 s
= bfd_get_section_by_name (dynobj
, ".interp");
1955 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1956 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1960 /* Set up .got offsets for local syms, and space for local dynamic
1962 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1964 bfd_signed_vma
*local_got
;
1965 bfd_signed_vma
*end_local_got
;
1966 char *local_tls_type
;
1967 bfd_vma
*local_tlsdesc_gotent
;
1968 bfd_size_type locsymcount
;
1969 Elf_Internal_Shdr
*symtab_hdr
;
1972 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
1975 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
1977 struct elf64_x86_64_dyn_relocs
*p
;
1979 for (p
= (struct elf64_x86_64_dyn_relocs
*)
1980 (elf_section_data (s
)->local_dynrel
);
1984 if (!bfd_is_abs_section (p
->sec
)
1985 && bfd_is_abs_section (p
->sec
->output_section
))
1987 /* Input section has been discarded, either because
1988 it is a copy of a linkonce section or due to
1989 linker script /DISCARD/, so we'll be discarding
1992 else if (p
->count
!= 0)
1994 srel
= elf_section_data (p
->sec
)->sreloc
;
1995 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
1996 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
1997 info
->flags
|= DF_TEXTREL
;
2003 local_got
= elf_local_got_refcounts (ibfd
);
2007 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2008 locsymcount
= symtab_hdr
->sh_info
;
2009 end_local_got
= local_got
+ locsymcount
;
2010 local_tls_type
= elf64_x86_64_local_got_tls_type (ibfd
);
2011 local_tlsdesc_gotent
= elf64_x86_64_local_tlsdesc_gotent (ibfd
);
2013 srel
= htab
->srelgot
;
2014 for (; local_got
< end_local_got
;
2015 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2017 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2020 if (GOT_TLS_GDESC_P (*local_tls_type
))
2022 *local_tlsdesc_gotent
= htab
->sgotplt
->size
2023 - elf64_x86_64_compute_jump_table_size (htab
);
2024 htab
->sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2025 *local_got
= (bfd_vma
) -2;
2027 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2028 || GOT_TLS_GD_P (*local_tls_type
))
2030 *local_got
= s
->size
;
2031 s
->size
+= GOT_ENTRY_SIZE
;
2032 if (GOT_TLS_GD_P (*local_tls_type
))
2033 s
->size
+= GOT_ENTRY_SIZE
;
2036 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2037 || *local_tls_type
== GOT_TLS_IE
)
2039 if (GOT_TLS_GDESC_P (*local_tls_type
))
2041 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
2042 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2044 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2045 || GOT_TLS_GD_P (*local_tls_type
))
2046 srel
->size
+= sizeof (Elf64_External_Rela
);
2050 *local_got
= (bfd_vma
) -1;
2054 if (htab
->tls_ld_got
.refcount
> 0)
2056 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2058 htab
->tls_ld_got
.offset
= htab
->sgot
->size
;
2059 htab
->sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2060 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
2063 htab
->tls_ld_got
.offset
= -1;
2065 /* Allocate global sym .plt and .got entries, and space for global
2066 sym dynamic relocs. */
2067 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, (PTR
) info
);
2069 /* For every jump slot reserved in the sgotplt, reloc_count is
2070 incremented. However, when we reserve space for TLS descriptors,
2071 it's not incremented, so in order to compute the space reserved
2072 for them, it suffices to multiply the reloc count by the jump
2075 htab
->sgotplt_jump_table_size
2076 = elf64_x86_64_compute_jump_table_size (htab
);
2078 if (htab
->tlsdesc_plt
)
2080 /* If we're not using lazy TLS relocations, don't generate the
2081 PLT and GOT entries they require. */
2082 if ((info
->flags
& DF_BIND_NOW
))
2083 htab
->tlsdesc_plt
= 0;
2086 htab
->tlsdesc_got
= htab
->sgot
->size
;
2087 htab
->sgot
->size
+= GOT_ENTRY_SIZE
;
2088 /* Reserve room for the initial entry.
2089 FIXME: we could probably do away with it in this case. */
2090 if (htab
->splt
->size
== 0)
2091 htab
->splt
->size
+= PLT_ENTRY_SIZE
;
2092 htab
->tlsdesc_plt
= htab
->splt
->size
;
2093 htab
->splt
->size
+= PLT_ENTRY_SIZE
;
2097 /* We now have determined the sizes of the various dynamic sections.
2098 Allocate memory for them. */
2100 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2102 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2107 || s
== htab
->sgotplt
2108 || s
== htab
->sdynbss
)
2110 /* Strip this section if we don't need it; see the
2113 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2115 if (s
->size
!= 0 && s
!= htab
->srelplt
)
2118 /* We use the reloc_count field as a counter if we need
2119 to copy relocs into the output file. */
2120 if (s
!= htab
->srelplt
)
2125 /* It's not one of our sections, so don't allocate space. */
2131 /* If we don't need this section, strip it from the
2132 output file. This is mostly to handle .rela.bss and
2133 .rela.plt. We must create both sections in
2134 create_dynamic_sections, because they must be created
2135 before the linker maps input sections to output
2136 sections. The linker does that before
2137 adjust_dynamic_symbol is called, and it is that
2138 function which decides whether anything needs to go
2139 into these sections. */
2141 s
->flags
|= SEC_EXCLUDE
;
2145 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2148 /* Allocate memory for the section contents. We use bfd_zalloc
2149 here in case unused entries are not reclaimed before the
2150 section's contents are written out. This should not happen,
2151 but this way if it does, we get a R_X86_64_NONE reloc instead
2153 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2154 if (s
->contents
== NULL
)
2158 if (htab
->elf
.dynamic_sections_created
)
2160 /* Add some entries to the .dynamic section. We fill in the
2161 values later, in elf64_x86_64_finish_dynamic_sections, but we
2162 must add the entries now so that we get the correct size for
2163 the .dynamic section. The DT_DEBUG entry is filled in by the
2164 dynamic linker and used by the debugger. */
2165 #define add_dynamic_entry(TAG, VAL) \
2166 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2168 if (info
->executable
)
2170 if (!add_dynamic_entry (DT_DEBUG
, 0))
2174 if (htab
->splt
->size
!= 0)
2176 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2177 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2178 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2179 || !add_dynamic_entry (DT_JMPREL
, 0))
2182 if (htab
->tlsdesc_plt
2183 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2184 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2190 if (!add_dynamic_entry (DT_RELA
, 0)
2191 || !add_dynamic_entry (DT_RELASZ
, 0)
2192 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
2195 /* If any dynamic relocs apply to a read-only section,
2196 then we need a DT_TEXTREL entry. */
2197 if ((info
->flags
& DF_TEXTREL
) == 0)
2198 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
,
2201 if ((info
->flags
& DF_TEXTREL
) != 0)
2203 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2208 #undef add_dynamic_entry
2214 elf64_x86_64_always_size_sections (bfd
*output_bfd
,
2215 struct bfd_link_info
*info
)
2217 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2221 struct elf_link_hash_entry
*tlsbase
;
2223 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2224 "_TLS_MODULE_BASE_",
2225 FALSE
, FALSE
, FALSE
);
2227 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2229 struct bfd_link_hash_entry
*bh
= NULL
;
2230 const struct elf_backend_data
*bed
2231 = get_elf_backend_data (output_bfd
);
2233 if (!(_bfd_generic_link_add_one_symbol
2234 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2235 tls_sec
, 0, NULL
, FALSE
,
2236 bed
->collect
, &bh
)))
2238 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2239 tlsbase
->def_regular
= 1;
2240 tlsbase
->other
= STV_HIDDEN
;
2241 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2248 /* Return the base VMA address which should be subtracted from real addresses
2249 when resolving @dtpoff relocation.
2250 This is PT_TLS segment p_vaddr. */
2253 dtpoff_base (struct bfd_link_info
*info
)
2255 /* If tls_sec is NULL, we should have signalled an error already. */
2256 if (elf_hash_table (info
)->tls_sec
== NULL
)
2258 return elf_hash_table (info
)->tls_sec
->vma
;
2261 /* Return the relocation value for @tpoff relocation
2262 if STT_TLS virtual address is ADDRESS. */
2265 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2267 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2269 /* If tls_segment is NULL, we should have signalled an error already. */
2270 if (htab
->tls_sec
== NULL
)
2272 return address
- htab
->tls_size
- htab
->tls_sec
->vma
;
2275 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2279 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2281 /* Opcode Instruction
2284 0x0f 0x8x conditional jump */
2286 && (contents
[offset
- 1] == 0xe8
2287 || contents
[offset
- 1] == 0xe9))
2289 && contents
[offset
- 2] == 0x0f
2290 && (contents
[offset
- 1] & 0xf0) == 0x80));
2293 /* Relocate an x86_64 ELF section. */
2296 elf64_x86_64_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
2297 bfd
*input_bfd
, asection
*input_section
,
2298 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
2299 Elf_Internal_Sym
*local_syms
,
2300 asection
**local_sections
)
2302 struct elf64_x86_64_link_hash_table
*htab
;
2303 Elf_Internal_Shdr
*symtab_hdr
;
2304 struct elf_link_hash_entry
**sym_hashes
;
2305 bfd_vma
*local_got_offsets
;
2306 bfd_vma
*local_tlsdesc_gotents
;
2307 Elf_Internal_Rela
*rel
;
2308 Elf_Internal_Rela
*relend
;
2310 htab
= elf64_x86_64_hash_table (info
);
2311 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2312 sym_hashes
= elf_sym_hashes (input_bfd
);
2313 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2314 local_tlsdesc_gotents
= elf64_x86_64_local_tlsdesc_gotent (input_bfd
);
2317 relend
= relocs
+ input_section
->reloc_count
;
2318 for (; rel
< relend
; rel
++)
2320 unsigned int r_type
;
2321 reloc_howto_type
*howto
;
2322 unsigned long r_symndx
;
2323 struct elf_link_hash_entry
*h
;
2324 Elf_Internal_Sym
*sym
;
2326 bfd_vma off
, offplt
;
2328 bfd_boolean unresolved_reloc
;
2329 bfd_reloc_status_type r
;
2332 r_type
= ELF64_R_TYPE (rel
->r_info
);
2333 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
2334 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
2337 if (r_type
>= R_X86_64_max
)
2339 bfd_set_error (bfd_error_bad_value
);
2343 howto
= x86_64_elf_howto_table
+ r_type
;
2344 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2348 unresolved_reloc
= FALSE
;
2349 if (r_symndx
< symtab_hdr
->sh_info
)
2351 sym
= local_syms
+ r_symndx
;
2352 sec
= local_sections
[r_symndx
];
2354 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2360 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2361 r_symndx
, symtab_hdr
, sym_hashes
,
2363 unresolved_reloc
, warned
);
2366 if (sec
!= NULL
&& elf_discarded_section (sec
))
2368 /* For relocs against symbols from removed linkonce sections,
2369 or sections discarded by a linker script, we just want the
2370 section contents zeroed. Avoid any special processing. */
2371 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2377 if (info
->relocatable
)
2380 /* When generating a shared object, the relocations handled here are
2381 copied into the output file to be resolved at run time. */
2385 case R_X86_64_GOT32
:
2386 case R_X86_64_GOT64
:
2387 /* Relocation is to the entry for this symbol in the global
2389 case R_X86_64_GOTPCREL
:
2390 case R_X86_64_GOTPCREL64
:
2391 /* Use global offset table entry as symbol value. */
2392 case R_X86_64_GOTPLT64
:
2393 /* This is the same as GOT64 for relocation purposes, but
2394 indicates the existence of a PLT entry. The difficulty is,
2395 that we must calculate the GOT slot offset from the PLT
2396 offset, if this symbol got a PLT entry (it was global).
2397 Additionally if it's computed from the PLT entry, then that
2398 GOT offset is relative to .got.plt, not to .got. */
2399 base_got
= htab
->sgot
;
2401 if (htab
->sgot
== NULL
)
2408 off
= h
->got
.offset
;
2410 && h
->plt
.offset
!= (bfd_vma
)-1
2411 && off
== (bfd_vma
)-1)
2413 /* We can't use h->got.offset here to save
2414 state, or even just remember the offset, as
2415 finish_dynamic_symbol would use that as offset into
2417 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2418 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2419 base_got
= htab
->sgotplt
;
2422 dyn
= htab
->elf
.dynamic_sections_created
;
2424 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2426 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2427 || (ELF_ST_VISIBILITY (h
->other
)
2428 && h
->root
.type
== bfd_link_hash_undefweak
))
2430 /* This is actually a static link, or it is a -Bsymbolic
2431 link and the symbol is defined locally, or the symbol
2432 was forced to be local because of a version file. We
2433 must initialize this entry in the global offset table.
2434 Since the offset must always be a multiple of 8, we
2435 use the least significant bit to record whether we
2436 have initialized it already.
2438 When doing a dynamic link, we create a .rela.got
2439 relocation entry to initialize the value. This is
2440 done in the finish_dynamic_symbol routine. */
2445 bfd_put_64 (output_bfd
, relocation
,
2446 base_got
->contents
+ off
);
2447 /* Note that this is harmless for the GOTPLT64 case,
2448 as -1 | 1 still is -1. */
2453 unresolved_reloc
= FALSE
;
2457 if (local_got_offsets
== NULL
)
2460 off
= local_got_offsets
[r_symndx
];
2462 /* The offset must always be a multiple of 8. We use
2463 the least significant bit to record whether we have
2464 already generated the necessary reloc. */
2469 bfd_put_64 (output_bfd
, relocation
,
2470 base_got
->contents
+ off
);
2475 Elf_Internal_Rela outrel
;
2478 /* We need to generate a R_X86_64_RELATIVE reloc
2479 for the dynamic linker. */
2484 outrel
.r_offset
= (base_got
->output_section
->vma
2485 + base_got
->output_offset
2487 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2488 outrel
.r_addend
= relocation
;
2490 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2491 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2494 local_got_offsets
[r_symndx
] |= 1;
2498 if (off
>= (bfd_vma
) -2)
2501 relocation
= base_got
->output_section
->vma
2502 + base_got
->output_offset
+ off
;
2503 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
2504 relocation
-= htab
->sgotplt
->output_section
->vma
2505 - htab
->sgotplt
->output_offset
;
2509 case R_X86_64_GOTOFF64
:
2510 /* Relocation is relative to the start of the global offset
2513 /* Check to make sure it isn't a protected function symbol
2514 for shared library since it may not be local when used
2515 as function address. */
2519 && h
->type
== STT_FUNC
2520 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2522 (*_bfd_error_handler
)
2523 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2524 input_bfd
, h
->root
.root
.string
);
2525 bfd_set_error (bfd_error_bad_value
);
2529 /* Note that sgot is not involved in this
2530 calculation. We always want the start of .got.plt. If we
2531 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2532 permitted by the ABI, we might have to change this
2534 relocation
-= htab
->sgotplt
->output_section
->vma
2535 + htab
->sgotplt
->output_offset
;
2538 case R_X86_64_GOTPC32
:
2539 case R_X86_64_GOTPC64
:
2540 /* Use global offset table as symbol value. */
2541 relocation
= htab
->sgotplt
->output_section
->vma
2542 + htab
->sgotplt
->output_offset
;
2543 unresolved_reloc
= FALSE
;
2546 case R_X86_64_PLTOFF64
:
2547 /* Relocation is PLT entry relative to GOT. For local
2548 symbols it's the symbol itself relative to GOT. */
2550 /* See PLT32 handling. */
2551 && h
->plt
.offset
!= (bfd_vma
) -1
2552 && htab
->splt
!= NULL
)
2554 relocation
= (htab
->splt
->output_section
->vma
2555 + htab
->splt
->output_offset
2557 unresolved_reloc
= FALSE
;
2560 relocation
-= htab
->sgotplt
->output_section
->vma
2561 + htab
->sgotplt
->output_offset
;
2564 case R_X86_64_PLT32
:
2565 /* Relocation is to the entry for this symbol in the
2566 procedure linkage table. */
2568 /* Resolve a PLT32 reloc against a local symbol directly,
2569 without using the procedure linkage table. */
2573 if (h
->plt
.offset
== (bfd_vma
) -1
2574 || htab
->splt
== NULL
)
2576 /* We didn't make a PLT entry for this symbol. This
2577 happens when statically linking PIC code, or when
2578 using -Bsymbolic. */
2582 relocation
= (htab
->splt
->output_section
->vma
2583 + htab
->splt
->output_offset
2585 unresolved_reloc
= FALSE
;
2592 && !SYMBOL_REFERENCES_LOCAL (info
, h
)
2593 && (input_section
->flags
& SEC_ALLOC
) != 0
2594 && (input_section
->flags
& SEC_READONLY
) != 0
2596 || r_type
!= R_X86_64_PC32
2597 || h
->type
!= STT_FUNC
2598 || ELF_ST_VISIBILITY (h
->other
) != STV_PROTECTED
2599 || !is_32bit_relative_branch (contents
,
2603 && r_type
== R_X86_64_PC32
2604 && h
->type
== STT_FUNC
2605 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2606 (*_bfd_error_handler
)
2607 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2608 input_bfd
, h
->root
.root
.string
);
2610 (*_bfd_error_handler
)
2611 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2612 input_bfd
, x86_64_elf_howto_table
[r_type
].name
,
2613 h
->root
.root
.string
);
2614 bfd_set_error (bfd_error_bad_value
);
2624 /* FIXME: The ABI says the linker should make sure the value is
2625 the same when it's zeroextended to 64 bit. */
2627 if ((input_section
->flags
& SEC_ALLOC
) == 0)
2632 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2633 || h
->root
.type
!= bfd_link_hash_undefweak
)
2634 && ((r_type
!= R_X86_64_PC8
2635 && r_type
!= R_X86_64_PC16
2636 && r_type
!= R_X86_64_PC32
2637 && r_type
!= R_X86_64_PC64
)
2638 || !SYMBOL_CALLS_LOCAL (info
, h
)))
2639 || (ELIMINATE_COPY_RELOCS
2646 || h
->root
.type
== bfd_link_hash_undefweak
2647 || h
->root
.type
== bfd_link_hash_undefined
)))
2649 Elf_Internal_Rela outrel
;
2651 bfd_boolean skip
, relocate
;
2654 /* When generating a shared object, these relocations
2655 are copied into the output file to be resolved at run
2661 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2663 if (outrel
.r_offset
== (bfd_vma
) -1)
2665 else if (outrel
.r_offset
== (bfd_vma
) -2)
2666 skip
= TRUE
, relocate
= TRUE
;
2668 outrel
.r_offset
+= (input_section
->output_section
->vma
2669 + input_section
->output_offset
);
2672 memset (&outrel
, 0, sizeof outrel
);
2674 /* h->dynindx may be -1 if this symbol was marked to
2678 && (r_type
== R_X86_64_PC8
2679 || r_type
== R_X86_64_PC16
2680 || r_type
== R_X86_64_PC32
2681 || r_type
== R_X86_64_PC64
2683 || !SYMBOLIC_BIND (info
, h
)
2684 || !h
->def_regular
))
2686 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
2687 outrel
.r_addend
= rel
->r_addend
;
2691 /* This symbol is local, or marked to become local. */
2692 if (r_type
== R_X86_64_64
)
2695 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2696 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2702 if (bfd_is_abs_section (sec
))
2704 else if (sec
== NULL
|| sec
->owner
== NULL
)
2706 bfd_set_error (bfd_error_bad_value
);
2713 /* We are turning this relocation into one
2714 against a section symbol. It would be
2715 proper to subtract the symbol's value,
2716 osec->vma, from the emitted reloc addend,
2717 but ld.so expects buggy relocs. */
2718 osec
= sec
->output_section
;
2719 sindx
= elf_section_data (osec
)->dynindx
;
2722 asection
*oi
= htab
->elf
.text_index_section
;
2723 sindx
= elf_section_data (oi
)->dynindx
;
2725 BFD_ASSERT (sindx
!= 0);
2728 outrel
.r_info
= ELF64_R_INFO (sindx
, r_type
);
2729 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2733 sreloc
= elf_section_data (input_section
)->sreloc
;
2737 loc
= sreloc
->contents
;
2738 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2739 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2741 /* If this reloc is against an external symbol, we do
2742 not want to fiddle with the addend. Otherwise, we
2743 need to include the symbol value so that it becomes
2744 an addend for the dynamic reloc. */
2751 case R_X86_64_TLSGD
:
2752 case R_X86_64_GOTPC32_TLSDESC
:
2753 case R_X86_64_TLSDESC_CALL
:
2754 case R_X86_64_GOTTPOFF
:
2755 tls_type
= GOT_UNKNOWN
;
2756 if (h
== NULL
&& local_got_offsets
)
2757 tls_type
= elf64_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
2759 tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
2761 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
2762 input_section
, contents
,
2763 symtab_hdr
, sym_hashes
,
2764 &r_type
, tls_type
, rel
,
2768 if (r_type
== R_X86_64_TPOFF32
)
2770 bfd_vma roff
= rel
->r_offset
;
2772 BFD_ASSERT (! unresolved_reloc
);
2774 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
2776 /* GD->LE transition.
2777 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2778 .word 0x6666; rex64; call __tls_get_addr
2781 leaq foo@tpoff(%rax), %rax */
2782 memcpy (contents
+ roff
- 4,
2783 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2785 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2786 contents
+ roff
+ 8);
2787 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2791 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
2793 /* GDesc -> LE transition.
2794 It's originally something like:
2795 leaq x@tlsdesc(%rip), %rax
2801 unsigned int val
, type
, type2
;
2803 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
2804 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
2805 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
2806 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
2807 contents
+ roff
- 3);
2808 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
2809 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
2810 contents
+ roff
- 1);
2811 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2815 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
2817 /* GDesc -> LE transition.
2822 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
2823 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
2826 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
2828 /* IE->LE transition:
2829 Originally it can be one of:
2830 movq foo@gottpoff(%rip), %reg
2831 addq foo@gottpoff(%rip), %reg
2834 leaq foo(%reg), %reg
2837 unsigned int val
, type
, reg
;
2839 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
2840 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
2841 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
2847 bfd_put_8 (output_bfd
, 0x49,
2848 contents
+ roff
- 3);
2849 bfd_put_8 (output_bfd
, 0xc7,
2850 contents
+ roff
- 2);
2851 bfd_put_8 (output_bfd
, 0xc0 | reg
,
2852 contents
+ roff
- 1);
2856 /* addq -> addq - addressing with %rsp/%r12 is
2859 bfd_put_8 (output_bfd
, 0x49,
2860 contents
+ roff
- 3);
2861 bfd_put_8 (output_bfd
, 0x81,
2862 contents
+ roff
- 2);
2863 bfd_put_8 (output_bfd
, 0xc0 | reg
,
2864 contents
+ roff
- 1);
2870 bfd_put_8 (output_bfd
, 0x4d,
2871 contents
+ roff
- 3);
2872 bfd_put_8 (output_bfd
, 0x8d,
2873 contents
+ roff
- 2);
2874 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
2875 contents
+ roff
- 1);
2877 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2885 if (htab
->sgot
== NULL
)
2890 off
= h
->got
.offset
;
2891 offplt
= elf64_x86_64_hash_entry (h
)->tlsdesc_got
;
2895 if (local_got_offsets
== NULL
)
2898 off
= local_got_offsets
[r_symndx
];
2899 offplt
= local_tlsdesc_gotents
[r_symndx
];
2906 Elf_Internal_Rela outrel
;
2911 if (htab
->srelgot
== NULL
)
2914 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2916 if (GOT_TLS_GDESC_P (tls_type
))
2918 outrel
.r_info
= ELF64_R_INFO (indx
, R_X86_64_TLSDESC
);
2919 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
2920 + 2 * GOT_ENTRY_SIZE
<= htab
->sgotplt
->size
);
2921 outrel
.r_offset
= (htab
->sgotplt
->output_section
->vma
2922 + htab
->sgotplt
->output_offset
2924 + htab
->sgotplt_jump_table_size
);
2925 sreloc
= htab
->srelplt
;
2926 loc
= sreloc
->contents
;
2927 loc
+= sreloc
->reloc_count
++
2928 * sizeof (Elf64_External_Rela
);
2929 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2930 <= sreloc
->contents
+ sreloc
->size
);
2932 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2934 outrel
.r_addend
= 0;
2935 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2938 sreloc
= htab
->srelgot
;
2940 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
2941 + htab
->sgot
->output_offset
+ off
);
2943 if (GOT_TLS_GD_P (tls_type
))
2944 dr_type
= R_X86_64_DTPMOD64
;
2945 else if (GOT_TLS_GDESC_P (tls_type
))
2948 dr_type
= R_X86_64_TPOFF64
;
2950 bfd_put_64 (output_bfd
, 0, htab
->sgot
->contents
+ off
);
2951 outrel
.r_addend
= 0;
2952 if ((dr_type
== R_X86_64_TPOFF64
2953 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
2954 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2955 outrel
.r_info
= ELF64_R_INFO (indx
, dr_type
);
2957 loc
= sreloc
->contents
;
2958 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2959 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2960 <= sreloc
->contents
+ sreloc
->size
);
2961 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2963 if (GOT_TLS_GD_P (tls_type
))
2967 BFD_ASSERT (! unresolved_reloc
);
2968 bfd_put_64 (output_bfd
,
2969 relocation
- dtpoff_base (info
),
2970 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
2974 bfd_put_64 (output_bfd
, 0,
2975 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
2976 outrel
.r_info
= ELF64_R_INFO (indx
,
2978 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
2979 sreloc
->reloc_count
++;
2980 loc
+= sizeof (Elf64_External_Rela
);
2981 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2982 <= sreloc
->contents
+ sreloc
->size
);
2983 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2991 local_got_offsets
[r_symndx
] |= 1;
2994 if (off
>= (bfd_vma
) -2
2995 && ! GOT_TLS_GDESC_P (tls_type
))
2997 if (r_type
== ELF64_R_TYPE (rel
->r_info
))
2999 if (r_type
== R_X86_64_GOTPC32_TLSDESC
3000 || r_type
== R_X86_64_TLSDESC_CALL
)
3001 relocation
= htab
->sgotplt
->output_section
->vma
3002 + htab
->sgotplt
->output_offset
3003 + offplt
+ htab
->sgotplt_jump_table_size
;
3005 relocation
= htab
->sgot
->output_section
->vma
3006 + htab
->sgot
->output_offset
+ off
;
3007 unresolved_reloc
= FALSE
;
3011 bfd_vma roff
= rel
->r_offset
;
3013 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3015 /* GD->IE transition.
3016 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3017 .word 0x6666; rex64; call __tls_get_addr@plt
3020 addq foo@gottpoff(%rip), %rax */
3021 memcpy (contents
+ roff
- 4,
3022 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3025 relocation
= (htab
->sgot
->output_section
->vma
3026 + htab
->sgot
->output_offset
+ off
3028 - input_section
->output_section
->vma
3029 - input_section
->output_offset
3031 bfd_put_32 (output_bfd
, relocation
,
3032 contents
+ roff
+ 8);
3033 /* Skip R_X86_64_PLT32. */
3037 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3039 /* GDesc -> IE transition.
3040 It's originally something like:
3041 leaq x@tlsdesc(%rip), %rax
3044 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3047 unsigned int val
, type
, type2
;
3049 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3050 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3051 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3053 /* Now modify the instruction as appropriate. To
3054 turn a leaq into a movq in the form we use it, it
3055 suffices to change the second byte from 0x8d to
3057 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3059 bfd_put_32 (output_bfd
,
3060 htab
->sgot
->output_section
->vma
3061 + htab
->sgot
->output_offset
+ off
3063 - input_section
->output_section
->vma
3064 - input_section
->output_offset
3069 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3071 /* GDesc -> IE transition.
3078 unsigned int val
, type
;
3080 type
= bfd_get_8 (input_bfd
, contents
+ roff
);
3081 val
= bfd_get_8 (input_bfd
, contents
+ roff
+ 1);
3082 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3083 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3091 case R_X86_64_TLSLD
:
3092 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3093 input_section
, contents
,
3094 symtab_hdr
, sym_hashes
,
3095 &r_type
, GOT_UNKNOWN
,
3099 if (r_type
!= R_X86_64_TLSLD
)
3101 /* LD->LE transition:
3102 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3104 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3106 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
3107 memcpy (contents
+ rel
->r_offset
- 3,
3108 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3109 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3114 if (htab
->sgot
== NULL
)
3117 off
= htab
->tls_ld_got
.offset
;
3122 Elf_Internal_Rela outrel
;
3125 if (htab
->srelgot
== NULL
)
3128 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
3129 + htab
->sgot
->output_offset
+ off
);
3131 bfd_put_64 (output_bfd
, 0,
3132 htab
->sgot
->contents
+ off
);
3133 bfd_put_64 (output_bfd
, 0,
3134 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3135 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_DTPMOD64
);
3136 outrel
.r_addend
= 0;
3137 loc
= htab
->srelgot
->contents
;
3138 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3139 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3140 htab
->tls_ld_got
.offset
|= 1;
3142 relocation
= htab
->sgot
->output_section
->vma
3143 + htab
->sgot
->output_offset
+ off
;
3144 unresolved_reloc
= FALSE
;
3147 case R_X86_64_DTPOFF32
:
3148 if (info
->shared
|| (input_section
->flags
& SEC_CODE
) == 0)
3149 relocation
-= dtpoff_base (info
);
3151 relocation
= tpoff (info
, relocation
);
3154 case R_X86_64_TPOFF32
:
3155 BFD_ASSERT (! info
->shared
);
3156 relocation
= tpoff (info
, relocation
);
3163 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3164 because such sections are not SEC_ALLOC and thus ld.so will
3165 not process them. */
3166 if (unresolved_reloc
3167 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3169 (*_bfd_error_handler
)
3170 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3173 (long) rel
->r_offset
,
3175 h
->root
.root
.string
);
3177 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3178 contents
, rel
->r_offset
,
3179 relocation
, rel
->r_addend
);
3181 if (r
!= bfd_reloc_ok
)
3186 name
= h
->root
.root
.string
;
3189 name
= bfd_elf_string_from_elf_section (input_bfd
,
3190 symtab_hdr
->sh_link
,
3195 name
= bfd_section_name (input_bfd
, sec
);
3198 if (r
== bfd_reloc_overflow
)
3200 if (! ((*info
->callbacks
->reloc_overflow
)
3201 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3202 (bfd_vma
) 0, input_bfd
, input_section
,
3208 (*_bfd_error_handler
)
3209 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3210 input_bfd
, input_section
,
3211 (long) rel
->r_offset
, name
, (int) r
);
3220 /* Finish up dynamic symbol handling. We set the contents of various
3221 dynamic sections here. */
3224 elf64_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
3225 struct bfd_link_info
*info
,
3226 struct elf_link_hash_entry
*h
,
3227 Elf_Internal_Sym
*sym
)
3229 struct elf64_x86_64_link_hash_table
*htab
;
3231 htab
= elf64_x86_64_hash_table (info
);
3233 if (h
->plt
.offset
!= (bfd_vma
) -1)
3237 Elf_Internal_Rela rela
;
3240 /* This symbol has an entry in the procedure linkage table. Set
3242 if (h
->dynindx
== -1
3243 || htab
->splt
== NULL
3244 || htab
->sgotplt
== NULL
3245 || htab
->srelplt
== NULL
)
3248 /* Get the index in the procedure linkage table which
3249 corresponds to this symbol. This is the index of this symbol
3250 in all the symbols for which we are making plt entries. The
3251 first entry in the procedure linkage table is reserved. */
3252 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3254 /* Get the offset into the .got table of the entry that
3255 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3256 bytes. The first three are reserved for the dynamic linker. */
3257 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3259 /* Fill in the entry in the procedure linkage table. */
3260 memcpy (htab
->splt
->contents
+ h
->plt
.offset
, elf64_x86_64_plt_entry
,
3263 /* Insert the relocation positions of the plt section. The magic
3264 numbers at the end of the statements are the positions of the
3265 relocations in the plt section. */
3266 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3267 instruction uses 6 bytes, subtract this value. */
3268 bfd_put_32 (output_bfd
,
3269 (htab
->sgotplt
->output_section
->vma
3270 + htab
->sgotplt
->output_offset
3272 - htab
->splt
->output_section
->vma
3273 - htab
->splt
->output_offset
3276 htab
->splt
->contents
+ h
->plt
.offset
+ 2);
3277 /* Put relocation index. */
3278 bfd_put_32 (output_bfd
, plt_index
,
3279 htab
->splt
->contents
+ h
->plt
.offset
+ 7);
3280 /* Put offset for jmp .PLT0. */
3281 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
3282 htab
->splt
->contents
+ h
->plt
.offset
+ 12);
3284 /* Fill in the entry in the global offset table, initially this
3285 points to the pushq instruction in the PLT which is at offset 6. */
3286 bfd_put_64 (output_bfd
, (htab
->splt
->output_section
->vma
3287 + htab
->splt
->output_offset
3288 + h
->plt
.offset
+ 6),
3289 htab
->sgotplt
->contents
+ got_offset
);
3291 /* Fill in the entry in the .rela.plt section. */
3292 rela
.r_offset
= (htab
->sgotplt
->output_section
->vma
3293 + htab
->sgotplt
->output_offset
3295 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_JUMP_SLOT
);
3297 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf64_External_Rela
);
3298 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3300 if (!h
->def_regular
)
3302 /* Mark the symbol as undefined, rather than as defined in
3303 the .plt section. Leave the value if there were any
3304 relocations where pointer equality matters (this is a clue
3305 for the dynamic linker, to make function pointer
3306 comparisons work between an application and shared
3307 library), otherwise set it to zero. If a function is only
3308 called from a binary, there is no need to slow down
3309 shared libraries because of that. */
3310 sym
->st_shndx
= SHN_UNDEF
;
3311 if (!h
->pointer_equality_needed
)
3316 if (h
->got
.offset
!= (bfd_vma
) -1
3317 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h
)->tls_type
)
3318 && elf64_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
3320 Elf_Internal_Rela rela
;
3323 /* This symbol has an entry in the global offset table. Set it
3325 if (htab
->sgot
== NULL
|| htab
->srelgot
== NULL
)
3328 rela
.r_offset
= (htab
->sgot
->output_section
->vma
3329 + htab
->sgot
->output_offset
3330 + (h
->got
.offset
&~ (bfd_vma
) 1));
3332 /* If this is a static link, or it is a -Bsymbolic link and the
3333 symbol is defined locally or was forced to be local because
3334 of a version file, we just want to emit a RELATIVE reloc.
3335 The entry in the global offset table will already have been
3336 initialized in the relocate_section function. */
3338 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3340 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3341 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3342 rela
.r_addend
= (h
->root
.u
.def
.value
3343 + h
->root
.u
.def
.section
->output_section
->vma
3344 + h
->root
.u
.def
.section
->output_offset
);
3348 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3349 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3350 htab
->sgot
->contents
+ h
->got
.offset
);
3351 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_GLOB_DAT
);
3355 loc
= htab
->srelgot
->contents
;
3356 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3357 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3362 Elf_Internal_Rela rela
;
3365 /* This symbol needs a copy reloc. Set it up. */
3367 if (h
->dynindx
== -1
3368 || (h
->root
.type
!= bfd_link_hash_defined
3369 && h
->root
.type
!= bfd_link_hash_defweak
)
3370 || htab
->srelbss
== NULL
)
3373 rela
.r_offset
= (h
->root
.u
.def
.value
3374 + h
->root
.u
.def
.section
->output_section
->vma
3375 + h
->root
.u
.def
.section
->output_offset
);
3376 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_COPY
);
3378 loc
= htab
->srelbss
->contents
;
3379 loc
+= htab
->srelbss
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3380 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3383 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3384 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3385 || h
== htab
->elf
.hgot
)
3386 sym
->st_shndx
= SHN_ABS
;
3391 /* Used to decide how to sort relocs in an optimal manner for the
3392 dynamic linker, before writing them out. */
3394 static enum elf_reloc_type_class
3395 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
3397 switch ((int) ELF64_R_TYPE (rela
->r_info
))
3399 case R_X86_64_RELATIVE
:
3400 return reloc_class_relative
;
3401 case R_X86_64_JUMP_SLOT
:
3402 return reloc_class_plt
;
3404 return reloc_class_copy
;
3406 return reloc_class_normal
;
3410 /* Finish up the dynamic sections. */
3413 elf64_x86_64_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
3415 struct elf64_x86_64_link_hash_table
*htab
;
3419 htab
= elf64_x86_64_hash_table (info
);
3420 dynobj
= htab
->elf
.dynobj
;
3421 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3423 if (htab
->elf
.dynamic_sections_created
)
3425 Elf64_External_Dyn
*dyncon
, *dynconend
;
3427 if (sdyn
== NULL
|| htab
->sgot
== NULL
)
3430 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
3431 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3432 for (; dyncon
< dynconend
; dyncon
++)
3434 Elf_Internal_Dyn dyn
;
3437 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3446 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
3450 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
3454 s
= htab
->srelplt
->output_section
;
3455 dyn
.d_un
.d_val
= s
->size
;
3459 /* The procedure linkage table relocs (DT_JMPREL) should
3460 not be included in the overall relocs (DT_RELA).
3461 Therefore, we override the DT_RELASZ entry here to
3462 make it not include the JMPREL relocs. Since the
3463 linker script arranges for .rela.plt to follow all
3464 other relocation sections, we don't have to worry
3465 about changing the DT_RELA entry. */
3466 if (htab
->srelplt
!= NULL
)
3468 s
= htab
->srelplt
->output_section
;
3469 dyn
.d_un
.d_val
-= s
->size
;
3473 case DT_TLSDESC_PLT
:
3475 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
3476 + htab
->tlsdesc_plt
;
3479 case DT_TLSDESC_GOT
:
3481 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
3482 + htab
->tlsdesc_got
;
3486 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3489 /* Fill in the special first entry in the procedure linkage table. */
3490 if (htab
->splt
&& htab
->splt
->size
> 0)
3492 /* Fill in the first entry in the procedure linkage table. */
3493 memcpy (htab
->splt
->contents
, elf64_x86_64_plt0_entry
,
3495 /* Add offset for pushq GOT+8(%rip), since the instruction
3496 uses 6 bytes subtract this value. */
3497 bfd_put_32 (output_bfd
,
3498 (htab
->sgotplt
->output_section
->vma
3499 + htab
->sgotplt
->output_offset
3501 - htab
->splt
->output_section
->vma
3502 - htab
->splt
->output_offset
3504 htab
->splt
->contents
+ 2);
3505 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3506 the end of the instruction. */
3507 bfd_put_32 (output_bfd
,
3508 (htab
->sgotplt
->output_section
->vma
3509 + htab
->sgotplt
->output_offset
3511 - htab
->splt
->output_section
->vma
3512 - htab
->splt
->output_offset
3514 htab
->splt
->contents
+ 8);
3516 elf_section_data (htab
->splt
->output_section
)->this_hdr
.sh_entsize
=
3519 if (htab
->tlsdesc_plt
)
3521 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3522 htab
->sgot
->contents
+ htab
->tlsdesc_got
);
3524 memcpy (htab
->splt
->contents
+ htab
->tlsdesc_plt
,
3525 elf64_x86_64_plt0_entry
,
3528 /* Add offset for pushq GOT+8(%rip), since the
3529 instruction uses 6 bytes subtract this value. */
3530 bfd_put_32 (output_bfd
,
3531 (htab
->sgotplt
->output_section
->vma
3532 + htab
->sgotplt
->output_offset
3534 - htab
->splt
->output_section
->vma
3535 - htab
->splt
->output_offset
3538 htab
->splt
->contents
+ htab
->tlsdesc_plt
+ 2);
3539 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3540 htab->tlsdesc_got. The 12 is the offset to the end of
3542 bfd_put_32 (output_bfd
,
3543 (htab
->sgot
->output_section
->vma
3544 + htab
->sgot
->output_offset
3546 - htab
->splt
->output_section
->vma
3547 - htab
->splt
->output_offset
3550 htab
->splt
->contents
+ htab
->tlsdesc_plt
+ 8);
3557 /* Fill in the first three entries in the global offset table. */
3558 if (htab
->sgotplt
->size
> 0)
3560 /* Set the first entry in the global offset table to the address of
3561 the dynamic section. */
3563 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
);
3565 bfd_put_64 (output_bfd
,
3566 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3567 htab
->sgotplt
->contents
);
3568 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3569 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ GOT_ENTRY_SIZE
);
3570 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
3573 elf_section_data (htab
->sgotplt
->output_section
)->this_hdr
.sh_entsize
=
3577 if (htab
->sgot
&& htab
->sgot
->size
> 0)
3578 elf_section_data (htab
->sgot
->output_section
)->this_hdr
.sh_entsize
3584 /* Return address for Ith PLT stub in section PLT, for relocation REL
3585 or (bfd_vma) -1 if it should not be included. */
3588 elf64_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
3589 const arelent
*rel ATTRIBUTE_UNUSED
)
3591 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
3594 /* Handle an x86-64 specific section when reading an object file. This
3595 is called when elfcode.h finds a section with an unknown type. */
3598 elf64_x86_64_section_from_shdr (bfd
*abfd
,
3599 Elf_Internal_Shdr
*hdr
,
3603 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
3606 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
3612 /* Hook called by the linker routine which adds symbols from an object
3613 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3617 elf64_x86_64_add_symbol_hook (bfd
*abfd
,
3618 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3619 Elf_Internal_Sym
*sym
,
3620 const char **namep ATTRIBUTE_UNUSED
,
3621 flagword
*flagsp ATTRIBUTE_UNUSED
,
3622 asection
**secp
, bfd_vma
*valp
)
3626 switch (sym
->st_shndx
)
3628 case SHN_X86_64_LCOMMON
:
3629 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
3632 lcomm
= bfd_make_section_with_flags (abfd
,
3636 | SEC_LINKER_CREATED
));
3639 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
3642 *valp
= sym
->st_size
;
3649 /* Given a BFD section, try to locate the corresponding ELF section
3653 elf64_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
3654 asection
*sec
, int *index
)
3656 if (sec
== &_bfd_elf_large_com_section
)
3658 *index
= SHN_X86_64_LCOMMON
;
3664 /* Process a symbol. */
3667 elf64_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
3670 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
3672 switch (elfsym
->internal_elf_sym
.st_shndx
)
3674 case SHN_X86_64_LCOMMON
:
3675 asym
->section
= &_bfd_elf_large_com_section
;
3676 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3677 /* Common symbol doesn't set BSF_GLOBAL. */
3678 asym
->flags
&= ~BSF_GLOBAL
;
3684 elf64_x86_64_common_definition (Elf_Internal_Sym
*sym
)
3686 return (sym
->st_shndx
== SHN_COMMON
3687 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
3691 elf64_x86_64_common_section_index (asection
*sec
)
3693 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
3696 return SHN_X86_64_LCOMMON
;
3700 elf64_x86_64_common_section (asection
*sec
)
3702 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
3703 return bfd_com_section_ptr
;
3705 return &_bfd_elf_large_com_section
;
3709 elf64_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3710 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
3711 struct elf_link_hash_entry
*h
,
3712 Elf_Internal_Sym
*sym
,
3714 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
3715 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
3716 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
3717 bfd_boolean
*override ATTRIBUTE_UNUSED
,
3718 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
3719 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
3720 bfd_boolean
*newdef ATTRIBUTE_UNUSED
,
3721 bfd_boolean
*newdyn
,
3722 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
3723 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
3724 bfd
*abfd ATTRIBUTE_UNUSED
,
3726 bfd_boolean
*olddef ATTRIBUTE_UNUSED
,
3727 bfd_boolean
*olddyn
,
3728 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
3729 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
3733 /* A normal common symbol and a large common symbol result in a
3734 normal common symbol. We turn the large common symbol into a
3737 && h
->root
.type
== bfd_link_hash_common
3739 && bfd_is_com_section (*sec
)
3742 if (sym
->st_shndx
== SHN_COMMON
3743 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
3745 h
->root
.u
.c
.p
->section
3746 = bfd_make_section_old_way (oldbfd
, "COMMON");
3747 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
3749 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
3750 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
3751 *psec
= *sec
= bfd_com_section_ptr
;
3758 elf64_x86_64_additional_program_headers (bfd
*abfd
,
3759 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3764 /* Check to see if we need a large readonly segment. */
3765 s
= bfd_get_section_by_name (abfd
, ".lrodata");
3766 if (s
&& (s
->flags
& SEC_LOAD
))
3769 /* Check to see if we need a large data segment. Since .lbss sections
3770 is placed right after the .bss section, there should be no need for
3771 a large data segment just because of .lbss. */
3772 s
= bfd_get_section_by_name (abfd
, ".ldata");
3773 if (s
&& (s
->flags
& SEC_LOAD
))
3779 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3782 elf64_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
3784 if (h
->plt
.offset
!= (bfd_vma
) -1
3786 && !h
->pointer_equality_needed
)
3789 return _bfd_elf_hash_symbol (h
);
3792 static const struct bfd_elf_special_section
3793 elf64_x86_64_special_sections
[]=
3795 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3796 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
3797 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
3798 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3799 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3800 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
3801 { NULL
, 0, 0, 0, 0 }
3804 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3805 #define TARGET_LITTLE_NAME "elf64-x86-64"
3806 #define ELF_ARCH bfd_arch_i386
3807 #define ELF_MACHINE_CODE EM_X86_64
3808 #define ELF_MAXPAGESIZE 0x200000
3809 #define ELF_MINPAGESIZE 0x1000
3810 #define ELF_COMMONPAGESIZE 0x1000
3812 #define elf_backend_can_gc_sections 1
3813 #define elf_backend_can_refcount 1
3814 #define elf_backend_want_got_plt 1
3815 #define elf_backend_plt_readonly 1
3816 #define elf_backend_want_plt_sym 0
3817 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3818 #define elf_backend_rela_normal 1
3820 #define elf_info_to_howto elf64_x86_64_info_to_howto
3822 #define bfd_elf64_bfd_link_hash_table_create \
3823 elf64_x86_64_link_hash_table_create
3824 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3825 #define bfd_elf64_bfd_reloc_name_lookup \
3826 elf64_x86_64_reloc_name_lookup
3828 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3829 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
3830 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3831 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3832 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3833 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3834 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3835 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3836 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3837 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3838 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3839 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3840 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3841 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3842 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3843 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3844 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3845 #define elf_backend_object_p elf64_x86_64_elf_object_p
3846 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3848 #define elf_backend_section_from_shdr \
3849 elf64_x86_64_section_from_shdr
3851 #define elf_backend_section_from_bfd_section \
3852 elf64_x86_64_elf_section_from_bfd_section
3853 #define elf_backend_add_symbol_hook \
3854 elf64_x86_64_add_symbol_hook
3855 #define elf_backend_symbol_processing \
3856 elf64_x86_64_symbol_processing
3857 #define elf_backend_common_section_index \
3858 elf64_x86_64_common_section_index
3859 #define elf_backend_common_section \
3860 elf64_x86_64_common_section
3861 #define elf_backend_common_definition \
3862 elf64_x86_64_common_definition
3863 #define elf_backend_merge_symbol \
3864 elf64_x86_64_merge_symbol
3865 #define elf_backend_special_sections \
3866 elf64_x86_64_special_sections
3867 #define elf_backend_additional_program_headers \
3868 elf64_x86_64_additional_program_headers
3869 #define elf_backend_hash_symbol \
3870 elf64_x86_64_hash_symbol
3872 #include "elf64-target.h"
3874 /* FreeBSD support. */
3876 #undef TARGET_LITTLE_SYM
3877 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3878 #undef TARGET_LITTLE_NAME
3879 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3882 #define ELF_OSABI ELFOSABI_FREEBSD
3884 #undef elf_backend_post_process_headers
3885 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3888 #define elf64_bed elf64_x86_64_fbsd_bed
3890 #include "elf64-target.h"