gas/
[binutils.git] / gold / resolve.cc
blob71d51097351e4e9fd9dbdbc1fdd1c2aa73d0a3f3
1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
31 namespace gold
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
39 inline void
40 Symbol::override_version(const char* version)
42 if (version == NULL)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
54 else
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
109 // Override the fields in Sized_symbol.
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
146 while (ssym != tosym);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
176 unsigned int bits;
178 switch (binding)
180 case elfcpp::STB_GLOBAL:
181 case elfcpp::STB_GNU_UNIQUE:
182 bits = global_flag;
183 break;
185 case elfcpp::STB_WEAK:
186 bits = weak_flag;
187 break;
189 case elfcpp::STB_LOCAL:
190 // We should only see externally visible symbols in the symbol
191 // table.
192 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193 bits = global_flag;
195 default:
196 // Any target which wants to handle STB_LOOS, etc., needs to
197 // define a resolve method.
198 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
199 bits = global_flag;
202 if (is_dynamic)
203 bits |= dynamic_flag;
204 else
205 bits |= regular_flag;
207 switch (shndx)
209 case elfcpp::SHN_UNDEF:
210 bits |= undef_flag;
211 break;
213 case elfcpp::SHN_COMMON:
214 if (!is_ordinary)
215 bits |= common_flag;
216 break;
218 default:
219 if (type == elfcpp::STT_COMMON)
220 bits |= common_flag;
221 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
228 return bits;
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version)
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
263 if (parameters->target().has_resolve())
265 Sized_target<size, big_endian>* sized_target;
266 sized_target = parameters->sized_target<size, big_endian>();
267 sized_target->resolve(to, sym, object, version);
268 return;
271 if (!object->is_dynamic())
273 // Record that we've seen this symbol in a regular object.
274 to->set_in_reg();
276 else if (st_shndx == elfcpp::SHN_UNDEF
277 && (to->visibility() == elfcpp::STV_HIDDEN
278 || to->visibility() == elfcpp::STV_INTERNAL))
280 // A dynamic object cannot reference a hidden or internal symbol
281 // defined in another object.
282 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
283 (to->visibility() == elfcpp::STV_HIDDEN
284 ? "hidden"
285 : "internal"),
286 to->demangled_name().c_str(),
287 to->object()->name().c_str(),
288 object->name().c_str());
289 return;
291 else
293 // Record that we've seen this symbol in a dynamic object.
294 to->set_in_dyn();
297 // Record if we've seen this symbol in a real ELF object (i.e., the
298 // symbol is referenced from outside the world known to the plugin).
299 if (object->pluginobj() == NULL)
300 to->set_in_real_elf();
302 // If we're processing replacement files, allow new symbols to override
303 // the placeholders from the plugin objects.
304 if (to->source() == Symbol::FROM_OBJECT)
306 Pluginobj* obj = to->object()->pluginobj();
307 if (obj != NULL
308 && parameters->options().plugins()->in_replacement_phase())
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
311 return;
315 // A new weak undefined reference, merging with an old weak
316 // reference, could be a One Definition Rule (ODR) violation --
317 // especially if the types or sizes of the references differ. We'll
318 // store such pairs and look them up later to make sure they
319 // actually refer to the same lines of code. We also check
320 // combinations of weak and strong, which might occur if one case is
321 // inline and the other is not. (Note: not all ODR violations can
322 // be found this way, and not everything this finds is an ODR
323 // violation. But it's helpful to warn about.)
324 if (parameters->options().detect_odr_violations()
325 && (sym.get_st_bind() == elfcpp::STB_WEAK
326 || to->binding() == elfcpp::STB_WEAK)
327 && orig_st_shndx != elfcpp::SHN_UNDEF
328 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
329 && to_is_ordinary
330 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
331 && to->symsize() != 0
332 && (sym.get_st_type() != to->type()
333 || sym.get_st_size() != to->symsize())
334 // C does not have a concept of ODR, so we only need to do this
335 // on C++ symbols. These have (mangled) names starting with _Z.
336 && to->name()[0] == '_' && to->name()[1] == 'Z')
338 Symbol_location fromloc
339 = { object, orig_st_shndx, sym.get_st_value() };
340 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
341 to->value() };
342 this->candidate_odr_violations_[to->name()].insert(fromloc);
343 this->candidate_odr_violations_[to->name()].insert(toloc);
346 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
347 object->is_dynamic(),
348 st_shndx, is_ordinary,
349 sym.get_st_type());
351 bool adjust_common_sizes;
352 bool adjust_dyndef;
353 typename Sized_symbol<size>::Size_type tosize = to->symsize();
354 if (Symbol_table::should_override(to, frombits, OBJECT, object,
355 &adjust_common_sizes,
356 &adjust_dyndef))
358 elfcpp::STB tobinding = to->binding();
359 this->override(to, sym, st_shndx, is_ordinary, object, version);
360 if (adjust_common_sizes && tosize > to->symsize())
361 to->set_symsize(tosize);
362 if (adjust_dyndef)
364 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
365 // Remember which kind of UNDEF it was for future reference.
366 to->set_undef_binding(tobinding);
369 else
371 if (adjust_common_sizes && sym.get_st_size() > tosize)
372 to->set_symsize(sym.get_st_size());
373 if (adjust_dyndef)
375 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
376 // Remember which kind of UNDEF it was.
377 to->set_undef_binding(sym.get_st_bind());
379 // The ELF ABI says that even for a reference to a symbol we
380 // merge the visibility.
381 to->override_visibility(sym.get_st_visibility());
384 if (adjust_common_sizes && parameters->options().warn_common())
386 if (tosize > sym.get_st_size())
387 Symbol_table::report_resolve_problem(false,
388 _("common of '%s' overriding "
389 "smaller common"),
390 to, OBJECT, object);
391 else if (tosize < sym.get_st_size())
392 Symbol_table::report_resolve_problem(false,
393 _("common of '%s' overidden by "
394 "larger common"),
395 to, OBJECT, object);
396 else
397 Symbol_table::report_resolve_problem(false,
398 _("multiple common of '%s'"),
399 to, OBJECT, object);
403 // Handle the core of symbol resolution. This is called with the
404 // existing symbol, TO, and a bitflag describing the new symbol. This
405 // returns true if we should override the existing symbol with the new
406 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
407 // true if we should set the symbol size to the maximum of the TO and
408 // FROM sizes. It handles error conditions.
410 bool
411 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
412 Defined defined, Object* object,
413 bool* adjust_common_sizes,
414 bool* adjust_dyndef)
416 *adjust_common_sizes = false;
417 *adjust_dyndef = false;
419 unsigned int tobits;
420 if (to->source() == Symbol::IS_UNDEFINED)
421 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
422 to->type());
423 else if (to->source() != Symbol::FROM_OBJECT)
424 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
425 to->type());
426 else
428 bool is_ordinary;
429 unsigned int shndx = to->shndx(&is_ordinary);
430 tobits = symbol_to_bits(to->binding(),
431 to->object()->is_dynamic(),
432 shndx,
433 is_ordinary,
434 to->type());
437 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
439 // We use a giant switch table for symbol resolution. This code is
440 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
441 // cases; 3) it is easy to change the handling of a particular case.
442 // The alternative would be a series of conditionals, but it is easy
443 // to get the ordering wrong. This could also be done as a table,
444 // but that is no easier to understand than this large switch
445 // statement.
447 // These are the values generated by the bit codes.
448 enum
450 DEF = global_flag | regular_flag | def_flag,
451 WEAK_DEF = weak_flag | regular_flag | def_flag,
452 DYN_DEF = global_flag | dynamic_flag | def_flag,
453 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
454 UNDEF = global_flag | regular_flag | undef_flag,
455 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
456 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
457 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
458 COMMON = global_flag | regular_flag | common_flag,
459 WEAK_COMMON = weak_flag | regular_flag | common_flag,
460 DYN_COMMON = global_flag | dynamic_flag | common_flag,
461 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
464 switch (tobits * 16 + frombits)
466 case DEF * 16 + DEF:
467 // Two definitions of the same symbol.
469 // If either symbol is defined by an object included using
470 // --just-symbols, then don't warn. This is for compatibility
471 // with the GNU linker. FIXME: This is a hack.
472 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
473 || (object != NULL && object->just_symbols()))
474 return false;
476 if (!parameters->options().muldefs())
477 Symbol_table::report_resolve_problem(true,
478 _("multiple definition of '%s'"),
479 to, defined, object);
480 return false;
482 case WEAK_DEF * 16 + DEF:
483 // We've seen a weak definition, and now we see a strong
484 // definition. In the original SVR4 linker, this was treated as
485 // a multiple definition error. In the Solaris linker and the
486 // GNU linker, a weak definition followed by a regular
487 // definition causes the weak definition to be overridden. We
488 // are currently compatible with the GNU linker. In the future
489 // we should add a target specific option to change this.
490 // FIXME.
491 return true;
493 case DYN_DEF * 16 + DEF:
494 case DYN_WEAK_DEF * 16 + DEF:
495 // We've seen a definition in a dynamic object, and now we see a
496 // definition in a regular object. The definition in the
497 // regular object overrides the definition in the dynamic
498 // object.
499 return true;
501 case UNDEF * 16 + DEF:
502 case WEAK_UNDEF * 16 + DEF:
503 case DYN_UNDEF * 16 + DEF:
504 case DYN_WEAK_UNDEF * 16 + DEF:
505 // We've seen an undefined reference, and now we see a
506 // definition. We use the definition.
507 return true;
509 case COMMON * 16 + DEF:
510 case WEAK_COMMON * 16 + DEF:
511 case DYN_COMMON * 16 + DEF:
512 case DYN_WEAK_COMMON * 16 + DEF:
513 // We've seen a common symbol and now we see a definition. The
514 // definition overrides.
515 if (parameters->options().warn_common())
516 Symbol_table::report_resolve_problem(false,
517 _("definition of '%s' overriding "
518 "common"),
519 to, defined, object);
520 return true;
522 case DEF * 16 + WEAK_DEF:
523 case WEAK_DEF * 16 + WEAK_DEF:
524 // We've seen a definition and now we see a weak definition. We
525 // ignore the new weak definition.
526 return false;
528 case DYN_DEF * 16 + WEAK_DEF:
529 case DYN_WEAK_DEF * 16 + WEAK_DEF:
530 // We've seen a dynamic definition and now we see a regular weak
531 // definition. The regular weak definition overrides.
532 return true;
534 case UNDEF * 16 + WEAK_DEF:
535 case WEAK_UNDEF * 16 + WEAK_DEF:
536 case DYN_UNDEF * 16 + WEAK_DEF:
537 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
538 // A weak definition of a currently undefined symbol.
539 return true;
541 case COMMON * 16 + WEAK_DEF:
542 case WEAK_COMMON * 16 + WEAK_DEF:
543 // A weak definition does not override a common definition.
544 return false;
546 case DYN_COMMON * 16 + WEAK_DEF:
547 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
548 // A weak definition does override a definition in a dynamic
549 // object.
550 if (parameters->options().warn_common())
551 Symbol_table::report_resolve_problem(false,
552 _("definition of '%s' overriding "
553 "dynamic common definition"),
554 to, defined, object);
555 return true;
557 case DEF * 16 + DYN_DEF:
558 case WEAK_DEF * 16 + DYN_DEF:
559 case DYN_DEF * 16 + DYN_DEF:
560 case DYN_WEAK_DEF * 16 + DYN_DEF:
561 // Ignore a dynamic definition if we already have a definition.
562 return false;
564 case UNDEF * 16 + DYN_DEF:
565 case DYN_UNDEF * 16 + DYN_DEF:
566 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
567 // Use a dynamic definition if we have a reference.
568 return true;
570 case WEAK_UNDEF * 16 + DYN_DEF:
571 // When overriding a weak undef by a dynamic definition,
572 // we need to remember that the original undef was weak.
573 *adjust_dyndef = true;
574 return true;
576 case COMMON * 16 + DYN_DEF:
577 case WEAK_COMMON * 16 + DYN_DEF:
578 case DYN_COMMON * 16 + DYN_DEF:
579 case DYN_WEAK_COMMON * 16 + DYN_DEF:
580 // Ignore a dynamic definition if we already have a common
581 // definition.
582 return false;
584 case DEF * 16 + DYN_WEAK_DEF:
585 case WEAK_DEF * 16 + DYN_WEAK_DEF:
586 case DYN_DEF * 16 + DYN_WEAK_DEF:
587 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
588 // Ignore a weak dynamic definition if we already have a
589 // definition.
590 return false;
592 case UNDEF * 16 + DYN_WEAK_DEF:
593 // When overriding an undef by a dynamic weak definition,
594 // we need to remember that the original undef was not weak.
595 *adjust_dyndef = true;
596 return true;
598 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
599 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
600 // Use a weak dynamic definition if we have a reference.
601 return true;
603 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
604 // When overriding a weak undef by a dynamic definition,
605 // we need to remember that the original undef was weak.
606 *adjust_dyndef = true;
607 return true;
609 case COMMON * 16 + DYN_WEAK_DEF:
610 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
611 case DYN_COMMON * 16 + DYN_WEAK_DEF:
612 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
613 // Ignore a weak dynamic definition if we already have a common
614 // definition.
615 return false;
617 case DEF * 16 + UNDEF:
618 case WEAK_DEF * 16 + UNDEF:
619 case UNDEF * 16 + UNDEF:
620 // A new undefined reference tells us nothing.
621 return false;
623 case DYN_DEF * 16 + UNDEF:
624 case DYN_WEAK_DEF * 16 + UNDEF:
625 // For a dynamic def, we need to remember which kind of undef we see.
626 *adjust_dyndef = true;
627 return false;
629 case WEAK_UNDEF * 16 + UNDEF:
630 case DYN_UNDEF * 16 + UNDEF:
631 case DYN_WEAK_UNDEF * 16 + UNDEF:
632 // A strong undef overrides a dynamic or weak undef.
633 return true;
635 case COMMON * 16 + UNDEF:
636 case WEAK_COMMON * 16 + UNDEF:
637 case DYN_COMMON * 16 + UNDEF:
638 case DYN_WEAK_COMMON * 16 + UNDEF:
639 // A new undefined reference tells us nothing.
640 return false;
642 case DEF * 16 + WEAK_UNDEF:
643 case WEAK_DEF * 16 + WEAK_UNDEF:
644 case UNDEF * 16 + WEAK_UNDEF:
645 case WEAK_UNDEF * 16 + WEAK_UNDEF:
646 case DYN_UNDEF * 16 + WEAK_UNDEF:
647 case COMMON * 16 + WEAK_UNDEF:
648 case WEAK_COMMON * 16 + WEAK_UNDEF:
649 case DYN_COMMON * 16 + WEAK_UNDEF:
650 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
651 // A new weak undefined reference tells us nothing unless the
652 // exisiting symbol is a dynamic weak reference.
653 return false;
655 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
656 // A new weak reference overrides an existing dynamic weak reference.
657 // This is necessary because a dynamic weak reference remembers
658 // the old binding, which may not be weak. If we keeps the existing
659 // dynamic weak reference, the weakness may be dropped in the output.
660 return true;
662 case DYN_DEF * 16 + WEAK_UNDEF:
663 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
664 // For a dynamic def, we need to remember which kind of undef we see.
665 *adjust_dyndef = true;
666 return false;
668 case DEF * 16 + DYN_UNDEF:
669 case WEAK_DEF * 16 + DYN_UNDEF:
670 case DYN_DEF * 16 + DYN_UNDEF:
671 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
672 case UNDEF * 16 + DYN_UNDEF:
673 case WEAK_UNDEF * 16 + DYN_UNDEF:
674 case DYN_UNDEF * 16 + DYN_UNDEF:
675 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
676 case COMMON * 16 + DYN_UNDEF:
677 case WEAK_COMMON * 16 + DYN_UNDEF:
678 case DYN_COMMON * 16 + DYN_UNDEF:
679 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
680 // A new dynamic undefined reference tells us nothing.
681 return false;
683 case DEF * 16 + DYN_WEAK_UNDEF:
684 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
685 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
686 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
687 case UNDEF * 16 + DYN_WEAK_UNDEF:
688 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
689 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
690 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
691 case COMMON * 16 + DYN_WEAK_UNDEF:
692 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
693 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
694 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
695 // A new weak dynamic undefined reference tells us nothing.
696 return false;
698 case DEF * 16 + COMMON:
699 // A common symbol does not override a definition.
700 if (parameters->options().warn_common())
701 Symbol_table::report_resolve_problem(false,
702 _("common '%s' overridden by "
703 "previous definition"),
704 to, defined, object);
705 return false;
707 case WEAK_DEF * 16 + COMMON:
708 case DYN_DEF * 16 + COMMON:
709 case DYN_WEAK_DEF * 16 + COMMON:
710 // A common symbol does override a weak definition or a dynamic
711 // definition.
712 return true;
714 case UNDEF * 16 + COMMON:
715 case WEAK_UNDEF * 16 + COMMON:
716 case DYN_UNDEF * 16 + COMMON:
717 case DYN_WEAK_UNDEF * 16 + COMMON:
718 // A common symbol is a definition for a reference.
719 return true;
721 case COMMON * 16 + COMMON:
722 // Set the size to the maximum.
723 *adjust_common_sizes = true;
724 return false;
726 case WEAK_COMMON * 16 + COMMON:
727 // I'm not sure just what a weak common symbol means, but
728 // presumably it can be overridden by a regular common symbol.
729 return true;
731 case DYN_COMMON * 16 + COMMON:
732 case DYN_WEAK_COMMON * 16 + COMMON:
733 // Use the real common symbol, but adjust the size if necessary.
734 *adjust_common_sizes = true;
735 return true;
737 case DEF * 16 + WEAK_COMMON:
738 case WEAK_DEF * 16 + WEAK_COMMON:
739 case DYN_DEF * 16 + WEAK_COMMON:
740 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
741 // Whatever a weak common symbol is, it won't override a
742 // definition.
743 return false;
745 case UNDEF * 16 + WEAK_COMMON:
746 case WEAK_UNDEF * 16 + WEAK_COMMON:
747 case DYN_UNDEF * 16 + WEAK_COMMON:
748 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
749 // A weak common symbol is better than an undefined symbol.
750 return true;
752 case COMMON * 16 + WEAK_COMMON:
753 case WEAK_COMMON * 16 + WEAK_COMMON:
754 case DYN_COMMON * 16 + WEAK_COMMON:
755 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
756 // Ignore a weak common symbol in the presence of a real common
757 // symbol.
758 return false;
760 case DEF * 16 + DYN_COMMON:
761 case WEAK_DEF * 16 + DYN_COMMON:
762 case DYN_DEF * 16 + DYN_COMMON:
763 case DYN_WEAK_DEF * 16 + DYN_COMMON:
764 // Ignore a dynamic common symbol in the presence of a
765 // definition.
766 return false;
768 case UNDEF * 16 + DYN_COMMON:
769 case WEAK_UNDEF * 16 + DYN_COMMON:
770 case DYN_UNDEF * 16 + DYN_COMMON:
771 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
772 // A dynamic common symbol is a definition of sorts.
773 return true;
775 case COMMON * 16 + DYN_COMMON:
776 case WEAK_COMMON * 16 + DYN_COMMON:
777 case DYN_COMMON * 16 + DYN_COMMON:
778 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
779 // Set the size to the maximum.
780 *adjust_common_sizes = true;
781 return false;
783 case DEF * 16 + DYN_WEAK_COMMON:
784 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
785 case DYN_DEF * 16 + DYN_WEAK_COMMON:
786 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
787 // A common symbol is ignored in the face of a definition.
788 return false;
790 case UNDEF * 16 + DYN_WEAK_COMMON:
791 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
792 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
793 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
794 // I guess a weak common symbol is better than a definition.
795 return true;
797 case COMMON * 16 + DYN_WEAK_COMMON:
798 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
799 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
800 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
801 // Set the size to the maximum.
802 *adjust_common_sizes = true;
803 return false;
805 default:
806 gold_unreachable();
810 // Issue an error or warning due to symbol resolution. IS_ERROR
811 // indicates an error rather than a warning. MSG is the error
812 // message; it is expected to have a %s for the symbol name. TO is
813 // the existing symbol. DEFINED/OBJECT is where the new symbol was
814 // found.
816 // FIXME: We should have better location information here. When the
817 // symbol is defined, we should be able to pull the location from the
818 // debug info if there is any.
820 void
821 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
822 const Symbol* to, Defined defined,
823 Object* object)
825 std::string demangled(to->demangled_name());
826 size_t len = strlen(msg) + demangled.length() + 10;
827 char* buf = new char[len];
828 snprintf(buf, len, msg, demangled.c_str());
830 const char* objname;
831 switch (defined)
833 case OBJECT:
834 objname = object->name().c_str();
835 break;
836 case COPY:
837 objname = _("COPY reloc");
838 break;
839 case DEFSYM:
840 case UNDEFINED:
841 objname = _("command line");
842 break;
843 case SCRIPT:
844 objname = _("linker script");
845 break;
846 case PREDEFINED:
847 case INCREMENTAL_BASE:
848 objname = _("linker defined");
849 break;
850 default:
851 gold_unreachable();
854 if (is_error)
855 gold_error("%s: %s", objname, buf);
856 else
857 gold_warning("%s: %s", objname, buf);
859 delete[] buf;
861 if (to->source() == Symbol::FROM_OBJECT)
862 objname = to->object()->name().c_str();
863 else
864 objname = _("command line");
865 gold_info("%s: %s: previous definition here", program_name, objname);
868 // A special case of should_override which is only called for a strong
869 // defined symbol from a regular object file. This is used when
870 // defining special symbols.
872 bool
873 Symbol_table::should_override_with_special(const Symbol* to, Defined defined)
875 bool adjust_common_sizes;
876 bool adjust_dyn_def;
877 unsigned int frombits = global_flag | regular_flag | def_flag;
878 bool ret = Symbol_table::should_override(to, frombits, defined, NULL,
879 &adjust_common_sizes,
880 &adjust_dyn_def);
881 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
882 return ret;
885 // Override symbol base with a special symbol.
887 void
888 Symbol::override_base_with_special(const Symbol* from)
890 gold_assert(this->name_ == from->name_ || this->has_alias());
892 this->source_ = from->source_;
893 switch (from->source_)
895 case FROM_OBJECT:
896 this->u_.from_object = from->u_.from_object;
897 break;
898 case IN_OUTPUT_DATA:
899 this->u_.in_output_data = from->u_.in_output_data;
900 break;
901 case IN_OUTPUT_SEGMENT:
902 this->u_.in_output_segment = from->u_.in_output_segment;
903 break;
904 case IS_CONSTANT:
905 case IS_UNDEFINED:
906 break;
907 default:
908 gold_unreachable();
909 break;
912 this->override_version(from->version_);
913 this->type_ = from->type_;
914 this->binding_ = from->binding_;
915 this->override_visibility(from->visibility_);
916 this->nonvis_ = from->nonvis_;
918 // Special symbols are always considered to be regular symbols.
919 this->in_reg_ = true;
921 if (from->needs_dynsym_entry_)
922 this->needs_dynsym_entry_ = true;
923 if (from->needs_dynsym_value_)
924 this->needs_dynsym_value_ = true;
926 this->is_predefined_ = from->is_predefined_;
928 // We shouldn't see these flags. If we do, we need to handle them
929 // somehow.
930 gold_assert(!from->is_forwarder_);
931 gold_assert(!from->has_plt_offset());
932 gold_assert(!from->has_warning_);
933 gold_assert(!from->is_copied_from_dynobj_);
934 gold_assert(!from->is_forced_local_);
937 // Override a symbol with a special symbol.
939 template<int size>
940 void
941 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
943 this->override_base_with_special(from);
944 this->value_ = from->value_;
945 this->symsize_ = from->symsize_;
948 // Override TOSYM with the special symbol FROMSYM. This handles all
949 // aliases of TOSYM.
951 template<int size>
952 void
953 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
954 const Sized_symbol<size>* fromsym)
956 tosym->override_with_special(fromsym);
957 if (tosym->has_alias())
959 Symbol* sym = this->weak_aliases_[tosym];
960 gold_assert(sym != NULL);
961 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
964 ssym->override_with_special(fromsym);
965 sym = this->weak_aliases_[ssym];
966 gold_assert(sym != NULL);
967 ssym = this->get_sized_symbol<size>(sym);
969 while (ssym != tosym);
971 if (tosym->binding() == elfcpp::STB_LOCAL
972 || ((tosym->visibility() == elfcpp::STV_HIDDEN
973 || tosym->visibility() == elfcpp::STV_INTERNAL)
974 && (tosym->binding() == elfcpp::STB_GLOBAL
975 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
976 || tosym->binding() == elfcpp::STB_WEAK)
977 && !parameters->options().relocatable()))
978 this->force_local(tosym);
981 // Instantiate the templates we need. We could use the configure
982 // script to restrict this to only the ones needed for implemented
983 // targets.
985 // We have to instantiate both big and little endian versions because
986 // these are used by other templates that depends on size only.
988 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
989 template
990 void
991 Symbol_table::resolve<32, false>(
992 Sized_symbol<32>* to,
993 const elfcpp::Sym<32, false>& sym,
994 unsigned int st_shndx,
995 bool is_ordinary,
996 unsigned int orig_st_shndx,
997 Object* object,
998 const char* version);
1000 template
1001 void
1002 Symbol_table::resolve<32, true>(
1003 Sized_symbol<32>* to,
1004 const elfcpp::Sym<32, true>& sym,
1005 unsigned int st_shndx,
1006 bool is_ordinary,
1007 unsigned int orig_st_shndx,
1008 Object* object,
1009 const char* version);
1010 #endif
1012 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1013 template
1014 void
1015 Symbol_table::resolve<64, false>(
1016 Sized_symbol<64>* to,
1017 const elfcpp::Sym<64, false>& sym,
1018 unsigned int st_shndx,
1019 bool is_ordinary,
1020 unsigned int orig_st_shndx,
1021 Object* object,
1022 const char* version);
1024 template
1025 void
1026 Symbol_table::resolve<64, true>(
1027 Sized_symbol<64>* to,
1028 const elfcpp::Sym<64, true>& sym,
1029 unsigned int st_shndx,
1030 bool is_ordinary,
1031 unsigned int orig_st_shndx,
1032 Object* object,
1033 const char* version);
1034 #endif
1036 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1037 template
1038 void
1039 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1040 const Sized_symbol<32>*);
1041 #endif
1043 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1044 template
1045 void
1046 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1047 const Sized_symbol<64>*);
1048 #endif
1050 } // End namespace gold.