1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
44 static void sparc64_elf_build_plt
45 PARAMS((bfd
*, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
48 static bfd_vma sparc64_elf_plt_ptr_offset
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd
*, struct bfd_link_info
*, asection
*sec
,
53 const Elf_Internal_Rela
*));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info
*, struct elf_link_hash_entry
*));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd
*, struct bfd_link_info
*));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym
*, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
62 const char **, flagword
*, asection
**, bfd_vma
*));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd
*, asymbol
*));
66 static boolean sparc64_elf_copy_private_bfd_data
67 PARAMS ((bfd
*, bfd
*));
68 static boolean sparc64_elf_merge_private_bfd_data
69 PARAMS ((bfd
*, bfd
*));
71 static boolean sparc64_elf_relax_section
72 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, boolean
*));
73 static boolean sparc64_elf_relocate_section
74 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
75 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
76 static boolean sparc64_elf_object_p
PARAMS ((bfd
*));
77 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
78 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
79 static boolean sparc64_elf_slurp_one_reloc_table
80 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, boolean
));
81 static boolean sparc64_elf_slurp_reloc_table
82 PARAMS ((bfd
*, asection
*, asymbol
**, boolean
));
83 static long sparc64_elf_canonicalize_dynamic_reloc
84 PARAMS ((bfd
*, arelent
**, asymbol
**));
85 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
87 /* The relocation "howto" table. */
89 static bfd_reloc_status_type sparc_elf_notsup_reloc
90 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
91 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
92 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
93 static bfd_reloc_status_type sparc_elf_hix22_reloc
94 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
95 static bfd_reloc_status_type sparc_elf_lox10_reloc
96 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
98 static reloc_howto_type sparc64_elf_howto_table
[] =
100 HOWTO(R_SPARC_NONE
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", false,0,0x00000000,true),
101 HOWTO(R_SPARC_8
, 0,0, 8,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", false,0,0x000000ff,true),
102 HOWTO(R_SPARC_16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", false,0,0x0000ffff,true),
103 HOWTO(R_SPARC_32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", false,0,0xffffffff,true),
104 HOWTO(R_SPARC_DISP8
, 0,0, 8,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", false,0,0x000000ff,true),
105 HOWTO(R_SPARC_DISP16
, 0,1,16,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", false,0,0x0000ffff,true),
106 HOWTO(R_SPARC_DISP32
, 0,2,32,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", false,0,0x00ffffff,true),
107 HOWTO(R_SPARC_WDISP30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
108 HOWTO(R_SPARC_WDISP22
, 2,2,22,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_HI22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", false,0,0x003fffff,true),
110 HOWTO(R_SPARC_22
, 0,2,22,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_13
, 0,2,13,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", false,0,0x00001fff,true),
112 HOWTO(R_SPARC_LO10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", false,0,0x000003ff,true),
113 HOWTO(R_SPARC_GOT10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", false,0,0x000003ff,true),
114 HOWTO(R_SPARC_GOT13
, 0,2,13,false,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", false,0,0x00001fff,true),
115 HOWTO(R_SPARC_GOT22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_PC10
, 0,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", false,0,0x000003ff,true),
117 HOWTO(R_SPARC_PC22
, 10,2,22,true, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", false,0,0x003fffff,true),
118 HOWTO(R_SPARC_WPLT30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
119 HOWTO(R_SPARC_COPY
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", false,0,0x00000000,true),
120 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
121 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
122 HOWTO(R_SPARC_RELATIVE
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",false,0,0x00000000,true),
123 HOWTO(R_SPARC_UA32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", false,0,0xffffffff,true),
124 #ifndef SPARC64_OLD_RELOCS
125 /* These aren't implemented yet. */
126 HOWTO(R_SPARC_PLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PLT32", false,0,0x00000000,true),
127 HOWTO(R_SPARC_HIPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", false,0,0x00000000,true),
128 HOWTO(R_SPARC_LOPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", false,0,0x00000000,true),
130 HOWTO(R_SPARC_PCPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", false,0,0x00000000,true),
131 HOWTO(R_SPARC_PCPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", false,0,0x00000000,true),
133 HOWTO(R_SPARC_10
, 0,2,10,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_11
, 0,2,11,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", false,0,0x000007ff,true),
135 HOWTO(R_SPARC_64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", false,0,MINUS_ONE
, true),
136 HOWTO(R_SPARC_OLO10
, 0,2,13,false,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", false,0,0x00001fff,true),
137 HOWTO(R_SPARC_HH22
, 42,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_HM10
, 32,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", false,0,0x000003ff,true),
139 HOWTO(R_SPARC_LM22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", false,0,0x003fffff,true),
140 HOWTO(R_SPARC_PC_HH22
, 42,2,22,true, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_PC_HM10
, 32,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
142 HOWTO(R_SPARC_PC_LM22
, 10,2,22,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
143 HOWTO(R_SPARC_WDISP16
, 2,2,16,true, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", false,0,0x00000000,true),
144 HOWTO(R_SPARC_WDISP19
, 2,2,19,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
145 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
146 HOWTO(R_SPARC_7
, 0,2, 7,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", false,0,0x0000007f,true),
147 HOWTO(R_SPARC_5
, 0,2, 5,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", false,0,0x0000001f,true),
148 HOWTO(R_SPARC_6
, 0,2, 6,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", false,0,0x0000003f,true),
149 HOWTO(R_SPARC_DISP64
, 0,4,64,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", false,0,MINUS_ONE
, true),
150 HOWTO(R_SPARC_PLT64
, 0,4,64,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_PLT64", false,0,MINUS_ONE
, false),
151 HOWTO(R_SPARC_HIX22
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", false,0,MINUS_ONE
, false),
152 HOWTO(R_SPARC_LOX10
, 0,4, 0,false,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", false,0,MINUS_ONE
, false),
153 HOWTO(R_SPARC_H44
, 22,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", false,0,0x003fffff,false),
154 HOWTO(R_SPARC_M44
, 12,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", false,0,0x000003ff,false),
155 HOWTO(R_SPARC_L44
, 0,2,13,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", false,0,0x00000fff,false),
156 HOWTO(R_SPARC_REGISTER
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",false,0,MINUS_ONE
, false),
157 HOWTO(R_SPARC_UA64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", false,0,MINUS_ONE
, true),
158 HOWTO(R_SPARC_UA16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", false,0,0x0000ffff,true)
161 struct elf_reloc_map
{
162 bfd_reloc_code_real_type bfd_reloc_val
;
163 unsigned char elf_reloc_val
;
166 static CONST
struct elf_reloc_map sparc_reloc_map
[] =
168 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
169 { BFD_RELOC_16
, R_SPARC_16
, },
170 { BFD_RELOC_8
, R_SPARC_8
},
171 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
172 { BFD_RELOC_CTOR
, R_SPARC_64
},
173 { BFD_RELOC_32
, R_SPARC_32
},
174 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
175 { BFD_RELOC_HI22
, R_SPARC_HI22
},
176 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
177 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
178 { BFD_RELOC_SPARC22
, R_SPARC_22
},
179 { BFD_RELOC_SPARC13
, R_SPARC_13
},
180 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
181 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
182 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
183 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
184 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
185 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
186 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
187 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
188 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
189 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
190 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
191 /* ??? Doesn't dwarf use this? */
192 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
193 {BFD_RELOC_SPARC_10
, R_SPARC_10
},
194 {BFD_RELOC_SPARC_11
, R_SPARC_11
},
195 {BFD_RELOC_SPARC_64
, R_SPARC_64
},
196 {BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
197 {BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
198 {BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
199 {BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
200 {BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
201 {BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
202 {BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
203 {BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
204 {BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
205 {BFD_RELOC_SPARC_7
, R_SPARC_7
},
206 {BFD_RELOC_SPARC_5
, R_SPARC_5
},
207 {BFD_RELOC_SPARC_6
, R_SPARC_6
},
208 {BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
209 {BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
210 {BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
211 {BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
212 {BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
213 {BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
214 {BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
215 {BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
218 static reloc_howto_type
*
219 sparc64_elf_reloc_type_lookup (abfd
, code
)
220 bfd
*abfd ATTRIBUTE_UNUSED
;
221 bfd_reloc_code_real_type code
;
224 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
226 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
227 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
233 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
234 bfd
*abfd ATTRIBUTE_UNUSED
;
236 Elf64_Internal_Rela
*dst
;
238 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
239 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
242 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
243 section can represent up to two relocs, we must tell the user to allocate
247 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
248 bfd
*abfd ATTRIBUTE_UNUSED
;
251 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
255 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
258 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
261 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
262 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
263 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
264 for the same location, R_SPARC_LO10 and R_SPARC_13. */
267 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
270 Elf_Internal_Shdr
*rel_hdr
;
274 PTR allocated
= NULL
;
275 bfd_byte
*native_relocs
;
282 allocated
= (PTR
) bfd_malloc ((size_t) rel_hdr
->sh_size
);
283 if (allocated
== NULL
)
286 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
287 || (bfd_read (allocated
, 1, rel_hdr
->sh_size
, abfd
)
288 != rel_hdr
->sh_size
))
291 native_relocs
= (bfd_byte
*) allocated
;
293 relents
= asect
->relocation
+ asect
->reloc_count
;
295 entsize
= rel_hdr
->sh_entsize
;
296 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
298 count
= rel_hdr
->sh_size
/ entsize
;
300 for (i
= 0, relent
= relents
; i
< count
;
301 i
++, relent
++, native_relocs
+= entsize
)
303 Elf_Internal_Rela rela
;
305 bfd_elf64_swap_reloca_in (abfd
, (Elf64_External_Rela
*) native_relocs
, &rela
);
307 /* The address of an ELF reloc is section relative for an object
308 file, and absolute for an executable file or shared library.
309 The address of a normal BFD reloc is always section relative,
310 and the address of a dynamic reloc is absolute.. */
311 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
312 relent
->address
= rela
.r_offset
;
314 relent
->address
= rela
.r_offset
- asect
->vma
;
316 if (ELF64_R_SYM (rela
.r_info
) == 0)
317 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
322 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
325 /* Canonicalize ELF section symbols. FIXME: Why? */
326 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
327 relent
->sym_ptr_ptr
= ps
;
329 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
332 relent
->addend
= rela
.r_addend
;
334 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
335 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
337 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
338 relent
[1].address
= relent
->address
;
340 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
341 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
342 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
345 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
348 asect
->reloc_count
+= relent
- relents
;
350 if (allocated
!= NULL
)
356 if (allocated
!= NULL
)
361 /* Read in and swap the external relocs. */
364 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
370 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
371 Elf_Internal_Shdr
*rel_hdr
;
372 Elf_Internal_Shdr
*rel_hdr2
;
374 if (asect
->relocation
!= NULL
)
379 if ((asect
->flags
& SEC_RELOC
) == 0
380 || asect
->reloc_count
== 0)
383 rel_hdr
= &d
->rel_hdr
;
384 rel_hdr2
= d
->rel_hdr2
;
386 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
387 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
391 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
392 case because relocations against this section may use the
393 dynamic symbol table, and in that case bfd_section_from_shdr
394 in elf.c does not update the RELOC_COUNT. */
395 if (asect
->_raw_size
== 0)
398 rel_hdr
= &d
->this_hdr
;
399 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
403 asect
->relocation
= ((arelent
*)
405 asect
->reloc_count
* 2 * sizeof (arelent
)));
406 if (asect
->relocation
== NULL
)
409 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
410 asect
->reloc_count
= 0;
412 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
417 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
424 /* Canonicalize the dynamic relocation entries. Note that we return
425 the dynamic relocations as a single block, although they are
426 actually associated with particular sections; the interface, which
427 was designed for SunOS style shared libraries, expects that there
428 is only one set of dynamic relocs. Any section that was actually
429 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
430 the dynamic symbol table, is considered to be a dynamic reloc
434 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
442 if (elf_dynsymtab (abfd
) == 0)
444 bfd_set_error (bfd_error_invalid_operation
);
449 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
451 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
452 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
457 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, true))
459 count
= s
->reloc_count
;
461 for (i
= 0; i
< count
; i
++)
472 /* Write out the relocs. */
475 sparc64_elf_write_relocs (abfd
, sec
, data
)
480 boolean
*failedp
= (boolean
*) data
;
481 Elf_Internal_Shdr
*rela_hdr
;
482 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
483 unsigned int idx
, count
;
484 asymbol
*last_sym
= 0;
485 int last_sym_idx
= 0;
487 /* If we have already failed, don't do anything. */
491 if ((sec
->flags
& SEC_RELOC
) == 0)
494 /* The linker backend writes the relocs out itself, and sets the
495 reloc_count field to zero to inhibit writing them here. Also,
496 sometimes the SEC_RELOC flag gets set even when there aren't any
498 if (sec
->reloc_count
== 0)
501 /* We can combine two relocs that refer to the same address
502 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
503 latter is R_SPARC_13 with no associated symbol. */
505 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
511 addr
= sec
->orelocation
[idx
]->address
;
512 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
513 && idx
< sec
->reloc_count
- 1)
515 arelent
*r
= sec
->orelocation
[idx
+ 1];
517 if (r
->howto
->type
== R_SPARC_13
518 && r
->address
== addr
519 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
520 && (*r
->sym_ptr_ptr
)->value
== 0)
525 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
527 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
528 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
529 if (rela_hdr
->contents
== NULL
)
535 /* Figure out whether the relocations are RELA or REL relocations. */
536 if (rela_hdr
->sh_type
!= SHT_RELA
)
539 /* orelocation has the data, reloc_count has the count... */
540 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
541 src_rela
= outbound_relocas
;
543 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
545 Elf_Internal_Rela dst_rela
;
550 ptr
= sec
->orelocation
[idx
];
552 /* The address of an ELF reloc is section relative for an object
553 file, and absolute for an executable file or shared library.
554 The address of a BFD reloc is always section relative. */
555 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
556 dst_rela
.r_offset
= ptr
->address
;
558 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
560 sym
= *ptr
->sym_ptr_ptr
;
563 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
568 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
577 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
578 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
579 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
585 if (ptr
->howto
->type
== R_SPARC_LO10
586 && idx
< sec
->reloc_count
- 1)
588 arelent
*r
= sec
->orelocation
[idx
+ 1];
590 if (r
->howto
->type
== R_SPARC_13
591 && r
->address
== ptr
->address
592 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
593 && (*r
->sym_ptr_ptr
)->value
== 0)
597 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
601 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
604 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
606 dst_rela
.r_addend
= ptr
->addend
;
607 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, src_rela
);
612 /* Sparc64 ELF linker hash table. */
614 struct sparc64_elf_app_reg
617 unsigned short shndx
;
622 struct sparc64_elf_link_hash_table
624 struct elf_link_hash_table root
;
626 struct sparc64_elf_app_reg app_regs
[4];
629 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
631 #define sparc64_elf_hash_table(p) \
632 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
634 /* Create a Sparc64 ELF linker hash table. */
636 static struct bfd_link_hash_table
*
637 sparc64_elf_bfd_link_hash_table_create (abfd
)
640 struct sparc64_elf_link_hash_table
*ret
;
642 ret
= ((struct sparc64_elf_link_hash_table
*)
643 bfd_zalloc (abfd
, sizeof (struct sparc64_elf_link_hash_table
)));
644 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
647 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
648 _bfd_elf_link_hash_newfunc
))
650 bfd_release (abfd
, ret
);
654 return &ret
->root
.root
;
657 /* Utility for performing the standard initial work of an instruction
659 *PRELOCATION will contain the relocated item.
660 *PINSN will contain the instruction from the input stream.
661 If the result is `bfd_reloc_other' the caller can continue with
662 performing the relocation. Otherwise it must stop and return the
663 value to its caller. */
665 static bfd_reloc_status_type
666 init_insn_reloc (abfd
,
675 arelent
*reloc_entry
;
678 asection
*input_section
;
680 bfd_vma
*prelocation
;
684 reloc_howto_type
*howto
= reloc_entry
->howto
;
686 if (output_bfd
!= (bfd
*) NULL
687 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
688 && (! howto
->partial_inplace
689 || reloc_entry
->addend
== 0))
691 reloc_entry
->address
+= input_section
->output_offset
;
695 /* This works because partial_inplace == false. */
696 if (output_bfd
!= NULL
)
697 return bfd_reloc_continue
;
699 if (reloc_entry
->address
> input_section
->_cooked_size
)
700 return bfd_reloc_outofrange
;
702 relocation
= (symbol
->value
703 + symbol
->section
->output_section
->vma
704 + symbol
->section
->output_offset
);
705 relocation
+= reloc_entry
->addend
;
706 if (howto
->pc_relative
)
708 relocation
-= (input_section
->output_section
->vma
709 + input_section
->output_offset
);
710 relocation
-= reloc_entry
->address
;
713 *prelocation
= relocation
;
714 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
715 return bfd_reloc_other
;
718 /* For unsupported relocs. */
720 static bfd_reloc_status_type
721 sparc_elf_notsup_reloc (abfd
,
728 bfd
*abfd ATTRIBUTE_UNUSED
;
729 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
730 asymbol
*symbol ATTRIBUTE_UNUSED
;
731 PTR data ATTRIBUTE_UNUSED
;
732 asection
*input_section ATTRIBUTE_UNUSED
;
733 bfd
*output_bfd ATTRIBUTE_UNUSED
;
734 char **error_message ATTRIBUTE_UNUSED
;
736 return bfd_reloc_notsupported
;
739 /* Handle the WDISP16 reloc. */
741 static bfd_reloc_status_type
742 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
743 output_bfd
, error_message
)
745 arelent
*reloc_entry
;
748 asection
*input_section
;
750 char **error_message ATTRIBUTE_UNUSED
;
754 bfd_reloc_status_type status
;
756 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
757 input_section
, output_bfd
, &relocation
, &insn
);
758 if (status
!= bfd_reloc_other
)
761 insn
= (insn
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
762 | ((relocation
>> 2) & 0x3fff));
763 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
765 if ((bfd_signed_vma
) relocation
< - 0x40000
766 || (bfd_signed_vma
) relocation
> 0x3ffff)
767 return bfd_reloc_overflow
;
772 /* Handle the HIX22 reloc. */
774 static bfd_reloc_status_type
775 sparc_elf_hix22_reloc (abfd
,
783 arelent
*reloc_entry
;
786 asection
*input_section
;
788 char **error_message ATTRIBUTE_UNUSED
;
792 bfd_reloc_status_type status
;
794 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
795 input_section
, output_bfd
, &relocation
, &insn
);
796 if (status
!= bfd_reloc_other
)
799 relocation
^= MINUS_ONE
;
800 insn
= (insn
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
801 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
803 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
804 return bfd_reloc_overflow
;
809 /* Handle the LOX10 reloc. */
811 static bfd_reloc_status_type
812 sparc_elf_lox10_reloc (abfd
,
820 arelent
*reloc_entry
;
823 asection
*input_section
;
825 char **error_message ATTRIBUTE_UNUSED
;
829 bfd_reloc_status_type status
;
831 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
832 input_section
, output_bfd
, &relocation
, &insn
);
833 if (status
!= bfd_reloc_other
)
836 insn
= (insn
& ~0x1fff) | 0x1c00 | (relocation
& 0x3ff);
837 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
844 /* Both the headers and the entries are icache aligned. */
845 #define PLT_ENTRY_SIZE 32
846 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
847 #define LARGE_PLT_THRESHOLD 32768
848 #define GOT_RESERVED_ENTRIES 1
850 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
852 /* Fill in the .plt section. */
855 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
857 unsigned char *contents
;
860 const unsigned int nop
= 0x01000000;
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
866 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
867 bfd_put_32 (output_bfd
, 0, contents
+i
*4);
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
872 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
874 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
875 unsigned int sethi
, ba
;
877 /* sethi (. - plt0), %g1 */
878 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
880 /* ba,a,pt %xcc, plt1 */
881 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
883 bfd_put_32 (output_bfd
, sethi
, entry
);
884 bfd_put_32 (output_bfd
, ba
, entry
+4);
885 bfd_put_32 (output_bfd
, nop
, entry
+8);
886 bfd_put_32 (output_bfd
, nop
, entry
+12);
887 bfd_put_32 (output_bfd
, nop
, entry
+16);
888 bfd_put_32 (output_bfd
, nop
, entry
+20);
889 bfd_put_32 (output_bfd
, nop
, entry
+24);
890 bfd_put_32 (output_bfd
, nop
, entry
+28);
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
897 for (; i
< nentries
; i
+= 160)
899 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
900 for (j
= 0; j
< block
; ++j
)
902 unsigned char *entry
, *ptr
;
905 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
906 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx
= 0xc25be000 | ((ptr
- entry
+4) & 0x1fff);
911 bfd_put_32 (output_bfd
, 0x8a10000f, entry
); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd
, 0x40000002, entry
+4); /* call .+8 */
913 bfd_put_32 (output_bfd
, nop
, entry
+8); /* nop */
914 bfd_put_32 (output_bfd
, ldx
, entry
+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd
, 0x83c3c001, entry
+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd
, 0x9e100005, entry
+20); /* mov %g5,%o7 */
918 bfd_put_64 (output_bfd
, contents
- (entry
+4), ptr
);
923 /* Return the offset of a particular plt entry within the .plt section. */
926 sparc64_elf_plt_entry_offset (index
)
931 if (index
< LARGE_PLT_THRESHOLD
)
932 return index
* PLT_ENTRY_SIZE
;
934 /* See above for details. */
936 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
937 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
939 return ((bfd_vma
) (LARGE_PLT_THRESHOLD
+ block
*160) * PLT_ENTRY_SIZE
944 sparc64_elf_plt_ptr_offset (index
, max
)
947 int block
, ofs
, last
;
949 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
951 /* See above for details. */
953 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160)
954 + LARGE_PLT_THRESHOLD
;
956 if (block
+ 160 > max
)
957 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
961 return (block
* PLT_ENTRY_SIZE
966 /* Look through the relocs for a section during the first phase, and
967 allocate space in the global offset table or procedure linkage
971 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
973 struct bfd_link_info
*info
;
975 const Elf_Internal_Rela
*relocs
;
978 Elf_Internal_Shdr
*symtab_hdr
;
979 struct elf_link_hash_entry
**sym_hashes
;
980 bfd_vma
*local_got_offsets
;
981 const Elf_Internal_Rela
*rel
;
982 const Elf_Internal_Rela
*rel_end
;
987 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
990 dynobj
= elf_hash_table (info
)->dynobj
;
991 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
992 sym_hashes
= elf_sym_hashes (abfd
);
993 local_got_offsets
= elf_local_got_offsets (abfd
);
999 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1000 for (rel
= relocs
; rel
< rel_end
; rel
++)
1002 unsigned long r_symndx
;
1003 struct elf_link_hash_entry
*h
;
1005 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1006 if (r_symndx
< symtab_hdr
->sh_info
)
1009 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1011 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1016 /* This symbol requires a global offset table entry. */
1020 /* Create the .got section. */
1021 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1022 if (! _bfd_elf_create_got_section (dynobj
, info
))
1028 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1029 BFD_ASSERT (sgot
!= NULL
);
1032 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1034 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1035 if (srelgot
== NULL
)
1037 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1039 || ! bfd_set_section_flags (dynobj
, srelgot
,
1044 | SEC_LINKER_CREATED
1046 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1053 if (h
->got
.offset
!= (bfd_vma
) -1)
1055 /* We have already allocated space in the .got. */
1058 h
->got
.offset
= sgot
->_raw_size
;
1060 /* Make sure this symbol is output as a dynamic symbol. */
1061 if (h
->dynindx
== -1)
1063 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1067 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1071 /* This is a global offset table entry for a local
1073 if (local_got_offsets
== NULL
)
1076 register unsigned int i
;
1078 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
1079 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1080 if (local_got_offsets
== NULL
)
1082 elf_local_got_offsets (abfd
) = local_got_offsets
;
1083 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1084 local_got_offsets
[i
] = (bfd_vma
) -1;
1086 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1088 /* We have already allocated space in the .got. */
1091 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1095 /* If we are generating a shared object, we need to
1096 output a R_SPARC_RELATIVE reloc so that the
1097 dynamic linker can adjust this GOT entry. */
1098 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1102 sgot
->_raw_size
+= 8;
1105 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1106 unsigned numbers. If we permit ourselves to modify
1107 code so we get sethi/xor, this could work.
1108 Question: do we consider conditionally re-enabling
1109 this for -fpic, once we know about object code models? */
1110 /* If the .got section is more than 0x1000 bytes, we add
1111 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1112 bit relocations have a greater chance of working. */
1113 if (sgot
->_raw_size
>= 0x1000
1114 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1115 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1120 case R_SPARC_WPLT30
:
1122 case R_SPARC_HIPLT22
:
1123 case R_SPARC_LOPLT10
:
1124 case R_SPARC_PCPLT32
:
1125 case R_SPARC_PCPLT22
:
1126 case R_SPARC_PCPLT10
:
1128 /* This symbol requires a procedure linkage table entry. We
1129 actually build the entry in adjust_dynamic_symbol,
1130 because this might be a case of linking PIC code without
1131 linking in any dynamic objects, in which case we don't
1132 need to generate a procedure linkage table after all. */
1136 /* It does not make sense to have a procedure linkage
1137 table entry for a local symbol. */
1138 bfd_set_error (bfd_error_bad_value
);
1142 /* Make sure this symbol is output as a dynamic symbol. */
1143 if (h
->dynindx
== -1)
1145 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1149 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1154 case R_SPARC_PC_HH22
:
1155 case R_SPARC_PC_HM10
:
1156 case R_SPARC_PC_LM22
:
1158 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1162 case R_SPARC_DISP16
:
1163 case R_SPARC_DISP32
:
1164 case R_SPARC_DISP64
:
1165 case R_SPARC_WDISP30
:
1166 case R_SPARC_WDISP22
:
1167 case R_SPARC_WDISP19
:
1168 case R_SPARC_WDISP16
:
1197 /* When creating a shared object, we must copy these relocs
1198 into the output file. We create a reloc section in
1199 dynobj and make room for the reloc.
1201 But don't do this for debugging sections -- this shows up
1202 with DWARF2 -- first because they are not loaded, and
1203 second because DWARF sez the debug info is not to be
1204 biased by the load address. */
1205 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1211 name
= (bfd_elf_string_from_elf_section
1213 elf_elfheader (abfd
)->e_shstrndx
,
1214 elf_section_data (sec
)->rel_hdr
.sh_name
));
1218 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1219 && strcmp (bfd_get_section_name (abfd
, sec
),
1222 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1227 sreloc
= bfd_make_section (dynobj
, name
);
1228 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1229 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1230 if ((sec
->flags
& SEC_ALLOC
) != 0)
1231 flags
|= SEC_ALLOC
| SEC_LOAD
;
1233 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1234 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1239 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1243 case R_SPARC_REGISTER
:
1244 /* Nothing to do. */
1248 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1249 bfd_get_filename(abfd
),
1250 ELF64_R_TYPE_ID (rel
->r_info
));
1258 /* Hook called by the linker routine which adds symbols from an object
1259 file. We use it for STT_REGISTER symbols. */
1262 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1264 struct bfd_link_info
*info
;
1265 const Elf_Internal_Sym
*sym
;
1267 flagword
*flagsp ATTRIBUTE_UNUSED
;
1268 asection
**secp ATTRIBUTE_UNUSED
;
1269 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1271 static char *stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1273 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1276 struct sparc64_elf_app_reg
*p
;
1278 reg
= (int)sym
->st_value
;
1281 case 2: reg
-= 2; break;
1282 case 6: reg
-= 4; break;
1284 (*_bfd_error_handler
)
1285 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1286 bfd_get_filename (abfd
));
1290 if (info
->hash
->creator
!= abfd
->xvec
1291 || (abfd
->flags
& DYNAMIC
) != 0)
1293 /* STT_REGISTER only works when linking an elf64_sparc object.
1294 If STT_REGISTER comes from a dynamic object, don't put it into
1295 the output bfd. The dynamic linker will recheck it. */
1300 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1302 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1304 (*_bfd_error_handler
)
1305 (_("Register %%g%d used incompatibly: "
1306 "previously declared in %s to %s, in %s redefined to %s"),
1308 bfd_get_filename (p
->abfd
), *p
->name
? p
->name
: "#scratch",
1309 bfd_get_filename (abfd
), **namep
? *namep
: "#scratch");
1313 if (p
->name
== NULL
)
1317 struct elf_link_hash_entry
*h
;
1319 h
= (struct elf_link_hash_entry
*)
1320 bfd_link_hash_lookup (info
->hash
, *namep
, false, false, false);
1324 unsigned char type
= h
->type
;
1326 if (type
> STT_FUNC
) type
= 0;
1327 (*_bfd_error_handler
)
1328 (_("Symbol `%s' has differing types: "
1329 "previously %s, REGISTER in %s"),
1330 *namep
, stt_types
[type
], bfd_get_filename (abfd
));
1334 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1335 strlen (*namep
) + 1);
1339 strcpy (p
->name
, *namep
);
1343 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1345 p
->shndx
= sym
->st_shndx
;
1349 if (p
->bind
== STB_WEAK
1350 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1352 p
->bind
= STB_GLOBAL
;
1359 else if (! *namep
|| ! **namep
)
1364 struct sparc64_elf_app_reg
*p
;
1366 p
= sparc64_elf_hash_table(info
)->app_regs
;
1367 for (i
= 0; i
< 4; i
++, p
++)
1368 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1370 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1372 if (type
> STT_FUNC
) type
= 0;
1373 (*_bfd_error_handler
)
1374 (_("Symbol `%s' has differing types: "
1375 "REGISTER in %s, %s in %s"),
1376 *namep
, bfd_get_filename (p
->abfd
), stt_types
[type
],
1377 bfd_get_filename (abfd
));
1384 /* This function takes care of emiting STT_REGISTER symbols
1385 which we cannot easily keep in the symbol hash table. */
1388 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1389 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1390 struct bfd_link_info
*info
;
1392 boolean (*func
) PARAMS ((PTR
, const char *,
1393 Elf_Internal_Sym
*, asection
*));
1396 struct sparc64_elf_app_reg
*app_regs
=
1397 sparc64_elf_hash_table(info
)->app_regs
;
1398 Elf_Internal_Sym sym
;
1400 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1401 at the end of the dynlocal list, so they came at the end of the local
1402 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1403 to back up symtab->sh_info. */
1404 if (elf_hash_table (info
)->dynlocal
)
1406 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1407 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1408 struct elf_link_local_dynamic_entry
*e
;
1410 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1411 if (e
->input_indx
== -1)
1415 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1420 if (info
->strip
== strip_all
)
1423 for (reg
= 0; reg
< 4; reg
++)
1424 if (app_regs
[reg
].name
!= NULL
)
1426 if (info
->strip
== strip_some
1427 && bfd_hash_lookup (info
->keep_hash
,
1428 app_regs
[reg
].name
,
1429 false, false) == NULL
)
1432 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1435 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1436 sym
.st_shndx
= app_regs
[reg
].shndx
;
1437 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1438 sym
.st_shndx
== SHN_ABS
1439 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1447 sparc64_elf_get_symbol_type (elf_sym
, type
)
1448 Elf_Internal_Sym
* elf_sym
;
1451 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1452 return STT_REGISTER
;
1457 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1458 even in SHN_UNDEF section. */
1461 sparc64_elf_symbol_processing (abfd
, asym
)
1462 bfd
*abfd ATTRIBUTE_UNUSED
;
1465 elf_symbol_type
*elfsym
;
1467 elfsym
= (elf_symbol_type
*) asym
;
1468 if (elfsym
->internal_elf_sym
.st_info
1469 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1471 asym
->flags
|= BSF_GLOBAL
;
1475 /* Adjust a symbol defined by a dynamic object and referenced by a
1476 regular object. The current definition is in some section of the
1477 dynamic object, but we're not including those sections. We have to
1478 change the definition to something the rest of the link can
1482 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1483 struct bfd_link_info
*info
;
1484 struct elf_link_hash_entry
*h
;
1488 unsigned int power_of_two
;
1490 dynobj
= elf_hash_table (info
)->dynobj
;
1492 /* Make sure we know what is going on here. */
1493 BFD_ASSERT (dynobj
!= NULL
1494 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1495 || h
->weakdef
!= NULL
1496 || ((h
->elf_link_hash_flags
1497 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1498 && (h
->elf_link_hash_flags
1499 & ELF_LINK_HASH_REF_REGULAR
) != 0
1500 && (h
->elf_link_hash_flags
1501 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1503 /* If this is a function, put it in the procedure linkage table. We
1504 will fill in the contents of the procedure linkage table later
1505 (although we could actually do it here). The STT_NOTYPE
1506 condition is a hack specifically for the Oracle libraries
1507 delivered for Solaris; for some inexplicable reason, they define
1508 some of their functions as STT_NOTYPE when they really should be
1510 if (h
->type
== STT_FUNC
1511 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1512 || (h
->type
== STT_NOTYPE
1513 && (h
->root
.type
== bfd_link_hash_defined
1514 || h
->root
.type
== bfd_link_hash_defweak
)
1515 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1517 if (! elf_hash_table (info
)->dynamic_sections_created
)
1519 /* This case can occur if we saw a WPLT30 reloc in an input
1520 file, but none of the input files were dynamic objects.
1521 In such a case, we don't actually need to build a
1522 procedure linkage table, and we can just do a WDISP30
1524 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1528 s
= bfd_get_section_by_name (dynobj
, ".plt");
1529 BFD_ASSERT (s
!= NULL
);
1531 /* The first four bit in .plt is reserved. */
1532 if (s
->_raw_size
== 0)
1533 s
->_raw_size
= PLT_HEADER_SIZE
;
1535 /* If this symbol is not defined in a regular file, and we are
1536 not generating a shared library, then set the symbol to this
1537 location in the .plt. This is required to make function
1538 pointers compare as equal between the normal executable and
1539 the shared library. */
1541 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1543 h
->root
.u
.def
.section
= s
;
1544 h
->root
.u
.def
.value
= s
->_raw_size
;
1547 /* To simplify matters later, just store the plt index here. */
1548 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1550 /* Make room for this entry. */
1551 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1553 /* We also need to make an entry in the .rela.plt section. */
1555 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1556 BFD_ASSERT (s
!= NULL
);
1558 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1560 /* The procedure linkage table size is bounded by the magnitude
1561 of the offset we can describe in the entry. */
1562 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1564 bfd_set_error (bfd_error_bad_value
);
1571 /* If this is a weak symbol, and there is a real definition, the
1572 processor independent code will have arranged for us to see the
1573 real definition first, and we can just use the same value. */
1574 if (h
->weakdef
!= NULL
)
1576 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1577 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1578 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1579 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1583 /* This is a reference to a symbol defined by a dynamic object which
1584 is not a function. */
1586 /* If we are creating a shared library, we must presume that the
1587 only references to the symbol are via the global offset table.
1588 For such cases we need not do anything here; the relocations will
1589 be handled correctly by relocate_section. */
1593 /* We must allocate the symbol in our .dynbss section, which will
1594 become part of the .bss section of the executable. There will be
1595 an entry for this symbol in the .dynsym section. The dynamic
1596 object will contain position independent code, so all references
1597 from the dynamic object to this symbol will go through the global
1598 offset table. The dynamic linker will use the .dynsym entry to
1599 determine the address it must put in the global offset table, so
1600 both the dynamic object and the regular object will refer to the
1601 same memory location for the variable. */
1603 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1604 BFD_ASSERT (s
!= NULL
);
1606 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1607 to copy the initial value out of the dynamic object and into the
1608 runtime process image. We need to remember the offset into the
1609 .rel.bss section we are going to use. */
1610 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1614 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1615 BFD_ASSERT (srel
!= NULL
);
1616 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1617 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1620 /* We need to figure out the alignment required for this symbol. I
1621 have no idea how ELF linkers handle this. 16-bytes is the size
1622 of the largest type that requires hard alignment -- long double. */
1623 power_of_two
= bfd_log2 (h
->size
);
1624 if (power_of_two
> 4)
1627 /* Apply the required alignment. */
1628 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1629 (bfd_size_type
) (1 << power_of_two
));
1630 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1632 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1636 /* Define the symbol as being at this point in the section. */
1637 h
->root
.u
.def
.section
= s
;
1638 h
->root
.u
.def
.value
= s
->_raw_size
;
1640 /* Increment the section size to make room for the symbol. */
1641 s
->_raw_size
+= h
->size
;
1646 /* Set the sizes of the dynamic sections. */
1649 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1651 struct bfd_link_info
*info
;
1658 dynobj
= elf_hash_table (info
)->dynobj
;
1659 BFD_ASSERT (dynobj
!= NULL
);
1661 if (elf_hash_table (info
)->dynamic_sections_created
)
1663 /* Set the contents of the .interp section to the interpreter. */
1666 s
= bfd_get_section_by_name (dynobj
, ".interp");
1667 BFD_ASSERT (s
!= NULL
);
1668 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1669 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1674 /* We may have created entries in the .rela.got section.
1675 However, if we are not creating the dynamic sections, we will
1676 not actually use these entries. Reset the size of .rela.got,
1677 which will cause it to get stripped from the output file
1679 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1684 /* The check_relocs and adjust_dynamic_symbol entry points have
1685 determined the sizes of the various dynamic sections. Allocate
1689 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1694 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1697 /* It's OK to base decisions on the section name, because none
1698 of the dynobj section names depend upon the input files. */
1699 name
= bfd_get_section_name (dynobj
, s
);
1703 if (strncmp (name
, ".rela", 5) == 0)
1705 if (s
->_raw_size
== 0)
1707 /* If we don't need this section, strip it from the
1708 output file. This is to handle .rela.bss and
1709 .rel.plt. We must create it in
1710 create_dynamic_sections, because it must be created
1711 before the linker maps input sections to output
1712 sections. The linker does that before
1713 adjust_dynamic_symbol is called, and it is that
1714 function which decides whether anything needs to go
1715 into these sections. */
1720 const char *outname
;
1723 /* If this relocation section applies to a read only
1724 section, then we probably need a DT_TEXTREL entry. */
1725 outname
= bfd_get_section_name (output_bfd
,
1727 target
= bfd_get_section_by_name (output_bfd
, outname
+ 5);
1729 && (target
->flags
& SEC_READONLY
) != 0)
1732 if (strcmp (name
, ".rela.plt") == 0)
1735 /* We use the reloc_count field as a counter if we need
1736 to copy relocs into the output file. */
1740 else if (strcmp (name
, ".plt") != 0
1741 && strncmp (name
, ".got", 4) != 0)
1743 /* It's not one of our sections, so don't allocate space. */
1749 _bfd_strip_section_from_output (info
, s
);
1753 /* Allocate memory for the section contents. Zero the memory
1754 for the benefit of .rela.plt, which has 4 unused entries
1755 at the beginning, and we don't want garbage. */
1756 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1757 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1761 if (elf_hash_table (info
)->dynamic_sections_created
)
1763 /* Add some entries to the .dynamic section. We fill in the
1764 values later, in sparc64_elf_finish_dynamic_sections, but we
1765 must add the entries now so that we get the correct size for
1766 the .dynamic section. The DT_DEBUG entry is filled in by the
1767 dynamic linker and used by the debugger. */
1769 struct sparc64_elf_app_reg
* app_regs
;
1770 struct bfd_strtab_hash
*dynstr
;
1771 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1775 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0))
1781 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1784 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1788 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1791 sizeof (Elf64_External_Rela
)))
1796 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1798 info
->flags
|= DF_TEXTREL
;
1801 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1802 entries if needed. */
1803 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1804 dynstr
= eht
->dynstr
;
1806 for (reg
= 0; reg
< 4; reg
++)
1807 if (app_regs
[reg
].name
!= NULL
)
1809 struct elf_link_local_dynamic_entry
*entry
, *e
;
1811 if (! bfd_elf64_add_dynamic_entry (info
, DT_SPARC_REGISTER
, 0))
1814 entry
= (struct elf_link_local_dynamic_entry
*)
1815 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1819 /* We cheat here a little bit: the symbol will not be local, so we
1820 put it at the end of the dynlocal linked list. We will fix it
1821 later on, as we have to fix other fields anyway. */
1822 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1823 entry
->isym
.st_size
= 0;
1824 if (*app_regs
[reg
].name
!= '\0')
1826 = _bfd_stringtab_add (dynstr
, app_regs
[reg
].name
, true, false);
1828 entry
->isym
.st_name
= 0;
1829 entry
->isym
.st_other
= 0;
1830 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1832 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1834 entry
->input_bfd
= output_bfd
;
1835 entry
->input_indx
= -1;
1837 if (eht
->dynlocal
== NULL
)
1838 eht
->dynlocal
= entry
;
1841 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1852 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1853 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1856 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1857 bfd
*abfd ATTRIBUTE_UNUSED
;
1858 asection
*section ATTRIBUTE_UNUSED
;
1859 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1863 SET_SEC_DO_RELAX (section
);
1867 /* Relocate a SPARC64 ELF section. */
1870 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1871 contents
, relocs
, local_syms
, local_sections
)
1873 struct bfd_link_info
*info
;
1875 asection
*input_section
;
1877 Elf_Internal_Rela
*relocs
;
1878 Elf_Internal_Sym
*local_syms
;
1879 asection
**local_sections
;
1882 Elf_Internal_Shdr
*symtab_hdr
;
1883 struct elf_link_hash_entry
**sym_hashes
;
1884 bfd_vma
*local_got_offsets
;
1889 Elf_Internal_Rela
*rel
;
1890 Elf_Internal_Rela
*relend
;
1892 dynobj
= elf_hash_table (info
)->dynobj
;
1893 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1894 sym_hashes
= elf_sym_hashes (input_bfd
);
1895 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1897 if (elf_hash_table(info
)->hgot
== NULL
)
1900 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
1902 sgot
= splt
= sreloc
= NULL
;
1905 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
1906 for (; rel
< relend
; rel
++)
1909 reloc_howto_type
*howto
;
1910 unsigned long r_symndx
;
1911 struct elf_link_hash_entry
*h
;
1912 Elf_Internal_Sym
*sym
;
1915 bfd_reloc_status_type r
;
1917 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
1918 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
1920 bfd_set_error (bfd_error_bad_value
);
1923 howto
= sparc64_elf_howto_table
+ r_type
;
1925 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1927 if (info
->relocateable
)
1929 /* This is a relocateable link. We don't have to change
1930 anything, unless the reloc is against a section symbol,
1931 in which case we have to adjust according to where the
1932 section symbol winds up in the output section. */
1933 if (r_symndx
< symtab_hdr
->sh_info
)
1935 sym
= local_syms
+ r_symndx
;
1936 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1938 sec
= local_sections
[r_symndx
];
1939 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1946 /* This is a final link. */
1950 if (r_symndx
< symtab_hdr
->sh_info
)
1952 sym
= local_syms
+ r_symndx
;
1953 sec
= local_sections
[r_symndx
];
1954 relocation
= (sec
->output_section
->vma
1955 + sec
->output_offset
1960 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1961 while (h
->root
.type
== bfd_link_hash_indirect
1962 || h
->root
.type
== bfd_link_hash_warning
)
1963 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1964 if (h
->root
.type
== bfd_link_hash_defined
1965 || h
->root
.type
== bfd_link_hash_defweak
)
1967 boolean skip_it
= false;
1968 sec
= h
->root
.u
.def
.section
;
1972 case R_SPARC_WPLT30
:
1974 case R_SPARC_HIPLT22
:
1975 case R_SPARC_LOPLT10
:
1976 case R_SPARC_PCPLT32
:
1977 case R_SPARC_PCPLT22
:
1978 case R_SPARC_PCPLT10
:
1980 if (h
->plt
.offset
!= (bfd_vma
) -1)
1987 if (elf_hash_table(info
)->dynamic_sections_created
1989 || (!info
->symbolic
&& h
->dynindx
!= -1)
1990 || !(h
->elf_link_hash_flags
1991 & ELF_LINK_HASH_DEF_REGULAR
)))
1997 case R_SPARC_PC_HH22
:
1998 case R_SPARC_PC_HM10
:
1999 case R_SPARC_PC_LM22
:
2000 if (!strcmp(h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2008 case R_SPARC_DISP16
:
2009 case R_SPARC_DISP32
:
2010 case R_SPARC_WDISP30
:
2011 case R_SPARC_WDISP22
:
2024 case R_SPARC_WDISP19
:
2025 case R_SPARC_WDISP16
:
2029 case R_SPARC_DISP64
:
2038 && ((!info
->symbolic
&& h
->dynindx
!= -1)
2039 || !(h
->elf_link_hash_flags
2040 & ELF_LINK_HASH_DEF_REGULAR
)))
2047 /* In these cases, we don't need the relocation
2048 value. We check specially because in some
2049 obscure cases sec->output_section will be NULL. */
2054 relocation
= (h
->root
.u
.def
.value
2055 + sec
->output_section
->vma
2056 + sec
->output_offset
);
2059 else if (h
->root
.type
== bfd_link_hash_undefweak
)
2061 else if (info
->shared
&& !info
->symbolic
2062 && !info
->no_undefined
2063 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2067 if (! ((*info
->callbacks
->undefined_symbol
)
2068 (info
, h
->root
.root
.string
, input_bfd
,
2069 input_section
, rel
->r_offset
,
2070 (!info
->shared
|| info
->no_undefined
2071 || ELF_ST_VISIBILITY (h
->other
)))))
2074 /* To avoid generating warning messages about truncated
2075 relocations, set the relocation's address to be the same as
2076 the start of this section. */
2078 if (input_section
->output_section
!= NULL
)
2079 relocation
= input_section
->output_section
->vma
;
2085 /* When generating a shared object, these relocations are copied
2086 into the output file to be resolved at run time. */
2087 if (info
->shared
&& (input_section
->flags
& SEC_ALLOC
))
2093 case R_SPARC_PC_HH22
:
2094 case R_SPARC_PC_HM10
:
2095 case R_SPARC_PC_LM22
:
2097 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2101 case R_SPARC_DISP16
:
2102 case R_SPARC_DISP32
:
2103 case R_SPARC_WDISP30
:
2104 case R_SPARC_WDISP22
:
2105 case R_SPARC_WDISP19
:
2106 case R_SPARC_WDISP16
:
2107 case R_SPARC_DISP64
:
2137 Elf_Internal_Rela outrel
;
2143 (bfd_elf_string_from_elf_section
2145 elf_elfheader (input_bfd
)->e_shstrndx
,
2146 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2151 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2152 && strcmp (bfd_get_section_name(input_bfd
,
2156 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2157 BFD_ASSERT (sreloc
!= NULL
);
2162 if (elf_section_data (input_section
)->stab_info
== NULL
)
2163 outrel
.r_offset
= rel
->r_offset
;
2168 off
= (_bfd_stab_section_offset
2169 (output_bfd
, &elf_hash_table (info
)->stab_info
,
2171 &elf_section_data (input_section
)->stab_info
,
2173 if (off
== MINUS_ONE
)
2175 outrel
.r_offset
= off
;
2178 outrel
.r_offset
+= (input_section
->output_section
->vma
2179 + input_section
->output_offset
);
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2186 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2189 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2192 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2195 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2198 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2201 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2206 memset (&outrel
, 0, sizeof outrel
);
2207 /* h->dynindx may be -1 if the symbol was marked to
2210 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2211 || (h
->elf_link_hash_flags
2212 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2214 BFD_ASSERT (h
->dynindx
!= -1);
2216 = ELF64_R_INFO (h
->dynindx
,
2218 ELF64_R_TYPE_DATA (rel
->r_info
),
2220 outrel
.r_addend
= rel
->r_addend
;
2224 if (r_type
== R_SPARC_64
)
2226 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2227 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2234 sec
= local_sections
[r_symndx
];
2237 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2239 == bfd_link_hash_defweak
));
2240 sec
= h
->root
.u
.def
.section
;
2242 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2244 else if (sec
== NULL
|| sec
->owner
== NULL
)
2246 bfd_set_error (bfd_error_bad_value
);
2253 osec
= sec
->output_section
;
2254 indx
= elf_section_data (osec
)->dynindx
;
2256 /* FIXME: we really should be able to link non-pic
2257 shared libraries. */
2261 (*_bfd_error_handler
)
2262 (_("%s: probably compiled without -fPIC?"),
2263 bfd_get_filename (input_bfd
));
2264 bfd_set_error (bfd_error_bad_value
);
2270 = ELF64_R_INFO (indx
,
2272 ELF64_R_TYPE_DATA (rel
->r_info
),
2274 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2278 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2279 (((Elf64_External_Rela
*)
2281 + sreloc
->reloc_count
));
2282 ++sreloc
->reloc_count
;
2284 /* This reloc will be computed at runtime, so there's no
2285 need to do anything now, unless this is a RELATIVE
2286 reloc in an unallocated section. */
2288 || (input_section
->flags
& SEC_ALLOC
) != 0
2289 || ELF64_R_TYPE_ID (outrel
.r_info
) != R_SPARC_RELATIVE
)
2301 /* Relocation is to the entry for this symbol in the global
2305 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2306 BFD_ASSERT (sgot
!= NULL
);
2311 bfd_vma off
= h
->got
.offset
;
2312 BFD_ASSERT (off
!= (bfd_vma
) -1);
2314 if (! elf_hash_table (info
)->dynamic_sections_created
2316 && (info
->symbolic
|| h
->dynindx
== -1)
2317 && (h
->elf_link_hash_flags
2318 & ELF_LINK_HASH_DEF_REGULAR
)))
2320 /* This is actually a static link, or it is a -Bsymbolic
2321 link and the symbol is defined locally, or the symbol
2322 was forced to be local because of a version file. We
2323 must initialize this entry in the global offset table.
2324 Since the offset must always be a multiple of 8, we
2325 use the least significant bit to record whether we
2326 have initialized it already.
2328 When doing a dynamic link, we create a .rela.got
2329 relocation entry to initialize the value. This is
2330 done in the finish_dynamic_symbol routine. */
2336 bfd_put_64 (output_bfd
, relocation
,
2337 sgot
->contents
+ off
);
2341 relocation
= sgot
->output_offset
+ off
- got_base
;
2347 BFD_ASSERT (local_got_offsets
!= NULL
);
2348 off
= local_got_offsets
[r_symndx
];
2349 BFD_ASSERT (off
!= (bfd_vma
) -1);
2351 /* The offset must always be a multiple of 8. We use
2352 the least significant bit to record whether we have
2353 already processed this entry. */
2358 local_got_offsets
[r_symndx
] |= 1;
2363 Elf_Internal_Rela outrel
;
2365 /* The Solaris 2.7 64-bit linker adds the contents
2366 of the location to the value of the reloc.
2367 Note this is different behaviour to the
2368 32-bit linker, which both adds the contents
2369 and ignores the addend. So clear the location. */
2370 bfd_put_64 (output_bfd
, 0, sgot
->contents
+ off
);
2372 /* We need to generate a R_SPARC_RELATIVE reloc
2373 for the dynamic linker. */
2374 srelgot
= bfd_get_section_by_name(dynobj
, ".rela.got");
2375 BFD_ASSERT (srelgot
!= NULL
);
2377 outrel
.r_offset
= (sgot
->output_section
->vma
2378 + sgot
->output_offset
2380 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2381 outrel
.r_addend
= relocation
;
2382 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2383 (((Elf64_External_Rela
*)
2385 + srelgot
->reloc_count
));
2386 ++srelgot
->reloc_count
;
2389 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2391 relocation
= sgot
->output_offset
+ off
- got_base
;
2395 case R_SPARC_WPLT30
:
2397 case R_SPARC_HIPLT22
:
2398 case R_SPARC_LOPLT10
:
2399 case R_SPARC_PCPLT32
:
2400 case R_SPARC_PCPLT22
:
2401 case R_SPARC_PCPLT10
:
2403 /* Relocation is to the entry for this symbol in the
2404 procedure linkage table. */
2405 BFD_ASSERT (h
!= NULL
);
2407 if (h
->plt
.offset
== (bfd_vma
) -1)
2409 /* We didn't make a PLT entry for this symbol. This
2410 happens when statically linking PIC code, or when
2411 using -Bsymbolic. */
2417 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2418 BFD_ASSERT (splt
!= NULL
);
2421 relocation
= (splt
->output_section
->vma
2422 + splt
->output_offset
2423 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2424 if (r_type
== R_SPARC_WPLT30
)
2432 relocation
+= rel
->r_addend
;
2433 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2435 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2436 x
= (x
& ~0x1fff) | (relocation
& 0x1fff);
2437 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2439 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2440 howto
->bitsize
, howto
->rightshift
,
2441 bfd_arch_bits_per_address (input_bfd
),
2446 case R_SPARC_WDISP16
:
2450 relocation
+= rel
->r_addend
;
2451 /* Adjust for pc-relative-ness. */
2452 relocation
-= (input_section
->output_section
->vma
2453 + input_section
->output_offset
);
2454 relocation
-= rel
->r_offset
;
2456 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2457 x
= (x
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
2458 | ((relocation
>> 2) & 0x3fff));
2459 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2461 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2462 howto
->bitsize
, howto
->rightshift
,
2463 bfd_arch_bits_per_address (input_bfd
),
2472 relocation
+= rel
->r_addend
;
2473 relocation
= relocation
^ MINUS_ONE
;
2475 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2476 x
= (x
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2477 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2479 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2480 howto
->bitsize
, howto
->rightshift
,
2481 bfd_arch_bits_per_address (input_bfd
),
2490 relocation
+= rel
->r_addend
;
2491 relocation
= (relocation
& 0x3ff) | 0x1c00;
2493 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2494 x
= (x
& ~0x1fff) | relocation
;
2495 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2501 case R_SPARC_WDISP30
:
2503 if (SEC_DO_RELAX (input_section
)
2504 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2508 #define XCC (2 << 20)
2509 #define COND(x) (((x)&0xf)<<25)
2510 #define CONDA COND(0x8)
2511 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2512 #define INSN_BA (F2(0,2) | CONDA)
2513 #define INSN_OR F3(2, 0x2, 0)
2514 #define INSN_NOP F2(0,4)
2518 /* If the instruction is a call with either:
2520 arithmetic instruction with rd == %o7
2521 where rs1 != %o7 and rs2 if it is register != %o7
2522 then we can optimize if the call destination is near
2523 by changing the call into a branch always. */
2524 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2525 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2526 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2528 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2529 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2530 && (y
& RD(~0)) == RD(O7
)))
2531 && (y
& RS1(~0)) != RS1(O7
)
2533 || (y
& RS2(~0)) != RS2(O7
)))
2537 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2538 reloc
-= (input_section
->output_section
->vma
2539 + input_section
->output_offset
);
2543 /* Ensure the branch fits into simm22. */
2544 if ((reloc
& ~(bfd_vma
)0x7fffff)
2545 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2549 /* Check whether it fits into simm19. */
2550 if ((reloc
& 0x3c0000) == 0
2551 || (reloc
& 0x3c0000) == 0x3c0000)
2552 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2554 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2555 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2557 if (rel
->r_offset
>= 4
2558 && (y
& (0xffffffff ^ RS1(~0)))
2559 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2564 z
= bfd_get_32 (input_bfd
,
2565 contents
+ rel
->r_offset
- 4);
2566 if ((z
& (0xffffffff ^ RD(~0)))
2567 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2575 If call foo was replaced with ba, replace
2576 or %rN, %g0, %o7 with nop. */
2578 reg
= (y
& RS1(~0)) >> 14;
2579 if (reg
!= ((z
& RD(~0)) >> 25)
2580 || reg
== G0
|| reg
== O7
)
2583 bfd_put_32 (input_bfd
, INSN_NOP
,
2584 contents
+ rel
->r_offset
+ 4);
2594 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2595 contents
, rel
->r_offset
,
2596 relocation
, rel
->r_addend
);
2606 case bfd_reloc_outofrange
:
2609 case bfd_reloc_overflow
:
2615 if (h
->root
.type
== bfd_link_hash_undefweak
2616 && howto
->pc_relative
)
2618 /* Assume this is a call protected by other code that
2619 detect the symbol is undefined. If this is the case,
2620 we can safely ignore the overflow. If not, the
2621 program is hosed anyway, and a little warning isn't
2626 name
= h
->root
.root
.string
;
2630 name
= (bfd_elf_string_from_elf_section
2632 symtab_hdr
->sh_link
,
2637 name
= bfd_section_name (input_bfd
, sec
);
2639 if (! ((*info
->callbacks
->reloc_overflow
)
2640 (info
, name
, howto
->name
, (bfd_vma
) 0,
2641 input_bfd
, input_section
, rel
->r_offset
)))
2651 /* Finish up dynamic symbol handling. We set the contents of various
2652 dynamic sections here. */
2655 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2657 struct bfd_link_info
*info
;
2658 struct elf_link_hash_entry
*h
;
2659 Elf_Internal_Sym
*sym
;
2663 dynobj
= elf_hash_table (info
)->dynobj
;
2665 if (h
->plt
.offset
!= (bfd_vma
) -1)
2669 Elf_Internal_Rela rela
;
2671 /* This symbol has an entry in the PLT. Set it up. */
2673 BFD_ASSERT (h
->dynindx
!= -1);
2675 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2676 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2677 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2679 /* Fill in the entry in the .rela.plt section. */
2681 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2683 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2688 int max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2689 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2690 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2691 -(splt
->output_section
->vma
+ splt
->output_offset
);
2693 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2694 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2696 /* Adjust for the first 4 reserved elements in the .plt section
2697 when setting the offset in the .rela.plt section.
2698 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2699 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2701 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2702 ((Elf64_External_Rela
*) srela
->contents
2703 + (h
->plt
.offset
- 4)));
2705 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2707 /* Mark the symbol as undefined, rather than as defined in
2708 the .plt section. Leave the value alone. */
2709 sym
->st_shndx
= SHN_UNDEF
;
2710 /* If the symbol is weak, we do need to clear the value.
2711 Otherwise, the PLT entry would provide a definition for
2712 the symbol even if the symbol wasn't defined anywhere,
2713 and so the symbol would never be NULL. */
2714 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
2720 if (h
->got
.offset
!= (bfd_vma
) -1)
2724 Elf_Internal_Rela rela
;
2726 /* This symbol has an entry in the GOT. Set it up. */
2728 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2729 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2730 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2732 rela
.r_offset
= (sgot
->output_section
->vma
2733 + sgot
->output_offset
2734 + (h
->got
.offset
&~ 1));
2736 /* If this is a -Bsymbolic link, and the symbol is defined
2737 locally, we just want to emit a RELATIVE reloc. Likewise if
2738 the symbol was forced to be local because of a version file.
2739 The entry in the global offset table will already have been
2740 initialized in the relocate_section function. */
2742 && (info
->symbolic
|| h
->dynindx
== -1)
2743 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2745 asection
*sec
= h
->root
.u
.def
.section
;
2746 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2747 rela
.r_addend
= (h
->root
.u
.def
.value
2748 + sec
->output_section
->vma
2749 + sec
->output_offset
);
2753 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
2754 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2758 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2759 ((Elf64_External_Rela
*) srela
->contents
2760 + srela
->reloc_count
));
2761 ++srela
->reloc_count
;
2764 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2767 Elf_Internal_Rela rela
;
2769 /* This symbols needs a copy reloc. Set it up. */
2771 BFD_ASSERT (h
->dynindx
!= -1);
2773 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2775 BFD_ASSERT (s
!= NULL
);
2777 rela
.r_offset
= (h
->root
.u
.def
.value
2778 + h
->root
.u
.def
.section
->output_section
->vma
2779 + h
->root
.u
.def
.section
->output_offset
);
2780 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2782 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2783 ((Elf64_External_Rela
*) s
->contents
2788 /* Mark some specially defined symbols as absolute. */
2789 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2790 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2791 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2792 sym
->st_shndx
= SHN_ABS
;
2797 /* Finish up the dynamic sections. */
2800 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2802 struct bfd_link_info
*info
;
2805 int stt_regidx
= -1;
2809 dynobj
= elf_hash_table (info
)->dynobj
;
2811 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2813 if (elf_hash_table (info
)->dynamic_sections_created
)
2816 Elf64_External_Dyn
*dyncon
, *dynconend
;
2818 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2819 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2821 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2822 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2823 for (; dyncon
< dynconend
; dyncon
++)
2825 Elf_Internal_Dyn dyn
;
2829 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2833 case DT_PLTGOT
: name
= ".plt"; size
= false; break;
2834 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= true; break;
2835 case DT_JMPREL
: name
= ".rela.plt"; size
= false; break;
2836 case DT_SPARC_REGISTER
:
2837 if (stt_regidx
== -1)
2840 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2841 if (stt_regidx
== -1)
2844 dyn
.d_un
.d_val
= stt_regidx
++;
2845 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2847 default: name
= NULL
; size
= false; break;
2854 s
= bfd_get_section_by_name (output_bfd
, name
);
2860 dyn
.d_un
.d_ptr
= s
->vma
;
2863 if (s
->_cooked_size
!= 0)
2864 dyn
.d_un
.d_val
= s
->_cooked_size
;
2866 dyn
.d_un
.d_val
= s
->_raw_size
;
2869 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2873 /* Initialize the contents of the .plt section. */
2874 if (splt
->_raw_size
> 0)
2876 sparc64_elf_build_plt(output_bfd
, splt
->contents
,
2877 splt
->_raw_size
/ PLT_ENTRY_SIZE
);
2880 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2884 /* Set the first entry in the global offset table to the address of
2885 the dynamic section. */
2886 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2887 BFD_ASSERT (sgot
!= NULL
);
2888 if (sgot
->_raw_size
> 0)
2891 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2893 bfd_put_64 (output_bfd
,
2894 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2898 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2903 /* Functions for dealing with the e_flags field. */
2905 /* Copy backend specific data from one object module to another */
2907 sparc64_elf_copy_private_bfd_data (ibfd
, obfd
)
2910 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2911 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2914 BFD_ASSERT (!elf_flags_init (obfd
)
2915 || (elf_elfheader (obfd
)->e_flags
2916 == elf_elfheader (ibfd
)->e_flags
));
2918 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
2919 elf_flags_init (obfd
) = true;
2923 /* Merge backend specific data from an object file to the output
2924 object file when linking. */
2927 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2932 flagword new_flags
, old_flags
;
2935 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2936 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2939 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2940 old_flags
= elf_elfheader (obfd
)->e_flags
;
2942 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2944 elf_flags_init (obfd
) = true;
2945 elf_elfheader (obfd
)->e_flags
= new_flags
;
2948 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2951 else /* Incompatible flags */
2955 #define EF_SPARC_ISA_EXTENSIONS \
2956 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2958 if ((ibfd
->flags
& DYNAMIC
) != 0)
2960 /* We don't want dynamic objects memory ordering and
2961 architecture to have any role. That's what dynamic linker
2963 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
2964 new_flags
|= (old_flags
2965 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
2969 /* Choose the highest architecture requirements. */
2970 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
2971 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
2972 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
2973 && (old_flags
& EF_SPARC_HAL_R1
))
2976 (*_bfd_error_handler
)
2977 (_("%s: linking UltraSPARC specific with HAL specific code"),
2978 bfd_get_filename (ibfd
));
2980 /* Choose the most restrictive memory ordering. */
2981 old_mm
= (old_flags
& EF_SPARCV9_MM
);
2982 new_mm
= (new_flags
& EF_SPARCV9_MM
);
2983 old_flags
&= ~EF_SPARCV9_MM
;
2984 new_flags
&= ~EF_SPARCV9_MM
;
2985 if (new_mm
< old_mm
)
2987 old_flags
|= old_mm
;
2988 new_flags
|= old_mm
;
2991 /* Warn about any other mismatches */
2992 if (new_flags
!= old_flags
)
2995 (*_bfd_error_handler
)
2996 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2997 bfd_get_filename (ibfd
), (long)new_flags
, (long)old_flags
);
3000 elf_elfheader (obfd
)->e_flags
= old_flags
;
3004 bfd_set_error (bfd_error_bad_value
);
3011 /* Print a STT_REGISTER symbol to file FILE. */
3014 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3015 bfd
*abfd ATTRIBUTE_UNUSED
;
3019 FILE *file
= (FILE *) filep
;
3022 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3026 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3027 type
= symbol
->flags
;
3028 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3030 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3031 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3032 (type
& BSF_WEAK
) ? 'w' : ' ');
3033 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3036 return symbol
->name
;
3039 /* Set the right machine number for a SPARC64 ELF file. */
3042 sparc64_elf_object_p (abfd
)
3045 unsigned long mach
= bfd_mach_sparc_v9
;
3047 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3048 mach
= bfd_mach_sparc_v9b
;
3049 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3050 mach
= bfd_mach_sparc_v9a
;
3051 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3054 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3055 standard ELF, because R_SPARC_OLO10 has secondary addend in
3056 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3057 relocation handling routines. */
3059 const struct elf_size_info sparc64_elf_size_info
=
3061 sizeof (Elf64_External_Ehdr
),
3062 sizeof (Elf64_External_Phdr
),
3063 sizeof (Elf64_External_Shdr
),
3064 sizeof (Elf64_External_Rel
),
3065 sizeof (Elf64_External_Rela
),
3066 sizeof (Elf64_External_Sym
),
3067 sizeof (Elf64_External_Dyn
),
3068 sizeof (Elf_External_Note
),
3069 4, /* hash-table entry size */
3070 /* internal relocations per external relocations.
3071 For link purposes we use just 1 internal per
3072 1 external, for assembly and slurp symbol table
3079 bfd_elf64_write_out_phdrs
,
3080 bfd_elf64_write_shdrs_and_ehdr
,
3081 sparc64_elf_write_relocs
,
3082 bfd_elf64_swap_symbol_out
,
3083 sparc64_elf_slurp_reloc_table
,
3084 bfd_elf64_slurp_symbol_table
,
3085 bfd_elf64_swap_dyn_in
,
3086 bfd_elf64_swap_dyn_out
,
3093 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3094 #define TARGET_BIG_NAME "elf64-sparc"
3095 #define ELF_ARCH bfd_arch_sparc
3096 #define ELF_MAXPAGESIZE 0x100000
3098 /* This is the official ABI value. */
3099 #define ELF_MACHINE_CODE EM_SPARCV9
3101 /* This is the value that we used before the ABI was released. */
3102 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3104 #define bfd_elf64_bfd_link_hash_table_create \
3105 sparc64_elf_bfd_link_hash_table_create
3107 #define elf_info_to_howto \
3108 sparc64_elf_info_to_howto
3109 #define bfd_elf64_get_reloc_upper_bound \
3110 sparc64_elf_get_reloc_upper_bound
3111 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3112 sparc64_elf_get_dynamic_reloc_upper_bound
3113 #define bfd_elf64_canonicalize_dynamic_reloc \
3114 sparc64_elf_canonicalize_dynamic_reloc
3115 #define bfd_elf64_bfd_reloc_type_lookup \
3116 sparc64_elf_reloc_type_lookup
3117 #define bfd_elf64_bfd_relax_section \
3118 sparc64_elf_relax_section
3120 #define elf_backend_create_dynamic_sections \
3121 _bfd_elf_create_dynamic_sections
3122 #define elf_backend_add_symbol_hook \
3123 sparc64_elf_add_symbol_hook
3124 #define elf_backend_get_symbol_type \
3125 sparc64_elf_get_symbol_type
3126 #define elf_backend_symbol_processing \
3127 sparc64_elf_symbol_processing
3128 #define elf_backend_check_relocs \
3129 sparc64_elf_check_relocs
3130 #define elf_backend_adjust_dynamic_symbol \
3131 sparc64_elf_adjust_dynamic_symbol
3132 #define elf_backend_size_dynamic_sections \
3133 sparc64_elf_size_dynamic_sections
3134 #define elf_backend_relocate_section \
3135 sparc64_elf_relocate_section
3136 #define elf_backend_finish_dynamic_symbol \
3137 sparc64_elf_finish_dynamic_symbol
3138 #define elf_backend_finish_dynamic_sections \
3139 sparc64_elf_finish_dynamic_sections
3140 #define elf_backend_print_symbol_all \
3141 sparc64_elf_print_symbol_all
3142 #define elf_backend_output_arch_syms \
3143 sparc64_elf_output_arch_syms
3144 #define bfd_elf64_bfd_copy_private_bfd_data \
3145 sparc64_elf_copy_private_bfd_data
3146 #define bfd_elf64_bfd_merge_private_bfd_data \
3147 sparc64_elf_merge_private_bfd_data
3149 #define elf_backend_size_info \
3150 sparc64_elf_size_info
3151 #define elf_backend_object_p \
3152 sparc64_elf_object_p
3154 #define elf_backend_want_got_plt 0
3155 #define elf_backend_plt_readonly 0
3156 #define elf_backend_want_plt_sym 1
3158 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3159 #define elf_backend_plt_alignment 8
3161 #define elf_backend_got_header_size 8
3162 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3164 #include "elf64-target.h"